C# 2008

Programmer’s Reference

WM Lee

ey

LOCRstees, SOourtyy OO, A Wom BOCr il SUnpoeT O WL WeoaLoom

C# 2008

Programmer’s Reference

Professional

Visual Studio
2008

Professional

i
Beginning

Visual C#
2008

Professional

Visual Studio
Extensibility

Beginning

C# 3.0

An Introduction to Object
Oriented Programming

Enhance Your Knowledge
Advance Your Career

Professional Visual Studio 2008

978-0-470-22988-0

In these pages you'll learn to harness every key feature of Visual Studio.
The opening section will familiarize you with the IDE structure and layout,
various options and settings, and other core aspects of Visual Studio
2008. Then you will examine each of the nine major categories composing
the functions of Visual Studio 2008. Every chapter is cross-referenced,

so you can achieve a complete understanding of each feature and how

all the elements work together to produce an effective programming
environment.

Professional Visual Studio Extensibility

978-0-470-23084-8

Whether you want to integrate optimized builds, enhanced programming
tools, or other rapid application development features, this unique
resource shows you how to develop customized addins using C#.

C# 2008 Programmer’s Reference

978-0-470-28581-7

C# 2008 Programmers Reference provides a concise and thorough
reference on all aspects of the language. Each chapter contains detailed
code samples that provide a quick and easy way to understand the key
concepts covered.

Professional C# 2008

978-0-470-19137-8

Updated for .NET 3.5 and Visual Studio® 2008, this book is the ultimate
guide to C# 2008 and its environment. The team of superlative authors
explain why the C# language cannot be viewed in isolation, but rather,
must be considered in parallel with the .NET Framework.

Beginning Microsoft Visual C# 2008

978-0-470-19135-4

Aimed at novice programmers who wish to learn programming with C# and
the .NET framework, this book starts with absolute programming basics,
then moves into Web and Windows programming, data access (databases
and XML), and more advanced technologies.

Beginning C# 3.0:

An Introduction to Object Oriented Programming
978-0-470-26129-3

This book is written for those readers with no prior programming
experience who want a thorough, yet easy to understand, introduction to
C# and Object Oriented Programming.

C# 2008 Programmer’s Reference

L0 Yo 113 o ' o R XXV

Part I: C# Fundamentals

Chapter 1: The .NET FrameworKcccccvvrrmemrmrereresesassnsmsmsesesessssssnsmsmsasasnsnsas 3
Chapter 2: Getting Started with Visual Studio 2008c.ccoiimimimiiiiveieenns 11
Chapter 3: C# Language Foundations..........cccceimiiiiiiiiiiissnse s s sssssasnsnns 61
Chapter 4: Classes and ObJECtScccvmimiirrrnmrmrirrrr s s s s s s nnnnas 125
Chapter 5: Interfaces.......cccirimiriiiriirisr s s na 171
Chapter 6: InheritancCe........cccveviviiiicirr s r s s s s s s s nnnns 183
Chapter 7: Delegates and Eventscccccviviimmicicrrre s s s sn s s nnnnns 213
Chapter 8: Strings and Regular EXpressionscccceurermimeresssrssssssssssessasnnsas 241
Chapter 9: GeNEIICS...cvuriererrrrr s s s s s s s s s s s s s snnnmrarasnsnsnsnsnnnnnas 265
Chapter 10: Threadingcccvimirrrererminirrreresesns s s s s sasasasnssssnsasnsnnnns 293
Chapter 11.: Files and Streams........cccorimireimirimsrisris s sansas 321
Chapter 12: Exception Handling.......c.cccoeiiimiiiiiicir s s s s s s smsnsnns 377
Chapter 13: Arrays and Collectionscccreimimimriniinrsn s nnnas 397
Chapter 14: Language Integrated Query (LINQ) ...ccccvmirimimermirerminernssssnsnasannas 425
Chapter 15: Assemblies and Versioning.........cccocviivrereiiinnnrresessssssasasanns 467

Part II: Application Development Using C#

Chapter 16: Developing Windows Applicationscccccvirereirernsnernssesnssasnnnas 503
Chapter 17: Developing ASP.NET Web Applications.........c.ccccvvmimiminnnrenennnnns 545
Chapter 18: Developing Windows Mobile Applicationsccceceimivverercnnnas 573
Chapter 19: Developing Silverlight Applications........c.ccccirciiriircrircrnrrnn. 617
Chapter 20: Windows Communication Foundation........c.c.cecreremimimiirrrnnnnees 695

Part lll: Appendixes

Appendix A: C# KeYWOrdScccouiiereimimimimrararesssnssssssasasassssssssasasasnsnssnsasasas 749
Appendix B: Examining the .Net Class Libraries Using the Object Browser....757
Appendix C: Generating Documentation for Your C# Applications 765

C# 2008

Programmer’s Reference

C# 2008

Programmer’s Reference

Wei-Meng Lee

WILEY

Wiley Publishing, Inc.

C# 2008 Programmer’s Reference

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-28581-7

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Lee, Wei-Meng.
C# 2008 programmer’s reference / Wei-Meng Lee.
p- cm.
Includes index.
ISBN 978-0-470-28581-7 (paper/website)
1. C# (Computer program language) 1. Title.
QA76.73.C154L33 2009
005.13'3—dc22
2009036345

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at

http://www.wiley.com/go/permissions.

Limit of Liability /Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

To my family and wife, Shihua, for their support and love.

About the Author

Wei-Meng Lee, Microsoft MVDP, is a technologist and founder of Developer Learning Solutions
(www.learn2develop.net), a technology company specializing in hands-on training in the latest
Microsoft and Apple technologies.

Wei-Meng writes extensively for online publications such as DevX.com and the O’Reilly Network and
magazines such as CoDe Magazine and asp.netPRO magazine on topics ranging from .NET to Mac OS X.
He is also the author of Professional Windows Vista Gadgets Programming (Wrox) and Practical .NET 2.0
Networking Projects (Apress).

You can contact Wei-Meng at weimenglee@learn2develop.net.

About the Technical Editor

Andrew Moore is a graduate of Purdue University—-Calumet in Hammond, Indiana, and has been
developing software since 1998 for radar systems, air traffic management, discrete-event simulation, and
business communications applications using C, C++, C#, and Java on the Windows, UNIX, and Linux
platforms. Andrew is the author of Wrox Blox articles titled “Create Amazing Custom User Interfaces
with WPF, C#, and XAML in .NET 3.0,”, “.NET 3.5 CD Audio Player,” and “Power Programming with
ReSharper.” He is currently a senior software engineer at Interactive Intelligence, Inc. in Indianapolis
developing Microsoft-based applications for business communications. Andrew lives in Indiana with his
wife, Barbara, and children, Sophia and Andrew.

Acquisitions Editor
Katie Mohr

Development Editor
Maryann Steinhart

Technical Editor
Andrew Moore

Production Editor
Christine O’Connor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Credits

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
C.M. Jones

Indexer
Robert Swanson

Acknowledgments

Writing a book is like running a long race — you need stamina, training, and perseverance. But these are
not the most important factors that ensure you reach the finishing line. The most important factor is the
motivation that keeps you going, on and on, even though you may be physically exhausted and don’t
think you can move any farther. While this is not the first book I have written, I am always very excited
when embarking on a new book project. After the excitement comes a lot of hard work — coping with
missed deadlines, changing work schedules, writer’s block, and so forth.

For this book, I am extremely lucky to work with two very important people — my acquisitions editor,
Katie Mohr, and development editor, Maryann Steinhart. Both Katie and Maryann have been very
patient with me when the going gets tough. Katie has always egged me on, and offered many
suggestions to scope the book to what it is today. Maryann has been the studious timekeeper, with a
gentle but firm voice telling me to press forward when I missed the deadline. Maryann has also
painstakingly read and reread every sentence I wrote, and I am always surprised with her attention to
detail which has definitely made this book a better one. With heart-felt sincerity, I want to say a big
thank you to both of them!

I'would also like to thank the technical editor, Andrew Moore, for giving me many suggestions for
improving the book. Writing this book has made me learn a lot of things I never knew. Thanks, Andrew!

Last but not least, I want to take this opportunity to thank my parents and my wife, Shihua, for their
understanding and support when I have had to take time away to work on this book. Thanks!

Contents

Introduction XXV
Part I: C# Fundamentals 1
Chapter 1: The .NET Framework 3
What’s the .NET Framework? 3
Common Language Runtime 3
.NET Framework Class Library 4
Assemblies and the Microsoft Intermediate Language (MSIL) 6
Versions of the .NET Framework and Visual Studio 8
Summary 9
Chapter 2: Getting Started with Visual Studio 2008 11
Visual Studio 2008 Overview 11
Choosing the Development Settings 12
Resetting the Development Settings 13
Creating a New Project 14
Components of the IDE 17
Code and Text Editor 34
Code Snippets 35
IntelliSense 37
Refactoring Support 39
Debugging 49
Setting Breakpoints 49
Stepping through the Code 51
Watching 52
Autos and Immediate Windows 53
Unit Testing 53
Creating the Test 54
Running the Test 57
Testing with Floating Point Numbers 58
Adding Additional Test Methods 59
Summary 59

Contents

Chapter 3: C# Language Foundations 61
Using Visual Studio 2008 61
Using the C# Compiler (csc.exe) 64
Dissecting the Program 66

Passing Arguments to Main() 68
Language Syntax 68
Keywords 68
Variables 69
Scope of Variables 71
Constants 74
Comments 74
XML Documentation 74
Data Types 78
Value Types 79
Reference Types 84
Enumerations 85
Arrays 87
Implicit Typing 88
Type Conversion 89
Flow Control 92
if-else Statement 92
switch Statement 94
Looping 96
for Loop 96
Nested for Loop 97
foreach 98
while and do-while Loops 99
Exiting from a Loop 99
Skipping an Iteration 102
Operators 102
Assignment Operators 103
Relational Operators 105
Logical Operators 106
Mathematical Operators 108
Operator Precedence 109
Preprocessor Directives 110
#define and #undef 111
#if, #else, #elif, and #endif 115
#warning and #error 117
#line 118

Xvi

Contents

#region and #endregion 120
#pragma warning 122
Summary 123
Chapter 4: Classes and Objects 125
Classes 125
Defining a Class 126
Using Partial Classes 126
Creating an Instance of a Class (Object Instantiation) 127
Anonymous Types (C# 3.0) 128
Class Members 131
Function Members 134
Static Classes 156
System.Object Class 157
Testing for Equality 158
Implementing Equals 159
ToString() Method 161
Attributes 162
Structures 165
Summary 169
Chapter 5: Interfaces 171
Defining an Interface 172
Implementing an Interface 173
Implementing Multiple Interfaces 174
Extending Interfaces 175
Interface Casting 177
The is and as Operators 178
Overriding Interface Implementations 179
Summary 181
Chapter 6: Inheritance 183
Understanding Inheritance in C# 183
Implementation Inheritance 184
Abstract Class 186
Abstract Methods 186
Virtual Methods 189
Sealed Classes and Methods 191
Overloading Methods 192

xvii

Contents

Overloading Operators

Extension Methods (C# 3.0)

Access Modifiers

Inheritance and Constructors

Calling Base Class Constructors
Interface Inheritance
Explicit Interface Members Implementation
Summary

Chapter 7: Delegates and Events

195
198
200
202
203
204
208
211

213

Delegates

Creating a Delegate

Delegates Chaining (Multicast Delegates)

Implementing Callbacks Using Delegates

Asynchronous Callbacks

Anonymous Methods and Lambda Expressions
Events

Handling Events

Implementing Events

Difference between Events and Delegates

Passing State Information to an Event Handler
Summary

Chapter 8: Strings and Regular Expressions

213
214
217
220
222
225
226
229
232
235
237
240

241

The System.String Class

Escape Characters

String Manipulations

String Formatting

The StringBuilder Class
Regular Expressions

Searching for a Match

More Complex Pattern Matching
Summary

Chapter 9: Generics

241
243
247
254
257
259
259
261
263

265

Understanding Generics
Generic Classes
Using the default Keyword in Generics
Advantages of Generics

xviii

265
268
270
271

Contents

Using Constraints in a Generic Type 271
Generic Interfaces 275
Generic Structs 276
Generic Methods 276
Generic Operators 278
Generic Delegates 280
Generics and the .NET Framework Class Library 280
Using the LinkedList<T> Generic Class 284
System.Collections.ObjectModel 288
Summary 291
Chapter 10: Threading 293
The Need for Multithreading 293
Starting a Thread 295
Aborting a Thread 297
Passing Parameters to Threads 301
Thread Synchronization 303
Using Interlocked Class 304
Using C# Lock 304
Monitor Class 307
Thread Safety in Windows Forms 312
Using the BackgroundWorker Control 315
Testing the Application 320
Summary 320
Chapter 11.: Files and Streams 321
Working with Files and Directories 321
Working with Directories 322
Working with Files Using the File and Filelnfo Classes 326
Creating a FileExplorer 329
The Stream Class 331
BufferedStream 333
The FileStream Class 334
MemoryStream 337
NetworkStream Class 338
Cryptography 343
Hashing 344
Salted Hash 346
Encryption and Decryption 347

Xix

Contents

Compressions for Stream Objects 353
Compression 353
Decompression 354

Serialization 359
Binary Serialization 359
XML Serialization 365

Summary 375

Chapter 12: Exception Handling 377

Handling Exceptions 377
Handling Exceptions Using the try-catch Statement 378
Handling Multiple Exceptions 381
Throwing Exceptions Using the throw Statement 383
Rethrowing Exceptions 386
Exception Chaining 387
Using Exception Objects 389
The finally Statement 391

Creating Custom Exceptions 393

Summary 395

Chapter 13: Arrays and Collections 397

Arrays 397
Accessing Array Elements 400
Multidimensional Arrays 400
Arrays of Arrays: Jagged Arrays 402
Parameter Arrays 403
Copying Arrays 404

Collections Interfaces 404
Dynamic Arrays Using the ArrayList Class 405
Indexers and Iterators 407
Implementing IEnumerable<T> and IEnumerator<T> 410
Implementing Comparison Using IComparer<T> and IComparable<T> 413
Dictionary 420
Stacks 422
Queues 423

Summary 424

XX

Contents

Chapter 14: Language Integrated Query (LINQ) 425
LINQ Architecture 425
LINQ to Objects 426

Query Syntax versus Method Syntax and Lambda Expressions 429
LINQ and Extension Methods 430
LINQ and Anonymous Types 436
LINQ to DataSet 438
Reshaping Data 441
Aggregate Functions 442
Joining Tables 443
Typed DataSet 446
Detecting Null Fields 449
Saving the Result of a Query to a DataTable 449
LINQ to XML 450
Creating XML Trees 450
Querying Elements 452
An Example Using RSS 453
LINQ to SQL 458
Using the Object Relational Designer 458
Querying 460
Inserting New Rows 461
Updating Rows 463
Deleting Rows 463
Summary 465

Chapter 15: Assemblies and Versioning 467

Assemblies 467
Structure of an Assembly 467
Examining the Content of an Assembly 468
Single and Multi-File Assemblies 469
Understanding Namespaces and Assemblies 480

Private versus Shared Assemblies 486
Creating a Shared Assembly 488
The Global Assembly Cache 492
Putting the Shared Assembly into GAC 493
Making the Shared Assembly Visible in Visual Studio 495
Using the Shared Assembly 496

Summary 499

XXi

Contents

Part II: Application Development Using C#

Chapter 16: Developing Windows Applications

501

503

The Project

Configuring the FTP Server

Creating the Application

Using Application Settings

Coding the Application

Building the Directory Tree and Displaying Images
Creating a New Directory

Removing a Directory

Uploading Photos

Deleting a Photo

Testing the Application

Adding Print Capability

Basics of Printing in .NET
Adding Print Support to the Project

Deploying the Application

Publishing the Application Using ClickOnce

Updating the Application

Programmatically Updating the Application

Rolling Back

Under the Hood: Application and Deployment Manifests

Summary

Chapter 17: Developing ASP.NET Web Applications

503
504
506
508
513
515
522
523
524
525
526
526
526
527
533
534
536
538
541
541
543

545

About ASP.NET

How ASP.NET Works
What Do You Need to Run ASP.NET?

Data Binding

Modeling Databases Using LINQ to SQL
Data Binding Using the GridView Control
Displaying Publisher’s Name

Displaying Titles from a Selected Publisher
Making the Publisher Field Editable

Building Responsive Applications Using AJAX

xxXii

AJAX Control Toolkit

AJAX-Enabling a Page Using the ScriptManager Control
Using the UpdatePanel Control

Using Triggers to Cause an Update

545
546
546

547
548
549
554
555
559

560
561
563
563
564

Contents

Displaying Progress Using the UpdateProgress Control 565
Displaying a Modal Dialog Using the ModalPopupExtender Control 566
Summary 572
Chapter 18: Developing Windows Mobile Applications 573
The Windows Mobile Platform 574
Developing Windows Mobile Applications Using the .NET Compact Framework 576
Obtaining the Appropriate SDKs and Tools 578
Building the RSS Reader Application 580
Building the User Interface 581
Creating the Helper Methods 583
Wiring All the Event Handlers 589
Testing Using Emulators 596
Testing Using Real Devices 597
Deploying the Application 598
Creating a CAB File 598
Creating a Setup Application 603
Summary 616
Chapter 19: Developing Silverlight Applications 617
The State of Silverlight 617
Obtaining the Tools 619
Architecture of Silverlight 620
Building a Silverlight Ul Using XAML 621
Creating a Bare-Bones Silverlight Application 621
Understanding XAML 623
Crafting XAML Using Expression Blend 2 635
Silverlight 1.0 645
Animation — Part 1 645
Animations — Part 2 650
Playing Media 654
Creating Your Own Media Player 663
Silverlight 2.0 675
Creating the Project Using Visual Studio 2008 676
Summary 694

xxiii

Contents

Chapter 20: Windows Communication Foundation 695
What Is WCF? 695
Comparing WCF with ASMX Web Services 700

Your First WCF Service 700
Consuming the WCF Service 708
Understanding How WCF Works 710
WCF Communication Protocols 710

The ABCs of WCF 710
Messaging Patterns 713
Hosting Web Services 713
Building WCF Services 714
Exposing Multiple Endpoints 714
Creating Self-Hosted WCF Service 720
Implementing WCF Callbacks 728
Calling WCF Services from an AJAX Page 741
Summary 745
Part IlI: Appendixes 747
Appendix A: C# Keywords 749

Appendix B: Examining the .Net Class Libraries Using the Object Browser 757

Appendix C: Generating Documentation for Your C# Applications 765
Index 781

XXiv

Introduction

Since the release of the Microsoft NET Framework in July 2000, the C# programming language has

gone through a few iterations to its latest version, 3.0. Over the years, the C# language has gained a lot
of followers, partly due to its syntax, which is familiar to Java and C programmers. The clear syntax of
the language made it easy to learn, and it’s a popular choice for beginning programmers. In addition, the
C# language is gaining a lot of traction in the Visual Basic camp, especially among VB6 programmers,
who needed to move to .NET and did not want to learn a totally new variant of the Visual Basic
language — Visual Basic .NET.

The latest version of C# 3.0 comes with .NET Framework 3.5. It contains many new features that
makes the language more intuitive and powerful. Coupled with Visual Studio 2008, Microsoft’s flagship
development environment, developing applications using C# is now available to a wide audience.

In writing this book, I used the approach I believe is the easiest way to learn a new language — by
examples. Often, books and articles get into too much of the theory without showing the readers what
the concept looks like in code. For each topic, I try to provide numerous examples to illustrate the
concept, and I would encourage you to make changes to the program to explore further. If you are an
experienced programmer, you can jump directly to a particular chapter, as each chapter comes with
independent examples.

Who This Book Is For

This book is for programmers of all levels. Beginning programmers should find the C# language easy to
learn through the many code examples provided in each chapter. Experienced programmers can jump
directly to individual chapters covering the topics of interest to them.

A conscious effort is made to illustrate each topic with independent code examples so that readers who
want clarification on a topic do not need to wade through the entire chapter.

This book is ideal for the working programmer as well as students taking a semester course in
C# programming. The sample projects covered in chapters16 to 20 provide numerous project ideas as
well as motivation for readers to get started working on bigger projects.

What This Book Covers

This book is divided into three parts. Part I covers the C# language fundamentals; Part II covers
application development using C#, and Part III provides three appendices that cover the list of
C# keywords, the .NET class libraries, and document generation using the Sandcastle utility.

Introduction

Part I: C# Fundamentals

XXVi

Q

Chapter 1 introduces the .NET Framework. It examines the key components in the NET
Framework as well as the role played by each of the components. In addition, it discusses the
relationships between the various versions of the framework, from version 1.0 to the latest 3.5.

Chapter 2 covers the use of Microsoft Visual Studio 2008 as the tool for C# development. Visual
Studio 2008 is an extremely versatile and powerful environment for developing .NET
applications. This chapter explores some of the common features that you will likely use in the
process of your development work.

Chapter 3 introduces the syntax of the C# language and covers all the important topics:
C# keywords, variables, constants, comments, XML documentation, data types, flow control,
loops, operators, and preprocessor directives.

Chapter 4 tackles one of the most important topics in C# programming — classes and objects.
Classes are essentially templates in from which you create objects. In C# .NET programming,
everything you deal with involves classes and objects. This chapter provides a firm foundation
in the use and creation of classes for code reuse.

Chapter 5 explains how interfaces can be used to define the contract for a class. It also discusses
difference between an interface and an abstract class.

Chapter 6 looks at how inheritance facilitates code reuse, enabling you to extend the
functionality of code that you have already written. This book explains the different types of
inheritance and how to define overloaded methods and operators.

Chapter 7 introduces the concept of delegates and events used in object oriented programming,
and discusses what a delegate is and how delegates are used to implement events.

Chapter 8 examines strings handling in C# and the various ways to manipulate them. For more
complex strings pattern matching, you can use regular expressions. This chapter also covers the
various ways to format your strings data.

Chapter 9 looks into the basics of generics and how you can use them to enhance efficiency and
type safety in your applications. Generics enable developers to define type-safe data structures
without binding to specific fixed data types at design time.

Chapter 10 explains how to write multithreaded applications using the Thread class in the NET
Framework. It also shows you how to create and synchronize threads as well as how to write
thread-safe Windows applications.

Chapter 11 delves into the concepts of files and streams in .NET. With streams, you can perform
a wide range of tasks, including compressing and decompressing data, serializing and
deserializing data, and encrypting and decrypting data. This chapter covers the various ways to
manipulate files and the various stream objects in .NET.

Chapter 12 deals with exception handling. An exception is a situation that occurs when your
program encounters an error that it is not expecting during runtime. Understanding how to
handle exceptions makes your program more robust and resilient.

Chapter 13 examines arrays and collections. It discusses the many collection classes that you can
use to represent groups of data in .NET.

Introduction

Part II:

Q

Part Il

Q

Q

Chapter 14 introduces a new feature in .NET 3.5: Language Integrated Query (LINQ). It covers
all the important implementations of LINQ — LINQ to Objects, LINQ to XML, LINQ to Dataset,
and LINQ to SQL.

Chapter 15 explores the concept of assemblies. In .NET, the basic unit deployable is called an
assembly. Assemblies play an important part of the development process where understanding
how they work is useful in helping you develop scalable and efficient .NET applications.

Application Development Using C#

Chapter 16 demonstrates how you can build a Windows application using the C# language. The
sample application illustrates how to perform FTP using the classes available in the NET
Framework. You will also see how to perform printing in a.NET application and how to deploy
Windows applications using the ClickOnce technology.

Chapter 17 takes you through building an ASP.NET web application in C#. You perform data
binding using the new LingDataSource control and see how to AJAX-enable your web pages.

Chapter 18 illustrates Windows Mobile development using the .NET Compact Framework, a
subset of the .NET Framework. It examines the basics of the Windows Mobile development and
builds a sample RSS reader application. Finally, it shows you how to create a professional setup
package for your application so that it can be distributed to your readers for installation.

Chapter 19 helps you get started with Silverlight and provides an opportunity for you to get a
feel for Silverlight development works. It covers Silverlight 1.0 and 2, and contains several
examples showing the capabilities of Silverlight, including animation, media, and .NET
integration.

Chapter 20 provides a quick introduction to the new Windows Communication Foundation
(WCEF) technology and shows how it addresses some of the limitations of today’s web services
technology. While most books and conferences focus heavily on the theory behind WCE, this
chapter shows you how to build WCF services and then explains the theory behind them. It
ends with an example that creates a ticketing application, allowing multiple clients to obtain
updated seat information in real time.

: Appendixes

Appendix A lists the various keywords in C# that are predefined and have special meanings to
the compiler.

Appendix B summarizes the features of the various versions of the NET Framework and
explains how to use the Object Browser feature in Visual Studio 2008 to browse the available
namespaces and classes in the NET Framework.

Appendix C shows you how to generate MSDN-style documentation for your project using
Visual Studio 2008 and a third-party documentation generation tool — Sandcastle.

XXVii

Introduction

What You Need to Use This Book

For all the examples demonstrated in this book, I used Microsoft Visual Studio Team System 2008.
However, Microsoft has released a plethora of editions of Visual Studio designed for the different types
of C# developers:

O

Visual Web Developer 2008 Express Edition

Visual C# 2008 Express Edition

Visual Studio 2008 Standard Edition

Visual Studio 2008 Professional Edition

Visual Studio 2008 Team System 2008 Architecture Edition
Visual Studio 2008 Team System 2008 Database Edition
Visual Studio 2008 Team System 2008 Development Edition
Visual Studio 2008 Team System 2008 Test Edition

Visual Studio 2008 Team System 2008 Team Suite

O 000U o0 o000

For a detailed discussion of the features available in each edition, check out the following URL:
http://msdn.microsoft.com/en-us/vs2008/products/ccl49003.aspx.

Express editions are designed for hobbyists and are available for download at no charge. This is a great
way to get started with Visual Studio 2008 and is ideal for students and beginning programmers.
However, if you are a professional developer, you should purchase either the Standard or Professional
Edition. If you are developing Windows Mobile applications, you need the Professional Edition (or
higher). If you are working in a large development environment and need to develop collaboratively
with other developers on large projects, check out the Team System editions.

If you are not ready to purchase Visual Studio 2008, you can always download a 90-day trial edition of
Visual Studio 2008 Professional from http://msdn.microsoft.com/en-us/vs2008/
products/cc268305.aspx.

Depending on the edition of Visual Studio you are using, some of the steps illustrated in this book may
not appear exactly the same on your screen. However, the differences are minor, and you should not
have any problem in following the steps outlines in each chapter.

In addition, readers using Windows Vista should launch Visual Studio 2008 (as well as the Command
Prompt window) in Administrator mode. To do so:

Q Click on Vista Start button.
Q Locate the program you want to launch (Visual Studio 2008, or Command Prompt).

0 Right-click on the program and select Run as Administrator.

XXViii

Introduction

Conventions

A number of conventions are used throughout the book to help you get the most from the text and keep
track of what’s happening.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q New terms and important words are highlighted introduced.

Q Keyboard strokes look like this: Ctrl+A.

Q Filenames, URLSs, and code within the text looks like this: persistence.properties.
Q

Code is presented in two different ways:

Code examples nearly always look like this.

Gray highlighting is used to show where new code is added to existing code,
or to point out a specific section of code that's being explained in the text.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-28581-7.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

Every effort is made to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error such as a spelling mistake or faulty piece of code in
one of our books, we would be grateful for your feedback. By sending in errata, you may save another

XXiX

Introduction

reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml, and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

pP2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1. Gotop2p.wrox.com, and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXX

Part |
C# Fundamentals

Chapter 1: The .NET Framework

Chapter 2: Getting Started with Visual Studio 2008
Chapter 3: C# Language Foundations
Chapter 4: Classes and Objects

Chapter 5: Interfaces

Chapter 6: Inheritance

Chapter 7: Delegates and Events

Chapter 8: Strings and Regular Expressions
Chapter 9: Generics

Chapter 10: Threading

Chapter 11.: Files and Streams

Chapter 12: Exception Handling

Chapter 13: Arrays and Collections

Chapter 14: Language Integrated Query (LINQ)

Chapter 15: Assemblies and Versioning

The .NET Framework

The NET Framework is a development framework created by Microsoft to enable developers
to build applications that run on Microsoft (and other) platforms. Understanding the basics
of the NET Framework is essential because a large part of C# development revolves around
using the classes in that framework.

This chapter explains the key components in the NET Framework as well as the role played by
each of the components. In addition, it examines the relationships among the various versions of
the Framework, from version 1.0 to the latest 3.5.

What's the .NET Framework?

The NET Framework has two components:

0 Common Language Runtime

Q .NET Framework class library

The Common Language Runtime (CLR) is the agent that manages your .NET applications at
execution time. It provides core services such as memory, thread, and resource management.
Applications that run on top of the CLR are known as managed code; all others are known as
unmanaged code.

The .NET Framework class library is a comprehensive set of reusable classes that provides all the
functionalities your application needs. This library enables you to develop applications ranging
from desktop Windows applications to ASP.NET web applications, and Windows Mobile
applications that run on Pocket PCs.

Common Language Runtime

The Common Language Runtime (CLR) is the virtual machine in the .NET Framework. It sits
on top of the Windows operating system (Windows XP, Windows Vista, Windows Server 2008,
and so on). A .NET application is compiled into a bytecode format known as MSIL

Part |: C# Fundamentals

(Microsoft Intermediate Language). During execution, the CLR JIT (just-in-time) compiles the bytecode
into the processor’s native code and executes the application. Alternatively, MSIL code can be
precompiled into native code so that JIT compiling is no longer needed; that speeds up the execution
time of your application.

The CLR also provides the following services:

0O Memory management/garbage collection
QO Thread management
QO Exception handling
QO Security
.NET developers write applications using a .NET language such as C#, VB.NET, or C++. The MSIL

bytecode allows .NET applications to be portable (at least theoretically) to other platforms because the
application is compiled to native code only during runtime.

At the time of writing, Microsoft’s implementation of the .NET Framework runs only
on Windows operating systems. However, there is an open-source implementation of
the .NET Framework, called “Mono,” that runs on Mac and Linux.

Figure 1-1 shows the relationships between the CLR, unmanaged and managed code.

Managed Code
Unmanaged
Code (native apps)
Common Language
Runtime

Windows OS
Figure 1-1

.NET Framework Class Library

The .NET Framework class library contains classes that allow you to develop the following types of
applications:

Q Console applications
0O Windows applications

O Windows services

Chapter 1: The .NET Framework

ASP.NET Web applications
Web Services
Windows Communication Foundation (WCF) applications

Windows Presentation Foundation (WPF) applications

U 0 U oo

Windows Workflow Foundation (WF) applications

The library’s classes are organized using a hierarchy of namespaces. For example, all the classes for
performing I/O operations are located in the System. I0 namespace, and classes that manipulate
regular expressions are located in the System. Text .RegularExpressions namespace.

The .NET Framework class library is divided into two parts:

(I I Framework Class Library (FCL)

a * Base Class Library (BCL)
The BCL is a subset of the entire class library and contains the set of classes that provide core
functionalities for your applications. Some of the classes in the BCL are contained in the mscorlib.dl1,
System.dll, and System.core.dll assemblies. The BCL is available to all the languages using the
NET Framework. It encapsulates all the common functions such as file handling, database access,
graphics manipulation, and XML document manipulation.

The FCL is the entire class library and it provides the classes for you to develop all the different types of
applications listed previously.

Figure 1-2 shows the key components that make up the NET Framework.

Windows Forms Web Forms WCF WPF
Data and XML Classes
Framework Base Classes

Common Language Runtime

Windows Operating System
Figure 1-2

Part |: C# Fundamentals

Assemblies and the Microsoft Intermediate
Language (MSIL)

In .NET, an application compiled into MSIL bytecode is stored in an assembly. The assembly is contained
in one or more PE (portable executable) files and may end with an EXE or DLL extension.

Some of the information contained in an assembly includes:

QO Manifest — Information about the assembly, such as identification, name, version, and so on.
Q Versioning — The version number of an assembly.

0O Metadata — Information that describes the types and methods of the assembly.
Assemblies are discussed in more detail in Chapter 15.

To get a better idea of a MSIL file and its content, take a look at the following example, which has two
console applications — one written in C# and the other written in VB.NET.

The following C# code displays the “Hello, World” string in the console window:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorldCs
{
class Program

{
static void Main(string[] args)

{
Console.WriteLine("Hello, World!");
Console.ReadLine() ;

}
Likewise, the following VB.NET code displays the “Hello, World” string in the console window:
Module Modulel
Sub Main()
Console.WriteLine("Hello, World!")
Console.ReadLine ()

End Sub

End Module

Chapter 1: The .NET Framework

When both programs are compiled, the assembly for each program has an . exe extension. To view the
content of each assembly, you can use the ildasm (MSIL Disassembler) tool.

Launch the i1dasm tool from the Visual Studio 2008 Command Prompt window (Start = Programs =
Microsoft Visual Studio 2008 = Visual Studio Tools = Visual Studio 2008 Command Prompt).

The following command uses the ildasm tool to view the assemblies for the C# and VB.NET programs:

C:\MSIL>ildasm HelloWorldCS.exe
C:\MSIL>ildasm HelloWorldVB.exe

Figure 1-3 shows the content of the C# and VB.NET assemblies, respectively.

7 HelloWorldCS.exe - IL DASM £ HelloWorldVB.exe - IL DASM - [=]%]

File Wiew Help Filz Wiew Help
59 HellowarldCs, exe B4 HelloWorldvB, exe
b b MANIFEST b MAMIFEST
=@ Helloworldes B ' Hellatorldve
= HellowaorldCS Program & @ HelloWarldve iy
© B class private auto ansi beforefisldinit = [JE Heloworldve, Madule L
Jckar § woid() b class private auto ansi sealed
Main : void{string[) « P ,custom instance void [Microsoft, YisualBasicMicrosoft. visuall |
< Main ; woid()
=l I >
assembly HelloWarldiZs | .assembly HellowarldVE L]
1) i :'I

Figure 1-3

The Main method of the C# MSIL looks like this:

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint

// Code size 19 (0x13)

.maxstack 8

IL_0000: mnop

IL_0001: 1ldstr "Hello, World!"

IL_0006: call void [mscorlib]System.Console: :WriteLine(string)
IL_000b: nop

IL_000c: call string [mscorlib]System.Console: :ReadLine ()

IL_0011: pop
IL_0012: ret
} // end of method Program::Main

Part |: C# Fundamentals

The Main method of the VB.NET MSIL looks very similar to that of the C# program:

.method public static void Main() cil managed

{

.entrypoint
.custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
// Code size 20 (0x14)

.maxstack 8
IL_0000: nop

IL_0001: 1ldstr "Hello, World!"

II._0006: call void [mscorlib]System.Console::WriteLine(string)
IL_000b: nop

IL_000c: call string [mscorlib]System.Console: :ReadLine ()

IL_0011: pop
IL_0012: nop
IL_0013: ret
} // end of method Modulel::Main

The important thing to note here is that regardless of the language you use to develop your .NET
applications, all .NET applications are compiled to the MSIL bytecode as this example shows. This
means that you can mix and match languages in a .NET project — you can write a component in C# and
use VB.NET to derive from it.

Versions of the .NET Framework and
Visual Studio

Microsoft officially released the NET Framework in January 2002. Since then, the NET Framework
has gone through a few iterations, and at the time of writing it stands at version 3.5. While technically
you can write .NET applications using a text editor and a compiler, it is always easier to write NET
applications using Visual Studio, the integrated development environment from Microsoft. With Visual
Studio, you can use its built-in debugger and support for IntelliSense to effectively and efficiently build
.NET applications. The latest version of Visual Studio is Visual Studio 2008.

The following table shows the various versions of the NET Framework, their release dates, and the
versions of Visual Studio that contain them.

Versions of Visual Studio

Version Version Number Release Date shipped

1.0 1.0.3705.0 2002-01-05 Visual Studio .NET 2002

1.1 1.1.4322.573 2003-04-01 Visual Studio .NET 2003

2.0 2.0.50727.42 2005-11-07 Visual Studio 2005

3.0 3.0.4506.30 2006-11-06 Shipped with Windows Vista
35 3.5.21022.8 2007-11-19 Visual Studio 2008

Starting with Visual Studio 2005, Microsoft dropped the .Net name from the Visual Studio.

Chapter 1: The .NET Framework

The .NET Framework 3.5 builds upon version 2.0 and 3.0 of the NET Framework, so it essentially
contains the following components:

O .NET Framework 2.0 and .NET Framework 2.0 Service Pack 1
a NET Framework 3.0 and .NET Framework 3.0 Service Pack 1
d New features in .NET 3.5

.NET Framework version 3.5 is dependent on .NET 2.0 and 3.0. If you have a
computer with .NET 1.0, 1.1, and 2.0 installed, these three versions are completely
separate from each other. When you install .NET 3.5 on a computer without the .NET
Framework installed, it will first install .NET 2.0, followed by .NET 3.0, and then
finally the new assemblies new in .NET 3.5.

Figure 1-4 summarizes the relationships between .NET 2.0, 3.0, and 3.5.

.NET 3.5

.NET 3.0
NET 2.0

Figure 1-4

Summary

This chapter provided a quick overview of the NET Framework and the various versions that make
up the latest NET Framework (3.5). Regardless of the language you use, all .NET applications will
compile to a bytecode format known as MSIL. The MSIL is then JIT-compiled during runtime by the
CLR to generate the native code to be executed by the processor.

In the next chapter, you start your journey to C# programming by learning use the development
environment of Visual Studio 2008.

|

Getting Started with Visual
Studio 2008

Microsoft Visual Studio 2008 is an extremely versatile and powerful environment for developing
.NET applications. This chapter explores some of the commonly used features that you will likely
use in the process of your development work. Because there are literally hundreds and thousands
of ways in which you can customize Visual Studio 2008, this chapter can only explore, for the most
part, the default settings in Visual Studio. While some of the topics covered are discussed in more
detail in subsequent chapters, you'll want to breeze through this chapter to get an overall look at
this version of Visual Studio.

This chapter examines:

Q Components of the IDE (Menu bar, Toolbar, Toolbox, and so on)

Q Code and Text Editor and the features it contains, including IntelliSense and Refactoring
support

Q Using the debugger in Visual Studio 2008
Q Unit testing in Visual Studio 2008

Visual Studio 2008 Overview

In early 2008, Microsoft released the latest version of Visual Studio — Visual Studio 2008. With it
comes a plethora of editions designed for the different types of developers in mind:

Q Visual Web Developer 2008 Express Edition
Q Visual Basic 2008 Express Edition
Q Visual C# 2008 Express Edition

Q Visual C++ 2008 Express Edition
Q

Visual Studio 2008 Standard Edition

Part |: C# Fundamentals

Visual Studio 2008 Professional Edition

Visual Studio 2008 Team System 2008 Architecture Edition
Visual Studio 2008 Team System 2008 Database Edition
Visual Studio 2008 Team System 2008 Development Edition
Visual Studio 2008 Team System 2008 Test Edition

0O 00U oo

Visual Studio 2008 Team System 2008 Team Suite

For a detailed discussion of the features available in each edition, check out the following URL:
http://msdn.microsoft.com/en-us/vs2008/products/ccl49003.aspx.

The Express editions are designed for hobbyists and are available for download at no charge. This is a
great way to get started with Visual Studio 2008 and is ideal for students and beginning programmers.
However, if you are a professional developer, you should purchase either the Standard or Professional
Edition. Note that if you are developing Windows Mobile applications, you need the Professional Edition
(or higher). If you are working in a large development environment and need to develop collaboratively
with other developers on large projects, check out the Team System editions.

If you are not ready to purchase Visual Studio 2008, you can always download a 90-day trial edition
of Visual Studio 2008 Professional from http://msdn.microsoft.com/en-us/vs2008/
products/cc268305.aspx.

Choosing the Development Settings

The first time you launch Visual Studio 2008, you choose the default environment settings. If you are
going to use the C# language most of the time, choose the Visual C# Development Settings (see
Figure 2-1). Choosing this option does not mean that you cannot use other languages (such as Visual
Basic); it just means that C# will be listed as the default project type when you create a new project.

22 Choose Default Environment Settings

2% Visual Studio Team System 2008

Before vou begin using Yisual Studio Far the first time, you need to specify the bype of
development activity vou engage in the most, such as Yisual Basic or Visual C#, Visual Studio
uses this information to apply a predefined collection of settings to the development
environment that is designed For your development activity,

You can choose to use & different collection of settings at ary time. From the Toals menu,
choose Import and Export Settings and then choose Reset all settings.

[+] Allowy Visual Studio to download and display online RSS content

Choose your default environment settings:

General Development Settings Description:

Team Test Settings Custamizes the environment to maximize code
\fisual Basic Dy i editor screen space and improve the visibility of
commands specific ko C#, Increases productivity

with kevboard shortcuts that are designed to be
Web Development Settings easy bn learn and use,

[gtart visual studio | [Ext Visual Studio

Figure 2-1

12

Chapter 2: Getting Started with Visual Studio 2008

If the Visual C# Development Settings is chosen, Visual C# appears at the top of the Project Types list (see
the left screenshot in Figure 2-2). In contrast, choosing the General Development Settings puts the Visual
Basic language at the top (see the right screenshot in Figure 2-2).

Project types: 1 Projeck type Ie
e = =
windaws I - windows o
- web - web
-~ Smart Device - Smart Device
(- Office: [+ Office
Database - Database
- Reparting L Reporting
- Test - Test
~WCF WCF
i warkflow - warkflow B
[# Database Projects = Wisual C#
[#- Other Languages - Windows
i Distributed Systems - Web
[#- Other Project Types - Smart Device
[# Test Projects [+ Office
i Miatahace b
A praject For creating an application with ¢ | A project For creating an application with a
Mame; WindowsFormsapplic. Mame: ‘ windowsapplicationl
Location: Ci\Documents and Se Location: Ci\Documents and Set
Salution Name: WindowsFormsapplic. Solution Mame: Windowsapplicationl

Figure 2-2

Resetting the Development Settings

If for some reason you want to change the development settings after you have set them, you can always
select Tools = Import and Export Settings to reset the settings. In the Import and Export Settings Wizard
dialog that appears (see Figure 2-3), you can:

Import and Export Settings Wizard

&/—’/ | Welcome to the Import and Export Settings Wizard
‘¥ou can use this wizard to import or export specific categories of settings, or to reset the
environment ko one of the default collections of settings,

‘what do you want ko do?

) Export selected environment settings
Settings will be saved out to a file so they can later be imported at any time on any machine,

() Import selected environment settings
Import settings from a file to apply them ko the environment.,

(%) Reset all settings
Reset all environment settings to one of the default collections of settings.

Figure 2-3
13

Part |: C# Fundamentals

Q Export the settings to a file so that they can be exported to another machine

Q Import a saved setting
0 Reset all the settings
To reset to another setting, check the Reset All Settings option and click Next. In the next step, you can

choose either to save your current settings or to just reset the settings without saving. Once you have
selected the option, click Next, and you can select another setting (see Figure 2-4).

Import and Export Settings Wizard

7]

= | Choose a Default Collection of Settings

which collection of settings do ywou want ko reset ta?

15l General Development Settings Description:
visual Basic Development Settings Custamizes the environment ko maximize
C# Development Settings code editor screen space and improve
== e e the visibility of commands specific ta C#,
7y Visual C++ Development Settings Increases productivity with keyboard
i;jl, web Development Settings shortcuts that are designed to be easy
to learn and use,

e [e

Figure 2-4

Creating a New Project

After you select a default setting, Visual Studio 2008 takes a couple of minutes to initialize. Once that’s
done, you will see something as shown in Figure 2-5.

14

Chapter 2: Getting Started with Visual Studio 2008

Start Page - Microsoft Visual Stu

Elle Edt VWiew Dakta Tools Test

(e R B - SN e

Apalyze

window Help

3| StartPage|
i

f’ % Microsoft*
&

[racion

Recent Projects

Cpen: Project...
Create: Project...

Getting Started

What's new in Yisual C#?
Create Yaour First Application
HowDoI...?

Learn Wisual C#

Download Additional Content
M5DM Forums

Visual C# Developer Center
Extend visual Studio

¥isual Studio Headlines

What's New in SQL Server 20087

Visual Studio Team System 2008

|

(12013 uownos

MSD!

ual C#

MSDN Subscribers: Get ¥isual Studio 2008 RTM Now
Man, 19 Mow 2007 14:55:54 GMT - Get it here first! With Yisual Studio 2008, you can develop connected, compelling
applications for Windows Vista, the 2007 Office system, mobile devices, and the Web,

Visual C# 2008 Express Edition Now Available

Man, 19 New 2007 14:55:52 GMT - The Wisual C# 2008 Express Edition provides developers with powerful tools and language
support to build rich, connerted applications on the MET Framework,

Microsoft .NET Framework 3.5 Runtime Now Available

Mar, 19 Nov 2007 22:23:38 GMT - JNET Framewark 3.5 builds incrementally on the new Features added in .NET Framewark 3.0
and is now available as a separate download,

Unified C# 3.0 Specification Now Available

Tue, 21 Aug 2007 17:46:49 GMT - The authoritative C# 3,0 Specification was writken by the people who created and
implemented the C# language. This 500 plus page document is now available For download,

Give Us Your Feedback on Yisual Studio Documentation

Fri, 12 Oct 2007 16:25:54 GMT - Help us help you by taking 10 minutes ta fill aut aur Yisual Studio Content Survey an how ko
improve the Visual Studio documentation. We appreciate it!

New Hands-on Labs and Samples Available for Visual Studio 2008

Thu, 09 Aug 2007 15:51:42 GMT - Use these resources to get Familiar with the latest version of your Favorite C# compiler in
wisual Studio 2008 Beta 2.

Download ¥isual Studio 2008

Thu, 09 Aug 2007 18:48:52 GMT - See all of the improvements that are coming in Yisual Studio 2008 with next-generation Web
development, inkeqrated development For the Micrasoft Office system, and industry-lsading designers For Windows Vista.

The Evolution OF LING And Its Impact On The Design OF C#

Thu, 24 May 2007 17:39:56 GMT - C# PM Anson Horton explains the relationship between LING and the new Features in
CSharp 3.0 such as extension methods and lambda expresssions.

Custom Iterators

wied, 17 Jan 2007 00:46:51 GMT - Learn from top selling authar Bil Wagner how to create building blocks for your program
using cuskarn iterators and the yield statement.

See the Search and Navigation Improvements on MSDN

Thu, 24 May 2007 17:38:50 GMT - MSDN now has & new laok, You asked us ko make it easier ko switch between
product-focused resources and simpler ko find information through search and site navigation. We've responded with
impravements that will rall aut across MSDN in the coming weeks,
- e it .

>

&

Ready

Figure 2-5

To create a new project, select File & New = Project (see Figure 2-6).

2% Start Page - Microsoft Visual Studio

Wiew Tools Test Window Help

& Project... Chrl+Shift+M
K Wheb Site... Shift+al-+M
File... ChrHr
] Project From Existing Cade. ..
] I

Figure 2-6

In the Visual C# development setting, you see the New Project dialog shown in Figure 2-7.

15

Part |: C# Fundamentals

" I
Mew Project ? E|
el
Project bypes: Templates: -HET Framework 3.5 bt I|EI
(=) Wisual C# Visual Studio installed templates Lo |
- wWindows
‘Web = ot o m
- Smart Device E E lLI ct |=cH
& Office Windows Class Library WRF WPF Browser Console
Database Forms A... Application Application Application
Reporting e
o Test o ol cH e
: i = « =C
wWCF l 4 « = &
o WWarkFlow Empty Project Windows WPF Custom WPF User indows
[Database Projects Service Control Library Control Library Forms Cont, ..
[#- Other Languages =
Distributed Systems My Templates
[# Other Project Types o
[#]- Test Projects
i ine
& project For creating an application with a Windows Forms user inkerface {.NET Framework 3.5)
[dame: ‘ ‘WindowsFormsApplication 1 |
Location: ‘ Ci\Documents and Settings)wei-Meng LeetMy DocumentsiVisual Studio 2008\Projects w | [Browse, .,]
Salution Name: ‘ ‘WindowsFormsApplication1 | [¥] Create directary for solution
5]
Figure 2-7

The default project name (WindowsFormApplicationl in this example) is provided, along with the
following:
Q The default location for saving the project.

Q The solution name. The solution name by default is the same as your project name and is
changed automatically to be the same as the project name. However, you can modify the
solution name if you want it to have a different name than the project name.

0 Aseparate directory to store the solution; if you uncheck the Create Directory For Solution
checkbox, a solution is not be created for your project.

You can target a different version of the NET Framework by selecting it from the dropdown list at the
top right corner of the New Project dialog (see Figure 2-8).

Remember: A solution contains one or more projects.

MET Framewoark 3.5 w !iEl
latis WMET Framewark 2,0)
P (MET Framewark 3.0 =
H
-
WPF 'WRF Browser Console
Application Application Application
Figure 2-8

16

Chapter 2: Getting Started with Visual Studio 2008

Components of the IDE

Figure 2-9 shows the various parts of the Visual Studio 2008 development environment.

Toolbar "
Design pane
Menu bar Toolbox Solution Explorer

8 WindowsFormsApplication? - Microsaft Visual Studio

fle Edk Vew Projoct [Buld Debug Data Format Toos Tegt Apabee Window Help
oo s @l an L L 2 7
£ LS 8 L TR ab gl | o3 4 b 2h .ai
Todhox 0 X Formics[Design] Sttfege x Solution Explorer L WindowsFor... w B X
.-;A:W'mdmsans - _‘-_l_‘)j :_:jz:'q
'onter - —_ Y :
= |® Form1 A= "] Sakton ‘WindowsFormsAppacationt” (1
|5 BackgroundWorker El*E = (I windowsFormsapplicationl
7" Brdinghlavgator 1 £l Propettes
£ Bndigsouce & Refarances
e ¢ i
4] Program.cs
Checkilax
£ ChackedListBox
%] ColorDalog 3
[#8 Comboiox
| ConbextMenuStrip
‘A DataGridvien
a¥ DataSet < >
T DateTimePicker Prop=ities >0 X
%m“"”' Forml System Windows Forms. Form =
21 DrectorySearcher we: [T 55
% DomanUpDown T L E: l&l EIFA=
) ErrorProvider g “Pd'ﬂ!";‘m“‘- o
(Dataindngs)
{8 Evenitog v (Name) Form1
Error List + 1 X AcceptBution (none)
- = AccessibleDesarpl
[@ oermars| [1 0 warnings| [(i) 0 Massages Tir
Description F L € Pl| pccessbince Defauk
Allowbeop False -
(Mame)
Indicates the name used in code|to identify
the cbject.
Rleady
Error List pane Properties pane
Figure 2-9

These parts are described in the following sections.

Menu Bar

The Menu bar contains standard Visual Studio commands. For example, Figure 2-10 shows that the File
menu (see Figure 2-10) contains commands that enable you to create new projects, open existing projects,
save the current form, and so on.

17

Part |: C# Fundamentals

% WindowsFormsApplication - Microsoft Yisual Studio

File | Edt “iew Project Build Debug Data Format Tools Test Analvee Window Help

_ Mew Pl | Project... Cr+shift+N fbug ~ Any CPU
Open b @ website.., shift+alt-+h 3| __-1- =
Add v 3 A b
Close Praject From Existing Code...

Close Solution

D #,

Save Forml.cs Chr4s
Save Forml.cs As...
@ save sl Crrl+shift+s

Expart Template, ..

]
=
Recent Files 3
Recent Projects 3
Exit
Figure 2-10

To customize the items displayed in the Menu bar, select Tools & Customize to display the Customize
dialog (see Figure 2-11). Click on the Commands tab; the list of main menu items (Action, Addins,
Analyze, and so forth) is on the left. Selecting a main menu item displays the list of available submenu

items on the right. You can rearrange the submenu items by dragging them and dropping them onto the
desired main menu item.

Customize
| Toolpars | Commands
Cateqgories: Commands:
Action o Add Existing Project... A
Addins =, R =
Analyze Add Existing Web Site
Build 3 -
Class Diagram Add Mew Prq]ect‘ i
Crystal Reparts Add Mew Web Site
Data
Database Diagram L4 Add Project from Source Contral,,,
Debug i
Diagram j #dd Selected Projects ko Source Contral,..
E;IE Tooks 2% add Solution o Saurce Contral...
Advanced Save Options...
Farmat
Help Browse With,,,
Image -
e > Hu Change Source Contral... v
Rearrange Commands. ..
To add a command, drag the command from the Commands list and drop the command on the target
toolbar of menu,

Figure 2-11

To add a new submenu item to a main menu item, click the Rearrange Commands button. In the
Rearrange Commands dialog (see Figure 2-12), select the menu you want to customize, and click
the Add button. You can then select the various submenu items from the different categories to add
to the menu.

18

Chapter 2: Getting Started with Visual Studio 2008

Rearrange Commands E”z|
Choose a menu or toolbar to rearrange;
(%) Menu Bar: |File R |
O Toolbar: Layout
Contrals:

e » Add,

e '

Close
= - Modify Selection ~
|

Close Solution
Add Command Elg]

Save Selected Items
Choose the command to add and click OK,

Save Selected tems As.., Categories: Commands:

Save Al Debug ~ Add Existing Project. .. o
Diagram .

Export Template. .. DSL Tools Add Existing Web Site I
Edit T
A Hew Profect.

@ | Page Setup... Format Add New Wweb Site
. Elp
= Brink... Image Add Project from Source Contral..,

Inserk
Layaut % add Selected Projects to Source Contral, ..

Recert Files Macros N
Mo Menu ~ | | % Add solution to Source Contral,.,

Recent Projects Project advanced Save Options...
Query Designer
Refactor Browse With...

Exit Repart 7

ki M w qu Change Source Contral... v

Figure 2-12

Toolbar

The Toolbar (see Figure 2-13) contains shortcuts to many of the often used commands contained in the
Menu bar.

R AR~ I - NI MEEN R BN = » Any CPU - | [smins:de - | 3 o B 3 Bl -
N N M ! : TN e N =R
Figure 2-13

As with the Menu bar, the Toolbar is also customizable. To add additional toolbars, simply right-click on
any existing toolbar and check the toolbar(s) you want to add to Visual Studio from the list of toolbars
available (see Figure 2-14).

19

Part |: C# Fundamentals

indowsFormsApplication1 - Microsoft Visual Studio

File Edit Mew Project Buld Debug Data Format Tools Test Window Help
-5 he | % S B9t E - P Debug - &y CPU

1 | W e S O e 1

Build

- . Class Designer =
S | Bl SUE L 2 - T 3 } =

Crystal Reports - Insert

Crystal Reports - Main
Data Design

Database Diagram
Debug

Debug Location
Device

Dialog Editar
Formatting

Help

HTHL Source Editing
Image Editor
Layout

Microsoft Office Excel 2003
Microsoft Office Excel 2007

=] Microsoft Office Word 2003
Microsoft OFffice Word 2007
Query Designer

Repart Borders

Report Formatting

Source Control

Standard

Style Application
Style Sheet
Table Designer
Test Tools

Text Editor

View Designer
warkflow

HML Editar

Customize, .,

Figure 2-14

To customize the Toolbar, select Tools = Customize. On the Toolbars tab of the Customize dialog (see
Figure 2-15), check the toolbar(s) you want to add to Visual Studio. You can create your own custom
toolbar by clicking the New button.

20

Chapter 2: Getting Started with Visual Studio 2008

Customize

Toolpars | Commands

Toolbars:

~
Class Designer 3

j Context Menus

:| Crystal Reports - Insert

[Crystal Reports - Main %

% Data Compare S
Data Design

:| Data Generakor

[] Database Diagram

[]Debug

] Debug Location

:| Device

[] pialog Editor

[Distributed System Designets

:| Farmatting h]

[Use large icons
Show screenTips on toalbars
Shaw shortcut keys in ScreenTips

Figure 2-15

As with the Menu bar, you can also rearrange the items displayed in each toolbar. To customize the
items displayed in the Toolbar, select Toolsv =>Customize to open the Customize dialog and then click
the Rearrange Commands button. The Rearrange Commands dialog allows you to add/delete items
from each toolbar (see Figure 2-16).

Rearrange Commands

Choose a menu or toolbar to rearrange:
O Menu Bar:

Layout - |

ontrols;

>

add...

:ﬁt Align ko Grid

Align Lefts

i T

Align Centers i

Modify Selection =

sy

Align Tops.
Align Middles

= &

Align Bottoms

1

Make Same Width

+
o
5

o
=

Make Same Height s

re
fica

Make Same Size
Size ko Grid

Make Horizonkal Spacing Equal
Increase Horizontal Spacing

Decrease Horizontal Spacing

wis g

Remove Horizonkal Spacing

=

Figure 2-16

21

Part |: C# Fundamentals

Each toolbar in the Toolbar can also be physically rearranged in Visual Studio by dragging the four-dot
line on the left edge of the toolbar (see Figure 2-17) and relocating it to the new desired position.

& WindowsFormsApplication - Microsoft Visual Studio

File Edit Wiew Project Buld Debug Data Formab Tools Test
2 & ST e e |22 4]) B g | age
=

R T =

Toolhox - B X Forml.cs [Design] Start Page
=1 all Windows Forms. ~
Figure 2-17

Toolbox

The Toolbox (see Figure 2-18) contains all the controls that you can use in your applications. You can
drag controls from the Toolbox and drop them onto the design surface of your application.

Toolbox ®

i+ all Windows Forms ~
¥ Common Controls

'* Containers

[= Menus & Toolbars

k Painter

E ConkextMenuStrip

= MenuStrip
L StatusStrip

0@ ToolStrip

T_1 ToolStripCantainer

[+ Data

[+ Components

[+ Printing

Dialogs

I+ WPF Interoperability
I# Reporting

i+ ¥isual Basic PowerPacks
= General

Figure 2-18

Each tab in the Toolbox contains controls that are related to a specific purpose. You can create your own
tab to house your own controls. To do so, right-click on the Toolbox and select Add Tab. Name the newly

created tab (see Figure 2-19).

22

Chapter 2: Getting Started with Visual Studio 2008

= ToolStrip &

. ToalStripConkainer

¥ Data

'* Components

i+ Printing

'+ Dialogs

[# WPF Interoperability

i+ Reporting

i ¥isual Basic PowerPacks

=l AJAX Control Toolkit I

There are no usable controls in this group,
Drag an item onka this text ko add it ko the
toalbox,

[= General |

There are no usable controls in this group.
Drag an item onko this kext ta add it ko the
toaolbox, o

Figure 2-19

To add controls to the Toolbox, right-click on the tab to which you want the controls added and select
Choose Items. The Choose Toolbox Items dialog (see Figure 2-20) opens.

Choose Toolbox Items ?
; NET Framewerk Companients || coM Companents | WPF Companents | Activities |
Mame Mamespace Assembly Narme Directory £
AccessDataSource System.\Web. UL WebContrals System.\Web (2.0.0.0) Global Ass |
Accordion AjaxControlTaolkit AjaxControlTaolkit (3.0... C:\Docum
AccordionPane AjaxControlToolkit AjaxControlToolkit (3.0... C:\Docum
[actionsPane Microsoft . Office. Tools Microsoft. Office. Tools.... Global Ass
[actionsPane Microsoft . Office. Tools Microsoft. Office. Tools.... Global Ass
[activity System.Workflow, ComponentM. .. System.WorkFlow.Com.., Global Ass
[apooc Microsoft. WisualBasic. Compatibi,.. Microsaft, YisuslBasic.C... Global Ass
[apoocarray Microsoft. WisualBasic. Compatibi,.. Microsoft, YisuslBasic.C... Global Ass
[AdomdCommand Microsoft. AnalysisServices. Ado... Microsoft, AnalysisServi... Global Ass ™|
] i | =
Filker: | | Clear
AccessDataSource
L'p Language: Invariant Language (Irwvariant Country)
ersion: 2.0.0.0

[o9][Cancel J[Feeset]

Figure 2-20

You can add the following types of controls to the Toolbox:

Q .NET Framework components
0 COM components

Q0 WPF components
Q

Workflow activities

You can also click the Browse button to locate the .d11 file that contains your own custom controls.

23

Part |: C# Fundamentals

Another way to add controls to the Toolbox is to simply drag the DLL containing the controls and drop it
directly onto the Toolbox.

You can relocate the Toolbox by dragging it and repositioning it on the various anchor points on the
screen. Figure 2-21 shows the anchor points displayed by Visual Studio 2008 when you drag the Toolbox.

"« WindowsFormsApplication1 - Microsoft Visual Studio

File Edit Miew Project Buld Debug Dats Format Tools Test Window Help
S e e | 6 Ea | - - - | B Debug - Any CPU - [# xminsidc = ;z
| jz s o) | e | =38] e B L CHLE G =
_ Form1.cs [Design]| Start Page | ~ X Solution Explarer - WindowsF... = & X
™ Form1 m Solution "WindowsFormsApplication1'
= @ WindowsFormsApplication1
[Properties
+ Ref
= Al Windows Forms 2 e
¥ Common Controls o ngra'm o
Containers.
U5 & Toolbars
I wa] i} | >
ot Properties - X
Sridview Form1 System.windows.Forms.Farm =
: A= =
{7 Bindinghavigator KeyPraview False .
¥ Components Language {Default)
[# Printing Localizable False
4! Dialogs Locatian 0,0
'+ WPF Interoperability Locked False
it Reporting MainMenustrip (none)
Yisual Basic PowerPacks MaximizeBox Trug
=l General MaximumSize 0,0 =
Error List - - 1 X MinimizeBo: Trug M |
There are no usable controls in this group. Drag MirimumSize 0,0
‘0 0 Errors | |_:XD ‘Warnings ‘ |l_1) 0 Messages an item onto this text to add it to the toolbox. Opacity 100%
Description File Padding 0,0,0,0
MimkkT ol ~FE i s
Text
. The text associated with the contral,
Use the guide diamond ko choose a docking location, To prevent docking, hold down CTRL.

Figure 2-21

If you have limited screen real estate, you might want to auto-hide the Toolbox by clicking the Auto Hide
button (see Figure 2-22).

24

Chapter 2: Getting Started with Visual Studio 2008

& WindowsFormsAppli]

File Edit Miew Project
- -5 @
ar | |2 & S| | 04

Formi.cs [Design]

|oge0 L 3¢

Error List

v

Descri... | File

Auto Hide

#% WindowsFormsApplication| - Microsoft ¥isual Studio

Eile Edt \Wiew Project Build Debug Data Tools Test
-0 @ .

Sl 2 ol T oa

1

I T e
iz all Windows Forms
¥l Common Controls
¥ Containers

[*l Menus & Toolbars
[= pata

I Pointer

=] Dataset

' DataGridview

E'ij BindingSource

[xomo0 L 32

'),—" Bindinghavigator

[l Components

[#l Printing

* Dialogs

I*| WPF Interoperability

1*l Reporting

[# ¥isual Basic PowerPacks
=l General

Colurnn

There are no usable controls in this group. Drag
an item onto khis text o add it ko the toolbox,

Ready

Ready

Figure 2-22

Missing Controls in Toolbox

Sometimes, for some unknown reasons, the controls in the Toolbox may suddenly go
missing. The usual remedy is to right-click the Toolbox and select Reset Toolbox. This
works most of the time. However, if that fails to work, you may need to do the

following:

Navigate to C: \Documents and Settings\<user_name>\Local Settings\

Application Data\Microsoft\VisualStudio\9.O0.

Within this folder are some hidden files. Simply delete the following files:
toolbox. tbd, toolboxIndex. tbd, toolbox_reset.tbd, and toolboxIndex

reset.tbd.

Then restart Visual Studio 2008. Your controls should now come back up!

25

Part |: C# Fundamentals

Solution Explorer

The Solution Explorer window contains all the files and resources used in your project. A solution
contains one or more projects. Figure 2-23 shows the various buttons available in the Solution Explorer.

The buttons in the Solution Explorer window are context sensitive, which means
that some buttons will not be visible when certain items are selected. For instance, if
you select the project name, the View Code and View Designer buttons will not be
shown.

Show A11 Files
refresh

view Code

Froperties view Designer

view Class Diagram

Solution Explorer - Soluticn "WindowsFormsa...[%]

B2 | & F EE S

J Salution "“WindowsFormsApplicationl' {1 project)
-] WindowsFormsapplication1

=d| Properties
a3l References

‘é] Program.cs

Figure 2-23

To add additional items such as a Windows Form or a Class to your current project, right-click the
project name in Solution Explorer, select Add (see Figure 2-24), and then choose the item you want to
add from the list.

Solution Explorer - WindowsFormsapplicatio...

EEIR
J Solution "“WindowsFormsapplication1' {1 project)
[ERE | windowsFormsApplication

[#- [=d| Propetties Build
[#- [:3] References Rebuild
[Forml.cs
4 Program.cs Clean
Publish. ..
Add P] MewItem...
Add Reference. . [Essting Trem, ..
Add Service Reference. ., 4 Mew Folder
f,\' Wiew Class Diagram 5] Windows Farm. ..
Set as StartUp Project 4 User Contral..,
Debug Y|] Component...
& | Cut g Class..
X Remove
Rename

Unload Project

|_] Open Falder in Windows Explorer

E2 Properties

Figure 2-24
26

Chapter 2: Getting Started with Visual Studio 2008

You can also add new (or existing) projects to the current solution. To do so, right-click on the solution
name in Solution Explorer, select Add (see Figure 2-25), and then select what you want to add.

Solution Explorer

rmefinnlicabion 1 (1 nraiect
< Build Solution
=4| Propel

e
; = Refer Rebuild Solution
® =] Form Clean Solution
4]
4 Progr Batch Build...

Configuration Manager...

Add L4 Mew Project, ..

Set StartUp Projects... Existing Project...
A Mew Web Site, .,

Rename Existing Web Site...

[§ Open Folder in Windows Explorer 2] Mew Ttem, .,

= Properties [izi] Existing Item...

1| Mew Solution Folder

Figure 2-25

When you have multiple projects in a solution, one of the projects will be set as the startup project (the
project name that is displayed in bold in Solution Explorer is the startup project). That is, when you press
F5 to debug the application, the project set as the startup project will be debugged. To change the startup
project, right-click the project that you want to set as the startup and select Set as Startup Project (see
Figure 2-26).

Solution Explorer - ConsoleApplicationl

2 4
‘_; Salution “windowsFormsapplicationl’ (2 projects)
= 3 o Applicati

[#- =d| Properties # puid

- [xal References
‘gf:] Program.cs

= |5 windowsForms Clean
=d| Propetties

[[« References

- 5] Formi.cs Run Code Analysis

i] Program.cs

Rebuild

Publish. ..

Calculate Code Metrics

Project Dependencies. ..
Project Build Order...
Add L4
Add Reference. ..
Add Service Reference. .,
09,4, view Class Diagram
Set as Startlp Project
Debug »

Figure 2-26

To debug multiple projects at the same time when you press the F5 key, set multiple projects as the
startup projects. To do so, right-click on the solution name in Solution Explorer and select Properties.

Select the Multiple Startup Projects option (see Figure 2-27), and set the appropriate action for each
project (None, Start, or Start Without Debugging).

27

Part |: C# Fundamentals

Solution ‘'WindowsFormsApplication1® Property Pages

[= Common Properties O Lurrent selection:
- Startup Project () Single startup project
- Project Dependencies = e
- Debug Source Files
[+ Configuration Propetties (5 Multiple startup projects:
Project Action
ConsoleApplicationl Skart
‘windowsFormsApplicationl Start
Figure 2-27

Then when you press F5, the projects configured to start launch at the same time.

Properties

The Properties window shows the list of properties associated with the various items in your projects
(Windows Forms, controls, projects, solutions, etc).

Figure 2-28 shows the Properties window displaying the list of properties of a Windows Form (Form1, in
this example). By default, the properties are displayed in Categorized view, but you can change it to
Alphabetical view, which lists all the properties in alphabetical order.

Categorized view Alphabetical view

Properties

Properties
Form1 System.Windows.Farms.Form - Form1 System.Windows. Forms, Form =
M= =l
-~ (Apphcatlunséttings) »~ |
{DataBindings)

{ Form1 i Form1

Language {Default) AcceptButton {none)

Localizable False AccessibleDescription

Locked False Accessibletame
E Focus AccessibleRole Default

Causesyalidation True AllowDrop False
E Layc R AutoScaleMode Font

AutoScaleMode Font Autoscrol False

Autoscroll False AutoscrollMargin 0,0
AutoscrollMargin 0,0 AutoscrollMingize 0,0
AutoscrollMinSize 0,0 AutoSize False

AutoSize False w AutoSizeMode Growinky v
(Name) (Name)
Indicates the name used in code to identify the Indicates the name used in code bo identify the
object, object,

Figure 2-28

28

Chapter 2: Getting Started with Visual Studio 2008

All default property values are displayed in normal font, while nondefault values are displayed in bold.
This feature is very useful for debugging because it enables you to quickly trace the property values that
you have changed.

Besides displaying properties of items, the Properties window also displays events. When the Properties
window is displaying an item (such as a Windows Form or a control) that supports events, you can click
the Events icon (see left side of Figure 2-29) to view the list of events supported by that item. To create an
event handler stub for an event, simply double-click the event name and Visual Studio 2008
automatically creates an event handler for you (see right side of Figure 2-29).

Events
Properties . Properties E
Form1 System.\Windows.Forms.Form - Formil System.\Windows.Forms.Form -
I EIEls =]
KeyPress ~ KeyPress o
Keylp KeylUp
Layout Layout
Leave Leave
v || c— i o v
LocationChanged LocationChanged
MaximizedBoundshar MaximizedBoundsChar
Maximum3izeChanged Maximum3izeChanged
Mdichildactivate e Mdichildactivate LS
Minimum3izeChanged Minimum3izeChanged
MouseCaptureChange MouseCaptureChange
MouseClick, MouseClick.
MouseDoubleClick MouseDoubleClick
MouseDown N MouseDown o8
Load Load
Oceurs whenever the user lnads the Form, Oceurs whenever the user loads the Form,
Figure 2-29

Error List
The Error List window (see Figure 2-30) is used to display:

Q Errors, warnings, and messages produced as you edit and compile code.

0 Syntax errors noted by IntelliSense.

Error List

Description File Line Calumn Project
@ 1 Use of unassigned local variable 'str' Farml.cs s 23 ‘windowsFormsApplication

Figure 2-30

29

Part |: C# Fundamentals

To display the Error List window, select View = Error List.

You can double-click on an error message to open the source file and locate the position of the error.
Once the error is located, press F1 for help.

Output Window

The Output window (View => Output) displays status messages for your application when you are
debugging in Visual Studio 2008. The Output window is useful for displaying debugging messages in
your application. For example, you can use the Console.WriteLine () statement to display a message
to the Output window:

Console.WriteLine (DateTime.Now.ToString()) ;

Figure 2-31 shows the message displayed in the Output window.

Output
Show output from; Debug O L~ 3 =
The thread Ox45c has exited with code 0 (0x0). -~

The thread 0x1254 has exited with code 0 (0x0).
The thread 0xl135c has exited with code 0 (0x0).

The nrooram ' [4777] Consolehpplicationl. vshost.exe: Managed' has exit
I 6/5/2008 11:14:07 AI‘II

-
£ | >

(=) Qukpt (] Locals | G5 Wiatch 1

Figure 2-31

Designer Window

30

The Designer window enables you to visually design the Ul of your application. Depending on the type
of projects you are creating, the Designer displays a different design surface where you can drag and
drop controls onto it. Figure 2-32 shows the Designer for creating different types of projects — Windows
Forms (left), Windows Mobile (right), and Web (bottom left).

To switch to the code-behind of the application, you can either double-click on the surface of the
designer, or right-click the item in Solution Explorer and select View Code. For example, if you are
developing a Windows Forms application, you can right-click on a form, say Forml . cs, in Solution
Explorer and select View Code. The code-behind for Forml then displays (see Figure 2-33).

Chapter 2: Getting Started with Visual Studio 2008

%8 WindowsFormsApplication1 - Microsoft Visual Studio | SmartDeviceProject1 - Microsoft Visual Studio

LinkButton
(@) 1mageButton
Hypertink
DropDownList
ListBox
CheckBox
8= CheckBoxtist
@ RadioButton
£= RadioButtonList

|8l Image
Figure 2-32

5]l >

fle Edt Wew Project Buld Debug Data Format Tools Test Apalvze Window Fle Edt Wew Project Buld Debug Data Inols Test Apalyze Window Help
AT R - AN WEEWE N I IR - =L b Debug > Any CPL IR R N - W e S I . Debug ~ Any CPU
Az & 2 ok il LS Windows Mobile 5.0 Pocket PC R + g]; 1= NI Y = L 0] =D | iy
Toolbox - Forml.cs [Design] | B formics [Design]|
= All Windows Forms | AlDeviceControls ||
& Pointer : R Pointer
|5 Backgroundworker o # Form1 27 Bindingsource
4 BindingMavigatar - Buttan
2% BindingSource CheckBox
Button ComboBox =
Contextienu
CheckedListBiox DataGrid
(%] colorbislog o7] Dataset
4 Comboiox T DateTimePicker -
fE| ContestMenustrip & DocumentList
(- Datacridview [F DomainlipDown
|2F] Dataset G HardwareButton
T DateTimeFicker 3 HscrollBar
(5] DirectoryEntry (&P Tmagelist
3 DirertorySearcher 5 InputPanel
[DomainUpDown b A Label
A LinkLabel
ite1 - Microsoft Visual Studio i
[23] ListBox
Fle Edt Wew ‘ebste Buld Dsbug Data Format Tools Test Analyze Winde 822 e
S - S E e O S =L b Debug > MET MainMenu
=3 = a | brve Lo ' Messagequeus
% = MonthCalendar
E] —_— Notification
o MumericUpDown
A Label '
[abl] TextBox
Buttan

& WindowsFormsApplication1 - Microsoft Visual Studio

File Edit Vew Refactor Project Buld Debug Data Tools Te

-EH@ 4R 9 0

b Det
e

_Formt s [Design] - Formil.cs |

| \ﬁWindowsFormsApphcationl JFormil

HOGIOO | Qﬂ

Fusing System:
using 3ystem.Collections.Generic;

using System.ComponentModel;
using System.Datar

using System.Draving

using System.Ling:

using System.Text:

using 3ystem.Windows.Forms;

i.leuop:ix ERCIRES ==

[namespace WindowsFormsipplicationl

{
public partial class Forml : Form
1
public Formli)
{
InitializeComponenti);
}
H
+

Figure 2-33

31

Part |: C# Fundamentals

Code View
Code view is where you write the code for your application. You can switch between design view
and code view by clicking on the relevant tabs (see Figure 2-34).

Switch between Design view Code view
and Code view

& WindowsFormsApplicition - Microsoft Yisual Studio

Fle Edt Wiew Refactor] Project Buld Debug Data Tools Test Apslyze Window H
G- - e @ %G b
G % b e

Forml.cs® | Forml,cs [Design]* | Start Page |

bug = Any CPU

el Bl

‘fg-._. v”y..-- w

ECETNR 4

Eusing System; ¥
using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing:

using System.Ling;

using System.Text;

using System.Windows.Forws:

E namespace TindowsFormsipplicationl
{
public partial class Forml : Form
{
public Formli)
{
InitializeCowponent ()
+

private void Forwl Load(chject sender, Eventlrgs g

< | >

Figure 2-34

In Visual Studio, you can right-click on the tabs (see Figure 2-35) to arrange the code view either
horizontally or vertically, to maximize the use of your monitor(s).

WindowsFormsApplicationl - Microsoft

File Edt View Refactor Project Build De

gra-ddd s

B b ae =L

| Formieel coat corn 1L e nige
= |IF H Save Forml.cs —
2 || i i
= Close E—
g | u

1 Close all But This

u Copy Full Path =:

Open Containing Folder
{ Q Mew Horizontal Tab Group
jj Mew Vertical Tab Group

Figure 2-35

32

Chapter 2: Getting Started with Visual Studio 2008

Figure 2-36 shows the code view and design view displaying horizontally.

2% WindowsFormsApplication1 - Micresoft Visual Studio

File Edit Wiew PRefactor Project Build Debug Data Tools Test Window Help
- -E e % BB - B-EL | B Debug - Any CPU - |
Bljsel#EE =2 003 85 a0,
56| Formi.cs(Desion] Start page | + x| Solution Explarer - Soltion ... w & X
| R - i
g | Al BlpE ERA
5 | i: Salution "WindowsFormsapplicationl’
= = .‘E WindowsFormsApplicationl
buttan1 [#- |=d| Properties
[#- =] References
= [E] Farml.es
i ‘_g]Forml.Designer.cs
¢ e ' Forml.resx
- ¢#] Program.cs
af) 1 |]
'Fnrml.-.ts - x. E’_Dnei’ties) - 1)(-
|V‘tgWindowsFormsApphcat\onl \Farmi1 w | ‘ 5¥Forml_Load{object sender, Eventargs &) v| L
ey e A
InitializeComponent () ; ‘;‘I J
2 ' —1
= private void Forml Load(okject sender, Eventlirgs g)
4
L 1
=] private void buctonl_Click(ohjecc sender, Eventlrgs e) ’
4
—
= ¥ |
v ad ‘
IS | 3 |
Ready Ln21 Col 13 Ch13 NS

Figure 2-36

Figure 2-37 shows the code view and design view displaying vertically.

33

Part |: C# Fundamentals

2% WindowsFormsApplication1 - Microsoft ¥isual Studio

Fle Edit uiew Refactor Project Buld Debug Daka Took Test Window Help
- Ha %GR & -5L | b Debug = Ay CPU ~ [# sminside - | 5 AR e ig
B b e =2 lNaRaasno.
S%i Farm1,cs [Design] Start Page | - X Forml.cs ~ x| Solution Explorer - Solution ... = & X
= | B I = =
2| | “gwindowsFormsapplicationt v | | 39 Form1 _Lnadtohject sender, v | Lé‘l_ 2 REEERA
Z = - F . .
2‘ O using Sy=tem: = ; Solutlo_n WlndowsFormsnp?Ilcat_lonl
: . 4| | = (3] windowsFormsapplication1
using System.Collections.Generic; =T = <
| buttani 3 Leat z LRy [+ [=d| Properties
us?ng ystem. ComponentModel; @ Fikarbimes
us?ng System.Data,. = P
using System.Drawving; E! Farm1.Designer.cs
using System.Ling: 55 Formi.resx
using System.Text;] Program.cs
using System.Tindows.Forms:
[namespace WindowsFormsipplicationl
4
public partiasl class Forml : Form
: ¢ | »
] public Formli) —— =
I3 Properties -1 X
InitializeComponent (] ; -
g] E
: =]
= private woid Forml Load{object
4
I }
= private woid buttonl Click(ob;
i
- }
L 3 — =
Ly @
ol 5| |
Ready Ln 21 Cal 13 Chi3 NS
Figure 2-37

Having multiple views at the same time is useful if you have a big monitor (or multiple monitors).

Code and Text Editor

Within the code view of Visual Studio 2008 is the Code and Text Editor, which provides several rich
features that make editing your code easy and efficient, including;:

QO Code Snippets

0 IntelliSense statement completion

Q IntelliSense support for object properties, methods and events
Q Refactoring support

34

Chapter 2: Getting Started with Visual Studio 2008

Code Snippets

The Code Snippet feature in Visual Studio 2008 enables you to insert commonly used code blocks into

your project, thereby improving the efficiency of your development process. To insert a code snippet,

right-click on the location where you want to insert the code snippet in the Code Editor, and select Insert

Snippet (see Figure 2-38).

private void Forml_Load({obje
1

1 Refactor 3

FE] Wiew Designer

Qrganize Usings »

";;1 Create Unit Tests...

=l Insert Snippet...
| surround with. ..

8 Go To Definition
Find All References
Breakpaint »
*E= Run To Cursor
& | Cut
=3 Copy

Qutlining [

Figure 2-38

Select the snippet category by clicking on the category name (see the top of Figure 2-39) and then

selecting the code snippet you want to insert (see bottom of Figure 2-39).

private void Forml Load(ohject sender,

Eventirgs e)

private void Forml Load(ohject sender,
i

Eventirgs e)

[insert Snippet: yisual C > |
o

region
12 attribute

= enum v

Figure 2-39

35

Part |: C# Fundamentals

For example, suppose that you select the try code snippet. The following block of code will be inserted
automatically:

private void Forml_Load(object sender, EventArgs e)
{

try

{

}
catch (Exception)

{

throw;

You can also use the Surround With code snippets feature. Suppose that you have the following
statements:

private void Forml_Load(object sender, EventArgs e)
{
int numl = 5;
int num2 = 0;

int result numl / num2;

The third statement is dangerous because it could result in a division-by-zero runtime error, so it would
be good to wrap the code in a try-catch block. To do so, you can highlight the block of code you want
to put within a try-catch block and right-click it. Select Surround With (see Figure 2-40), and then
select the try code snippet.

55| | view Designer
Refactor 3

Organize Usings 3

Create Unit Tests...

i)

Insert Snippet...

di,
*)_.

Surround With...

Go To Definition

*u

Find All References

Rreaknnink [3

Figure 2-40

36

Chapter 2: Getting Started with Visual Studio 2008

Your code now looks like this:

private void Forml_Load(object sender, EventArgs e)

{
try
{
int numl=5;
int num2 = 0;
int result = numl / num2;
}
catch (Exception)
{
throw;
}
}

IntelliSense

IntelliSense is one of the most useful tools in Visual Studio 2008. IntelliSense automatically detects the
properties, methods, events, and so forth of an object as you type in the code editor. You do not need to
remember the exact member names of an object because IntelliSense helps you by dynamically
providing you with a list of relevant members as you enter your code.

For example, when you type the word Console in the code editor followed by the ., IntelliSense
displays a list of relevant members pertaining to the Console class (see Figure 2-41).

private void Forml_Loadiochject sender, Eventirgs e)
{
Console.‘

W@ SetwindowPosition e
@ Setwindowsize

= Title

Z TreatControlCasInput

j‘ ‘WindowHeight

i‘f‘ ‘windowLeft

fﬁ ‘WindowTop

2 Windowwidth

W@ Write void Console, writeLine(string format, params object[] arg) {+ 15 overloadis))
% riteling Wirites the text representation of the specified array of objects, followed by the ¢

Exceptions:
System IO, IOExCeption
System, ArgumenthullException
Syskem, FormatException

Figure 2-41

When you have selected the member you want to use, press the Tab key and IntelliSense will insert the
member into your code.

37

Part |: C# Fundamentals

IntelliSense in Visual Studio 2008 has some great enhancements. For example, the IntelliSense dropdown
list often obscures the code that is behind when it pops up. You can now make the dropdown list
disappear momentarily by pressing the Control key. Figure 2-42 shows the IntelliSense dropdown list
blocking the code behind it (top) and having it be translucent by pressing the Control key (bottom).

private woid Forml Load(object sender, Eventlirgs g)
{

Consule.l

Consa - setwindowrostion A |7 ¢

Print -G setwindowsize T
Conso B Tide

' 50 TreatControlCAsInput
f ‘WindowHeight
private v f windowLeft void Console,WriteLinedstring Format, pa
[2 windowTop Writes the bext representation of the sp
for | 25 windowwidth Esceptions:
1 W Write

System, IO IOException

i System, ArgumenthullException
¢ System. FormatException

private void Forml_Loadichject sender, Eventirgs e)
4

Console.

Console.WritelLine ["Start™);

printilloddiunbers (9] ;

Console.Writeline ("End");

}
private void printillOddNurbers(int num)

i
for (i <= num; i++)
{

if (1% 2 == 1)
{

Figure 2-42

You can also use IntelliSense to tidy up the namespaces at the top of your code. For example, you often
import a lot of namespaces at the beginning of your code and some of them might not ever be used by

your application. In Visual Studio 2008, you can select the namespaces, right-click, and select Organize
Usings (see Figure 2-43).

View Designer

Refactor 3

= :lamespace L _ Organize Usings * | 7y Remove Unused Usings
= i @
public partial .,__] Create Unit Tests., .. iy Sort Usings
i &, | Insert Snippet... Remove and Sort
0 punlic Forl o | o ound with...

P s

Initial 48 GoTo Definition

Figure 2-43

38

Chapter 2: Getting Started with Visual Studio 2008

Then you can choose to:

QO Remove all unused using statements
Q Sort the using statements alphabetically

QO Remove all unused using statements and sort the remaining namespace alphabetically

Refactoring Support

Another useful feature available in Visual Studio 2008 is code refactoring. Even though the term may
sound unfamiliar, many of you have actually used it. In a nutshell, code refactoring means restructuring
your code so that the original intention of the code is preserved. For example, you may rename a
variable so that it better reflects its usage. In that case, the entire application that uses the variable needs
to be updated with the new name. Another example of code refactoring is extracting a block of code and
placing it into a function for more efficient code reuse. In either case, you would need to put in
significant amount of effort to ensure that you do not inadvertently inject errors into the modified code.
In Visual Studio 2008, you can perform code refactoring easily. The following sections explain how to use
this feature.

Rename

Renaming variables is a common programming task. However, if you are not careful, you may
inadvertently rename the wrong variable (most people use the find-and-replace feature available in the
IDE, which is susceptible to wrongly renaming variables). In C# refactoring, you can rename a variable
by selecting it, right-clicking, and choosing Refactoring => Rename (see Figure 2-44).

string strl =
string
HeszsageBo j

PHEI1Gy B
susl Stud ooser:
Yiew Designer

Refactor ¥ |lab? Rename.,

Organize Usings L3 viq) Extract Method...
'E,;'j Create Unit Tests.., gl
=

|, Insert Snippet... =2 Estract Interface...

Encapsulate Field. ..

Figure 2-44

You are prompted for a new name (see Figure 2-45). Enter a new name, and click OK.

New name! .
! s2| |

Location:

%WinduwsFUrmsApplicatiun1 .Formi ‘Fur;ﬂ_Luar:l.(.;:lbjectJEventArgs.)_ |

Preview reference changes
[[]search in comments

[[]search in strings

Figure 2-45
39

Part |: C# Fundamentals

You can preview the change (see Figure 2-46) before it is applied to your code.

Preview Changes - Rename

_aena_mg_‘strz‘ o 's2"
=] W tion 1, Farml,Forml

[

__',') MessageBox. Show(str] + skr2);

Preview Code Changes:
-~

private void Forml Loadiohject sender, I

{

SErancss ol = el S
string = "™fizual Studic Z005"™; -
MessageEBox.3how(strl "

5

|.l.\.

| 2

Figure 2-46

Click the Apply button to change the variable name.

Extract Method

Very often, you write repetitive code within your application. Consider the following example:

private void Forml_Load(object sender, EventArgs e)

{
int num = 10, sum = 0;
for (int 1 = 1; i <= num; i++)
{
sum += 1i;
}
}

Here, you are summing up all the numbers from 1 to num, a common operation. It would be better for
you to package this block of code into a function. So, highlight the code (see Figure 2-47), right-click
it, and select Refactor = Extract Method.

Wiew Designer

Refactor b & Rename...
Organize Usings Y |le Extract Method..,
il Create Unt Tests... I | Encapsulate Field...
'-?J’ Insert Snippet... =¥ | Extract Interface...
=l Surround With. . % Promate Local Yariable to Parameter
_ } 8 Go To Definition at | Remove Parameters...
Find &ll References ab Reorder Parameters...
H } Fraaknaink .

Figure 2-47

40

Chapter 2: Getting Started with Visual Studio 2008

Supply a new name for your method (see Figure 2-48). You can also preview the default method
signature that the refactoring engine has created for you. Click OK.

Extract Method Elﬁl

Mew method pame:

| Summation| I

Preview method signature;

private static void Summation()

Figure 2-48

The block of statements is now encapsulated within a function and the original block of code is replaced
by a call to that function:

private void Forml_Load(object sender, EventArgs e)

{

Summation() ;

private static void Summation ()
{
int num = 10, sum = 0;
for (int 1 = 1; i <= num; 1++)
{
sum += 1i;
}
}

However, you still need to do some tweaking because the variable sum should be returned from the
function. The code you highlight will affect how the refactoring engine works. For example, if you
include the variables declaration in the highlighting, a void function is created.

While the method extraction feature is useful, you must pay close attention to the new method signature
and the return type. Often, some minor changes are needed to get what you want. Here’s another
example:

Single radius = 3.5f;
Single height = 5;
double volume Math.PI * Math.Pow(radius, 2) * height;

41

Part |: C# Fundamentals

If you exclude the variables declaration in the refactoring (instead of selecting all the three lines; see
Figure 2-49) and name the new method VolumeofCylinder, a method with two parameters is created:

private void Forml_Load(object sender, EventArgs e)
{

Single radius = 3.5f;

Single height 5;

double volume = VolumeofCylinder (radius, height) ;

}

private static double VolumeofCylinder (Single radius, Single height)
{

return Math.PI * Math.Pow(radius, 2) * height;
}

Single radius
Single height
double volume

[T
n

View Designer

Refactar at* Rename...

Organize Usings P |l Extract Method...

B create nit Tests... Al Freansilate Field

Figure 2-49

Here are some observations:
Q Variables that are defined outside of the highlighted block for refactoring are used as an input
parameter in the new method.

Q If variables are declared within the block selected for refactoring, the new method will have no
signature.

O Values that are changed within the block of highlighted code will be passed into the new
method by reference.

Reorder and Remove Parameters
You can use code refactoring to reorder the parameters in a function. Consider the following function

from the previous example:

private static double VolumeofCylinder (Single radius, Single height)
{

return Math.PI * Math.Pow(radius, 2) * height;
}

Highlight the function signature, right-click it, and select Refactor => Reorder Parameters (see Figure 2-50).

42

Chapter 2: Getting Started with Visual Studio 2008

private static double VolumeofCwylinder
{

w Designer

return Math.PI * Math.Pow(radius, 2) % heig

; Refactor b | a&# Rename...
Organize Usings Y| g+ Extract Method..,
B Create Lnk Tests.., gl | Encapsulate Field...
=l, Insert Snippet... 5% Extract Interface...
H, surround with... % | Promate Local Variable to Parameter
S8 o To Definition ah | Remove Parameters...
—

Find All References Reorder Parameters. ..

=
=3

Breakpoint (3

Figure 2-50

You can then rearrange the order of the parameter list (see Figure 2-51).

Reorder Parameters

Parameters:

Modifier ~ Type Parameter

+
float height
float radius

Preview method signature:
private static double YolumeofCylinderi(float height, Foat radius)

Preview reference changes

Figure 2-51

Click OK. You can preview the changes before they are made (see Figure 2-52).

Preview Changes - Reorder Parameters r

Reeorder parameters:
[=-[-% e

Farrnl.cs
j'J VolumeofCylinder{radius, height)

Ereview Code Changes:

]

5 UDlumEDnyllndE[(lSinglE height, Single radiuﬁ]

Math.Pow(radius, 2) * height:

%

s | &

Your project or one of its dependencies does nat currently build, References may
_.3 not be updated.,

Figure 2-52

43

Part |: C# Fundamentals

Once you click the Apply button, your code is changed automatically:

private void Forml_Load(object sender, EventArgs e)

{

Single radius = 3.5f;

Single height = 5;

double volume = VolumeofCylinder (height, radius);
}

private static double VolumeofCylinder (Single height, Single radius)

{
return Math.PI * Math.Pow(radius, 2) * height;

All statements that call the modified function will have their arguments order changed automatically.

You can also remove parameters from a function by highlighting the function signature, right-clicking,
and selecting Refactor => Remove Parameters. Then remove the parameter(s) you want to delete (see
Figure 2-53). All statements that call the modified function will have their calls changed automatically.

Remove Parameters @
Parameters:
Modifier =~ Type | Parameter | Remove
float height
Float radius
< | 3

Preview method signature:
private static double YalumeofCylinderifloat height, Float radius)

Preview reference changes

Cancel

Removing a parameter whose call site passes an argument which modifies the state of the
. program can cause unexpected runtime behaviar,

Figure 2-53

Encapsulate Field

Consider the following string declaration:

namespace WindowsFormsApplicationl

{
public partial class Forml : Form
{
public string caption;
private void Forml_Load(object sender, EventArgs e)
{
/]
}
}
}

44

Chapter 2: Getting Started with Visual Studio 2008

Instead of exposing the caption variable as public, it is a better idea to encapsulate it as a property and
use the set and get accessors to access it. To do that, right-click on the caption variable and select
Refactor &> Encapsulate Field (see Figure 2-54).

public partial class Forml : Form
{
public string

Wiew Designer
public Formil ()
7 Refactor ¥ || at” Rename...
InitializeCao Organize Usings P | ¥ Extract Method...
T == i
W Create Unit Tests... Encapsulate Field. ..
st e wndin Feed S Insert Srippet.., = Extract Interface..,

Figure 2-54

Assign a name to your property (see Figure 2-55). You have the option to update all external references
or all references (including the one within the class), and you can choose to preview your reference
changes. When you're ready, click OK.

Encapsulate Field

Field name:
caption |

Property name:

Update references:

(O External

[OF1]
Preview reference changes
[l search in comments

[search in strings

Figure 2-55

After you've previewed the changes (see Figure 2-56), click Apply to effect the change.

Preview Reference Changes - Encapsulate Field @@

Encapsulate ‘caption’ as 'Caption’;

Preview Code Changes:
{ ~
public partial class Forml @ Form

{
public scring ,' L

public Formli)
{

InitializeComponent () ; o |

Figure 2-56

45

Part |: C# Fundamentals

Here is the result after applying the change:

namespace WindowsFormsApplicationl

{

public partial class Forml : Form
{

private string caption;

public string Caption

{
get { return caption; }
set { caption = value; }

private void Forml_Load(object sender, EventArgs e)

{
/]

Extract Interface

You can use the refactoring engine to extract an interface from a class definition. Consider the following
Contact class:

namespace WindowsFormsApplicationl
{

class Contact

{

public string FirstName

{

get;

set;
}
public string LastName
{

get;

set;
}
public string Email
{

get;

set;
}
public DateTime DOB
{

get;

set;

46

Chapter 2: Getting Started with Visual Studio 2008

Right-click the Contact class name and select Refactor > Extract Interface (see Figure 2-57).

class @

{ Refactor P a7 Rename...

Organize Usings 1] ‘;‘) Extract Method...
Create Unit Tests... I | Encapsulate Field. ..
Insert Snippet... S Estract Interface...
Surround With. .. 1 | Promote Local Yariable ko Parameter
G0 To Definition ah | Remove Parameters. .,

d Find All References b Reorder Parameters...

H Erealkpoint 3

Figure 2-57

The Extract Interface dialog opens, and you can select the individual public members to form the
interface (see Figure 2-58).

Extract Interface

Mew interface name:
!ICUntact |

Generated name:

iWindnwanrmsApphcat\nnl JContack |

Mew file name;
EIContact.cs |

Select public members ta Form interface

EFon Select All
57 Email
7 Firsthlame
[L astMame
i |
Figure 2-58

The new interface is saved in a new . cs file. In this example, the filename is IContact.cs:

using System;
namespace WindowsFormsApplicationl

{
interface IContact
{
DateTime DOB { get; set; }
string Email { get; set; }
string FirstName { get; set; }
string LastName { get; set; }
}
}

47

Part |: C# Fundamentals

The original contact class definition has now been changed to implements the newly created interface:

class Contact : WindowsFormsApplicationl.IContact
{

public string FirstName

Promote Local Variable to Parameter

You can promote a local variable into a parameter. Here’s an example:

private void Forml_Load(object sender, EventArgs e)

{
LogError ("File not found.");
}
private void LogError (string message)
{
string SourceFile = "Forml.cs";
Console.WriteLine (SourceFile + ": " + message);
}

You want to promote the variable SourceFile into a parameter so that callers of this function can pass
in its value through an argument. To do so, select the variable SourceFile, right-click, and then select
Refactor = Promote Local Variable to Parameter (see Figure 2-59).

private woid LogError(string message)

{
string M"Forml seats

Console.Wry E5] | View Designer l "i "o+ wessage) ;
¥ Refactar P | a4 Rename...
Organize Usings * |+ Extract Method..,
W__J Create Unit Tests... W | Encapsulate Field. ..
—-.'=J, Insert Snippet, ., =% | Extract Interface. ..
=, surround With.., % Promote Local Yariable to Parameter
8 Go To Definition ah | Remove Parameters..,
Find &ll References 5B Reordsr Parameters..,
Breakooint v |

Figure 2-59

Note that the local variable to be promoted must be initialized or an error will occur. The promoted
variable is now in the parameter list and the call to it is updated accordingly:

private void Forml_Load(object sender, EventArgs e)

{
LogError ("File not found.", "Forml.cs");
}
private void LogError (string message, string SourceFile)
{
Console.WriteLine(SourceFile + ": " + message);
}

48

Chapter 2: Getting Started with Visual Studio 2008

Debugging
Debugging is an important part of the development cycle. Naturally, Visual Studio 2008 contains

debugging tools that enable you to observe the runtime behavior of your program. This section takes a
look at those tools.

Suppose that you have the following program:

using System;
using System.Windows.Forms;

namespace WindowsFormsApplicationl

{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
}
private void Forml_Load(object sender, EventArgs e)
{
Console.WriteLine("Start");
printAll0ddNumbers (9) ;
Console.WriteLine ("End") ;
}
private void printAllOddNumbers (int num)
{
for (int 1 = 1; 1 <= num; 1++)
{
if (i $ 2 == 1)
{
Console.WriteLine(1i);
}
}
}
}
}

The following sections show how you can insert breakpoints into the application so that you can
debug the application during runtime.

Setting Breakpoints

To set a breakpoint in your application, in the Visual Studio 2008 Code Editor, click in the left column
beside the statement at which you want to set the breakpoint (see Figure 2-60).

49

Part |: C# Fundamentals

2% WindowsFormsApplication1 - Microsoft Visual Studio

File Edit Aew Refactor Project Buld Debug Data Tools Test Window Help
&~ G H @ % Ga@ 9GO b Debg - Ainy CPU
BRbaoelEs =2 050 &
Search: =
e — ""T_‘fb
Formi.cs [Design] - Forml.cs | Start Page |
= | =
2 | |ﬁWinduwsFurmsApp\icatiun1.Furml v||;
= ||
Elusing Iystem:
Lusing Svertem. Windows.Forms;
o] hamespace WindowsFormsipplicationl
{
public partial class Forml : Form
{
= pukilic Formilf)
{
InitializeComponent () ;
r H
= private void Forml_Load(object sender, Eventlrgs e)
{
Console.WriteLine ("3tarc"™);
;; ;nrml.ch line 16 character 13 {"WindowsFormsApplication1.Forml.Forml_Load{object sender, Eventérgs e), line 4} ‘
H
= private wvoid printillOddiumbers(int num)
{
for {int i1 = 1; i <= num; i++)
4
if {i% 2 == 1)
{
Console.WriteLine (i)
H
*
r H
r i
=
Figure 2-60

Press F5 to debug the application. When the execution reaches the statement with the breakpoint set,
Visual Studio 2008 pauses the application and shows the breakpoint (see Figure 2-61).

private void Forml_Load(object sender, Eventlrgs e)
{
Console.WriteLine ("3tarc");
(=] frintilioddiubecs s
Console.WriteLine ("End™) ;

Figure 2-61

50

Chapter 2: Getting Started with Visual Studio 2008

Stepping through the Code

With the application stopped at the breakpoint, you have a choice of what to do:

Q Step Into — Press F11 (see Figure 2-62). Stepping into the code means that if the breakpoint
statement is a function call, execution is transferred to the first statement in the function and you
can step through the function one statement at a time.

Q Step Over — Press F10. Stepping over the code means that if the breakpoint statement is a
function call, the entire function is executed and control is transferred to the next statement after
the function.

Q Step Out — Press Shift+F11 to step out of the code (Step Out). If the statement at the breakpoint
is part of a function, execution is resumed until the function exits. The control is transferred to
the returning point in the calling function.

Step Into and Step Over are basically the same, except when it comes to executing functions.

J—] private vold Forml_Load(ohject sender, Eventirgs e)
{
@
t
=] private vold printAllOddNurbers (int num)
e
for (int 1 = 1; 1 <= num; i++)
{
if (1 %5 2 == 1)
{
Console.Wriceline (i)
t
}
b
5 ¥
=
Figure 2-62

While you are at a breakpoint stepping through the code (using either F10 or F11), you can also examine
the values of variables by hovering the mouse over the object you want to examine. Figure 2-63 shows
value of i when the mouse is over i.

private woid printillOddNunbers (int num)
{
for {int i = 1; 1 <= num; i++)
{
if (s 2 = 1
" T
Console.UriteLine (i) :
i

Figure 2-63

51

Part |: C# Fundamentals

Watching

You can also right-click on the object you want to monitor and select Add Watch or QuickWatch (see
Figure 2-64).

for {int 1 = 1: i <= num: 1i++)
{

5 it flaz==n

i 2| Wiew Designer

[,_j Create Unit Tests...

3 8 o To Definition

Find All References

) Breakpaint »

&4 Add watch

e

QuickMakeh, ..

¥

Shns Bk Sk mbmrnmek

Figure 2-64

When you use the Add Watch feature, the variable you are watching will be displayed in the Watch
window (see Figure 2-65). As you step through your code, changes in the variable are reflected in

the Watch window. In addition, you have the option to change the value of the variable directly in the
Watch window.

Hame |vabe | Type

I (S

=] Output :aanals | Eateh1 |
Figure 2-65

The QuickWatch feature also enables you to monitor the value of variables, except that the execution
cannot continue until you have closed the QuickWatch window (see Figure 2-66). You can also enter an
expression to evaluate and at the same time add a variable into the Add Watch window.

QuickWatch
[i2] ~|
Value:
| Mame Value Type
@i 3 int
Close] [Help
Figure 2-66

52

Chapter 2: Getting Started with Visual Studio 2008

Autos and Immediate Windows

To automatically view all the relevant variables in scope, you can launch the Autos window (see Figure
2-67) during a breakpoint by selecting Debug => Windows => Autos.

Name Value

A N
@ num 9 ink
[@ this AvindowsFormsApplication Formil, Text: Formi} WindowsFormsapplicationl

Type

[5] Qutput | F5] Lacals |3Autns }E;Watch L

Figure 2-67

You can use the Immediate Window (see Figure 2-68) at runtime to evaluate expressions, execute

statements, print variable values, and so on. You can launch the Immediate window during a breakpoint
by selecting Debug = Windows = Immediate.

= private void printillOoddiumbers(int num)
{
for {int i = 1:; i <= num; i++)
{
i HIRR2ham T Immediate Window 3]
¢ i -
Console.WritelLine (i} ; I, —
¥ i=5
H 5
L 3 i
L y 5

v

=] Call Stack | [Ejimmediate Window |

Figure 2-68

Unit Testing

Application testing is one of the tasks that every programmer worth his salt needs to do. For example,
after writing a class, you often need to write additional code to instantiate the class and test the various
methods and properties defined within it. Visual Studio 2008 Professional (and higher) provides a Unit
Testing feature to auto-generate the code needed to test your application.

53

Part |: C# Fundamentals

This section demonstrates how unit testing is performed in Visual Studio 2008. Use the following Point
class definition located within a Class Library project:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace UnitTesting

{
class Point
{
public Point() { }
public Point(int x, int vy)
{
this.x = x;
this.y = vy;
}
public int x { get; set; }
public int y { get; set; }
//---calculates the length between 2 points
public double length(Point pointOne)
{
return Math.Sgrt (
Math.Pow(this.x - pointOne.x, 2) +
Math.Pow(this.y - pointOne.y, 2));
}
}
}

Creating the Test

For this example, create a unit test to test the 1ength () method. To do so, right-click on the 1ength ()
method and select Create Unit Tests (see Figure 2-69).

//-—-calculates the length hetween 2 points

public double {Foint pointOne
4 Refactor 4

return Math. Sy 5 ;i
] Crganize Usings 3
Math.Pow(_ 2) +

Hath.Pow| i,;] Create Unit Tests, . 210
-.'EL Insert Snippet...

=, Surround with...

Figure 2-69

54

Chapter 2: Getting Started with Visual Studio 2008

In the Create Unit Tests dialog, select any other additional members you want to test and click OK (see
Figure 2-70).

Create Unit Tests

Current selection: Filter =

Types

=-[E]] UnitTesting

19
=-[E] 4% UnitTesting Paint
[[] =% Paink{System.Int32, System.Int3z)
<[] % Paintf)
@ length{lnitTesting. Paink)
O =
O y

CQutput project: | Create a new Yisual C# test project. ., w |

I Settings... l[Add Assembly...] [[o]4][Cancel l

Figure 2-70

You are prompted to name the test project. Use the default TestProjectl and click Create. You may
also be prompted with the dialog shown in Figure 2-71. Click Yes.

Add Internals¥isibleTo Attribute

€ | ‘fou have chosen to generate kests for a type that is marked as Friend, or
\T/ Internal. Would you like to add the InternalsvisibleTo attribute to project
'UnitTesting'?

If wour source project has strong name signing enabled, yvou will need to also
enable signing For your test project, IF you do not, you will receive a compilation
errar,

[] Do nat shaw this dialog box again

7

Figure 2-71

The TestProjectl is be added to Solution Explorer (see Figure 2-72).

Solution Explorer - TestProject1 =
D E&
:: Solution 'UnitTesting' {2 projects)
= 2 Solution Items

1t LocalTestRun.kestrunconfig

.,_’ UnitTesting, vsmdi
- FiemEm

[=d| Properties

2l References
g AuthoringTests, kxt
] PointTest.cs

UnitTesting

=d| Properties

|«3] References

5] Forml.cs

] Point.cs

E}] Program.cs

Figure 2-72

55

Part |: C# Fundamentals

The content of the PointTest. cs class is now displayed in Visual Studio 2008. This class contains the
various methods that you can use to test the Point class. In particular, note the lengthTest () method:

/// <summary>

///A test for length

///</summary>

[TestMethod ()]

public void lengthTest ()

{
Point target = new Point(); // TODO: Initialize to an appropriate value
Point pointOne = null; // TODO: Initialize to an appropriate value
double expected = 0F; // TODO: Initialize to an appropriate value
double actual;
actual = target.length(pointOne) ;
Assert.AreEqual (expected, actual);
Assert.Inconclusive("Verify the correctness of this test method.");

The lengthTest () method has the [TestMethod] attribute prefixing it. Methods with that attribute are
known as test methods.

Now modify the implementation of the lengthTest () method to basically create and initialize two
Point objects and then call the length () method of the Point class to calculate the distance between
the two points:

/// <summary>
///A test for length
///</summary>
[TestMethod ()]
public void lengthTest ()
{

int x = 3;

int y 4;

Point target = new Point(x, Vy);
Point pointOne = new Point(0,0);
double expected = 5F;
double actual;
actual = target.length(pointOne) ;
Assert.AreEqual (expected, actual,
"UnitTesting.Point.length did not return the expected value.");

Once the result is returned from the length () method, you use the AreEqual () method from the
Assert class to check the returned value against the expected value. If the expected value does not
match the returned result, the error message set in the AreEqual () method is displayed.

56

Chapter 2: Getting Started with Visual Studio 2008

Running the Test

Before you run the unit test, take a look at the Test Tools toolbar (see Figure 2-73) automatically shown in
Visual Studio 2008.

Test view
Test List Editor

pebug A11 Tests in solution Test Results

Debug TesTs 1n CUurrent Context est RUNS

#% UnitTesting - Microsaft Visual Stirdio

File Edt Wiew| Re¢fackdr Projept |Build D¢

FEXE T EER
Sear =

T WU — /)
New Test Run Al11 Tests in Solution

RuUn Tests in Current Context

Figure 2-73

To run the unit test, click the Run All Tests in Solution button in the toolbar. In this case, the

lengthTest () method passed the test. The length between two points (3,4) and (0,0) is indeed 5 (see
Figure 2-74).

Test Results

3 Gy Wei-Meng Les@WINYPSFZ 2008-04- = % Run » plDsbug - 11 5

1) Testrun completed Results: 11 passed; Ttemis) checked: 0

Result Tesk Name Project
lengthTest

Error Message

B& r

<
_Jd Error List iETest Results |

Figure 2-74

You can make modifications to the lengthTest () method to test other parameters. In the Test Results
window, you have the option to view the previous test results (see Figure 2-75).

Results

3| iy [weitteng Lee@wingpsez 2008-04-[=] % Run + EDebug ~ U1
(¥) Testmnc I‘\Aﬂlanage kest runs...

<
_Jd Error Lisfi@Test Results |

'Wei-Meng Lee@WINXPSP2 2005-04-18

Figure 2-75

57

Part |: C# Fundamentals

Testing with Floating Point Numbers

You need to take special note when your test involves comparing floating point numbers. Consider the
following example:

[TestMethod ()]
public void lengthTest ()
{
int x
int y

4;
5

Point target = new Point(x, vy);
Point pointOne = new Point(1,2);
double expected = 4.24264F;
double actual;
actual = target.length(pointOne) ;
Assert.AreEqual (expected, actual,
"UnitTesting.Point.length did not return the expected value.");

When you run the test, the test will fail (see Figure 2-76).

Test Results 3]

5= [y Wel-Meng Lee@WINZPSPZ 2008-04- = | “pRun = BéDebug ~ 11 0 2F - %y G GroupBy: [Mane] -

@ Testrunfailled Results: 0/1 passed; Itemis) checked: 1

Result Test Mame Project Error Message
! gga Faled lengthTest TestProjectl Assert.areEqual Failed. Expected: <4.24264001846313, Actual: 4. 242640687 11928 >, UnitT

= e [
JV‘QEerr List. !ETest Resulks |

Figure 2-76

Why is this so? The reason is that floating point numbers (such as Single and Double) are not stored
exactly as what they have been assigned. For example, in this case, the value of 4.24264 is stored
internally as 4.2426400184631348, and the result returned by the length () method is actually
4.2426406871192848. The AreEqual () method actually fails if you compare them directly.

To address this issue, the AreEqual () method supports a third parameter — delta — that specifies the
maximum difference allowed for the two numbers that you are comparing. In this case, the difference
between the two numbers is 0.0000066865615. And so the following code will pass the test:

Assert.AreEqual (expected, actual, 0.0000066865616,
"UnitTesting.Point.length did not return the expected value.");

But this code will fail:

Assert.AreEqual (expected, actual, 0.0000066865615,
"UnitTesting.Point.length did not return the expected value.");

Assert.AreEqual (expected, actual, 0.0000066865614,
"UnitTesting.Point.length did not return the expected value.");

58

Chapter 2: Getting Started with Visual Studio 2008

Although the documentation says that the delta specifies the maximum difference allowed for the two
numbers, in actual testing the difference should be less than the delta for the Assert.AreEqual ()
method to pass. This explains why that first statement fails.

Adding Additional Test Methods

You can insert additional test methods by adding new subroutines to the PointTest . cs file and
prefixing them with the [TestMethod] attribute. For example, the following test method uses the
Aresame () method of the Assert class to check whether two objects are pointing to the same reference:

[TestMethod ()]
public void objectTest ()
{

Point pointl new Point (4, 5);
Point point2 new Point() { x = 4, v =5 };
Point point3 = point2;

//---Failed---
Assert.AreSame (pointl, point2, "pointl is not the same as point2");

//---Passed---
Assert.AreSame (point2, point3, "point2 is not the same as point3");

}

Figure 2-77 shows the test results.

Test Results
5y WeiMeng Lee@WINAPSP2 2008-04- = | “BRun - BeDebug - 11 0 2. by 3

Q Test run Failed Results: 1)2 passed; [tem(s) checked: 1

Result Test Name Project Error Message
gi“]u Passed lengthTest TestProjectl
v gjd Failed objectTest TestProjectl Assert, AreSame Faled, pointl is not the same as point2

Figure 2-77

Summary

This chapter provided a quick overview of the common features and tools available in Visual Studio
2008. Visual Studio 2008 is highly configurable, so you’ll want to take some time to familiarize yourself
with the environment. If you're totally new to C#, some Visual Studio features like code refactoring and
unit testing may not seem all that important to you now, but once you've gotten some C# under your
belt, you’'ll want to take another look at those features.

When you're ready, the next chapter gets you started in writing code in C#.

59

C# Language Foundations

The best way to get started in a new programming language is to create a simple program and
then examine the various parts that compose it. With this principle in mind, you'll create a simple
C# program — first using Visual Studio 2008 and then using a plain text editor.

In this chapter you build and run the HelloWorld application, using Visual Studio 2008 as well as
using the command line. After that, you tackle the syntax of the C# language and all the important
topics, such as:

(]

C# keywords
Variables

Constants
Comments

XML documentation
Data types

Flow control

Loops

Operators

L Iy A B N B

Preprocessor directives

Using Visual Studio 2008

The easiest way to create your first C# program is to use Visual Studio 2008.

Part |: C# Fundamentals

62

Editions of Visual Studio 2008

You can use any of the following editions of Visual Studio 2008 to create a C# program:

Q

Q
a
a

Visual C# 2008 Express Edition

Visual Studio 2008 Standard Edition
Visual Studio 2008 Professional Edition
Visual Studio 2008 Team Suite Edition

All the code samples and screen shots shown in this book were tested using
Visual Studio 2008 Professional Edition.

Launch Visual Studio 2008.

Create a new Console Application project by selecting File 5> New = Project.

Expand the Visual C# item on the left of the dialog, and select Windows. Then, select

the Console Application template on the right (see Figure 3-1). Name the project HelloWorld.

New Project @

Project bypes: Templates: -MET Framework 3.5 bt IEI
= \"|_5U5| ¥ Visual Studio installed templates
‘Windows
Web E ‘Wwindows Forms Application @Class Library
- Smart Device @WPF Application [WPF Browser Application
[+ Office iy 0 [Empty Project
- Dakabase & WPF Custom Contral Library
i~ Reporting [WRF User Control Library | windows Forms Control Library
Test
: WCF My Templates
Workflow
[# Database Projects ,ﬂSEarch Online Templates...

[#-Other Languages

Distributed Systems
[Other Project Types
=+ Test Projects

A project For creating a command-line application (MET Framework 3.5)

[ame: ‘ HelloWorld !
Location: ‘ CiiDocuments and Settings),StudentiMy Documentsivisual Studio 2008\Projects w | [Browse, ..]
Salution Name:; ‘ Helloworld | [¥] Create directary for solution

Figure 3-1

Chapter 3: C# Language Foundations

4. Click OK. Figure 3-2 shows the skeleton of the console application.

2% HelloWorld - Microsoft Visual Studio
Refactor Project Buld Debug Dats Tools Test Apalyze Window Help

File Edit Wew
5 | ¥ Ba - 2L b Debug =
EEEE T

Progrann.cs Start Page

(R

I
5
o

r

[Jmnicie3 uowos o

f¢Helloworld Program v || 5¥Main(string[] args
Helloworld. P 4% Main(st

|><oq|oalz;§_i:

EINES

Eusing JIystem;

using 3ystem.Collections.Generic;
\‘using System.Ling;

using 3Iystem. Text;

El namespace HelloWorld
{
class Program

{

static void Main(string[] =srgs)

%

L1l Col 10 ch10 IMNS

Ready

Figure 3-2

5. Type the following highlighted code into the Main () method as shown:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld

{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine () ;
return;
}
}
}

6. To debug the application and see how it looks like when executed, press F5 in Visual Studio
2008. Figure 3-3 shows the output in the Console window.

63

Part |: C# Fundamentals

le: //IC:Documents and Settings/Student/My Documents/Visual !

Hello, world! This is my first CH program?

Figure 3-3

To return to Visual Studio 2008, press the Enter key and the console window will disappear.

Using the C# Compiler (csc.exe)

Besides using Visual Studio 2008 to compile and run the application, you can build the application
using Visual Studio 2008 and use the C# compiler (csc . exe) to manually compile and then run the
application. This option is useful for large projects where you have a group of programmers working on
different sections of the application.

Alternatively, if you prefer to code a C# program using a text editor, you can use the Notepad
(Programs = Accessories = Notepad) application included in every Windows computer. (Be aware,
however, that using Notepad does not give you access to the IntelliSense feature, which is available only
in Visual Studio 2008.)

1. Using Notepad, create a text file, name it Hel1loWor1d.cs, and save it into a folder on your hard
disk, say in C:\C#.

2. Populate HelloWorld.cs with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine () ;
return;

}

64

Chapter 3: C# Language Foundations

3. Use the command-line C# compiler (csc . exe) that ships with Visual Studio 2008 to compile the
program. The easiest way to invoke csc. exe is to use the Visual Studio 2008 command prompt,
which has all the path references added for you.

4. Tolaunch the Visual Studio 2008 command prompt, select Start => Programs = Microsoft Visual
Studio 2008 = Visual Studio Tools = Visual Studio 2008 Command Prompt.

5. Inthe command prompt, change to the directory containing the C# program (C:\C# for this
example), and type the following command (see Figure 3-4):

C:\C#>csc HelloWorld.cs

isual Studio 2008 Command Prompt
etting environment for using Microscoft Uisuwal Studic 2608 x86 tools.

:SProgram Files“Microsoft Uisual Studio 2.85UCkcd C:NCH

¢ HelloWorld.c
(R> Uisual cu 2888 Compilewr version 3.5.21822_8
R> .H Framework version 3.5
Copyrig lt {C> Microsoft Corporation. All rights reserved.

IC:CH>

Figure 3-4

6. Once the program is compiled, you will find the HellowWor1d. exe executable in the same
directory (C:\C#). Type the following to execute the application (see Figure 3-5):

C:\C#>HelloWorld

* Visual Studio 2008 Command Prompt - HelloWorld
etting environment for using Microsoft Visual Studio 28088 xB6 tools.
IC:~Program Files“Microsoft Uisual Studio ?.8~UC>cd C:~Ci
c HelloWorld.cs
(R> Uisual CH# 2888 Compiler version 3.5.21822.8

-MEI Framework version 3.
Copyllght {C> Microsoft Corporation. All rights reserved.

IC:Ch>HellolWor1d

ello. world? This is my first CH# program?

Figure 3-5

7. Toreturn to the command prompt, press Enter.

65

Part |: C# Fundamentals

Dissecting the Program

Now that you have written your first C# program, let’s take some time to dissect it and understand some
of the important parts.

The first few lines specify the various namespaces:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

As mentioned in Chapter 1, all the class libraries in the .NET Framework are grouped using namespaces.
In C#, you use the using keyword to indicate that you will be using library classes from the specified
namespace. In this example, you use the Console class’s WriteLine () method to write a message to the
console. The Console class belongs to the System namespace, and if you do not have the using

System statement at the top of the program, you need to specify the fully qualified name for console,
which is:

System.Console.WriteLine("Hello, world! This is my first C# program!");

The next keyword of interest is namespace. It allows you to assign a namespace to your class, which is
HelloWorld in this example:

namespace HelloWorld
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine() ;
return;

}

Next, you define the class name as Program:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine() ;
return;

All C# code must be contained within a class. Because this class is within the HelloWorld namespace, its
fully qualified name is HelloWorld.Program.

66

Chapter 3: C# Language Foundations

Classes and objects are discussed in detail in Chapter 4.
Within the Program class, you have the Main () method:

class Program
{
static void Main(string[] args)
{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine () ;
return;

}

Every C# program must have an entry point, which in this case is Main (). An entry point is the method
that is first executed when an application starts up. The static keyword indicates that this method
can be called without creating an instance of the class.

Chapters 4 and 5 provide more information about object-oriented programming.

Unlike languages such as VB.NET in which a method can be either a function or a subroutine (a function
returns a value; a subroutine does not), C# only supports functions. If a function does not return a result,
you simply prefix the function name with the void keyword; otherwise, you indicate the return type by
specifying its type.

You will find more about functions in Chapter 4.
Finally, you write the statements within the Main () method:

static void Main(string[] args)

{
Console.WriteLine("Hello, world! This is my first C# program!");
Console.ReadLine() ;
return;

}

The writeLine () method from the Console class writes a string to the command prompt. Notice that
in C# you end each statement with a semicolon (;), which indicates to the compiler the end of each
statement. Hence, you can rewrite the writeLine () statement like this:

Console.WriteLine(
"Hello, world! This is my first C# program!");

This is useful when you have a long statement and need to format it to fit into multiple lines for ease
of reading.

The use of the ReadLine () statement is to accept inputs from the user. The statement is used here
mainly to keep the command window visible. If you run this program in Visual Studio 2008 without
using the ReadLine () method, the program will print the hello world statement and then close the
window immediately.

67

Part |: C# Fundamentals

Passing Arguments to Main()

If you run a program in the command prompt as described earlier in the chapter, you can pass in
arguments to the application. For example, you might want the program to display your name. To do so,
pass in the name like this:

C:\C#>HelloWorld Wei-Meng Lee

The argument passed into the program can be accessed by the args parameter (a string array) defined
in the Main () method. Hence, you need to modify the program by displaying the values contained in
the args string array, like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld
{
class Program
{
static void Main(string[] args)
{

Console.Write("Hello, ");
for (int 1 = 0; i < args.Length; i++)

Console.Write("{0} ",args[i]);
Console.Write("! This is my first C# program!");

Console.ReadLine () ;
return;

}

Chapter 8 covers string arrays in depth.

Language Syntax

C# is a case-sensitive language that is highly expressive yet simple to learn and use. The following
sections describe the various syntax of the language.

Keywords

In any programming language, there is always a list of identifiers that have special meanings to the
compiler. These identifiers are known as keywords, and you should not use them as identifiers in your
program.

68

Chapter 3: C# Language Foundations

Here’s the list of keywords in C# 2008:

abstract event new struct
as explicit null switch
base extern object this
bool false operator throw
break finally out true
byte fixed override try
case float params typeof
catch for private uint
char foreach protected ulong
checked goto public unchecked
class if readonly unsafe
const implicit ref ushort
continue in return using
decimal int sbyte virtual
default interface sealed volatile
delegate internal short void

do is sizeof while
double lock stackalloc

else long static

enum namespace string

Variables

In C#, you declare variables using the following format:

datatype identifier;

The following example declares and uses four variables:

class Program

{

static void Main(stringl]

{

args)

//---declare the variables---

int numl;
int num2 = 5;
float num3, num4;

//---assign values to the variables---
numl = 4;
num3 = num4 = 6.2f;

//---print out the values of the variables---
Console.WriteLine("{0} {1} {2} {3}", numl, num2, num3,
Console.ReadLine() ;

return;

numé) ;

69

Part |: C# Fundamentals

Note the following:

QO numl is declared as an int (integer).
num? is declared as an int and assigned a value at the same time.

a
0O num3 and num4 are declared as float (floating point number)
a

You need to declare a variable before you can use it. If not, C3 compiler will flag that as

an error.

0 You can assign multiple variables in the same statement, as is shown in the assignment of

num3 and num4.
This example will print out the following output:
45 6.2 6.2
The following declaration is also allowed:

//---declares both num5 and numé to be float
// and assigns 3.4 to num5---
float num5 = 3.4f, num6;

But this one is not allowed:

//---cannot mix different types in a declaration statement---
int num7, float num8;

The name of the variable cannot be one of the C# keywords. If you absolutely
must use one of the keywords as a variable name, you need to prefix it with the
@ character, as the following example shows:

int @new = 4;
Console.WriteLine (@new) ;

70

Chapter 3: C# Language Foundations

Scope of Variables

The scope of a variable (that is, its visibility and accessibility) that you declare in C# is affected by the
location in which the variable is declared. Consider the following example where a variable num is
declared within the Program class:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld

{
class Program
{
static int num = 7;
static void Main(string[] args)
{
Console.WriteLine("num in Main() is {0}", num); //---7---
HelloWorld.Program.Methodl () ;
Console.ReadLine() ;
return;
}
static private void Methodl ()
{
Console.WriteLine("num in Methodl () is {0}", num); //---7---
}
}
}

Because the num variable is declared in the class, it is visible (that is, global) to all the methods declared
within the class, and you see the following output:

num in Main() 1is 7
num in Methodl () is 7

71

Part |: C# Fundamentals

72

However, if you declare another variable with the same name (num) within Main () and Method1 (),
like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld
{

class Program

{

static int num = 7;

static void Main(string[] args)

{
int num = 5;
Console.WriteLine("num in Main() is {0}", num); //---5---
HelloWorld.Program.Methodl () ;

Console.ReadLine() ;
return;

static private void Methodl ()
{
int num = 10;

Console.WriteLine("num in Methodl () is {0}", num); //---10---

You get a very different output:

num in Main() is 5
num in Methodl () is 10

That’s because the num variables in Main () and Methodl () have effectively hidden the num variable in
the Program class. In this case, the num in the Program class is known as the global variable while the
num variables in Main and Methodl are known as local variables. The num variable in Main () is only
visible within Main (). Likewise, this also applies to the num variable in Method1 ().

What if you need to access the num declared in the Program class? In that case, you just need to specify
its full name:

Console.WriteLine("num in Program is {0}", HelloWorld.Program.num); //---7---

Chapter 3: C# Language Foundations

While a local variable can hide the scope of a global variable, you cannot have two variables with the
same scope and identical names. The following makes it clear:

static void Main(string[] args)
{
int num = 5;
Console.WriteLine("num in Main() is {0}", num); //---5---

int num = 6; //---error: num is already declared---

return;

}
However, two identically named variables in different scope would be legal, as the following shows:

static void Main(string[] args)
{
for (int i = 0; 1 < 5; i++)
{ //---1 1s visible within this loop only---
Console.WriteLine (i) ;
} //---1 goes out of scope here---

for (int 1 = 0; 1 < 3; i++)

{ //---1 is visible within this loop only---
Console.WriteLine(1);

} //---1 goes out of scope here---

Console.ReadLine() ;
return;

}

Here, the variable i appears in two for loops (looping is covered later in this chapter). The scope for
each 1 is restricted to within the loop, so there is no conflict in the scope and this is allowed.

Declaring another variable named i outside the loop or inside it will cause a compilation error as the
following example shows:

static void Main(string[] args)
{

int 1 = 4; //---error---

for (int 1 = 0; 1 < 5; i++)

{
int 1 = 6; //---error---
Console.WriteLine(1);
}
for (int 1 = 0; 1 < 3; 1i++)
{

Console.WriteLine (i) ;

}

Console.ReadLine() ;
return;

73

Pa

rt I: C# Fundamentals

This code results in an error: “A local variable named ‘i” cannot be declared in this scope because it
would give a different meaning to ‘i’, which is already used in a “parent or current’ scope to denote
something else.”

Constants

To declare a constant in C#, you use the const keyword, like this:

//---declared the PI constant---
const float PI=3.14f;

You cannot change the value of a constant (during runtime) once it has been declared and assigned
a value.

As a good programming practice, you should always use constants whenever you use values that do not
change during runtime.

Comments

In C#, you can insert comments into your program using either // or a mirrored pair of /* and */.
The following example shows how to insert comments into your program using //:

//---declare the variables---

int numl; //---numl variable---
int num2 = 5; //---num2 variable---
float num3, num4; //---num3 and num4 variables---

And here’s an example of how to insert a multi-line block of comments into your program:

/*

Declares the following variables:
numl, num2, num3, numé

*/

int numl;

int num2 = 5;

float num3, num4;

In general, use the // for short, single-line comments and /* */ for multi-line comments.

XML Documentation

74

One of the very cool features available in Visual Studio 2008 is the support for XML documentation.

This feature enables you to insert comments into your code using XML elements and then generate a
separate XML file containing all the documentation. You can then convert the XML file into professional-
looking documentation for your code.

Chapter 3: C# Language Foundations

To insert an XML comment into your code, position the cursor before a class or method name and type
three / characters (left window in Figure 3-6). The XML template is automatically inserted for you
(see the right window in Figure 3-6).

2% HelloWorld - Microsoft Visual Studio % HelloWorld - Microsoft Yisual Studio

File Edit ew Refactor Project Build Debug Data It File Edt Wiew PRefactor Project Build Debug Data Tools Tes
F-a-Ehd dhnlo-o -5 @G-S0 e %5590 85 b
Search: r Search: -
— il = i
| Program.cs*® | Program.cs*
iﬁi”" }g3uﬂ_n. v|

Eusing 3ystem;

using Systew.Collections.Generic:
\‘using Systewm.Ling;

using System. Text:

E nawespace HelloWorld

i
class Program

{

1xaq|oo_l$x_ lizopdz 3 1aniag E_

static void Main(string[] arg:
{

Console.Write("Hello, "):

for (int 1 = 0; i < args.]

Console.Write("{0} ",

Console,.Write (™! This is @
Console,ReadLine ()
return:

Figure 3-6

|xogao | S o] 1aniag E&.

iE| uélﬁéj Syst.em.;

{

using System.Collections.Generic;
using System.Ling;
“using System.Text;

F namespace HelloWorld

4|

= A7 <ounmary>

- £ </ summar vy

{

Tt

{

class Program

static void Main(string[] args)

Console.Write("Hello, ");
for (int i = 0; 1 < args.Length;

Console.Write ("{0} ", args[:

Console.Weite (™! This iz my fir:
Console.ReadLine () ;
return;

The following code shows the XML documentation template created for the Program class, the Main ()
method, and the AddNumbers () method (you need to fill in the description for each element):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace HelloWorld
{

/// <summary>

/// This is my first C# program.

/// </summary>
class Program

{
/// <summary>
/// The entry point for the program
/// </summary>
/// <param name="args">Argument (s)

from the

command line</param>

(continued)

75

Part |: C# Fundamentals

76

(continued)
static void Main(string[] args)

{
Console.Write("Hello, ");
for (int i = 0; i < args.Length; i++)

Console.Write("{0} ", argsl[i]);
Console.Write("! This is my first C# program!");
Console.ReadLine() ;
return;

}

/// <summary>
/// Adds two numbers and returns the result
/// </summary>
/// <param name="numl">Number 1</param>
/// <param name="num2">Number 2</param>
/// <returns>Sum of Number 1 and 2</returns>
private int AddNumbers (int numl, int num2)
{
//---implementations here---

}

To enable generation of the XML document containing the XML comments, right-click the project name
in Solution Explorer and select Properties.

You can also generate the XML documentation file using the csc.exe compiler at
the command prompt using the /doc option:

csc Program.cs /doc:HelloWorld.xml

In the Build tab, tick the XML Documentation File checkbox and use the default path suggested:
bin\Debug\HelloWorld.XML (see Figure 3-7).

Chapter 3: C# Language Foundations

2% HelloWorld - Microsoft Visual Studio

File Edit Miew Project Buld Debug Data Tools Test Window Help

- -l # S 9-- S -5 | b Debug - Any CPU - [# member
& Search: -
- — = in
I_'lﬂ‘! HelloWorld™ | program.cs | v X
wr
= Application ‘ . =
g‘ |7 Configuration; |Active (Debug) b Platform: | Ackive (Any CPUY V|
= Build*
i S
[Nr General — — — **
}3&-‘ Build Events
5
g Conditional compilation symbals: | |
g Debu
5 g Define DEBUG constant
Resources Define TRACE constant
e Platfarm target: |_Any cpPU v
[7] Allows unsafe code
Sektings

[] Optimize cods
Reference Paths Errors and warnings -

Sigring wWarning level: 4 B

Security SUppress warnings: |

Publish Treak warnings as errors —
e @ Mone
() Specific warnings:
[OF-1]

Oukpuk

Output path: |h\n\Dehugl | [Browse...

EML documentation File:

Generate serialization assembly: miv

Figure 3-7
Build the project by right-clicking the project name in Solution Explorer and selecting Build.

You will now find the HellowWorld.xml file (see Figure 3-8) located in the bin\Debug\ folder of the
project.

77

Part |: C# Fundamentals

AC#/HelloWorld/HelloWorld/bin/Debug/HelloWorld. XML - Windows Internet Explorer

Lo T |2 cicribelaworldiHeloworldibin|DebugiHeloiword. i ¥ [#2] %] [sooal |2
s

n ‘. p— :] »
b A 4 |@c:xc#;Heunwmd;He||anr|d;hm;Denug;HeunWDrm.><ML[| : v B =~ |ihpage - (0 Tooks +

<?xml version="1.0" ?=
- <doc
- <assembly>
<name=HelloWorld </name=
</assembly=
- <members=>
- <member name="T:HelloWorld.Program"=>
<summary >This is my first C# program.</summary =
<f/memberz
- <member name="M:HelloWorld.Program.Main(System.String[])">
<summary >The entry point for the program</summary =
<param name="args">Argument(s) from the command line</param=
<f/memberz
- <member name="M:HelloWorld.Program.AddNumbers(System.Int32, System.Int32)">
<summary >Adds two numbers and returns the result</summary >
<param name="num1">Number 1</param=
<param name="num2">Number 2</param=
<returns=Sum of Number 1 and 2</returns=
<f/member=
</members=
</doc>

Done :ﬂ My Computer '-"".‘"\IDDDfo >

Figure 3-8

You can now convert this XML file into a MSDN-style documentation file. Appendix C shows you how
to use the SandCastle tool to do this.

Data Types

C# is a strongly typed language and as such all variables and objects must have a declared data type. The
data type can be one of the following:

Q Value

Q Reference

Q User-defined
a

Anonymous

You'll find more information about user-defined types in Chapter 4 and about anonymous types in
Chapter 14.

78

Chapter 3: C# Language Foundations

Value Types

A value type variable contains the data that it is assigned. For example, when you declare an int
(integer) variable and assign a value to it, the variable directly contains that value. And when you assign
a value type variable to another, you make a copy of it. The following example makes this clear:

class Program
{
static void Main(string[] args)
{
int numl, num2;
numl = 5;
num2 = numl;
Console.WriteLine("numl is {0}. num2 is {1}", numl, num2);

num2 = 3;

Console.WriteLine("numl is {0}. num2 is {1}", numl, num2);
Console.ReadLine() ;

return;

The output of this program is:

numl is 5. num2 is 5
numl is 5. num2 is 3

As you can observe, num? is initially assigned a value of numl (which is 5). When num2 is later modified
to become 3, the value of numl remains unchanged (it is still 5). This proves that the num1 and num2 each
contains a copy of its own value.

Following is another example of value type. Point is a structure that represents an ordered pair of integer
x and y coordinates that defines a point in a two-dimensional plane (structure is another example of
value types). The Point class is found in the System. Drawing namespace and hence to test the
following statements you need to import the System.Drawing namespace.

Chapter 4 discusses structures in more detail.

Point pointA, pointB;

pointA = new Point (3, 4);

pointB = pointA;

Console.WriteLine("point A is {0}. pointB is {1}",
pointA.ToString (), pointB.ToString());

pointB.X = 5;

pointB.Y = 6;

Console.WriteLine("point A is {0}. pointB is {1}",
pointA.ToString (), pointB.ToString());

79

Part |: C# Fundamentals

These statements yield the following output:

point A is {X=3,Y=4}. pointB is {X=3,Y=4}
point A is {X=3,Y=4}. pointB is {X=5,Y=6}

As in the earlier example, changing the value of the pointB does not change the value of pointa.

Predefined Value Types

The .NET Framework ships with a set of predefined C# and .NET value types. These are described in the
following table.

.NET Framework

C# Type Type Bits Range

bool System.Boolean True or false

byte System.Byte 8 Unsigned 8-bit integer values from 0 to 255

sbyte System. SByte 8 Signed 8-bit integer values from —128
to 127

char System.Char 16 16-bit Unicode character from U+0000 to
U+ffff

decimal System.Decimal 128 Signed 128-bit number from +1.0 X 10—28
to £7.9 X 1028

double System.Double 64 Signed 64-bit floating point number;
approximately from +5.0 X 10—324 to
+1.7 X 10308

float System.Single 32 Signed 32-bit floating point number;
approximately from +1.5 X 10—45 to
+3.4 X 1038

int System.Int32 32 Signed 32-bit integer number from
-2,147,483,648 to 2,147,483,647

uint System.UInt32 32 Unsigned 32-bit integer number from 0 to
4,294,967,295

long System.Int64 64 Signed 64-bit integer number from

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

ulong System.UInt64 64 Unsigned 64-bit integer number from 0 to
18,446,744,073,709,551,615

short System.Intl1616 Signed 16-bit integer number from -32,768
to 32,767

ushort System.UIntl6 16 Unsigned 16-bit integer number from 0 to
65,535

80

Chapter 3: C# Language Foundations

To declare a variable of a predefined type, you can either use the C# type or the NET Framework type.
For example, to declare an integer variable, you can either use the int or System. Int32 type, as
shown here:

int numl = 5;

//-=--0r---

System.Int32 num2 = 5;
To get the type of a variable, use the GetType () method:

Console.WriteLine (numl.GetType()); //---System.Int32---

To get the .NET equivalent of a C# type, use the typeof () method. For example, to learn the NET type
equivalent of C#’s f1loat type, you can use the following statements:

Type t = typeof(float);
Console.WriteLine(t.ToString()); //---System.Single---

To get the size of a type, use the sizeof () method:
Console.WriteLine("{0} bytes", sizeof(int)); //---4 bytes---

In C#, all noninteger numbers are always treated as a double. And so if you want to assign a noninteger
number like 3.99 to a £1oat variable, you need to append it with the F (or £) suffix, like this:

float price = 3.99F;

If you don’t do this, the compiler will issue an error message: “Literal of type double cannot be implicitly
converted to type ‘float’; use an ‘F’ suffix to create a literal of this type.”

Likewise, to assign a noninteger number to a decimal variable, you need to use the M suffix:

decimal d = 4.56M; //---suffix M to convert to decimal---
float £ = 1.23F; //---suffix F to convert to float---

You can also assign integer values using hexadecimal representation. Simply prefix the hexadecimal
number with 0x, like this:

int numl = OxA;
Console.WriteLine (numl); //---10---

Nullable Type

All value types in C# have a default value when they are declared. For example, the following
declaration declares a Boolean and an int variable:

Boolean married; //---default value is false---
int age; //--- default value is 0---

81

Part |: C# Fundamentals

To learn the default value of a value type, use the default keyword, like this:

object x;

x = default(int);
Console.WriteLine(x); //---0---

x = default (bool) ;
Console.WriteLine(x); //---false---

However, C# forbids you from using a variable if you do not explicitly initialize it. The following
statements, for instance, cause the compiler to complain:

Boolean married;
//---error: Use of unassigned local variable 'married'---
Console.WriteLine (married) ;

To use the variable, you first need to initialize it with a value:

Boolean married = false;
Console.WriteLine (married); //---now OK---

Now married has a default value of false. There are times, though, when you do not know the marital
status of a person, and the variable should be neither true nor false. In C#, you can declare value types

to be nullable, meaning that they do not yet have a value.

To make the married variable nullable, the above declaration can be rewritten in two different ways
(all are equivalent):

Boolean? married = null;
//-=-or---

Nullable<Boolean> married = null;

The syntax T2 (example, Boolean?) is shorthand for Nullable<T> (example, Nullable<Boolean>),
where T is a type.

You read this statement as “Nullable of Boolean.” The <> represents a generic type and will be discussed
in more detail in Chapter 9.

In this case, married can take one of the three values: true, false, or null.
The following code snippet prints out “Not Married”:

Boolean? married = null;

if (married == true)
Console.WriteLine("Married") ;
else
Console.WriteLine("Not Married"); //---this will be printed---

82

Chapter 3: C# Language Foundations

That’s because the if statement evaluates to false (married is currently null), so the else block executes.
A much better way to check would be to use the following snippet:

if (married == true)
Console.WriteLine ("Married") ;
else if (married==false)
Console.WriteLine ("Not Married");
else
Console.WriteLine ("Not Sure"); //---this will be printed---

Once a nullable type variable is set to a value, you can set it back to nothing by using nul1l, as the
following example shows:

married = true; //---set it to True---
married null; //---reset it back to nothing---

To check the value of a nullable variable, use the HasValue property, like this:

if (married.HasValue)

{
//---this line will be executed only
// if married is either true or false---
Console.WriteLine (married.Value) ;

You can also use the == operator to test against null, like the following:

if (married == null)

{
//---causes a runtime error---
Console.WriteLine (married.Value) ;

But this results in an error because attempting to print out the value of a null variable using the value
property causes an exception to be thrown. Hence, always use the Hasvalue property to check a
nullable variable before attempting to print its value.

When dealing with nullable types, you may want to assign a nullable variable to another variable,
like this:

int? numl = null;
int num2 = numl;

In this case, the compiler will complain because num1 is a nullable type while num2 is not (by default,
num?2 cannot take on a null value unless it is declared nullable). To resolve this, you can use the null
coalescing operator (2?). Consider the following example:

int? numl = null;

int num2 = numl ?? 0;
Console.WriteLine (num2); //---0---

83

Part |: C# Fundamentals

In this statement, if num1 is null, 0 will be assigned to num2. If num1 is not null, the value of num1l will
be assigned to num2, as evident in the following few statements:

numl = 5;

num2 = numl ?? 0;
Console.WriteLine(num2); //---5---

Reference Types

For reference types, the variable stores a reference to the data rather than the actual data. Consider the
following:

Button btnl, btn2;
btnl = new Button();
btnl.Text = "OK";

btn2 = btnl;
Console.WriteLine("{0} {1}", btnl.Text, btn2.Text);

btn2.Text = "Cancel";
Console.WriteLine("{0} {1}", btnl.Text, btn2.Text);

Here, you first declare two Button controls — btnl and btn2. btnl’s Text property is set to "OK" and
then btn2 is assigned btnl. The first output will be:

OK OK

When you change btn2’s Text property to "Cancel", you invariably change btnl’s Text property, as
the second output shows:

Cancel Cancel
That’s because btnl and btn2 are both pointing to the same Button object. They both contain a
reference to that object instead of storing the value of the object. The declaration statement (Button
btnl, btn2;)simply creates two variables that contain references to Button objects (in the example
these two variables point to the same object).
To remove the reference to an object in a reference type, simply use the null keyword:

btn2 = null;

When a reference type is set to null, attempting to access its members results in a runtime error.

84

Chapter 3: C# Language Foundations

Value Types versus Reference Types

For any discussion about value types and reference types, it is important to understand
how the NET Framework manages the data in memory.

Basically, the memory is divided into two parts — the stack and the heap. The stack is a
data structure used to store value-type variables. When you create an int variable, the

value is stored on the stack. In addition, any call you make to a function (method) is
added to the top of the stack and removed when the function returns.

In contrast, the heap is used to store reference-type variables. When you create an
instance of a class, the object is allocated on the heap and its address is returned and
stored in a variable located on the stack.

Memory allocation and deallocation on the stack is much faster than on the heap, so if
the size of the data to be stored is small, it’s better to use a value-type variable than
reference-type variable. Conversely, if the size of data is large, it is better to use

a reference-type variable.

C# supports two predefined reference types — object and string — which are described in the

following table.

C# Type

object

string

.NET Framework Type Descriptions

System.Object Root type from which all types in the CTS
(Common Type System) derive

System.String Unicode character string

Chapter 4 explores the System. Object type, and Chapter 8 covers strings in more detail.

Enumerations

You can create your own set of named constants by using enumerations. In C#, you define an
enumeration by using the enum keyword. For example, say that you need a variable to store the day of a
week (Monday, Tuesday, Wednesday, and so on):

static void Main(string[] args)

{

int day = 1; //---1 to represent Monday---

/...
Console.ReadLine () ;
return;

85

Part |: C# Fundamentals

In this case, rather than use a number to represent the day of a week, it would be better if the user could
choose from a list of possible named values representing the days in a week. The following code example
declares an enumeration called Days that comprises seven names (Sun, Mon, Tue, and so forth). Each
name has a value assigned (Sun is 0, Mon is 1, and so on):

namespace HelloWorld
{
public enum Days

{

Sun = 0,
Mon = 1,
Tue = 2,
Wed = 3,
Thur = 4,
Fri =5,
Sat = 6

}

class Program
{
static void Main(string[] args)
{
Days day = Days.Mon;
Console.WriteLine (day) ; //---Mon---
Console.WriteLine((int) day); //---1---

Console.ReadLine () ;
return;

Instead of representing the day of a week using an int variable, you can create a variable of type Days.
Visual Studio 2008’s IntelliSense automatically displays the list of allowed values in the Days
enumeration (see Figure 3-9).

static woid Main(string[] args)
4
Days day = Days.

Figure 3-9

86

Chapter 3: C# Language Foundations

By default, the first value in an enumerated type is zero. However, you can specify a different initial
value, such as:

public enum Ranking
{
First = 100,
Second = 50,
Third = 25

To print out the value of an enumerated type, you can use the ToString () method to print out its name,
or typecast the enumerated type to int to obtain its value:

Console.WriteLine(day) ; //---Mon---
Console.WriteLine (day.ToString()); //---Mon---
Console.WriteLine((int)day) ; //---1---

For assigning a value to an enumerated type, you can either use the name directly or typecast the value
to the enumerated type:

Days day;

day = (Days)3; //---Wed---
day = Days.Wed; //---Wed---

Arrays

An array is a data structure containing several variables of the same type. For example, you might
have an array of integer values, like this:

int[] nums;
In this case, nums is an array that has yet to contain any elements (of type int). To make nums an array
containing 10 elements, you can instantiate it with the new keyword followed by the type name and then
the size of the array:

nums = new int[10];

The index for each element in the array starts from 0 and ends at n-1 (where n is the size of the array).
To assign a value to each element of the array, you can specify its index as follows:

nums[0] = 0;
nums[1] = 1;
//...

nums[9] = 9;

Arrays are reference types, but array elements can be of any type.

Instead of assigning values to each element in an array individually, you can combine them into one
statement, like this:

int[] nums = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

87

Part |: C# Fundamentals

Arrays can be single-dimensional (which is what you have seen so far), multi-dimensional, or jagged.
You'll find more about arrays in Chapter 13, in the discussion of collections.

Implicit Typing

88

In the previous versions of C#, all variables must be explicitly typed-declared. For example, if you want
to declare a string variable, you have to do the following;:

string str = "Hello World";

In C# 3.0, this is not mandatory — you can use the new var keyword to implicitly declare a variable.
Here’s an example:

var str = "Hello world!";

Here, str is implicitly declared as a string variable. The type of the variable declared is based on the
value that it is initialized with. This method of variable declaration is known as implicit typing. Implicitly
typed variables must be initialized when they are declared. The following statement will not compile:

var str; //---missing initializer---

Also notice that IntelliSense will automatically know the type of the variable declared, as evident in
Figure 3-10.

static wvoid Main(string[] args)
i
var str = "Hello world!":
str.sub

¥ Remove ~
¥ Replace

% Split

W StarksWwith

L3 Substring skring string. Substringfint startIndex, int length) {+ 1 overload{s))
¥ ToCharfrray Retrieves a substring from this instance. The substring starts at & specified characker position and has a specified length.

¥ ToLower

% TolowerInvariant
% ToString

W Tolpper -

Figure 3-10

Exceptions:
Syskem, ArgumentQutOFR.angeException

You can also use implicit typing on arrays. For example, the following statement declares points to be
an array containing two Point objects:

var points = new[] { new Point(l, 2), new Point (3, 4) };

When using implicit typing on arrays, all the members in the array must be of the same type.
The following won’t compile since its members are of different types — string and Boolean:

//---No best type found for implicitly-typed array---
var arr = new[] { "hello", true, "world" };

Implicit typing is useful in cases where you do not know the exact type of data you are manipulating
and want the compiler to determine it for you. Do not confuse the Object type with implicit typing.

Chapter 3: C# Language Foundations

Variables declared as Object types need to be cast during runtime, and IntelliSense does not know their
type at development time. On the other hand, implicitly typed variables are statically typed during
design time, and IntelliSense is capable of providing detailed information about the type. In terms of
performance, an implicitly typed variable is no different from a normal typed variable.

Implicit-typing is very useful when using LINQ queries. Chapter 14 discusses LINQ in more detail.

Type Conversion

C# is a strongly typed language, so when you are assigning values of variables from one type to another,
you must take extra care to ensure that the assignment is compatible. Consider the following statements
where you have two variables — one of type int and another of type short:

int num;
short sNum = 20;

The following statement assigns the value of sNum to num:

num = sNum; //---OK---
This statement works because you're are assigning the value of a type (short) whose range is smaller
than that of the target type (int). In such instances, C# allows the assignment to occur, and that’s known
as implicit conversion.

Converting a value from a smaller range to a bigger range is known as widening,.

The following table shows the implicit conversion between the different built-in types supported by C#.

Convert from (type) To (type)
sbyte short, int, long, float, double, or decimal
byte short, ushort, int, uint, long, ulong, float, double,

or decimal

short int, long, float, double, or decimal

ushort int, uint, long, ulong, float, double, or decimal
int long, float, double, or decimal

uint long, ulong, float, double, or decimal

long float, double, or decimal

char ushort, int, uint, long, ulong, float, double,

or decimal
float double

ulong float, double, or decimal

89

Part |: C# Fundamentals

If you try to assign the value of a type whose range is bigger than the target type, C# will raise an error.
Consider the following example:

num = 5;
sNum = num; //---not allowed---

In this case, num is of type int and it may contain a big number (such as 40,000). When assigning it to

a variable of type short, that could cause a loss of data. To allow the assignment to proceed, C# requires
you to explicitly type-cast (convert) the value to the target type. This process is known as explicit
conversion.

Converting a value from a bigger range to a smaller range is known as narrowing.
Narrowing can result in a loss of data, so be careful when performing
a narrowing operation.

The preceding statement could be made valid when you perform a type casting operation by
prefixing the variable that you want to assign with the target type in parentheses:

num = 5;
sNum = (short) num; //---sNum is now 5---

When performing type casting, you are solely responsible for ensuring that the target variable can
contain the value assigned and that no loss of data will happen. In the following example, the assignment
will cause an overflow, changing the value of num to —25536, which is not the expected value:

By default, Visual Studio 2008 checks statements involving constant assignments for
overflow during compile time. However, this checking is not enforced for statements
whose values cannot be determined at runtime.

int num = 40000;
short sNum;
sNum =(short) num; //--- -25536; no exception is raised ---

To ensure that an exception is thrown during runtime when an overflow occurs, you can use the
checked keyword, which is used to explicitly enable overflow-checking for integral-type arithmetic
operations and conversions:

try
{
sNum = checked((short)num); //---overflow exception---

}

catch (OverflowException ex)

{

Console.WriteLine (ex.Message) ;

}

20

Chapter 3: C# Language Foundations

If you try to initialize a variable with a value exceeding its range, Visual Studio 2008 raises an error at
compile time, as the following shows:

int num = 400000 * 400000;
//---overflows at compile time in checked mode

To turn off the automatic check mode, use the unchecked keyword, like this:

unchecked
{

int num = 400000 * 400000;
}

The compiler will now ignore the error and proceed with the compilation.
Another way to perform conversion is to use the System. Convert class to perform the conversion for

you. The System. Convert class converts the value of a variable from one type into another type. It can
convert a value to one of the following types:

Boolean Intl6 UInt32 Decimal
Char Int32 UInté64 DateTime
SByte Int64 Single String
Byte UIntlé Double

Using an earlier example, you can convert a value to Int16 using the following statement:
sNum = Convert.ToIntl6 (num);

If a number is too big (or too small) to be converted to a particular type, an overflow exception is thrown,
and you need to catch the exception:

int num = 40000;
short sNum;
try
{
sNum = Convert.ToIntlé6 (num); //---overflow exception---
}
catch (OverflowException ex)
{
Console.WriteLine (ex.Message) ;

}

When converting floating point numbers to integer values, you need to be aware of one subtle difference
between type casting and using the Convert class. When you perform a type casting on a floating point

91

Part |: C# Fundamentals

number, it truncates the fractional part, but the Convert class performs numerical rounding for you,
as the following example shows:

int num;
float price = 5.99F;
num = (int)price; //---num is 5---

num = Convert.ToIntl6 (price); //---num is 6---

When converting a string value type to a numerical type, you can use the Parse () method that is
available to all built in numeric types (such as int, float, double, and so on). Here’s how you can
convert the value stored in the str variable into an integer:

string str = "5";
int num = int.Parse(str);

Beware that using the Parse () method may trigger an exception, as demonstrated here:

string str = "5a";
int num = int.Parse(str); //---format exception---

This statement causes a format exception to be raised during runtime because the Parse () method
cannot perform the conversion. A safer way would be to use the Tryparse () method, which will try to
perform the conversion. It returns a false if the conversion fails, or else it returns the converted value in
the out parameter:

int num;

string str = "ba";

if (int.TryParse(str, out num))
Console.WriteLine (num) ;

else
Console.WriteLine("Cannot convert");

Flow Control

In C#, there are two ways to determine the selection of statements for execution:

a if-else statement

a switch statement

if-else Statement

The most common flow-control statement is the i f-else statement. It evaluates a Boolean expression
and uses the result to determine the block of code to execute. Here’s an example:

int num = 9;
if (num % 2 == 0)

Console.WriteLine("{0} is even", num);
else

Console.WriteLine("{0} is odd", num);

92

Chapter 3: C# Language Foundations

In this example, if num modulus 2 equals to 0, the statement “9 is even” is printed; otherwise (else),
“9 is odd” is printed.

Remember to wrap the Boolean expression in a pair of parentheses when using the
if statement.

If you have multiple statements to execute after an if-else expression, enclose them in {3}, like this:

int num = 9;
if (num % 2 == 0)
{

Console.WriteLine("{0} is even", num);
Console.WriteLine ("Print something here...");
}
else
{
Console.WriteLine("{0} is odd", num);
Console.WriteLine ("Print something here...");

Here’s another example of an i f-else statement:

int num = 9;
string str = string.Empty;

if (num % 2 == 0)
str = "even";
else
str = "odd";

You can rewrite these statements using the conditional operator (? :), like this:

str = (num % 2 == 0) ? "even" : "odd";
Console.WriteLine(str); //---odd---

2 : is also known as the ternary operator.
The conditional operator has the following format:
condition ? first_expression : second_expression;

If condition is true, the first expression is evaluated and becomes the result; if false, the second
expression is evaluated and becomes the result.

93

Part |: C# Fundamentals

switch Statement

You can evaluate multiple expressions and conditionally execute blocks of code by using 1 f-else
statements. Consider the following example:

string symbol = "YHOO";
if (symbol == "MSFT")
{
Console.WriteLine(27.96);
}
else if (symbol == "GOOG")
{
Console.WriteLine(437.55);
}
else if (symbol == "YHOO")
{
Console.WriteLine(27.15);
}
else
Console.WriteLine("Stock symbol not recognized");

One problem with this is that multiple i f and else-if conditions make the code unwieldy — and this
gets worse when you have lots of conditions to check. A better way would be to use the switch
keyword:

switch (symbol)
{
case "MSFT": Console.WriteLine(27.96);
break;
case "GOOG": Console.WriteLine(437.55);
break;
case "YHOO": Console.WriteLine(27.15);
break;
default: Console.WriteLine("Stock symbol not recognized");
break;

The switch keyword handles multiple selections and uses the case keyword to match the condition.
Each case statement must contain a unique value and the statement, or statements, that follow it is the
block to execute. Each case statement must end with a break keyword to jump out of the switch block.
The default keyword defines the block that will be executed if none of the preceding conditions is met.

The following example shows multiple statements in a case statement:

string symbol = "MSFT";
switch (symbol)
{
case "MSFT":
Console.Write("Stock price for MSFT: ");
Console.WriteLine(27.96) ;
break;
case "GOOG":

94

Chapter 3: C# Language Foundations

Console
Console

break;

.Write("Stock price for GOOG:

.WriteLine (437.55);

case "YHOO":

Console

Console
break;

default: Console.WriteLine("Stock symbol not recognized");

break;

.Write("Stock price for YHOO:

.WriteLine(27.15);

In C#, fall-throughs are not allowed; that is, each case block of code must include the break keyword
so that execution can be transferred out of the switch block (and not “fall through” the rest of the case

statements). However, there is one exception to this rule — when a case block is empty. Here’s an

example:

string symbol =
switch (symbol)

"INTC";

Console.WriteLine(27.96) ;

Console.WriteLine (437.55);

Console.WriteLine(27.15);

{

case "MSFT":
break;

case "GOOG":
break;

case "INTC":

case "YHOO":
break;

default: Console.WriteLine("Stock symbol not recognized");

break;

The case for "INTC" has no execution block/statement and hence the execution will fall through
into the case for "YH0O", which will incorrectly print the output "27.15". In this case, you need to

insert a break statement after the "INTC" case to prevent the fall-through:

switch (symbol)
{

case "MSFT":

break;

case "GOOG":

break;

Console.WriteLine(27.96);

Console.WriteLine (437.55);

case "INTC":

break;

case "YHOO":

break;

default: Console.WriteLine("Stock symbol not recognized");

break;

Console.WriteLine(27.15);

95

Part |: C# Fundamentals

Looping
Aloop is a statement, or set of statements, repeated for a specified number of times or until some
condition is met. C# supports the following looping constructs:
a for
a foreach

Q whileand do-while

for Loop

The for loop executes a statement (or a block of statements) until a specified expression evaluates to
false. The for loop has the following format:

for (statement; expression; statement(s))
{
//---statement (s)

}
The expression inside the for loop is evaluated first, before the execution of the loop.
Consider the following example:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (int 1 =0; i<9; i++)
{

Console.WriteLine (nums[i].ToString());

}

Here, nums is an integer array with nine members. The initial value of i is 0 and after each iteration it
increments by 1. The loop will continue as long as 1 is less than 9. The loop prints out the numbers from
the array:

W o ~Jo Ul idh WN -

Here’s another example:
string[] words = { "C#","3.0","Programming","is", "fun"};

for (int j = 2; J <= 4; ++3) {
Console.WriteLine (words([j]);

96

Chapter 3: C# Language Foundations

This code prints the strings in the words array, from index 2 through 4. The output is:
Programming
is
fun
You can also omit statements and expressions inside the for loop, as the following example illustrates:
for (; ;)

{

Console.Write("*");

In this case, the for loop prints out a series of *s continuously (infinite loop).

Nested for Loop

It is common to nest two or more for loops within one another. The following example prints out the
times table from 1 to 10:

for (int 1 = 1; 1 <= 10; i++)

{
Console.WriteLine("Times table for {0}", 1i);
Console.WritelLine("=================");
for (int j = 1; j <= 10; J++)
{
Console.WriteLine ("{0} x {1} = {2}", i, J, 1i*3j);
}
}

Figure 3-11 shows the output.

KK H KKK KK KX
wunownonnnn

e -
x 2 =
M=
34 =
x5 =
x b =
x 7=
x 8 =
X
x 1

KKK KK KKK KX

Figure 3-11
97

Part |: C# Fundamentals

Here, one for loop is nested within another for loop. The first pass of the outer loop (represented by i
in this example) triggers the inner loop (represented by j). The inner loop will execute to completion
and then the outer loop will move to the second pass, which triggers the inner loop again. This repeats
until the outer loop has finished executing.

foreach

98

One common use for the for loop is to iterate through a series of objects in a collection. In C# there is
another looping construct that is very useful for just this purpose — the foreach statement, which
iterates over each element in a collection. Take a look at an example:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
foreach (int i in nums)
{

Console.WriteLine(1i);

}

This code block prints out all the numbers in the nums array (from 1 to 9). The value of i takes on
the value of each individual member of the array during each iteration. However, you cannot change the
value of i within the loop, as the following example demonstrates:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
foreach (int 1 in nums)

{
i += 4; //---error: cannot change the value of i---
Console.WriteLine(1i);

}
Here is another example of the use of the foreach loop:

string[] words = { "C#", "3.0", "Programming", "is", "fun" };
foreach (string w in words)
{

Console.WriteLine (w) ;

}
This code block prints out:

C#

3.0
Programming
is

fun

Chapter 3: C# Language Foundations

while and do-while Loops

In addition to for and foreach statements, you can use a while statement to execute a block of code
repeatedly. The while statement executes a code block until the specified condition is false. Here’s
an example:

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int 1 = 0;
while (i < 9)
{
Console.WriteLine (nums[i++]);

}

This code iterates through all the elements (from index 0 to 8) in the nums array and prints out each
number to the console window.

The while statement checks the condition before executing the block of code. To execute the code at least
once before evaluating the condition, use the do-while statement. It executes its code and then evaluates
the condition specified by the while keyword, as the following example shows:

string reply;

do

{
Console.WriteLine("Are you sure you want to quit? [y/n]l");
reply = Console.ReadLine();

} while (reply != "y");

In this code, you first print the message on the console and then wait for the user to enter a string. If the
string entered is not v, the loop continues. It will exit when the user enters y.

Exiting from a Loop

To break out of a loop prematurely (before the exit condition is met), you can use one of the following
keywords:

U break

] return

a throw
a goto
break

The break keyword allows you to break out of a loop prematurely:

int counter = 0;
do
{

Console.WriteLine (counter++) ;

//---exits the loop when counter is more than 100
if (counter > 100) break;

} while (true);

29

Part |: C# Fundamentals

In this example, you increment the value of counter in an infinite do-while loop. To break out of the
loop, you use a if statement to check the value of counter. If the value exceeds 100, you use the break
keyword to exit the do-while loop.

You can also use the break keyword in while, for, and foreach loops.

return

The return keyword allows you to terminate the execution of a method and return control to the calling
method. When you use it within a loop, it will also exit from the loop. In the following example, the
Findword () function searches for a specified word (“car”) inside a given array. As soon as a match is
found, it exits from the loop and returns control to the calling method:

class Program
{
static string FindWord(string[] arr, string word)
{
foreach (string w in arr)
{
//---if word is found, exit the loop and return back to the
// calling function---
if (w.StartsWith(word))
return w;
}
return string.Empty;
}

static void Main(string[] args)
{

string[] words = {

"-online", "4u", "adipex", "advicer", "baccarrat", "blackjack",
"bllogspot", "booker", "byob", "car-rental-e-site",
"car-rentals-e-site", "carisoprodol", "casino", "casinos",
"chatroom", "cialis", "coolcoolhu", "coolhu", "credit-card-debt",
"credit-report-4u"

Y

Console.WriteLine (FindWord (words, "car")); //---car-rental-e-site---

throw

The throw keyword is usually used with the try-catch-finally statements to throw an exception.
However, you can also use it to exit a loop prematurely. Consider the following block of code that
contains the Sums () function to perform some addition and division on an array:

class Program
{
static double Sums (int[] nums, int num)
{
double sum = 0;
foreach (double n in nums)

100

Chapter 3: C# Language Foundations

if (n == 0)
throw new Exception("Nums contains zero!");
sum += num / n;

}
return sum;

}

static void Main(string[] args)

{
int[] nums = { 1, 2, 3, 4, 0, 6, 7, 8, 9 };
try
{

Console.WriteLine (Sums (nums, 2));
}
catch (Exception e)

{
Console.WriteLine (e.Message) ;

When the foreach loop reaches the fifth element of the array (0), it throws an exception and exits the
loop. The exception is then caught by the try-catch loop in the Main () method.

goto

The goto keyword transfers program control directly to a labeled statement. Using goto is not
considered a best practice because it makes your program hard to read. Still, you want to be aware of
what it does, so the following example shows its use:

string[] words = {

"-online", "4u", "adipex", "advicer", "baccarrat", "blackjack",
"bllogspot", "booker", "byob", "car-rental-e-site",
"car-rentals-e-site", "carisoprodol", "casino", "casinos",
"chatroom", "cialis", "coolcoolhu", "coolhu", "credit-card-debt",

"credit-report-4u"

Y

foreach (string word in words)

{

if (word == "casino")
goto Found;
}
goto Resume;

Found:
Console.WriteLine ("Word found!");

Resume:
//---other statements here---

101

Part |: C# Fundamentals

In this example, if the word casino is found in the words array, control is transferred to the label named
Found: and execution is continued from there. If the word is not found, control is transferred to the label
named Resume:.

Skipping an lteration

To skip to the next iteration in the loop, you can use the continue keyword. Consider the following
block of code:

for (int 1 = 0; 1 < 9; 1i++)
{
if (1 %2 == 0)
{
//---print i if it is even---
Console.WriteLine (1) ;
continue;

}
//---print this when i is odd---
Console.WriteLine ("******xm) .
}
When i is an even number, this code block prints out the number and skips to the next number. Here’s
the result:
* k ok ok kK
* %k k k% %

*kkkkk

*kkkkk

Operators

C# comes with a large set of operators that allows you to specify the operation to perform in an
expression. These operators can be broadly classified into the following categories:

O Assignment

QO Relational

O Logical (also known as conditional)

Q

Mathematical

102

Chapter 3: C# Language Foundations

Assignment Operators

You've already seen the use of the assignment operator (=). It assigns the result of the expression on its
left to the variable on its right:

string str = "Hello, world!"; //---str is now "Hello, world!"---
int numl = 5;
int result = numl * 6; //---result is now 30---

You can also assign a value to a variable during declaration time. However, if you are declaring multiple
variables on the same line, only the variable that has the equal operator is assigned a value, as shown in
the following example:

int numl, num2, num3 = 5; //---numl and num2 are unassigned; num3 is 5---
int i, j =5, k; //---1 and k are unassigned; j is 5---

You can also use multiple assignment operators on the same line by assigning the value of one variable
to two or more variables:

numl = num2 = num3;

Console.WriteLine(numl); //---5---
Console.WriteLine (num2); //---5---
Console.WriteLine (num3); //---5---

If each variable has a unique value, it has to have its own line:
int numl = 4

int num2 = 3
int num3 = 5

Self-Assignment Operators

A common task in programming is to change the value of a variable and then reassign it to itself again.
For example, you could use the following code to increase the salary of an employee:

double salary = 5000;
salary = salary + 1000; //---salary is now 6000---

Similarly, to decrease the salary, you can use the following:

double salary = 5000;
salary = salary - 1000; //---salary is now 4000---

To halve the salary, you can use the following;:

double salary = 5000;
salary = salary / 2; //---salary is now 2500---

To double his pay, you can use the following:

double salary = 5000;
salary = salary * 2; //---salary is now 10000---

103

Part |: C# Fundamentals

All these statements can be rewritten as follows using self-assignment operators:

salary += 1000; //---same as salary = salary + 1000---
salary -= 1000; //---same as salary = salary - 1000---
salary /= 2; //---same as salary = salary / 2---
salary *= 2; //---same as salary = salary * 2---

A self-assignment operator alters its own value before assigning the altered value back to itself. In this
example, +=, -=, /=, and *= are all self-assignment operators.

You can also use the modulus self-assignment operator like this:

int num = 5;
num %= 2; //---num is now 1---

Prefix and Postfix Operators

The previous section described the use of the self-assignment operators. For example, to increase the
value of a variable by 1, you would write the statement as follows:

int num = 5;
num += 1; //---num is now 6---

In C#, you can use the prefix or postfix operator to increment/decrement the value of a variable by 1.
The preceding statement could be rewritten using the prefix operator like this:

++num;
Alternatively, it could also be rewritten using the postfix operator like this:
num++ ;
To decrement a variable, you can use either the prefix or postfix operator, like this:
--num;
//-=-0or---

num--;

So what is the difference between the prefix and postfix operators? The following example makes it
clear:

int numl = 5;
int num2 = 5;
int result;

result = numl++;
Console.WriteLine(numl); //---6---
Console.WriteLine(result); //---5---

result = ++num2;

Console.WriteLine(num2); //---6---
Console.WriteLine(result); //---6---

104

Chapter 3: C# Language Foundations

As you can see, if you use the postfix operator (numl++), the value of numl is assigned to result before
the value of num1 is incremented by1. In contrast, the prefix operator (++num2) first increments the value
of num2 by 1 and then assigns the new value of num2 (which is now 6) to result.

Here’s another example:
int numl
int num2

int resu

result =

= 5;
= 5;
1t;

numl++ + ++num?2;

Console.WriteLine (numl) ;
Console.WriteLine (num2) ;
Console.WriteLine(result); //---11---

In this case, both numl and num2 are initially 5. Because a postfix operator is used on numl, its initial

/)6~
//==-6---

value of 5 is used for adding. And because num2 uses the prefix operator, its value is incremented before
adding, hence the value 6 is used for adding. This adds up to 11 (5 + 6). After the first statement, both

numl and num2 would have

a value of 6.

Relational Operators

You use relational operators to compare two values and the result of the comparison is a Boolean
value — true or false. The following table lists all of the relational operators available in C#.

Operator

Description

Equal

Not equal

Greater than

Greater than or equal to
Lesser than

Lesser than or equal to

The following statements compare the value of num with the numeric 5 using the various relational

operators:

int num
Console.
Console.
Console
Console.
Console.
Console.

=5;

WriteLine (num =
WriteLine (num !
.WriteLine

(

(

(num
WriteLine (num
WriteLine (num
WriteLine (num

5); //---True---
5); //---False---
); //---False---
5); //---True---
); //---False---
5); //---True---

105

Part |: C# Fundamentals

A common mistake with the equal relational operator is omitting the second = sign. For example, the
following statement prints out the numeric 5 instead of True:

Console.WriteLine(num = 5);
A single = is the assignment operator.

C programmers often make the following mistake of using a single = for testing equality of two
numbers:

if (num = 5) //---use == for testing equality---

{

Console.WriteLine("num is 5");

}

Fortunately, the C# compiler will check for this mistake and issue a “Cannot implicitly convert type ‘int’
to ‘bool”” error.

Logical Operators

C# supports the use of logical operators so that you can evaluate multiple expressions. The following
table lists the logical operators supported in C#.

Operator Description
&& And

| Or

! Not

For example, consider the following code example:
if (age < 12 || height < 120)

Console.WriteLine("Student price applies");

}

In this case, student price applies if either the age is less than 12, or the height is less than 120cm. As long
as at least one of the conditions evaluates to true, the statement is true. Following is the truth table for
the Or (| |) operator.

Operand A Operand B Result
false false false
false true true
true false true
true true true

106

Chapter 3: C# Language Foundations

However, if the condition is changed such that student price applies only if a person is less than 12 years
old and with height less than 120cm, the statement would be rewritten as:

if (age < 12 && height < 120)
{
Console.WriteLine("Student price applies");

}

The truth table for the And (&&) operator follows.

Operand A Operand B Result

false false false
false true false
true false false
true true true

The Not operator (!) negates the result of an expression. For example, if student price does not apply to
those more than 12 years old, you could write the expression like this:

if (! (age <= 12))
Console.WriteLine ("Student price does not apply");

Following is the truth table for the Not operator.

Operand A Result

false true

true false

Short-Circuit Evaluation

C# uses short-circuiting when evaluating logical operators. In short-circuiting, the second argument in
a condition is evaluated only when the first argument is not sufficient to determine the value of the
entire condition. Consider the following example:

int div = 0;
int num = 5;
if ((div == 0) || (num / div == 1))
{
Console.WriteLine(num); //---5---

}

Here the first expression evaluates to true, so there is no need to evaluate the second expression
(because an Or expression evaluates to true as long as at least one expression evaluates to true).

The second expression, if evaluated, will result in a division-by-zero error. In this case, it won’t, and the
number 5 is printed.

107

Part |: C# Fundamentals

If you reverse the placement of the expressions, as in the following example, a division-by-zero error
occurs:

if ((num / div == 1) || (div == 0))
{
Console.WriteLine (num) ;

}

Short-circuiting also applies to the && operator — if the first expression evaluates to false, the second
expression will not be evaluated because the final evaluation is already known.

Mathematical Operators

C# supports five mathematical operators, shown in the following table.

Operator Description
+ Addition

- Subtraction

/ Division

* Multiplication
% Modulus

One interesting thing about the division operator (/) is that when you divide two integers, the fractional
part is discarded:

int numl 6;

int num2 = 4;

double result = numl / num2;
Console.WriteLine(result); //---1---

Here both num1 and num2 are integers and hence after the division result only contains the integer
portion of the division. To divide correctly, one of the operands must be a noninteger, as the following
shows:

int numl = 6;
double num2 = 4;

double result = numl / num2;
Console.WriteLine(result); //---1.5---

Alternatively, you can use type casting to force one of the operands to be of type double so that you can
divide correctly:

int numl = 6;
int num2 = 4;
double result = (double) numl / num2;

Console.WriteLine(result); //---1.5---

108

Chapter 3: C# Language Foundations

The modulus operator (%) returns the reminder of a division:

int numl 6;

int num2 4;

int remainder = numl % num2;
Console.WriteLine(remainder); //---2---

The % operator is commonly used for testing whether a number is odd or even, like this:

if (numl % 2 == 0)
Console.WriteLine("Even") ;
else
Console.WriteLine("0dd") ;

Operator Precedence

When you use multiple operators in the same statement, you need be aware of the precedence of each
operator (that is, which operator will evaluate first). The following table shows the various C# operators
grouped in the order of precedence. Operators within the same group have equal precedence
(operatorsinclude some keywords).

Category Operators

Primary x.y f(x) al[x] x++ x--newtypeofcheckedunchecked
Unary + = 1~ ++x --x (T)x

Multiplicative /0%

Additive + =

Shift << >>

Relational and type testing <> <= >= is as

Equality == 1=

Logical AND &

Logical XOR ~

Logical OR

Conditional AND &&

Conditional OR |

Conditional ?:

Assignment = *= /= %= 4= -= <<= >>= &= "= =

109

Part |: C# Fundamentals

When you are in doubt of the precedence of two operators, always use parentheses to force the compiler
to evaluate the expression first. For example, the formula to convert a temperature from Fahrenheit to
Celsius is:

Tc = (5/9)*(Tf-32);
When implemented in C#, the formula looks like this:

double fahrenheit = 100;
double celcius = 5.0 / 9.0 * fahrenheit - 32;
Console.WriteLine ("{0:##.##} degrees C",celcius); //---23.56 degrees C---

But this produces a wrong answer because 5.0 / 9.0 and fahrenheit - 32 must be evaluated
separately before their results are multiplied to get the final answer. What’s happened is that, according
to the precedence table, 5.0 / 9.0 * fahrenheit is evaluated first and then 32 is subtracted from the
result. This gives the incorrect answer of 23.56 degrees C.

To correct this, you use parentheses to group all the expressions that need to be evaluated first, like this:

double fahrenheit = 100;
double celcius = (5.0 / 9.0) * (fahrenheit - 32);
Console.WriteLine ("{0:##.##} degrees C",celcius); //---37.78 degrees C---

This code gives the correct answer of 37.78 degrees C.

Preprocessor Directives

So far the programs you have seen in this chapter are pretty straightforward; you compile the entire
program and run it from beginning until end. However, there are times when you want to inject
debugging statements into your program — generally using methods such as Console.WriteLine () or
MessageBox. Show () — and then remove them when the program is ready for deployment. But one
common mistake is that programmers often forget to remove all those statements after debugging. The
end result is that production code often contains many redundant code statements.

A better way is to instruct the C# compile to conditionally omit some of the code during compilation. For
example, you can delineate some parts of your code as debugging statements that should not be present
in the production code. To do so, you can use preprocessor directives, which are special instructions to a
special program (known as the processor) that will prepare your code before sending it to the compiler.
C# supports the following preprocessor directives, most of which are discussed in the following sections:

#define #elif #line #pragma warning
#undef #endif #region #pragma checksum
#if #warning #endregion

#else #error #pragma

110

Chapter 3: C# Language Foundations

#define and #undef

The #define preprocessor directive allows you to define a symbol so that you can use the
#1f preprocessor directive to evaluate and then make conditional compilation. To see how the #define
preprocessor directive works, assume that you have a console application named TestDefine (saved

in C:\) created using Visual Studio 2008 (see Figure 3-12).

Solution Explorer - Solution "Tes...[®
BaEEA
J Solution 'TestDefine' (1 praject)
- (5 TestDefine
[=d| Properties
3] References
BN rrogram.cs

=)

Figure 3-12

The Main () method is located in the Program. cs file. The program basically asks the user to enter a
number and then sums up all the odd number from 1 to that number:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine
{
class Program
{
static void Main(string[] args)

{

Console.Write("Please enter a number: ");
int num = int.Parse(Console.ReadLine());

int sum = 0;
for (int 1 = 1; i <= num; 1++)

{

//---sum up all odd numbers---

if (1 $ 2 == 1)
sum += 1i;
}

Console.WriteLine (

"Sum of all odd numbers from 1 to {0} is {1}",

num, sum) ;

Console.ReadLine() ;

111

Part |: C# Fundamentals

Suppose that you want to add some debugging statements to the program so that you can print out the

intermediate results. The additional lines of code are highlighted:

You do not want the debugging statements to be included in the production code so you first define a
symbol (such as DEBUG) using the #define preprocessor directive and wrap the debugging statements

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine

{

class Program

{

static void Main(string[] args)

{

Console.Write("Please enter a number: ");
int num = int.Parse(Console.ReadLine());
int sum = 0;
for (int 1 = 1; 1 <= num; 1i++)
{

//---sum up all odd numbers---

if (1 %2 ==1)

{

sum += 1;

Console.WriteLine("i={0}, sum={1}", i, sum);

}

Console.WriteLine (
"Sum of all odd numbers from 1 to {0} is {1}",
num, sum) ;

Console.ReadLine() ;

with the #1f and #endif preprocessor directives:

112

#define DEBUG

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine

{

class Program

{

static void Main(string[] args)

{

Chapter 3: C# Language Foundations

Console.Write("Please enter a number: ");
int num = int.Parse(Console.ReadLine());
int sum = 0;
for (int 1 = 1; 1 <= num; 1++)
{
//---sum up all odd numbers---
if (1 % 2 == 1)
{
sum += 1i;
#if DEBUG
Console.WriteLine("i={0}, sum={1}", i, sum);
#endif

}

}

Console.WriteLine (
"Sum of all odd numbers from 1 to {0} is {1}",
num, sum);

Console.ReadLine () ;

}

DEBUG is a common symbol that developers use to indicate debugging statements, which is why most
books use it in examples. However, you can define any symbol you want using the #define
preprocessor directive.

Before compilation, the preprocessor will evaluate the #1if preprocessor directive to see if the DEBUG
symbol has been defined. If it has, the statement(s) wrapped within the #1if and #endif preprocessor
directives will be included for compilation. If the DEBUG symbol has not been defined, the statement —

the statement(s) wrapped within the #if and #endif preprocessor — will be omitted from the
compilation.

To test out the TestDefine program, follow these steps:

1. Launch the Visual Studio 2008 command prompt (Start = Programs => Microsoft Visual Studio
2008 = Visual Studio Tools = Visual Studio 2008 Command Prompt).

2. Change to the path containing the program (C:\TestDefine).

3. Compile the application by issuing the command:

csc Program.cs.

4. Run the program by issuing the command:

Program.exe.

113

Part |: C# Fundamentals

Figure 3-13 shows the output of the application. As you can see, the debugging statement prints out the
intermediate results.

Visual Studio 2008 Command Prompt - Program. exe

=xTestDefinexTestDefine>csc Program.
icrozoft (R> Ui Ci 2008 Compiler w sign 3.5.21822 .8

or Microsoft ¢ -NET Framework version 3.
Copyright (C> Microsoft Corporation. All rights reserved.

=\TestDef ine TestDef ine >Progran.exe
Please Enier a number:

25

Figure 3-13

To undefine a symbol, you can use the #undef preprocessor directive, like this:
#undef DEBUG
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
If you recompile the program now, the debugging statement will be omitted.
Another popular way of using the #define preprocessor directive is to omit the definition of the symbol
and inject it during compilation time. For example, if you remove the #define preprocessor directive
from the program, you can define it using the /define compiler option:
1. In Visual Studio 2008 command prompt, compile the program using:
csc Program.cs /define:DEBUG.
2. Run the program by issuing the command:

Program.exe.

The output is identical to what you saw in Figure 3-13 — the debugging statement prints out the
intermediate results.

If you now recompile the program by defining another symbol (other than DEBUG), you will realize that
the debugging output does not appear (see Figure 3-14).

114

Chapter 3: C# Language Foundations

Visual Studio 2008 Command Prompt - Program.exe

:“\TestDefine~\TestDefine>csc Program.cs ~define:NORMAL
icrosoft (R> Uisuwal CH 2888 Compiler version 3.5.21822.8
or Microsoft (R> .MEI Framework version 3.5
Copyright (C> Microsoft Corporation. All rights reserved.

:“TestDefines\TestDef ine *Program.exe
IPlease enter a number:
Sum of all odd numbers from 1 to ? is 25

Figure 3-14

#if, #else, #elif, and #endif

As you saw in the preceding section, the #if and #endif preprocessor directives defines a block of code
to include for compilation if a specified symbol is defined. You can also use the #else and #elif
preprocessor directives to create compound conditional directives.

Using the previous example, you can add the #else and #elif preprocessor directives as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine

{
class Program
{
static void Main(string[] args)
{
Console.Write("Please enter a number: ");
int num = int.Parse(Console.ReadLine());
int sum = 0;
for (int 1 = 1; i <= num; 1++)
{
//---sum up all odd numbers---
if (1 %2 ==1)
{
sum += 1;
#i1f DEBUG

Console.WriteLine("i={0}, sum={1}", i, sum);
#elif NORMAL

Console.WriteLine("sum={0}", sum);
#else

Console.WriteLine(".");
#endif

(continued)

115

Part |: C# Fundamentals

(continued)
}
}
Console.WriteLine (
"Sum of all odd numbers from 1 to {0} is {1}",
num, sum);
Console.ReadLine() ;
}
}
}

Figure 3-15 shows the different output when different symbols are defined. The top screen shows the
output when the DEBUG symbol is defined. The middle screen shows the output when the NORMAL
symbol is defined. The bottom screen shows the output when no symbol is defined.

o+ Visual Studio 2008 Command Prompt - Program.exe

\TestDef ine~TestDefinecsc Program.cs ~define:DEBUG
Microsoft (R> Uisuwal CH 2BB8 Compiler version 3.5.21022.8
or Microsoft (R» _NET Framework version 3.5

opyright <G> Microsoft Corporation. All rights reserved.

TestDef inesTestDef ine >Program._exe
ease enter a number:
sum=1
sum=4
sum=%
sum=16
i= sum=25
Sum of all odd numbers from 1 to % is 25

Visual Studio 2008 Command Prompt - Program.exe

:x\TestDefinexTestDefine>csc Program.cs ~sdef ine =NORMAL
Microsoft (R> Uisual CH Compiler version 3.5.21822.8
or Microsoft {(R> .NET Framework version 3.
Copyright {(C> Microsoft Corporation. All rights reserved.

:\TestDef inexTestDef ine >Program.exe
lease enter a number:

l=un=1

lzun=4

sun=9

sun=16

sun=25

Sun of all odd numbers from 1 to % is 25

¢+ Visual Studio 2008 Command Prompt - Program

C:“TestDef inesTestDefinebcsc Program.cs

Copyright <G> Microsoft Corporation. All rights reserved.

C:“TestDef inesTestDef ine >Program.exe

um of all odd numbers from 1 to % is 25

Figure 3-15

116

Chapter 3: C# Language Foundations

The #if preprocessor directive can also test for multiple conditions using the logical operators. Here are
some examples:

#if (DEBUG || NORMAL) //---either DEBUG or NORMAL is defined---
#if (DEBUG && NORMAL) //---both DEBUG and NORMAL are defined---
#if (!DEBUG && NORMAL) //---DEBUG is not defined AND NORMAL is defined---

#warning and #error

The #warning preprocessor directive lets you generate a warning from a specific location of your
code. The following example shows how you can use it to display warning messages during
compilation time.

for (int 1 = 1; i <= num; 1++)
{
//---sum up all odd numbers---
if (1 $ 2 ==1)
{
sum += 1i;
#if DEBUG
#warning Debugging mode is on
Console.WriteLine("i={0}, sum={1}", i, sum);
#elif NORMAL
#warning Normal mode is on
Console.WriteLine("sum={0}", sum);
#else
#warning Default mode is on
Console.WriteLine(".");
#endif

Figure 3-16 shows the output when the DEBUG symbol is defined using the /define compiler option.

Yisual Studio 2008 Command Prompt

:\TestDefine\TestDefine>csc Program.cs define:DEBUG
Microsoft (R> Uisual CH 2888 Compil version 3.5.21822.8
or Microsoft (R> .MEI Framework version 3.
[Copyright (C> Microsoft Corporation. All rights reserved.

[Program.cs{22,.18>: warning C81838: #warning: ’Debugging mode is on’

(C:~TestDefinesTestDefine?

Figure 3-16

117

Part |: C# Fundamentals

The #error preprocessor directive lets you generate an error. Consider the following example:

for (int 1 = 1; 1 <= num; 1++)

{
//---sum up all odd numbers---
if (1 $ 2 == 1)

{
sum += 1;
#1if DEBUG
#warning Debugging mode is on
Console.WriteLine("i={0}, sum={1}", 1, sum);

#elif NORMAL
#error This mode is obsolete.
Console.WriteLine("sum={0}", sum);
#else
#warning Default mode is on
Console.WriteLine(".");
#endif

Here, if the NORMAL symbol is defined, an error message is shown and the statement defined within the
conditional directive is ignored. Figure 3-17 shows that when you define the NORMAL symbol, the error
message is displayed and the compilation is aborted.

isual Studio 2008 Command Prompt - Program.exe

IC:“TestDef inesTestDefinebcsc Program.cs ~define:NORMAL
icrosoft (R) Uisuwal CH 2088 Compiler version 3.5.21822_8
for Microsoft (R> .NEI Framework version 3.5

Copyright <G> Microsoft Corporation. All rights reserved.

il

Program.cs{25.8): error C2182%: H#error: ’'This mode iz ohsolete.

Figure 3-17

#line

The #1ine preprocessor directive lets you modify the compiler’s line number and (optionally) the file
name output for errors and warnings.

The #1ine preprocessor directive is injected in the following example. The highlighted code indicates
statements that will cause the debugger to issue warning messages:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine
{

class Program

{

O W 00 J o Ul i WD

=

static void Main(string[] args)

118

Chapter 3: C# Language Foundations
11. {
12. #line 25
13. int 1i; //---treated as line 25---
14. char c; //---treated as line 26---
15. Console.WriteLine("Line 1"); //---treated as line 27---
16. #line hidden //---treated as line 28---
17. Console.WriteLine("Line 2"); //---treated as line 29---
18. Console.WriteLine("Line 3"); //---treated as line 30---
19. #line default
20. double d; //---treated as line 20---
21. Console.WriteLine("Line 4"); //---treated as line 21---
22. #line 45 "Programl.cs" //---treated as line 22---
23. Single s; //---treated as line 45---
24 . Console.WriteLine("Line 5"); //---treated as line 46---
25. Console.ReadLine() ; //---treated as line 47---
26. }
27. }
28. }

The line numbers are for illustration purposes and are not part of the program.

The four highlighted lines are numbered 13, 14, 20, and 23. When you build the program in Visual Studio
2008, the lines reported are 25, 26, 20, and 45 (see Figure 3-18).

Program.cs

|j$TEstDefine.PrUgram

v | !g‘VMa\n(stnng[] args)

Susing Iystem:

using System.Ling;

\‘using System.Collections. Generic;

using System.TText;

o namespace TestDefine

1

class Program

i

#line

#line

#line

#line

static wvoid
{
Z5
int 1i:
char o

Console.

hidden

Console.
Console.

default

Maini=tring[] args)

WriteLine ("Line

WriteLine ("Line
WriteLine ("Line

double d;

Console.

WriteLine ("Line

45 "Programl.cs"
Single s;

Console.
Con=zgle.

Figure 3-18

WriteLine ("Line
ReadLine() ;

1
27
373
an);

s

Error List @

@ 0Errors [| 1\ 4 Warnings | [(i) 0 Messages

Description File:

The varizble 'c'is declared Program.cs
but never used

4, 3 The variable 'd'is declared Program.cs
but never used

4 4 The varisble 's'is declared W
: FrogronTic]

but never use

E.Ermr LI‘St |a Oukpuk .

Colurnn

Project

TestDefing

TestDefine

TestDefine

119

Part |: C# Fundamentals

Let’s take a look at the #1ine directives in the example program:

Q #line 25 means that you want to modify the line number to use the specified line number
(25 in this case) instead of the actual line number of the statement in error. This is useful if you
need to assign a fixed line number to a particular part of the code so that you can trace it easily.
Interestingly, the next line will continue from 25, that is, the next line is now line 26. This is
evident from the warning message for the char c; line.

O #line default means that the compiler will report the actual line number.

QO #line 45 "Programl.cs" means that you want to fix the line number at 45 and specify the
name of the file in error (Programl . cs in this case). An example usage of it would be that
the statement in error might be a call to an external DLL and by specifying the filename of the
DLL here, it is clearer that the mistake might be from that DLL.

What about the #1ine hidden statement? That preprocessor directive indicates to the debugger to skip
the block of code beginning with the #1ine hidden preprocessor directive. The debugger will skip the
line(s) until the next #1ine preprocessor directive is found. This is useful for skipping over method calls
that you are not interested in (such as those not written by you).

Interestingly, you can replace the #1ine hidden preprocessor directive with #1ine 16707566
(OxFeeFee) and it will still work correctly.

#region and #endregion

The #region and #region preprocessor directives are used in conjunction with Visual Studio’s Code
Editor. Let’s work with the following example:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine
{
class Program
{
static void Main(string[] args)
{

//---implementions here---

}

private void Methodl ()
{

//---implementions here---
}

private void Method2 ()
{

//---implementions here---

}

120

Chapter 3: C# Language Foundations

private void Method3 ()
{

//---implementions here---

}

Often, you have many functions that perform specific tasks. In such cases, it is often good to organize
them into regions so that they can be collapsed and expanded as and when needed. Using this example,
you can group all the methods — Method1 (), Method2 (), and Method3 () — into a region using the

#region and #region preprocessor directives:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine
{

class Program

{
static void Main(string[] args)

{
}

#region "Helper functions"

private void Methodl ()
{
//---implementions here---

}

private void Method2 ()
{

//---implementions here---

}

private void Method3 ()
{
//---implementions here---

}

#endregion

In Visual Studio 2008, you can now collapse all the methods into a group called "Helper functions".

Figure 3-19 shows the Code Editor before and after the region is collapsed.

121

Part |: C# Fundamentals

El #region "Helper functions™ = "He lper iuntt1onsﬁ
[

=] private void Methodl ()
{

J//——-implementions here---
}

=] private wvoid Methodz ()
{

J/f——-implementions here-—-
m H

= private void Methods ()
{

J/———implementions here---
}

- #endregion

Figure 3-19

The #region and #region preprocessor directives do not affect the logic of your code. They are used
purely in Visual Studio 2008 to better organize your code.

#pragma warning

The #pragma warning directive enables or disables compiler warning messages. For example,
consider the following program:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestDefine

{
class Program
{
int num = 5;
static void Main(string[] args)
{
}
}
}

In this program, the variable num is defined but never used. When you compile the application, the C#
compiler will show a warning message (see Figure 3-20).

ual C# 2008 Compiler ver ign 3.5.308428.1

-NET Framework version
Copyright <G> Microsoft Corporation. All rights reserved.

Program.cs(11,13>: warning C58414: The field ‘TestDefine.Program.num’ is
gned but its value iz never used

Figure 3-20

122

Chapter 3: C# Language Foundations

To suppress the warning message, you can use the #pragma warning directive together with the
warning number of the message that you want to suppress:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

#pragma warning disable 414
namespace TestDefine

{

class Program

{
int num = 5;
static void Main(string[] args)
{
}

}

This example suppresses warning message number 414 (“The private field ‘field’ is assigned but its
value is never used”). With the #pragma warning directive, the compiler will now suppress the
warning message (see Figure 3-21).

=+ Visual Studio 2008 Command Prompt

[C:“\TestDefine\TestDef ine*csc Program.cs
Microsoft (R> Uisual CH 2088 Compiler version 3.5.30428.1
for Microsoft (R> .NET Framework version 3.5

Copyright (C)> Hicrosoft Corporation. All wrights resewved.

Figure 3-21
You can suppress multiple warning messages by separating the message numbers with a comma (,)

like this:

#pragma warning disable 414, 3021, 1959

Summary

In this chapter, you explored the basic syntax of the C# language and saw how to use Visual Studio 2008
to compile and run a working C# application. You examined the different data types available in the
NET Framework and how you can perform type conversion from one type to another. You have also

seen the various ways to perform looping, and the various processor directives with which you can
change the way your program is compiled.

123

—

Classes and Objects

One of the most important topics in C# programming — in fact, the cornerstone of .NET
development — is classes and objects.

Classes are essentially templates from which you create objects. In C# .NET programming,
everything you deal with involves classes and objects. This chapter assumes that you already have
a basic grasp of object-oriented programming. It tackles:

Q How to define a class

QO How to create an object from a class

Q The different types of members in a class
]

The root of all objects — System.Object

Classes

Everything you encounter in .NET in based on classes. For example, you have a Windows Forms
application containing a default form called Forml. Forml itself is a class that inherits from the
base class System.Windows . Forms . Form, which defines the basic behaviors that a Windows
Form should exhibit:

using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace Projectl
{
public partial class Forml : Form
{
public Forml ()
{

InitializeComponent () ;
}

Part |: C# Fundamentals

Within the Form1 class, you code in your methods. For example, to display a "Hello World" message
when the form is loaded, add the following statement in the Form1_Load () method:

public partial class Forml : Form

{
public Forml ()

{

InitializeComponent () ;

}

protected override void OnLoad (EventArgs e)
{
MessageBox.Show ("Hello World!");

The following sections walk you through the basics of defining your own class and the various members
you can have in the class.

Defining a Class

You use the class keyword to define a class. The following example is the definition of a class called
Contact:

public class Contact

{
public int ID;
public string FirstName;
public string LastName;
public string Email;

This contact class has four public members — ID, FirstName, LastName, and Email. The syntax of a
class definition is:

<access_modifiers> class Class_Name

{
//---Fields, properties, methods, and events---

}

Using Partial Classes

Instead of defining an entire class by using the class keyword, you can split the definition into multiple
classes by using the partial keyword. For example, the Contact class defined in the previous section
can be split into two partial classes like this:

public partial class Contact

{
public int ID;
public string Email;

126

Chapter 4: Classes and Objects

}

public partial class Contact
{
public string FirstName;
public string LastName;
}

When the application is compiled, the C# compiler will group all the partial classes together and treat
them as a single class.

Uses for Partial Classes

There are a couple of very good reasons to use partial classes. First, using partial classes
enables the programmers on your team to work on different parts of a class without
needing to share the same physical file. While this is useful for projects that involve big
class files, be wary: a huge class file may signal a design fault, and refactoring may be
required.

Second, and most compelling, you can use partial classes to separate your application
business logic from the designer-generated code. For example, the code generated by
Visual Studio 2008 for a Windows Form is kept separate from your business logic. This
prevents developers from messing with the code that is used for the user interface. At
the same time, it prevents you from losing your changes to the designer-generated code
when you change the user interface.

Creating an Instance of a Class (Object Instantiation)

A class works like a template. To do anything useful, you need to use the template to create an actual
object so that you can work with it. The process of creating an object from a class is known as
instantiation.
To instantiate the Contact class defined earlier, you first create a variable of type Contact:

Contact contactl;
At this stage, contactl1 is of type Contact, but it does not actually contain the object data yet. For it to
contain the object data, you need to use the new keyword to create a new instance of the Contact class, a
process is known as object instantiation:

contactl = new Contact();

Alternatively, you can combine those two steps into one, like this:

Contact contactl = new Contact();

127

Part |: C# Fundamentals

Once an object is instantiated, you can set the various members of the object. Here’s an example:

contactl.ID = 12;

contactl.FirstName = "Wei-Meng";
contactl.LastName = "Lee";
contactl.Email = "weimenglee@learn2develop.net";

You can also assign an object to an object, like the following:

Contact contactl = new Contact();
Contact contact2 = contactl;

In these statements, contact2 and contactl are now both pointing to the same object. Any changes
made to one object will be reflected in the other object, as the following example shows:

Contact contactl = new Contact();
Contact contact2 = contactl;

contactl.FirstName = "Wei-Meng";
contact2.FirstName = "Jackson";

//---prints out "Jackson"---
Console.WriteLine(contactl.FirstName) ;

It prints out “Jackson” because both contact1l and contact2 are pointing to the same object, and when
you assign “Jackson” to the FirstName property of contact2, contactl’s FirstName property also
sees “Jackson”.

Anonymous Types (C# 3.0)

C# 3.0 introduces a new feature known as anonymous types. Anonymous types enable you to define data
types without having to formally define a class. Consider the following example:

var bookl = new
{
ISBN = "978-0-470-17661-0",
Title="Professional Windows Vista Gadgets Programming",
Author = "Wei-Meng Lee",
Publisher="Wrox"
Y

Chapter 3 discusses the new C# 3.0 keyword var.

Here, book1 is an object with 4 properties: ISBN, Title, Author, and Publisher (see Figure 4-1).

128

Chapter 4: Classes and Objects

war bookl = new

i
ISBN = "975-0-470-17661-0%,
Title="Professional Windows Wista Gadgets Programming'”,
buthor = "Wei-Meng Lee'™,

Publisher="Wrox"
L
hookl.

N ([string ‘2. Author

‘% Equals
- Anonymous Types:

@ GetHashCod ¥ ¥p

Y GEtT\j:e nae 'a is mew 4 string ISEM, string Title, string Author, string Publisher }

= 156N
ﬁ] Publisher
= Title

% ToString

Figure 4-1

In this example, there’s no need for you to define a class containing the four properties. Instead, the
object is created and its properties initialized with their respective values.

C# anonymous types are immutable, which means all the properties are read-only —
their values cannot be changed once they are initialized.

You can use variable names when assigning values to properties in an anonymous type; for example:

var Title = "Professional Windows Vista Gadgets Programming";
var Author = "Wei-Meng Lee";
var Publisher = "Wrox";

var bookl = new

{
ISBN = "978-0-470-17661-0",
Title,
Author,
Publisher
Y

In this case, the names of the properties will assume the names of the variables, as shown in Figure 4-2.

129

Part |: C# Fundamentals

war Title = "Professional Windows Vista Gadgets Programoing™:
war Author = "Wei-Meng Lee':
wvar Publisher = "Wrox';

wvar bookl = new

ISEBN = "978-0-470-17661-0",
Title,
Author,
Publisher
I
bookl.

=0 futhar

‘9 Equals

‘W GetHashCode
i GetType

250 196N

2 publisher
f string 'a. Title

iy ToSkring

Anonynous Types:
‘a is new § string ISEN, string Tikle, string Author, string Publisher +

Figure 4-2

However, you cannot create anonymous types with literals, as the following example demonstrates:

//---error---
var bookl = new
{

"978-0-470-17661-0",

"Professional Windows Vista Gadgets Programming",
"Wei-Meng Lee",

"Wrox"

i
When assigning a literal value to a property in an anonymous type, you must use an identifier, like this:

var bookl = new

{
ISBN = "978-0-470-17661-0",
Title="Professional Windows Vista Gadgets Programming",
Author = "Wei-Meng Lee",
Publisher="Wrox"
}i

So, how are anonymous types useful for your application? Well, they enable you to shape your data from
one type to another. You will look into more about this in Chapter 14, which tackles LINQ.

130

Chapter 4: Classes and Objects

Class Members

Variables and functions defined in a class are known as a class’s members. The Contact class definition,
for instance, has four members that you can access once an object is instantiated:

public class Contact

{
public int ID;
public string FirstName;
public string LastName;
public string Email;

}

Members of a class are classified into two types:

Type Description

Data Members that store the data needed by your object so that they can be used by
functions to perform their work. For example, you can store a person’s name using
the FirstName and LastName members.

Function Code blocks within a class. Function members allow the class to perform its work.
For example, a function contained within a class (such as the Contact class) can
validate the email of a person (stored in the Email member) to see if it is a valid
email address.

Data members can be further grouped into instance members and static members.

Instance Members

By default, all data members are instance members unless they are constants or prefixed with the static
keyword (more on this in the next section). The variables defined in the Contact class are instance
members:

public int ID;

public string FirstName;
public string LastName;
public string Email;

Instance members can be accessed only through an instance of a class and each instance of the class
(object) has its own copy of the data. Consider the following example:

Contact contactl = new Contact();
contactl.ID = 12;

contactl.FirstName = "Wei-Meng";
contactl.LastName = "Lee";
contactl.Email = "weimenglee@learn2develop.net";

Contact contact2 = new Contact();
contact2.ID = 35;

contact2.FirstName = "Jason";
contact2.LastName = "Will";
contact2.Email = "JasonWill@company.net";

131

Part |: C# Fundamentals

The objects contactl and contact2 each contain information for a different user. Each object maintains

its own copy of the ID, FirstName, LastName, and Email data members.

Static Members

Static data members belong to the class rather than to each instance of the class. You use the static
keyword to define them. For example, here the Contact class has a static member named count:

public class Contact

{
public static int count;
public int ID;
public string FirstName;
public string LastName;
public string Email;

The count static member can be used to keep track of the total number of Contact instances, and thus it

should not belong to any instances of the Contact class but to the class itself.
To use the count static variable, access it through the Contact class:

Contact.count = 4;
Console.WriteLine (Contact.count) ;

You cannot access it via an instance of the class, such as contact1:

//---error---
contactl.count = 4;

Constants defined within a class are implicitly static, as the following example shows:

public class Contact
{
public const ushort MAX EMAIL = 5;
public static int count;
public int ID;
public string FirstName;
public string LastName;
public string Email;

In this case, you can only access the constant through the class name but not set a value to it:

Console.WriteLine (Contact.MAX_EMAIL) ;
Contact .MAX_EMAIL = 4; //---error---

132

Chapter 4: Classes and Objects

Access Modifiers

Access modifiers are keywords that you can add to members of a class to restrict their access. Consider the
following definition of the Contact class:

public class Contact
{
public const ushort MAX_EMAIL = 5;
public static int count;
public int ID;
public string FirstName;
public string LastName;

private string _Email;

Unlike the rest of the data members, the _Email data member has been defined with the private
keyword. The public keyword indicates that the data member is visible outside the class, while the
private keyword indicates that the data member is only visible within the class.

By convention, you can denote a private variable by beginning its name with the underscore (_)
character. This is recommended, but not mandatory.

For example, you can access the FirstName data member through an instance of the Contact class:

//---this is OK---
contactl.FirstName = "Wei-Meng";

But you cannot access the _Email data member outside the class, as the following statement

demonstrates:
//---error: _Email is inaccessible---
contactl._Email = "weimenglee@learn2develop.net";

C# has four access modifiers — private, public, protected, and internal. The last two are
discussed with inheritance in the next chapter.

If a data member is declared without the public keyword, its scope (or access) is private by default.
So, _Email can also be declared like this:

public class Contact
{
public const ushort MAX_EMAIL = 5;
public static int count;
public int ID;
public string FirstName;
public string LastName;

string _Email;

133

Part |: C# Fundamentals

Function Members

A function member contains executable code that performs work for the class. The following are
examples of function members in C#:

Q Methods

Properties

Events

Indexers

User-defined operators

Constructors

U 0000 0o

Destructors

Events and indexers are covered in detail in Chapters 7 and 13.

Methods

In C#, every function must be associated with a class. A function defined with a class is known as a
method. In C#, a method is defined using the following syntax:

[access_modifiers] return_type method_name (parameters)
{

//---Method body---
}

Here’s an example — the ValidateEmail () method defined in the Contact class:

public class Contact
{
public static ushort MAX_EMAIL;
public int ID;
public string FirstName;
public string LastName;
public string Email;

public Boolean ValidateEmail () {
//---implementation here---
Boolean valid=true;
return valid;

134

Chapter 4: Classes and Objects

If the method does not return a value, you need to specify the return type as void, as the following
PrintName () method shows:

public class Contact
{
public static ushort MAX_EMAIL;
public int ID;
public string FirstName;
public string LastName;
public string Email;

public Boolean ValidateEmail () {
//---implementation here---
/...
Boolean valid=true;
return valid;

}

public void PrintName ()

{
Console.WriteLine("{0} {1}", this.FirstName, this.LastName) ;

}

Passing Arguments into Methods
You can pass values into a method using arguments. The words parameter and argument are often used
interchangeably, but they mean different things. A parameter is what you use to define a method. An
argument is what you actually use to call a method.
In the following example, x and y are examples of parameters:

public int AddNumbers(int x, int y) {}

When you call the method, you pass in values/variables. In the following example, numl and num2 are
examples of arguments:

Console.WriteLine (AddNumbers (numl, num2));
Consider the method named AddNumbers () with two parameters, x and y:
public int AddNumbers (int x, int y)
{
X++;

y++i
return x + y;

135

Part |: C# Fundamentals

When you call this method, you also need to pass two integer arguments (numl and num2), as the
following example shows:

int numl = 4, num2 = 5;

//---prints out 11---

Console.WriteLine (AddNumbers (numl, num2));
Console.WriteLine(numl); //---4---
Console.WriteLine (num2); //---5---

In C#, all arguments are passed by value by default. In other words, the called method gets a copy of the
value of the arguments passed into it. In the preceding example, for instance, even though the value of
x and y are both incremented within the method, this does not affect the values of numl and num?2.

If you want to pass in arguments to methods by reference, you need to prefix the parameters with the ref
keyword. Values of variables passed in by reference will be modified if there are changes made to them
in the method. Consider the following rewrite of the AddNumbers () function:

Because C# functions can only return single values, passing arguments by reference is useful when you
need a method to return multiple values.

public int AddNumbers(ref int x, ref int vy)
{

X++;

yH+;

return x + y;

In this case, the values of variables passed into this function will be modified, as the following example
illustrates:

int numl = 4, num2 = 5;

//---prints out 11---

Console.WriteLine (AddNumbers (ref numl, ref num2));
Console.WriteLine (numl); //---5---
Console.WriteLine (num2); //---6---

After calling the AddNumbers () function, numl becomes 5 and num2 becomes 6. Observe that you need
to prefix the arguments with the ref keyword when calling the function. In addition, you cannot pass
literal values as arguments into a method that requires parameters to be passed in by reference:

//---invalid arguments---
Console.WriteLine (AddNumbers (4, 5));

Also note that the ref keyword requires that all the variables be initialized first. Here’s an example:

public void GetDate(ref int day, ref int month, ref int year)
{

day = DateTime.Now.Day;

month = DateTime.Now.Month;

year = DateTime.Now.Year;

136

Chapter 4: Classes and Objects

The GetDate () method takes in three reference parameters and uses them to return the day, month,
and year.

If you pass in the day, month and year reference variables without initializing them, an error will occur:

//---Error: day, month, and year not initialized---
int day, month, year;
GetDate (ref day, ref month, ref year);

If your intention is to use the variables solely to obtain some return values from the method, you can use
the out keyword, which is identical to the ref keyword except that it does not require the variables
passed in to be initialized first:

public void GetDate(out int day, out int month, out int year)
{

day = DateTime.Now.Day;

month = DateTime.Now.Month;

year = DateTime.Now.Year;

Also, the out parameter in a function must be assigned a value before the function returns. If it isn’t, a
compiler error results.

Like the ref keyword, you need to prefix the arguments with the out keyword when calling the
function:

int day, month, year;
GetDate (out day, out month, out year);

The this Keyword

The this keyword refers to the current instance of an object (in a nonstatic class; discussed later in the
section Static Classes). In the earlier section on methods, you saw the use of this:

Console.WriteLine("{0} {1}", this.FirstName, this.LastName) ;

While the FirstName and LastName variable could be referenced without using the this keyword,
prefixing them with it makes your code more readable, indicating that you are referring to an instance
member.

However, if instance members have the same names as your parameters, using this allows you to
resolve the ambiguity:

public void SetName (string FirstName, string LastName)
{

this.FirstName = FirstName;

this.LastName = LastName;

137

Part |: C# Fundamentals

Another use of the this keyword is to pass the current object as a parameter to another method. For
example:

public class AddressBook
{
public void AddContact (Contact c¢)
{
Console.WriteLine(c.ID);
Console.WriteLine(c.FirstName) ;
Console.WriteLine (c.LastName) ;
Console.WriteLine(c.Email);
//---other implementations here---
//...

The AddContact () method takes in a Contact object and prints out the details of the contact. Suppose
that the Contact class has a AddToAaddressBook () method that takes in an AddressBook object. This
method adds the Contact object into the AddressBook object:

public class Contact

{
public int ID;
public string FirstName;
public string LastName;
public string Email;

public void AddToAddressBook (AddressBook addBook)
{
addBook.AddContact (this) ;

In this case, you use the this keyword to pass in the current instance of the Contact object into the
AddressBook object. To test out that code, use the following statements:

Contact contactl = new Contact();
contactl.ID = 12;

contactl.FirstName = "Wei-Meng";
contactl.LastName = "Lee";
contactl.Email = "weimenglee@learn2develop.net";

AddressBook addBookl = new AddressBook() ;
contactl.AddToAddressBook (addBookl) ;

138

Chapter 4: Classes and Objects

Properties

Properties are function members that provide an easy way to read or write the values of private data
members. Recall the Contact class defined earlier:

public class Contact

{
public int ID;
public string FirstName;
public string LastName;
public string Email;

You've seen that you can create a Contact object and set its public data members (ID, FirstName,
LastName, and Email) directly, like this:

Contact ¢ = new Contact();

c.ID = 1234;

c.FirstName = "Wei-Meng";

c.LastName = "Lee";

c.Email = "weimenglee@learn2develop.net";

However, if the ID of a person has a valid range of values — such as from 1 to 9999 — the following
value of 12345 would still be assigned to the ID data member:

c.ID = 12345;

Technically, the assignment is valid, but logically it should not be allowed — the number assigned

is beyond the range of values permitted for ID. Of course you can perform some checks before
assigning a value to the ID member, but doing so violates the spirit of encapsulation in object-oriented
programming — the checks should be done within the class.

A solution to this is to use properties.
The Contact class can be rewritten as follows with its data members converted to properties:

public class Contact
{
int _ID;
string _FirstName, _LastName, _Email;
public int ID
{
get
{

return _ID;

_ID = value;

(continued)

139

Part |: C# Fundamentals

(continued)

public string FirstName
{

get

{

return _FirstName;

_FirstName = value;
}
}

public string LastName
{

get

{

return _LastName;

_LastName = value;
}
}
public string Email
{
get
{

return _Email;

_Email = value;

Note that the public members (ID, FirstName, LastName, and Email) have been replaced by properties
with the set and get accessors.

The set accessor sets the value of a property. Using this example, you can instantiate a Contact class
and then set the value of the 1D property, like this:

Contact ¢ = new Contact();
c.ID = 1234;

In this case, the set accessor is invoked:

public int ID
{

get

{

return _ID;

140

Chapter 4: Classes and Objects

set

_ID = value;
}

The value keyword contains the value that is being assigned by the set accessor. You normally
assign the value of a property to a private member so that it is not visible to code outside the class,
which in this case is _ID.

When you retrieve the value of a property, the get accessor is invoked:

public int ID
{

get

{

return _ID;

_ID = value;
}
The following statement shows an example of retrieving the value of a property:

Console.WriteLine(c.ID); //---prints out 1234---

The really useful part of properties is the capability for you to perform checking on the value assigned.
For example, before the ID property is set, you want to make sure that the value is between 1 and 9999,
so you perform the check at the set accessor, like this:

public int ID
{

get

{

return _ID;

if (value > 0 && value <= 9999)

_ID = value;

Using properties, you can now prevent users from setting invalid values.

141

Part |: C# Fundamentals

Read-Only and Write-Only Properties

When a property definition contains the get and set accessors, that property can be read as well as
written. To make a property read-only, you simply leave out the set accessor, like this:

public int ID
{
get
{
return _ID;

}
}

You can now read but not write values into the ID property:

Console.WriteLine(cl.ID); //---OK---
cl.ID = 1234; //---Error---

Likewise, to make a property write-only, simply leave out the get accessor:

public int ID
{
set
{
_ID = value;
}
}

You can now write but not read from the ID property:

Console.WriteLine(cl.ID); //---Error---
cl.ID = 1234; //---0K---

You can also restrict the visibility of the get and set accessors. For example, the set accessor of a public
property could be set to private to allow only members of the class to call the set accessor, but any
class could call the get accessor. The following example demonstrates this:

public int ID
{
get
{
return _ID;

}
private set
{
_ID = value;
}
}

In this code, the set accessor of the ID property is prefixed with the private keyword to restrict its
visibility. That means that you now cannot assign a value to the ID property but you can access it:

142

Chapter 4: Classes and Objects

c.ID = 1234; //---error---
Console.WriteLine(c.ID); //---OK---

You can, however, access the ID property anywhere within the Contact class itself, such as in the Email
property:

public string Email
{
get
{
VA
this.ID = 1234;

/]

/]

Partial Methods (C# 3.0)

Earlier on, you saw that a class definition can be split into one or more class definitions. In C# 3.0, this
concept is extended to methods — you can now have partial methods. To see how partial methods
works, consider the Contact partial class:

public partial class Contact
{
/...
private string _Email;
public string Email
{
get
{

return _Email;

_Email = value;

}

Suppose you that want to allow users of this partial class to optionally log the email address of each
contact when its Email property is set. In that case, you can define a partial method — LogEmail () in
this example — like this:

public partial class Contact
{

/...
}

public partial class Contact
{
/...

(continued)

143

Part |: C# Fundamentals

(continued)

private string _Email;
public string Email
{

get

{

return _Email;

_Email = value;
LogEmail () ;

}

//---partial methods are private---
partial void LogEmail () ;

}

The partial method LogEmail () is called when a contact’s email is set via the Email property. Note that
this method has no implementation. Where is the implementation? It can optionally be implemented in
another partial class. For example, if another developer decides to use the Contact partial class, he or
she can define another partial class containing the implementation for the LogEmail () method:

public partial class Contact
{
partial void LogEmail ()
{
//---code to send email to contact---
Console.WriteLine("Email set: {0}", _Email);

}

So when you now instantiate an instance of the Contact class, you can set its Email property as follows
and a line will be printed in the output window:

Contact contactl = new Contact();
contactl.Email = "weimenglee@learn2develop.net";

What if there is no implementation of the LogEmail () method? Well, in that case the compiler simply
removes the call to this method, and there is no change to your code.

Partial methods are useful when you are dealing with generated code. For example, suppose that the
Contact class is generated by a code generator. The signature of the partial method is defined in
the class, but it is totally up to you to decide if you need to implement it.

A partial method must be declared within a partial class or partial struct.

144

Chapter 4: Classes and Objects

Partial methods must adhere to the following rules:

Q Must begin with the partial keyword and the method must return void

Q Canhave ref but not out parameters

Q They are implicitly private, and therefore they cannot be virtual (virtual methods are discussed
in the next chapter)

Q Parameter and type parameter names do not have to be the same in the implementing and
defining declarations

Automatic Properties (C# 3.0)

In the Contact class defined in the previous section, apart from the ID property, the properties are
actually not doing much except assigning their values to private members:

public string FirstName
{

get

{

return _FirstName;

_FirstName = value;
}
}
public string LastName
{
get
{

return _LastName;

_LastName = value;
}
}
public string Email
{
get
{

return _Email;

_Email = value;

145

Part |: C# Fundamentals

In other words, you are not actually doing any checking before the values are assigned. In C# 3.0, you
can shorten those properties that have no filtering (checking) rules by using a feature known as automatic
properties. The Contact class can be rewritten as:

public class Contact
{
int _ID;
public int ID
{
get
{

return _ID;

if (value > 0 && value <= 9999)

_ID = value;

_ID

1}
o

public string FirstName {get; set;}
public string LastName {get; set;}
public string Email {get; set;}

}

Now there’s no need for you to define private members to store the values of the properties. Instead, you
just need to use the get and set keywords, and the compiler will automatically create the private
members in which to store the properties values. If you decide to add filtering rules to the properties
later, you can simply implement the set and get accessor of each property.

To restrict the visibility of the get and set accessor when using the automatic properties feature, you
simply prefix the get or set accessor with the private keyword, like this:

public string FirstName {get; private set;}
This statement sets the FirstName property as read-only.
You might be tempted to directly convert these properties (FirstName, LastName, and Email)

into public data members. But if you did that and then later decided to convert these public members into
properties, you would need to recompile all of the assemblies that were compiled against the old class.

Constructors

Instead of initializing the individual properties of an object after it has been instantiated, it is sometimes
useful to initialize them at the time of instantiation. Constructors are class methods that are executed
when an object is instantiated.

146

Chapter 4: Classes and Objects

Using the Contact class as the example, the following constructor initializes the ID property to 9999
every time an object is instantiated:

public class Contact
{
int _ID;
public int ID
{
get
{

return _ID;

if (value > 0 && value <= 9999)

_ID = value;

_ID = 0;

public string FirstName { get; set; }
public string LastName { get; set; }
public string Email { get; set; }

public Contact()

{
this.ID = 9999;
}

The following statement proves that the constructor is called:

Contact ¢ = new Contact();
//---prints out 9999---
Console.WriteLine(c.ID);

Constructors have the same name as the class and they do not return any values. In this example,
the constructor is defined without any parameters. A constructor that takes in no parameters is called a

default constructor. It is invoked when you instantiate an object without any arguments, like this:

Contact ¢ = new Contact();

If you do not define a default constructor in your class, an implicit
default constructor is automatically created by the compiler.

147

Part |: C# Fundamentals

You can have as many constructors as you need to, as long as each constructor’s signature (parameters) is
y y

different. Let’s now add two more constructors to the Contact class:

public class Contact
{
/...
public Contact ()
{
this.ID = 9999;

public Contact (int ID)
{
this.ID = ID;

public Contact(int ID, string FirstName, string LastName,
string Email)

this.ID = ID;
this.FirstName = FirstName;
this.LastName = LastName;
this.Email = Email;

When you have multiple methods (constructors in this case) with the same name but different

signatures, the methods are known as overloaded. IntelliSense will show the different signatures available

when you try to instantiate a Contact object (see Figure 4-3).

Contact © = new Contact t|
[®1cf 3% Contact.Contact ()]

Contact ¢ = new Contact |
[®2 of 3% cContact.Contact {int ID)]

Contact ¢ = new Contact|

|A 3of 3% Contact.Contact {ink ID, string Firsthame, string LastMame, string Email)|

Figure 4-3

You can create instances of the Contact class using the different constructors:

//---first constructor is called---
Contact cl = new Contact();

//---second constructor is called---
Contact c2 = new Contact(1234);

//---third constructor is called---

Contact c¢3 = new Contact (1234, "Wei-Meng", "Lee", "weimenglee@learn2develop.net");

148

Chapter 4: Classes and Objects

Constructor Chaining

Suppose that the Contact class has the following four constructors:

public class Contact

{

/...
public Contact ()
{

this.ID = 9999;

}

public Contact (int ID)
{
this.ID = ID;
}
public Contact(int ID, string FirstName,
{
this.ID = ID;
this.FirstName = FirstName;
this.LastName = LastName;

}

public Contact (int ID,
{

string FirstName,

this.ID = ID;
this.FirstName = FirstName;
this.LastName = LastName;
this.Email = Email;

string LastName)

string LastName, string Email)

Instead of setting the properties individually in each constructor, each constructor itself sets some of the
properties for other constructors. A more efficient way would be for some constructors to call the other

constructors to set some of the properties. That would prevent a duplication of code that does the same
thing. The contact class could be rewritten like this:

public class Contact

{

/]

//---first constructor---
public Contact ()
{
this.ID = 9999;
}

//---second constructor---
public Contact (int ID)
{

(continued)

149

Part |: C# Fundamentals

(continued)
this.ID = ID;

//---third constructor---

public Contact(int ID, string FirstName, string LastName)
this (ID)

this.FirstName = FirstName;
this.LastName = LastName;

//---fourth constructor---

public Contact(int ID, string FirstName, string LastName, string Email)

this (ID,FirstName, LastName)

this.Email = Email;

In this case, the fourth constructor is calling the third constructor using the this keyword. In addition, it
is also passing in the arguments required by the third constructor. The third constructor in turn calls the
second constructor. This process of one constructor calling another is call constructor chaining.

To prove that constructor chaining works, use the following statements:

Contact cl = new Contact (1234, "Wei-Meng", "Lee", "weimenglee@learn2develop.net");
Console.WriteLine(cl.ID); //---1234---

Console.WriteLine(cl.FirstName); //----Wei-Meng---

Console.WriteLine(cl.LastName) ; //---Lee---

Console.WriteLine(cl.Email); //--- weimenglee@learn2develop.net---

To understand the sequence of the constructors that are called, insert the following highlighted

statements:

class Contact
{
//...

//---first constructor---
public Contact ()
{

this.ID = 9999;

Console.WriteLine("First constructor");

//---second constructor---
public Contact(int ID)

{
this.ID = ID;

150

Chapter 4: Classes and Objects

Console.WriteLine ("Second constructor") ;

//---third constructor---
public Contact(int ID, string FirstName, string LastName)
this (ID)

this.FirstName = FirstName;
this.LastName = LastName;

Console.WriteLine ("Third constructor") ;

//---fourth constructor---
public Contact(int ID, string FirstName, string LastName, string Email)
this (ID, FirstName, LastName)

this.Email = Email;
Console.WriteLine ("Fourth constructor") ;

The statement:

Contact cl = new Contact (1234, "Wei-Meng", "Lee", "weimenglee@learn2develop.net");

prints the following output:

Second constructor
Third constructor
Fourth constructor

Static Constructors

If your class has static members, it is only sometimes necessary to initialize them before an object is
created and used. In that case, you can add static constructors to the class. For example, suppose that
the Contact class has a public static member count to record the number of the Contact object
created. You can add a static constructor to initialize the static member, like this:

public class Contact

{

/...
public static int count;

static Contact()

{
count = 0;
Console.WriteLine("Static constructor");

//---first constructor---

(continued)

151

Part |: C# Fundamentals

(continued)

public Contact ()
{

count++;
Console.WriteLine("First constructor");

/...

When you now create instances of the Contact class, like this:

Contact cl = new Contact();
Contact c2 = new Contact();
Console.WriteLine (Contact.count) ;

the static constructor is only called once, evident in the following output:
Static constructor
First constructor

First constructor
2

Note the behavior of static constructors:

Q Astatic constructor does not take access modifiers or have parameters.

0 Astatic constructor is called automatically to initialize the class before the first instance is

created or any static members are referenced.

0 Astatic constructor cannot be called directly.

Q he user has no control on when the static constructor is executed in the program.

Copy Constructor

The C# language does not provide a copy constructor that allows you to copy the value of an existing
object into a new object when it is created. Instead, you have to write your own.

The following copy constructor in the Contact class copies the values of the properties of an existing

object (through the otherContact parameter) into the new object:

class Contact
{
/]
//---a copy constructor---
public Contact (Contact otherContact)
{
this.ID = otherContact.ID;
this.FirstName = otherContact.FirstName;

152

Chapter 4: Classes and Objects

this.LastName = otherContact.LastName;
this.Email = otherContact.Email;
}

/]
}
To use the copy constructor, first create a Contact object:

Contact cl = new Contact (1234, "Wei-Meng", "Lee",
"weimenglee@learn2develop.net");

Then, instantiate another Contact object and pass in the first object as the argument:

Contact c2 = new Contact(cl);

Console.WriteLine(c2.ID); //---1234---
Console.WriteLine(c2.FirstName); //----Wei-Meng---
Console.WritelLine(c2.LastName); //---Lee---
Console.WriteLine(c2.Email); //--- weimenglee@learn2develop.net---

Object Initializers (C# 3.0)

Generally, there are two ways in which you can initialize an object — through its constructor(s) during

instantiation or by setting its properties individually after instantiation. Using the Contact class defined

in the previous section, here is one example of how to initialize a Contact object using its constructor:
Contact cl = new Contact (1234, "Wei-Meng", "Lee", "weimenglee@learn2develop.net");

You can also set an object’s properties explicitly:

Contact cl = new Contact();
cl.ID = 1234;

cl.FirstName = "Wei-Meng";
cl.LastName = "Lee";
cl.Email = "weimenglee@learn2develop.net";

In C# 3.0, you have a third way of initializing objects — when they are instantiated. This feature is
known as the object initializers. The following statement shows an example:

Contact cl = new Contact ()

{

ID = 1234,

FirstName = "Wei-Meng",

LastName = "Lee",

Email = "weimenglee@learn2develop.net"

i
Here, when instantiating a Contact class, you are also setting its properties directly using the {} block.

To use the object initializers, you instantiate an object using the new keyword and then enclose the
properties that you want to initialize within the {} block. You separate the properties using commas.

153

Part |: C# Fundamentals

Do not confuse the object initializer with a class’s constructor(s). You should continue to use

the constructor (if it has one) to initialize an object. The following example shows that you use the
Contact’s constructor to initialize the ID property and then the object initializers to initialize the rest of
the properties:

Contact c2 = new Contact(1234)
{

FirstName = "Wei-Meng",
LastName = "Lee",
Email = "weimenglee@learn2develop.net"

Y

Destructors

In C#, a constructor is called automatically when an object is instantiated. When you are done with the
object, the Common Language Runtime (CLR) will destroy them automatically, so you do not have to
worry about cleaning them up. If you are using unmanaged resources, however, you need to free them
up manually.

When objects are destroyed and cleaned up by the CLR, the object’s destructor is called. A C# destructor
is declared by using a tilde (~) followed by the class name:

class Contact : Object
{
//---constructor---
public Contact ()
{
/...
}

//---destructor---
~Contact ()
{
//---release unmanaged resources here---
}
/] ...
}

The destructor is a good place for you to place code that frees up unmanaged resources, such as COM
objects or database handles. One important point is that you cannot call the destructor explicitly — it

will be called automatically by the garbage collector.

To manually dispose of your unmanaged resources without waiting for the garbage collector, you can
implement the IDisposable interface and the Dispose () method.

Chapter 5 discusses the concept of interfaces in more detail.

154

Chapter 4: Classes and Objects

The following shows the Contact class implementing the IDisposable class and implementing the
Dispose () method:

class Contact : IDisposable
{
/] ...
~Contact ()
{
//---call the Dispose() method---
Dispose () ;
}

public void Dispose ()
{
//---release unmanaged resources here---

}
}

You can now manually dispose of unmanaged resources by calling the Dispose () method directly:

Contact cl = new Contact();

/],

//---done with cl and want to dispose it---
cl.Dispose();

There is now a call to the Dispose () method within the destructor, so you must make sure that the code
in that method is safe to be called multiple times — manually by the user and also automatically by the
garbage collector.

The Using Statement

C# provides a convenient syntax for automatically calling the Dispose () method,
using the using keyword. In the following example, the conn object is only valid
within the using block and will be disposed automatically after the execution of the
block.

using System.Data.SglClient;

using (SglConnection conn = new SglConnection())
{
conn.ConnectionString LIl

1 eoa

}

Using the using keyword is a good way for you to ensure that resources (especially
COM objects and unmanaged code, which will not be unloaded automatically by the
garbage collector in the CLR) are properly disposed of once they are no longer needed.

155

Part |: C# Fundamentals

Static Classes

You can also apply the static keyword to class definitions. Consider the following FilesUtil class
definition:

public class FilesUtil
{
public static string ReadFile(string Filename)
{
//---implementation---
return "file content...";

}
public static void WriteFile(string Filename, string content)
{
//---implementation---
}

Within this class are two static methods — ReadFile () and WriteFile (). Because this class contains
only static methods, creating an instance of this class is not very useful, as Figure 4-4 shows.

FilesUtil £ = new FilesTUcil():
£.

¥ GetHashCode
W GetType
& ToString

Figure 4-4

As shown in Figure 4-4, an instance of the FilesUtil class does not expose any of the static methods

defined within it. Hence, if a class contains nothing except static methods and properties, you can simply
declare the class as static, like this:

public static class FilesUtil
{
public static string ReadFile(string Filename)
{
//---implementation---
return "file content...";

}

public static void WriteFile(string Filename, string content)
{
//---implementation---

156

Chapter 4: Classes and Objects

The following statements show how to use the static class:

//---this is not allowed for static classes---

FilesUtil f = new FilesUtil();

//---these are OK---
Console.WriteLine(FilesUtil.ReadFile(@"C:\TextFile.txt"));
FilesUtil.WriteFile(@"C:\TextFile.txt", "Some text content to be written");

Use static classes when the methods in a class are not associated with a particular object. You need not
create an instance of the static class before you can use it.

System.Object Class

In C#, all classes inherit from the System.Object base class (inheritance is discussed in the next
chapter). This means that all classes contain the methods defined in the System.Object class.

All class definitions that do not inherit from other classes by default inherit directly from the System
.Object class. The earlier Contact class definition:

public class Contact
for example, is equivalent to:
public class Contact: Object
You can create an instance of the System.Object class if you want, but it is by itself not terribly useful:
Object o = new object();

The system.Object class exposes four instance methods (see Figure 4-5):

Chiect o = new object():
o

W GetHashCode
W GetTvpe

W ToSkring ew Contact():

Figure 4-5

0 Equals() — Checks whether the value of the current object is equal to that of another object. By
default, the Equals () method checks for reference equality (that is, if two objects are pointing to
the same object). You should override this method for your class.

0 GetHashCode () — Returns a hash code for the class. The GetHashCode () method is suitable
for use in hashing algorithms and data structures, such as a hash table. There will be more about
hashing in Chapter 11

Q GetType () — Returns the type of the current object

0 ToString () — Returns the string representation of an object

157

Part |: C# Fundamentals

In addition, the System.Object class also has two static methods (see Figure 4-6):

Chiject.

&
‘& ReferenceEquals

Figure 4-6
O Equals () — Returns true if the two objects are equal (see next section for more details)
0 ReferenceEquals () — Returns true if two objects are from the same instance

All classes that inherit from System.Object also inherit all the four instance methods, a couple of which

you will learn in more details in the following sections.

Testing for Equality

Consider the following three instances of the Contact class, which implicitly inherits from the System

.Object class:

Contact cl = new Contact()
{

ID = 1234,

FirstName = "Wei-Meng",

LastName = "Lee",

Email = "weimenglee@learn2develop.net"

Y

Contact c2 = new Contact()

{

ID = 1234,

FirstName = "Wei-Meng",

LastName = "Lee",

Email = "weimenglee@learn2develop.net"

}i

Contact c¢3 = new Contact()
{

ID = 4321,

FirstName = "Lee",

LastName = "Wei-Meng",

Email = "weimenglee@gmail.com"

158

Chapter 4: Classes and Objects

As you can see, c1 and c2 are identical in data member values, while c3 is different. Now, let’s use the
following statements to see how the Equals () and ReferenceEquals () methods work:

Console.WriteLine(cl.Equals(c2)); //---False---
Console.WriteLine(cl.Equals(c3)); //---False---

c3 = cl;

Console.WriteLine(cl.Equals(c3)); //---True---

Console.WriteLine (Object.ReferenceEquals(cl, c2)); //---False---
Console.WriteLine (Object.ReferenceEquals(cl, c¢3)); //---True---

The first statement might be a little surprising to you; did I not just mention that you can use the
Equals () method to test for value equality?

Console.WriteLine(cl.Equals(c2)); //---False---
In this case, c1 and c2 have the exact same values for the members, so why does the Equals () method
return False in this case? It turns out that the Equals () method must be overridden in the Contact
class definition. This is because by itself, the System.Object class does not know how to test for the
equality of your custom class; the Equals () method is a virtual method and needs to be overridden in
derived classes. By default, the Equals () method tests for reference equality.
The second statement is straightforward, as c1 and c3 are two different objects:

Console.WriteLine(cl.Equals(c3)); //---False---

The third and fourth statements assign c1 to ¢3, which means that c1 and ¢3 are now two different
variables pointing to the same object. Hence, Equals () returns True:

c3 = cl;
Console.WriteLine(cl.Equals(c3)); //---True---

The fifth and sixth statements test the reference equality of c1 against c2 and then c1 against ¢3:

Console.WriteLine (Object.ReferenceEquals(cl, c2)); //---False---
Console.WriteLine (Object.ReferenceEquals(cl, c3)); //---True---

If two objects have reference equality, they also have value equality, but the reverse
is not necessarily true.

Implementing Equals

By default the Equals () method tests for reference equality. To ensure that it tests for value equality
rather than reference equality, you need to override the Equals () virtual method.

159

Part |: C# Fundamentals

Using the same Contact class used in the previous section, add the methods highlighted in the

following code:

public class Contact

{

public int ID;

public string FirstName;
public string LastName;
public string Email;

public override bool Equals(object obj)

{

}

//---check for null obj---
if (obj == null) return false;

//---see if obj can be cast to Contact---
Contact ¢ = obj as Contact;
if ((System.Object)c == null) return false;

//---check individual fields---
return (ID == c.ID) && (FirstName == c.FirstName) &&
(LastName == c.LastName) && (Email == c.Email);

public bool Equals(Contact c)

{

}

//---check for null obj---
if (¢ == null) return false;

//---check individual fields---
return (ID == c.ID) && (FirstName == c.FirstName) &&
(LastName == c.LastName) && (Email == c.Email);

public override int GetHashCode ()

{

}

return ID;

Essentially, you're adding the following:

160

Qa

Q

The Equals (object obj) method to override the Equals () virtual method in the
System.Object class. This method takes in a generic object (System.Object) as argument.

The Equals (Contact c) method to test for value equality. This method is similar to the first
method, but it takes in a Contact object as argument.

The GetHashCode () method to override the GetHashCode () virtual method in the
System.Object class.

Chapter 4: Classes and Objects

The as Keyword

In the Equals (object obj) method you saw the use of the as keyword:

Contact ¢ = obj as Contact;

The as operator performs conversions between compatible types. In this case, it tries to
cast the obj object into a Contact object. The as keyword is discussed in detail in
Chapter 5.

Notice that the Equals () methods essentially performs the following to determine if two objects are
equal in value:

Q It checks whether the object passed is in null. If it is, it returns false.

Q It checks whether the object passed is a Contact object (the second Equals () method need not
check for this). If it isn't, it returns false.

Q Last, it checks to see whether the individual members of the passed-in Contact object are of the
same value as the members of the current object. Only when all the members have the same
values (which members to test are determined by you) does the Equals () method return true.
In this case, all the four members’ values must be equal to the passed-in Contact object.

The following statement will now print out True:

Console.WriteLine(cl.Equals(c2)); //---True---

ToString() Method

All objects in C# inherits the ToString () method, which returns a string representation of the object.
For example, the DateTime class’s ToString () method returns a string containing the date and time, as
the following shows:

DateTime dt = new DateTime (2008, 2, 29);
//---returns 2/29/2008 12:00:00 AM---
Console.WriteLine (dt.ToString());

For custom classes, you need to override the ToString () method to return the appropriate string. Using
the example of the Contact class, an instance of the Contact class’s ToString () method simply
returns the string "Contact":

Contact cl = new Contact()

{

ID = 1234,

FirstName = "Wei-Meng",

LastName = "Lee",

Email = "weimenglee@learn2develop.net"

Y

//---returns "Contact"---
Console.WriteLine(cl.ToString());

161

Part |: C# Fundamentals

This is because the ToString () method from the Contact class inherits from the System.Object class,
which simply returns the name of the class.

To ensure that the ToString () method returns something appropriate, you need to override it:

class Contact

{
public int ID;
public string FirstName;
public string LastName;
public string Email;

public override string ToString()
{
return ID + "," + FirstName + "," +
LastName + "," + Email;

In this implementation of the ToString () method, you return the concatenation of the various data
members, as evident in the output of the following code:

Contact cl = new Contact()

{

ID = 1234,

FirstName = "Wei-Meng",

LastName = "Lee",

Email = "weimenglee@learn2develop.net"

}i

//---returns "1234,Wei-Meng, Lee,weimenglee@learn2develop.net"---
Console.WriteLine(cl.ToString());

Attributes

Attributes are descriptive tags that can be used to provide additional information about types (classes),
members, and properties. Attributes can be used by .NET to decide how to handle objects while an
application is running.

There are two types of attributes:

0 Attributes that are defined in the CLR.

Q Custom attributes that you can define in your code.

162

Chapter 4: Classes and Objects

CLR Attributes

Consider the following Contact class definition:

class Contact

{
public string FirstName;
public string LastName;
public void PrintName ()
{
Console.WriteLine("{0} {1}", this.FirstName, this.LastName) ;
}
[Obsolete("This method is obsolete. Please use PrintName()")]
public void PrintName (string FirstName, string LastName)
{
Console.WriteLine("{0} {1}", FirstName, LastName);
}
}

Here, the PrintName () method is overloaded — once with no parameter and again with two input
parameters. Notice that the second PrintName () method is prefixed with the Obsolete attribute:

[Obsolete("This method is obsolete. Please use PrintName()")]

That basically marks the method as one that is not recommended for use. The class will still compile, but
when you try to use this method, a warning will appear (see Figure 4-7).

Contact ¢l = new Contact();
cl,.PrintName ("Tei-Meng™, "Les"™]

'Contact. PrintMameistring, string)' is obsolete: 'This method is obsolete. Please use PrintMamer)'

¥ OErrars [| 11 Warning ||| (1) 0 Messages

Description File Line Colurmn Project

_—3 Error List ||§ Output |

Figure 4-7
The Obsolete attribute is overloaded — if you pass in true for the second parameter, the message set
in the first parameter will be displayed as an error (by default the message is displayed as a warning):

[Obsolete("This method is obsolete. Please use PrintName()", true)]

Figure 4-8 shows the error message displayed when you use the PrintName () method marked with the
Obsolete attribute with the second parameter set to true.

163

Part |: C# Fundamentals

Contact ¢l = new Contact()}
cl,PrintName ("Tei-Meng™, "Lee™) ;

'Contact.PrinkMame(string, string)' is obsolete: 'This method is obsolete, Please use PrintMame()'

|Q 1 Errar | |‘_;3 0 W arnings | |[_|) 0 Messages

Description File Line Colurnn Praject
@ 1 'Conkact, PrintMamedstring, string)’ is Forml.cs 51 13 Chapter4 - Classes and
obsolete: 'This method is obsolete, Objecks

Flease use PrintMame()'

_—B Errar List |E Cgbput |

Figure 4-8

Attributes can also be applied to a class. In the following example, the Obsolete attribute is applied to
the Contact class:

[Obsolete("This class is obsolete. Please use NewContact")]
class Contact

{
/]

Custom Attributes

You can also define your own custom attributes. To do so, you just need to define a class that inherits

directly from System.Attribute. The following Programmer class is one example of a custom
attribute:

public class Programmer : System.Attribute
{
private string _Name;
public double Version;
public string Dept { get; set; }
public Programmer (string Name)
{

this._ Name = Name;

In this attribute, there are:

Q One private member (_Name)
Q One public member (Version)

O One constructor, which takes in one string argument

164

Chapter 4: Classes and Objects

Here’s how to apply the Programmer attribute to a class:

[Programmer ("Wei-Meng Lee", Dept="IT",
class Contact

{

Version=1.5)]

/]

You can also apply the Programmer attribute to methods (as the following code shows), properties,
structure, and so on:

[Programmer ("Wei-Meng Lee", Dept="IT",

Version=1.5)]
class Contact

{
[Programmer ("Jason", Dept = "CS", Version = 1.6)]
public void PrintName ()
{
Console.WriteLine("{0} {1}", this.FirstName, this.LastName) ;
}
/...
}

Use the AttributeUsage attribute to restrict the use of any attribute to certain types:

[System.AttributeUsage (System.AttributeTargets.Class |
System.AttributeTargets.Method |

System.AttributeTargets.Property)]
public class Programmer : System.Attribute

{
private string _Name;
public double Version;
public string Dept { get; set; }
public Programmer (string Name)
{
this._Name = Name;
}
}

In this example, the Programmer attribute can only be used on class definitions, methods, and
properties.

Structures

An alternative to using classes is to use a struct (for structure). A struct is a lightweight user-defined type
that is very similar to a class, but with some exceptions:

Q Structs do not support inheritance or destructors.
Q Astruct is a value type (class is a reference type).

Q A struct cannot declare a default constructor.

165

Part |: C# Fundamentals

Structs implicitly derive from object and unlike classes, a struct is a value type. This means that when
an object is created from a struct and assigned to another variable, the variable will contain a copy of the
struct object.

Like classes, structs support constructor, properties, and methods. The following code shows the
definition for the Coordinate struct:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplicationl
{
public partial class Forml : Form
{
public Forml ()

{

InitializeComponent () ;

}

public struct Coordinate

{
public double latitude { get; set; }
public double longitude { get; set; }

The coordinate struct contains two properties (defined using the automatic properties feature). You
can add a constructor to the struct if you want:

public struct Coordinate

{
public double latitude { get; set; }
public double longitude { get; set; }

public Coordinate (double lat, double lng)

{
latitude = lat;
longitude = 1lng;

Remember, a struct cannot have a default constructor.

166

Chapter 4: Classes and Objects

Note that the compiler will complain with the message “Backing field for automatically implemented
property ‘Coordinate.latitude” must be fully assigned before control is returned to the caller” when you
try to compile this application. This restriction applies only to structs (classes won’t have this problem).
To resolve this, you need to call the default constructor of the struct, like this:

public struct Coordinate

{
public double latitude { get; set; }
public double longitude { get; set; }

public Coordinate (double lat, double 1lng)
this ()

latitude = lat;
longitude = 1ng;

}

You can also add methods to a struct. The following shows the ToString()
method defined in the Coordinate struct:

public struct Coordinate

{
public double latitude { get; set; }
public double longitude { get; set; }

public Coordinate (double lat, double 1ng)
this()
{
latitude = lat;
longitude = 1ng;
}

public override string ToString()

{
return latitude + "," + longitude;

To use the Coordinate struct, create a new instance using the new keyword and then initialize its
individual properties:

public partial class Forml : Form

{
public Forml ()
{

InitializeComponent () ;

}

private void Forml_Load(object sender, EventArgs e)
(continued)

167

Part |: C# Fundamentals

(continued)

Coordinate ptl = new Coordinate() ;
ptl.latitude = 1.33463167;
ptl.longitude = 103.74697;

Or you can use the object initializer feature:

private void Forml_Load(object sender, EventArgs e)
{
/...
Coordinate pt2 = new Coordinate()
{
latitude = 1.33463167,
longitude = 103.74697
¥

Because structs are value types, assigning one struct to another makes a copy of its value, as the
following code sample shows:

private void Forml_Load(object sender, EventArgs e)
{
//...
Coordinate pt2 = new Coordinate()
{
latitude = 1.33463167,
longitude = 103.74697
Y

Coordinate pt3;

pt3 = pt2;

Console.WriteLine("After assigning pt2 to pt3");
Console.WriteLine("pt2: {0}", pt2.ToString());
Console.WriteLine("pt3: {0}", pt3.ToString());

pt3.latitude = 1.45631234;
pt3.longitude = 101.32355;

Console.WriteLine ("After changing pt3");
Console.WriteLine("pt2: {0}", pt2.ToString());
Console.WriteLine("pt3: {0}", pt3.ToString());

Here’s the program’s output:

After assigning pt2 to pt3
pt2: 1.33463167,103.74697
pt3: 1.33463167,103.74697
After changing pt3

pt2: 1.33463167,103.74697
pt3: 1.45631234,101.32355

168

Chapter 4: Classes and Objects

Notice that after changing the properties of pt3, the latitude and longitude properties of pt2 and
pt3 are different.

Memory Allocation

When you use the new keyword to create an instance of a class, the object will be
allocated on the heap. When using structs, the struct object is created on the stack
instead. Because of this, using structs yields better performance gains. Also, when
passing a struct to a method, note that it is passed by value instead of passed by
reference.

In general, use classes when dealing with large collections of data. When you have
smaller sets of data to deal with, using structs is more efficient.

Summary

This chapter explained how to define a class and the various components that make up a class —
properties, methods, constructors, and destructors. In addition, it explored the new features in C# 3.0 —
object initializers, anonymous types, and automatic properties. While you need to use the new keyword
to instantiate a new object, you can also create static classes that can be used without instantiation.
Finally, you saw how to use structs, the lightweight alternative to classes, that behave much like classes
but are value types.

169

Interfaces

When defining a class, you have to provide the implementation for all its methods and properties.
However, there are times when you do not want to provide the actual implementation of how a
class might work. Rather, you want to describe the functionalities of the class. This set of
descriptions is like a contract, dictating what the class will do, the types of parameters needed, and
the type of return results. In object-oriented programming, this contract is known as an interface.

An interface defines a class and its members without providing any implementation. When using
interfaces in programming, generally three parties are involved:

Q Interface definition — The interface defines the composition of a class, such as methods,
properties, and so on. However, the interface does not provide any implementation for
any of these members.

Q Implementing class — The class that implements a particular interface provides the
implementation for all the members defined in that interface.

Q Clients — Objects that instantiate from the implementing classes are known as the client.
The client invokes the methods defined in the interface, whose implementation is
provided by the implementing class.

Differences between an Interface and an Abstract Base Class

Conceptually, an abstract class is similar to an interface; however, they do have some
subtle differences:

U An abstract class can contain a mixture of concrete methods (implemented)
and abstract methods (an abstract class needs at least one abstract method); an
interface does not contain any method implementations.

0 An abstract class can contain constructors and destructors; an interface
does not.

O A class can implement multiple interfaces, but it can inherit from only one
abstract class.

Part |: C# Fundamentals

This chapter explains how to define an interface and how to implement the interface using a class.

Defining an Interface

Defining an interface is similar to defining a class — you use the interface keyword followed by an
identifier (the name of the interface) and then specify the interface body. For example:

interface IPerson

{
string Name { get; set; }
DateTime DateofBirth { get; set; }
ushort Age();

}
Here you define the IPerson interface containing three members — two properties and one function.
You do not use any access modifiers on interface members — they are implicitly public. That’s because
the real use of an interface is to define the publicly accessible members (such as methods and properties)
of a class so that all implementing classes have the same public members. The implementation of each
individual member is left to the implementing class.
The declaration for the Name property consists simply of get and set accessors without implementation:

string Name { get; set; }

And the aAge () method simply contains its return type (and input parameters, if any) but without its
implementation:

ushort Age();

It’s important to note that you cannot create an instance of the interface directly; you can only instantiate
a class that implements that interface:

//---error---
IPerson person = new IPerson();

Interface Naming Convention

By convention, begin the name of an interface with a capital I (such as TPerson,
IManager, IEmployee, and so on) so that it is clear that you are dealing with an
interface.

172

Chapter 5: Interfaces

Implementing an Interface

Once an interface is defined, you can create a new class to implement it. The class that implements that
particular interface must provide all the implementation for the members defined in that interface.

For example, here’s an Employee class that implements the IPerson interface:

public class Employee : IPerson

{
public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()
{
return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);
}
}

To implement an interface, you define your class and add a colon (:) followed by the interface name:

public class Employee : IPerson

You then provide the implementation for the various members:

{
public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()
{

return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);

}

Notice that I'm using the new automatic properties feature (discussed in Chapter 4) in C# 3.0 to

implement the Name and DateofBirth properties. That’s why the implementation looks the same as
the declaration in the interface.

As explained, all implemented members must have the public access modifiers.
You can now use the class as you would a normal class:

Employee el = new Employee();
el.DateofBirth = new DateTime (1980, 7, 28);
el.Name = "Janet";

Console.WriteLine(el.Age()); //---prints out 28---

This could be rewritten using the new object initializer feature (also discussed in Chapter 4) in C# 3.0:

Employee el = new Employee() {

DateofBirth = new DateTime (1980, 7, 28), Name = "Janet"
Y

Console.WriteLine(el.Age()); //---prints out 28---

173

Part |: C# Fundamentals

Implementing Multiple Interfaces

A class can implement any number of interfaces. This makes sense because different interfaces can define
different sets of behaviors (that is, members) and a class may exhibit all these different behaviors at the

same time.

For example, the IPerson interface defines the basic information about a user, such as name and date of
birth, while another interface such as IAddress can define a person’s address information, such as
street name and ZIP code:

interface IAddress

{
string Street { get; set; }
uint Zip { get; set; }
string State();

An employee working in a company has personal information as well as personal address information,
and you can define an Employee class that implements both interfaces, like this:

public class Employee : IPerson, IAddress
{

//---implementation here---
}

The full implementation of the Employee class looks like this:

public class Employee : IPerson, IAddress
{
//---IPerson---
public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()
{

return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);

}

//---IAddress---

public string Street { get; set; }
public uint Zip { get; set; }
public string State()

{

//---some implementation here---
return "CA";

174

Chapter 5: Interfaces

You can now use the Employee class like this:

Employee el = new Employee()

{
DateofBirth = new DateTime (1980, 7, 28),

Name = "Janet",
Zip = 123456,
Street = "Kingston Street"

Y
Console.WriteLine(el.Age())

Console.WriteLine(el.State());

Extending Interfaces

You can extend interfaces if you need to add new members to an existing interface. For example, you
might want to define another interface named IManager to store information about managers. Basically,
a manager uses the same members defined in the IPerson interface, with perhaps just one more
additional property — Dept. In this case, you can define the IManager interface by extending the
IPerson interface, like this:

interface IPerson

{

string Name { get; set; }
DateTime DateofBirth { get; set; }
ushort Age();

interface IManager : IPerson

{

string Dept { get; set; }

To use the IManager interface, you define a Manager class that implements the IManager interface,

like this:

public class Manager : IManager

{

//---IPerson---

public string Name { get; set; }

public DateTime DateofBirth { get; set; }
public ushort Age()

{

return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);

//---IManager---
public string Dept { get; set; }

175

Part |: C# Fundamentals

The Manager class now implements all the members defined in the IPerson interface, as well as the
additional member defined in the IManager interface. You can use the Manager class like this:

Manager ml = new Manager ()

{

Name = "John",
DateofBirth = new DateTime (1970, 7, 28),
Dept = "IT"

}i
Console.WriteLine(ml.Age());

You can also extend multiple interfaces at the same time. The following example shows the IManager
interface extending both the IPerson and the IAddress interfaces:

interface IManager : IPerson, IAddress

{
string Dept { get; set; }

The Manager class now needs to implement the additional members defined in the TAddress interface:

public class Manager : IManager
{
//---IPerson---
public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()
{

return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);

//---IManager---
public string Dept { get; set; }

//---IAddress---

public string Street { get; set; }
public uint Zip { get; set; }
public string State()

{

//---some implementation here---
return "CA";

You can now access the Manager class like this:

Manager ml = new Manager ()

{

Name = "John",
DateofBirth = new DateTime (1970, 7, 28),
Dept = "IT",

176

Chapter 5: Interfaces

Street = "Kingston Street",
Zip = 12345
Y
Console.WriteLine(ml.Age());
Console.WriteLine(ml.State());

Interface Casting

In the preceding example, the IManager interface extends both the IPerson and IAddress interfaces.
So an instance of the Manager class (which implements the IManager interface) will contain members
defined in both the IPerson and Iaddress interfaces:

Manager ml = new Manager ()

{

Name = "John", //---from IPerson---
DateofBirth = new DateTime (1970, 7, 28), //---from IPerson---
Dept = "IT", //---from IManager---
Street = "Kingston Street", //---from IAddress---
Zip = 12345 //---from IAddress---

Y
Console.WriteLine (ml.Age()); //---from IPerson---
Console.WriteLine(ml.State()); //---from IAddress---

In addition to accessing the members of the Manager class through its instance (in this case m1), you can
access the members through the interface that it implements. For example, since m1 is a Manager object
that implements both the ITPerson and IAddress interfaces, you can cast ml to the IPerson interface
and then assign it to a variable of type IPerson, like this:

//---cast to IPerson---
IPerson p = (IPerson) ml;

This is known as interface casting. Interface casting allows you to cast an object to one of its
implemented interfaces and then access its members through that interface.

You can now access members (the Age () method and Name and DateofBirth properties) through p:

Console.WriteLine(p.Age());
Console.WriteLine (p.Name) ;
Console.WriteLine(p.DateofBirth);

Likewise, you can cast the m1 to the TAddress interface and then assign it to avariable to of type
IAddress:

//---cast to IAddress---
IAddress a = (IAddress) ml;
Console.WriteLine(a.Street) ;
Console.WriteLine(a.Zip);
Console.WriteLine(a.State());

177

Part |: C# Fundamentals

Note that instead of creating an instance of a class and then type casting it to an interface, like this:

Manager m2 = new Manager () ;
IPerson p = (IPerson) m2;

You can combine them into one statement:

IPerson p = (IPerson) new Manager () ;

The is and as Operators

Performing a direct cast is safe only if you are absolutely sure that the object you are casting implements
the particular interface you are trying to assign to. Consider the following case where you have an
instance of the Employee class:

Employee el = new Employee();

The Employee class implements the IPerson and IAddress interfaces. And so if you try to cast it to an
instance of the IManager interface, you will get a runtime error:

//---Error: Invalid cast exception---
IManager m = (IManager) el;

To ensure that the casting is done safely, use the is operator. The is operator checks whether an object is
compatitble with a given type. It enables you to rewrite the casting as:

if (ml is IPerson)

{
IPerson p = (IPerson) ml;
Console.WriteLine(p.Age());
Console.WriteLine (p.Name) ;
Console.WriteLine(p.DateofBirth);

}

if (ml is IAddress)

{
IAddress a = (IAddress) ml;
Console.WriteLine(a.Street);
Console.WriteLine(a.Zip) ;
Console.WriteLine(a.State());

}

if (el is IManager)
{

IManager m = (IManager) el;
}

Using the is operator means that the compiler checks the type twice — once in the is statement and

again when performing the actual casting. So this is actually not very efficient. A better way would be to
use the as operator.

178

Chapter 5: Interfaces

The as operator performs conversions between compatible types. Here’s the preceding casting rewritten
using the as operator:

IPerson p = ml as IPerson;

if (p != null)

{
Console.WriteLine(p.Age());
Console.WriteLine (p.Name) ;
Console.WriteLine(p.DateofBirth);

IAddress a = ml as IAddress;

if (a !'= null)

{
Console.WriteLine(a.Street);
Console.WriteLine(a.Zip) ;
Console.WriteLine(a.State());

Employee el = new Employee();
//---m is null after this statement---
IManager m = el as IManager;
if (m != null)
{
/],

If the conversion fails, the as operator returns null, so you need to check for null before you actually
use the instance of the interface.

Overriding Interface Implementations

When implementing an interface, you can mark any of the methods from the interface as virtual.
For example, you can make the Age () method of the Employee class virtual so that any other classes

that inherit from the Employee class can override its implementation:

public interface IPerson

{

}

string Name { get; set; }
DateTime DateofBirth { get; set; }
ushort Age();

public class Employee : IPerson

{

return

public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public virtual ushort Age()

(ushort) (DateTime.Now.Year - this.DateofBirth.Year);

179

Part |: C# Fundamentals

Suppose there is a new class called Director that inherits from the Employee class. The Director class
can override the Age () method, like this:

public class Director : Employee
{
public override ushort Age()
{

return base.Age() + 1;

}
}

Notice that the Age () method increments the age returned by the base class by 1. To use the Director
class, create an instance of it and set its date of birth as follows:

Director d = new Director();
d.DateofBirth = new DateTime (1970, 7, 28);

When you print out the age using the Age () method, you get 39 (2008 — 1970 = 38; increment it by 1 and
the result is 39):

Console.WriteLine(d.Age()); //---39---

This proves that the overriden method in the Age () method is invoked. If you typecast d to the IPerson
interface, assign it to an instance of the IPerson interface, and invoke the Age () method, it will still
print out 39:

IPerson p = d as IPerson;
Console.WriteLine(p.Age()); //---39---

An interesting thing happens if, instead of overriding the Age () method in the Director class, you
create a new Age () class using the new keyword:

public class Director : Employee
{
public new ushort Age()

{

return (ushort) (base.Age() + 1);
}
}

Create an instance of the Director class and invoke its Age () method; it returns 39, as the following
statements show:

Director d = new Director();
d.DateofBirth = new DateTime (1970, 7, 28);
Console.WriteLine(d.Age()); //---39---

180

Chapter 5: Interfaces

However, if you typecast d to an instance of the IPerson interface and then use that interface to invoke
the Age () method, you get 38 instead:

IPerson p = d as IPerson;
Console.WritelLine(p.Age()); //---38---

What's happened is that the instance of the IPerson interface (p) uses the Age () method defined in the
Employee class.

Summary

An interface defines the contract for a class — the various members that a class must have, the result
returned for each method, and so on. However, an interface does not provide the implementation for a
class; the actual implementation is left to the implementing classes. This chapter presented different
ways in which you can work with interfaces — implementing multiple interfaces, extending interfaces,
casting to an interface, and so forth.

181

Inheritance

Inheritance is one of the fundamental concepts in object-oriented programming. Inheritance
facilitates code reuse and allows you to extend the functionality of code that you have already
written. This chapter looks at:

Q

U 00 UJ U o

How inheritance works

Implementing inheritance in C#

Defining abstract methods and classes

Sealing classes and methods

Defining overloaded methods

The different types of access modifiers you can use in inheritance

Using inheritance in interfaces

Understanding Inheritance in C#

The following Employee class contains information about employees in a company:

public class Employee

{

public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()
{
return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);
}

Part |: C# Fundamentals

Manager is a class containing information about managers:

public class Manager

{
public string Name { get; set; }
public DateTime DateofBirth { get; set; }
public ushort Age()

{
return (ushort) (DateTime.Now.Year - this.DateofBirth.Year);

}
public Employee[] subordinates { get; set; }

The key difference between the Manager class and the Employee class is that Manager has an additional
property, subordinates, that contains an array of employees under the supervision of a manager. In
fact, a manager is actually an employee, except that he has some additional roles. In this example, the
Manager class could inherit from the Employee class and then add the additional subordinates
property that it requires, like this:

public class Manager: Employee

{
public Employee[] subordinates { get; set; }

}

By inheriting from the Employee class, the Manager class has all the members defined in the Employee
class made available to it. The relationships between the Employee and Manager classes can be
represented using a class diagram as shown in Figure 6-1.

)

| Employee
Class

=l Properties
ZF Dateoffirth
ﬁ Mame

[= Methods
W Age

(Manager (

Class
= Employee

)

=l Properties
ﬁ subordinates

Figure 6-1

Employee is known as the base class and Manager is a derived class. In object-oriented programming,
inheritance is classified into two types: implementation and interface. This chapter explores both.

Implementation Inheritance

Implementation inheritance is when a class derives from another base class, inheriting all the base class’s
members. To add new members to a class, you can define another class that derives from the existing
base class. Using implementation inheritance, the new derived class inherits all of the implementation
provided in the base class.

184

Chapter 6: Inheritance

To understand how inheritance works in C#, define a simple class as follows:

public class Shape
{
//---properties---
public double length { get; set; }
public double width { get; set; }
//---method---
public double Perimeter ()
{
return 2 * (this.length + this.width);
}

Here, the Shape class contains two properties and a single method. By itself, this class does not specify a
particular shape, but it does assume that a basic shape contains length and width. It also assumes that
the perimeter of a shape is simply double the sum of its length and width.

Using this base class, you can define other shapes such as square, rectangle, and circle. Let’s start with
the rectangle shape. Using Shape as the base class, you can define a Rectangle class (a derived class
because it derives from the Shape class) by inheriting from the Shape class, like this:

public class Rectangle : Shape
{
}

In C#, you use the colon (:) operator to indicate that a class inherits from another class (known as the
base class). This example reads: “The Rectangle class inherits from the Shape class.” This means that
whatever members the Shape class has are inherited by the Rectangle class. (In this example, the
Rectangle class has no implementation; that will be added in the next few sections.)

C# supports only single-class inheritance, which means that a class can inherit directly from only one base
class. If you do not specify the base class, the C# compiler assumes that it is inheriting from the System
.Object class. Because the Shape class did not specify who it is inheriting from, it is equivalent to:

public class Shape : Object

{
//---properties---
public double length { get; set; }
public double width { get; set; }

//---method---
public double Perimeter ()
{

return 2 * (this.length + this.width);
}

To use the Rectangle class, you instantiate it as you would other classes:

Rectangle r = new Rectangle();

185

Part |: C# Fundamentals

Because the Rectangle class inherits all the members of the Shape class, you can access its members as
if they are defined within the Rectangle class itself:

r.length = 4;
r.width = 5;
Console.WriteLine(r.Perimeter()); //---18---

Abstract Class

The Shape class does not specify a particular shape, and thus it really does not make sense for you to
instantiate it directly, like this:

Shape someShape = new Shape();

Instead, all other shapes should inherit from this base class. To ensure that you cannot instantiate the
Shape class directly, you can make it an abstract class by using the abstract keyword:

public abstract class Shape

{
//---properties---
public double length { get; set; }
public double width { get; set; }

//---method---
public double Perimeter ()

{
return 2 * (this.length + this.width);
}

Once a class is defined as abstract, you can no longer instantiate it directly; the following is now not
permitted:

//---cannot instantiate directly---
Shape someShape = new Shape();

The abstract keyword indicates that the class is defined solely for the purpose of inheritance; other
classes need to inherit from it in order to have objects of this base type.

Abstract Methods

Besides making a class abstract by using the abstract keyword, you can also create abstract methods. An
abstract method has no implementation, and its implementation is left to the classes that inherit from the
class that defines it. Using the Shape class as an example, you can now define an abstract method called
Area () that calculates the area of a shape:

public abstract class Shape
{

//---properties---
public double length { get; set; }

186

Chapter 6: Inheritance

public double width { get; set; }

//---method---
public double Perimeter ()
{

return 2 * (this.length + this.width);
}

//---abstract method---
public abstract double Area();

It is logical to make the Area () method an abstract one because at this point you don’t really know what

shape you are working on (circle, square, or triangle, for example), and thus you don’t know how to
calculate its area.

An abstract method is defined just like a normal method without the normal method block ({ }). Classes

that inherit from a class containing abstract methods must provide the implementation for those
methods.

The Rectangle class defined earlier must now implement the Area () abstract method, using the
override keyword:

public class Rectangle : Shape
{

//---provide the implementation for the abstract method---
public override double Area()
{
return this.length * this.width;
}

Instead of using the this keyword to access the length and width properties, you can also use the
base keyword:

public class Rectangle : Shape
{
public override double Areal()
{
return base.length * base.width;
}
}
The base keyword is used to access members (such as properties and variables) of the base class from

within a derived class. You can also use the base keyword to access methods from the base class; here’s
an example:

public class Rectangle : Shape
{
public override sealed double Area()
{
return this.length * this.width;

(continued)

187

Part |: C# Fundamentals

(continued)
//return base.length * base.width;
}
public override double Perimeter ()
{
//---invokes the Perimeter () method in the Shape class---
return base.Perimeter () ;
}
}

You can now use the Rectangle class like this:

Rectangle r = new Rectangle();
r.length = 4;

r.width = 5;
Console.WriteLine(r.Perimeter()); //---18---
Console.WriteLine(r.Area()); //---20---

An abstract method can only be defined in an abstract class.

The base keyword refers to the parent class of a derived class, not the root class. Consider the following
example where you have three classes — Class3 inherits from Class2, which in turn inherits from
Classl:

public class Classl

{
public virtual void PrintString()
{

Console.WriteLine("Classl");
}

public class Class2: Classl

{
public override void PrintString/()
{

Console.WriteLine("Class2");
}

public class Class3 : Class?2
{
public override void PrintString()

{
base.PrintString() ;

188

Chapter 6: Inheritance

In Class3, the base.PrintString () statement invokes the PrintString () method defined in its
parent, Class2. The following statements verify this:

Class3 ¢3 = new Class3();
//---prints out "Class2"---
c3.PrintString() ;

Virtual Methods

Using the Rectangle class, you can find the perimeter and area of a rectangle with the Perimeter ()
and Area () methods, respectively. But what if you want to define a Circle class? Obviously, the
perimeter (circumference) of a circle is not the length multiply by its width. For simplicity, though, let’s
assume that the diameter of a circle can be represented by the Length property.

The definition of Circle will look like this:

public class Circle : Shape
{
}

However, the Perimeter () method should be reimplemented as the circumference of a circle is defined
tobe 2*m*radius (or m*diameter). But the Perimeter () method has already been defined in the
base class shape. In this case, you need to indicate to the compiler that the Perimeter () method in

the Shape class can be reimplemented by its derived class. To do so, you need to prefix the Perimeter ()
method with the virtual keyword to indicate that all derived classes have the option to change its
implementation:

public abstract class Shape
{

//---properties---
public double length { get; set; }
public double width { get; set; }

//---make this method as virtual---
public virtual double Perimeter ()

{
return 2 * (this.length + this.width);

}

//---abstract method---
public abstract double Areal();

The circle class now has to provide implementation for both the Perimeter () and Area () methods
(note the use of the override keyword):

public class Circle : Shape
{
//---provide the implementation for the abstract method---
public override double Perimeter ()
(continued)

189

Part |: C# Fundamentals

(continued)

{
return Math.PI * (this.length);
}

//---provide the implementation for the virtual method---
public override double Area()
{
return Math.PI * Math.Pow(this.length /2 ,2);
}

Bear in mind that when overriding a method in the base class, the new method must have the same
signature (parameter) as the overridden method. For example, the following is not allowed because the
new Perimeter () method has a single input parameter, but this signature does not match that of the
pPerimeter () method defined in the base class (Shape):

public class Circle : Shape
{
//---signature does not match Perimeter () in base class---
public override double Perimeter (int Diameter)
{
/...
}

If you need to implement another new method also called Perimeter () in the Circle class but with a
different signature, use the new keyword, like this:

public class Circle : Shape
{
//---a new Perimeter () method---
public new double Perimeter (int diameter)
{
/...
}

When a class has multiple methods each with the same name but a different signature (parameter), the
methods are known as overloaded. The Perimeter () method of the Circle class is now overloaded (see
Figure 6-2). Note that IntelliSense shows that the first method is from the Shape base class, while the
second one is from the Circle class.

Circle © = new Circle();
c.Perimeter t‘

|¢ 1 of 2% double Shape.Perimeter ()‘

Circle ¢ = new Circlef():
o .PErineter |

‘.2 of 2% double Circle, Perimeter {int diameter)‘

Figure 6-2

See the “Owverloading Methods” section later in this chapter.

190

Chapter 6: Inheritance

Sealed Classes and Methods

So far you've seen the class definition for Shape, Rectangle, and Circle. Now let’s define a class for
the shape square. As you know, a square is just a special version of rectangle; it just happens to have the
same length and width. In this case, the Square class can simply inherit from the Rectangle class:

public class Square : Rectangle
{
}

You can instantiate the Square class as per normal and all the members available in the Rectangle
would then be available to it:

Square s = new Square();
s.length = 5;

s.width = 5;
Console.WriteLine(s.Perimeter()); //---20---
Console.WriteLine(s.Area()); //---25---

To ensure that no other classes can derive from the Square class, you can seal it using the sealed
keyword. A class prefixed with the sealed keyword prevents other classes inheriting from it. For
example, if you seal the Square class, like this:

public sealed class Square : Rectangle
{
}

The following will result in an error:

//---Error: Square is sealed---
public class Rhombus : Square

{
}

A sealed class cannot contain virtual methods. In the following example, the Square class is sealed, so it
cannot contain the virtual method called Diagonal ():

public sealed class Square : Rectangle

{
//---Error: sealed class cannot contain virtual methods---
public virtual Single Diagonal ()
{

//---implementation here---
}
}

This is logical because a sealed class does not provide an opportunity for a derived class to implement its
virtual method. By the same argument, a sealed class also cannot contain abstract methods:

public sealed class Square : Rectangle

{
//---Error: sealed class cannot contain abstract method---
public abstract Single Diagonal () ;

191

Part |: C# Fundamentals

You can also seal methods so that other derived classes cannot override the implementation that you
have provided in the current class. For example, recall that the Rectangle class provides the
implementation for the abstract Area () method defined in the Shape class:

public class Rectangle : Shape
{
public override double Area()

{
return this.length * this.width;

}

To prevent the derived classes of Rectangle (such as Square) from modifying the Area ()
implementation, prefix the method with the sealed keyword:

public class Rectangle : Shape
{
public override sealed double Area()
{
return this.length * this.width;
}

Now if you try to override the Area () method in the Square class, you get an error:

public sealed class Square : Rectangle

{
//---Error: Area() is sealed in Rectangle class---
public override double Area()
{

//---implementation here---

}

Overloading Methods

When you have multiple methods in a class having the same name but different signatures (parameters),
they are known as overloaded methods. Consider the following class definition:

public class BaseClass

{
public void Method (int num)

{

Console.WriteLine ("Number in BaseClass is " + num);

}

public void Method(string st)
{

Console.WriteLine("String in BaseClass is " + st);

}

192

Chapter 6: Inheritance

Here, BaseClass has two methods called Method () with two different signatures — one integer and
another one string.

When you create an instance of BaseClass, you can call Method () with either an integer or string
argument and the compiler will automatically invoke the appropriate method:

BaseClass b = new BaseClass();

//---prints out: Number in BaseClass is 5---
b.Method (5) ;

//---prints out: String in BaseClass is This is a string---
b.Method("This is a string");

Suppose that you have another class inheriting from BaseClass with a Method () method that has a
different signature, like this:

public class DerivedClass : BaseClass
{
//---overloads the method---
public void Method(char ch)
{

Console.WriteLine("Character in DerivedClass is " + ch);

Then, DerivedClass now has three overloaded Method () methods, as illustrated in Figure 6-3.

DerivedClass d = new DerivedClass():
d.Method |
[®10f 3% void Derivedclass. Method (char ch)|

DerivedClass d = new DeriwvedClass():
d.Method |
&2of 3% void BasedClass. Method {int num)‘

DerivedClass d = new DeriwvedClass():
d.Method (|
|A.3 of 3% void BaseClass, Method (string st)|

Figure 6-3

You can now pass three different types of arguments into Method () — character, integer, and string:
DerivedClass d = new DerivedClass() ;

//---prints out: Character in DerivedClass is C---
d.Method ('C");

//---prints out: Number in BaseClass is 5---
d.Method (5) ;

//---prints out: String in BaseClass is This is a string---
d.Method ("This is a string");

193

Part |: C# Fundamentals

What happens if you have a Method () having the same signature as another one in the base class, such
as the following?

public class DerivedClass : BaseClass

{
//---overloads the method with the same parameter list---
public void Method (int num)

{
Console.WriteLine ("Number in DerivedClass is " + num);

//---overloads the method
public void Method(char ch)
{

Console.WriteLine("Character in DerivedClass is " + ch);

In this case, Method (int num) in DerivedClass will hide the same method in BaseClass, as the
following printout proves:

DerivedClass d = new DerivedClass();

//---prints out: Number in DerivedClass is 5---
d.Method (5) ;

//---prints out: String in BaseClass is This is a string---
d.Method("This is a string");

//---prints out: Character in DerivedClass is C---
d.Method('C");

If hiding Method (int num) in BaseClass is your true intention, use the new keyword to denote that as
follows (or else the compiler will issue a warning):

//---overloads the method with the same parameter list
public new void Method (int num)
{

Console.WriteLine ("Number in DerivedClass is " + num);

In C#, you use the new keyword to hide methods in the base class by signature.
C# does not support hiding methods by name as is possible in VB.NET by using the
Shadows keyword.

194

Chapter 6: Inheritance

The following table summarizes the different keywords used for inheritance.

Modifier Description

new Hides an inherited method with the same signature.

static A member that belongs to the type itself and not to a specific object.

virtual A method that can be overridden by a derived class.

abstract Provides the signature of a method/class but does not contain any
implementation.

override Overrides an inherited virtual or abstract method.

sealed A method that cannot be overridden by derived classes; a class that cannot be

inherited by other classes.

extern An “extern” method is one in which the implementation is provided elsewhere
and is most commonly used to provide definitions for methods invoked using
.NET interop.

Overloading Operators

Besides overloading methods, C# also supports the overloading of operators (such as +, -, /, and *).
Operator overloading allows you to provide your own operator implementation for your specific type.
To see how operator overloading works, consider the following program containing the Point class
representing a point in a coordinate system:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace OperatorOverloading
{
class Program
{
static void Main(string[] args)
{
}
}

class Point

{
public Single X { get; set; }
public Single Y { get; set; }

public Point(Single X, Single Y)
{
this.X
this.Y

X;
Y;

(continued)

195

Part |: C# Fundamentals

(continued)

public double DistanceFromOrigin ()
{
return (Math.Sgrt (Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));

The pPoint class contains two public properties (X and Y), a constructor, and a method —
DistanceFromOrigin().

If you constantly perform calculations where you need to add the distances of two points (from the
origin), your code may look like this:

static void Main(string[] args)

{
Point ptA = new Point (4, 5);
Point ptB = new Point (2, 7);
double distanceA, distanceB;
distanceA = ptA.DistanceFromOrigin(); //---6.40312423743285---
distanceB = ptB.DistanceFromOrigin(); //---7.28010988928052---
Console.WriteLine (distanceA + distanceB); //---13.6832341267134---
Console.ReadLine() ;

}

A much better implementation is to overload the + operator for use with the Point class. To overload
the + operator, define a public static operator within the Point class as follows:

class Point

{
public Single X { get; set; }
public Single Y { get; set; }

public Point(Single X, Single Y)
{

this.X = X;

this.Y Y;

}
public double DistanceFromOrigin ()
{
return (Math.Sgrt (Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));

public static double operator +(Point A, Point B)
{

return (A.DistanceFromOrigin() + B.DistanceFromOrigin()) ;

196

Chapter 6: Inheritance

The operator keyword overloads a built-in operator. In this example, the overloaded + operator allows
it to “add” two Point objects by adding the result of their DistanceFromOrigin () methods:

static void Main(string[] args)

{

Point ptA new Point (4, 5);
Point ptB = new Point (2, 7);

Console.WriteLine (ptA + ptB); //---13.6832341267134---
Console.ReadLine() ;

You can also use the operator keyword to define a conversion operator, as the following example
shows:

class Point

{
public Single X { get; set; }
public Single Y { get; set; }

public Point(Single X, Single Y)
{

this.X = X;

this.Y = Y;

}
public double DistanceFromOrigin()
{
return (Math.Sqgrt(Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));
}

public static double operator +(Point A, Point B)
{

return (A.DistanceFromOrigin() + B.DistanceFromOrigin());

}

public static implicit operator double(Point pt)

{
return (pt.X / pt.Y);

Here, the implicit keyword indicates that you want to implicitly perform a conversion of the Point
class to a double value (this value is defined to be the ratio of the x and Y coordinates).

Now when you assign a Point object to a double variable, the ratio of the X and Y coordinates is
assigned automatically, as the following statements prove:

static void Main(string[] args)

{

Point ptaA new Point (4, 5);
Point ptB = new Point (2, 7);

double ratio = ptA; //---implicitly convert to a double type---

(continued)

197

Part |: C# Fundamentals

(continued)

PtB = pta; //---assign to another Point object---
Console.WriteLine (ratio); //---0.8---
Console.WriteLine((double)ptB); //---0.8---

Console.ReadLine() ;

Extension Methods (C# 3.0)

Whenever you add additional methods to a class in previous versions of C#, you need to subclass it and
then add the required method. For example, consider the following predefined (meaning you cannot
modify it) classes:

public abstract class Shape
{

//---properties---
public double length { get; set; }
public double width { get; set; }

//---make this method as virtual---
public virtual double Perimeter ()

{
return 2 * (this.length + this.width);

}

//---abstract method---
public abstract double Areal();

}

public class Rectangle : Shape
{

public override sealed double Area()

{
return this.length * this.width;

}

The only way to add a new method Diagonal () to the Rectangle class is to create a new class that
derives from it, like this:

public class NewRectangle : Rectangle

{
public double Diagonal ()

{
return Math.Sgrt (Math.Pow(this.length, 2) + Math.Pow(this.width, 2));

}

198

Chapter 6: Inheritance

In C# 3.0, you just use the new extension method feature to add a new method to an existing type. To add
the Diagonal () method to the existing Rectangle class, define a new static class and define the
extension method (a static method) within it, like this:

public static class MethodsExtensions
{
public static double Diagonal (this Rectangle rect)
{
return Math.Sqgrt (Math.Pow(rect.length, 2) + Math.Pow(rect.width, 2));
}

In this example, Diagonal () is the extension method that is added to the Rectangle class. You can use
the Diagonal () method just like a method from the Rectangle class:

Rectangle r = new Rectangle();
r.length = 4;

r.width = 5;

//---prints out: 6.40312423743285---
Console.WriteLine(r.Diagonal());

The first parameter of an extension method is prefixed by the this keyword, followed by the type it is
extending (Rectangle in this example, indicating to the compiler that this extension method must be
added to the Rectangle class). The rest of the parameter list (if any) is then the signature of the
extension method. For example, to pass additional parameters into the Diagonal () extension method,
you can declare it as:

public static double Diagonal (this Rectangle rect, int x, int y)
{
//---additional implementation here---
return Math.Sgrt (Math.Pow(rect.length, 2) + Math.Pow(rect.width, 2));

To call this modified extension method, simply pass in two arguments, like this:

Console.WriteLine(r.Diagonal(3,4));

Figure 6-4 shows IntelliSense providing a hint on the parameter list.

Rectangle r = new Rectangle();
r.length = 4;

r.breadth = 5;
Console.WriteLine(r.Areaf)):
CDnsnlE.HriteLine(r.Dlagﬂnalt‘

|(axtension) double Rectangle. Diagonal {ink 2, int y)|

Figure 6-4

Although an extension method is a useful new feature in the C# language, use it sparingly. If an
extension method has the same signature as another method in the class it is trying to extend, the
method in the class will take precedence and the extension method will be ignored.

199

Part |: C# Fundamentals

Access Modifiers

Chapter 4 discussed two primary access modifiers — public and private, and introduced two others:
protected and internal. Let’s take a look at how the latter are used. Consider the following class
definition:

public class A
{
private int v;
public int w;
protected int x;
internal int y;
protected internal int z;

}

The A class has four data members, each with a different access modifiers. The fifth data member, z, has
a combination of two access modifiers — protected and internal. To see the difference between all
these different modifiers, create an instance of A and observe the members displayed by IntelliSense.

Figure 6-5 shows that only the variables w, y, and z are accessible.

La = new Li);

@ GetHashCode
W GetType

‘W ToString

W ow

= v

i

Figure 6-5

At this moment, you can conclude that:

Q The private keyword indicates that the member is not visible outside the type (class).
The public keyword indicates that the member is visible outside the type (class).
The protected keyword indicates that the member is not visible outside the type (class).

The internal keyword indicates that the member is visible outside the type (class).

0O 0 0O U

The protected internal keyword combination indicates that the member is visible outside
the type (class).

Now define a second class, B, that inherits from class A:
public class B : A
{
public void Method()
{

}

200

Chapter 6: Inheritance

Try to access the class A variables from within Method () . In Figure 6-6, IntelliSense shows the variables
that are accessible.

public class L
4
private int v
public int w;
protected int x;
internal int w;
protected internal int z;

B

public class B @ &
i
public void Method()
{
base.

¥ e ———
4 @ GetHashCode

@ GetType

?"3 MemberwiseClone

% ToString

LAl

W x

=y

Wz
Figure 6-6

As you can see, member x is now visible (in addition to w, y, and z), so you can conclude that:

Qa

Q

The private keyword indicates that the member is not visible outside the type (class) or to any
derived classes.

The public keyword indicates that the member is visible outside the type (class) and to all
derived classes.

The protected keyword indicates that the member is not visible outside the type (class) but is
visible to any derived classes.

The internal keyword indicates that the member is visible outside the type (class) as well as to
all derived classes.

The protected internal keyword combination indicates that the item is visible outside the
type (class) as well as to all derived classes.

From these conclusions, the difference among private, public, and protected is obvious. However,
there is no conclusive difference between internal and protected internal. The internal access
modifier indicates that the member is only visible within its containing assembly. The protected
internal keyword combination indicates that the member is visible to any code within its containing
assembly as well as derived types.

Besides applying the access modifiers to data members, you can also use them on type definitions.
However, you can only use the private and public access modifiers on class definitions.

201

Part |: C# Fundamentals

Inheritance and Constructors

Consider the following BaseClass definition consisting of one default constructor:

public class BaseClass
{
//---default constructor---
public BaseClass()
{
Console.WriteLine ("Constructor in BaseClass");

}

Anther class, DerivedClass inheriting from the BaseClass, also has a default constructor:

public class DerivedClass : BaseClass
{
//---default constructor---
public DerivedClass()
{
Console.WriteLine("Constructor in DerivedClass");

}

So when an object of DerivedClass is instantiated, which constructor will be invoked first? The
following statement shows that the constructor in the base class will be invoked before the constructor in
the current class will be invoked:

DerivedClass dc = new DerivedClass();
The outputs are:

Constructor in BaseClass
Constructor in DerivedClass

What happens if there is no default constructor in the base class, but perhaps a parameterized
constructor like the following?

public class BaseClass
{
//---constructor---
public BaseClass(int x)
{
Console.WriteLine("Constructor in BaseClass");

}

In that case, the compiler will complain that BaseClass does not contain a default constructor.

Remember that if a base class contains constructors, one of them must be a default
constructor.

202

Chapter 6: Inheritance

Calling Base Class Constructors

Suppose BaseClass contains two constructors — one default and one parameterized:

public class BaseClass

{
//---default constructor---
public BaseClass()
{
Console.WriteLine("Default constructor in BaseClass");
}
//---parameterized constructor---
public BaseClass(int x)
{
Console.WriteLine ("Parameterized Constructor in BaseClass");
}
}

And DerivedClass contains one default constructor:

public class DerivedClass : BaseClass

{
//---default constructor---
public DerivedClass()
{
Console.WriteLine("Constructor in DerivedClass");
}
}

When an instance of the DerivedClass is created like this:

DerivedClass dc = new DerivedClass();
The default constructor in BaseClass is first invoked followed by the Derivedclass. However, you
can choose which constructor you want to invoke in BaseClass by using the base keyword in the

default constructor in DerivedcClass, like this:

public class DerivedClass : BaseClass

{
//---default constructor---
public DerivedClass(): base(4)
{
Console.WriteLine("Constructor in DerivedClass");
}
}

In this example, when an instance of the DerivedClass is created, the parameterized constructor in
BaseClass is invoked first (with the argument 4 passed in), followed by the default constructor
in DerivedClass. This is shown in the output:

DerivedClass dc = new DerivedClass();
//---prints out:---

//Parameterized Constructor in BaseClass
//Constructor in DerivedClass

203

Part |: C# Fundamentals

Figure 6-7 shows that IntelliSense lists the overloaded constructors in BaseClass.

[public class DerivedClass ! BaseClass
{
#f-—-default constructor---
public DerivedClass(): base|(
{ ‘41 of 2= BaseClass.BaseClass ()l
Console.WriteLine ("Constructor in DeriwvedClass™);

H
=

[public class DerivedClass : BaseClass
{

/f---default constructor---
public DerivedClass(): hase|
i ‘42 of 2% BaseClass.BaseClass {int H)l

Console.WriteLine ("Constructor in DeriwvedcClass™):

¥

03

Figure 6-7

Interface Inheritance

When an interface inherits from a base interface, it inherits all the base interface’s functions’ signatures
(but no implementation).

Let’s explore the concept of interface inheritance by using the hierarchy of various classes defined earlier
in the chapter, starting from the root class Shape, with the Circle and Rectangle classes inheriting
from it (the Square class in turn inherits from the Rectangle class), as Figure 6-8 shows.

| a0
| Abstract Class

Properties
ﬁ breadth
ZF length

| B Methads
@ Area
"% Perimeter

(Circle &) fi Rectangle &)
Class Class
b Shape b Shape
= Methods = Methods
W Area Y Area
% Perimeter ¥ Perimeter
i p, i .
[Square =)
Class
b Rectangle
e
Figure 6-8

204

Chapter 6: Inheritance

One problem with this class hierarchy is that for the circle class, using the inherited 1ength property to
represent the diameter is a bit awkward. Likewise, for the Square class the width property should not be
visible because the length and width of a square are the same. Hence, these classes could be better rearranged.

As you recall from Chapter 5, you can use an interface to define the signature of a class’s members.
Likewise, you can use interfaces to define the hierarchy of a set of classes. If you do so, developers who
implement this set of classes will have to follow the rules as defined in the interfaces.

You can use interfaces to redefine the existing classes, as shown in Figure 6-9.

i IShape &
Interface

= Methods
W Area
W Perimeter

| \

(ICircle =) [ISquare &
Interface Interface
b Ishape ~IShape
=l Properties =] Properties
 radus = Jength
i IRectangle ®
Inkerface
=+ Ishape
b ISquare
[= Properties
25 preadth
Figure 6-9

Here, the IShape interface contains two methods — Area () and Perimeter ():

public interface IShape

{
//---methods---
double Perimeter () ;
double Areal);

}

Remember, an interface simply defines the members in a class; it does not contain any implementation.
Also, there is no modifier (like virtual or abstract) prefixing the function members here, so you need
not worry about the implementation of the Perimeter () and Area () methods — they could be
implemented by other derived classes.

The Icircle interface inherits from the IShape interface and defines an additional radius property:
public interface ICircle : IShape
{

//---property---
double radius { get; set; }

205

Part |: C# Fundamentals

The ISquare interface inherits from the IShape interface and defines an additional 1ength property:

public interface ISquare : IShape
{

//---property---

double length { get; set; }

The IRectangle interface inherits from both the IShape and ISquare interfaces. In addition, it also
defines a width property:

public interface IRectangle : IShape, ISquare
{

//---property---

double width { get; set; }

So what does the implementation of these interfaces look like? First, implement the ISquare interface,
like this:

public class Square : ISquare
{
//---property---
public double length { get; set; }

//---methods---
public double Perimeter ()
{
return 4 * (this.length);
}

public double Area()

{
return (Math.Pow(this.length, 2));
}

Here, you provide the implementation for the 1ength property as well as the two methods —
Perimeter () and Area().

You not need to implement the IShape class because you can’t provide any meaningful implementation
of the Area () and Perimeter () methods here.

Because the IRectangle interface inherits from both the ISquare and IShape interfaces and the
Isquare interface has already been implemented (by the Square class), you can simply inherit from the
Square class and implement the IRectangle interface, like this:

public class Rectangle : Square, IRectangle

{
//---property---
public double width { get; set; }

206

Chapter 6: Inheritance

If you implement the TRectangle interface directly (without inheriting from the
Square class, you need to provide the implementation of the 1ength property as
well as the methods Perimeter () and Area().

You need only provide the implementation for the width property here. The implementation for the
Area () and Perimeter () methods is inherited from the Square class.

The last implementation is the ICircle interface, for which you will implement the radius property as
well as the Perimeter () and Area () methods:

public class Circle : ICircle
{
public double radius { get; set; }
public double Perimeter ()
{
return (2 * Math.PI * (this.radius));
}
//---provide the implementation for the virtual method---
public double Areal()
{
return (Math.PI * Math.Pow(this.radius, 2));
}
}

Figure 6-10 shows the classes that you have implemented for these three interfaces.

) ICircle) ISquare
1 T ,
Circle =) Square #
Class Class
=l Propetties [= Properties
@ radius :5[‘ length
= Methods [= Methods
@ Area % Area
‘@ Perimeter % Perimeter
\‘ IRectangle
Rectangle @ |
Clasz
b square
[= Properties
E breadth
Figure 6-10

207

Part |: C# Fundamentals

Explicit Interface Members Implementation

A class can implement one or more interfaces. To implement a member in an interface, you simply need
to match the member name and its signature with the one defined in the interface. However, there are
times when two interfaces may have the same member name and signature. Here’s an example:

public interface IFileLogging
{

void LogError (string str);

public interface IConsoleLogging
{

void LogError (string str);

In this example, both IFileLogging and IConsoleLogging have the same LogError () method
Suppose that you have a class named calculation that implements both interfaces:

public class Calculation : IFileLogging, IConsoleLogging
{

The implementation of the LogError () method may look like this:

public class Calculation : IFileLogging, IConsoleLogging
{

//---common to both interfaces---

public void LogError (string str)

{

Console.WriteLine (str) ;

In this case, the LogError () method implementation will be common to both interfaces and you can
invoke it via an instance of the Calculation class:

Calculation ¢ = new Calculation();
//---prints out: Some error message here---
c.LogError ("Some error message here");

In some cases, you need to differentiate between the two methods in the two interfaces. For example, the
LogError () method in the IFileLogging interface may write the error message into a text file, while
the LogError () method in the IConsoleLogging interface may write the error message into the
console window. In that case, you must explicitly implement the LogError () method in each of the two
interfaces. Here’s how:

public class Calculation : IFileLogging, IConsoleLogging
{

//---common to both interfaces---

public void LogError (string str)

208

Chapter 6: Inheritance

Console.WriteLine(str);

//---only available to the IFileLogging interface---
void IFileLogging.LogError (string str)
{

Console.WriteLine("In IFileLogging: " + str);

//---only available to the IConsoleLogging interface---
void IConsolelLogging.LogError (string str)
{

Console.WriteLine("In IConsoleLogging: " + str);

This example has three implementations of the LogError () method:

Q One common to both interfaces that can be accessed via an instance of the Calculation class.

O One specific to the IFileLogging interface that can be accessed only via an instance of the
IFileLogging interface.

0 One specific to the IConsoleLogging interface that can be accessed only via an instance of the
IConsoleLogging interface.

You cannot use the public access modifier on the explicit interface methods’
implementation.

To invoke these implementations of the LogError () method, use the following statements:

//---create an instance of Calculation---
Calculation ¢ = new Calculation();

//---prints out: Some error message here---
c.LogError ("Some error message here");

//---create an instance of IFileLogging---

IFileLogging f = c;

//---prints out: In IFileLogging: Some error message here---
f.LogError ("Some error message here");

//---create an instance of IConsoleLogging---

IConsoleLogging 1 = c;

//---prints out: In IConsolelLogging: Some error message here---
1.LogError ("Some error message here");

209

Part |: C# Fundamentals

Another use of explicit interface member implementation occurs when two interfaces have the same
method name but different signatures. For example:

public interface IFileLogging
{

void LogError (string str);

public interface IConsoleLogging
{
void LogError();

Here, the LogError () method in the IFileLogging interface has a string input parameter, while there
is no parameter in the IConsoleLogging interface. When you now implement the two interfaces, you
can provide two overloaded LogError () methods, together with an implementation specific to each
interface as illustrated here:

public class Calculation : IFileLogging, IConsoleLogging
{

//---common to both interfaces---

public void LogError (string str)

{

Console.WriteLine("In LogError(str): " + str);

}

public void LogError ()

{

Console.WriteLine("In LogError()");

//---only available to the IFileLogging interface---
void IFileLogging.LogError (string str)
{

Console.WriteLine("In IFileLogging: " + str);

//---only available to the IConsoleLogging interface---
void IConsoleLogging.LogError ()
{

Console.WriteLine("In IConsoleLogging") ;

As you can see , the first two LogError () methods are overloaded and are common to both interfaces.
This means that you can access them via an instance of the Calculation class. The next two
implementations are specific to the IFileLogging and IConsoleLogging interfaces and can be
accessed only via an instance of each interface:

//---create an instance of Calculation---
Calculation ¢ = new Calculation();

//---prints out: In LogError()---

210

Chapter 6: Inheritance

c.LogError () ;

//---prints out: In LogError (str)---
c.LogError ("Some error message here");

//---create an instance of IFileLogging---

IFileLogging f = c;

//---prints out: In IFileLogging: Some error message here---
f.LogError ("Some error message here");

//---create an instance of IConsoleLogging---
IConsoleLogging 1 = c;

//---prints out: In IConsoleLogging---
1.LogError () ;

Abstract Classes versus Interfaces

An abstract class defines the members and optionally provides the implementations of
each member. Members that are not implemented in the abstract class must be
implemented by classes that inherit from it.

An interface, on the other hand, defines the signatures of members but does not
provide any implementation. All the implementations must be provided by classes that
implement it.

So which one should you use? There are no hard-and-fast rules, but here are a couple
of points to note:

O You can add additional members to classes as and when needed. In contrast,
once an interface is defined (and implemented by classes), adding additional
members will break existing code.

O Classes support only single-inheritance but can implement multiple interfaces.
So if you need to define multiple contracts (rules) for a type, it is always better
to use an interface.

Summary

This chapter explained how inheritance works in C# and the types of inheritances available —
implementation and interface. One important topic covered in this chapter is that of abstract class versus
interface, both of which have their uses in C#.

The chapter also described how you can provide overloaded methods and operators, as well as add
capabilities to a class without deriving from it by using the extension method feature new in C# 3.0.

211

Delegates and Events

Two of the most important aspects of object-oriented programming are delegates and events.

A delegate basically enables you to reference a function without directly invoking the function.
Delegates are often used to implement techniques called callbacks, which means that after a
function has finished execution, a call is made to a specific function to inform it that the execution
has completed. In addition, delegates are also used in event handling. Despite the usefulness of
delegates, it is a topic that not all .NET programmers are familiar with. An event, on the other
hand, is used by classes to notify clients when something of interest has happened. For example, a
Button control has the c1ick even, which allows your program to be notified when someone
clicks the button.

This chapter explores the following:

Q Whatis a delegate?

Q Using delegates

O Implementing callbacks using a delegate
O What are events?
Q

How to handle and implement events in your program

Delegates

In C#, a delegate is a reference type that contains a reference to a method. Think of a delegate as a
pointer to a function. Instead of calling a function directly, you use a delegate to point to it and
then invoke the method by calling the delegate. The following sections explain how to use a
delegate and how it can help improve the responsiveness of your application.

Part |: C# Fundamentals

Creating a Delegate

To understand the use of delegates, begin by looking at the conventional way of invoking a function.
Consider the following program:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Delegates
{
class Program
{
static void Main(string[] args)
{
int numl = 5;
int num2 3;
Console.WriteLine (Add (numl, num2).ToString());
Console.WriteLine (Subtract (numl, num2).ToString());
Console.ReadLine() ;

}

static int Add(int numl, int num2)
{
return (numl + num2) ;

}

static int Subtract(int numl, int num2)
{
return (numl - num2) ;

}

The program contains three methods: Main (), Add (), and Subtract (). Notice that the Add () and
Subtract () methods have the same signature. In the Main () method, you invoke the Add ()
and Subtract () methods by calling them directly, like this:

Console.WriteLine (Add (numl, num2) .ToString());
Console.WriteLine (Subtract (numl, num2).ToString());

Now create a delegate type with the same signature as the Add () method:

namespace Delegates
{
class Program

{
delegate int MethodDelegate(int numl, int num2) ;

static void Main(string[] args)

{

214

Chapter 7: Delegates and Events

You define a delegate type by using the delegate keyword, and its declaration is similar to that of a
function, except that a delegate has no function body.

To make a delegate object point to a function, you create an object of that delegate type
(MethodDelegate, in this case) and instantiate it with the method you want to point to, like this:

static void Main(string[] args)
{

int numl = 5;

int num2 = 3;

MethodDelegate method = new MethodDelegate (Add) ;
Alternatively, you can also assign the function name to it directly, like this:
MethodDelegate method = Add;

This statement declares method to be a delegate that points to the Add () method. Hence instead of
calling the Add () method directly, you can now call it using the method delegate:

//---Console.WriteLine (Add (numl, num2).ToString());---
Console.WriteLine (method (numl, num2) .ToString());

The beauty of delegates is that you can make the delegate call whatever function it refers to, without
knowing exactly which function it is calling until runtime. Any function can be pointed by the delegate,
as long as the function’s signature matches the delegate’s.

For example, the following statements check the value of the Operation variable before deciding which
method the method delegate to point to:

char Operation = 'A';
MethodDelegate method = null;
switch (Operation)
{
case 'A': method = new MethodDelegate (Add) ;
break;
case 'S': method = new MethodDelegate (Subtract) ;
break;
}
if (method != null)
Console.WriteLine (method (numl, num2) .ToString());

215

Part |: C# Fundamentals

You can also pass a delegate to a method as a parameter, as the following example shows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Delegates
{
class Program
{
delegate int MethodDelegate(int numl, int num2);

static void PerformMathOps (MethodDelegate method, int numl, int num?2)
{

Console.WriteLine (method (numl, num2) .ToString()) ;
}

static void Main(string[] args)
{

int numl = 5;

int num2 = 3;

char Operation = 'A';

MethodDelegate method = null;
switch (Operation)
{
case 'A': method = new MethodDelegate (Add) ;
break;
case 'S': method = new MethodDelegate (Subtract) ;
break;

if (method != null)
PerformMathOps (method, numl, num2);

Console.ReadLine() ;

}

static int Add(int numl, int num2)
{
return (numl + num2) ;

}

static int Subtract(int numl, int num2)
{

return (numl - num2);

In this example, the PerformMathOps () function takes in three arguments — a delegate of type
MethodDelegate and two integer values. Which method to invoke is determined by the Operation
variable. Once the delegate is assigned to point to a method (add () or Subtract ()), it is passed to the
PerformMathOps () method.

216

Chapter 7: Delegates and Events

Delegates Chaining (Multicast Delegates)

In the previous section, a delegate pointed to a single function. In fact, you can make a delegate point to
multiple functions. This is known as delegates chaining. Delegates that point to multiple functions are
known as multicast delegates.

Consider the following example:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Delegates
{
class Program
{
delegate void MethodsDelegate() ;

static void Main(string[] args)

{
MethodsDelegate methods = Methodl;
methods += Method2;
methods += Method3;

//---call the delegated method(s)---
methods () ;
Console.ReadLine() ;

}

static private void Methodl ()
{

Console.WriteLine ("Method 1");
}

static private void Method?2 ()
{

Console.WriteLine("Method 2");
}

static private void Method3 ()
{

Console.WriteLine ("Method 3");
}

217

Part |: C# Fundamentals

This program three methods: Methodl (), Method2 (), and Method3 (). The methods delegate is first
assigned to point to Method1 (). The next two statements add Method2 () and Method3 () to the
delegate by using the += operator:

MethodsDelegate methods = Methodl;
methods += Method2;
methods += Method3;

When the methods delegate variable is called, the following output results:

Method 1
Method 2
Method 3

The output shows that the three methods are called in succession, in the order they were added.

What happens when your methods each return a value and you call them using a multicast delegate?
Here’s an example in which the three methods each return an integer value:

class Program
{
delegate int MethodsDelegate (ref int numl, ref int num2);

static void Main(string[] args)

{
int numl = 0, num2 = 0;
MethodsDelegate methods = Methodl;
methods += Method2;
methods += Method3;

//---call the delegated method(s)---
Console.WriteLine (methods (ref numl, ref num2));
Console.WriteLine("numl: {0} num2: {1}", numl, num2);
Console.ReadLine() ;

}

static private int Methodl (ref int numl, ref int num2)

{
Console.WriteLine ("Method 1");

numl = 1;
num2 = 1;
return 1;

}

static private int Method2 (ref int numl, ref int num2)

{
Console.WriteLine ("Method 2");

numl = 2;
num2 = 2;
return 2;

}

static private int Method3 (ref int numl, ref int num2)

218

Chapter 7: Delegates and Events

Console.WriteLine("Method 3");
numl = 3;
num2 = 3;
return 3

’

When the methods delegate is called, Methodl (), Method2 (), and Method3 () are called in succession.
However, only the last method (Method3 ()) returns a value back to the Main () function, as the output

shows:

Method 1
Method 2
Method 3
3

numl: 3 num2: 3

If one of the methods pointed to by a delegate causes an exception, no results are returned.
The following modifications to the preceding program shows that Method2 () throws an exception and
is caught by the Try-catch block:

class Program

{

delegate int MethodsDelegate(ref int numl, ref int num2);
static void Main(string[] args)

{

}

int numl = 0, num2 = 0;
MethodsDelegate methods = Methodl;
methods += Method2;

methods += Method3;

try

{
//---call the delegated method(s)---
Console.WriteLine (methods (ref numl, ref num2));
Console.WriteLine("numl: {0} num2: {1}", numl, num2);

}

catch (Exception ex)

{
Console.WriteLine (ex.Message) ;
}

Console.WriteLine("numl: {0} num2: {1}", numl, num2);
Console.ReadLine() ;

static private int Methodl (ref int numl, ref int num2)

{

Console.WriteLine("Method 1");
numl = 1;
num2 = 1;
(continued)

219

Part |: C# Fundamentals

(continued)
return 1;

}

static private int Method2 (ref int numl, ref int num2)
{

throw new Exception();

Console.WriteLine ("Method 2");

numl = 2;
num2 = 2;
return 2;

}

static private int Method3 (ref int numl, ref int num2)

{
Console.WriteLine("Method 3");

numl = 3;
num2 = 3;
return 3;

The following output shows that numl and num2 retain the values set by the last method that was
successfully invoked by the delegate:

Method 1
Exception of type 'System.Exception' was thrown.
numl: 1 num2: 1

Just as you use the += operator to add a method to a delegate, you use the —= operator to remove a
method from a delegate:

static void Main(string[] args)
{
int numl = 0, num2 = 0;
MethodsDelegate methods = Methodl;
methods += Method2;
methods += Method3;
/...
/]
//---removes Method3---
methods -= Method3;

Implementing Callbacks Using Delegates

One of the useful things you can do with delegates is to implement callbacks. Callbacks are methods
that you pass into a function that will be called when the function finishes execution. For example, you
have a function that performs a series of mathematical operations. When you call the function, you also
pass it a callback method so that when the function is done with its calculation, the callback method is
called to notify you of the calculation result.

220

Chapter 7: Delegates and Events

Following is an example of how to implement callbacks using delegates:

class Program
{
delegate void callbackDelegate(string Message) ;

static void Main(string[] args)

{
callbackDelegate result = ResultCallback;
AddTwoNumbers (5, 3, result);

Console.ReadLine () ;

}

static private void AddTwoNumbers (

int numl, int num2, callbackDelegate callback)
{

int result = numl + num?2;

callback("The result is: " + result.ToString());
}

static private void ResultCallback(string Message)
{

Console.WriteLine (Message) ;

}

First, you declare two methods:

QO AddTwoNumbers () — Takes in two integer arguments and a delegate of type
callbackDelegate
0 ResultCallback() — Takes in a string argument and displays the string in the console window

Then you declare a delegate type:
delegate void callbackDelegate(string Message) ;

Before you call the AddTwoNumbers () function, you create a delegate of type callbackDelegate and
assign it to point to the ResultCallback () method. The AddTwoNumbers () function is then called with
two integer arguments and the result callback delegate:

callbackDelegate result = ResultCallback;
AddTwoNumbers (5, 3, result);

In the AddTwoNumbers () function, when the calculation is done, you invoke the callback delegate and
pass to it a string:

static private void AddTwoNumbers (
int numl, int num2, callbackDelegate callback)
{

int result = numl + num?2;
callback ("The result is: " + result.ToString());

221

Part |: C# Fundamentals

The callback delegate calls the ResultCallback () function, which prints the result to the console. The

output is:

The result is: 8

Asynchronous Callbacks

Callbacks are most useful if they are asynchronous. The callback illustrated in the previous example is
synchronous, that is, the functions are called sequentially. If the AddTwoNumbers () function takes a long
time to execute, all the statements after it will block. Figure 7-1 shows the flow of execution when the
callback is synchronous.

Main()

A4
A4

AddTwoNumbers()

A4

ResultCallback() Console.ReadLine()

Figure 7-1

A better way to organize the program is to call the AddTwoNumbers () method asynchronously, as shown
in Figure 7-2. Calling a function asynchronously allows the main program to continue executing without
waiting for the function to return.

v

AddTwoNumbers() ResultCallback()

Main() +——

A4

Console.ReadLine()

Figure 7-2

In this asynchronous model, when the AddTwoNumbers () function is called, the statement(s) after it can
continue to execute. When the function finishes execution, it calls the ResultCallback () function.

Here’s the rewrite of the previous program, using an asynchronous callback:

using
using
using
using

using

System;
System.Collections.Generic;
System.Ling;

System.Text;

System.Runtime.Remoting.Messaging;

namespace Delegates

{

class Program

{

222

//---delegate to the AddTwoNumbers () method---
delegate int MethodDelegate (int numl, int num2) ;

static void Main(string[] args)

Chapter 7: Delegates and Events

//---assign the delegate to point to AddTwoNumbers ()---
MethodDelegate del = AddTwoNumbers;

//---creates a AsyncCallback delegate---
AsyncCallback callback = new AsyncCallback(ResultCallback) ;

//---invoke the method asychronously---
Console.WriteLine ("Invoking the method asynchronously...");

IAsyncResult result = del.BeginInvoke(5, 3, callback, null);

Console.WriteLine ("Continuing with the execution...");

Console.ReadLine () ;

//---method to add two numbers---
static private int AddTwoNumbers (int numl, int num2)

//---simulate long execution---
System.Threading.Thread.Sleep (5000) ;

return numl + num2;

static private void ResultCallback (IAsyncResult ar)

MethodDelegate del =
(MethodDelegate) ((AsyncResult)ar) .AsyncDelegate;

//---get the result---

int result = del.EndInvoke(ar) ;

Console.WriteLine("Result of addition is: " + result);

First, you define a delegate type so that you can point to the AddTwoNumbers () method:
delegate int MethodDelegate(int numl, int num2);

Then create a delegate, and assign it to point to the AddTwoNumbers () method:

//---assign the delegate to point to AddTwoNumbers ()---
MethodDelegate del = AddTwoNumbers;

Next, define a delegate of type AsyncCallback:

//---creates a AsyncCallback delegate---
AsyncCallback callback = new AsyncCallback (ResultCallback) ;

The AsyncCallback is a delegate that references a method to be called when an asynchronous operation
completes. Here, you set it to point to ResultCallback (which you will define later).

223

Part |: C# Fundamentals

To call the AddTwoNumbers () methods asynchronously, you use the BeginInvoke () method of the del
delegate, passing it two integer values (needed by the AddTwoNumbers () method), as well as a delegate

to call back when the method finishes executing:

//---invoke the method asychronously---
Console.WriteLine("Invoking the method asynchronously...");
IAsyncResult result = del.BeginInvoke(5, 3, callback, null);
Console.WriteLine("Continuing with the execution...");

The BeginInvoke () method calls the delegate asynchronously, and the next statement continues
execution after the async delegate is called. This method returns a variable of type IAsyncResult to
represent the status of an asynchronous operation.

To obtain the result of the calculation, you define the ResultcCallback () method, which takes in an
argument of type IAsyncResult:

static private void ResultCallback (IAsyncResult ar)

{

Within the ResultCallback () method, you first obtain the delegate to the AddTwoNumbers () method

MethodDelegate del =
(MethodDelegate) ((AsyncResult)ar) .AsyncDelegate;

//---get the result---

int result = del.EndInvoke(ar);

Console.WriteLine("Result of addition is: " + result);

by using the AsyncDelegate property, which returns the delegate on which the asynchronous call was

invoked. You then obtain the result of the asynchronous call by using the EndInvoke () method, passing

it the TAsyncResult variable (ar).

Finally, to demonstrate the asynchronous calling of the AddTwoNumbers () method, you can insert a
Sleep () statement to delay the execution (simulating long execution):

static private int AddTwoNumbers (int numl, int num2)

{

//---simulate long execution---
System.Threading.Thread.Sleep (5000) ;

return numl + num2;

Figure 7-3 shows the output of this program.

224

Figure 7-3

Chapter 7: Delegates and Events

When using asynchronous callbacks, you can make your program much more responsive by executing
different parts of the program in different threads.

Chapter 10 discusses more about threading.

Anonymous Methods and Lambda Expressions

Beginning with C# 2.0, you can use a feature known as anonymous methods to define a delegate.
An anonymous method is an “inline” statement or expression that can be used as a delegate parameter.
To see how it works, take a look at the following example:

class Program
{
delegate void MethodsDelegate (string Message) ;

static void Main(string[] args)
{
MethodsDelegate method = Methodl;

//---call the delegated method---
method ("Using delegate.");
Console.ReadLine() ;

}

static private void Methodl (string Message)

{
Console.WriteLine (Message) ;
}

Instead of defining a separate method and then using a delegate variable to point to it, you can shorten
the code using an anonymous method:

class Program

{
delegate void MethodsDelegate (string Message) ;

static void Main(string[] args)
{
MethodsDelegate method = delegate(string Message)
{
Console.WriteLine (Message) ;
¥

//---call the delegated method---
method ("Using anonymous method.") ;

Console.ReadLine() ;

225

Part |: C# Fundamentals

In this expression, the method delegate is an anonymous method:

MethodsDelegate method = delegate(string Message)
{

Console.WriteLine (Message) ;
Iy

Anonymous methods eliminate the need to define a separate method when using delegates. This is
useful if your delegated method contains a few simple statements and is not used by other code because
you reduce the coding overhead in instantiating delegates by not having to create a separate method.

In C# 3.0, anonymous methods can be further shortened using a new feature known as lambda
expressions. Lambda expressions are a new feature in .NET 3.5 that provides a more concise, functional
syntax for writing anonymous methods.

The preceding code using anonymous methods can be rewritten using a lambda expression:

class Program

{
delegate void MethodsDelegate(string Message) ;

static void Main(string[] args)
{

MethodsDelegate method = (Message) => { Console.WriteLine (Message); };

//---call the delegated method---
method ("Using Lambda Expression.");

Console.ReadLine() ;
}

Lambda expressions are discussed in more detail in Chapter 14.

Events

One of the most important techniques in computer science that made today’s graphical user

interface operating systems (such as Windows, Mac OS X, Linux, and so on) possible is event-driven
programming. Event-driven programming lets the OS react appropriately to the different clicks made
by the user. A typical Windows application has various widgets such as buttons, radio buttons, and
checkboxes that can raise events when, say, a user clicks them. The programmer simply needs to write
the code to handle that particular event. The nice thing about events is that you do not need to know
when these events will be raised — you simply need to provide the implementation for the event
handlers that will handle the events and the OS will take care of invoking the necessary event handlers
appropriately.

In .NET, events are implemented using delegates. An object that has events is known as a publisher.

Objects that subscribe to events (in other words, handle events) are known as subscribers. When an object
exposes events, it defines a delegate so that whichever object wants to handle this event will have to

226

Chapter 7: Delegates and Events

provide a function for this delegate. This delegate is known as an event, and the function that handles
this delegate is known as an event handler. Events are part and parcel of every Windows application.
For example, using Visual Studio 2008 you can create a Windows application containing a Button
control (see Figure 7-4).

Forml.cs [Design]*

-

Figure 7-4

When you double-click the Button control, an event handler is automatically added for you:

public partial class Forml : Form

{
public Forml ()
{
InitializeComponent () ;
}
private void buttonl_Click(object sender, EventArgs e)
{
}
}

But how does your application know which event handler is for which event? Turns out that Visual
Studio 2008 automatically wires up the event handlers in the code-behind of the form (FormName
.Designer.cs; see Figure 7-5) located in a function called InitializeComponent ():

this.buttonl.Location = new System.Drawing.Point (12, 12);
this.buttonl.Name = "buttonl";

this.buttonl.Size = new System.Drawing.Size (75, 23);
this.buttonl.TabIndex = 0;

this.buttonl.Text = "buttonl";
this.buttonl.UseVisualStyleBackColor = true;

this.buttonl.Click += new System.EventHandler (this.buttonl_Click);

0 0
2 &R EA
D Salution ‘EventsExamples' (1 project)
= ,E EventsExamples
- [=d| Properties
[#- (= References
Q @Furml.cs
H - "1'5] Farml.Designer.cs
H - ‘g‘! Forml.resx
b ng Program.cs

@ Solution Explarer ‘@ Properties |

Figure 7-5

227

Part |: C# Fundamentals

Notice that the way you wire up an event handler to handle the C1lick event is similar to how you
assign a method name to a delegate.

Alternatively, you can manually create the event handler for the c1ick event of the Button control.
In the Form () constructor, type += after the Click event and press the Tab key. Visual Studio 2008
automatically completes the statement (see Figure 7-6).

public Forml()
i
InitializeComponent ()2
thiz.buttonl.Click+=
} [new EventHandler{button1_Click); _(Fress TAB bo insert)]

Figure 7-6

Press the Tab key one more time, and Visual Studio 2008 inserts the stub of the event handler for you
(see Figure 7-7).

public Forml()
{
InitializeComponent (] ;
this.buttonl.Click +=new EventHandler (b aigesBia) ;

} Fress TAE to generate handler 'buttoni_click! in this dassl
Figure 7-7

The completed code looks like this:

public Forml ()
{

InitializeComponent () ;
this.buttonl.Click += new EventHandler (buttonl_Click);
}

void buttonl_Click(object sender, EventArgs e)
{

}

Notice that C1ick is the event and the event handler must match the signature required by the event

(in this case, the event handler for the C1ick event must have two parameter — object and Eventargs).
By convention, event handlers in the NET Framework return void and have two parameters. The first

is the source of the event (that is, the object that raises this event), and the second is an object derived
from EventArgs. The EventArgs parameter allows data to be passed from an event to the event handler.
The EventArgs class is discussed further later in this chapter.

228

Chapter 7: Delegates and Events

Using the new lambda expressions in C# 3.0, the preceding event handler can also be written like this:

public Forml ()
{

InitializeComponent () ;

this.buttonl.Click += (object sender, EventArgs e) =>
{

MessageBox.Show ("Button clicked!");
b g

Handling Events

Let’s take a look at how to handle events using a couple of simple examples. The Timer class (located in
the System. Timers namespace) is a class that generates a series of recurring events at regular intervals.
You usually use the Timer class to perform some background tasks, such as updating a ProgressBar
control when downloading some files from a server, or displaying the current time.

The Timer class has one important event that you need to handle — Elapsed. The Elapsed event is
fired every time a set time interval has elapsed.

The following program shows how you can use the Timer class to display the current time in the console
window:

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Runtime.Remoting.Messaging;
using System.Timers;
namespace Events
{
class Program
{
static void Main(string[] args)
{
Timer t = new Timer (1000);
t.Elapsed += new ElapsedEventHandler (t_Elapsed) ;
t.Start();
Console.ReadLine () ;
}

static void t_Elapsed(object sender, ElapsedEventArgs e)
{

Console.SetCursorPosition(0, 0);

Console.WriteLine (DateTime.Now) ;

229

Part |: C# Fundamentals

First, you instantiate a Timer class by passing it a value. The value is the time interval (in milliseconds)
between the Timer class’s firing (raising) of its Elapsed event. You next wire the Elapsed event with
the event handler t_Elapsed, which displays the current time in the console window. The Start ()
method of the Timer class activates the Timer object so that it can start to fire the Elapsed event.
Because the event is fired every second, the console is essentially updating the time every second

(see Figure 7-8).

e+ file:///C:/Documents and S:

5-15-2088 2:11:86 PM

Figure 7-8

Another useful class that is available in the .NET Framework class library is the FileSystemWatcher
class (located in the System. I0 namespace). It watches the file system for changes and enables you to
monitor these changes by raising events. For example, you can use the FileSystemWatcher class

to monitor your hard drive for changes such as when a file/directory is deleted, is created, or has its
contents changed.

To see how the FileSystemwWatcher class works, consider the following program:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Runtime.Remoting.Messaging;
using System.IO;

namespace Events
{
class Program
{
static void Main(string[] args)
{
FileSystemWatcher fileWatcher = new FileSystemWatcher ()
{
Path = @"c:\",
Filter = "*.txt"
I

//---wire up the event handlers---

fileWatcher.Deleted += new FileSystemEventHandler (fileWatcher_Deleted) ;
fileWatcher.Renamed += new RenamedEventHandler (fileWatcher_Renamed) ;
fileWatcher.Changed += new FileSystemEventHandler (fileWatcher_Changed) ;
fileWatcher.Created += new FileSystemEventHandler (fileWatcher_Created) ;

//---begin watching---
fileWatcher.EnableRaisingEvents = true;
Console.ReadLine() ;

static void fileWatcher_Created(object sender, FileSystemEventArgs e)

230

Chapter 7: Delegates and Events

Console.WriteLine("File created: " + e.FullPath);

static void fileWatcher_Changed(object sender, FileSystemEventArgs e)

{
Console.WriteLine("File changed: " + e.FullPath);

static void fileWatcher_Renamed(object sender, RenamedEventArgs e)
{

Console.WriteLine("File renamed: " + e.FullPath);

static void fileWatcher_Deleted(object sender, FileSystemEventArgs e)

{
Console.WriteLine("File deleted: " + e.FullPath);

You first create an instance of the FileSystemWatcher class by initializing its Path and Filter
properties:

FileSystemWatcher fileWatcher = new FileSystemWatcher ()
{

Path = @"c:\",

Filter = "*.txt"
Y

Here, you are monitoring the C:\ drive and all its files ending with the . txt extension.
You then wire all the events with their respective event handlers:

//---wire up the event handlers---

fileWatcher.Deleted += new FileSystemEventHandler (fileWatcher_Deleted);
fileWatcher.Renamed += new RenamedEventHandler (fileWatcher_Renamed) ;
fileWatcher.Changed += new FileSystemEventHandler (fileWatcher_Changed) ;
fileWatcher.Created += new FileSystemEventHandler (fileWatcher_Created);

These statements handle four events:

0 Deleted — Fires when a file is deleted
Renamed — Fires when a file is renamed

Changed — Fires when a file’s content is changed

U 0 0

Created — Fires when a file is created

231

Part |: C# Fundamentals

Finally, you define the event handlers for the four events:

static void fileWatcher_Created(object sender, FileSystemEventArgs e)
{
Console.WriteLine("File created: " + e.FullPath);

static void fileWatcher_Changed(object sender, FileSystemEventArgs e)
{
Console.WriteLine("File changed: " + e.FullPath);

static void fileWatcher_Renamed (object sender, RenamedEventArgs e)
{

Console.WriteLine("File renamed: " + e.FullPath);

static void fileWatcher_Deleted(object sender, FileSystemEventArgs e)

{
Console.WriteLine("File deleted: " + e.FullPath);

To test the program, you can create a new text file in C:\ drive, make some changes to its content,
rename it, and then delete it. The output window will look like Figure 7-9.

e:///C:Mocuments and Settings/Wei-Meng Lee/M

“New Text Document .
“New Text Document.
“New Text Document .
“Text Document.txt

deleted: c:“\Text Document.txt

Figure 7-9

Implementing Events

So far you have been subscribing to events by writing event handlers. Now you will implement events
in your own class. For this example, you create a class called AlarmClock. AlarmClock allows you to
set a particular date and time so that you can be notified (through an event) when the time is up. For this
purpose, you use the Timer class.

First, define the AlarmClock class as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Timers;

class AlarmClock

{

232

Chapter 7: Delegates and Events

Declare a Timer variable and define the AlarmTime property to allow users of this class to set a date
and time:

class AlarmClock
{
Timer t;
public DateTime AlarmTime { get; set; }

}
Next, define the Start () method so that users can start the monitoring by turning on the Timer object:

class AlarmClock
{
/...
public void Start()

{
t.Start();
}

Next, define a public event member in the AlarmClock class:

public event EventHandler TimesUp;

The EventHandler is a predefined delegate, and this statement defines TimesUp as an event for
your class.

Define a protected virtual method in the AlarmClock class that will be used internally by your class to
raise the TimesUp event:

protected virtual void onTimesUp (EventArgs e)
{
if (TimesUp != null)
TimesUp (this, e);

The EventArgs class is the base class for classes that contain event data. This class does not pass any
data back to an event handler.

The next section explains how you can create another class that derives from this EventArgs base class
to pass back information to an event handler.

Define the constructor for the AlarmClock class so that the Timer object (t) will fire its Elapsed
event every 100 milliseconds. In addition, wire the Elapsed event with an event handler. The event

233

Part |: C# Fundamentals

handler will check the current time against the time set by the user of the class. If the time equals or
exceeds the user’s set time, the event handler calls the onTimesUp () method that you defined in the
previous step:

public AlarmClock()
{

t = new Timer (100);

t.Elapsed += new ElapsedEventHandler (t_Elapsed) ;
}

void t_Elapsed(object sender, ElapsedEventArgs e)
{
if (DateTime.Now >= this.AlarmTime)
{
onTimesUp (new EventArgs());
t.Stop();

That’s it! The entire AlarmClock class is:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Timers;

class AlarmClock
{
Timer t;
public DateTime AlarmTime { get; set; }

public void Start()
{

t.Start();
}

public AlarmClock()
{

t = new Timer (100);

t.Elapsed += new ElapsedEventHandler (t_Elapsed);
}

void t_Elapsed(object sender, ElapsedEventArgs e)
{

if (DateTime.Now >= this.AlarmTime)

{

onTimesUp (new EventArgs());

234

Chapter 7: Delegates and Events

t.Stop();

}

public event EventHandler TimesUp;
protected virtual void onTimesUp (EventArgs e)

{
if (TimesUp != null)
TimesUp (this, e);

To use the AlarmClock class, you first create an instance of the AlarmClock class and then set the time
for the alarm by using the AlarmTime property. You then wire the TimesUp event with an event handler
so that you can print a message when the set time is up:

class Program

{

static void Main(string[] args)

{
AlarmClock ¢ = new AlarmClock()

{
//---alarm to sound off at 16 May 08, 9.50am---

AlarmTime = new DateTime (2008, 5, 16, 09, 50, 0, 0),
Y
c.Start();
c.TimesUp += new EventHandler (c_TimesUp) ;

Console.ReadLine() ;

}

static void c_TimesUp (object sender, EventArgs e)
{

Console.WriteLine("Times up!");

}

Difference between Events and Delegates

Events are implemented using delegates, so what is the difference between an event and a delegate?
The difference is that for an event you cannot directly assign a delegate to it using the = operator; you

must use the += operator.

235

Part |: C# Fundamentals

To understand the difference, consider the following class definitions — Class1 and Class2:

namespace DelegatesVsEvents

{
class Program
{
static void Main(string[] args)
{
}

class Classl

{
public delegate void ClasslDelegate();
public ClasslDelegate del;

class Class2

{
public delegate void Class2Delegate();
public event Class2Delegate evt; }

In this code, Class1 exposes a public delegate del, of type ClasslDelegate. Class2 is similar to
Classl, except that it exposes an event evt, of type Class2Delegate. del and evt each expect a
delegate, with the exception that evt is prefixed with the event keyword.

To use Class1, you create an instance of Class1 and then assign a delegate to the del delegate using
the “=" operator:

static void Main(string[] args)
{
//---create a delegate---
Classl.ClasslDelegate dl =
new Classl.ClasslDelegate (DoSomething) ;

Classl cl = new Classl();

//---assign a delegate to del of cl---
cl.del = new Classl.ClasslDelegate(dl);
}

static private void DoSomething ()
{
/...

236

Chapter 7: Delegates and Events

To use Class2, you create an instance of Class2 and then assign a delegate to the evt event using the
+= operator:

static void Main(string[] args)
{
//...

//---create a delegate---
Class2.Class2Delegate e2 =
new Class2.Class2Delegate (DoSomething) ;

Class2 c2 = new Class2();

//---assign a delegate to evt of c2---
c2.evt += new Class2.Class2Delegate(dl);

If you try to use the = operator to assign a delegate to the evt event, you will get a compilation error:
c2.evt = new Class2.Class2Delegate(dl); //---error---

This important restriction of event is important because defining a delegate as an event will ensure that
if multiple clients are subscribed to an event, another client will not be able to set the delegate to null
(or simply set it to another delegate). If the client succeeds in doing so, all the other delegates set by
other client will be lost. Hence, a delegate defined as an event can only be set with the += operator.

Passing State Information to an Event Handler

In the preceding program, you simply raise an event in the AlarmClock class; there is no passing of
information from the class back to the event handler. To pass information from an event back to an event
handler, you need to implement your own class that derives from the EventArgs base class.

In this section, you modify the previous program so that when the set time is up, the event passes a
message back to the event handler. The message is set when you instantiate the AlarmClock class.

First, define the AlarmClockEventArgs class that will allow the event to pass back a string to the event
handler. This class must derive from the EventArgs base class:

public class AlarmClockEventArgs : EventArgs
{
public AlarmClockEventArgs (string Message)
{
this.Message = Message;
}
public string Message { get; set; }

237

Part |: C# Fundamentals

Next, define a delegate called AlarmClockEventHandler with the following signature:
public delegate void AlarmClockEventHandler (object sender, AlarmClockEventArgs e);

Replace the original TimesUp event statement with the following statement, which uses the
AlarmClockEventHandler class:

//---public event EventHandler TimesUp;---
public event AlarmClockEventHandler TimesUp;

Add a Message property to the class so that users of this class can set a message that will be returned by
the event when the time is up:

public string Message { get; set; }

Modify the onTimesUp virtual method by changing its parameter type to the new
AlarmClockEventArgs class:

protected virtual void onTimesUp (AlarmClockEventArgs e)
{
if (TimesUp != null)
TimesUp (this, e);

Finally, modify the t_Elapsed event handler so that when you now call the onTimesUp () method, you
pass in an instance of the AlarmClockEventArgs class containing the message you want to pass back to
the event handler:

void t_Elapsed(object sender, ElapsedEventArgs e)
{

if (DateTime.Now >= this.AlarmTime)

{
onTimesUp (new AlarmClockEventArgs (this.Message)) ;
t.Stop();

Here’s the complete program:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Timers;

public class AlarmClockEventArgs : EventArgs
{

238

Chapter 7: Delegates and Events

public AlarmClockEventArgs (string Message)
{
this.Message = Message;
}
public string Message { get; set; }

public delegate void AlarmClockEventHandler (object sender, AlarmClockEventArgs e);

class AlarmClock

{
Timer t;
public event AlarmClockEventHandler TimesUp;
protected virtual void onTimesUp (AlarmClockEventArgs e)
{
if (TimesUp != null)
TimesUp (this, e);
}
public DateTime AlarmTime { get; set; }
public string Message { get; set; }
public AlarmClock()
{
t = new Timer (100);
t.Elapsed += new ElapsedEventHandler (t_Elapsed) ;
}
public void Start()
{
t.Start () ;
}
void t_Elapsed(object sender, ElapsedEventArgs e)
{
if (DateTime.Now >= this.AlarmTime)
{
onTimesUp (new AlarmClockEventArgs (this.Message)) ;
t.Stop();
}
}
}

239

Part |: C# Fundamentals

With the modified AlarmClock class, your program will now look like this:

namespace Events

{
class Program
{
static void c_TimesUp (object sender, AlarmClockEventArgs e)
{
Console.WriteLine (DateTime.Now.ToShortTimeString() + ": " + e.Message);

}

static void Main(string[] args)

{
AlarmClock ¢ = new AlarmClock()

{
//---alarm to sound off at 16 May 08, 9.50am---

AlarmTime = new DateTime (2008, 5, 16, 09, 50, 0, 0),
Message = "Meeting with customer."
Y
c.TimesUp += new AlarmClockEventHandler (c_TimesUp) ;
c.Start();
Console.ReadLine() ;

Figure 7-10 shows the output when the AlarmClock fires the TimesUp event.

file: ///C:/Documents and Settings/Wei-

58 AM: Meeting with customewr.

Figure 7-10

Summary

This chapter discussed what delegates are and how you can use them to invoke other functions, as well
as how you can use delegates to implement callbacks so that your application is more efficient and
responsive. One direct application of delegates is events, which make GUI operating systems such as
Windows possible. One important difference between delegates and events is that you cannot assign a
delegate to an event by using the = operator.

240

Strings and Regular
Expressions

One of the most common data types used in programming is the string. In C#, a string is a group
of one or more characters declared using the string keyword. Strings play an important part in
programming and are an integral part of our lives — our names, addresses, company names,
email addresses, web site URLSs, flight numbers, and so forth are all made up of strings. To help
manipulate those strings and pattern matching, you use regular expressions, sequences of characters
that define the patterns of a string. In this chapter, then, you will:

Q Explore the System. String class
Learn how to represent special characters in string variables
Manipulate strings with various methods
Format strings

Use the StringBuilder class to create and manipulate strings

U 00U o

Use Regular Expressions to match string patterns

The System.String Class

The .NET Framework contains the System. String class for string manipulation. To create an
instance of the String class and assign it a string, you can use the following statements:

String stril;

strl = "This is a string";
C# also provides an alias to the String class: string (lowercase “s”
can be rewritten as:

)- The preceding statements

string strl; //---equivalent to String strl;---
strl = "This is a string";

Part |: C# Fundamentals

You can declare a string and assign it a value in one statement, like this:
string str2 = "This is another string";

In .NET, a string is a reference type but behaves very much like a value type. Consider the following
example of a typical reference type:

Button btnl = new Button() { Text = "Button 1" };
Button btn2 = btnl;

btnl.Text += " and 2"; //---btnl.text is now "Button 1 and 2"---
Console.WriteLine (btnl.Text); //---Button 1 and 2---
Console.WriteLine (btn2.Text); //---Button 1 and 2---

Here, you create an instance of a Button object (btnl) and then assign it to another variable (btn2).
Both btnl and btn2 are now pointing to the same object, and hence when you modify the Text
property of btnl, the changes can be seen in btn2 (as is evident in the output of the WriteLine ()
statements).

Because strings are reference types, you would expect to see the same behavior as exhibited in the
preceding block of code. For example:

string strl = "String 1";
string str2 strl;

strl and str2 should now be pointing to the same instance. Make some changes to str1 by appending
some text to it:

strl += " and some other stuff";
And then print out the value of these two strings:

Console.WriteLine(strl); //---String 1 and some other stuff---
Console.WriteLine(str2); //---String 1---

Are you surprised to see that the values of the two strings are different? What actually happens when
you do the string assignment (string str2 = strl)isthat strl is copied to str2 (str2 holds a copy
of stri; it does not points to it). Hence, changes made to str1 are not reflected in str2.

A string cannot be a value type because of its unfixed size. All values types (int,
double, and so on) have fixed size.

A string is essentially a collection of Unicode characters. The following statements show how you
enumerate a string as a collection of char and print out the individual characters to the console:

string strl = "This is a string";
foreach (char ¢ in strl)
{

Console.WriteLine(c);

}

242

Chapter 8: Strings and Regular Expressions

Here’s this code’s output:

n 53

-

Q

Q B P K T®n

Escape Characters

Certain characters have special meaning in strings. For example, strings are always enclosed in double
quotation marks, and if you want to use the actual double-quote character in the string, you need

to tell the C# compiler by “escaping” the character’s special meaning. For instance, say you need to
represent the following in a string:

"T don't necessarily agree with everything I say." Marshall McLuhan

Because the sentence contains the double-quote characters, simply using a pair of double-quotes to
contain it will cause an error:

//---error---
string quotation;
quotation = ""I don't necessarily agree with everything I say." Marshall McLuhan";

To represent the double-quote character in a string, you use the backslash (\) character to turn off its
special meanings, like this:

string quotation =
"\"I don't necessarily agree with everything I say.\" Marshall McLuhan";

Console.WriteLine (quotation) ;

The output is shown in Figure 8-1.

ile: ///C:/Documents and Settings/Wei-Meng Lee/My Documents/Visual Studie 200... EE E .

"I don’t neceszzarily agree with everything I say." Marshall McLuhan

Figure 8-1

243

Part |: C# Fundamentals

A backslash, then, is another special character. To represent the C:\Windows path, for example, you need
to turn off the special meaning of \ by using another \, like this:

string path = "C:\\Windows";
What if you really need two backslash characters in your string, as in the following?
"\\servername\path"

In that case, you use the backslash character twice, once for each of the backslash characters you want to
turn off, like this:

string UNC = "\\\\servername\\path";

In addition to using the \ character to turn off the special meaning of characters like the double-quote (")
and backslash (\), there are other escape characters that you can use in strings.

One common escape character is the \n. Here’s an example:

string lines = "Line 1\nLine 2\nLine 3\nLine 4\nLine 5";
Console.WriteLine (lines);

The \n escape character creates a newline, as Figure 8-2 shows.

(C:/Documents and S... !EE
<]

Figure 8-2

You can also use \t to insert tabs into your string, as the following example shows (see also Figure 8-3):

string columnsl = "Column 1\tColumn 2\tColumn 3\tColumn 4";
string columns2 = "1\t5\t25\tl125";

Console.WriteLine (columnsl) ;

Console.WriteLine (columns?2) ;

lé."g lumn 2 Column 3 Column 4

125

Figure 8-3

244

Chapter 8: Strings and Regular Expressions

You learn more about formatting options in the section “String Formatting” later in this chapter.

Besides the \n and \t escape characters, C# also supports the \r escape character. \r is the carriage

return character. Consider the following example:
string strl = " One";
string str2 = "Two";
Console.Write(strl);
Console.Write(str2);

The output is shown in Figure 8-4.

v file:/f/C:/Mocuments and Settings... !En .

OneTwo_

] e —
Figure 8-4

However, if you prefix a \r escape character to the beginning of str2, the effect will be different:

string strl = " One";

string str2 = "\rTwo";
Console.Write(strl);
Console.Write(str2);

The output is shown in Figure 8-5.

e file:///C:MDocuments and Settings... !EE .

Figure 8-5

The \r escape character simply brings the cursor to the beginning of the line, and hence in the above
statements the word "Two" is printed at the beginning of the line. The \r escape character is often used

together with \n to form a new line (see Figure 8-6):

= "Line 1\n\r";

string stril
= "Line 2\n\r";

string str2
Console.Write(strl);
Console.Write(str2);

245

Part |: C# Fundamentals

By default, when you use the \n to insert a new line, the cursor is automatically
returned to the beginning of the line. However, some legacy applications still
require you to insert newline and carriage return characters in strings.

Figure 8-6

The following table summarizes the different escape sequences you have seen in this section:

Sequence Purpose

\n New line

\r Carriage return

\r\n Carriage return; New line
\ " Quotation marks

\\ Backslash character

\t Tab

In C#, strings can also be @-quoted. Earlier, you saw that to include special characters (such as
double-quote, backslash, and so on) in a string you need to use the backslash character to turn off its
special meaning;:

string path="C:\\Windows";
You can actually use the @ character, and prefix the string with it, like this:
string path=@"C:\Windows";

Using the @ character makes your string easier to read. Basically, the compiler treats strings that are
prefixed with the @ character verbatim — that is, it just accepts all the characters in the string (inside the
quotes). To better appreciate this, consider the following example where a string containing an XML
snippet is split across multiple lines (with each line ending with a carriage return):

string XML = @"
<Books>
<title>C# 3.0 Programmers' Reference</title>
</Book>";
Console.WriteLine (XML) ;

246

Chapter 8: Strings and Regular Expressions

Figure 8-7 shows the output. The WriteLine () method prints out the line verbatim.

{Books>
{title>CH 3.8 Programmers’ Referencel/title’

</Book>

Figure 8-7

To illustrate the use of the @ character on a double-quoted string, the following:

string quotation =
"\"I don't necessarily agree with everything I say.\" Marshall McLuhan";
Console.WriteLine (quotation) ;

can be rewritten as:
string quotation =

@"""I don't necessarily agree with everything I say."" Marshall McLuhan";
Console.WriteLine (quotation) ;

Escape Code for Unicode

C# supports the use of escape code to represent Unicode characters. The four-digit
escape code format is: \udddd. For example, the following statement prints out the £
symbol:

string symbol = "\u00A3";
Console.WriteLine (symbol) ;

For more information on Unicode, check out http: //unicode.org/Public/
UNIDATA/NamesList.txt.

String Manipulations

Often, once your values are stored in string variables, you need to perform a wide variety of operations
on them, such as comparing the values of two strings, inserting and deleting strings from an existing
string, concatenating multiple strings, and so on. The string class in the .NET Framework provides a
host of methods for manipulating strings, some of the important ones of which are explained in the
following sections.

You can find out about all of the String class methods at www.msdn . com.

247

Part |: C# Fundamentals

Testing for Equality

Even though string is a reference type, you will use the == and ! = operators to compare the value of
two strings (not their references).

Consider the following three string variables:

string strl = "This is a string";
string str2 = "This is a ";

str2 += "string";

string str3 = str2;

The following statements test the equality of the values contained in each variable:

Console.WritelLine(strl == str2); //--True---
Console.WriteLine(strl == str3); //--True---
Console.WriteLine(str2 != str3); //---False---

As you can see from the output of these statements, the values of each three variables are identical.
However, to compare their reference equality, you need to cast each variable to object and then check

their equality using the == operator, as the following shows:
Console.WriteLine((object)strl == (object)str2); //--False---
Console.WriteLine((object)str2 == (object)str3); //--True---

However, if after the assignment the original value of the string is changed, the two strings’ references
will no longer be considered equal, as the following shows:

string str3 = str2;

Console.WriteLine((object)str2 == (object)str3); //--True---
str2 = "This string has changed";
Console.WriteLine((object)str2 == (object)str3); //--False---
Besides using the == operator to test for value equality, you can also use the Equals () method, which

is available as an instance method as well as a static method:

Console.WriteLine(strl == str2); //--True---
Console.WriteLine(strl.Equals(str2)); //--True---
Console.WriteLine(string.Equals(strl,str2)); //--True---
Comparing Strings
String comparison is a common operation often performed on strings. Consider the following two string
variables:
string strl = "Microsoft";
string str2 = "microsoft";

248

Chapter 8: Strings and Regular Expressions

You can use the String.Compare () static method to compare two strings:

Console.WriteLine(string.Compare(strl, str2)); // 1l;strl is greater than str2
Console.WriteLine(string.Compare(str2, strl)); // -1;str2 is less than strl
Console.WriteLine(string.Compare(strl, str2, true)); // 0;strl equals str2

The lowercase character “m” comes before the capital “M,” and hence str1 is considered greater than
str2. The third statement compares the two strings without considering the casing (that is, case-
insensitive; it’s the third argument that indicates that the comparison should ignore the casing of the
strings involved).

The string.Compare () static method is overloaded, and besides the two overloaded methods (first
two statements and the third statement) just shown, there are additional overloaded methods as
described in the following table.

Method Description
Compare (String, String) Compares two specified String objects.
Compare (String, String, Boolean) Compares two specified string objects, ignoring or

respecting their case.

Compare (String, String, Compares two specified String objects. Also

StringComparison) specifies whether the comparison uses the current
or invariant culture, honors or respects case, and
uses word or ordinal sort rules.

Compare (String, String, Boolean, Compares two specified String objects, ignoring or
CultureInfo) respecting their case, and using culture-specific
information for the comparison.

Compare (String, Int32, String, Compares substrings of two specified String
Int32, Int32) objects.

Compare (String, Int32, String, Compares substrings of two specified String
Int32, Int32, Boolean) objects, ignoring or respecting their case.

Compare (String, Int32, String, Compares substrings of two specified String
Int32, Int32, StringComparison) objects.

Compare (String, Int32, String, Compares substrings of two specified String
Int32, Int32, Boolean, objects, ignoring or respecting their case, and using
CultureInfo) culture-specific information for the comparison.

Alternatively, you can use the CompareTo () instance method, like this:

Console.WriteLine(strl.CompareTo(str2)); // 1; strl is greater than str2
Console.WriteLine(str2.CompareTo(strl)); // -1; str2 is less than strl

Note that comparisons made by the CompareTo () instance method are always case sensitive.

249

Part |: C# Fundamentals

Creating and Concatenating Strings

The string class in the NET Framework provides a number of methods that enable you to create or

concatenate strings.

The most direct way of concatenating two strings is to use the “+” operator, like this:

The string.Format () static method takes the input of multiple objects and creates a new string.

string strl = "Hello ";

string str2 = "world!";

string str3 = strl + str2;
Console.WriteLine(str3); //---Hello world!---

Consider the following example:

Notice that you supplied two variables of string and int type and the Format () method automatically

string Name = "Wei-Meng Lee";
int age = 18;

string strl = string.Format("My name is {0} and I am {1} years old",

Name, age);

//---strl is now "My name is Wei-Meng Lee and I am 18 years old"---

Console.WriteLine(strl);

combines them to return a new string.

The preceding example can be rewritten using the String.Concat () static method, like this:

250

string strl = string.Concat("My name is ", Name, " and I am ", age ,

" years old");

//---strl is now "My name is Wei-Meng Lee and I am 18 years old"---

Console.WriteLine(strl);

Strings Are Immutable

In .NET, all string objects are immutable. This means that once a string variable is
initialized, its value cannot be changed. And when you modify the value of a string, a
new copy of the string is created and the old copy is discarded. Hence, all methods that
process strings return a copy of the modified string — the original string remains
intact.

For example, the Insert () instance method inserts a string into the current string and
returns the modified string:

strl = strl.Insert (10, "modified ");

In this statement, you have to assign the returned result to the original string to ensure
that the new string is modified.

Chapter 8: Strings and Regular Expressions

The string.Join () static method is useful when you need to join a series of strings stored in a string
array. The following example shows the strings in a string array joined using the Join () method:

string[] pts = { "1,2", "3,4", "5,6" };
string strl = string.Join("|", pts) ;
Console.WriteLine(strl); //---1,2]|3,4]|5,6---

To insert a string into an existing string, use the instance method Insert (), as demonstrated in the
following example:

string strl = "This is a string";
strl = strl.Insert (10, "modified ");
Console.WriteLine(strl); //---This is a modified string---

The copy () instance method enables you to copy part of a string into a char array. Consider the
following example:

string strl = "This is a string";

char[] ch = { "*', ‘"%t vxr vkt ok oukn k0 k0).
strl.CopyTo(0, ch, 2, 4);

Console.WriteLine(ch); //---**This**---

The first parameter of the CopyTo () method specifies the index of the string to start copying from. The
second parameter specifies the char array. The third parameter specifies the index of the array to copy
into, while the last parameter specifies the number of characters to copy.

If you need to pad a string with characters to achieve a certain length, use the padLeft () and
PadrRight () instance methods, as the following statements show:

string strl = "This is a string";
string str2;

str2 = strl.PadLeft (20, '*');
Console.WritelLine(str2); //---"#****This is a string"---

str2 = strl.PadRight (20, '*');
Console.WriteLine(str2); //---"This is a string****"---

Trimming Strings

To trim whitespace from the beginning of a string, the end of a string, or both, you can use the
TrimStart (), TrimEnd (), or Trim() instance methods, respectively. The following statements
demonstrate the use of these methods:

string strl = " Computer "

string str2;

Console.WriteLine(strl); //---" Computer "
str2 = strl.Trim();

Console.WritelLine(str2); //---"Computer"---

str2 = strl.TrimStart();
Console.WriteLine(str2); //---"Computer "

str2 = strl.TrimEnd();
Console.WriteLine(str2); //---" Computer"---

251

Part |: C# Fundamentals

Splitting Strings
One common operation with string manipulation is splitting a string into smaller strings. Consider the
following example where a string contains a serialized series of points:

string strl = "1,2(3,4|5,6(|7,8]9,10";

Each point (“1, 2", “3,4”, and so on) is separated with the | character. You can use the Split () instance
method to split the given string into an array of strings:

string[] strArray = strl.Split('|');

Once the string is split, the result is stored in the string array strArray and you can print out each of the
smaller strings using a foreach statement:

foreach (string s in strArray)
Console.WriteLine(s) ;

The output of the example statement would be:

You can further split the points into individual coordinates and then create a new Point object, like this:

string strl = "1,2]3,4]5,6/7,8]9,10";
string[] strArray = strl.Split('|');

foreach (string s in strArray)

{
string[] xy= s.Split(',');
Point p = new Point (Convert.ToIntl6(xy[0]), Convert.ToIntlé6 (xy[1]));
Console.Writel. ine(p.ToString());

The output of the above statements would be:

{x=1,v=2}
{X=3,Y=4}
{X=5,Y=6}
{xX=7,Y=8}
{X=9,Y=10}

Searching and Replacing Strings

Occasionally, you need to search for a specific occurrence of a string within a string. For this purpose,
you have several methods that you can use.

252

Chapter 8: Strings and Regular Expressions

To look for the occurrence of a word and get its position, use the Index0f () and LastIndexOf ()
instance methods. IndexOf () returns the position of the first occurrence of a specific word from a string,
while LastIndexOf () returns the last occurrence of the word. Here’s an example:

string strl = "This is a long long long string...";
Console.WriteLine(strl.IndexOf ("long")); //---10---
Console.WriteLine(strl.LastIndexOf ("long")); //---20---

To find all the occurrences of a word, you can write a simple loop using the Index0f () method,
like this:

int position = -1;
string strl = "This is a long long long string...";
do

{
position = strl.IndexOf ("long", ++position);
if (position > 0)
Console.WriteLine(position);
} while (position > 0);

This prints out the following:

10
15
20

To search for the occurrence of particular character, use the IndexOfAny () instance method.
The following statements search the str1 string for the any of the characters a, b, ¢, d, or e, specified
in the char array:

char[] anyof = "abcde".ToCharArray();
Console.WriteLine(strl.IndexOfAny (anyof)); //---8---

To obtain a substring from within a string, use the Substring () instance method, as the following
example shows:

string strl = "This is a long string...";

string str2;

Console.WriteLine(strl.Substring(10)); //---long string...---
Console.WriteLine(strl.Substring (10, 4)); //---long---

To find out if a string begins with a specific string, use the Startswith () instance method. Likewise, to
find out if a string ends with a specific string, use the Endswith () instance method. The following
statements illustrate this:

Console.WritelLine(strl.StartsWith("This")); //---True---
Console.WriteLine(strl.EndsWith("...")); //---True---

253

Part |: C# Fundamentals

To remove a substring from a string beginning from a particular index, use the Remove () instance
method:

str2 = strl.Remove(10);
Console.WriteLine(str2); //---"This is a"---

This statement removes the string starting from index position 10. To remove a particular number of
characters, you need to specify the number of characters to remove in the second parameter:

str2 = strl.Remove(10,5); //---remove 5 characters from index 10---
Console.WriteLine(str2); //---"This is a string..."---

To replace a substring with another, use the Replace () instance method:

str2 = strl.Replace("long", "short");
Console.WriteLine(str2); //---"This is a short string..."---

To remove a substring from a string without specifying its exact length, use the Replace () method,
like this:

str2 = strl.Replace("long ", string.Empty);
Console.WriteLine(str2); //---"This is a string..."---

Changing Case

To change the casing of a string, use the ToUpper () or ToLower () instance methods. The following
statements demonstrate their use:

string strl = "This is a string";
string str2;

str2 = strl.ToUpper () ;
Console.WriteLine(str2); //---"THIS IS A STRING"---

str2 = strl.ToLower();
Console.WriteLine(str2); //---"this is a string"---

String Formatting

You've seen the use of the Console.WriteLine () method to print the output to the console.
For example, the following statement prints the value of num1 to the console:

int numl = 5;
Console.WriteLine (numl); //---5---

You can also print the values of multiple variables like this:
int numl = 5;

int num2 = 12345;
Console.WriteLine(numl + " and " + num2); //---5 and 12345---

254

Chapter 8: Strings and Regular Expressions

If you have too many variables to print (say more than five), though, the code can get messy very
quickly. A better way would be to use a format specifier, like this:

Console.WriteLine("{0} and {1}", numl, num2); //---5 and 12345---

A format specifier ({0}, {1}, and so forth) automatically converts all data types to string. Format
specifiers are labeled sequentially ({03}, {1}, {2}, and so on). Each format specifier is then replaced with
the value of the variable to be printed. The compiler looks at the number in the format specifier, takes the
argument with the same index in the argument list, and makes the substitution. In the preceding
example, numl and num?2 are the arguments for the format specifiers.

What happens if you want to print out the value of a number enclosed with the {} characters? For
example, say that you want to print the string {5} when the value of numl is 5. You can do something
like this:

numl = 5;
Console.WriteLine("{{{0}}}", numl); //---{5}---

Why are there two additional sets of {} characters for the format specifier? Well, if you only have one
additional set of {} characters, the compiler interprets this to mean that you want to print the string
literal {0}, as the following shows:

numl = 5;
Console.WriteLine("{{0}}", numl); //---{0}---

The two additional sets of {} characters indicate to the compiler that you want to specify a format
specifier and at the same time surround the value with a pair of {} characters.

And as demonstrated earlier, the String class contains the Format () static method, which enables you
to create a new string (as well as perform formatting on string data). The preceding statement could be
rewritten using the following statements:

string formattedString = string.Format ("{{{0}}}", numl);
Console.WriteLine (formattedString); //---{5}---

To format numbers, you can use the format specifiers as shown here:

numl=5;
Console.WriteLine("{0:N}", numl); //---5.00---

Console.WriteLine("{0:00000}", numl); //---00005---

//---0R---

Console.WriteLine("{0:d45}", numl); //---00005---
Console.WriteLine("{0:d4}", numl); //---0005---
Console.WriteLine("{0,5:G}", numl); /=== 5 (4 spaces on left)---

For a detailed list of format specifiers you can use for formatting strings, please refer to the MSDN
documentation under the topics “Standard Numeric Format Strings” and “Custom Numeric Format
Strings.”

255

Part |: C# Fundamentals

You can also print out specific strings based on the value of a number. Consider the following example:

numl = 0;
Console.WriteLine("{0:yes;;no}", numl); //---no---
numl = 1;
Console.WriteLine("{0:yes;;no}", numl); //---yes---
numl = 5;

Console.WriteLine("{0:yes;;no}", numl); //---yes---

In this case, the format specifier contains two strings: yes and no. If the value of the variable (num) is
nonzero, the first string will be returned (yes). If the value is 0, then it returns the second string (no).
Here is another example:

numl = 0;

Console.WriteLine("{0:0K;;Cancel}", numl); //---Cancel---
numl = 1;

Console.WriteLine("{0:0K;;Cancel}", numl); //---OK---
numl = 5;

Console.WriteLine("{0:0K;;Cancel}", numl); //---OK---
For decimal number formatting, use the following format specifiers:

double vall = 3.5;

Console.WriteLine("{O0:##.00}", wvall); //---3.50---
Console.WriteLine ("{0:##.000}", vall); //---3.500---
Console.WriteLine("{0:0##.000}", vall); //---003.500---

There are times when numbers are represented in strings. For example, the value 9876 may be
represented in a string with a comma denoting the thousandth position. In this case, you cannot simply
use the Parse () method from the int class, like this:

string str2 = "9,876";
int num3 = int.Parse(str2); //---error---

To correctly parse the string, use the following statement:
int num3 = int.Parse(
str2,

System.Globalization.NumberStyles.AllowThousands) ;
Console.WriteLine(num3); //---9876---

Here is another example:

string str3 = "1,239,876";

num3 = int.Parse(
str3,
System.Globalization.NumberStyles.AllowThousands) ;
Console.WriteLine(num3); //---1239876---

256

Chapter 8: Strings and Regular Expressions

What about the reverse — formatting a number with the comma separator? Here is the solution:

num3 = 9876;
Console.WriteLine("{0:#,0}", num3); //---9,876---

num3 = 1239876;
Console.WriteLine("{0:#,0}", num3); //---1,239,876---

Last, to format a special number (such as a phone number), use the following format specifier:

long phoneNumber = 1234567890;
Console.WriteLine (" {0:###-###-####)", phoneNumber); //---123-456-7890---

The StringBuilder Class

Earlier in this chapter you saw how to easily concatenate two strings by using the + operator. That’s fine
if you are concatenating a small number of strings, but it is not recommended for large numbers of
strings. The reason is that String objects in .NET are immutable, which means that once a string variable
is initialized, its value cannot be changed. When you concatenate another string to an existing one, you
actually discard its old value and create a new string object containing the result of the concatenation.
When you repeat this process several times, you incur a performance penalty as new temporary objects
are created and old objects discarded.

One important application of the StringBuilder class is its use in .NET interop
with native C/C++ APIs that take string arguments and modify strings. One example
of this is the Windows API function GetWindowText (). This function has a second
argument that takes a TCHAR* parameter. To use this function from .NET code, you
would need to pass a StringBuilder object as this argument.

Consider the following example, where you concatenate all the numbers from 0 to 9999:

int counter = 9999;

string s = string.Empty;

for (int i = 0; i <= counter; i++) {
s += 1.ToString();

}

Console.WriteLine(s) ;

257

Part |: C# Fundamentals

At first glance, the code looks innocent enough. But let’s use the Stopwatch object to time the operation.
Modify the code as shown here:

int counter = 9999;
System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch() ;
sw.Start () ;

string s = string.Empty;
for (int 1 = 0; 1 <= counter; i++) {
s += 1.ToString();

sw.Stop () ;
Console.WriteLine("Took {0} ms", sw.ElapsedMilliseconds) ;

Console.WriteLine(s) ;

On average, it took about 374 ms on my computer to run this operation. Let’s now use the
StringBuilder class in .NET to perform the string concatenation, using its Append () method:

System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
sw.Start () ;

StringBuilder sb = new StringBuilder () ;
for (int 1 = 0; 1 <= 9999; i++) {
sb.Append (i.ToString());

sw.Stop () ;

Console.WriteLine("Took {0} ms", sw.ElapsedMilliseconds) ;
Console.WriteLine(sb.ToString()) ;

On average, it took about 6 ms on my computer to perform this operation. As you can deduce, the
improvement is drastic — 98% ((374-6)/374). If you increase the value of the loop variant (counter), you

will find that the improvement is even more dramatic.

The stringBuilder class represents a mutable string of characters. Its behavior is like the String
object except that its value can be modified once it has been created.

The stringBuilder class contains some other important methods, which are described in the
following table.

258

Chapter 8: Strings and Regular Expressions

Method

Append

AppendFormat

AppendLine

CopyTo

Insert

Remove

Replace

ToString

Description

Appends the string representation of a specified object to the end of this
instance.

Appends a formatted string, which contains zero or more format specifiers,
to this instance. Each format specification is replaced by the string
representation of a corresponding object argument.

Appends the default line terminator, or a copy of a specified string and the
default line terminator, to the end of this instance.

Copies the characters from a specified segment of this instance to a specified
segment of a destination Char array.

Inserts the string representation of a specified object into this instance at a
specified character position.

Removes the specified range of characters from this instance.

Replaces all occurrences of a specified character or string in this instance
with another specified character or string.

Converts the value of a StringBuilder to a String.

Regular Expressions

When dealing with strings, you often need to perform checks on them to see if they match certain
patterns. For example, if your application requires the user to enter an email address so that you can
send them a confirmation email later on, it is important to at least verify that the user has entered a
correctly formatted email address. To perform the checking, you can use the techniques that you have
learnt earlier in this chapter by manually looking for specific patterns in the email address. However,
this is a tedious and mundane task.

A better approach would be to use regular expressions — a language for describing and manipulating
text. Using regular expressions, you can define the patterns of a text and match it against a string. In the
.NET Framework, the System. Text .RegularExpressions namespace contains the RegEx class for
manipulating regular expressions.

Searching for a Match

To use the RegEx class, first you need to import the System. Text .RegularExpressions namespace:

using System.Text.RegularExpressions;

259

Part |: C# Fundamentals

The following statements shows how you can create an instance of the RegEx class, specify the pattern to
search for, and match it against a string:

string s = "This is a string";
Regex r = new Regex("string");
if (r.IsMatch(s))
{
Console.WriteLine("Matches.");

}

In this example, the Regex class takes in a string constructor, which is the pattern you are searching
for. In this case, you are searching for the word “string” and it is matched against the s string variable.
The IsMatch () method returns True if there is a match (that is, the string s contains the word “string”).

To find the exact position of the text “string” in the variable, you can use the Match () method of the
RegEx class. It returns a Match object that you can use to get the position of the text that matches
the search pattern using the Index property:

string s = "This is a string";
Regex r = new Regex("string");
if (r.IsMatch(s))
{
Console.WriteLine("Matches.");

}

Match m = r.Match(s);

if (m.Success)

{
Console.WriteLine("Match found at " + m.Index);
//---Match found at 10---

What if you have multiple matches in a string? In this case, you can use the Matches () method of the
RegEx class. This method returns a MatchCollection object, and you can iteratively loop through it to
obtain the index positions of each individual match:

string s = "This is a string and a long string indeed";
Regex r = new Regex("string");

MatchCollection mc = r.Matches(s);

foreach (Match ml in mc)

{
Console.WriteLine("Match found at " + ml.Index);
//---Match found at 10---
//---Match found at 28---

260

Chapter 8: Strings and Regular Expressions

More Complex Pattern Matching

You can specify more complex searches using regular expressions operators. For example, to know if a
string contains either the word “Mr” or “Mrs”, you can use the operator |, like this:

string gender = "Mr Wei-Meng Lee";
Regex r = new Regex ("Mr|Mrs");
if (r.IsMatch(gender))
{
Console.WriteLine("Matches.");

}

The following table describes regular expression operators commonly used in search patterns.

Operator Description

{n}

Match any one character

Match any one character listed between the brackets
Match any one character not listed between the brackets
Match any character one time, if it exists

Match declared element multiple times, if it exists
Match declared element one or more times

Match declared element exactly n times

Match declared element at least n times

Match declared element at least n times, but not more than N times
Match at the beginning of a line

Match at the end of a line

Match at the beginning of a word

Match at the end of a word

Match at the beginning or end of a word

Match in the middle of a word

Shorthand for digits (0-9)

Shorthand for word characters (letters and digits)

Shorthand for whitespace

261

Part |: C# Fundamentals

Another common search pattern is verifying a string containing a date. For example, if a string
contains a date in the format "yyyy/mm/dd", you would specify the search pattern as follows:
"(19]20)\a\d[- /.1(0[1-91]|1[012])[- /.1(0[1-9]1][12]1[0-9]1|3[01])".This pattern will
match dates ranging from 1900-01-01 to 2099-12-31.

string date = "2007/03/10";
Regex r = new Regex(@"(19]20)\d\d[- /.]1(0[1-9]|1[012])[- /.]
(0[1-97][121[0-91|3[011)");
if (r.IsMatch(date))
{
Console.WriteLine("Matches.");

}
You can use the following date separators with the pattern specified above:
string date = "2007/03/10";
string date = "2007-03-10";

string date = "2007 03 10";
string date = "2007.03.10";

Some commonly used search patterns are described in the following table.

Pattern Description

[0-9] Digits

[A-Fa-f0-9] Hexadecimal digits
[A-Za-z0-9] Alphanumeric characters
[A-Za-z] Alphabetic characters
la-z] Lowercase letters

[A-Z] Uppercase letters

[\t] Space and tab
[\x00-\x1F\x7F] Control characters
[\x21-\x7E] Visible characters
[\x20-\x7E] Visible characters and spaces
LU #8%& () %+, -./:;<=>2@[\\\]1_"{]|}~] Punctuation characters

[\t\r\n\v\f] Whitespace characters

\w+ ([=+. " I\w+) *@\w+ ([T \w+) *\ . A\w+ ([-.] \w+) * Email address
http(s)?:// (\w-1+\.)+ [\w=1+(/[\w- ./?%&=1%)? Internet URL

((V(NA{31\) ?) | (\d{31-))2\d{3}-\d{4} U.S. phone number
\d{3}-\d{2}-\d{4} U.S. Social Security number
\d{5} (-\d{4})>? U.S. ZIP code

262

Chapter 8: Strings and Regular Expressions

To verify that an email address is correctly formatted, you can use the following statements with the
specified regular expression:

string email = "weimenglee@learn2develop.net";
Regex r = new Regex (@""[\w-\.]+@([\w-1+\.)+[\w-1{2,4}S");
if (r.IsMatch(email))

Console.WriteLine("Email address is correct.");

else
Console.WriteLine("Email address is incorrect.");

There are many different reqular expressions that you can use to validate an email address.
Howeuver,there is no perfect reqular expression to validate all email addresses. For more information
on validating email addresses using regular expressions, check out the following web sites:
http://regular-expressions.info/email .html and http://
fightingforalostcause.net/misc/2006/compare-email-regex.php.

Summary

String manipulations are common operations, so it’s important that you have a good understanding of
how they work and the various methods and classes that deal with them. This chapter provided a lot
of information about how strings are represented in C# and about using regular expressions to perform
matching on strings.

263

Generics

One of the new features in the .NET Framework (beginning with version 2.0) is the support of
generics in Microsoft Intermediate Language (MSIL). Generics use type parameters, which allow
you to design classes and methods that defer the specification of one or more types until the class
or method is declared and instantiated by client code. Generics enable developers to define type-
safe data structures, without binding to specific fixed data types at design time.

Generics are a feature of the IL and not specific to C# alone, so languages such as C# and VB.NET
can take advantage of them.

This chapter discusses the basics of generics and how you can use them to enhance efficiency and
type safety in your applications. Specifically, you will learn:

Q Advantages of using generics
How to specify constraints in a generic type

a
O Generic interfaces, structs, methods, operators, and delegates
]

The various classes in the NET Framework class library that support generics

Understanding Generics

Let’s look at an example to see how generics work. Suppose that you need to implement your own
custom stack class. A stack is a last-in, first-out (LIFO) data structure that enables you to push
items into and pop items out of the stack. One possible implementation is:

public class MyStack

{
private int[] _elements;
private int _pointer;

public MyStack(int size)
{

_elements = new int[size];
(continued)

Part |: C# Fundamentals

(continued)

_pointer = 0;

}

public void Push(int item)
{
if (_pointer > _elements.Length - 1)
{
throw new Exception("Stack is full.");
}
_elements[_pointer] = item;
_pointer++;

}

public int Pop()
{
_pointer--;
if (_pointer < 0)
{
throw new Exception("Stack is empty.");
}

return _elements|[_pointer];

In this case, the MyStack class allows data of int type to be pushed into and popped out of the stack.
The following statements show how to use the MyStack class:

MyStack stack = new MyStack(3);
stack.Push (1) ;
stack.Push(2);
stack.Push(3);

Console.WriteLine(stack.Pop()); //---3---
Console.WriteLine(stack.Pop()); //---2---
Console.WriteLine(stack.Pop()); //---1---

As you can see, this stack implementation accepts stack items of the int data type. To use this
implementation for another data type, say String, you need to create another class that uses the string
type. Obviously, this is not a very efficient way of writing your class definitions because you now have
several versions of essentially the same class to maintain.

A common way of solving this problem is to use the Object data type so that the compiler will use
late-binding during runtime:

public class MyStack
{
private object[] _elements;

private int _pointer;

public MyStack(int size)

266

Chapter 9: Generics

_elements = new object[size];
_pointer = 0;

}

public void Push(object item)

{
if (_pointer > _elements.Length - 1)
{
throw new Exception("Stack is full.");
}
_elements|[_pointer] = item;
_pointer++;

}

public object Pop()
{
_pointer--;
if (_pointer < 0)
{
throw new Exception("Stack is empty.");
}

return _elements|[_pointer];

One problem with this approach is that when you use the stack class, you may inadvertently pop out the
wrong data type, as shown in the following highlighted code:

MyStack stack = new MyStack(3);
stack.Push (1) ;
stack.Push(2) ;
stack.Push("A") ;
//---invalid cast---

int num = (int) stack.Pop();

Because the Pop () method returns a variable of Object type, IntelliSense cannot detect during design
time if this code is correct. It is only during runtime that when you try to pop out a string type and try
to typecast it into an int type that an error occurs. Besides, type casting (boxing and unboxing) during

runtime incurs a performance penalty.

To resolve this inflexibility, you can make use of generics.

267

Part |: C# Fundamentals

Generic Classes

Using generics, you do not need to fix the data type of the items used by your stack class. Instead, you
use a generic type parameter (<T>) that identifies the data type parameter on a class, structure, interface,
delegate, or procedure. Here’s a rewrite of the MyStack class that shows the use of generics:

public class MyStack<T>

{
private T[] _elements;
private int _pointer;

public MyStack(int size)
{
_elements = new T[size];

_pointer = 0;

public void Push(T item)

{
if (_pointer > _elements.Length - 1)
{
throw new Exception("Stack is full.");
}
_elements[_pointer] = item;
_pointer++;

public T Pop()
{
_pointer--;
if (_pointer < 0)
{
throw new Exception("Stack is empty.");
}

return _elements|[_pointer];

As highlighted, you use the type T as a placeholder for the eventual data type that you want to use for
the class. In other words, during the design stage of this class, you do not specify the actual data type
that the MyStack class will deal with. The MyStack class is now known as a generic type.

When declaring the private member array _element, you use the generic parameter T instead of a
specific type such as int or string:

private T[] _elements;
In short, you replace all specific data types with the generic parameter T.

You can use any variable name you want to represent the generic parameter. T is chosen as the generic
parameter for illustration purposes.

268

Chapter 9: Generics

If you want the MyStack class to manipulate items of type int, specify that during the instantiation
stage (int is called the type argument):

MyStack<int> stack = new MyStack<int>(3);
The stack object is now known as a constructed type, and you can use the MyStack class normally:

stack.Push (1) ;
stack.Push(2) ;
stack.Push(3);

A constructed type is a generic type with at least one type argument.

In Figure 9-1 IntelliSense shows that the Push () method now accepts arguments of type int.

HyStack<int> stack = new HNy3tack<int> (3):
stack.Push[‘
|vuid My Stack<ink = Push {ink item)l

Figure 9-1
Trying to push a string value into the stack like this:

stack.Push("A"); //---Error---

generates a compile-time error. That’s because the compiler checks the data type used by the MmyStack
class during compile time. This is one of the key advantages of using generics in C#.

To use the MyStack class for String data types, you simply do this:

MyStack<string> stack = new MyStack<string>(3);
stack.Push("A");
stack.Push("B") ;
stack.Push("C");

Figure 9-2 summarizes the terms used in a generic type.

Type parameter

-
—public class MyStack<Ts
{

rrivate T[] _elements:
private int _pointer;
public MyStack(int size)
{
_elements = new T[size];
_pointer = 0;
}
public woid Push(T 1tEm]|:|
punlic T Pop ().

—

MyStack<string> stack = new MyStack<strings (3):

Generic Type constructed Type Type Argument

Figure 9-2

269

Part |: C# Fundamentals

Using the default Keyword in Generics

In the preceding implementation of the generic MyStack class, the Pop () method throws an exception
whenever you call it when the stack is empty:

public T Pop()

{

_pointer--;
if (_pointer < 0)
{
throw new Exception("Stack is empty.");
}

return _elements|[_pointer];

Rather than throwing an exception, you might want to return the default value of the type used in the class.
If the stack is dealing with int values, it should return 0; if the stack is dealing with string, it should
return an empty string. In this case, you can use the default keyword to return the default value of a type:

public T Pop()

{

_pointer--;
if (_pointer < 0)
{
return default (T);
}

return _elements|[_pointer];

For instance, if the stack deals with int values, calling the Pop () method on an empty stack will return 0:

MyStack<int> stack = new MyStack<int>(3);
stack.Push(1);
stack.Push(2);
stack.Push(3);

Console.WriteLine(stack.Pop()); //---3---
Console.WriteLine(stack.Pop()); //---2---
Console.WriteLine(stack.Pop()); //---1---
Console.WritelLine(stack.Pop()); //---0---

Likewise, if the stack deals with the string type, calling Pop () on an empty stack will return an empty

string:

270

MyStack<string> stack = new MyStack<string>(3);
stack.Push("A") ;
stack.Push("B") ;
stack.Push("C");

(()); //---"C"---
Console.WriteLine(stack.Pop()); //---"B"---
Console.WriteLine(stack.Pop()); //---"A"---

(())

T T

Console.WriteLine (stack.Pop

Console.WriteLine (stack.Pop

Chapter 9: Generics

The default keyword returns null for reference types (that is, if T is a reference type) and 0 for
numeric types. If the type is a struct, it will return each member of the struct initialized to 0
(for numeric types) or null (for reference types).

Advantages of Generics

It’s not difficult to see the advantages of using generics:

a

Q

Type safety — Generic types enforce type compliance at compile time, not at runtime (as in the
case of using Object). This reduces the chances of data-type conflict during runtime.

Performance — The data types to be used in a generic class are determined at compile time, so

there’s no need to perform type casting during runtime, which is a computationally costly
process.

Code reuse — Because you need to write the class only once and then customize it for use with
the various data types, there is a substantial amount of code reuse.

Using Constraints in a Generic Type

Using the MyStack class, suppose that you want to add a method called Find () that allows users to
check if the stack contains a specific item. You implement the Find () method like this:

public class MyStack<T>

{

private T[] _elements;
private int _pointer;

public MyStack(int size)

{
_elements = new T[size];
_pointer = 0;

}

public void Push(T item)
{
if (_pointer > _elements.Length - 1)

{
throw new Exception("Stack is full.");
}
_elements|[_pointer] = item;
_pointer++;

}

public T Pop()
{

_pointer--;
if (_pointer < 0)
{

return default(T);
//throw new Exception("Stack is empty.");

(continued)

271

Part |: C# Fundamentals

(continued)

return _elements|[_pointer];

}

public bool Find(T keyword)
{
bool found = false;
for (int 1=0; i<_pointer; i++)
{
if (_elements[i] == keyword)
{
found = true;
break;
}
}

return found;

But the code will not compile. This is because of the statement:
if (_elements[i] == keyword)

That’s because the compiler has no way of knowing if the actual type of item and keyword (type T)
support this operator (see Figure 9-3). For example, you cannot by default compare two struct objects.

hool found
for (int i
{

false;

0; i < _pointer; i++)

if (,elements[i] == keyword)
i |Oparator '=='cannot be applied to operands of bype 'T' and ‘T'|

found = true;
break;
H
)

return found;

Figure 9-3

A better way to resolve this problem is to apply constraint to the generic class so that only certain data
types can be used. In this case, because you want to perform comparison in the Find () method, the

data type used by the generic class must implement the IComparable<T> interface. This is enforced by
using the where keyword:

public class MyStack<T> where T : IComparable<T>
{

private T[] _elements;

private int _pointer;

public MyStack(int size)

{
_elements = new T[size];
_pointer = 0;

}

public void Push(T item)

272

Chapter 9: Generics

if (_pointer > _elements.Length - 1)

{
throw new Exception("Stack is full.");
}
_elements|[_pointer] = item;
_pointer++;

}

public T Pop()
{
_pointer--;
if (_pointer < 0)
{
return default (T);
}

return _elements|[_pointer];

}

public bool Find (T keyword)
{
bool found = false;
for (int i=0; i<_pointer; i++)
{
if (_elements[i].CompareTo (keyword) == 0)
{
found = true;
break;

}

return found;

For the comparison, you use the CompareTo () method to compare two items of type T (which must
implement the IComparable interface). The CompareTo () method returns 0 if the two objects are equal.
You can now search for an item by using the Find () method:

MyStack<string> stack = new MyStack<string>(3);
stack.Push("A");
stack.Push("B");
stack.Push("C");

if (stack.Find("B"))
Console.WriteLine("Contains B");

In this case, the code works because the string type implements the IComparable interface. Suppose
that you have the following Employee class definition:

public class Employee

{
public string ID { get; set; }
public string Name { get; set; }

273

Part |: C# Fundamentals

When you try to use the MyStack class with the Employee class, you get an error:
MyStack<Employee> stack = new MyStack<Employee>(3); //---Error---

That’s because the Employee class does not implement the IComparable<T> interface. To resolve this,

simply implement the IComparable<Employee> interface in the Employee class and implement the
CompareTo () method:

public class Employee : IComparable<Employee>
{

public string ID { get; set; }

public string Name { get; set; }

public int CompareTo (Employee obj)
{
return this.ID.CompareTo (obj.ID);

You can now use the Employee class with the generic MyStack class:

MyStack<Employee> stack =
stack.Push(new Employee()
stack.Push(new Employee ()

new MyStack<Employee>(2);
{ ID = "123", Name = "John" });
{ ID = "456", Name = "Margaret" });

Employee el = new Employee() { ID = "123", Name = "John" };

if (stack.Find(el))
Console.WriteLine ("Employee found.");

Specifying Multiple Constraints

You can specify multiple constraints in a generic type. For example, if you want the MyStack class to

manipulate objects of type Employee and also implement the Icomparable interface, you can declare
the generic type as:

public class MyStack<T> where T : Employee, IComparable<T>
{
/] ...

Here, you are constraining that the MyStack class must use types derived from Employee and they must
also implement the IComparable interface.

The base class constraint must always be specified first, before specifying the
interface.

274

Chapter 9: Generics

Assuming that you have the following Manager class deriving from the Employee class:

public class Manager : Employee, IComparable<Manager>
{

public int CompareTo (Manager obj)

{

return base.CompareTo (obj) ;

}

The following statement is now valid:

MyStack<Manager> stackM = new MyStack<Manager>(3);

Multiple Type Parameter

So far you have seen only one type parameter used in a generic type, but you can have multiple type
parameters. For example, the following MyDictionary class uses two generic type parameters — K and v:

public class MyDictionary<K, V>
{

/] ...
}

To apply constraints on multiple type parameters, use the where keyword multiple times:

public class MyDictionary<K, V>
where K : IComparable<K>
where V : ICloneable

/..

Generic Interfaces

Generics can also be applied on interfaces. The following example defines the IMyStack interface:

interface IMyStack<T> where T : IComparable<T>
{

void Push (T item);

T Pop();

bool Find(T keyword) ;

A class implementing a generic interface must supply the same type parameter as well as satisfy the
constraints imposed by the interface.
The following shows the generic MyStack class implementing the generic IMyStack interface:
public class MyStack<T> : IMyStack<T> where T : IComparable<T>
{

/]
}

275

Part |: C# Fundamentals

Figure 9-4 shows the error reported by Visual Studio 2008 if the generic MyStack class does not provide
the constraint imposed by the generic interface.

Hpublic class MNyStack<T> : INy3cack<T>
{

pri

0
HEd @ 1 Eror JS 0 Wwarnings | | (i) 0 Messages

=] pub Description T S
i @ 1 The type 'T' cannot be used as type parameter 'T' in the generic type or For 32 14 Wir
method 'IMyStack<T =" There is no boxing conwversion or type parameter wisf
conversion from 'T' bo "System, [Comparable<T =", mst
lica
I H i
il S L—BErrur List |mFind Symbal Results |
T
Figure 9-4

Generic Structs

Generics can also be applied to structs. For example, suppose that you have a Coordinate struct
defined as follows:

public struct Coordinate
{
public int x, vy, z;
The coordinates for the Coordinate struct takes in int values.
You can use generics on the Coordinate struct, like this:
public struct Coordinate<T>
{
public T x, vy, z;

To use int values for the Coordinate struct, you can do so via the following statements:

Coordinate<int> ptl;

ptl.x = 5;
ptl.y = 6;
ptl.z = 7;

To use £loat values for the Coordinate struct, utilize the following statements:

Coordinate<float> pt2;
pt2.x = 2.0F;
pt2.y = 6.3F;
pt2.z = 2.9F;

Generic Methods

In addition to generic classes and interfaces, you can also define generic methods. Consider the
following class definition and the method contained within it:

276

Chapter 9: Generics

public class SomeClass

{
public void DoSomething<T> (T t)
{
}

Here, DoSomething () is a generic method. To use a generic method, you need to provide the type when
calling it:

SomeClass sc = new SomeClass();
sc.DoSomething<int>(3) ;

The C# compiler, however, is smart enough to deduce the type based on the argument passed into the
method, so the following statement automatically infers T to be of type String:

sc.DoSomething ("This is a string"); //---T is String---
This feature is known as generic type inference.
You can also define a constraint for the generic type in a method, like this:

public class SomeClass

{
public void DoSomething<T> (T t) where T : IComparable<T>
{
}

If you need the generic type to be applicable to the entire class, define the type T at the class level:

public class SomeClass<T> where T : IComparable<T>

{
public void DoSomething (T t)

{
}

In this case, you specify the type during the instantiation of SomeClass:

SomeClass<int> sc = new SomeClass<int>();
sc.DoSomething (3) ;

You can also use generics on static methods, in addition to instance methods as just described.
For example, the earlier DoSomething () method can be modified to become a static method:

public class SomeClass
{
public static void DoSomething<T> (T t) where T : IComparable<T>

{
}

277

Part |: C# Fundamentals

To call this static generic method, you can either explicitly specify the type or use generic type inference:

SomeClass.DoSomething (3) ;
//---or---
SomeClass.DoSomething<int>(3) ;

Generic Operators

Generics can also be applied to operators. Consider the generic MyStack class discussed earlier in this
chapter. Suppose that you want to be able to join two MyStack objects together, like this:

MyStack<string> stackl = new MyStack<string>(4);
stackl.Push("A");
stackl.Push("B");

MyStack<string> stack2 = new MyStack<string>(2);
stack2.Push("C");
stack2.Push("D");

stackl += stack2;

In this case, you can overload the + operator, as highlighted in the following code:

public class MyStack<T> where T : IComparable<T>
{

private T[] _elements;

private int _pointer;

public MyStack(int size)

{
_elements = new T[size];
_pointer = 0;

}

public void Push(T item)
{
if (_pointer > _elements.Length - 1)
{
throw new Exception("Stack is full.");
}

_elements[_pointer] = item;
_pointer++;
}
public T Pop()
{
_pointer--;
if (_pointer < 0)
{
return default(T);
}
return _elements|[_pointer];
}

278

Chapter 9: Generics

public bool Find(T keyword)
{
bool found
for (int 1

{

false;
0; 1 < _pointer; i++)

1]
1l
o

if (_elements[i].CompareTo (keyword)
{
found = true;
break;
}
}
return found;

}

public bool Empty
{
get{
return (_pointer <= 0);
}
}

public static MyStack<T> operator +
(MyStack<T> stackA, MyStack<T> stackB)
{
while (!stackB.Empty)
{
T item = stackB.Pop();
stackA.Push(item) ;
}

return stackA;

The + operator takes in two operands — the generic MyStack objects. Internally, you pop out each
element from the second stack and push it into the first stack. The Empty property allows you to know if
a stack is empty.

To print out the elements of stackl after the joining, use the following statements:
stackl += stack2;
while (!stackl.Empty)

Console.WriteLine (stackl.Pop());

Here’s the output:

> w g O

279

Part |: C# Fundamentals

Generic Delegates

You can also use generics on delegates. The following class definition contains a generic delegate,
MethodDelegate:

public class SomeClass<T>
{
public delegate void MethodDelegate (T t);
public void DoSomething (T t)
{
}

When you specify the type for the class, you also need to specify it for the delegate:
SomeClass<int> sc = new SomeClass<int>();
SomeClass<int>.MethodDelegate del;

del = new SomeClass<int>.MethodDelegate (sc.DoSomething) ;

You can make direct assignment to the delegate using a feature known as delegate inferencing, as the
following code shows:

del = sc.DoSomething;

Generics and the .NET Framework
Class Library

The .NET Framework class library contains a number of generic classes that enable users to create strongly
typed collections. These classes are grouped under the System.Collections.Generic namespace

(the nongeneric versions of the classes are contained within the System.Collections namespace). The
following tables show the various classes, structures, and interfaces contained within this namespace.

The following table provides a look at the classes contained within the System.Collections.Generic

namespace.

Class Description

Comparer< (0Of <(T>)>) Provides a base class for implementations of the
IComparer< (Of <(T>)>) generic interface.

Dictionary< (0f <(TKey, TValue>)>) Represents a collection of keys and values.

Dictionary< (Of Represents the collection of keys in a

<(TKey, TValue>)>)..::.KeyCollection Dictionary<(Of <(TKey, TValue>)>).
This class cannot be inherited.

Dictionary< (0f <(TKey, Represents the collection of values in a

TValue>)>)..::.ValueCollection Dictionary<(Of <(TKey, TValue>)>).

This class cannot be inherited.

280

Chapter 9: Generics

Class

EqualityComparer< (0Of <(T>)>)

HashSet< (Of < (T>)

KeyedByTypeCollection< (Of <(TItem>)>)

KeyNotFoundException

LinkedList< (Of < (T>)

>)

>)

LinkedListNode< (0Of <(T>)>)

List<(0f <(T>)>)

Queue< (Of < (T>)

>)

SortedDictionary< (0f < (TKey,

TValue>) >)

SortedDictionary< (0f < (TKey,

TValue>)>)

KeyCollection

SortedDictionary< (0f < (TKey,

TValue>)>)

:.ValueCollection

SortedList< (Of < (TKey,

Stack< (Of < (T>)

SynchronizedCollection< (Of <(T>)

SynchronizedKeyedCollection< (Of

< (K, T>)>)

>)

TValue>)

SynchronizedReadOnlyCollection

<(0f < (T>)

>)

>)

>)

Description

Provides a base class for implementations of the
IEqualityComparer< (Of <(T>)>) generic
interface.

Represents a set of values.

Provides a collection whose items are types that
serve as keys.

The exception that is thrown when the key
specified for accessing an element in a collection
does not match any key in the collection.

Represents a doubly linked list.

Represents a node in a LinkedList< (Of
<(T>)>) . This class cannot be inherited.

Represents a strongly typed list of objects that
can be accessed by index. Provides methods to
search, sort, and manipulate lists.

Represents a first-in, first-out collection of objects.

Represents a collection of key/value pairs that
are sorted on the key.

Represents the collection of keys in a
SortedDictionary< (0f < (TKey,
TValue>)>) . This class cannot be inherited.

Represents the collection of values in a
SortedDictionary< (0f < (TKey,
TValue>)>) . This class cannot be inherited.

Represents a collection of key/value pairs that
are sorted by key based on the associated
IComparer< (Of <(T>)>) implementation.

Represents a variable size last-in, first-out (LIFO)
collection of instances of the same arbitrary type.

Provides a thread-safe collection that contains
objects of a type specified by the generic
parameter as elements.

Provides a thread-safe collection that contains
objects of a type specified by a generic parameter
and that are grouped by keys.

Provides a thread-safe, read-only collection that
contains objects of a type specified by the generic
parameter as elements.

281

Part |: C# Fundamentals

The structures contained within the System.Collections.Generic namespace are described in the
following table.

Structure Description

Enumerates the elements of a
Dictionary< (Of <(TKey, TValue>)>)

Dictionary< (0Of <(TKey,
TValue>)>) ..::.Enumerator

Enumerates the elements of a
Dictionary< (0Of <(TKey,
TValue>)>)..::.KeyCollection

Dictionary<(0Of <(TKey, TValue>)>)..::.
KeyCollection..::.Enumerator

Dictionary< (Of <(TKey, TValue>)>)..::. Enumerates the elements of a

ValueCollection..::.Enumerator Dictionary< (0f < (TKey,
TValue>)>)..::.ValueCollection
HashSet< (Of <(T>)>)..::.Enumerator Enumerates the elements of a

HashSet< (Of <(T>)>) object

KeyValuePair< (Of < (TKey, TValue>)>) Defines a key/value pair that can be set or

retrieved

LinkedList< (Of <(T>)>)..::.Enumerator Enumerates the elements of a
LinkedList< (Of < (T>)>)

List<(Of <(T>)>)..::.Enumerator Enumerates the elements of a
List< (Of <(T>)>)

Queue< (Of <(T>)>)..::.Enumerator Enumerates the elements of a

SortedDictionary< (0f < (TKey,
TValue>)>) ..::.Enumerator

SortedDictionary< (0f < (TKey,
TValue>)>)..::.KeyCollection..::.
Enumerator

SortedDictionary< (0f < (TKey,

TValue>)>)..::.ValueCollection..::.
Enumerator
Stack< (0Of <(T>)>)..::.Enumerator

Queue< (Of < (T>)>)

Enumerates the elements of a
SortedDictionary< (0f < (TKey,
TValue>)>)

Enumerates the elements of a
SortedDictionary< (0f < (TKey,
TValue>)>)..::.KeyCollection

Enumerates the elements of a
SortedDictionary< (0f < (TKey,
TValue>)>)..::.ValueCollection

Enumerates the elements of a
Stack< (Of <(T>)>)

Chapter 9: Generics

Following are descriptions of the interfaces contained within the System.Collections.Generic

namespace.

Interface

ICollection< (Of <(T>)>)
IComparer< (0Of < (T>)>)
IDictionary< (0Of <(TKey,
TValue>)>)

IEnumerable< (Of < (T>)>)

IEnumerator< (0Of <(T>)>)

IEqualityComparer< (0Of < (T>)

Ilist<(Of <(T>)>)

>)

Description

Defines methods to manipulate generic collections

Defines a method that a type implements to compare
two objects

Represents a generic collection of key/value pairs

Exposes the enumerator, which supports a simple
iteration over a collection of a specified type

Supports a simple iteration over a generic collection

Defines methods to support the comparison of objects
for equality

Represents a collection of objects that can be
individually accessed by index

Prior to .NET 2.0, all the data structures contained in the System.Collection namespace are object-
based. With .NET 2.0, Microsoft has released generic equivalents of some of these classes. The following
table shows the mapping of these classes in the two namespaces.

System.Collection

Comparer
HashTable
ArrayList
Queue
SortedList
Stack
ICollection
System.IComparable
IDictionary
IEnumerable
IEnumerator

IList

System.Collection.Generic

Comparer<T>
Dictionary<K, T>
LinkedList<T>
List<T>

Queue<T>
SortedDictionary<K, T>
Stack<T>
ICollection<T>
IComparable<T>
IDictionary<K, T>
IEnumerable<T>
IEnumerator<T>

IList<T>

283

Part |: C# Fundamentals

The Stack<T>, Queue<T>, and Dictionary<K, T> generic classes are discussed in more detail in
Chapter 13, “Collections.”

Using the LinkedList<T> Generic Class

One of the new classes in the System.Collection.Generic namespace is the LinkedList<T> generic
class. A linked list is a data structure containing a series of interconnected nodes. Linked lists have wide
usage in computer science and are often used to store related data.

There are several types of linked lists:

Q Singly linked list
Q Doubly linked list
Q Circularly linked list
Figure 9-5 shows a singly linked list. Every node has a field that “points” to the next node. To move from

one node to another (known as list traversal), you start from the first node and follow the links leading to
the next node.

25| o
Figure 9-5

A4

v

(4]
®
v

36| @

Figure 9-6 shows a doubly linked list. Doubly linked list nodes contains an additional field to point to
the previous node. You can traverse a doubly linked list in either direction. The LinkedList<T> class
implements a doubly linked list.

A 4

« QZSQ/Q/QSQ/Q/Q36¢
Figure 9-6

Figure 9-7 shows a circularly linked list. A circularly linked list has its first and last node linked together.
A circularly linked list can either be a singly linked list (as shown in Figure 9-5) or a doubly linked list.

’->250 » 5| @ ‘36T

Figure 9-7

284

Chapter 9: Generics

The next example shows how to use the LinkedList<T> class available in the NET Framework to store
a list of random numbers. As each random number is generated, it is inserted into the linked list in
numeric sorted order (from small to big). The end result is a list of sorted random numbers. Specifically,
the example uses the LinkedList<T> class members shown in the following table.

Member Description

AddAfter () Adds a new node after an existing node
AddBefore () Adds a new node before an existing node
First Gets the first node

Last Gets the last node

Each node in the LinkedList<T> class is an object of type LinkedListNode<T>. The following table
shows the properties in the LinkedListNode<T> that are used in this example.

Property Description

Next Gets the next node

Previous Gets the previous node

Value Gets the value contained in the node

Now for the example, first create an instance of the LinkedList<T> class using the int type:
LinkedList<int> Numbers = new LinkedList<int>();
Define the InsertNumber () function, which accepts an int parameter:

private void InsertNumber (int number)

{
//---start from first node---
LinkedListNode<int> currNode = Numbers.First;
LinkedListNode<int> newNode = new LinkedListNode<int> (number) ;

if (currNode == null)
{
Numbers.AddFirst (newNode) ;
return;
}
while (currNode != null)
{
if (currNode.Value > number)
{
if (currNode.Previous != null)
//---Case 1 - add the node to the previous node---
Numbers.AddAfter (currNode.Previous, newNode) ;

(continued)

285

Part |: C# Fundamentals

(continued)

The InsertNumber () function initially creates a new node to contain the random number generated.
It then traverses the linked list to find the correct position to insert the number. Take a look at the

else
//--- Case 2 - the current node is the first node---
Numbers .AddBefore (currNode, newNode) ;
break;
}
else if (currNode.Next == null)
{
//--- Case 3 - if last node has been reached---
Numbers.AddAfter (currNode, newNode) ;
break;

}
//---traverse to the next node---
currNode = currNode.Next;

different possible cases when inserting a number into the linked list.

Figure 9-8 shows the case when the node to be inserted (11) is between two nodes (9 and 15, the current

node). In this case, it must be added after node 9.

Figure 9-9 shows the case when the node to be inserted (11) is smaller than the first node (current node)

#|1t
Ne

Py — I\ s

(CurrNode. Previous) CurrNode
Figure 9-8

in the linked list. In this case, it must be added before the current node.

286

11| =

NewNode

N (45| ecfooiiiiiii

CurrNode

Figure 9-9

Chapter 9: Generics

Figure 9-10 shows the case when the node to be inserted is larger than the last node (current node) in the
linked list. In this case, it must be added after the current node.

/145

NewNode

""""""" > 115 5

CurrNode

Figure 9-10

To insert a list of random numbers into the linked list, you can use the following statements:

Random rnd = new Random() ;
1< 20; 1i++)

for (int 1 = 0;

InsertNumber (rnd.Next (100)); //---random number from 0 to 100---

To print out all the numbers contained within the linked list, traverse the link starting from the first

node:

//---traverse forward---
LinkedListNode<int> node = Numbers.First;
while (node != null)

{
Console.WriteLine (node.Value);

node = node.Next;

The result is a list of 20 random numbers in sorted order.
Alternatively, you can traverse the list backward from the last node:

//---traverse backward---
LinkedListNode<int> node = Numbers.Last;
while (node != null)

{

Console.WriteLine (node.Value) ;
node = node.Previous;

The result would be a list of random numbers in reverse-sort order.

287

Part |: C# Fundamentals

System.Collections.ObjectModel

The System.Collections.ObjectModel namespace in the .NET class library contains several generic
classes that deal with collections. These classes are described in the following table.

Generic Class Description
Collection<T> Provides the base class for a generic collection.
KeyedCollection<TKey, TItem> Provides the abstract base class for a collection whose

keys are embedded in the values.

ObservableCollection<T> Represents a dynamic data collection that provides

notifications when items get added, removed, or when
the whole list is refreshed.

ReadOnlyCollection<T> Provides the base class for a generic read-only collection.

ReadOnlyObservableCollection<T> Represents a read-only ObservableCollection<T>.

Let’s take a look at Collection<T>, one of the classes available. It is similar to the generic List<T>
class. Both collection<T> and List<T> implement the IList<T> and ICollection<T> interfaces.
The main difference between the two is that Collection<T> contains virtual methods that can be
overridden, whereas List<T> does not have any.

The List<T> generic class is discussed in details in Chapter 13.

The following code example shows how to use the generic Collection<T> class:

using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;

System.Collections.ObjectModel;

namespace CollectionEgl

{

class Program

{

288

static void Main(string[] args)
{
Collection<string> names = new Collection<string>();
names.Add ("Johnny") ;
names.Add ("Michael") ;
names.Add ("Wellington") ;
foreach (string name in names)
{
Console.WriteLine (name) ;
}

Console.ReadLine() ;

Chapter 9: Generics

Here’s the example’s output:

Johnny
Michael
Wellington

To understand the usefulness of the generic Collection<T> class, consider the following example
where you need to write a class to contain the names of all the branches a company has:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Collections.ObjectModel;

namespace CollectionEg2

{
class Program
{
static void Main(string[] args)
{
}
}
public class Branch
{
private List<string> _branchNames = new List<string>();
public List<string> BranchNames
{
get
{
return _branchNames;
}
}
}
}

In this example, the Branch class exposes a public read-only property called BranchNames of type
List<T>. To add branch names to a Branch object, you first create an instance of the Branch class and
then add individual branch names to the BranchNames property by using the Add () method of the
List<T> class:

static void Main(string[] args)
{
Branch b = new Branch() ;
b.BranchNames.Add ("ABC") ;
b.BranchNames.Add ("XYZ")

’

Suppose now that your customers request an event for the Branch class so that every time a branch
name is deleted, the event fires so that the client of Branch class can be notified. The problem with the
generic List<T> class is that there is no way you can be informed when an item is removed.

289

Part |: C# Fundamentals

A better way to resolve this issue is to expose BranchName as a property of type Collection<T> instead
of List<T>. That’s because the generic Collection<T> type provides four overridable methods —
ClearItems (), InsertItem(), RemoveItem(),and SetItem() — which allow a derived class to be
notified when a collection has been modified.

Here’s how rewriting the Branch class, using the generic Collection<T> type, looks:

public class Branch

{

290

public Branch()
{

_branchNames = new BranchNamesCollection(this);

private BranchNamesCollection _branchNames;
public Collection<string> BranchNames
{

get

{

return _branchNames;

//---event raised when an item is removed---
public event EventHandler ItemRemoved;

//---called from within the BranchNamesCollection class---
protected virtual void RaiseItemRemovedEvent (EventArgs e)
{
if (ItemRemoved !'= null)
{
ItemRemoved (this, e);

}
}
private class BranchNamesCollection : Collection<string>
{
private Branch _b;
public BranchNamesCollection (Branch b)
{
_b = Db;
}
//---fired when an item is removed---
protected override void RemoveItem(int index)
{
base.Removeltem(index) ;
_b.RaiseItemRemovedEvent (EventArgs.Empty) ;
}
}

Chapter 9: Generics

There is now a class named BranchNamesCollection within the Branch class. The
BranchNamesCollection class is of type Collection<string>. It overrides the RemoveItem()
method present in the Collection<T> class. When an item is deleted from the collection, it proceeds to
remove the item by calling the base RemoveItem() method and then invoking a function defined in

the Branch class: RaiseItemRemovedEvent (). The RaiseItemRemovedEvent () function then raises the
ItemRemoved event to notify the client that an item has been removed.

To service the ItemRemoved event in the Branch class, modify the code as follows:

static void Main(string[] args)
{

Branch b = new Branch();

b.ItemRemoved += new EventHandler (b_ItemRemoved) ;

b.BranchNames.Add ("ABC") ;
b.BranchNames.Add ("XYZ") ;
b.BranchNames.Remove ("XYZ") ;

foreach (string branchName in b.BranchNames)
{

Console.WriteLine (branchName) ;
}

Console.ReadLine() ;

static void b_ItemRemoved (object sender, EventArgs e)
{

Console.WriteLine("Item removed!");

And here’s the code’s output:

ITtem removed!

As a rule of thumb, use the generic Collection<T> class (because it is more
extensible) as a return type from a public method, and use the generic List<T> class
for internal implementation.

Summary

Generics allow you define type-safe data structures without binding to specific fixed data types at design
time. The end result is that your code becomes safer without sacrificing performance. In addition to
showing you how to define your own generic class, this chapter also examined some of the generic
classes provided in the NET Framework class library, such as the generic LinkedList<T> and
Collection<T> classes.

291

Threading

Today’s computer runs at more than 2GHz, a blazing speed improvement over just a few years ago.
Almost all operating systems today are multitasking, meaning you can run more than one application
at the same time. However, if your application is still executing code sequentially, you are not really
utilizing the speed advancements of your latest processor. How many times have you seen an
unresponsive application come back to life after it has completed a background task such as
performing some mathematical calculations or network transfer? To fully utilize the extensive
processing power of your computer and write responsive applications, understanding and using
threads is important.

A thread is a sequential flow of execution within a program. A program can consist
of multiple threads of execution, each capable of independent execution.

This chapter explains how to write multithreaded applications using the Thread class in the .NET
Framework. It shows you how to:

Create a new thread of execution and stop it
Synchronize different threads using the various thread classes available

Write thread-safe Windows applications

U 0 U0 U

Use the BackgroundWorker component in Windows Forms to program background tasks.

The Need for Multithreading

Multithreading is one of the most powerful concepts in programming. Using multithreading, you
can break a complex task in a single application into multiple threads that execute independently
of one another. One particularly good use of multithreading is in tasks that are synchronous in
nature, such as Web Services calls. By default, Web Services calls are blocking calls — that is, the
caller code does not continue until the Web Service returns the result. Because Web Services calls
are often slow, this can result in sluggish client-side performance unless you take special steps to
make the call an asynchronous one.

Part |: C# Fundamentals

To see how multithreading works, first take a look at the following example:

class Program
{
static void Main(string[] args)
{
DoSomething () ;
Console.WriteLine("Continuing with the execution...");
Console.ReadLine() ;

static void DoSomething ()

{

while (true)

{

Console.WriteLine("Doing something...");

This is a simple application that calls the DoSomething () function to print out a series of strings (in fact,
it is an infinite loop, which will never stop; see Figure 10-1). Right after calling the DoSomething ()
function, you try to print a string ("Continuing with the execution...") to the console window.
However, because the DoSomething () function is busy printing its own output, the "Console
.WriteLine ("Continuing with the execution...");" statement never getsa chance to execute.

le:///C:/Documents and Settings/Wei-Meng Lee/Desktop/C# 2008 PRIThreading-console/Th Em

mething...

mething
methin

Figure 10-1

This example illustrates the sequential nature of application — statements are executed sequentially. The
DoSomething () function is analogous to consuming a Web Service, and as long as the Web Service does
not return a value to you (due to network latency or busy web server, for instance), the rest of your
application is blocked (that is, not able to continue).

294

Chapter 10: Threading

Starting a Thread

You can use threads to break up statements in your application into smaller chunks so that they can be
executed in parallel. You could, for instance, use a separate thread to call the DoSomething () function in
the preceding example and let the remaining of the code continue to execute.

Every application contains one main thread of execution. A multithreaded application contains two or
more threads of execution.

In C#, you can create a new thread of execution by using the Thread class found in the System
.Threading namespace. The Thread class creates and controls a thread. The constructor of the Thread
class takes in a ThreadsStart delegate, which wraps the function that you want to run as a separate
thread. The following code shows to use the Thread class to run the DoSomething () function as a
separate thread:

Import the System. Threading namespace when using the Thread class.

class Program
{
static void Main(string[] args)

{

Thread t = new Thread(new ThreadStart (DoSomething)) ;
t.Start () ;

Console.WriteLine("Continuing with the execution...");
Console.ReadLine() ;

}

static void DoSomething ()
{
while (true)
{
Console.WriteLine ("Doing something...");

}

}
Note that the thread is not started until you explicitly call the Start () method. When the Start ()

method is called, the DoSomething () function is called and control is immediately returned to the
Main () function. Figure 10-2 shows the output of the example application.

295

Part |: C# Fundamentals

/1C: /Documents and Settings/Wei-Meng Lee/Desktop/C# 2008 PR/Threading-console/Th

Continuing with the execution...
zsomething. ..
something. ..
something...
something...
something...
zomething. ..

something. ..
something...
something...
something...

Figure 10-2

Figure 10-3 shows graphically the two different threads of execution.

DoSomething()
Console.WriteLine("Doing something...");

v

v

Main thread of execution
Console.WriteLine ("Continuing with the execution...");

Figure 10-3

As shown in Figure 10-2, it just so happens that before the DoSomething () method gets the chance to
execute, the main thread has proceeded to execute its next statements. Hence, the output shows the main
thread executing before the DoSomething () method. In reality, both threads have an equal chance of
executing, and one of the many possible outputs could be:

Doing something...
Doing something...
Continuing with the execution...
Doing something...
Doing something...

A thread executes until:

Q Itreaches the end of its life (method exits), or

0 You prematurely kill (abort) it.

296

Chapter 10: Threading

Aborting a Thread

You can use the Abort () method of the Thread class to abort a thread after it has started executing.
Here’s an example:

class Program
{
static void Main(string[] args)
{
Thread t = new Thread(new ThreadStart (DoSomething)) ;
t.Start () ;
Console.WriteLine("Continuing with the execution...");

while (!'t.IsAlive) ;

Thread.Sleep (1) ;
t.Abort () ;

Console.ReadLine() ;

}

static void DoSomething()
{
try
{
while (true)
{
Console.WriteLine("Doing something...");
}
}
catch (ThreadAbortException ex)

{
Console.WriteLine (ex.Message) ;

}

When the thread is started, you continue with the next statement and print out the message
"Continuing with the execution... ".You then usethe IsAlive property of the Thread class to
find out the execution status of the thread and block the execution of the Main () function (with the
while statement) until the thread has a chance to start. The S1eep () method of the Thread class blocks
the current thread (Main ()) for a specified number of milliseconds. Using this statement, you are
essentially giving the DoSomething () function a chance to execute. Finally, you kill the thread by using
the Abort () method of the Thread class.

297

Part |: C# Fundamentals

The ThreadaAbortException exception is fired on any thread that you kill. Ideally, you should clean
up the resources in this exception handler (via the finally statement):

static void DoSomething ()

{
try
{

}

while (true)
{

Console.WriteLine ("Doing something...");

catch (ThreadAbortException ex)

{

}

Console.WriteLine (ex.Message) ;

finally {

}

//---clean up your resources here---

The output of the preceding program may look like this:

Continuing with the execution...
something. ..
something. ..
something. ..
something. ..
something. ..
something. ..

Doing
Doing
Doing
Doing
Doing
Doing
Doing

something. .

Thread was being aborted

Notice that I say the program may look like this. When you have multiple threads running in your
application, you don’t have control over which threads are executed first. The OS determines the actual
execution sequence and that is dependent on several factors such as CPU utilization, memory usage, and
so on. It is possible, then, that the output may look like this:

Doing

something. .

Continuing with the execution.
something. ..
something. ..
something. ..
something. ..
something. ..

Doing
Doing
Doing
Doing
Doing
Doing

something. .

Thread was being aborted

While you can use the Abort () method to kill a thread, it is always better to exit it gracefully
whenever possible.

298

Chapter 10: Threading

Here’s a rewrite of the previous program:

class Program
{
private static volatile bool _stopThread = false;

static void Main(string[] args)

{
Thread t = new Thread(new ThreadStart (DoSomething)) ;
t.Start();

Console.WriteLine("Continuing with the execution...");
while (!t.IsAlive) ;

Thread.Sleep (1) ;

_stopThread = true;
Console.WriteLine ("Thread ended.") ;
Console.ReadLine() ;

}

static void DoSomething ()
{
try
{
while (!_stopThread)
{
Console.WriteLine ("Doing something...");
}

}
catch (ThreadAbortException ex)

{
Console.WriteLine (ex.Message) ;
}
finally {
//---clean up your resources here---

}

First, you declare a static Boolean variable call _stopThread:
private static volatile bool _stopThread = false;
Notice that you prefix the declaration with the volatile keyword, which is used as a hint to the
compiler that this variable will be accessed by multiple threads. The variable will then not be subjected
to compiler optimization and will always have the most up-to-date value.
To use the _stopThread variable to stop the thread, you modify the DoSomething () function, like this:
while (!_stopThread)

{
Console.WriteLine ("Doing something...");

299

Part |: C# Fundamentals

Finally, to stop the thread in the Main () function, you just need to set the _stopThread variable to true:

_stopThread = true;
Console.WriteLine ("Thread ended.");

The output of this program may look like this:

Continuing with the execution.
Doing something...

Doing something...

Doing something. ..

Doing something...

Doing something...

Doing something. ..

Thread ended.

Doing something...

The DoSomething () function may print another message after the "Thread ended. " message. That’s
because the thread might not end immediately. To ensure that the "Thread ended. " message is printed
only after the DoSomething () function ends, you can use the Join () method of the Thread class to join
the two threads:

static void Main(string[] args)

{
Thread t = new Thread(new ThreadStart (DoSomething)) ;
t.Start();

Console.WriteLine("Continuing with the execution...");
while (!t.IsAlive) ;

Thread.Sleep (1) ;
_stopThread = true;

//---joins the current thread (Main()) to t---
t.Join();

Console.WriteLine ("Thread ended.");
Console.ReadLine () ;

The Join () method essentially blocks the calling thread until the thread terminates. In this case, the
Thread ended message will be blocked until the thread (t) terminates.

The output of the program now looks like this:

Continuing with the execution.
Doing something...

Doing something. ..

Doing something...

Doing something...

Doing something. ..

Doing something. ..

Thread ended.

300

Chapter 10: Threading

Figure 10-4 shows graphically the two different threads of execution.

DoSomething ()
Console.WriteLine ("Doing Something..."); _stopThread == true
B Y B
Main thread of t.join() ; Console.WriteLine ("Thread ended.") ;

execution Console.WriteLine
("Continuing with the execution...");

Figure 10-4

Passing Parameters to Threads

In the past few examples, you've seen how to create a thread using the Threadstart delegate to point
to a method. So far, though, the method that you have been pointing to does not have any parameters:

static void DoSomething ()

{

What if the function you want to invoke as a thread has a parameter? In that case, you have two choices:

0 Wrap the function inside a class, and pass in the parameter via a property.

Q Use the ParameterizedThreadStart delegate instead of the ThreadStart delegate.

Using the same example, the first choice is to wrap the DoSomething () method as a class and then
expose a property to take in the parameter value:

class Program
{
static void Main(string[] args)
{
SomeClass sc = new SomeClass();
sc.msg = "useful";

Thread t = new Thread(new ThreadStart (sc.DoSomething)) ;
t.Start();

}

class SomeClass

(continued)

301

Part |: C# Fundamentals

(continued)

{
public string msg { get; set; }
public void DoSomething ()
{
try
{
while (true)
{
Console.WriteLine("Doing something...{0}", msg);
}
}
catch (ThreadAbortException ex)

{
Console.WriteLine (ex.Message) ;
}
finally
{
//---clean up your resources here---

}
}

In this example, you create a thread for the DoSomething () method by creating a new instance of the
SomeClass class and then passing in the value through the msg property.

For the second choice, you use the ParameterizedThreadStart delegate instead of the ThreadStart
delegate. The ParameterizedThreadStart delegate takes a parameter of type object, so if the
function that you want to invoke as a thread has a parameter, that parameter must be of type object.

To see how to use the ParameterizedThreadstart delegate, modify the DoSomething () function by
adding a parameter:

static void DoSomething (object msg)
{
try
{
while (true)
{

Console.WriteLine ("Doing something...{0}", msg);

}
}
catch (ThreadAbortException ex)
{
Console.WriteLine (ex.Message) ;
}
finally {
//---clean up your resources here---

}

302

Chapter 10: Threading

To invoke DoSomething () as a thread and pass it a parameter, you use the ParameterizedThreadStart
delegate as follows:

static void Main(string[] args)

{
Thread t = new Thread(new ParameterizedThreadStart (DoSomething)) ;
t.Start ("useful") ;

Console.WriteLine("Continuing with the execution...");

The argument to pass to the function is passed in the Start () method.

Thread Synchronization

Multithreading enables you to have several threads of execution running at the same time. However,
when a number of different threads run at the same time, they all compete for the same set of resources,
so there must be a mechanism to ensure synchronization and communication among threads.

One key problem with multithreading is thread safety. Consider the following subroutine:

static void IncrementVar ()
{
_value += 1;

}

If two threads execute the same routine at the same time, it is possible that _value variable will not

be incremented correctly. One thread may read the value for _value and increment the value by 1.
Before the incremented value can be updated, another thread may read the old value and increment it.
In the end, _value is incremented only once. For instances like this, it is important that when _value is
incremented, no other threads can access the region of the code that is doing the incrementing.

You accomplish that by locking all other threads during an incrementation.

In C#, you can use the following ways to synchronize your threads:

0 The Interlocked class
Q The C# lock keyword

d The Monitor class

The following sections discuss each of these.

303

Part |: C# Fundamentals

Using Interlocked Class

Because incrementing and decrementing are such common operations in programming, the NET
Framework class library provides the Interlocked class for performing atomic operations for variables
that are shared by multiple threads. You can rewrite the preceding example using the Increment ()
method from the static Interlocked class:

static void IncrementVar ()
{
Interlocked. Increment (ref _value);

}

You need to pass in the variable to be incremented by reference to the Increment () method. When a
thread encounters the Increment () statement, all other threads executing the same statement must wait
until the incrementing is done.

The Interlocked class also includes the Decrement () class that, as its name implies, decrements the
specified variable by one.

Using C# Lock

The Interlocked class is useful when you are performing atomic increment or decrement operations.
What happens if you have multiple statements that you need to perform atomically? Take a look at the
following program:

class Program

{
//---initial balance amount---
static int balance = 500;

static void Main(string[] args)

{
Thread tl = new Thread(new ThreadStart (Debit));
tl.Start();

Thread t2 = new Thread(new ThreadStart (Credit));
t2.Start();

Console.ReadLine() ;
}

static void Credit()
{
//---credit 1500---
for (int 1 = 0; 1 < 15; 1i++)
{
balance += 100;
Console.WriteLine ("After crediting, balance is {0}", balance);

}

static void Debit ()

304

Chapter 10: Threading

{
//---debit 1000---
for (int 1 = 0; 1 < 10; 1i++)
{
balance -= 100;
Console.WriteLine("After debiting, balance is {0}", balance);
}
}

Here two separate threads are trying to modify the value of balance. The Credit () function
increments balance by 1500 in 15 steps of 100 each, and the Debit () function decrements balance by
1000 in 10 steps of 100 each. After each crediting or debiting you also print out the value of balance.
With the two threads executing in parallel, it is highly probably that different threads may execute
different parts of the functions at the same time, resulting in the inconsistent value of the balance
variable.

Figure 10-5 shows one possible outcome of the execution. Notice that some of the lines showing the
balance amount are inconsistent — the first two lines show that after crediting twice, the balance is still
500, and further down the balance jumps from 1800 to 400 and then back to 1700. In a correctly working
scenario, the balance amount always reflects the amount credited or debited. For example, if the balance
is 500, and 100 is credited, the balance should be 600. To ensure that crediting and debiting work
correctly, you need to obtain a mutually exclusive lock on the block of code performing the crediting or
debiting. A mutually exclusive lock means that once a thread is executing a block of code that is locked,
other threads that also want to execute that code block will have to wait.

+ file:///C:/Documents and Settings/Wei-Meng Lee/Desktop/C# 2008 PR.fThreading—cnnsble'm..'_HEE:

| » crediting,. halance u
» crediting, i
+ crediting.,.

» crediting.
+ crediting. balance
» crediting. balance i
» crediting,. balance i
» crediting. balance
» crediting. bhalance
» crediting,. balance
» crediting. balance i
» crediting,. balance
rediti LESELTT]
alance
halance i
balance
halance
baTance
halance
ERELTH
balance
balance
balance
» debiting,. balance

Figure 10-5

To enable you to create a mutually exclusive lock on a block of code (the code that is locked is called a
critical section), C# provides the 1ock keyword. Using it, you can ensure that a block of code runs to
completion without any interruption by other threads.

305

Part |: C# Fundamentals

To lock a block of code, give the 1ock statement an object as argument. The preceding code could be
written as follows:

class Program
{
//---used for locking---
static object obj = new object();

//---initial balance amount---
static int balance = 500;

static void Main(string[] args)

{
Thread tl = new Thread(new ThreadStart (Debit));
tl.Start();

Thread t2 = new Thread(new ThreadStart (Credit));
t2.Start () ;

Console.ReadLine() ;

}

static void Credit()
{
//---credit 1500---
for (int 1 = 0; 1 < 15; 1i++)
{
lock (obj)
{
balance += 100;
Console.WriteLine ("After crediting, balance is {0}", balance);

}

static void Debit ()
{
//---debit 1000---
for (int 1 = 0; 1 < 10; i++)
{
lock (obj)
{
balance -= 100;
Console.WriteLine ("After debiting, balance is {0}", balance);

Notice that you first create an instance of an object that will be used for locking purposes:

//---used for locking---
static object obj = new object();

306

Chapter 10: Threading

In general, it is best to avoid using a public object for locking purposes. This prevents situations in
which threads are all waiting for a public object, which may itself be locked by some other code.

To delineate a block of code to lock, enclose the statements with the 1ock statement:

lock (ob3j)
{

//---place code here---

As long as one thread is executing the statements within the block, all other threads will have to wait for
the statements to be completed before they can execute the statements.

Figure 10-6 shows one possible outcome of the execution.

IDocuments and Settings/W 2008 PR/Threading-console/Th. IEE

debiting, balance
» debiting,. balance
» debiting. bhalance
» debiting,. balance
debiting,. balance
balance
» debiting,. bhalance
» debiting. balance
» debiting. balance
crediting, halance
crediting, balance i
» crediting,. balance i
» creditin balance i
bhalance i
bhalance i
crediting, balance
» crediting,. balance i
» creditin balance i
iti halance i
halance i
halance i
halance i
halance i
» crediting,. balance i

Figure 10-6
Notice that the value of balance is now consistent after each credit/debit operation.

Monitor Class

The limitation of the 1ock statement is that you do not have the capability to release the lock halfway
through the critical section. This is important because there are situations in which one thread needs to
release the lock so that other threads have a chance to proceed before the first thread can resume its
execution.

For instance, you saw in Figure 10-6 that on the fifth line the balance goes into a negative value. In real
life this might not be acceptable. The bank might not allow your account to go into a negative balance,
and thus you need to ensure that you have a positive balance before any more debiting can proceed.
Hence, you need to check the value of balance. If it is 0, then you should release the lock and let the
crediting thread have a chance to increment the balance before you do any more debiting.

307

Part |: C# Fundamentals

For this purpose, you can use the Monitor class provided by the .NET Framework class library. Monitor
is a static class that controls access to objects by providing a lock. Here’s a rewrite of the previous
program using the Monitor class:

class Program
{
//---used for locking---
static object obj = new object();

//---initial balance amount---
static int balance = 500;

static void Main(string[] args)

{
Thread tl = new Thread(new ThreadStart (Debit));
tl.Start();

Thread t2 = new Thread(new ThreadStart (Credit));
t2.Start();

Console.ReadLine() ;
}

static void Credit()
{
//---credit 1500---
for (int 1 = 0; 1 < 15; 1i++)
{
Monitor.Enter (obj) ;
balance += 100;
Console.WriteLine("After crediting, balance is {0}", balance);

Monitor.Exit (obj) ;

}

static void Debit ()
{
//---debit 1000---
for (int 1 = 0; 1 < 10; 1++)
{
Monitor.Enter (obj) ;
balance -= 100;
Console.WriteLine("After debiting, balance is {0}", balance);
Monitor.Exit (obj) ;

The Enter () method of the Monitor class acquires a lock on the specified object, and the Exit ()
method releases the lock. The code enclosed by the Enter () and Exit () methods is the critical section.
The C# 1ock statement looks similar to the Monitor class; in fact, it is implemented with the Monitor
class. The following lock statement, for instance:

308

Chapter 10: Threading

lock (obj)
{
balance -= 100;
Console.WriteLine("After debiting, balance is {0}", balance);

Is equivalent to this Monitor class usage:

Monitor.Enter (obj) ;
try
{
balance -= 100;
Console.WriteLine("After debiting, balance is {0}", balance);
}
finally
{
Monitor.Exit (obj);
}

Now the code looks promising, but the debiting could still result in a negative balance. To resolve this,
you need to so some checking to ensure that the debiting does not proceed until there is a positive
balance. Here’s how:

static void Debit ()

{
//---debit 1000---
for (int 1 = 0; 1 < 10; 1i++)
{

Monitor.Enter (obj) ;

if (balance == 0)
Monitor.Wait (obj) ;

balance -= 100;
Console.WriteLine("After debiting, balance is {0}", balance);
Monitor.Exit (obj) ;

}

When you use the wait () method of the Monitor class, you release the lock on the object and enter the
object’s waiting queue. The next thread that is waiting for the object acquires the lock. If the balance is 0,
the debit thread would give up control and let the credit thread have the lock.

However, this code modification may result in the scenario shown in Figure 10-7, in which after debiting
the balance five times, balance becomes 0. On the sixth time, the lock held by the debit thread is
released to the credit thread. The credit thread credits the balance 15 times. At that point, the program
freezes. Turns out that the credit thread has finished execution, but the debit thread is still waiting for the
lock to be explicitly returned to it.

309

Part |: C# Fundamentals

1/C:/Mocuments and Settings/Wei-Meng Lee/Desktop/!

de . halance 488
dehiting, balance 38
debiting. bhalance
debiting. halance
debiting, halance
crediting, balance
crediting, balance
crediting, balance
crediting. bhalance
crediting. balance
crediting, bhalance
crediting, balance
crediting, balance
crediting, balance
crediting. bhalance
crediting, balance
crediting, bhalance
crediting, balance
crediting, balance
crediting. balance is 1588

Figure 10-7
To resolve this, you call the Pulse () method of the Monitor class in the credit thread so that it can send
a signal to the waiting thread that the lock is now released and is now going to pass back to it. The

modified code for the Credit () function now looks like this:

static void Credit()

{
//---credit 1500---
for (int 1 = 0; 1 < 15; 1i++)
{
Monitor.Enter (obj) ;
balance += 100;
if (balance > 0)
Monitor.Pulse(obj) ;
Console.WriteLine("After crediting, balance is {0}", balance);
Monitor.Exit (obj) ;
}
}

Figure 10-8 shows that the sequence now is correct.

debiting, balance
debiting, halance
debiting. balance
debitin balance
crediting. balance
debiting,. balance is
crediting,. bhalance
debiting. balance
crediting. halance
debiting. balance
crediting. balance
debiting, balance
crediting. balance
debiting, halance i
crediting. bhalance
crediting. bhalance
crediting. balance
crediting. balance
crediting. balance
crediting. halance
crediting. balance
crediting. balance
crediting. balance i ag
crediting,. balance is 16888

Figure 10-8

310

Chapter 10: Threading

The complete program is as follows:

class Program

{

//---used for locking---
static object obj = new object();

//---initial balance amount---
static int balance = 500;

static void Main(string[] args)

{
Thread tl = new Thread(new ThreadStart (Debit)) ;

tl.Start();

Thread t2 = new Thread(new ThreadStart (Credit));
t2.Start();

Console.ReadLine() ;

}

static void Credit()
{
//---credit 1500---
for (int 1 = 0; 1 < 15; 1i++)
{
Monitor.Enter (obj) ;

balance += 100;

if (balance > 0)
Monitor.Pulse (obj) ;

Console.WriteLine("After crediting, balance is {0}", balance);

Monitor.Exit (obj) ;

static void Debit ()
{
//---debit 1000---
for (int 1 = 0; 1 < 10; 1i++)
{
Monitor.Enter (obj) ;

if (balance == 0)
Monitor.Wait (obj) ;

balance -= 100;

Console.WriteLine ("After debiting, balance is {0}", balance);
Monitor.Exit (obj) ;

311

Part |: C# Fundamentals

Thread Safety in Windows Forms

One of the common problems faced by Windows programmers is the issue of updating the Ul in
multithreaded situations. To improve the efficiency of their applications, Windows developers often use
threads to perform different tasks in parallel. One thread may be consuming a Web Service, another
performing file I/O, another doing some mathematical calculations, and so on. As each thread
completes, the developers may want to display the result on the Windows form itself.

However, it is important to know that controls in Windows Forms are bound to a specific thread and are

thus not thread safe; this means that if you are updating a control from another thread, you should not
call the control’s member directly. Figure 10-9 shows the conceptual illustration.

Separate thread

v

v

Control

Main Ul thread

Figure 10-9

To update a Windows Forms control from another thread, use a combination of the following members
of that particular control:

QO InvokeRequired property — Returns a Boolean value indicating if the caller must use the
Invoke () method when making call to the control if the caller is on a different thread than the
control. The InvokeRequired property returns true if the calling thread is not the thread that
created the control or if the window handle has not yet been created for that control.

Q Invoke() method — Executes a delegate on the thread that owns the control’s underlying
windows handle.

O BeginInvoke () method — Calls the Invoke () method asynchronously.
0 EndInvoke () method — Retrieves the return value of the asynchronous operation started by

the BeginInvoke () method.

To see how to use these members, create a Windows application project in Visual Studio 2008. In the
default Forml, drag and drop a Label control onto the form and use its default name of Labell.
Figure 10-10 shows the control on the form.

Form1.cs .[Design.j*

Form1

Figure 10-10

312

Chapter 10: Threading

Double-click the form to switch to its code-behind. The Forml_Load event handler is automatically
created for you.

Add the following highlighted code:

private void Forml_Load(object sender, EventArgs e)
{
if (labell.InvokeRequired)
{
MessageBox.Show ("Need to use Invoke()");
}
else
{
MessageBox.Show ("No need to use Invoke()");

}

This code checks the InvokeRequired property to determine whether you need to call Invoke () if you
want to call the Label control’s members. Because the code is in the same thread as the Label control,
the value for the InvokeRequired property would be false and the message box will print the
message No need to use Invoke().

Now to write some code to display the current time on the Label control and to update the time every
second, making it look like a clock. Define the PrintTime () function as follows:

private void PrintTime ()
{
try
{
while (true)
{
if (labell.InvokeRequired)
{
labell.Invoke (myDelegate, new object|[]
{
labell, DateTime.Now.ToString()
});
Thread.Sleep(1000) ;
}
else
labell.Text = DateTime.Now.ToString();
}
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
}

313

Part |: C# Fundamentals

Because the PrintTime () function is going to be executed on a separate thread (you will see this later),
you need to use the Invoke () method to call a delegate (myDelegate, which you will define shortly) so
that the time can be displayed in the Label control. You also insert a delay of one second so that the time
is refreshed every second.

Define the updateLabel function so that you can set the Label’s control Text property to a specific
string:

private void updateLabel (Control ctrl, string str)
{

ctrl.Text = str;

}

This function takes in two parameters — the control to update, and the string to display in the control.
Because this function resides in the UI thread, it cannot be called directly from the PrintTime ()
function; instead, you need to use a delegate to point to it. So the next step is to define a delegate type for
this function and then create the delegate:

public partial class Forml : Form
{
//---delegate type for the updateLabel () function---
private delegate void delUpdateControl (Control ctrl, string str);

//---a delegate---
private delUpdateControl myDelegate;

Finally, create a thread for the PrintTime () method in the Forml_Load event handler and start it:

private void Forml_Load(object sender, EventArgs e)
{
/...
//...
myDelegate = new delUpdateControl (updateLabel) ;
Thread t = new Thread (PrintTime) ;
t.Start();

That’s it! When you run the application, the time is displayed and updated every second on the Label
control (see Figure 10-11). At the same time, you can move the form, resize it, and so forth, and it is still
responsive.

Form1 {il@ |z|

5/23/2008 1:13:25 PM

Figure 10-11

314

Chapter 10: Threading

Using the BackgroundWorker Control

Because threading is such a common programming task in Windows programming, Microsoft has
provided a convenient solution to implementing threading: the Backgroundworker control for
Windows applications. The Backgroundworker control enables you to run a long background task such
as network access, file access, and so forth and receive continual feedback on the progress of the task. It
runs on a separate thread.

This section creates a simple Windows application that will show you how the Backgroundworker
component can help make your applications more responsive.

First, start Visual Studio 2008 and create a new Windows application. Populate the default Windows
form with the following controls (see Figure 10-12).

Control Name Text
Label Number
Label 1blResult label2
Label Progress
TextBox txtNum

Button btnStart Start
Button btnCancel Cancel
ProgressBar ProgressBarl

TextBox_control
Label control CEXTHum)

MEE)

% [Form1

Number
EButton control

btnstart — Button contral
C bl + Start] [Cancel —I— Chtncancel?
Lahel control 8 |ahe?

(ThlresuTt)

—Progress

Label cantrol-]
|

| u]
ProgressBar control
(ProgressBarl)

Figure 10-12

Drag and drop the BackgroundWorker component from the Toolbox onto the form.
The Backgroundworker is a nonvisual control, so it appears below the form in the component
section (see Figure 10-13).

315

Part |: C# Fundamentals

2% BackgroundWorker, - Microsoft Visual Studio

Fle Edit ‘iew Project Build Debug Data Tools Test Apalyze window Help

Bl i - o % By 9 - DB b Debug ~ Any CPU ~ | [# _passwo
e N N T e N -2 = L - T
Tookbox _Formi.cs* Formi.cs [Design]* |

= all Windows Forms
Painter

7 Form1 (=157 i
5 Backgroundwiorker E EF S et il |
454 Eindinghavigator i l:l

237 BindingSource

Button (Start |l Cancel |

CheckBox label2

CheckedListBox Progress

E ColorDialog []

=% ComboBox

FE| ContextMenustrip

[DataGridvien

|27 Dataset |
imePicker b ||

! E background'orker1

_ T DateTi
%Tnolbox |.“':5 Server Explorer |

Figure 10-13

Right-click on the BackgroundWorker component, and select Properties. Set the
WorkerReportsProgress and WorkerSupportsCancellation properties to True so that the
component can report on the progress of the thread as well as be aborted halfway through the thread
(see Figure 10-14).

(ApplicationSettings)
(Mame) backgroundworker1
GenerateMamber True

True »

Properties 3]
backgroundWorker1 System,ComponentModel Backgro =
|-; ——— WorkersupportsCancellation True -

) 0 Messages

WorkerReportsProgress
twhether the worker will report progress,

Figure 10-14

Here is how the application works. The user enters a number in the TextBox control (txtNum) and clicks
the Start button. The application then sums all of the numbers from 0 to that number. The progress bar
at the bottom of the page displays the progress of the summation. The speed in which the progress

bar updates is dependent upon the number entered. For small numbers, the progress bar fills up very
quickly. To really see the effect of how summation works in a background thread, try a large number and
watch the progress bar update itself. Notice that the window is still responsive while the summation is
underway. To abort the summation process, click the Cancel button. Once the summation is done, the
result is printed on the Label control (1b1Result).

316

Chapter 10: Threading

Switch to the code behind of the Windows form to do the coding. When the Start button is clicked, you
first initialize some of the controls on the form. You then get the Backgroundworker component to spin
off a separate thread by using the RunWorkAsync () method. You pass the number entered by the user as
the parameter for this method:

private void btnStart_Click(object sender, EventArgs e)

{
1blResult.Text = string.Empty;
btnCancel .Enabled = true;
btnStart.Enabled = false;
progressBarl.Value = 0;

backgroundWorkerl.RunWorkerAsync (txtNum.Text) ;

Now, double-click the Backgroundworker control in design view to create the event handler for its
DoWork event.

private void backgroundWorkerl_ DoWork (object sender, DoWorkEventArgs e)
{

BackgroundWorker worker = (BackgroundWorker)sender;
e.Result = SumNumbers (double.Parse(e.Argument.ToString()), worker, e);

The Dowork event of the Backgroundiorker component invokes the SumNumbers () function (which
you will define next) in a separate thread. This event is fired when you call the RunWorkerAsync ()
method (as was done in the previous step).

The DoWork event handler runs on a separate thread from the Ul Be sure not to
manipulate any Windows Forms controls created on the Ul thread from this method.

The sumNumbers () function basically sums up all the numbers from 0 to the number specified:

private double SumNumbers (
double number, BackgroundWorker worker, DoWorkEventArgs e)
{
int lastPercent = 0;
double sum = 0;
for (double 1 = 0; 1 <= number; i++)
{
//---check if user cancelled the process---
if (worker.CancellationPending)
{
e.Cancel = true;
}
else
{
sum += 1i;
if (1 % 10 == 0)
(continued)

317

Part |: C# Fundamentals

(continued)

int percentDone = (int) ((i / number) * 100);
//---update the progress bar if there is a change---
if (percentDone > lastPercent)
{

worker .ReportProgress (percentDone) ;

lastPercent = percentDone;

}

return sum;

It takes in three arguments — the number to sum up to, the Backgroundworker component, and the
DollorkEventArgs. Within the For loop, you check to see if the user has clicked the Cancel button (this
event is defined a little later in this chapter) by checking the value of the CancellationPending
property. If the user has canceled the process, set e.Cancel to True. After every 10 iterations, you
calculate the progress completed so far. If there is progress (when the current progress percentage is
greater than the last one recorded), you update the progress bar by calling the ReportProgress ()
method of the Backgroundworker component. Do not call the ReportProgress () method
unnecessarily because frequent calls to update the progress bar will freeze the UI of your application.

It is important to note that in this method (which was invoked by the Dowork event), you cannot directly
access Windows controls because they are not thread-safe. Trying to do so will trigger a runtime error,
a useful feature in Visual Studio 2008.

The ProgressChanged event is invoked whenever the ReportProgress () method is called. In this case,
you use it to update the progress bar. To generate the event handler for the ProgressChanged event,
switch to design view and look at the properties of the Backgroundworker component. In the Properties
window, select the Events icon and double-click the ProgressChanged event (see Figure 10-15).

Properties 3]
backgroundWorker1 System.ComponentModel. Backgroundivorker -

backgroundWorkerl_DoWork
backgroundWorkerl_ProgressChanged v
FunorkerCompleted hackgr kerl_| kerCompleted

ProgressChanged
Raised when the worlker thread indicates that some progress has been made.

Figure 10-15

318

Chapter 10: Threading

Code the event handler for the ProgressChanged event as follows:

private void backgroundWorkerl_ ProgressChanged (
object sender, ProgressChangedEventArgs e)

{
//---updates the progress bar and label control---
progressBarl.Value = e.ProgressPercentage;
1blResult.Text = e.ProgressPercentage.ToString() + "%";

Now double-click the RunWorkerCompleted event to generate its event handler:

private void backgroundWorkerl_RunWorkerCompleted (
object sender, RunWorkerCompletedEventArgs e)
{
if (e.Error != null)
MessageBox.Show (e.Error.Message) ;
else if (e.Cancelled)
MessageBox.Show ("Cancelled") ;
else
{
1blResult.Text = "Sum of 1 to " +
txtNum.Text + " is " + e.Result;
}
btnStart.Enabled = true;
btnCancel .Enabled = false;

The RunWorkerCompleted event is fired when the thread (SumNumbers (), in this case) has completed

running. Here you print the result accordingly.

Finally, when the user clicks the Cancel button, you cancel the process by calling the Cancelasync ()

method:

private void btnCancel_Click(object sender, EventArgs e)
{
//---Cancel the asynchronous operation---
backgroundiWorkerl.CancelAsync () ;
btnCancel.Enabled = false;

319

Part |: C# Fundamentals

Testing the Application

To test the application, press F5, enter a large number (say, 9999999), and click the Start button.
The progress bar updating should begin updating. When the process is complete, the result is printed
in the Label control (see Figure 10-16).

LEX

Form1

Form1

B3%

Progress

MNumber |3333333
Start Cancel

Sum of 1 to 9393939 is 43333335000000

Progress

Figure 10-16

Summary

This chapter explans the rationale for threading and how it can improve the responsiveness of your
applications. Threading is a complex topic and you need to plan carefully before using threads in

your application. For instance, you must identify the critical regions so that you can ensure that the different
threads accessing the critical region are synchronized. Finally, you saw that Windows Forms controls are
not thread-safe and that you need to use delegates when updating UI controls from another thread.

320

Files and Streams

At some stage in your development cycle, you need to store data on some persistent media so that
when the computer is restarted the data is still be available. In most cases, you either store the data
in a database or in files. A file is basically a sequence of characters stored on storage media such as
your hard disks, thumb drives, and so on. When you talk about files, you need to understand
another associated term — streams. A stream is a channel in which data is passed from one point
to another. In .NET, streams are divided into various types: file streams for files held on permanent
storage, network streams for data transferred across the network, memory streams for data stored
in internal storage, and so forth.

With streams, you can perform a wide range of tasks, including compressing and decompressing
data, serializing and deserializing data, and encrypting and decrypting data. This chapter examines:

Q

U 0 U

U 00U uUu o

Manipulating files and directories
How to quickly read and write data to files
The concepts of streams

Using the Buf feredStrean class to improve the performance of applications reading
from a stream

Using the FileStream class to read and write to files

Using the MemoryStrean class to use the internal memory store as a buffer
Using the NetworkStream class for network programming

The various types of cryptographic classes available in NET

Performing compressions and decompression on streams

Serializing and deserializing objects into binary and XML data

Working with Files and Directories

The system.]O namespace in the NET Framework contains a wealth of classes that allow
synchronous and asynchronous reading and writing of data on streams and files. In the following
sections, you will explore the various classes for dealing with files and directories.

Part |: C# Fundamentals

Remember to import the System. I0 namespace when using the various classes in
the System. IO namespace.

Working with Directories

The .NET Framework class library provides two classes for manipulating directories:

Q DirectoryInfo class
a Directory class

The DirectoryInfo class exposes instance methods for dealing with directories while the Directory
class exposes static methods.

Directoryinfo Class

The DirectoryInfo class provides various instance methods and properties for creating, deleting, and
manipulating directories. The following table describes some of the common methods you can use to
programmatically manipulate directories.

Method Description

Create Creates a directory.

CreateSubdirectory Creates a subdirectory.

Delete Deletes a directory.

GetDirectories Gets the subdirectories of the current
directory.

GetFiles Gets the file list from a directory.

And here are some of the common properties:

Properties Description

Exists Indicates if a directory exists.

Parent Gets the parent of the current directory.
FullName Gets the full path name of the directory.
CreationTime Gets or sets the creation time of current directory.

Refer to the MSDN documentation for a full list of methods and properties.

322

Chapter 11.:

Files and Streams

To see how to use the DirectoryInfo class, consider the following example:

static void Main(string[] args)

{

string path = @"C:\My Folder";
DirectoryInfo di = new DirectoryInfo(path);

try
{
//---if directory does not exists---
if (!di.Exists)
{
//---create the directory---
di.Create(); //---c:\My Folder---

//---creates subdirectories---
di.CreateSubdirectory ("Subdirl"); //---c
di.CreateSubdirectory("Subdir2"); //---c

:\My Folder\Subdirl---
:\My Folder\Subdir2---

//---print out some info about the directory---

Console.WriteLine (di.FullName) ;
Console.WriteLine(di.CreationTime) ;

//---get and print all the subdirectories---

DirectoryInfo[] subDirs = di.GetDirectories(

foreach (DirectoryInfo subDir in subDirs)
Console.WriteLine (subDir.FullName) ;

//---get the parent of C:\My folder---
DirectoryInfo parent = di.Parent;
if (parent.Exists)

{
//---prints out C:\---
Console.WriteLine (parent.FullName) ;

//---creates C:\My Folder\Subdir3---
DirectoryInfo newlyCreatedFolder =
di.CreateSubdirectory ("Subdir3");

//---deletes C:\My Folder\Subdir3---
newlyCreatedFolder.Delete() ;

}
catch (IOException ex)
{

Console.WriteLine (ex.Message) ;

}

catch (Exception ex)

{

Console.WriteLine (ex.Message) ;

Console.ReadLine() ;

)

323

Part |: C# Fundamentals

In this example, you first create an instance of the DirectoryInfo class by instantiating it with a path
(C:\My Folder). You check if the path exists by using the Exist property. If it does not exist, you create
the folder (C:\My Folder) and then create two subdirectories underneath it (Subdirl and Subdir2).

Next, you print out the full pathname (using the Ful1lName property) of the folder and its creation date
(using the CreationTime property). You then get all the subdirectories under C:\My Folder and display
their full pathnames. You can get the parent of the C:\My Folder using the Parent property.

Finally, you create a subdirectory named Subdir3 under C:\My Folder and pass a reference to the newly
created subdirectory to the newlyCreatedFolder object. You then delete the folder, using the Delete ()
method.

Directory Class

The Directory class is similar to DirectoryInfo class. The key difference between is that Directory
exposes static members instead of instance members. The Directory class also exposes only methods —
no properties. Some of the commonly used methods are described in the following table.

Method Description

CreateDirectory Creates a subdirectory.

Delete Deletes a specified directory.

Exists Indicates if a specified path exists.
GetCurrentDirectory Gets the current working directory.
GetDirectories Gets the subdirectories of the specified path.
GetFiles Gets the file list from a specified directory.
SetCurrentDirectory Sets the current working directory.

Refer to the MSDN documentation for a full list of methods and properties.
Here’s the previous program using the DirectoryInfo class rewritten to use the Directory class:

static void Main(string[] args)
{
string path = @"C:\My Folder";
try
{
//---if directory does not exists---
if (!Directory.Exists(path))
{
//---create the directory---
Directory.CreateDirectory (path) ;

//---set the current directory to C:\My Folder---
Directory.SetCurrentDirectory (path) ;

324

Chapter 11: Files and Streams

//---creates subdirectories---
//---c:\My Folder\Subdirl---
Directory.CreateDirectory ("Subdirl") ;
//---c:\My Folder\Subdir2---
Directory.CreateDirectory ("Subdir2") ;

}

//---set the current directory to C:\My Folder---
Directory.SetCurrentDirectory (path) ;

//---print out some info about the directory---
Console.WriteLine (Directory.GetCurrentDirectory());
Console.WriteLine (Directory.GetCreationTime (path)) ;

//---get and print all the subdirectories---

string[] subDirs = Directory.GetDirectories (path);

foreach (string subDir in subDirs)
Console.WriteLine (subDir) ;

//---get the parent of C:\My folder---
DirectoryInfo parent = Directory.GetParent (path);
if (parent.Exists)
{

//---prints out C:\---

Console.WriteLine (parent.FullName) ;

}

//---creates C:\My Folder\Subdir3---
Directory.CreateDirectory ("Subdir3");

//---deletes C:\My Folder\Subdir3---
Directory.Delete("Subdir3");
}

catch (IOException ex)

{

Console.WriteLine (ex.Message) ;

}
catch (Exception ex)

{

Console.WriteLine (ex.Message) ;

}

Console.ReadLine () ;

As you can see, most of the methods in the Directory class require you to specify the directory you are
working with. If you like to specify the directory path by using relative path names, you need to set the

current working directory using the SetCurrentDirectory () method; if not, the default current

directory is always the location of your program. Also, notice that some methods (such as GetParent ())

still return DirectoryInfo objects.

In general, if you are performing a lot of operations with directories, use the DirectoryInfo class.
Once it is instantiated, the object has detailed information about the directory you are currently working
on. In contrast, the Directory class is much simpler and is suitable if you are occasionally dealing
with directories.

325

Part |: C# Fundamentals

Working with Files Using the File and Filelnfo Classes

The .NET Framework class library contains two similar classes for dealing with files — FileInfo and File.

The File class provides static methods for creating, deleting, and manipulating files, whereas the
FileInfo class exposes instance members for files manipulation.

Like the Directory class, the File class only exposes static methods and does not contain any
properties.

Consider the following program, which creates, deletes, copies, renames, and sets attributes in files,
using the File class:

static void Main(string[] args)

{
string filePath = @"C:\temp\textfile.txt";
string fileCopyPath = @"C:\temp\textfile_copy.txt";
string newFileName = @"C:\temp\textfile_newcopy.txt";

try
{
//---if file already existed---
if (File.Exists(filePath))
{
//---delete the file---
File.Delete(filePath);
}
//---create the file again---
FileStream fs = File.Create(filePath);
fs.Close();
//---make a copy of the file---
File.Copy(filePath, fileCopyPath);
//--rename the file---
File.Move (fileCopyPath, newFileName) ;
//---display the creation time---
Console.WriteLine(File.GetCreationTime (newFileName)) ;
//---make the file read-only and hidden---
File.SetAttributes (newFileName, FileAttributes.ReadOnly) ;
File.SetAttributes (newFileName, FileAttributes.Hidden) ;
}

catch (IOException ex)

{

Console.WriteLine (ex.Message) ;

}

catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

}

Console.ReadLine() ;

326

Chapter 11: Files and Streams

This program first checks to see if a file exists by using the Exists () method. If the file exists, the
program deletes it using the Delete () method. It then proceeds to create the file by using the Create ()
method, which returns a FileStream object (more on this in subsequent sections). To make a copy of the
file, you use the Copy () method. The Move () method moves a file from one location to another.
Essentially, you can use the Move () method to rename a file. Finally, the program sets the Readonly and
Hidden attribute to the newly copied file.

In addition to the File class, you have the FileInfo class that provides instance members for dealing
with files. Once you have created an instance of the FileInfo class, you can use its members to obtain
more information about a particular file. Figure 11-1 shows the different methods and properties exposed
by an instance of the FileInfo class, such as the Attributes property, which retrieves the attributes of
a file, the Delete () method that allows you to delete a file, and so on.

FileInfo fi = new FileInfo(filePath):
£i.
&4 AppendText
25 attributes
& CopyTo
9 Create
9 CreateCbjRef
9 CreateText
@ CreationTime
f CreationTimeUtc
¢ Decrypt
9 Delete

%

Figure 11-1

Reading and Writing to Files

The File class contains four methods to write content to a file:

Q writeAllText () — Creates a file, writes a string to it, and closes the file

Q AppendAllText () — Appends a string to an existing file

Q wWriteAllLines() — Creates a file, writes an array of string to it, and closes the file
Q writeAllBytes () — Creates a file, writes an array of byte to it, and closes the file

The following statements show how to use the various methods to write some content to a file:

string filePath = @"C:\temp\textfile.txt";
string strTextToWrite = "This is a string";
string[] strLinesToWrite = new string[] { "Linel", "Line2" };
byte[] bytesToWrite =
ASCIIEncoding.ASCII.GetBytes("This is a string");

File.WriteAllText (filePath, strTextToWrite) ;
File.AppendAllText (filePath, strTextToWrite);
File.WriteAllLines(filePath, strLinesToWrite);
File.WriteAllBytes(filePath,bytesToWrite) ;

327

Part |: C# Fundamentals

The File class also contains three methods to read contents from a file:

0 ReadallText () — Opens a file, reads all text in it into a string, and closes the file
0 ReadallLines () — Opens a file, reads all the text in it into a string array, and closes the file

0 ReadAllBytes () — Opens a file, reads all the content in it into a byte array, and closes the file
The following statements show how to use the various methods to read contents from a file:

string filePath = @"C:\temp\textfile.txt";

string strTextToRead = (File.ReadAllText (filePath));
string[] strLinestoRead = File.ReadAllLines(filePath);
byte[] bytesToRead = File.ReadAllBytes(filePath);

The beauty of these methods is that you need not worry about opening and closing the file after reading
or writing to it; they close the file automatically after they are done.

StreamReader and StreamWriter Classes

When dealing with text files, you may also want to use the StreamReader and Streamiiriter classes.
StreamReader is derived from the TextReader class, an abstract class that represents a reader that can
read a sequential series of characters.

You'll see more about streams in the “The Stream Class” section later in this chapter.

The following code snippet uses the StreamReader class to read lines from a text file:

try
{
using (StreamReader sr = new StreamReader (filePath))
{
string line;
while ((line = sr.ReadLine()) != null)
{
Console.WriteLine(line);
}
}
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());

}
In addition to the ReadLine () method, the StreamReader class supports the following methods:

0 Read() — Reads the next character from the input stream
0 ReadBlock() — Reads a maximum of specified characters

0 ReadToEnd() — Reads from the current position to the end of the stream

328

Chapter 11: Files and Streams

The Streamwriter class is derived from the abstract TextwWriter class and is used for writing characters
to a stream. The following code snippet uses the Streamiiriter class to write lines to a text file:

try
{
using (StreamWriter sw = new StreamWriter (filePath))
{
sw.Write("Hello, ");
sw.WriteLine ("World!");
}
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString());

}

BinaryReader and BinaryWriter Classes

If you are dealing with binary files, you can use the BinaryReader and BinaryWriter classes.
The following example reads binary data from one file and writes it into another, essentially making
a copy of the file:

string filePath = @"C:\temp\VS2008Pro.png";
string filePathCopy = @"C:\temp\VS2008Pro_copy.png";

//---open files for reading and writing---
FileStream fsl = File.OpenRead(filePath) ;
FileStream fs2 = File.OpenWrite(filePathCopy) ;

BinaryReader br = new BinaryReader (fsl);
BinaryWriter bw = new BinaryWriter (fs2);

//---read and write individual bytes---
for (int i = 0; i <= br.BaseStream.Length - 1; i++)
bw.Write (br.ReadByte());

//---close the reader and writer---
br.Close();
bw.Close() ;

This program first uses the File class to open two files — one for reading and one for writing.
The BinaryReader class is then used to read the binary data from the FileStream, and the
BinaryWriter is used to write the binary data to the file.

The BinaryReader class contains many different read methods for reading different types of data —
Read (), Read7BitEncodedInt (), ReadBoolean (), ReadByte (), ReadBytes (), ReadChar (),
ReadChars (), ReadDecimal (), ReadDouble (), ReadIntl16 (), ReadInt32 (), ReadInt64 (),
ReadSByte (), ReadSingle (), ReadString (), ReadUInt16 (), ReadUInt32 (), and ReadUInt64 ().

Creating a FileExplorer

Now that you have seen how to use the various classes to manipulate files and directories, let’s put them
to good use by building a simple file explorer that displays all the subdirectories and files within a
specified directory.

329

Part |: C# Fundamentals

The following program contains the PrintFoldersinCurrentDirectory () function, which
recursively traverses a directory’s subdirectories and prints out its contents:

class Program
{
static string path = @"C:\Program Files\Microsoft Visual Studio 9.0\VC#";
static void Main(string[] args)
{
DirectoryInfo di = new DirectoryInfo(path);
Console.WriteLine (di.FullName) ;
PrintFoldersinCurrentDirectory(di, -1);
Console.ReadLine() ;

private static void PrintFoldersinCurrentDirectory (
DirectoryInfo directory, int level)

level++;

//---print all the subdirectories in the current directory---
foreach (DirectoryInfo subDir in directory.GetDirectories())
{
for (int 1 = 0; 1 <= level * 3; i++)
Console.Write(" ");
Console.Write("|__");

//---display subdirectory name---
Console.WriteLine (subDir.Name) ;

//---display all the files in the subdirectory---
FileInfo[] files = subDir.GetFiles();
foreach (FileInfo file in files)
{
//---display the spaces---
for (int 1 = 0; 1 <= (level+l) * 3; i++)
Console.Write(" ");

//---display filename---
Console.WriteLine("* " + file.Name);
//---explore its subdirectories recursively---

PrintFoldersinCurrentDirectory (subDir, level);

Figure 11-2 shows the output of the program.

330

Chapter 11: Files and Streams

BEL|

i__CShavrpProjectltem
i_Windows Forns
= (C8ControllnheritanceWizard.usz
#* GSFormInheritanceWizard.vsz
#* GCSharpltems.vsdir
i__CSharpProjects
i__DesignerTemplates
InheritedTemplate.cs
#* InheritedTemplate.Designer.cs
pets
833
= SnippetsIndex.xml
I_HNetFX3@
* propa.snippet
#* propdp.snippet
OfficeDevelopment

i__Snip
i1

AddSmartTagToExcellorkbook.snippet
DataBindListObject.snippet
DataBindNamedRange.snippet
FilterListObject.snippet
HideOr8howllorksheet .snippet

Figure 11-2

The Stream Class

A stream is an abstraction of a sequence of bytes. The bytes may come from a file, a TCP/IP socket, or
memory. In .NET, a stream is represented, aptly, by the Stream class. The Stream class provides a
generic view of a sequence of bytes.

The stream class forms the base class of all other streams, and it is also implemented by the following

classes:
Q BufferedStream — Provides a buffering layer on another stream to improve performance
Q FileStream — Provides a way to read and write files
Q MemoryStream — Provides a stream using memory as the backing store
Q NetworkStream — Provides a way to access data on the network
Q CryptoStream — Provides a way to supply data for cryptographic transformation
Q Streams fundamentally involve the following operations:
4 Reading
0 Writing
O Seeking

The Stream class is defined in the System.IO namespace. Remember to import that
namespace when using the class.

331

Part |: C# Fundamentals

The following code copies the content of one binary file and writes it into another using the Stream
class:

try

{
const int BUFFER_SIZE = 8192;
byte[] buffer = new byte[BUFFER_SIZE];
int bytesRead;

string filePath = @"C:\temp\VS2008Pro.png";
string filePath_backup = @"C:\temp\VS2008Pro_bak.png";

Stream s_in = File.OpenRead(filePath);
Stream s_out = File.OpenWrite(filePath_backup) ;

while ((bytesRead = s_in.Read(buffer, 0, BUFFER_SIZE)) > 0)
{
s_out.Write(buffer, 0, bytesRead);
}
s_in.Close();
s_out.Close();
}
catch (Exception ex)

{
Console.WriteLine (ex.ToString()) ;

}

This first opens a file for reading using the static OpenRead () method from the File class. In addition,
it opens a file for writing using the static Openwirite () method. Both methods return a FileStream
object.

While the OpenRead () and Opentirite () methods return a FileStream object, you can actually
assign the returning type to a Stream object because the FileStream object inherits from the
Stream object.

To copy the content of one file into another, you use the Read () method from the Stream class and read
the content from the file into an byte array. Read () returns the number of bytes read from the stream

(in this case the file) and returns 0 if there are no more bytes to read. The write () method of the Stream
class writes the data stored in the byte array into the stream (which in this case is another file). Finally,
you close both the Stream objects.

In addition to the Read () and Write () methods, the Stream object supports the following methods:

Q ReadByte() — Reads a byte from the stream and advances the position within the stream by
one byte, or returns -1 if at the end of the stream

O writeByte() — Writes a byte to the current position in the stream and advances the position
within the stream by 1 byte

O Seek() — Sets the position within the current stream

332

Chapter 11: Files and Streams

The following example writes some text to a text file, closes the file, reopens the file, seeks to the fourth
position in the file, and reads the next six bytes:

try
{
const int BUFFER_SIZE = 8192;
string text = "The Stream class is defined in the System.IO namespace.";
byte[] data = ASCIIEncoding.ASCII.GetBytes(text);
byte[] buffer = new byte[BUFFER_SIZE];
string filePath = @"C:\temp\textfile.txt";

//---writes some text to file---

Stream s_out = File.OpenWrite(filePath);
s_out.Write(data, 0, data.Length);
s_out.Close();

//---opens the file for reading---
Stream s_in = File.OpenRead(filePath);

//---seek to the fourth position---
s_in.Seek (4, SeekOrigin.Begin);

//---read the next 6 bytes---
int bytesRead = s_in.Read(buffer, 0, 6);
Console.WriteLine (ASCIIEncoding.ASCII.GetString(buffer, 0, bytesRead));

s_in.Close();
s_out.Close();
}
catch (Exception ex)
{

Console.WriteLine (ex.ToString());

}

BufferedStream

To improve its performance, the Buf feredStream class works with another Stream object. For instance,
the previous example used a buffer size of 8192 bytes when reading from a text file. However, that size
might not be the ideal size to yield the optimum performance from your computer. You can use the
BufferedStream class to let the operating system determine the optimum buffer size for you. While
you can still specify the buffer size to fill up your buffer when reading data, your buffer will now be
filled by the Buf feredStream class instead of directly from the stream (which in the example is from a
file). The Buf feredStream class fills up its internal memory store in the size that it determines is the
most efficient.

333

Part |: C# Fundamentals

The BufferedStream class is ideal when you are manipulating large streams. The following shows
how the previous example can be speeded up using the Buf feredStream class:

try

{
const int BUFFER_SIZE = 8192;
byte[] buffer = new byte[BUFFER_SIZE];
int bytesRead;

string filePath = @"C:\temp\VS2008Pro.png";
string filePath_backup = @"C:\temp\VS2008Pro_bak.png";

Stream s_in = File.OpenRead(filePath);
Stream s_out = File.OpenWrite(filePath_backup) ;

BufferedStream bs_in = new BufferedStream(s_in);
BufferedStream bs_out = new BufferedStream(s_out) ;

while ((bytesRead = bs_in.Read(buffer, 0, BUFFER_SIZE)) > 0)

{
bs_out.Write(buffer, 0, bytesRead);

}

bs_out.Flush() ;
bs_in.Close() ;
bs_out.Close() ;

}

catch (Exception ex)
{

Console.WriteLine (ex.ToString());

You use a Buf feredStream object over a Stream object, and all the reading and writing is then done via
the Buf feredStream objects.

The FileStream Class

The Filestream class is designed to work with files, and it supports both synchronous and
asynchronous read and write operations. Earlier, you saw the use of the Stream object to read and write
to file. Here is the same example using the FileStream class:

try

{
const int BUFFER_SIZE = 8192;
byte[] buffer = new byte[BUFFER_SIZE];
int bytesRead;

string filePath = @"C:\temp\VS2008Pro.png";
string filePath_backup = @"C:\temp\VS2008Pro_bak.png";

FileStream fs_in = File.OpenRead(filePath) ;
FileStream fs_out = File.OpenWrite (filePath_backup) ;

334

Chapter 11: Files and Streams

while ((bytesRead = fs_in.Read(buffer, 0, BUFFER_SIZE)) > 0)
{

fs_out.Write(buffer, 0, bytesRead);
}

fs_in.Dispose() ;
fs_out.Dispose() ;
fs_in.Close() ;
fs_out.Close();
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString()) ;

}

If the size of the file is large, this program will take a long time because it uses the blocking Read ()
method. A better approach would be to use the asynchronous read methods BeginRead () and
EndRead ().

BeginRead () starts an asynchronous read from a FileStream object. Every BeginRead () method
called must be paired with the EndRead () method, which waits for the pending asynchronous read
operation to complete. To read from the stream synchronously, you call the BeginRead () method as
usual by providing it with the buffer to read, the offset to begin reading, size of buffer, and a call back
delegate to invoke when the read operation is completed. You can also provide a custom object to
distinguish different asynchronous operations (for simplicity you just pass in null here):

IAsyncResult result =
fs_in.BeginRead (buffer, 0, BUFFER_SIZE,
new AsyncCallback (readCompleted), null);

The following program shows how you can copy the content of a file into another asynchronously:

class Program
{
static FileStream fs_in;
static FileStream fs_out;
const int BUFFER_SIZE = 8192;
static byte[] buffer = new byte[BUFFER_SIZE];

static void Main(string[] args)
{
try
{
string filePath = @"C:\temp\VS2008Pro.png";
string filePath_backup = @"C:\temp\VS2008Pro_bak.png";

//---open the files for reading and writing---
fs_in = File.OpenRead(filePath);
fs_out = File.OpenWrite(filePath_backup) ;

Console.WriteLine("Copying file...");

(continued)

335

Part |: C# Fundamentals

(continued)

336

//---begin to read asynchronously---
IAsyncResult result =
fs_in.BeginRead (buffer, 0, BUFFER_SIZE,
new AsyncCallback(readCompleted), null);

//---continue with the execution---
for (int 1 = 0; 1 < 100; i++)

{

Console.WriteLine("Continuing with the execution...{0}",

System.Threading.Thread.Sleep (250) ;
}
}

catch (Exception ex)
{
Console.WriteLine (ex.ToString());

}

Console.ReadLine() ;

//---when a block of data is read---
static void readCompleted(IAsyncResult result)

//---simulate slow reading---
System.Threading.Thread.Sleep (500) ;

//---reads the data---
int bytesRead = fs_in.EndRead (result) ;

//---writes to another file---
fs_out.Write(buffer, 0, bytesRead);

if (bytesRead > 0)
{
//---continue reading---
result =
fs_in.BeginRead (buffer, 0, BUFFER_SIZE,
new AsyncCallback(readCompleted), null);

}
else
{
//---reading is done!---
fs_in.Dispose();
fs_out.Dispose() ;
fs_in.Close();
fs_out.Close();
Console.WriteLine("File copy done!");
}

i);

Chapter 11: Files and Streams

Because the reading may happen so fast for a small file, you can insert Sleep () statements to simulate
reading a large file. Figure 11-3 shows the output.

ocuments and Settings/Wei-Meng Lee/My Documen

B..-
with execution
with execution
with execution
ing with execution
[Continuing with execution
[Continuing with execution
IContinuing with execution
iContinuing with execution
[Continuing with execution
inui with execution

MED NI LN

with execution
done?
with execution
with execution
iContinuing with execution
[Continuing with execution
[Continuing with execution...15

Figure 11-3

MemoryStream

Sometimes you need to manipulate data in memory without resorting to saving it in a file. A good
example is the PictureBox control in a Windows Form. For instance, you have a picture displayed in
the PictureBox control and want to send the picture to a remote server, say a Web Service. The
PictureBox control has a Save () method that enables you to save the image to a Stream object.

Instead of saving the image to a FileStream object and then reloading the data from the file into a byte
array, a much better way would be to use a MemoryStream object, which uses the memory as a backing
store (which is more efficient compared to performing file I/O; file I/O is relatively slower).

The following code shows how the image in the PictureBox control is saved into a MemoryStream object:

//---create a MemoryStream object---
MemoryStream msl = new MemoryStream() ;

//---save the image into a MemoryStream object---
pictureBoxl.Image.Save (msl, System.Drawing.Imaging.ImageFormat.Jpeg);

To extract the image stored in the MemoryStream object and save it to a byte array, use the Read ()
method of the MemoryStream object:

//---read the data in msl and write to buffer---
msl.Position = 0;

byte[] buffer = new byte[msl.Length];

int bytesRead = msl.Read(buffer, 0, (int)msl.Length);

337

Part |: C# Fundamentals

With the data in the byte array, you can now proceed to send the data to the Web Service.To verify that
the data stored in the byte array is really the image in the PictureBox control, you can load it back to
another MemoryStream object and then display it in another PictureBox control, like this:

//---read the data in buffer and write to ms2---
MemoryStream ms2 = new MemoryStream() ;
ms2.Write(buffer, 0,bytesRead) ;

//---load it in another PictureBox control---
pictureBox2.Image = new Bitmap (ms2);

NetworkStream Class

The NetworkStream class provides methods for sending and receiving data over Stream sockets in
blocking mode. Using the NetworkStream class is more restrictive than using most other Stream
implementations. For example, the CanSeek () properties of the NetworkStream class are not supported
and always return false. Similarly, the Length () and Position () properties throw
NotSupportedException. It is not possible to perform a Seek () operation, and the SetLength ()
method also throws Not SupportedException.

Despite these limitations, the NetworkStream class has made network programming very easy and
encapsulates much of the complexity of socket programming. Developers who are familiar with streams
programming can use the NetworkStream class with ease.

This section leads you through creating a pair of socket applications to illustrate how the
NetworkStream class works. The server will listen for incoming TCP clients and send back to the client
whatever it receives.

Building a Client-Server Application

The following code is for the server application:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.Net.Sockets;

namespace Server
{
class Program
{
const int PORT_NO = 5000;
const string SERVER_IP = "127.0.0.1";

static void Main(string[] args)

{
//---listen at the specified IP and port no.---
IPAddress localAdd = IPAddress.Parse(SERVER_IP);
TcplListener listener = new TcpListener (localAdd, PORT_NO) ;
Console.WriteLine("Listening...");

338

Chapter 11: Files and Streams

listener.Start();

//---incoming client connected---
TcpClient client = listener.AcceptTcpClient();

//---get the incoming data through a network stream---
NetworkStream nwStream = client.GetStream();
byte[] buffer = new byte[client.ReceiveBufferSize];

//---read incoming stream---
int bytesRead = nwStream.Read(buffer, 0, client.ReceiveBufferSize);

//---convert the data received into a string---
string dataReceived = Encoding.ASCII.GetString(buffer, 0, bytesRead);
Console.WriteLine("Received : " + dataReceived) ;

//---write back the text to the client---
Console.WriteLine("Sending back : " + dataReceived);
nwStream.Write(buffer, 0, bytesRead);

client.Close();
listener.Stop();
Console.ReadLine () ;

Basically, you use the TcpListener class to listen for an incoming TCP connection. Once a connection is
made, you use a NetworkStream object to read data from the client, using the Read () method as well as
write data to the client by using the write () method.

For the client, you use the TcpClient class to connect to the server using TCP and, as with the server,
you use the NetworkStream object to write and read data to and from the client:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.Net.Sockets;

namespace Client
{
class Program
{
const int PORT_NO = 5000;
const string SERVER_IP = "127.0.0.1";

static void Main(string[] args)
{
//---data to send to the server---
string textToSend = DateTime.Now.ToString() ;

//---create a TCPClient object at the IP and port no.---
(continued)

339

Part |: C# Fundamentals

(continued)
TcpClient client = new TcpClient (SERVER_IP, PORT_NO) ;

NetworkStream nwStream = client.GetStream() ;
byte[] bytesToSend = ASCIIEncoding.ASCII.GetBytes (textToSend) ;

//---send the text---
Console.WriteLine("Sending : " + textToSend);
nwStream.Write (bytesToSend, 0, bytesToSend.Length) ;

//---read back the text---

byte[] bytesToRead = new byte[client.ReceiveBufferSize];

int bytesRead = nwStream.Read(bytesToRead, 0,
client.ReceiveBufferSize);

Console.WriteLine("Received : " +
Encoding.ASCII.GetString (bytesToRead, 0, bytesRead)) ;

Console.ReadLine() ;

client.Close();

Figure 11-4 shows how the server and client look like when you run both applications.

T
= 4/25-2008 11:19:52 AN
ending back = 4-25.,2088 11:19:52 AM

ocuments and Settings\Wei-Meng Lee\Desktop\C# 2008

Sending : 4252008 11:
Received : 4-25-2088 11:

Figure 11-4

Building a Multi-User Server Application

The client-server applications built in the previous section can accept only a single client. A client
connects and sends some data to the server; the server receives it, sends the data back to the client, and
then exits. While this is a simple demonstration of a client-server application, it isn’t a very practical
application because typically a server should be able to handle multiple clients simultaneously and runs

340

Chapter 11: Files and Streams

indefinitely. So let’s look at how you can extend the previous server so that it can handle multiple clients
simultaneously.

To do so, you can create a class named Client and code it as follows:

using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Net.Sockets;

namespace Server

{

class Client

{

//---create a TCPClient object---
TcpClient _client = null;

//---for sending/receiving data---
byte[] buffer;

//---called when a client has connected---
public Client (TcpClient client)

{
_client = client;
//---start reading data asynchronously from the client---
buffer = new byte[_client.ReceiveBufferSizel;
_client.GetStream() .BeginRead (
buffer, 0, _client.ReceiveBufferSize,
receiveMessage, null);
}
public void receiveMessage (IAsyncResult ar)
{
int bytesRead;
try
{

lock (_client.GetStream())
{
//---read from client---
bytesRead = _client.GetStream().EndRead(ar);

//---if client has disconnected---
if (bytesRead < 1)
return;
else
{
//---get the message sent---
string messageReceived =
ASCIIEncoding.ASCII.GetString(buffer, 0, bytesRead);
Console.WriteLine ("Received : " + messageReceived);

(continued)

341

Part |: C# Fundamentals

(continued)
//---write back the text to the client---
Console.WriteLine("Sending back : " + messageReceived) ;
byte[] dataToSend =
ASCIIEncoding.ASCII.GetBytes (messageReceived) ;
_client.GetStream() .Write(dataToSend, 0, dataToSend.Length);
}
//---continue reading from client---
lock (_client.GetStream())
{
_client.GetStream() .BeginRead (
buffer, 0, _client.ReceiveBufferSize,
receiveMessage, null);
}
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString());
}
}
}

Here, the constructor of the client class takes in a TcpClient object and starts to read from it
asynchronously using the receiveMessage () method (via the BeginRead () method of the
NetworkStream object). Once the incoming data is read, the constructor continues to wait for more data.

To ensure that the server supports multiple users, you use a TcpListener class to listen for incoming
client connections and then use an infinite loop to accept new connections. Once a client is connected,
you create a new instance of the Client object and continue waiting for the next client. So the Main ()
function of your application now looks like this:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.Net.Sockets;

namespace Server
{
class Program
{
const int PORT_NO = 5000;
const string SERVER_IP = "127.0.0.1";

static void Main(string[] args)

{
//---listen at the specified IP and port no.---
IPAddress localAddress = IPAddress.Parse(SERVER_IP);
TcpListener listener = new TcpListener (localAddress, PORT_NO) ;
Console.WriteLine("Listening...");
listener.Start();

342

Chapter 11: Files and Streams

while (true)
{
//---incoming client connected---
Client user = new Client(listener.AcceptTcpClient());

Listening. ..

Received @ 4,25-/2088 11:21:21 AM
Sending bhack : 4,25.2008 11:21:21 AN
Received := 4-25-2008 11:21:27 AM
Sending back : 4,25-2088 11:21:27 AM

ending : 4252088 11:21:21 AM
Received = 4-25-2008 11:21:21 AM

\Documents and Settings\Wei-Meng Lee\Desktop\C# 2008 PR\Async

iSending : 4-25-2088 11:21:27 AM
Received : 4/25-2088 11:21:27 AM

Figure 11-5

Cryptography

The .NET framework contains a number of cryptography services that enable you to incorporate security
services into your .NET applications. These libraries are located under the System. Security
.Cryptography namespace and provide various functions such as encryption and decryption of data,
as well as other operations such as hashing and random-number generation. One of the core classes that
support the cryptographic services is the Cryptostream class, which links data streams to cryptographic
transformations.

This section explores how to use some of the common security APIs to make your .NET applications
more secure.

343

Part |: C# Fundamentals

Hashing

The most common security function that you will perform is hashing. Consider the situation where you
need to build a function to authenticate users before they can use your application. You would require
the user to supply a set of login credentials, generally containing a user name and a password. This login
information needs to be persisted to a database. Quite commonly, developers store the passwords of
users verbatim on a database. That’s a big security risk because hackers who get a chance to glance

at the users’ database would be able to obtain the passwords of your users. A better approach is to store
the hash values of the users’ passwords instead of the passwords themselves. A hashing algorithm has the
following properties:

Q It maps a string of arbitrary length to small binary values of a fixed length, known as a hash
value.

Q The hash value of a string is unique, and small changes in the original string will produce a
different hash value.

Q Itis improbable that you’d find two different strings that produce the same hash value.

Q Itis impossible to use the hash value to find the original string.

Then, when the user logs in to your application, the hash value of the password provided is compared
with the hash value stored in the database. In this way, even if hackers actually steal the users’ database,
the actual password is not exposed. One downside to storing the hash values of users” passwords is that
in the event that a user loses her password, there is no way to retrieve it. You’d need to generate a new
password for the user and request that she change it immediately. But this inconvenience is a small price
to pay for the security of your application.

There are many hashing algorithms available in .NET, but the most commonly used are the SHA1 and
MD?5 implementations. Let’s take a look at how they work in .NET.

Using Visual Studio 2008, create a new Console application project. Import the following namespaces:

using System.IO;
using System.Security.Cryptography;

Define the following function:

static void Hashing_ SHAL ()

{
//---ask the user to enter a password---
Console.Write("Please enter a password: ");
string password = Console.ReadLine() ;

//---hash the password---

byte[] data = ASCIIEncoding.ASCII.GetBytes (password) ;

byte[] passwordHash;

SHAlCryptoServiceProvider sha = new SHAlCryptoServiceProvider () ;
passwordHash = sha.ComputeHash (data) ;

//---ask the user to enter the same password again---

Console.Write("Please enter password again: ");
password = Console.ReadLine() ;

344

Chapter 11: Files and Streams

//---hash the second password and compare it with the first---
data = System.Text.Encoding.ASCII.GetBytes (password) ;

if (ASCIIEncoding.ASCII.GetString(passwordHash) ==
ASCIIEncoding.ASCII.GetString (sha.ComputeHash (data)))
Console.WriteLine ("Same password") ;
else
Console.WriteLine ("Incorrect password");

You first ask the user to enter a password, after which you will hash it using the SHA1 imple-
mentation. You then ask the user to enter the same password again. To verify that the second password
matches the first, you hash the second password and then compare the two hash values. For the SHA1
implementation, the hash value generated is 160 bits in length (the byte array passwordHash has

20 members: 8 bits x 20 = 160 bits). In this example, you convert the hash values into strings and perform
a comparison. You could also convert them to Base64 encoding and then perform a comparison.
Alternatively, you can also evaluate the two hash values by using their byte arrays, comparing them byte
by byte. As soon as one byte is different, you can conclude that the two hash values are not the same.

To test the function, simply call the Hashing_SHA1 () function in Main():

static void Main(string[] args)

{

Hashing_SHAI () ;
Console.Read () ;

Figure 11-6 shows the program in action.

e file:///C:/Documents and Settings/Wei-Meng Lee/My Documents/Visi

Please enter a p. pord: topsecret
Please enter pas rd again: topsecret
[Same password

le:/f/C:/Documents and Settings/Wei-Meng Lee/My Docum

Please enter a ord: topsecret
Please enter p d again: nosecret
Incorrect pas

Figure 11-6

You can also use the MD5 implementation to perform hashing, as the following function shows:

static void Hashing_ SHAIL ()

{

//---ask the user to enter a password---
Console.Write("Please enter a password: ");
string password = Console.ReadLine();

//---hash the password---
byte[] data = ASCIIEncoding.ASCII.GetBytes (password) ;
byte[] passwordHash;

(continued)

345

Part |: C# Fundamentals

(continued)

MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider () ;
passwordHash = md5.ComputeHash (data) ;

//---ask the user to enter the same password again---
Console.Write("Please enter password again: ");
password = Console.ReadLine() ;

//---hash the second password and compare it with the first---
data = System.Text.Encoding.ASCII.GetBytes (password) ;

if (ASCIIEncoding.ASCII.GetString (passwordHash) ==
ASCITIEncoding.ASCII.GetString (md5.ComputeHash (data)))
Console.WriteLine("Same password");
else
Console.WriteLine ("Incorrect password");

The main difference is that the hash value for MD5 is 128 bits in length.

Salted Hash

With hashing, you simply store the hash value of a user’s password in the database. However, if two
users use identical passwords, the hash values for these two passwords will be also identical. Imagine a
hacker seeing that the two hash values are identical; it would not be hard for him to guess that the two
passwords must be the same. For example, users often like to use their own names or birth dates or
common words found in the dictionary as passwords. So, hackers often like to use dictionary attacks to
correctly guess users’ passwords. To reduce the chance of dictionary attacks, you can add a “salt” to the
hashing process so that no two identical passwords can generate the same hash values. For instance,
instead of hashing a user’s password, you hash his password together with his other information, such
as email address, birth date, last name, first name, and so on. The idea is to ensure that each user will
have a unique password hash value. While the idea of using the user’s information as a salt for the
hashing process sounds good, it is quite easy for hackers to guess. A better approach is to randomly
generate a number to be used as the salt and then hash it together with the user’s password.

The following function, Salted_Hashing_ SHAIL (), generates a random number using the
RNGCryptoServiceProvider class, which returns a list of randomly generated bytes (the salt). It then
combines the salt with the original password and performs a hash on it.

static void Salted_Hashing_ SHAIL ()

{
//---Random Number Generator---
byte[] salt = new bytel[8];

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes (salt) ;

//---ask the user to enter a password---

Console.Write("Please enter a password: ");
string password = Console.ReadLine() ;

346

Chapter 11: Files and Streams

//---add the salt to the password---
password += ASCIIEncoding.ASCII.GetString(salt);

//---hash the password---

byte[] data = ASCIIEncoding.ASCII.GetBytes (password) ;
SHAlCryptoServiceProvider sha = new SHAlCryptoServiceProvider () ;
byte[] passwordHash;

passwordHash = sha.ComputeHash (data) ;

//---ask the user to enter the same password again---
Console.Write("Please enter password again: ");
password = Console.ReadLine() ;

Console.WriteLine (ASCIIEncoding.ASCII.GetString(salt));

//---adding the salt to the second password---
password += ASCIIEncoding.ASCII.GetString(salt);

//---hash the second password and compare it with the first---
data = ASCIIEncoding.ASCII.GetBytes (password) ;
if (ASCIIEncoding.ASCII.GetString (passwordHash) ==
ASCIIEncoding.ASCII.GetString (sha.ComputeHash (data)))
Console.WriteLine ("Same password") ;
else
Console.WriteLine ("Incorrect password");

If you use salted hash for storing passwords, the salt used for each password should be stored separately
from the main hash database so that hackers do not have a chance to obtain it easily.

Encryption and Decryption

Hashing is a one-way process, which means that once a value is hashed, you can’t obtain its original
value by reversing the process. This characteristic is particularly well suited for authentications as well
as digitally signing a document.

In reality, there are many situations that require information to be performed in a two-way process. For
example, to send a secret message to a recipient, you need to “scramble” it so that only the recipient can see
it. This process of scrambling is known as encryption. Undoing the scrambling process to obtain the original
message is known as decryption. There are two main types of encryption: symmetric and asymmetric.

Symmetric Encryption

Symmetric encryption is also sometimes known as private key encryption. You encrypt a secret message
using a key that only you know. To decrypt the message, you need to use the same key. Private key
encryption is effective only if the key can be kept a secret. If too many people know the key, its effectiveness
is reduced, and if the key’s secrecy is compromised somehow, then the message is no longer secure.

Despite the potential weakness of private key encryption, it is very easy to implement and,
computationally, it does not take up too many resources.

For private key encryption (symmetric), the NET Framework supports the DES, RC2, Rijndael, and
TripleDES algorithms.

347

Part |: C# Fundamentals

To see how symmetric encryption works, you will use the RijndaelManaged class in the following
SymmetricEncryption () function. Three parameters are required — the string to be encrypted, the
private key, and the initialization vector (IV). The IV is a random number used in the encryption process
to ensure that no two strings will give the same cipher text (the encrypted text) after the encryption
process. You will need the same IV later on when decrypting the cipher text.

To perform the actual encryption, you initialize an instance of the CryptoStream class with a
MemoryStream object, the cryptographic transformation to perform on the stream, and the mode of the
stream (Write for encryption and Read for decryption):

static string SymmetricEncryption(string str, bytel[] key, bytel[] IV)
{
MemoryStream ms = new MemoryStream() ;
try
{
//---creates a new instance of the RijndaelManaged class---
RijndaelManaged RMCrypto = new RijndaelManaged() ;

//---creates a new instance of the CryptoStream class---
CryptoStream cryptStream =
new CryptoStream (
ms, RMCrypto.CreateEncryptor(key, IV),
CryptoStreamMode.Write) ;

StreamWriter sWriter = new StreamWriter (cryptStream);

//---encrypting the string---
sWriter.Write(str);
sWriter.Close();
cryptStream.Close() ;

//---return the encrypted data as a string---
return System.Convert.ToBase64String (ms.ToArray());
}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return (String.Empty);

The encrypted string is returned as a Base64-encoded string. You can check the allowable key sizes
for the RijndaelManaged class by using the following code:

KeySizes[] ks;
RijndaelManaged RMCrypto = new RijndaelManaged() ;
ks = RMCrypto.LegalKeySizes;

//---print out the various key sizes---

Console.WriteLine(ks[0] .MaxSize) ; // 256
Console.WriteLine(ks[0].MinSize) ; // 128
Console.WriteLine(ks[0].SkipSize); // 64

The valid key sizes are: 16 bytes (128 bit), 24 bytes (128 bits + 64 bits), and 32 bytes (256 bits).

348

Chapter 11: Files and Streams

You can get the system to generate a random key and IV (which you need to supply in the current
example) automatically:

//---generate key---

RMCrypto.GenerateKey () ;

byte[] key = RMCrypto.Key;

Console.WriteLine("Key : " + System.Convert.ToBase64String (key)):;

//---generate IV---

RMCrypto.GeneratelIV () ;

byte[] IV = RMCrypto.IV;

Console.WriteLine("IV : " + System.Convert.ToBase64String(IV));

If the IV is null when it is used, the GenerateIV () method is called automatically. Valid size for the IV is
16 bytes.

To decrypt a string encrypted using the RijndaelManaged class, you can use the following
SymmetricDecryption () function:

static string SymmetricDecryption(string str, bytel[] key, bytel[] IV)
{
try
{
//---converts the encrypted string into a byte array---
byte[] b = System.Convert.FromBase64String(str);

//---converts the byte array into a memory stream for decryption---
MemoryStream ms = new MemoryStream(b) ;

//---creates a new instance of the RijndaelManaged class---
RijndaelManaged RMCrypto = new RijndaelManaged() ;

//---creates a new instance of the CryptoStream class---
CryptoStream cryptStream =
new CryptoStream(
ms, RMCrypto.CreateDecryptor (key, IV),
CryptoStreamMode.Read) ;

//---decrypting the stream---
StreamReader sReader = new StreamReader (cryptStream) ;

//---converts the decrypted stream into a string---
String s = sReader.ReadToEnd() ;
sReader.Close() ;

return s;

}
catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return String.Empty;

349

Part |: C# Fundamentals

The following code snippet shows how to use the SymmetricEncryption() and
SymmetricDecryption () functions to encrypt and decrypt a string:

RijndaelManaged RMCrypto = new RijndaelManaged() ;

//---generate key---

RMCrypto.GenerateKey () ;

byte[] key = RMCrypto.Key;

Console.WriteLine("Key : " + System.Convert.ToBase64String(key));

//---generate IV---

RMCrypto.GeneratelIV() ;

byte[] IV = RMCrypto.IV;

Console.WriteLine("IV : " + System.Convert.ToBase64String(IV));

//---encrypt the string---
string cipherText =

SymmetricEncryption("This is a test string.", key, IV);
Console.WriteLine("Ciphertext: " + cipherText);

//---decrypt the string---
Console.WriteLine("Original string: " +
SymmetricDecryption (cipherText, key, IV));

Figure 11-7 shows the output.

le:///C:/Documents and Settings/Wei-Meng Lee/My Documents/Visual Sti

= kgoyriBgay+jmUxhDUQnHeLusYNI9fnR1 jg3 16 KCABA=
= ge+uapu2gimaCokefUS j¥A==
Ciphertext: sPggpulnfUWLp65./gmgB53y1dWIULINL6C202HP xuuc=

Original string: This is a test stming.

Figure 11-7

Asymmetric Encryption

Private key encryption requires the key used in the encryption process to be kept a secret. A more
effective way to transport secret messages to your intended recipient is to use asymmetric encryption
(also known as public key encryption), which involves a pair of keys involved. This pair, consisting of a
private key and a public key, is related mathematically such that messages encrypted with the public key
can only be decrypted with the corresponding private key. The reverse is also true; messages encrypted
with the private key can only be decrypted with the public key. Let’s see an example for each scenario.

Before you send a message to your friend Susan, Susan needs to generate the key pair containing the
private key and the public key. Susan then freely distributes the public key to you (and all her other
friends) but keeps the private key to herself. When you want to send a message to Susan, you use her
public key to encrypt the message. Upon receiving the encrypted message, Susan proceeds to decrypt it
with her private key. Susan is the only one who can decrypt the message because the key pair works in
such a way that only messages encrypted with the public key can be decrypted with the private key.
And there is no need to exchange keys, thus eliminating the risk of compromising the secrecy of the key.

350

Chapter 11: Files and Streams

Now suppose that Susan sends a message encrypted with her private key to you. To decrypt the
message, you need the public key. The scenario may seem odd because the public key is not a secret;
everyone knows it. But using this method guarantees that the message has not been tampered with and
confirms that it indeed comes from Susan. If the message had been modified, you would not be able to
decrypt it. The fact that you can decrypt the message using the public key proves that the message has
not been modified.

In computing, public key cryptography is a secure way to encrypt information, but it’s computationally
expensive because it is time-consuming to generate the key pairs and to perform encryption and
decryption. Therefore, it's generally used only for encrypting a small amount of sensitive information.

For public key (asymmetric) encryptions, the .NET Framework supports the DSA and RSA algorithms.
The RSA algorithm is used in the following AsymmetricEncryption () function. This function takes in
two parameters: the string to be encrypted and the public key:

static string AsymmetricEncryption(string str, string publicKey)
{
try
{
//---Creates a new instance of RSACryptoServiceProvider---
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();

//---Loads the public key---
RSA.FromXmlString (publicKey) ;

//---Encrypts the string---
byte[] encryptedStr =
RSA.Encrypt (ASCIIEncoding.ASCII.GetBytes (str), false);

//---Converts the encrypted byte array to string---
return System.Convert.ToBase64String (encryptedStr) ;

}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return String.Empty;

The encrypted string is returned as a Base64-encoded string. To decrypt a string encrypted with the
public key, define the following AsymmetricDecryption () function. It takes in two parameters
(the encrypted string and the private key) and returns the decrypted string.

static string AsymmetricDecryption(string str, string privateKey)
{

try

{

//---Creates a new instance of RSACryptoServiceProvider---
RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();

//---Loads the private key---
RSA.FromXmlString (privateKey) ;

(continued)

351

Part |: C# Fundamentals

(continued)
//---Decrypts the string---
byte[] DecryptedStr =
RSA.Decrypt (System.Convert.FromBase64String(str), false);

//---Converts the decrypted byte array to string---
return ASCIIEncoding.ASCII.GetString (DecryptedStr) ;
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString());
return String.Empty;

The following code snippet shows how to use the AsymmetricEncryption () and
AsymmetricDecryption () functions to encrypt and decrypt a string:

string publicKey, privateKey;
RSACryptoServiceProvider RSA =
new RSACryptoServiceProvider () ;

//---get public key---

publicKey = RSA.ToXmlString(false);
Console.WriteLine("Public key: " + publicKey) ;
Console.WriteLine() ;

//---get private and public key---

privateKey = RSA.ToXmlString (true);
Console.WriteLine("Private key: " + privateKey);
Console.WriteLine() ;

//---encrypt the string---
string cipherText =
AsymmetricEncryption("C# 2008 Programmer's Reference", publicKey);
Console.WriteLine("Ciphertext: " + cipherText);
Console.WriteLine() ;

//---decrypt the string---
Console.WriteLine("Original string: " +

AsymmetricDecryption (cipherText, privateKey));
Console.WriteLine() ;

You can obtain the public and private keys generated by the RSA algorithm by using the
ToXmlString () method from the RSACryptoServiceProvider class. This method takes in a Bool
variable, and returns a public key if the value false is supplied. If the value true is supplied, it returns

both the private and public keys.

Figure 11-8 shows the output.

352

Chapter 11: Files and Streams

file:///C: /Documents and Settings/Wei-Meng Lee/My Documents/Visual Stu

i <RSfAiKeylalue >{Modul phxmz6 pHy8f mEZAZ3t I EH4xyR31alULBDgFBPPD6A ZeItl!
i eTFupj?Mn?Kos +M3pC 38 ~db4EpZQB2=1?pygLaJ8 +3ZnBSWR +FhnHgZKLcMuc Qs R8=6tG1 LgwHs GBx KU
BHgHHUE)quTluLthZdNGy?1u41meBuNuYUny/~115—</Hodulug)(Exponent)HQHB(/Exponent
></REAKeylValue >

Private key: < RSRKeyU alue>{Hodu lu_‘ >pDxmz gpglys fmEZAZ3ItI EH4xyR31alULADgFBPPDAAsZe It

R+FhnKgZKLcNucQsR8z6tG1LquHs QBxK

1glic6kuPhblleeouwllazJilL|
/DQ>{InuerseQ>UU?Y

==¢{/InverseQ><{D>F+/12C625A1Kt6K?r8Fet0t 1IF3g3BmLGLY2ErvMtLrU3an Gl 10gQkDAm jPKAUY
thULooszBKlquOfﬂPLN*ZSbbSBLUSIZPIHHgZE4RuqRuaZu063RlYBCKgIUCUXP13Q66U4fneeOX
af 30FSKUyf BQ3YMhEBc i melmo Y E=</D><{/R8AKeyllalue >

ICiphertext: QuyZEPCEdkCMDHR?ytHglubtJowYMfw(jB53UAuSkS RKUZKJA A 1sZxBal ChrJ1lrJdrnR|
w3vhUzTpRo228ICoccBbLiSByvaKlbscsBrhiM?D2waBBEKubhSUtMIn4BACYeMBs S Fc FoJePEgAUJUE 102
wf CKRJ?ihu Y Ex I tTHcxddM=

Original steing: C# 20888 Programmer’s Reference

Figure 11-8

Compressions for Stream Objects

The System. I0.Compression namespace contains classes that provide basic compression and
decompression services for streams. This namespace contains two classes for data compression:
DeflateStreamand GzipStream. Both support lossless compression and decompression and are
designed for dealing with streams.

Compression is useful for reducing the size of data. If you have huge amount of data to store in your
SQL database, for instance, you can save on disk space if you compress the data before saving it into a
table. Moreover, because you are now saving smaller blocks of data into your database, the time spent in
performing disk I/O is significantly reduced. The downside of compression is that it takes additional
processing power from your machine (and requires additional processing time), and you need to factor
in this additional time before deciding you want to use compression in your application.

Compression is extremely useful in cases where you need to transmit data over networks, especially
slow and costly networks such as General Packet Radio Service (GPRS).connections. In such cases, using
compression can drastically cut down the data size and reduce the overall cost of communication. Web
Services are another area where using compression can provide a great advantage because XML data can
be highly compressed.

But once you've decided the performance cost is worth it, you’ll need help deciphering the utilization of
these two compression classes, which is what this section is about.

Compression

The compression classes read data (to be compressed) from a byte array, compress it, and store the
results in a Stream object. For decompression, the compressed data stored in a Stream object is
decompressed and then stored in another Stream object.

Let’s see how you can perform compression. First, define the Compress () function, which takes in two
parameters: algo and data. The first parameter specifies which algorithm to use (GZip or Deflate),

353

Part |: C# Fundamentals

and the second parameter is a byte array that contains the data to compress. A MemoryStream object will
be used to store the compressed data. The compressed data stored in the MemoryStream is then copied into
another byte array and returned to the calling function. The Compress () function is defined as follows:

static byte[] Compress(string algo, byte[] data)
{

try
{
//---the ms is used for storing the compressed data---
MemoryStream ms = new MemoryStream() ;
Stream zipStream = null;
switch (algo)
{
case "Gzip": zipStream =
new GZipStream(ms, CompressionMode.Compress, true);
break;
case "Deflat": zipStream =
new DeflateStream(ms, CompressionMode.Compress, true);
break;
default: return null;
}
//---compress the data stored in the data byte array---
zipStream.Write(data, 0, data.Length);
zipStream.Close() ;
//---store the compressed data into a byte array---
ms.Position = 0;
byte[] c_data = new bytel[ms.Length];
//---read the content of the memory stream into the byte array---
ms.Read(c_data, 0, (int)ms.Length);
return c_data;
}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return null;

Decompression

The following Decompress () function decompresses the data compressed by the Compress ()
function. The first parameter specifies the algorithm to use, while the byte array containing the
compressed data is passed in as the second parameter, which is then copied into a MemoryStream object.

static byte[] Decompress (string algo, byte[] data)
{
try
{
//---copy the data (compressed) into ms---
MemoryStream ms = new MemoryStream(data) ;

354

Chapter 11: Files and Streams

Stream zipStream = null;
//---decompressing using data stored in ms---

switch (algo)
{
case "Gzip": zipStream =
new GZipStream(ms, CompressionMode.Decompress, true);
break;
case "Deflat": zipStream =
new DeflateStream(ms, CompressionMode.Decompress, true);
break;
default: return null;

//---used to store the de-compressed data---
byte[] dc_data;

//---the de-compressed data is stored in zipStream;
// extract them out into a byte array---
dc_data = RetrieveBytesFromStream(zipStream, data.Length);

return dc_data;
}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return null;

The compression classes then decompress the data stored in the memory stream and store the
decompressed data into another Stream object. To obtain the decompressed data, you need to read the
data from the Stream object. This is accomplished by the RetrieveBytesFromStream () function,
which is defined next:

static byte[] RetrieveBytesFromStream(Stream stream, int bytesblock)
{
//---retrieve the bytes from a stream object---
bytel[] data = null;
int totalCount = 0;
try
{
while (true)
{
//---progressively increase the size of the data byte array---
Array.Resize(ref data, totalCount + bytesblock);
int bytesRead = stream.Read(data, totalCount, bytesblock);
if (bytesRead == 0)
{
break;
}
totalCount += bytesRead;

(continued)

355

Part |: C# Fundamentals

(continued)
//---make sure the byte array contains exactly the number
// of bytes extracted---
Array.Resize(ref data, totalCount);
return data;
}
catch (Exception ex)

{
Console.WriteLine (ex.ToString());
return null;

The RetrieveBytesFromStream() function takes in two parameters — a Stream object and an integer —
and returns a byte array containing the decompressed data. The integer parameter is used to determine
how many bytes to read from the stream object into the byte array at a time. This is necessary because you
do not know the exact size of the decompressed data in the stream object. And hence it is necessary to
dynamically expand the byte array in blocks to hold the decompressed data during runtime. Reserving too
large a block wastes memory, and reserving too small a block loses valuable time while you continually
expand the byte array. It is therefore up to the calling routine to determine the optimal block size to read.

The block size is the size of the compressed data (data.Length):

//---the de-compressed data is stored in zipStream;
// extract them out into a byte array---

dc_data = RetrieveBytesFromStream(zipStream, data.Length) ;

In most cases, the uncompressed data is a few times larger than the compressed data, so you would at
most expand the byte array dynamically during runtime a couple of times. For instance, suppose that the
compression ratio is 20% and the size of the compressed data is 2MB. In that case, the uncompressed
data would be 10MB, and the byte array would be expanded dynamically five times. Ideally, the byte
array should not be expanded too frequently during runtime because it severely slows down the
application. Using the size of the compressed data as a block size is a good compromise.

Use the following statements to test the Compress () and Decompress () functions:

static void Main(string[] args)
{
byte[] compressedData = Compress("Gzip",
System.Text.Encoding.ASCII.GetBytes (
"This is a uncompressed string"));
Console.WriteLine ("Compressed: {0}",
ASCIIEncoding.ASCII.GetString (compressedData)) ;
Console.WriteLine ("Uncompressed: {0}",
ASCIIEncoding.ASCII.GetString (Decompress ("Gzip", compressedData)));
Console.ReadLine() ;

The output is as shown in Figure 11-9.

356

Chapter 11: Files and Streams

@7 TIeiGHYT=77ele If o
220 176m], A2¥-TL e

Figure 11-9

The compressed data contains some unprintable characters, so you may hear some beeps when it prints.
To display the compressed data using printable characters, you can define two helper functions —
byteArrayToString () and stringToByteArray ():

//---converts a byte array to a string---
static string byteArrayToString(byte[] data)

{

//---copy the compressed data into a string for presentation---
System.Text.StringBuilder s = new System.Text.StringBuilder();
for (int i = 0; i <= data.Length - 1; i++)
{
if (i != data.Length - 1)
s.Append(datal[i] + " ");
else
s.Append(datal[i]) ;
}

return s.ToString();

//---converts a string into a byte array---
static byte[] stringToByteArray (string str)

{

//---format the compressed string into a byte array---
string[] eachByte = str.Split(' ');
byte[] data = new byte[eachByte.Length];
for (int 1 = 0; 1 <= eachByte.Length - 1; i++)
datal[i] = Convert.ToByte(eachBytel[i]);
return data;

357

Part |: C# Fundamentals

To use the two helper functions, make the following changes to the statements:

static void Main(string[] args)
{
byte[] compressedData = Compress("Gzip",
System.Text.Encoding.ASCII.GetBytes (
"This is a uncompressed string"));

string compressedDataStr = byteArrayToString (compressedData) ;
Console.WriteLine ("Compressed: {0}", compressedDataStr) ;

byte[] data = stringToByteArray (compressedDataStr) ;
Console.WriteLine ("Uncompressed: {0}",
ASCIIEncoding.ASCII.GetString (Decompress ("Gzip", data)));

Console.ReadLine() ;

Figure 11-10 shows the output when using the two helper functions.

8648 237 189 7 96 28 73 150 37 38 47 202 123
8 128 96 19 36 216 144 64 16 236 193 136 2085 238 14
129 282 1081 86 181 93 182 22 64 284 237 157 188 247
239 18% 247 186 5% 157 78 39 247 223 255 63 92 182

158 33 128 178 286 31 63 126 124 31 63 34 222 284 1
173 22 174 58 111 154 124 1508 54 1609 93 44 47 254 3

H 45 213728 183 29 @ @ @
linconpressed: This is a uncompeessed steing

Figure 11-10

Alternatively, you can also convert the compressed data to a Base64-encoded string, like this:
byte[] compressedData = Compress("Gzip",
System.Text.Encoding.ASCII.GetBytes (

"This is a uncompressed string"));

string compressedDataStr = Convert.ToBase64String (compressedData) ;
Console.WriteLine ("Compressed: {0}", compressedDataStr);

byte[] data = Convert.FromBase64String ((compressedDataStr)) ;
Console.WriteLine ("Uncompressed: {0}",
ASCIIEncoding.ASCII.GetString (Decompress ("Gzip", data)));

Figure 11-11 shows the output using the base64 encoding.

plUmUAZhZAz02dvPfee ++2925 7773 3u jud] if 338 KGEKAWzZzkrayZ4hgKr [Hz9 +F BB /[t7M)

L E]
iyals2¥pe jmtFqs6b5p8ljZt¥Suwu hBt1Ry3HGARAA==
linconpressed: This is a incompressed string

Figure 11-11

358

Chapter 11: Files and Streams

Serialization

Many a time you may need to persist the value of an object to secondary storage. For example, you may
want to save the values of a couple of Point objects representing the positioning of an item on-screen to
secondary storage. The act of “flattening” an object into a serial form is known as serialization. The .NET
Framework supports binary and XML serialization.

Binary Serialization

Consider the following class, BookMark, which is used to stored information about web addresses and
their descriptions:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.IO;

using System.Runtime.Serialization.Formatters.Binary;

namespace Serialization
{
class Program
{
static void Main(string[] args)
{
}

class BookMark
{
private DateTime _dateCreated;
public BookMark ()
{
_dateCreated = DateTime.Now;
}
public DateTime GetDateCreated ()
{
return _dateCreated;
}
public string URL { get; set; }
public string Description { get; set; }
public BookMark NextURL { get; set; }

359

Part |: C# Fundamentals

The BookMark class contains properties as well as private variables. The NextURL property links multiple
BookMark objects, much like a linked list. Let’s now create two BookMark objects and link them:

static void Main(string[] args)
{
BookMark bml, bm2;

bml = new BookMark
{
URL = "http://www.amazon.com",
Description = "Amazon.com Web site"
3i

bm2 = new BookMark ()

URL = "http://www.wrox.com",
Description = "Wrox.com Web site",
NextURL = null

¥

//---1link the first BookMark to the next---
bml.NextURL = bm2;

You can serialize the objects into a binary stream by writing the serialize () function:

static void Main(string[] args)
{
/] ...

static MemoryStream Serialize (BookMark bookMark)
{
MemoryStream ms = new MemoryStream() ;
FileStream fs = new FileStream(
@"C:\Bookmarks.dat",
FileMode.Create,
FileAccess.Write) ;

BinaryFormatter formatter = new BinaryFormatter();
//---serialize to memory stream---
formatter.Serialize(ms, bookMark) ;

ms.Position = 0;

//---serialize to file stream---
formatter.Serialize(fs, bookMark) ;
return ms;

For binary serialization, you need to import the System.Runtime.Serialization
.Formatters.Binary namespace.

360

Chapter 11: Files and Streams

The serialize () function takes in a single parameter (the BookMark object to serialize) and returns a
MemoryStream object representing the serialized BookMark object. You use the BinaryFormatter class
from the System.Runtime.Serialization.Formatters.Binary namespace to serialize an object. One
side effect of this function is that it also serializes the BookMark object to file, using the FileStream class.

Before you serialize an object, you need to prefix the class that you want to serialize name with the

[Serializable] attribute:

[Serializable]

class BookMark
{
private DateTime _dateCreated;
public BookMark ()
{
_dateCreated = DateTime.Now;
}
public DateTime GetDateCreated()
{
return _dateCreated;
}
public string URL { get; set; }
public string Description { get; set; }
public BookMark NextURL { get; set; }

The following statement serializes the bm1 BookMark object, using the Serialize () function:

static void Main(string[] args)
{
BookMark bml, bm2;

bml = new BookMark
{
URL = "http://www.amazon.com",
Description = "Amazon.com Web site"
Y

bm2 = new BookMark()

URL = "http://www.wrox.com",
Description = "Wrox.com Web site",
NextURL = null

Y

//---1link the first BookMark to the next---
bml.NextURL = bm2;

//---serializing an object graph into a memory stream---

MemoryStream ms = Serialize (bml) ;

361

Part |: C# Fundamentals

To prove that the object is serialized correctly, you deserialize the memory stream (that is, “unflatten” the
data) and assign it back to a BookMark object:

static void Main(string[] args)
{
BookMark bml, bm2;

bml = new BookMark
{
URL = "http://www.amazon.com",
Description = "Amazon.com Web site"
}i

bm2 = new BookMark ()

URL = "http://www.wrox.com",
Description = "Wrox.com Web site",
NextURL = null

Y

//---1link the first BookMark to the next---
bml.NextURL = bm2;

//---serializing an object graph into a memory stream---
MemoryStream ms = Serialize(bml);

//---deserializing a memory stream into an object graph---
BookMark bm3 = Deserialize(ms) ;

Here is the definition for the DeSerialize () function:

static void Main(string[] args)
{
/...

static MemoryStream Serialize (BookMark bookMark)
{
/...

static BookMark Deserialize (MemoryStream ms)

{
BinaryFormatter formatter = new BinaryFormatter();
return (BookMark)formatter.Deserialize (ms);

362

Chapter 11: Files and Streams

To display the values of the deserialized BookMark object, you can print out them out like this:

static void Main(string[] args)

{

If the objects are serialized and deserialized correctly, the output is as shown in Figure 11-12.

BookMark bml, bm2;

bml = new BookMark
{
URL = "http://www.amazon.com",
Description = "Amazon.com Web site"
}i

bm2 = new BookMark ()

URL = "http://www.wrox.com",
Description = "Wrox.com Web site",
NextURL = null

Y

//---1link the first BookMark to the next---
bml.NextURL = bm2;

//---serializing an object graph into a memory stream---
MemoryStream ms = Serialize (bml);

//---deserializing a memory stream into an object graph---
BookMark bm3 = Deserialize(ms);

//---print out all the bookmarks---

BookMark tempBookMark = bm3;

do

{
Console.WriteLine (tempBookMark.URL) ;
Console.WriteLine (tempBookMark.Description) ;
Console.WriteLine (tempBookMark.GetDateCreated()) ;
Console.WriteLine("---");
tempBookMark = tempBookMark.NextURL;

} while (tempBookMark != null);

Console.ReadLine () ;

fDocuments and Settings/Wei-|

e

4-27,2008 11

Figure 11-12

363

Part |: C# Fundamentals

But what does the binary stream look like? To answer that question, take a look at the c: \BookMarks
.dat file that you have created in the process. To view the binary file, simply drag and drop the
BookMarks . dat file into Visual Studio 2008. You should see something similar to Figure 11-13.

2% Serialization - Microsoft Visual Studio

Fle Edit Wiew Project Build Debug Data Tools Test Window Help
Bl-E-E e a & G &l - 5L | b Debug - Any CPU - | [
Bllep s KRR LQE

Search: -

=

Bookmarks.dat | BookMark.cs | Program.cs

opogooon 00 01 00 00 00 FF FF FF FF O1 00 00 00 00 00 0O
opoooolo 00 OC 02 00 00 00 44 53 65 72 69 61 6C 69 A 61 DSerializa
opogoozo 74 69 6F BE 2C 20 56 65 72 73 69 6F GE 3D 31 2E tion, Version=1
0poooo3n 30 2E 30 2E 30 2C 20 43 75 6C 74 76 72 65 3D 6E 0.0.0, Culture=n
opo0oo40 65 75 74 72 61 eC 2C 20 50 75 62 6C 6% 63 4B 65 esutral, PublicKe
0poooos0 79 54 6F BB 65 BE 3D 6E 75 6C 6C 05 01 00 00 00 wToken=null...
00000060 16 53 65 72 69 61 BC 69 74 61 74 69 6F GE 2E 42 Cerialization B
00o000v0 6F BF 6B 4D 61 72 6B 04 00 00 00 OC SF 64 61 74 ookMark._dat
oooooos0 65 43 72 65 61 74 65 64 14 3C 55 52 4C 3E 6B 5F eCreated. <URLyk_
00000090 S5F 42 61 63 6B 69 BE 67 46 69 65 6C 64 1C 3C 44 _BHackingField. <D
ooo000a0 65 73 63 72 69 70 74 69 6F GE 3E 6B 5F 5F 42 61 escriptionyk_ Ba
ooo00o0bl 63 6B 69 GE 67 46 69 65 6C 64 18 3C 4E 65 78 74 ckingField. <Hext
000000ch 55 52 4C 3E 6B S5F 5F 42 61 63 6B 69 6E 67 46 69 URL:k_ BackingFi
0po000do 65 6C 64 00 01 01 04 0D 16 53 65 72 69 61 6C 69 eld.... . .Seriali
000000e0 74 61 74 69 6F 6E 2E 42 6F &6F 6B 4D 61 72 6B 02 zation. BookMark
opogoof0o 00 OO 00 02 00 00 00 Ax 71 53 2E D2 76 CA 88 06 05 .
opogoioo 03 00 00 00 15 68 74 74 70 3A 2F 2F 77 77 77 ZE http: ~waw
00000110 61 6D 61 7A 6F 6E 2E 63 6F 6D 06 04 00 00 00 13 amazon.com. ...
opo00iz0 41 6D 61 7A 6F 6E 2E 63 6F 6D 20 57 65 62 20 73 Amazon.com Web =
opoooi30 e9 74 65 09 05 00 00 00 01 05 00 00 00 01 00 00 dte...........
opo00140 00 AA 71 53 2E D2 6 Ch 88 06 06 00 00 00 13 68 . .g5..w....... h
00000150 74 74 70 3A 2F 2F 77 7F 77 2E 77 72 6F 78 2E 63 ttp:sUwUV WEROH . C
00000160 eF 6D 06 07 00 00 00 11 57 72 oF 78 2E 63 6F 6D om..... Wrox.com
opogol¥o 20 57 e5 62 20 73 69 74 65 OA OB Web site.

Figure 11-13

*OG|00 | S,

A few observations are worth noting at this point:

Q Private variables and properties are all serialized. In binary serialization, both the private
variables and properties are serialized. This is known as deep serialization, as opposed to shallow
serialization in XML serialization (which only serializes the public variables and properties).
The next section discusses XML serialization.

Q Object graphs are serialized and preserved. In this example, two BookMark objects are linked,
and the serialization process takes care of the relationships between the two objects.

There are times when you do not want to serialize all of the data in your object. If you don’t want to
persist the date and time that the BookMark objects are created, for instance, you can prefix the variable
name (that you do not want to serialize) with the [NonSerialized] attribute:

[Serializable]
class BookMark
{
[NonSerialized]
private DateTime _dateCreated;
public BookMark ()
{

_dateCreated = DateTime.Now;

}
public DateTime GetDateCreated()

364

Chapter 11: Files and Streams

return _dateCreated;

}

public string URL { get; set; }

public string Description { get; set; }
public BookMark NextURL { get; set; }

The dateCreated variable will not be serialized. Figure 11-14 shows that when the dateCreated
variable is not serialized, its value is set to the default date when the object is deserialized.

:/Documents and Settin;

Figure 11-14

XML Serialization

You can also serialize an object into an XML document. There are many advantages to XML serialization.
For instance, XML documents are platform-agnostic because they are in plain text format and that makes
cross-platform communication quite easy. XML documents are also easy to read and modify, which
makes XML a very flexible format for data representation.

The following example illustrates XML serialization and shows you some of its uses.

Defining a Sample Class

Let’s define a class so that you can see how XML serialization works. For this example, you define three
classes that allow you to store information about a person, such as name, address, and date of birth. Here
are the class definitions:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Microsoft.VisualBasic;
using System.IO;

using System.Xml.Serialization;
using System.Xml;

namespace Serialization

{

class Program

{

static void Main(string[] args)

(continued)

365

Part |: C# Fundamentals

(continued)

366

public class Member
{
private int age;
public MemberName Name;
public MemberAddress[] Addresses;
public DateTime DOB;
public int currentAge
{
get
{
//---add a reference to Microsoft.VisualBasic.dll---
age = (int)DateAndTime.DateDiff (
DateInterval.Year, DOB,
DateTime.Now,
FirstDayOfWeek.System,
FirstWeekOfYear.System) ;
return age;

public class MemberName

{
public string FirstName { get; set; }
public string LastName { get; set; }

public class MemberAddress
{
public string Linel;
public string Line2;
public string City;
public string Country;
public string Postal;

The various classes are deliberately designed to illustrate the various aspects of XML
serialization. They may not adhere to the best practices for defining classes.

Chapter 11: Files and Streams

Here are the specifics for the classes:

Q

U 0O 0 U

The Member class contains both private and public members. It also contains a read-only
property.
The Member class contains a public array containing the address of a Member.

The Member class contains a variable of Date data type.

The MemberName class contains two properties.

The MemberAddress class contains only public members.

Serializing the Class

To serialize a Member object into a XML document, you can use the XMLSerializer class from the

System.Xml.Serialization namespace:

static void Main(string[] args)

static void XMLSerialize (Member mem)
{
StreamWriter sw = new StreamWriter (@"c:\Members.xml");
try
{
XmlSerializer s = new XmlSerializer (typeof (Member)) ;
s.Serialize(sw, mem);
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString()) ;
}
finally
{
sw.Close();

}

For XML serialization, you need to import the System.Xml.Serialization namespace.

In the XMLSerialize () function, you first create a new Streamiriter object so that you can save the

serialized XML string to a file. The Serialize () method from the XMLSerializer class serializes

the Member object into an XML string, which is then written to file by using the Streamwriter class.

367

Part |: C# Fundamentals

To test the XMLSerialize () function, assume that you have the following object declarations:

static void Main(string[] args)
{
MemberAddress addressl = new MemberAddress ()
{
Linel = "One Way Street",
Line2 = "Infinite Loop",
Country = "SINGAPORE",
Postal = "456123"
b

MemberAddress address2 = new MemberAddress ()
{

Linel = "Two Way Street",

Country = "SINGAPORE",

Postal = "456123"
¥

Member ml = new Member ()
{
Name = new MemberName ()
{
FirstName = "Wei-Meng",
LastName = "Lee"
i
DOB = Convert.ToDateTime(@"5/1/1972"),
Addresses = new MemberAddress[] { addressl, address2 }

Y
}

To serialize the Member object, invoke the xMLSerialize () method like this:

static void Main(string[] args)
{
MemberAddress addressl = new MemberAddress ()
{
Linel = "One Way Street",
Line2 = "Infinite Loop",
Country = "SINGAPORE",
Postal = "456123"
Y

MemberAddress address2 = new MemberAddress ()
{

Linel = "Two Way Street",

Country = "SINGAPORE",

Postal = "456123"
Y

Member ml = new Member ()

{
Name = new MemberName ()

{

368

Chapter 11: Files and Streams

FirstName = "Wei-Meng",
LastName = "Lee"
I
DOB = Convert.ToDateTime(@"5/1/1972"),
Addresses = new MemberAddress([] { addressl, address2 }

Y

XMLSerialize (ml) ;
}

Figure 11-15 shows the XML document generated by the xMLSerialize () function.

ﬂ; C:\Members.xml - Windows Internet Explorer

w &

112 s
A |,§. C:\Members. xml M| [t | X | =

> — = ; »
& CiMembers, xml | | -8 o~ |:h Page - (€ Tools

<?xml version="1.0" encoding="utf-8" 7>
- «Member xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-
instance" xmins:xsd="http://www.w3.org/2001/XMLSchema">
- <Name:
<FirstName>Wei-Meng</FirstName >
<lastName>Lee</LastNama>
</Mamez>
- <fddresses>
- <Memberaddress>
<Linel>=0One Way Street</Linel>
<Line2 =Infinite Loop</Line2>
<Country >SINGAPORE </Country >
<Postal>456123 </Postal>
</MemberAddress=>
- <MemberAddress>
<Linel>=Two Way Street</Linel>
<Country >SINGAPORE </Country >
<Postal>456123 </Postal>
</MemberAddressz>
</Addresses>
<DOBE>1972-05-01T00:00:00</DO0B >
</Member>

Dane 4 My Computer EA00% T

Figure 11-15

As you can see, the object is serialized into an XML document with a format corresponding to the
structure of the object. Here are some important points to note:

Q The city information is not persisted in the XML document (nor as the Line2 in the second
Address element) because it was not assigned in the objects. You will see later how to persist
empty elements, even though a value is not assigned.

Q All read/write properties in the object are persisted in the XML document, except the read-only
currentAge property in the Member class.

Q Only public variables are persisted; private variables are not persisted in XML serialization.

Q The default name for each element in the XML document is drawn from the variable (or class)
name. In most cases this is desirable, but sometimes the element names might not be obvious.

369

Part |: C# Fundamentals

Deserializing the Class

To deserialize the XML document, simply use the Deserialize () method from the XMLSerializer
class. Define the XMLDeserialize () function as follows:

static void Main(string[] args)

/] ...
}
//========XML Serialization=========
static Member XMLDeserialize(string xmlFile)
{
Member obj;
XmlReader xr = XmlReader.Create(xmlFile);
try
{
XmlSerializer s = new XmlSerializer (typeof (Member)) ;
obj = (Member)s.Deserialize (Xr);
}
catch (Exception ex)
{
Console.WriteLine (ex.ToString()) ;
obj = null;
}
finally
{
xr.Close() ;
}
return obj;
}

Here, you can use the xm1Reader class’s Create () method to open an XML file for reading.

The xm1Reader class is used to read the data from the XML file. The deserialized object is then returned
to the calling function.

Remember to import the System.xml namespace for the XmlReader class.

To test the XMLDeserialize () function, call it directly after an object has been serialized, like this:

static void Main(string[] args)

{
MemberAddress addressl = new MemberAddress ()
{
Linel = "One Way Street",
Line2 = "Infinite Loop",

Country = "SINGAPORE",
Postal = "456123"

370

Chapter 11: Files and Streams

Y

MemberAddress address2 = new MemberAddress ()
{

Linel = "Two Way Street",

Country = "SINGAPORE",

Postal = "456123"
Y

Member ml = new Member ()

{
Name = new MemberName ()
{
FirstName = "Wei-Meng",
LastName = "Lee"

}
DOB = Convert.ToDateTime(@"5/1/1972"),
Addresses = new MemberAddress[] { addressl, address2 }

}i

XMLSerialize (ml) ;

Member m2 = XMLDeserialize(@"c:\Members.xml");
Console.WriteLine("{0}, {1}", m2.Name.FirstName, m2.Name.LastName) ;

Console.WriteLine("{0}", m2.currentAge) ;
foreach (MemberAddress a in m2.Addresses)

{
Console.WriteLine("{0}", a.Linel);
Console.WriteLine("{0}", a.Line2);
Console.WriteLine("{0}", a.Country);
Console.WriteLine("{0}", a.Postal);
(

Console.WriteLine() ;

}
Console.ReadLine () ;

The output of these statements is shown in Figure 11-16.

e+ file:///C:/Documents and Settings/Wei-Meng Lee/My Documen

Two Way Street
5 INGAPORE
456123

Figure 11-16

371

Part |: C# Fundamentals

Customizing the Serialization Process

Despite the fairly automated task performed by the XMLSerializer object, you can customize the way
the XML document is generated. Here’s an example of how you can modify classes with a few attributes:

[XmlRoot ("MemberInformation",
Namespace = "http://www.learn2develop.net",
IsNullable = true)]

public class Member

{

private int age;

//---specify the element name to be MemberName---
[XmlElement ("MemberName")]
public MemberName Name;

//---specify the sub-element (s) of Addresses to be Address---
[XmlArrayItem("Address")]
public MemberAddress[] Addresses;
public DateTime DOB;
public int currentAge
{
get
{

//---add a reference to Microsoft.VisualBasic.dll---
age = (int)DateAndTime.DateDiff (

DateInterval.Year, DOB,

DateTime.Now,

FirstDayOfWeek.System,

FirstWeekOfYear.System) ;
return age;

}

public class MemberName

{
public string FirstName { get; set; }
public string LastName { get; set; }

}

public class MemberAddress

{
public string Linel;
public string Line2;

//---empty element if city is not specified---
[XmlElement (IsNullable = true)]

public string City;

//---specify country and postal as attribute---
[XmlAttributeAttribute()]

public string Country;

372

Chapter 11: Files and Streams

[XmlAttributeAttribute ()]
public string Postal;

When the class is serialized again, the XML document will look like Figure 11-17.

embers.xml - Windows Internet Explorer,

___/." |,§,C:\Member5‘xm\ V| || X |

2]

1 (O 3 - >
e ‘@C:\Members.xml | | A R | s - |:.bPage v {0F Tools +

<?xml version="1.0" encoding="utf-8" ?>

- l=MemberInformation

="http://www.w3.0org/2001/XMLSchema-instance"

xmins:x
xmins:xsd="http:/ /www.w3.org/2001/XMLSchema"
xmins="http://www.learn2develop.net">

- <MemberName:>

<FirstName >Wei-Meng=</Firsthame >
<l astName>Lee</LastName:=
</MemberName:

- <Addresses>

- [zAddress Country="SINGAPORE' Postzl='456123 =)
<Linel>=0One Way Street</Linelx>
<Line2 =Infinite Loop</Line2:=>
</Address>
- |sAddress Country="SINGAPORE" Posts="456123">|

<Linel>Two Way Street</Linel=
</Address>
</Addresses>
<DOB>1972-05-01T00:00:00</DOB>
</Memberinformationz

Dong

:‘ My Computer

E100% v

Figure 11-17

Notice that the root element of the XML document is now <MemberInformation>. Also,
<MemberAddress> has now been changed to <Address>, and the <Country> and <Postal> elements
are now represented as attributes. Finally, the <City> element is always persisted regardless of whether
or not it has been assigned a value.

Here are the uses of each attribute:

a

[XmlRoot ("MemberInformation",

Namespace = "http://www.learn2develop.net",

IsNullable = true)]

public class

{

Member

Sets the root element name of the XML document to MemberInformation (default element
name is Member, which follows the class name), with a specific namespace. The IsNullable

attribute indicates if empty elements must be displayed.

373

Part |: C# Fundamentals

Q

//---specify the element name to be MemberName---
[XmlElement ("MemberName")]
public MemberName Name;

Specifies that the element name MemberName be used in place of the current variable name
(as defined in the class as Name).

//---specify the sub-element (s) of Addresses to be Address---
[XmlArrayItem("Address")]
public MemberAddress[] Addresses;

Specifies that the following variable is repeating (an array) and that each repeating element
be named as Address.

//---empty element if city is not specified---
[XmlElement (IsNullable = true)]
public string City;

Indicates that the document must include the City element even if it is empty.

//---specify country and postal as attribute---
[XmlAttributeAttribute()]
public string Country;

[XmlAttributeAttribute ()]
public string Postal;

Indicates that the Country and Postal property be represented as an attribute.

XML Serialization Needs a Default Constructor

There is one more thing that you need to note when doing XML serialization. If your class has a
constructor (as in the following example), you also need a default constructor:

[XmlRoot ("MemberInformation",
Namespace = "http://www.learn2develop.net",
IsNullable = true)]

public class Member

{

private int age;

374

Chapter 11: Files and Streams

public Member (MemberName Name)
{
this.Name = Name;

}

//---specify the element name to be MemberName---
[XmlElement ("MemberName")]
public MemberName Name;

This example results in an error when you try to perform XML serialization on it. To solve the problem,
simply add a default constructor to your class definition:

[XmlRoot ("MemberInformation",

Namespace = "http://www.learn2develop.net",
IsNullable = true)]

public class Member
{

private int age;
public Member () { }

public Member (MemberName Name)
{
this.Name = Name;

}

Uses of XML Serialization

XML serialization can help you to preserve the state of your object (just like the binary serialization that
you saw in previous section) and makes transportation easy. More significantly, you can use XML
serialization to manage configuration files. You can define a class to store configuration information and
use XML serialization to persist it on file. By doing so, you have the flexibility to modify the
configuration information easily because the information is now represented in XML; at the same time,

you can programmatically manipulate the configuration information by accessing the object’s properties
and methods.

Summary

In this chapter, you explored the basics of files and streams and how to use the Stream object to perform
a wide variety of tasks, including network communication, cryptography, and compression. In addition,
you saw how to preserve the state of objects using XML and binary serialization. In the .NET
Framework, the Stream object is extremely versatile and its large number of derived classes is designed
to deal with specific tasks such as file I/O, memory I/O, network I/O, and so on.

375

Exception Handling

An exception is a situation that occurs when your program encounters an error that it is not
expecting during runtime. Examples of exceptions include trying to divide a number by zero,
trying to write to a file that is read-only, trying to delete a nonexistent file, and trying to access
more members of an array than it actually holds. Exceptions are part and parcel of an application,
and as a programmer you need to look out for them by handling the various exceptions that may
occur. That means your program must be capable of responding to the exceptions by offering some
ways to remedy the problem instead of exiting midway through your program (that is, crashing).

Handling Exceptions

To understand the importance of handling exceptions, consider the following case, a classic
example of dividing two numbers:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApp
{
class Program

{
static void Main(string[] args)
{

int numl, num2, result;

Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num?2 = int.Parse(Console.ReadLine());

result = numl / num2;
(continued)

Part |: C# Fundamentals

(continued)

Console.WriteLine ("The result of {0}/{1} is {2}", numl,

Console.ReadLine() ;

In this example, there are several opportunities for exceptions to occur:

U If the user enters a noninteger value for numl or num2.
O If the user enters a non-numeric value for numl and num2.

O If num2 is zero, resulting in a division by zero error.

Figure 12-1 shows the program halting abruptly when the user enters 3.5 for num1.

WINDOWSsystem 32\cmd. exe

=\Documents and Settingss\Wei—Meng Lee“My Documents“\Uizsual Studic 2B88\Froject
ConzolefippConsolefippsbinsDebug>Consolefipp.exe
lease enter the first number:3.5

linhandled Exception: System.FormatException: Input string was not in a correct f|
ormat .

at System.Number.StringToNunber(String str. HumberS8tyles options, NumberBuffe|
% number, NumberFormatInfo info, Boolean parseDecimall

at System.Number.Parselnt32(String s. MumberStyles style,. MumberFormatInfo in|
if 0

at System.Int32.Parse(String s

at Conzolefipp.Program.Main{S8tringl] args)d in C:“Documents and Settings-lei-He|
g Lee“My DocumentssUisual Studio 2088%“Frojects“ConsolefipprConsolefippProgram.cs|
=1line 1B

C:“Documents and SettingsxWei—Meng Lee“My Documents™Uisual Studioc 2088 \Projects’|
Consolefippr\ConzolefApprhinsDebug>

num2,

Figure 12-1

result) ;

Hence, you need to anticipate all the possible scenarios and handle the exceptions gracefully.

Handling Exceptions Using the try-catch Statement

In C#, you can use the try-catch statement to enclose a block of code statements that may potentially

cause exceptions to be raised. You enclose these statements within the catch block and that block to catch

the different types of exceptions that may occur.

Using the previous example, you can enclose the statements that ask the user to input numl and num2
and then performs the division within a catch block. You then use the catch block to catch possible

exceptions, like this:

static void Main(string[] args)
{

int numl, num2, result;

try
{

378

Chapter 12: Exception Handling

}

Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num2 = int.Parse(Console.ReadLine());

result = numl / num2;
Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2, result);

catch (Exception ex)

{

}

Console.WriteLine (ex.Message) ;

Console.ReadLine() ;

}

The Exception class is the base class for all exceptions; that is, it catches all the various types of
exceptions. The class contains the details of the exception that occurred, and includes a number

of properties that help identify the code location, the type, the help file, and the reason for the exception.
The following table describes these properties.

Property

Data

HelpLink

HResult

InnerException
Message

Source
StackTrace

TargetSite

Description

Gets a collection of key/value pairs that provide additional user-defined
information about the exception.

Gets or sets a link to the help file associated with this exception.

Gets or sets HRESULT, a coded numerical value that is assigned to a
specific exception.

Gets the Exception instance that caused the current exception.
Gets a message that describes the current exception.

Gets or sets the name of the application or the object that causes the
error.

Gets a string representation of the frames on the call stack at the time the
current exception was thrown.

Gets the method that throws the current exception.

In the preceding program, if you type in a numeric value for numl and then an alphabetical character for
num2, the exception is caught and displayed like this:

Please enter the first number:6
Please enter the second number:a
Input string was not in a correct format.

379

Part |: C# Fundamentals

If, though, you enter 0 for the second number, you get a different description for the error:

Please enter the first number:7
Please enter the second number:0
Attempted to divide by =zero.

Notice that two different types of exceptions are caught using the same Exception class. The
description of the exception is contained within the Message property of the Exception class.

You can use the ToString () method of the Exception class to retrieve more details about the
exception, such as the description of the exception as well as the stack trace.

However, there are cases where you would like to print your own custom error messages for the
different types of exceptions. Using the preceding code, you would not be able to do that — you would
need a much finer way to catch the different types of possible exceptions.

To know the different types of exceptions that your program can cause (such as entering “a” for numl or
division by zero), you can set a breakpoint at a line within the catch block and try entering different values.
When an exception is raised during runtime, IntelliSense tells you the error and the type of the exception
raised. Figure 12-2 shows that the FormatException exception is raised when you enter a for numi.

l‘_) Console.Wr itELinEI \!,,J FormatException was caught 3
|
¥ Input string was not in a correct Format,

Console.ReadLine () ; Troubleshooting tips: |

i | Make sure your method arguments are in the right farmat. - |

¥ ‘ when converting a string ko DateTime, parse the string to take the date before putting each wariable into the DateTime object. |
|

|

|
¥ | Get general help For this exception,
|

Search For more Help Online. ..

Actions:

Yiews Detail..,

Copy exception detail to the clipboard |

Figure 12-2

If you are not sure what type of exception your program is going to raise during runtime, it is always
safe to use the base Exception class. If not — if the exception that is raised does not match the exception
you are trying to catch — a runtime error will occur. Here’s an example:

static void Main(string[] args)
{
int numl, num2, result;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");

380

Chapter 12: Exception Handling

num?2 = int.Parse(Console.ReadLine());

result = numl / num2;
Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2, result);
}
catch (DivideByZeroException ex)
{

Console.WriteLine (ex.Message) ;
}

Console.ReadLine() ;

If a division-by-zero exception occurs (entering 0 for num2), the exception is caught. However, if you
enter an alphabetic character for numl or num2, a FormatException exception is raised. And because
you are only catching the DivideByZeroException exception, this exception goes unhandled and a
runtime error results.

Handling Multiple Exceptions

To handle different types of exceptions, you can have one or more catch blocks in the try-catch
statement. The following example shows how you can catch three different exceptions:

U DivideByZeroException — Thrown when there is an attempt to divide an integral or decimal
value by zero.

O FormatException — Thrown when the format of an argument does not meet the parameter
specifications of the invoked method.

0 Exception— Represents errors that occur during application execution.
This example handles the three different exceptions and then prints out a custom error message:

static void Main(string[] args)
{
int numl, num2, result;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num2 = int.Parse(Console.ReadLine());

result = numl / num2;
Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2, result);
}
catch (DivideByZeroException ex)

{

Console.WriteLine("Division by zero error.");

(continued)

381

Part |: C# Fundamentals

(continued)

catch (FormatException ex)
{
Console.WriteLine ("Input error.");
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;

}
Console.ReadLine() ;

In this program, typing in a numeric value for numl and an alphabetic character for num2 produces the
FormatException exception, which is caught and displayed like this?

Please enter the first number:6
Please enter the second number:a
Input error.

Entering O for the second number throws the DivideByZeroException exception, which is caught and
displays a different error message:

Please enter the first number:7
Please enter the second number:0
Division by zero error.

So far, all the statements are located in the Main () function. What happens if you have a function called
PerformDivision () that divides the two numbers and returns the result, like this?

class Program
{
static void Main(string[] args)
{
int numl, num2;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num?2 = int.Parse(Console.ReadLine());

Program myApp = new Program() ;

Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2,
myApp.PerformDivision (numl, num2));
}
catch (DivideByZeroException ex)
{
Console.WriteLine("Division by zero error.");
}
catch (FormatException ex)
{

382

Chapter 12: Exception Handling

Console.WriteLine ("Input error.");

}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

}

Console.ReadLine() ;

private int PerformDivision (int numl, int num2)

{

return numl / num2;

}

If num?2 is zero, an exception is raised within the Performbivision () function. You can either catch

the exception in the Performbivision () function or catch the exception in the calling function — Main ()
in this case. When an exception is raised within the Performbivision () function, the system searches

the function to see if there is any catch block for the exception. If none is found, the exception is passed

up the call stack and handled by the calling function. If there is no try-catch block in the calling function,
the exception continues to be passed up the call stack again until it is handled. If no more frames exist

in the call stack, the default exception handler handles the exception and your program has a runtime error.

Throwing Exceptions Using the throw Statement

Instead of waiting for the system to encounter an error and raise an exception, you can programmatically
raise an exception by throwing one. Consider the following example:

private int PerformDivision(int numl, int num2)

{
if (numl == 0) throw new ArithmeticException();
if (num2 == 0) throw new DivideByZeroException() ;

return numl / num2;

In this program, the PerformbDivision () function throws an ArithmeticException exception when
numl is zero and it throws a DivideByZeroException exception when num2 is zero. Because there is no
catch block in PerformDivision (), the exception is handled by the calling Main () function. In

Main (), you can catch the ArithmeticException exception like this:

class Program

{

static void Main(string[] args)

{
int numl, num2, result;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
(continued)

383

Part |: C# Fundamentals

(continued)

num?2 = int.Parse(Console.ReadLine()) ;
Program myApp = new Program() ;
Console.WriteLine("The result of {0}/{1} is {2}",

numl, num2,
myApp.PerformDivision (numl, num2));

}
catch (ArithmeticException ex)
{
Console.WriteLine ("Numerator cannot be zero.");
}
catch (DivideByZeroException ex)
{
Console.WriteLine("Division by zero error.");
}
catch (FormatException ex)
{
Console.WriteLine("Input error");
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
}

Console.ReadLine() ;

private int PerformDivision(int numl, int num2)

if (numl == 0) throw new ArithmeticException();
if (num2 == 0) throw new DivideByZeroException() ;

return numl / num2;

One interesting thing about the placement of the multiple catch blocks is that you place all specific
exceptions that you want to catch first before placing generic ones. Because the Exception class is the
base of all exception classes, it should always be placed last in a catch block so that any exception that is
not caught in the previous catch blocks is always caught. In this example, when the
ArithmeticException exception is placed before the DivideByZeroException exception, IntelliSense
displays an error (see Figure 12-3).

384

catch (ArithmeticException ex)

{
Console.Writeline ("Numerator canhot he zero.™):

¥

catch (DivideByieroException ex)

{ |A previous catch clause already catches all exceptions of this or of a super bype ('System.ArithmeticExcept\Un')‘
Console.Writeline ("Division by zero error.™):

¥
catch (FormatException ex
{

Console.Writeline ("Input error.'™);:
i
catch (Exception ex)

{

Figure 12-3

Chapter 12: Exception Handling

That’s because the

DivideByZeroException is derived from the ArithmeticException class, so if

there is a division-by-zero exception, the exception is always handled by the ArithmeticException
exception and the DivideByZeroException exception is never caught. To solve this problem, you must
catch the DivideByZeroException exception first before catching the ArithmeticException

exception:

stat
{

ic void Main(string[] args)

int numl, num2, result;

try

{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num?2 = int.Parse(Console.ReadLine());

Program myApp = new Program() ;

Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2,
myApp.PerformDivision (numl, num2)) ;
}
catch (DivideByZeroException ex)
{
Console.WriteLine("Division by zero error.");

}

catch (ArithmeticException ex)
{

Console.WriteLine ("Numerator cannot be zero.");
}
catch (FormatException ex)

{
Console.WriteLine ("Input error.");
}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

}

Console.ReadLine () ;

The following shows the output when different values are entered for numl and num2:

Please enter the first number:5
Please enter the second number:0

Division by

Zero error.

Please enter the first number:0
Please enter the second number:5
Numerator cannot be zero.

Please enter the first number:a

Input error.

385

Part |: C# Fundamentals

Rethrowing Exceptions

There are times when after catching an exception, you want to throw the same (or a new type) exception
back to the calling function after taking some corrective actions. Take a look at this example:

class Program
{
static void Main(string[] args)
{
int numl, num2, result;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num?2 = int.Parse(Console.ReadLine());

Program myApp = new Program() ;

Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2,
myApp.PerformDivision (numl, num2));
}
catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
if (ex.InnerException != null)
Console.WriteLine (ex.InnerException.ToString()) ;

}
Console.ReadLine() ;

private int PerformDivision(int numl, int num2)
{

try

{

return numl / num2;
}
catch (DivideByZeroException ex)
{

throw new Exception("Division by zero error.", ex);

Here, the PerformDivision () function tries to catch the DivideByZeroException exception and once
it succeeds, it rethrows a new generic Exception exception, using the following statements with two
arguments:

throw new Exception("Division by zero error.", ex);

386

Chapter 12: Exception Handling

The first argument indicates the description for the exception to be thrown, while the second argument is
for the inner exception. The inner exception indicates the exception that causes the current exception.
When this exception is rethrown, it is handled by the catch block in the Main () function:

catch (Exception ex)
{
Console.WriteLine (ex.Message) ;
if (ex.InnerException != null)
Console.WriteLine (ex.InnerException.ToString());

To retrieve the source of the exception, you can check the InnerException property and print out its
details using the ToString () method. Here’s the output when num2 is zero:

Please enter the first number:5
Please enter the second number:0
Division by zero error.
System.DivideByZeroException: Attempted to divide by zero.
at ConsoleApp.Program.PerformDivision(Int32 numl, Int32 num2) in C:\Documents
and Settings\Wei-Meng Lee\My Documents\Visual Studio 2008\Projects\ConsoleApp\
ConsoleApp\Program.cs:1line 43

As you can see, the message of the exception is “Division by zero error” (set by yourself) and the
InnerException property shows the real cause of the error — “Attempted to divide by zero.”

Exception Chaining

The InnerException property is of type Exception, and it can be used to store a list of previous
exceptions. This is known as exception chaining.

To see how exception chaining works, consider the following program:

class Program

{
static void Main(string[] args)
{

Program myApp = new Program() ;

try
{

myApp .Methodl () ;
}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;

if (ex.InnerException != null)

Console.WriteLine (ex.InnerException.ToString());

}
Console.ReadLine() ;

private void Methodl ()

(continued)

387

Part |: C# Fundamentals

(continued)

try
{

Method2 () ;
}
catch (Exception ex)
{

throw new Exception (

"Exception caused by calling Method2 () in Methodl().", ex);

}

private void Method2 ()
{

try

{

Method3 () ;

}

catch (Exception ex)

{

throw new Exception (
"Exception caused by calling Method3 () in Method2().", ex);

}

private void Method3 ()
{
try
{
int numl = 5, num2 = 0;
int result = numl / num2;
}
catch (DivideByZeroException ex)
{
throw new Exception("Division by zero error in Method3().", ex);

}

In this program, the Main () function calls Methodl (), which in turns calls Method2 (). Method2 () then
calls Method3 (). In Method3 (), a division-by-zero exception occurs and you rethrow a new Exception
exception by passing in the current exception (DividebyzeroException). This exception is caught by
Method?2 (), which rethrows a new Exception exception by passing in the current exception.

Methodl () in turn catches the exception and rethrows a new Exception exception. Finally, the Main ()
function catches the exception and prints out the result as shown in Figure 12-4.

388

Chapter 12: Exception Handling

IDocuments and Se

[Exception caused by calling Method2(> in Methodid(>.
System.Exception: Exception caused by calling Method3{> in HethodZ2{>. —> Syste
m.Exception: Division by zero error in Method3<)>. ——> System.DivideByZeroExcept
ion: Attempted to divide by zero.
at Consolefpp.Program.Method3(> in C:“\Documents and Settings:Wei-Meng Lee\My
Documents Wisual Studio 2888<Projects Consolefipp~Consolefpp~Program.cs:1line 61
——— End of inner exception stack trace ——
at ConsolefApp.Program.Method3<{> in C:“\Documents and Settings‘\Wei-Meng Lee\My
Documents“Uisual Studio 2BBB\ProjectssConsolefApp“ConsclefAppsProgram.cs:line 6%
at Consolefpp.Program.Method2<(> in C:\Documents and Settings:Wei-Meng Lee“My
Documents™Wisual Studio 2888-Projects-Consolefipp~Consolefpp~Program.cs:1line 47
End of inner exception stack trace ——
olefipp.Program._Hethod2<{> in C:=“Documents and Settings“Wei—Meng Lee“My
Visual Studio ZBEE\Panect “ConsoleApp“ConsoleApp“Program.cs:line 51
at Consolefpp.Program.Methodl<(> in C:\Documents and Settings:Wei-Meng Lee“My
Documents™Uisual Studio 28B88-Projects ConsolefApp ConsoleApp Program.cs:line 34

Figure 12-4

If you set a breakpoint in the catch block within the Main () function, you will see that the
InnerException property contains details of each exception and that all the exceptions are chained via
the InnerException property (see Figure 12-5).

e rll
1= 757 InnerException {"Exception caused by calling Method3() in Method2(),"} |
& j‘ Data {System. Collections, ListDictionaryInternalt
o HelpLink rull
[= 4 InnerException {"Diwision by zero error in Method3(),"+ |
i j‘ Data {System. Collections, ListDictionaryInternalt
5 HelpLink rll
| 5 InnerException {"attempted to divide by zero. "} |
@ [System,DivideByZ {"attempted to divide by zero,"}
] j‘ Data {System. Collections, ListDictionaryInternalt 3
 ruma n
Figure 12-5

Using Exception Objects

Instead of -using the default description for each exception class you are throwing, you can customize
the description of the exception by creating an instance of the exception and then setting the Message
property. You can also specify the HelpLink property to point to a URL where developers can find more
information about the exception. For example, you can create a new instance of the
ArithmeticException class using the following code:

if (numl == 0)

{
ArithmeticException ex =
new ArithmeticException("Value of numl cannot be 0.")
{
HelpLink = "http://www.learn2develop.net"
}i
throw ex;
}

389

Part |: C# Fundamentals

Here’s how you can modify the previous program by customizing the various existing exception classes:

class Program
{
static void Main(string[] args)
{
int numl, num2;
try

{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num2 = int.Parse(Console.ReadLine());

Program myApp = new Program() ;

Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2,
myApp.PerformDivision (numl, num2));

}

catch (DivideByZeroException ex)
{
Console.WriteLine (ex.Message) ;
}
catch (ArithmeticException ex)
{
Console.WriteLine (ex.Message) ;
}
catch (FormatException ex)
{
Console.WriteLine (ex.Message) ;

}

catch (Exception ex)
{

Console.WriteLine (ex.Message) ;
}

Console.ReadLine() ;

private int PerformDivision(int numl, int num2)
{
if (numl == 0)
{
ArithmeticException ex =
new ArithmeticException("Value of numl cannot be 0.")

HelpLink = "http://www.learn2develop.net"
¥

throw ex;

390

Chapter 12: Exception Handling

if (num2 == 0)
{
DivideByZeroException ex =
new DivideByZeroException("Value of num2 cannot be 0.")

{
HelpLink = "http://www.learn2develop.net"

b5

throw ex;

return numl / num2;

Here’s the output when different values are entered for numl and num2:

Please enter the first number:0
Please enter the second number:5
Value of numl cannot be 0.

Please enter the first number:5
Please enter the second number:0
Value of num2 cannot be 0.

The finally Statement

By now you know that you can use the try-catch block to enclose potentially dangerous code. This is
especially useful for operations such as file manipulation, user input, and so on. Consider the following
example:

FileStream fs = null;
try
{
//---opens a file for reading---
fs = File.Open(@"C:\textfile.txt",
FileMode.Open, FileAccess.Read);

//---tries to write some text into the file---
byte[] data = ASCIIEncoding.ASCII.GetBytes("some text");
fs.Write(data, 0, data.Length);

//---close the file---
fs.Close();
}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());

}

//---an error will occur here---
fs = File.Open(@"C:\textfile.txt", FileMode.Open, FileAccess.Read);

391

Part |: C# Fundamentals

Suppose that you have a text file named textfile. txt located in C:\. In this example program, you
first try to open the file for reading. After that, you try to write some text into the file, which causes an
exception because the file was opened only for reading. After the exception is caught, you proceed to
open the file again. However, this fails because the file is still open (the £s.Close () statement within
the try block is never executed because the line before it has caused an exception). In this case, you need
to ensure that the file is always closed — with or without an exception. For this, you can use the
finally statement.

The statement(s) enclosed within a £inally block is always executed, regardless of whether an
exception occurs. The following program shows how you can use the finally statement to ensure that
the file is always closed properly:

FileStream fs = null;
try
{
//---opens a file for reading---
fs = File.Open(@"C:\textfile.txt",
FileMode.Open, FileAccess.Read);

//---tries to write some text into the file---
byte[] data = ASCIIEncoding.ASCII.GetBytes("1234567890");
fs.Write(data, 0, data.Length);

}

catch (Exception ex)

{
Console.WriteLine (ex.ToString());

}

finally

{
//---close the file stream object---
if (fs != null) fs.Close();

//---this will now be OK---
fs = File.Open(@"C:\textfile.txt", FileMode.Open, FileAccess.Read);

One important thing about exception handling is that the system uses a lot of resources to raise an
exception; thus, you should always try to prevent the system from raising exceptions. Using the preceding
example, instead of opening the file and then writing some text into it, it would be a good idea to first check
whether the file is writable before proceeding to write into it. If the file is read-only, you simply inform the
user that the file is read-only. That prevents an exception from being raised when you try to write into it.

The following shows how to prevent an exception from being raised:

FileStream fs = null;
try
{
//---opens a file for reading---
fs = File.Open(@"C:\textfile.txt",
FileMode.Open, FileAccess.Read);

//---checks to see if it is writeable---
if (fs.CanWrite)

392

Chapter 12: Exception Handling

//---tries to write some text into the file---
byte[] data = ASCIIEncoding.ASCII.GetBytes ("1234567890");
fs.Write(data, 0, data.Length);
} else
Console.WriteLine("File is read-only");
}

catch (Exception ex)

{
Console.WriteLine(ex.ToString()) ;
}
finally
{

//---close the file stream object---
if (fs != null) fs.Close();

Creating Custom Exceptions

The .NET class libraries provide a list of exceptions that should be sufficient for most of your uses, but
there may be times when you need to create your own custom exception class. You can do so by deriving
from the Exception class. The following is an example of a custom class named
AllNumbersZeroException:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

public class AllNumbersZeroException : Exception

{
public AllNumbersZeroException ()
{
}
public AllNumbersZeroException(string message)
: base (message)
{
}
public AllNumbersZeroException(string message, Exception inner)
: base(message, inner)
{
}
}

To create your own custom exception class, you need to inherit from the Exception base class and
implement the three overloaded constructors for it.

393

Part |: C# Fundamentals

The Al1NumbersZeroException class contains three overloaded constructors that initialize the
constructor in the base class. To see how you can use this custom exception class, let’s take another look
at the program you have been using all along:

static void Main(string[] args)
{
int numl, num2, result;
try
{
Console.Write("Please enter the first number:");
numl = int.Parse(Console.ReadLine());

Console.Write("Please enter the second number:");
num2 = int.Parse(Console.ReadLine());

Program myApp = new Program() ;

Console.WriteLine("The result of {0}/{1} is {2}",
numl, num2,
myApp.PerformDivision (numl, num2));

catch (AllNumbersZeroException ex)
{

Console.WriteLine (ex.Message) ;
}
catch (DivideByZeroException ex)
{

Console.WriteLine (ex.Message) ;
}
catch (ArithmeticException ex)
{

Console.WriteLine (ex.Message) ;
}
catch (FormatException ex)
{

Console.WriteLine (ex.Message) ;
}
catch (Exception ex)
{

Console.WriteLine (ex.Message) ;
}

Console.ReadLine() ;

private int PerformDivision(int numl, int num2)
{
if (numl == 0 && num2 == 0)
{
AllNumbersZeroException ex =
new AllNumbersZeroException ("Both numbers cannot be 0.")

394

Chapter 12: Exception Handling

{
HelpLink = "http://www.learn2develop.net"
b s
throw ex;
}
if (numl == 0)
{
ArithmeticException ex =
new ArithmeticException("Value of numl cannot be 0.")
{
HelpLink = "http://www.learn2develop.net"
Y
throw ex;
}
if (num2 == 0)
{
DivideByZeroException ex =
new DivideByZeroException("Value of num2 cannot be 0.")
{
HelpLink = "http://www.learn2develop.net"
Y
throw ex;
}

return numl / num2;

This program shows that if both num1 and num2 are zero, the A11NumbersException exception is raised
with the custom message set.

Here’s the output when 0 is entered for both numl and num2:

Please enter the first number:0
Please enter the second number:0
Both numbers cannot be 0.

Summary

Handling exceptions is part and parcel of the process of building a robust application, and you should
spend considerable effort in identifying code that is likely to cause an exception. Besides catching all the
exceptions defined in the .NET Framework, you can also define your own custom exception containing
your own specific error message.

395

13

Arrays and Collections

In programming, you often need to work with collections of related data. For example, you may
have a list of customers and you need a way to store their email addresses. In that case, you can
use an array to store the list of strings.

In .NET, there are many collection classes that you can use to represent groups of data. In addition,
there are various interfaces that you can implement so that you can manipulate your own custom
collection of data.

This chapter examines:

Q Declaring and initializing arrays
Declaring and using multidimensional arrays

Q
Q Declaring a parameter array to allow a variable number of parameters in a function
Q Using the various System.Collections namespace interfaces

Q

Using the different collection classes (such as Dictionary, Stacks, and Queue) in .NET

Arrays

An array is an indexed collection of items of the same type. To declare an array, specify the type
with a pair of brackets followed by the variable name. The following statements declare three
array variables of type int, string, and decimal, respectively:

int[] num;
string[] sentences;
decimal[] values;

Array variables are actually objects. In this example, num, sentences, and values are objects
of type System.Array.

Part |: C# Fundamentals

These statements simply declare the three variables as arrays; the variables are not initialized yet, and at
this stage you do not know how many elements are contained within each array.

To initialize an array, use the new keyword. The following statements declare and initialize three arrays:

int[] num = new int[5];
string[] sentences = new string[3];
decimal[] values = new decimal[4];

The num array now has five members, while the sentences array has three members, and the values
array has four. The rank specifier of each array (the number you indicate within the [1) indicates the
number of elements contained in each array.

You can declare an array and initialize it separately, as the following statements show:

//---declare the arrays---
int[] num;

string[] sentences;
decimal[] values;

//---initialize the arrays with default values---
num = new int[5];

sentences = new stringl[3];

values = new decimal[4];

When you declare an array using the new keyword, each member of the array is initialized with the
default value of the type. For example, the preceding num array contains elements of value 0. Likewise,
for the sentences string array, each of its members has the default value of null.

To learn the default value of a value type, use the default keyword, like this:

object x;

x = default(int); //---0---

x = default(char); //---0 '"\0'---
default (bool); //---false---

X

To initialize the array to some value other than the default, you use an initialization list. The number of
elements it includes must match the array’s rank specifier. Here’s an example:

int[] num = new int([5] { 1, 2, 3, 4, 5 };
string[] sentences = new string[3] {
"C#", "Programmers", "Reference"
}i
decimal[] values = new decimal[4] {1.5M, 2.3M, 0.3M,5.9M};

Because the initialization list already contains the exact number of elements in the array, the rank
specifier can be omitted, like this:

int[] num = new int[] { 1, 2, 3, 4, 5 };
string[] sentences = new string[] {
"C#", "Programmers", "Reference"
Y
decimal[] values = new decimal[] {1.5M, 2.3M, 0.3M,5.9M};

398

Chapter 13: Arrays And Collections

Use the new var keyword in C# to declare an implicitly typed array:

var num = new [] { 1, 2, 3, 4, 5 };
var sentences = new [] {
"C#", "Programmers", "Reference"
Y
var values = new [] {1.5M, 2.3M, 0.3M,5.9M};

For more information on the var keyword, see Chapter 3.

In C#, arrays all derive from the abstract base class Array (in the System namespace) and have access to
all the properties and methods contained in that. In Figure 13-1 IntelliSense shows some of the properties
and methods exposed by the num array.

num.

W LastOrDefault <= -
=
%: LongCount<>=

%7 Longlength

W Max

W5 Max<>

W5 Min

W5 Min<

Wy OfType<:

W5 CrderBy <> v

Figure 13-1

That means you can use the Rank property to learn the dimension of an array. To find out how many
elements are contained within an array, you can use the Length property. The following statements
produce the output shown in Figure 13-2.

Console.WriteLine("Dimension of num is {0}", num.Rank);
Console.WriteLine ("Number of elements in num is {0}", num.Length);

file:///C:/Documents and Settings/We|

Dimension of num is 1

Number of elements in num is 5

Figure 13-2

To sort an array, you can use the static Sort () method in the Array class:

int[] num = new int[] { 5, 3, 1, 2, 4 };
Array.Sort (num) ;

foreach (int i in num)
Console.WriteLine(1);

399

Part |: C# Fundamentals

These statements print out the array in sorted order:

U W N

Accessing Array Elements

To access an element in an array, you specify its index, as shown in the following statements:

int[] num = new int[5] { 1, 2, 3, 4, 5 };
Console.WriteLine (num[0]); //---1---
Console.WriteLine (num[1l]); //---2---
Console.WriteLine (num[2]); //---3---
Console.WriteLine (num[3]); //---4---
Console.WriteLine (num[4]); //---5---

The index of an array starts from 0 to n-1. For example, num has size of 5 so the index runs from 0 to 4.

You usually use a loop construct to run through the elements in an array. For example, you can use the
for statement to iterate through the elements of an array:

for (int 1 = 0; 1 < num.Length; i++)
Console.WriteLine (num[i]) ;

You can also use the foreach statement, which is a clean way to iterate through the elements of an array
quickly:

foreach (int n in num)
Console.WriteLine(n) ;

Multidimensional Arrays

So far the arrays you have seen are all one-dimensional ones. Arrays may also be multidimensional.
To declare a multidimensional array, you can the comma (,) separator. The following declares xy to be a
2-dimensional array:

int[,] xy;

To initialize the two-dimensional array, you use the new keyword together with the size of the array:

Xy = new int[3,2];

400

Chapter 13: Arrays And Collections

With this statement, xy can now contain six elements (three rows and two columns). To initialize xy with
some values, you can use the following statement:

xy = new int[3, 2] { {1, 2}, {3, 41}, {5 613} };;
The following statement declares a three-dimensional array:
int[, ,] xyz;
To initialize it, you again use the new keyword together with the size of the array:
Xyz = new int[2, 2, 2];

To initialize the array with some values, you can use the following:

int[, ,] xyz;

Xyz = new int[,,] {
{1, 213 {3,411,
({5 61} {7,811}

Y
To access all the elements in the three-dimensional array, you can use the following code snippet:

for (int x = xyz.GetLowerBound(0); x <= xyz.GetUpperBound(0); x++)
for (int y = xyz.GetLowerBound(l); y <= xyz.GetUpperBound(1l); y++)
for (int z = xyz.GetLowerBound(2); z <= xyz.GetUpperBound(2); z++)
Console.WriteLine(xyz[x, v, z]);

The Array abstract base class contains the GetLowerBound () and GetUpperBound () methods to let
you know the size of an array. Both methods take in a single parameter, which indicates the dimension of
the array about which you are inquiring. For example, GetUpperBound (0) returns the size of the first
dimension, GetUpperBound (1) returns the size of the second dimension, and so on.

You can also use the foreach statement to access all the elements in a multidimensional array:

foreach (int n in xyz)
Console.WriteLine(n);

These statements print out the following:

oUW N

401

Part |: C# Fundamentals

Arrays of Arrays: Jagged Arrays

An array’s elements can also contain arrays. An array of arrays is known as a jagged array. Consider the
following statements:

Point[][] lines = new Point[5][];
lines[0] = new Point[4];

lines[1l] = new Point[15];
lines([2] = new Point[7];

lines[3] =

lines[4] =

Here, lines is a jagged array. It has five elements and each element is a Point array. The first element is
an array containing four elements, the second contains 15 elements, and so on.

The Point class represents an ordered pair of integer x- and y-coordinates that defines a point in a
two-dimensional plane.

You can use the array initializer to initialize the individual array within the 1ines array, like this:

Point[][] lines = new Point[3][];
lines[0] = new Point[] {

new Point (2, 3), new Point (4, 5)
}; //---2 points in lines[0]---

lines[1] = new Point[] {
new Point (2, 3), new Point (4, 5) , new Point (6, 9)
}; //---3 points in lines[1]---

lines([2] = new Point[] {
new Point (2, 3)
}; //---1 point in lines[2]---

To access the individual Point objects in the 1ines array, you first specify which Point array you
want to access, followed by the index for the elements in the Point array, like this:

//---get the first point in lines[0]---
Point ptA = lines[0][0]; //---(2,3)

//---get the third point in lines[1]---
Point ptB = lines[1]([2]; //---(6,9)---

Ajagged array can also contain multidimensional arrays. For example, the following declaration declares
nums to be a jagged array with each element pointing to a two-dimensional array:

402

int[][,] nums = new int[][,]
{
new int([,] {{ 1, 2}, { 3, 4 }},
new int[,] {{ 5, 6}, { 7, 8 }}
Y

Chapter 13: Arrays And Collections

To access an individual element within the jagged array, you can use the following statements:

Console.WriteLine (nums[0] [0, 01); //---1---
Console.WritelLine (nums([0] [0, 11); //---2---
Console.WritelLine (nums[0][1, 0]); //---3---
Console.WriteLine (nums[0][1, 11); //---4---
Console.WriteLine (nums[1][0, 0]); //---5---
Console.WritelLine (nums[1]([0, 11); //---6---
Console.WriteLine(nums[1][1, 01); //---7T---
Console.WriteLine (nums([1]1[1, 11); //---8---

Used on a jagged array, the Length property of the Array abstract base class returns the number of
arrays contained in the jagged array:

Console.WritelLine (nums.Length); //---2---

Parameter Arrays

In C#, you can pass variable numbers of parameters into a function/method using a feature known as
parameter arrays. Consider the following statements:

string firstName = "Wei-Meng";
string lastName = "Lee";
Console.WriteLine("Hello, {0}", firstName);

Console.WriteLine("Hello, {0} {1}", firstName, lastName);

Observe that the last two statements contain different numbers of parameters. In fact, the WriteLine ()
method is overloaded, and one of the overloaded methods has a parameter of type params (see

Figure 13-3). The params keyword lets you specify a method parameter that takes an argument where
the number of arguments is variable.

Console.WritelLine {|

«150f 19% void Console. WriteLine (string format, params object[] arg)
Format: A composite format string.

Figure 13-3

A result of declaring the parameter type to be of params is that callers to the method do not need to
explicitly create an array to pass into the method. Instead, they can simply pass in a variable number of
parameters.

To use the params type in your own function, you define a parameter with the params keyword:

private void PrintMessage (string prefix, params string[] msg)
{
}

403

Part |: C# Fundamentals

To extract the parameter array passed in by the caller, treat the params parameter like a normal array,
like this:

private void PrintMessage(string prefix, params string[] msg)
{
foreach (string s in msg)
Console.WriteLine("{0}>{1}", prefix, s);

When calling the PrintMessage () function, you can pass in a variable number of parameters:

PrintMessage ("C# Part 1", "Arrays", "Index", "Collections");
PrintMessage ("C# Part 2", "Objects", "Classes");

These statements generate the following output:

C# Part 1>Arrays

C# Part 1>Index

C# Part 1>Collections
C# Part 2>0Objects

C# Part 2>Classes

A params parameter must always be the last parameter defined in a method
declaration.

Copying Arrays
To copy from one array to another, use the Copy () method from the Array abstract base class:
int[] num = new int[5] { 1, 2, 3, 4, 5 };
int[] numl = new int[5];

num.CopyTo (numl, 0);

These statements copy all the elements from the num array into the num1 array. The second parameter in
the CopyTo () method specifies the index in the array at which the copying begins.

Collections Interfaces

The system.Collections namespace contains several interfaces that define basic collection
functionalities:

404

Chapter 13: Arrays And Collections

The interfaces described in the following list are the generic versions of the respective interfaces.
Beginning with C# 2.0, you should always try to use the generic versions of the interfaces for type safety.
Chapter 9 discusses the use of generics in the C# language.

Interface Description

IEnumerable<T> and Enable you to loop through the elements in a collection.
IEnumerator<T>

ICollection<T> Contains items in a collection and provides the functionality to copy

elements to an array. Inherits from IEnumerable<T>.

IComparer<T> and Enable you to compare objects in a collection.
IComparable<T>
IList<T> Inherits from ICollection and provides functionality to allow

members to be accessed by index.

IDictionary<K, V> Similar to IList<T>, but members are accessed by key value rather than
index.

The ICollection<T> interface is the base interface for classes in the System.Collections namespace.

Dynamic Arrays Using the ArrayList Class

Arrays in C# have a fixed size once they are initialized. For example, the following defines a fixed-size
array of five integer elements:

int[] num = new int[5];

If you need to dynamically increase the size of an array during runtime, use the ArrayList class
instead. You use it like an array, but its size can be increased dynamically as required.

The ArrayList class is located within the System.Collections namespace, so you need to import
that System.Collections namespace before you use it. The ArrayList class implements the IList
interface.
To use the ArrayList class, you first create an instance of it:

ArrayList arraylList = new ArrayList();
Use the Add () method to add elements to an ArrayList object:

arrayList.Add("Hello")-

arrayList.Add (25

arrayList.Add(neW POlnt(3,4));
(

arrayList.Add(3.14F)

Notice that you can add elements of different types to an ArrayList object.

405

Part |: C# Fundamentals

To access an element contained within an ArrayList object, specify the element’s index like this:

Console.WriteLine (arrayList([0]); //---Hello---
Console.WriteLine(arrayList([1]); //---25---
Console.WriteLine (arrayList[2]); //---{X=3, Y=4}
Console.WritelLine(arrayList[3]); //---3.14---

The ArrayList object can contain elements of different types, so when retrieving items from an
ArrayList object make sure that the elements are assigned to variables of the correct type. Elements
retrieved from an ArrayList object belong to Object type.

You can insert elements to an ArrayList object using the Insert () method:
arrayList.Insert (1, " World!");
After the insertion, the ArrayList object now has five elements:

Console.WriteLine (arrayList([0]); //---Hello---
Console.WriteLine (arrayList[1]); //---World!---
Console.WritelLine(arrayList[2]); //---25---
Console.WriteLine (arrayList([3]1); //---{X=3,Y=4}---
Console.WriteLine (arrayList([4]); //---3.14---

To remove elements from an ArrayList object, use the Remove () or RemoveAt () methods:

arrayList.Remove ("Hello");

arrayList.Remove ("Hi") ; //---cannot find item---
arrayList.Remove (new Point (3, 4));

arrayList.RemoveAt (1) ;

After these statements run, the ArrayList object has only two elements:

Console.WriteLine (arrayList[0]); //---World!---
Console.WriteLine (arrayList([1]); //---3.14---

If you try to remove an element that is nonexistent, no exception is raised (which is not very useful). It
would be good to use the Contains () method to check whether the element exists before attempting to
remove it:

if (arrayList.Contains("Hi"))
arrayList.Remove ("Hi") ;

else
Console.WriteLine("Element not found.");

You can also assign the elements in an ArrayList object to an array using the ToArray () method:

object[] objArray;
objArray = arrayList.ToArray();

foreach (object o in objArray)
Console.WriteLine(o.ToString());

406

Chapter 13: Arrays And Collections

Because the elements in the ArrayList can be of different types you must be careful handling them or
you run the risk of runtime exceptions. To work with data of the same type, it is more efficient to use the
generic equivalent of the ArrayList class — the List<T> class, which is type safe. To use the List<T>
class, you simply instantiate it with the type you want to use and then use the different methods
available just like in the ArrayList class:

List<int> nums = new List<int>();
nums .Add (4) ;

nums . Add
nums . Add
nums . Add
nums . Add
nums . Add
nums . Add

i

//---sorts the list---
nums.Sort () ;

//---prints out all the elements in the list---
foreach (int n in nums)
Console.WriteLine(n) ;

If you try to sort an ArrayList object containing elements of different types, you are
likely to run into an exception because the compiler may not be able to compare the
values of two different types.

Indexers and lterators

Sometimes you may have classes that encapsulate an internal collection or array. Consider the following
SpamPhraseList class:

public class SpamPhraseList
{
protected string[] Phrases =
new string[]{

"pain relief","paxil", "pharmacy", "phendimetrazine",
"phentamine", "phentermine", "pheramones", "pherimones",
"photos of singles", "platinum-celebs", "poker-chip",
"poze", "prescription", "privacy assured", "product for less",
"products for less", "protect yourself", "psychic"

Y

public string Phrase(int index)
{
if (index >= 0 && index < Phrases.Length)
return Phrases[index];
else
return string.Empty;

407

Part |: C# Fundamentals

The spamPhraseList class has a protected string array called Phrases. It also exposes the Phrase ()
method, which takes in an index and returns an element from the string array:

SpamPhraseList list = new SpamPhraseList();
Console.WriteLine(list.Phrase(17)); //---psychic---

Because the main purpose of the SpamPhraseList class is to return one of the phrases contained within
it, it might be more intuitive to access it more like an array, like this:

SpamPhraseList list = new SpamPhraseList();
Console.WriteLine(list[17]); //---psychic---

In C#, you can use the indexer feature to make your class accessible just like an array. Using the
SpamPhraseList class, you can use the this keyword to declare an indexer on the class:

public class SpamPhraseList
{
protected string[] Phrases =
new string[]{
"pain relief", "paxil", "pharmacy", "phendimetrazine",
"phentamine", "phentermine", "pheramones", "pherimones",
"photos of singles", "platinum-celebs", "poker-chip",
"poze", "prescription", "privacy assured", "product for less",
"products for less", "protect yourself", "psychic"
Y

public string this[int index]
{
get
{
if (index >= 0 && index < Phrases.Length)
return Phrases[index];
else
return string.Empty;

}
set
{
if (index >= 0 && index < Phrases.Length)
Phrases[index] = value;
}

Once the indexer is added to the SpamPhraseList class, you can now access the internal array of string
just like an array;, like this:

SpamPhraseList list = new SpamPhraseList();
Console.WriteLine(list[17]); //---psychic---

Besides retrieving the elements from the class, you can also set a value to each individual element,
like this:

list[17] = "psycho";

408

Chapter 13: Arrays And Collections

The indexer feature enables you to access the internal arrays of elements using array syntax, but you
cannot use the foreach statement to iterate through the elements contained within it. For example, the
following statements give you an error:

SpamPhraseList list = new SpamPhraseList();
foreach (string s in list) //---error---
Console.WriteLine(s) ;

To ensure that your class supports the foreach statement, you need to use a feature known as iterators.
Iterators enable you to use the convenient foreach syntax to step through a list of items in a class.

To create an iterator for the SpamPhraseList class, you only need to implement the Get Enumerator ()
method, like this:

public class SpamPhraseList
{
protected string[] Phrases =
new string[]{

"pain relief", "paxil", "pharmacy", "phendimetrazine",
"phentamine", "phentermine", "pheramones", "pherimones",
"photos of singles", "platinum-celebs", "poker-chip",
"poze", "prescription", "privacy assured", "product for less",
"products for less", "protect yourself", "psychic"

Y

public string this[int index]
{
get
{
if (index >= 0 && index < Phrases.Length)
return Phrases[index];
else
return string.Empty;

if (index >= 0 && index < Phrases.Length)
Phrases[index] = value;

}

public IEnumerator<string> GetEnumerator ()
{
foreach (string s in Phrases)
{
yield return s;

Within the GetEnumerator () method, you can use the foreach statement to iterate through all

the elements in the Phrases array and then use the yield keyword to return individual elements
in the array.

409

Part |: C# Fundamentals

You can now iterate through the elements in a SpamPhraseList object using the foreach statement:

SpamPhraseList list = new SpamPhraseList();
foreach (string s in list)
Console.WriteLine(s);

Implementing IEnumerable<T> and IEnumerator<T>

Besides using the iterators feature in your class to allow clients to step through its internal elements with
foreach, you can make your class support the foreach statement by implementing the IEnumerable
and IEnumerator interfaces. The generic equivalents of these two interfaces are IEnumerable<T> and
IEnumerator<T>, respectively.

Use the generic versions because they are type safe.

In .NET, all classes that enumerate objects must implement the TEnumerable (or the generic
IEnumerable<T>) interface. The objects enumerated must implement the IEnumerator (or the
generic IEnumerable<T>) interface, which has the following members:

Q current — Returns the current element in the collection
O MoveNext () — Advances to the next element in the collection

O Reset () — Resets the enumerator to its initial position
The IEnumerable interface has one member:

0 GetEnumerator () — Returns the enumerator that iterates through a collection

All the discussions from this point onward use the generic versions of the
IEnumerable and IEnumerator interfaces because they are type-safe.

To understand how the IEnumerable<T> and IEnumerator<T> interfaces work, modify
SpamPhraseList class to implement the ITEnumerable<T> interface:

public class SpamPhraseList : IEnumerable<string>
{
protected string[] Phrases =
new stringl[]{
"pain relief", "paxil", "pharmacy", "phendimetrazine",
"phentamine", "phentermine", "pheramones", "pherimones",
"photos of singles", "platinum-celebs", "poker-chip",

410

Chapter 13: Arrays And Collections

"poze", "prescription", "privacy assured", "product
"products for less", "protect yourself", "psychic"

Y

//---for generic version of the class---
public IEnumerator<string> GetEnumerator ()

{

//---for non-generic version of the class---

for less",

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator ()

{

Notice that for the generic version of the TEnumerable interface, you need to implement two versions
of the GetEnumerator () methods — one for the generic version of the class and one for the

nongeneric version.

To ensure that the SpamPhraseList class can enumerate the strings contained within it, you define an

enumerator class within the SpamPhraseList class:

public class SpamPhraseList : IEnumerable<string>

{

private class SpamPhrastListEnum : IEnumerator<string>
{

private int index = -1;

private SpamPhraseList spamlist;

public SpamPhrastListEnum(SpamPhraseList sl)
{

this.spamlist = sl;

//---for generic version of the class---
string IEnumerator<string>.Current
{

get

{

return spamlist.Phrases[index];

//---for non-generic version of the class---
object System.Collections.IEnumerator.Current
{

get

(continued)

411

Part |: C# Fundamentals

(continued)

return spamlist.Phrases[index];

bool System.Collections.IEnumerator.MoveNext ()
{

index++;
return index < spamlist.Phrases.Length;

void System.Collections.IEnumerator.Reset ()
{

index = -1;
void IDisposable.Dispose() { }

protected string[] Phrases =
new stringl[]{
"pain relief", "paxil", "pharmacy", "phendimetrazine",
"phentamine", "phentermine", "pheramones", "pherimones",
"photos of singles", "platinum-celebs", "poker-chip",
"poze", "prescription", "privacy assured", "product for less",
"products for less", "protect yourself", "psychic"

Y

public IEnumerator<string> GetEnumerator ()
{

return new SpamPhrastListEnum(this) ;

//---for non-generic version of the class---
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator ()

{

return new SpamPhrastListEnum(this);

In this example, the SpamPhrastListEnum class implements the IEnumerator<string> interface and
provides the implementation for the Current property and the MoveNext () and Reset () methods.

To print out all the elements contained within a SpamPhraseList object, you can use the same
statements that you used in the previous section:

SpamPhraseList list = new SpamPhraseList();

foreach (string s in list) //---error---
Console.WriteLine(s) ;

412

Chapter 13: Arrays And Collections

Behind the scenes, the compiler is generating the following code for the foreach statement:

SpamPhraseList list = new SpamPhraseList();
IEnumerator<string> s = list.GetEnumerator () ;
while (s.MoveNext())

Console.WriteLine((string)s.Current) ;

Implementing Comparison Using IComparer<T> and
|IComparable<T>

One of the tasks you often need to perform on a collection of objects is sorting. You need to know the
order of the objects so that you can sort them accordingly. Objects that can be compared implement
the IComparable interface (the generic equivalent of this interface is IComparable<T>). Consider the
following example:

string[] Names = new string[] {
"John", "Howard",
"Margaret", "Brian" };

foreach (string n in Names)
Console.WriteLine(n) ;

Here, Names is a string array containing four strings. This code prints out the following;:

John
Howard
Margaret
Brian

You can sort the Names array using the sort () method from the abstract static class Array, like this:

Array.Sort (Names) ;
foreach (string n in Names)
Console.WriteLine(n) ;

Now the output is a sorted array of names:

Brian
Howard
John
Margaret

In this case, the reason the array of string can be sorted is because the String type itself implements the

IComparable interface, so the Sort () method knows how to sort the array correctly. The same applies
to other types such as int, single, float, and so on.

413

Part |: C# Fundamentals

What if you have your own type and you want it to be sortable? Suppose that you have the Employee
class defined as follows:

public class Employee
{

public string FirstName
{ get; set; }

public string LastName
{ get; set; }

public int Salary
{ get; set; }

public override string ToString()

{

return FirstName + ", " + LastName +
" $" + Salary;

You can add several Employee objects to a List object, like this:

List<Employee> employees = new List<Employee>();
employees.Add (new Employee()
{

FirstName = "John",
LastName = "Smith",
Salary = 4000
1)
employees.Add (new Employee()
{
FirstName = "Howard",
LastName = "Mark",
Salary = 1500
1)
employees.Add (new Employee()
{
FirstName = "Margaret",
LastName = "Anderson',

Salary = 3000

1)

employees.Add (new Employee()

{
FirstName = "Brian",
LastName = "Will",
Salary = 3000

1)

To sort a List object containing your Employee objects, you can use the following:

employees.Sort () ;

414

Chapter 13: Arrays And Collections

However, this statement results in a runtime error (see Figure 13-4) because the Sort () method does not

know how Employee objects should be sorted.

_;}) InvalidOperationException was unhandled =

Troubleshooting tips:

Failed ko compare twao elements in the array.

iaet general help For this exception,

Get general help For the inner exception,

Search for more Help Online. ..

Actions:

Wi Dekail.. .

Copy exception detail ko the clipboard

Figure 13-4

To solve this problem, the Employee class needs to implement the IComparable<T> interface and then

implement the CompareTo () method:

public class Employee
{
public string FirstName
{ get; set; }

public string LastName
{ get; set; }

public int Salary
{ get; set; }

public override string ToString()

{

IComparable<Employee>

return FirstName + ", " + LastName +

" $" + Salary;

public int CompareTo (Employee emp)

{

return this.FirstName.CompareTo (emp.FirstName) ;

The CompareTo () method takes an Employee parameter, and you compare the current instance
(represented by this) of the Employee class’s FirstName property to the parameter’s FirstName
property. Here, you use the CompareTo () method of the String class (FirstName is of String type)

to perform the comparison.

415

Part |: C# Fundamentals

The return value of the CompareTo (obj) method has the possible values as shown in the
following table.

Value Meaning

Less than zero The current instance is less than obj.
Zero The current instance is equal to obj.
Greater than zero The current instance is greater than obj.

Now, when you sort the List object containing Employee objects, the Employee objects will be sorted
by first name:

employees.Sort () ;
foreach (Employee emp in employees)
Console.WriteLine (emp.ToString()) ;

These statements produce the following output:

Brian, Will $3000
Howard, Mark $1500
John, Smith $4000
Margaret, Anderson $3000

To sort the Employee objects using the LastName instead of FirstName, simply change the
CompareTo () method as follows:

public int CompareTo (Employee emp)
{

return this.LastName.CompareTo (emp.LastName) ;

The output becomes:

Margaret, Anderson $3000
Howard, Mark $1500
John, Smith $4000
Brian, Will $3000

Likewise, to sort by salary, you compare the salary property:
public int CompareTo (Employee emp)

{

return this.Salary.CompareTo (emp.Salary) ;

416

Chapter 13: Arrays And Collections

The output is now:

Howard, Mark $1500
Margaret, Anderson $3000
Brian, Will $3000
John, Smith $4000

Instead of using the CompareTo () method of the type you are comparing, you can manually perform
the comparison, like this:

public int CompareTo (Employee emp)
{
if (this.Salary < emp.Salary)
return -1;
else if (this.Salary == emp.Salary)
return 0;
else
return 1;

How the Employee objects are sorted is fixed by the implementation of the CompareTo () method.

If compareTo () compares using the FirstName property, the sort is based on the FirstName property.
To give users a choice of which field they want to use to sort the objects, you can use the IComparer<T>
interface.

To do so, first declare a private class within the Employee class and call it SalaryComparer.

public class Employee : IComparable<Employee>
{
private class SalaryComparer : IComparer<Employee>
{
public int Compare (Employee el, Employee e2)
{
if (el.Salary < e2.Salary)
return -1;
else if (el.Salary == e2.Salary)
return 0;
else
return 1;

public string FirstName
{ get; set; }

public string LastName
{ get; set; }

public int Salary
(continued)

417

Part |: C# Fundamentals

(continued)
{ get; set; }

public override string ToString()
{

return FirstName + ", " + LastName +
" $" + Salary;

public int CompareTo (Employee emp)
{

return this.FirstName.CompareTo (emp.FirstName) ;

The salaryComparer class implements the IComparer<T> interface. IComparer<T> has one method —
Compare () — that you need to implement. It compares the salary of two Employee objects.

To use the salaryComparer class, declare the SsalarySorter static property within the Employee class
so that you can return an instance of the SalaryComparer class:

public class Employee : IComparable<Employee>
{
private class SalaryComparer : IComparer<Employee>
{
public int Compare (Employee el, Employee e2)
{
if (el.Salary < e2.Salary)
return -1;
else if (el.Salary == e2.Salary)
return 0;
else
return 1;

public static IComparer<Employee> SalarySorter

{

get { return new SalaryComparer(); }

public string FirstName
{ get; set; }

public string LastName
{ get; set; }

public int Salary
{ get; set; }

public override string ToString()

{
return FirstName + ", " + LastName +
" $" + Salary;

418

Chapter 13: Arrays And Collections

}
public int CompareTo (Employee emp)

{

return this.FirstName.CompareTo (emp.FirstName) ;

You can now sort the Employee objects using the default, or specify the SalarySorter property:

employees.Sort(); //---sort using FirstName (default)---
employees.Sort (Employee.SalarySorter); //---sort using Salary---

To allow the Employee objects to be sorted using the LastName property, you could define another
class (say LastNameComparer) that implements the IComparer<T> interface and then declare the
SalarySorter static property, like this:

public class Employee : IComparable<Employee>
{
private class SalaryComparer : IComparer<Employee>
{
public int Compare (Employee el, Employee e2)
{
if (el.Salary < e2.Salary)
return -1;
else if (el.Salary == e2.Salary)
return 0;
else
return 1;

private class LastNameComparer : IComparer<Employee>

{
public int Compare (Employee el, Employee e2)
{
return el.LastName.CompareTo (e2.LastName) ;
}

public static IComparer<Employee> SalarySorter

{
get { return new SalaryComparer(); }

public static IComparer<Employee> LastNameSorter
{

get { return new LastNameComparer(); }

public string FirstName
{ get; set; }

public string LastName
(continued)

419

Part |: C# Fundamentals

(continued)
{ get; set; }

public int Salary
{ get; set; }

public override string ToString()
{

return FirstName + ", " + LastName +
" $" + Salary;
}

public int CompareTo (Employee emp)
{

return this.FirstName.CompareTo (emp.FirstName) ;

You can now sort by LastName using the LastNameSorter property:

employees.Sort (Employee.LastNameSorter); //---sort using LastName---

Dictionary

Most of you are familiar with the term dictionary — a reference book containing an alphabetical list of
words with information about them. In computing, a dictionary object provides a mapping from a set

of keys to a set of values. In .NET, this dictionary comes in the form of the Dictionary class (the generic
equivalent is Dictionary<T, V>).

The following shows how you can create a new Dictionary object with type int to be used for the key
and type String to be used for the values:

Dictionary<int, string> employees = new Dictionary<int, string>();
To add items into a Dictionary object, use the Add () method:

employees.Add (1001, "Margaret Anderson");

employees.Add (1002, "Howard Mark");

employees.Add (1003, "John Smith");

employees.Add (1004, "Brian Will");

Trying to add a key that already exists in the object produces an ArgumentException error:

//---ArgumentException; duplicate key---
employees.Add (1004, "Sculley Lawrence");

A safer way is to use the ContainsKey () method to check if the key exists before adding the new key:

if (!employees.ContainsKey (1005))

{
employees.Add (1005, "Sculley Lawrence");

420

Chapter 13: Arrays And Collections

While having duplicate keys is not acceptable, you can have different keys with the same value:
employees.Add (1006, "Sculley Lawrence"); //---duplicate value is OK---
To retrieve items from the Dictionary object, simply specify the key:
Console.WriteLine (employees[1002].ToString()); //---Howard Mark---

When retrieving items from a Dictionary object, be certain that the key you specify is valid or you
encounter a KeyNotFoundException error:

try
{
//---KeyNotFoundException---
Console.WriteLine (employees[1005].ToString());
}
catch (KeyNotFoundException ex)
{
Console.WriteLine (ex.Message) ;

}

Rather than catching an exception when the specified key is not found, it’s more efficient to use the
TryGetValue () method

string Emp_Name;
if (employees.TryGetValue (1005, out Emp_Name))
Console.WriteLine (Emp_Name) ;

TryGetValue () takes in a key for the Dictionary object as well as an out parameter that will
contain the associated value for the specified key. If the key specified does not exist in the Dictionary
object, the out parameter (Emp_Name, in this case) contains the default value for the specified type
(string in this case, hence the default value is null).

When you use the foreach statement on a Dictionary object to iterate over all the elements in it, each
Dictionary object element is retrieved as a KeyValuePair object:

foreach (KeyValuePair<int, string> Emp in employees)
Console.WriteLine("{0} - {1}", Emp.Key, Emp.Value);

Here’s the output from these statements:
1001 - Margaret Anderson
1002 - Howard Mark

1003 - John Smith
1004 - Brian Will

To get all the keys in a Dictionary object, use the KeyCollection class:
//---get all the employee IDs---
Dictionary<int, string>.KeyCollection

EmployeeID = employees.Keys;

foreach (int ID in EmployeeID)
Console.WriteLine (ID);

421

Part |: C# Fundamentals

These statements print out all the keys in the Dictionary object:

1001
1002
1003
1004

If you want all the employees’ names, you can use the ValueCollection class, like this:
//---get all the employee names---
Dictionary<int, string>.ValueCollection

EmployeeNames = employees.Values;

foreach (string emp in EmployeeNames)
Console.WriteLine (emp) ;

You can also copy all the values in a Dictionary object into an array using the ToArray () method:
//---extract all the values in the Dictionary object
// and copy into the array---
string[] Names = employees.Values.ToArray();
foreach (string n in Names)
Console.WriteLine(n);
To remove a key from a Dictionary object, use the Remove () method, which takes the key to delete:
if (employees.ContainsKey (1006)

{

employees.Remove (1006) ;
To sort the keys in a Dictionary object, use the SortedDictionary<K, V> class instead of the
Dictionary<K, V> class:

SortedDictionary<int, string> employees =
new SortedDictionary<int, string>();

Stacks

A stack is a last in, first out (LIFO) data structure — the last item added to a stack is the first to be
removed. Conversely, the first item added to a stack is the last to be removed.

In .NET, you can use the Stack class (or the generic equivalent of Stack<T>) to represent a stack
collection. The following statement creates an instance of the Stack class of type string:

Stack<string> tasks = new Stack<string>();

422

Chapter 13: Arrays And Collections

To add items into the stack, use the Push () method. The following statements push four strings into the
tasks stack:

tasks.Push("Do homework"); //---this item will be at the bottom of the stack

(
tasks.Push("Phone rings");
tasks.Push("Get changed") ;
tasks.Push("Go for movies"); //---this item will be at the top of the stack

To retrieve the elements from a stack, use either the Peek () method or the Pop () method.
Peek () returns the object at the top of the stack without removing it. Pop () removes and returns the
object at the top of the stack:

); //---Go for movies---
; //---Go for movies---

Console.WriteLine (tasks.Peek()
))
)); //---Get changed---
))
))

(k
Console.WriteLine (tasks.Pop (
Console.WriteLine (tasks.Pop (
Console.WriteLine (tasks.Pop (
Console.WriteLine (tasks.Pop (

; //---Phone rings---
; //---Do homework---

If a stack is empty and you try to call the Pop () method, an InvalidOperationException error
occurs. For that reason, it is useful to check the size of the stack by using the Count property before you
perform a Pop () operation:

if (tasks.Count > 0)
Console.WriteLine (tasks.Pop());
else
Console.WriteLine("Tasks is empty");

To extract all the objects within a Stack object without removing the elements, use a foreach statement,
like this:

foreach (string t in tasks)
Console.WriteLine(t);

Here’s what prints out:
Go for movies
Get changed

Phone rings
Do homework

Queues

The queue is a first in, first out (FIFO) data structure. Unlike the stack, items are removed based on the
sequence that they are added.

In .NET, you can use the Queue class (or the generic equivalent of Queue<T>) to represent a queue
collection. The following statement creates an instance of the Queue class of type string:

Queue<string> tasks = new Queue<string>();

423

Part |: C# Fundamentals

To add items into the queue, use the Enqueue () method. The following statement inserts four strings
into the tasks queue:

tasks.Enqueue ("Do homework") ;
tasks.Enqueue ("Phone rings");
tasks.Enqueue ("Get changed") ;
tasks.Enqueue ("Go for movies");

To retrieve the elements from a queue, you can use either the Peek () method or the Dequeue () method.
Peek () returns the object at the beginning of the queue without removing it. Dequeue () removes and
returns the object at the beginning of the queue:

Console.WriteLine (tasks.Peek())
Console.WriteLine (tasks.Dequeue

(; //---Do homework---
(()
Console.WriteLine (tasks.Dequeue (
((
((

)); //---Do homework---
)); //---Phone rings---
Console.WriteLine (tasks.Dequeue())
Console.WriteLine (tasks.Dequeue())

; //---Get changed---
; //---Go for movies---

If a queue is empty and you try to call the Dequeue () method, an InvalidOperationException error
occurs, so it is useful to check the size of the queue using the Count property before you perform a
dequeue operation:

if (tasks.Count > 0)

Console.WriteLine (tasks.Dequeue()) ;
else

Console.WriteLine("Tasks is empty");

To extract all the objects within a Queue object without removing the elements, use the foreach
statement, like this:

foreach (string t in tasks)
Console.WriteLine(t) ;

Here’s what prints out:

Do homework
Phone rings
Get changed
Go for movies

Summary

This chapter explained how to manipulate data using arrays. In addition, it explored the
System.Collections namespace, which contains the various interfaces that define basic collection
functions. It also contains several useful data structures, such as a dictionary, stacks, and queues, that
greatly simplify managing data in your application.

424

—
Language Integrated Query
(LINQ)

One of the most exciting new features in the .NET Framework v3.5 is the Language Integrated
Query (LINQ). LINQ introduces to developers a standard and consistent language for querying
and updating data, which include objects (such as arrays and collections), databases, XML
documents, ADO.NET DataSets, and so forth.

Today, most developers need to know a myriad of technologies to successfully manipulate data.
For example, if you are dealing with databases, you have to understand Structured Query
Language (SQL). If you are dealing with XML documents, you must understand technologies such
as XPath, XQuery, and XSLT. And if you are working with ADO.NET DataSets, then you need to
know the various classes and properties in ADO.NET that you can use.

A better approach would be to have a unified view of the data, regardless of its form and structure.
That is the motivation behind the design of LINQ. This chapter provides the basics of LINQ and
shows how you can use LINQ to access objects, DataSets, and XML documents, as well as SQL
databases.

LINQ Architecture

Figure 14-1 shows the architecture of LINQ. The bottom layer contains the various data sources
with which your applications could be working. On top of the data sources are the LINQ-enabled
data sources: LINQ to Objects, LINQ to DataSet, LINQ to SQL, LINQ to Entities, and LINQ to
XML. LINQ-enabled data sources are also known as LINQ providers; they translate queries
expressed in Visual Basic or C# into the native language of the data source. To access all these data
sources through LINQ, developers use either C# or Visual Basic and write LINQ queries.

Part |: C# Fundamentals

LINQ Architecture

[C# j [Visual Basic j [Others... j

[.NET Language Integrated Query (LINQ) j

LINQ enabled data sources
LINQ enabled ADO.NET

_ _ “Ltitie/>
Objects Relational <a|l_{th0/r/> XML
<price/>

</book>

Figure 14-1

LINQ to Entities is beyond the scope of this book. It was slated to be released later
in 2008 and is not part of Visual Studio 2008.

So how does your application view the LINQ-enabled data sources?

QO InLINQ to Objects, the source data is made visible as an IEnumerable<T> or IQueryable<T>
collection.

Q In LINQ to XML, the source data is made visible as an TEnumerable<XElement>.

O

In LINQ to DataSet, the source data is made visible as an IEnumerable<DataRow>.

Q In LINQ to SQL, the source data is made visible as an IEnumerable or IQueryable of whatever
custom objects you have defined to represent the data in the SQL table.

LINQ to Objects

Let’s start with LINQ to Objects. It enables you to use LINQ to directly query any IEnumerable<T> or
IQueryable<T> collections (such as string[], int[], and List<T>) directly without needing to use an
immediate LINQ provider or API such as the LINQ to SQL or LINQ to XML.

Say that you have a collection of data stored in an array, and you want to be able to retrieve a subset of

the data quickly. In the old way of doing things, you write a loop and iteratively retrieve all the data that
matches your criteria. That’s time-consuming because you have to write all the logic to perform the

426

Chapter 14: Language Integrated Query (LINQ)

comparison and so on. Using LINQ, you can declaratively write the condition using an SQL-like
statement, and the compiler des the job of retrieving the relevant data for you.

Suppose that you have an array of type string that contains a list of names. The following program
prints out all the names in the string array that start with the character G:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace LINQ

{
class Program
{
static void Main(string[] args)
{
string[] allNames = new stringl[] {
"Jeffrey", "Kirby", "Gabriel",
"Philip", "Ross", "Adam",
"Alston", "Warren", "Garfield"};
foreach (string str in allNames)
{
if (str.Startswith("G"))
{
Console.WriteLine(str);
}
}
Console.ReadLine () ;
}
}
}

Using LINQ to Objects, you can rewrite the program as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace LINQ
{
class Program
{
static void Main(string[] args)
{
string[] allNames = new stringl[] {
"Jeffrey", "Kirby", "Gabriel",
"Philip", "Ross", "Adam",
(continued)

427

Part |: C# Fundamentals

(continued)
"Alston", "Warren", "Garfield"};

IEnumerable<string> foundNames =
from name in allNames
where name.StartsWith("G")
select name;

foreach (string str in foundNames)
Console.WriteLine(str) ;

Console.ReadLine() ;

Notice that you have declared the foundNames variable to be of type IEnumerable<string>, and the
expression looks similar to that of SQL:

IEnumerable<string> foundNames =
from name in allNames
where name.StartsWith("G")
select name;

The one important difference from SQL queries is that in a LINQ query the operator sequence is
reversed. In SQL, you use the select-from-where format, while LINQ queries use the format from-
where-select. This reversal in order allows IntelliSense to know which data source you are using so
that it can provide useful suggestions for the where and select clauses.

The result of the query in this case is ITEnumerable<string>. You can also use the new implicit typing
feature in C# 3.0 to let the C# compiler automatically infer the type for you, like this:

var foundNames =

from name in allNames
where name.StartsWith("G")
select name;

When you now use a foreach loop to go into the foundNames variable, it will contain a collection of
names that starts with the letter G. In this case, it returns Gabriel, Garfield.

The usefulness of LINQ is more evident when you have more complex filters. For example:

var foundNames =
from name in allNames
where name.StartsWith("G") && name.EndsWith("1")
select name;

In this case, only names that begin with G and end with “1” will be retrieved (Gabriel).

428

Chapter 14: Language Integrated Query (LINQ)

Here’s an example where you have an array of integer values. You want to retrieve all the odd numbers
in the array and sort them in descending order (that is, the bigger numbers come before the smaller
numbers). Using LINQ, your code looks like this:

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var oddNums = from n in nums

where (n % 2 == 1)

orderby n descending

select n;

foreach (int n in oddNums)
Console.WriteLine(n);

And here’s what the code will print out:

87
49
45
13
3

To find out the total number of odd numbers found by the query, you can use the Count () method from
the oddNums variable (of type IEnumerable<int>):

int count = oddNums.Count();
You can also convert the result into an int array, like this:

int[] oddNumsArray = oddNums.ToArray () ;

Query Syntax versus Method Syntax and
Lambda Expressions

The two LINQ queries in the previous section use the guery syntax, which is written in a declarative
manner, like this:

var oddNums = from n in nums

)

where (n % 2 == 1)
orderby n descending
select n;

In addition to using the query syntax, you can also use the method syntax, which is written using method
calls like where and select, like this:

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
IEnumerable<int> oddNums = nums.Where(n => n % 2 == 1). OrderByDescending(n => n);

To find the total number of odd numbers in the array, you can also use the method syntax to query the
array directly, like this:

int count = (nums.Where(n => n % 2 == 1).0rderBy(n => n)) .Count();

429

Part |: C# Fundamentals

Let’s take a look at method syntax and how it works. First, the expression:

(n =>n % 2 == 1)
is known as the lambda expression. The => is the lambda operator. You read it as “goes to,” so this
expression reads as “n goes to n modulus 2 equals to 1.” Think of this lambda expression as a function
that accepts a single input parameter, contains a single statement, and returns a value, like this:

static bool function(int n)
{

Q

return (n % 2 == 1);

}

The compiler automatically infers the type of n (which is int in this case because nums is an int array)
in the lambda expression. However, you can also explicitly specify the type of n, like this:

IEnumerable<int> oddNums =
nums.Where((int n) => n % 2 == 1) .0rderByDescending(n => n);

The earlier example of the string array can also be rewritten using the method syntax as follows:

string[] allNames = new stringl[] {
"Jeffrey", "Kirby", "Gabriel",
"Philip", "Ross", "Adam",
"Alston", "Warren", "Garfield"};

var foundNames = allNames.Where (name = name.StartsWith("G") &&
name.EndsWith("1"));

Which syntax should you use? Here’s some information regarding the two syntaxes:

Q There is no performance difference between the method syntax and the query syntax.

The query syntax is much more readable, so use it whenever possible.

(W]

0 Use the method syntax for cases where there is no query syntax equivalent. For example, the
Count and Max methods have no query equivalent syntax.

LINQ and Extension Methods

Chapter 4 explored extension methods and how you can use them to extend functionality to an existing
class without needing to subclass it. One of the main reasons why the extension method feature was
incorporated into the C# 3.0 language was because of LINQ.

Consider the earlier example where you have an array called al1lNames containing an array of strings.

In .NET, objects that contain a collection of objects must implement the IEnumerable interface, so the
allNames variable implicitly implements the TEnumerable interface, which only exposes one

430

Chapter 14: Language Integrated Query (LINQ)

method — GetEnumerator. But when you use IntelliSense in Visual Studio 2008 to view the list of
methods available in the al1Names object, you see a list of additional methods, such as Select, Take,
TakelWhile, Where, and so on (see Figure 14-2).

string[] allNames = new string[] {
"Jeffrey”, "Eirby", "Gabriel™,
"Philip”, "Ross", "idam",
"Ailston", "Warren'", "Garfield™}:

var foundiames = al lNames.Hherel
ﬁ SyncRook ~
Wy Taks <> |
W5 Takewhils <>
W5 ToArray<>
¥, ToDictionary <>
@ Tolist<
W5 ToLookup<=
W TosString
5 Union<>

(extensiony IEnumerable <TSource > IEnumerable <TSource = . Where <TSource >(Func<TSource,int, bool = predicate) {+ 1 overload{s))|
Filkers a sequence of values based on a predicate. Each element's index is used in the logic of the predicate function,

Exceptions:
System, ArgumentMullException

Figure 14-2

In C# 3.0, all these additional methods are known as extension methods, and they are extended to objects
that implement the IEnumerable interface. These extension methods are the LINQ standard query
operators.

In Visual Studio 2008, all extension methods are denoted by an additional arrow icon, as shown in
Figure 14-3.

j‘ SyncRook A
Wy Takeos I
“;, Takewhile< >
W5 Todrray <>
W5 ToDictionary <>
g Tolist<>
“; Tolookup<>
% ToString
5 Union<>

Figure 14-3

To add extension methods to objects implementing the IEnumerable interface, you need a reference to
System.Core.dll and import the namespace by specifying the namespace:

using System.Ling;

The following table lists the LINQ standard query operators.

431

Part |: C# Fundamentals

Operator Type

Aggregation
Conversion

Element

Equality
Generation
Grouping
Joining
Ordering
Partitioning
Quantifiers
Restriction
Selection

Set

Operator Name

Aggregate, Average, Count, LongCount, Max, Min, Sum
Cast, OfType, ToArray, ToDictionary, ToList, ToLookup, ToSequence

DefaultIfEmpty, ElementAt, ElementAtOrDefault, First,
FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault

EqualAll

Empty, Range, Repeat

GroupBy

GroupJoin, Join

OrderBy, ThenBy, OrderByDescending, ThenByDescending, Reverse
Skip, SkipWhile, Take, TakeWhile

All, Any, Contains

Where

Select, SelectMany

Concat, Distinct, Except, Intersect, Union

Deferred Query Execution

The query variable itself only stores the query; it does not execute the query or store the result.

Take another look at the preceding example:

int[]

= { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };

var oddNums = nums.Where

% 2 == 1). OrderByDescending(n => n);

The oddNums variable simply stores the query (not the result of the query). The query is only executed
when you iterate over the query variable, like this:

foreach

(int n in oddNums)
Console.WriteLine(n);

This concept is known as deferred execution, and it means that every time you access the query variable,
the query is executed again. This is useful because you can just create one query and every time you
execute it you will always get the most recent result.

To prove that deferred execution really works, the following program first defines a query and then
prints out the result using a foreach loop. Twenty is added to each element in the array, and then the
foreach loop is executed again.

432

Chapter 14: Language Integrated Query (LINQ)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplication5
{

class Program

{

static void Main(string[] args)

{

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var oddNums = nums.Where(n => n % 2 == 1).0rderByDescending(n => n);

Console.WriteLine("First execution");

Console.WriteLine("------------—--—- ")

foreach (int n in oddNums)
Console.WriteLine(n) ;

//---add 20 to each number in the array---
for (int 1 = 0; 1 < 11; 1i++)

nums [1] += 20;
Console.WriteLine("Second execution");
Console.WriteLine("------—-=—-==——-=—- ") ;
foreach (int n in oddNums)

Console.WriteLine(n) ;

Console.ReadLine () ;

The program prints out the following output:

First execution

Because the output for the second foreach loop is different from the first, the program effectively
proves that the query is not executed until it is accessed.

433

Part |: C# Fundamentals

Deferred execution works regardless of whether you are using the query or method
syntax.

Forced Immediate Query Execution

One way to force an immediate execution of the query is to explicitly convert the query result into a
List object. For example, the following query converts the result to a List object:

var oddNums = nums.Where
(n =>n % 2 == 1) .0rderByDescending(n => n) .ToList() ;

In this case, the query is executed immediately, as proven by the following program and its output:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplication5
{
class Program
{
static void Main(string[] args)
{
int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var oddNums = nums.Where
(n =>n % 2 == 1) .0rderByDescending(n => n).ToList() ;

Console.WriteLine("First execution");

Console.WriteLine("----------—---- ") ;

foreach (int n in oddNums)
Console.WriteLine(n);

//---add 20 to each number in the array---
for (int 1 = 0; 1 < 11; 1++)

nums [1] += 20;
Console.WriteLine("Second execution");
Console.WriteLine("---—-————-—————-——- ") ;
foreach (int n in oddNums)

Console.WriteLine(n);

Console.ReadLine() ;

434

Chapter 14: Language Integrated Query (LINQ)

Here’s the program’s output:

First execution

The output of the first and second execution is the same, proving that the query is executed immediately
after it’s defined.

To force a LINQ query to execute immediately, you can use aggregate functions so that the query must
iterate over the elements at once. An aggregate function takes a collection of values and returns a
scalar value.

Aggregate functions are discussed in more detail later in this chapter.

Following is an example that uses the Count () aggregate function. The program selects all the odd
numbers from an array and then counts the total number of odd numbers. Each number is then
multiplied by two (which makes them all become even numbers).

static void Main(string[] args)

{
int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var oddNumsCount = nums.Where

(n =>n % 2 == 1).0rderByDescending(n => n).Count() ;

Console.WriteLine("First execution");
Console.WriteLine("-----------—-—-—- ")
Console.WriteLine("Count: {0}", oddNumsCount) ;

//---add 20 to each number in the array---
for (int 1 = 0; 1 < 11; 1i++)

nums[i] *= 2; //---all number should now be even---
Console.WriteLine ("Second execution");
Console.WriteLine("----———=-——=—=——-— ") ;

Console.WriteLine("Count: {0}", oddNumsCount) ;

Console.ReadLine() ;

435

Part |: C# Fundamentals

The output shows that once the query is executed, its value does not change:

First execution

Count: 5
Second execution

LINQ and Anonymous Types

Although Chapter 4 explored anonymous types and how they allow you to define data types without
having to formally define a class, you have not yet seen their real use. In fact, anonymous type is another
new feature that Microsoft has designed with LINQ in mind.

Consider the following Contact class definition:
public class Contact
{
public int id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

Suppose that you have a list containing Contact objects, like this:

List<Contact> Contacts = new List<Contact>() {

new Contact() {id = 1, FirstName = "John", LastName = "Chen"},
new Contact() {id = 2, FirstName = "Maryann", LastName = "Chen" },
new Contact() {id = 3, FirstName = "Richard", LastName = "Wells" }

i
You can use LINQ to query all contacts with Chen as the last name:

IEnumerable<Contact> foundContacts = from c in Contacts
where c.LastName == "Chen"
select c;

The foundContacts object is of type IEnumerable<Contact>. To print out all the contacts in the result,
you can use the foreach loop:

foreach (var c¢ in foundContacts)
{
Console.WriteLine("{0} - {1} {2}", c.id, c.FirstName, c.LastName);
}
The output looks like this:

1 - John Chen
2 - Maryann Chen

436

Chapter 14: Language Integrated Query (LINQ)

However, you can modify your query such that the result can be shaped into a custom class instead of
type contact. To do so, modify the query as the following highlighted code shows:

var foundContacts = from c¢ in Contacts

where c.LastName == "Chen"
select new
{
id = c.id,
Name = c.FirstName + " " + c.LastName

bi
Here, you reshape the result using the anonymous type feature new in C# 3.0. Notice that you now have
to use the var keyword to let the compiler automatically infer the type of foundContacts. Because the

result is an anoymous type that you are defining, the following generates an error:

IEnumerable<Contact> foundContacts = from c in Contacts

where c.LastName == "Chen"
select new
{
id = c.id,
Name = c.FirstName + " " + c.LastName

Y
To print the results, use the foreach loop as usual:

foreach (var c¢ in foundContacts)
{
Console.WriteLine("{0} - {1}", c.id, c.Name);

}

Figure 14-4 shows that IntelliSense automatically knows that the result is an anonymous type with two
fields — id and Name.

foreach (var o in foundContacts)
i
Console,.Writeline ("{0} - {11", o.

+ % Equals

¥ GetHashCode

W GetType
=y [
j} Mame

g Anonymous Types:
% ToStrin
2 ‘ais newe { int id, string Mame -

Figure 14-4

437

Part |: C# Fundamentals

LINQ to DataSet

Besides manipulating data in memory, LINQ can also be used to query data stored in structures like
DataSets and DataTables.

ADO.NET is the data access technology in .NET that allows you to manipulate data sources such as
databases. If you are familiar with ADO.NET, you are familiar with the DataSet object, which represents
an in-memory cache of data. Using LINQ to DataSet, you can use LINQ queries to access data stored in a
DataSet object. Figure 14-5 shows the relationships between LINQ to DataSet and ADO.NET 2.0.

LINQ to DataSet

ADO.NET 2.0

ADO.NET
DataSet

Connection, Command,
DataReader

Concrete ADO.NET
Data Providers

|

Dataistore

Figure 14-5

Notice that LINQ to DataSet is built on top of ADO.NET 2.0. You can continue using your ADO.NET
code to access data stored in a DataSet, but using LINQ to DataSet will greatly simplify your tasks.

The best way to understand LINQ to DataSet is to look at an example and see how it can simplify your
coding. The following code shows how, using ADO.NET, you can connect to the pubs sample database,
retrieve all the authors from the Authors table, and then print their IDs and names to the output
window:

438

Chapter 14: Language Integrated Query (LINQ)

Preparing the Sample Database

Because SQL Server 2005 Express does not come with any sample databases, you need
to install the pubs database used in this section yourself.

You can install the pubs and Northwind databases by downloading the installation
scripts at http: //microsoft.com/downloads. Search for: “Northwind and pubs
Sample Databases for SQL Server 2000.”

Once the scripts are installed on your system, go to the Visual Studio 2008 Command
Prompt (Start => Programs => Microsoft Visual Studio 2008 = Visual Studio Tools =
Visual Studio 2008 Command Prompt) and change to the directory containing your
installation scripts. Type in the following to install the two databases:

C:\SQL Server 2000 Sample Databases>sglcmd -S .\SQLEXPRESS -i instpubs.sqgl
C:\SQL Server 2000 Sample Databases>sglcmd -S .\SQLEXPRESS -i instnwnd.sgl

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.Data.SglClient;

namespace LINQtoDataset
{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;

}

private void Forml_Load(object sender, EventArgs e)
{

SglConnection conn;

SglCommand comm;

SglDataAdapter adapter;

DataSet ds = new DataSet();

//---loads the Authors table into the dataset---

conn = new SglConnection(@"Data Source=.\SQLEXPRESS;" +
"Initial Catalog=pubs;Integrated Security=True");

comm = new SglCommand ("SELECT * FROM Authors", conn);

adapter = new SglDataAdapter (comm) ;

(continued)

439

Part |: C# Fundamentals

(continued)

adapter.Fill (ds) ;

foreach

(DataRow row in ds.Tables[0].Rows)
{

Console.WriteLine("{0} - {1} {2}",

row["au_1id"], row["au_fname"], row["au_lname"]);

Observe that all the rows in the Authors table are now stored in the ds DataSet object (in

ds.Tables [0]). To print only those authors living in CA, you would need to write the code to do
the filtering:

foreach

{

(DataRow row in ds.Tables[0].Rows)

if (row["state"].ToString()
{
Console.WriteLine("{0} - {1} {2}",

row["au_1id"], row["au_fname"], row["au_lname"]);

Using LINQ to DataSet, you can write a query that only retrieves authors living in CA:

//---query for authors living in CA---
EnumerableRowCollection<DataRow> authors =
from author in ds.Tables[0].AsEnumerable ()

where author.Field<string>("State") == "CA"
select author;

The result of the query is of type EnumerableRowCollection<DataRow>. Alternatively, you can also
use the var keyword to let the compiler determine the correct data type:

var authors =

from author in ds.Tables[0].AsEnumerable ()
where author.Field<string>("State")

== "car
select author;

To make use of LINQ to DataSet, ensure that you have a reference to System.Data
.DataSetExtensions.dll in your project.

440

Chapter 14: Language Integrated Query (LINQ)

To display the result, you can either bind the result to a DataGridView control using the AsDataview ()
method:

//---bind to a datagridview control---
dataGridvViewl .DataSource = authors.AsDataView() ;

Or, iteratively loop through the result using a foreach loop:

foreach (DataRow row in authors)
{
Console.WriteLine("{0} - {1}, {2}",
row["au_1id"], row["au_fname"], row["au_lname"]);

To query the authors based on their contract status, use the following query:

EnumerableRowCollection<DataRow> authors =
from author in ds.Tables[0].AsEnumerable()
where author.Field<Boolean> ("Contract") ==
select author;

true

Reshaping Data

Using the new anonymous types feature in C# 3.0, you can define a new type without needing to define
a new class. Consider the following statement:

//---query for authors living in CA---
var authors =

from author in ds.Tables[0].AsEnumerable()

where author.Field<string>("State") == "CA"
select new
{

ID = author.Field<string>("au_id"),
FirstName = author.Field<string>("au_fname"),
LastName = author.Field<string> ("au_lname")

Y

Here, you select all the authors living in the CA state and at the same time create a new type consisting
of three properties: ID, FirstName, and LastName. If you now type the word authors, IntelliSense will
showlyouthatauthorsisoftypeEnumerableRowCollection <'a> authors,and'ais an
anonymous type containing the three fields (see Figure 14-6).

authors)

i AttributeCollection A
“If AttributeProvidersttribute

=7 attributeTargets

44 Attributelsagettribute

'R cuthors

=& AutoCompleteMode

(local wariable) EnumerableRawollection<'a > authars

A nutoc Jetes [Anonymous Types:
g AﬁtzCz:slzt:ﬂo:;;ec:jl\echnn 'z is new { string ID, string Firsthlame, skring Lasthame H
ff‘ AutoScaleDimensions
j‘:‘ AutoscaleFactar v

Figure 14-6

441

Part |: C# Fundamentals

You can now print out the result using a foreach loop:

foreach (var row in authors)

{
Console.WriteLine("{0} - {1}, {2}",
row.ID, row.FirstName, row.LastName);

To databind to a DataGridView control, you first must convert the result of the query to a List object:
//---query for authors living in CA---

var authors =

(from author in ds.Tables[0].AsEnumerable ()

where author.Field<string>("State") == "CA"
select new
{

ID = author.Field<string>("au_id"),

FirstName = author.Field<string> ("au_fname"),

LastName = author.Field<string>("au_lname")
}) .ToList () ;

//---bind to a datagridview control---
dataGridviewl.DataSource = authors;

Aggregate Functions

In an earlier section, you used the following query to obtain a list of authors living in CA:

var authors =
from author in ds.Tables[0].AsEnumerable ()
where author.Field<string>("State") == "CA"
select author;

To get the total number of authors living in CA, you can use the Count () extension method (also known
as an aggregate function), like this:

Console.WriteLine (authors.Count());
A much more efficient way would be to use the following query in method syntax:
var query =
ds.Tables[0] .AsEnumerable ()

.Count (a => a.Field<string>("State")=="CA");
Console.WriteLine (query) ;

442

Chapter 14: Language Integrated Query (LINQ)

LINQ supports the following standard aggregate functions:

Aggregate function Description

Aggregate Performs a custom aggregation operation on the values of a
collection.

Average Calculates the average value of a collection of values.

Count Counts the elements in a collection, optionally only those elements

that satisfy a predicate function.

LongCount Counts the elements in a large collection, optionally only those
elements that satisfy a predicate function.

Max Determines the maximum value in a collection.

Min Determines the minimum value in a collection.

Sum Calculates the sum of the values in a collection.

For example, the following statements print out the largest odd number contained in the nums array:

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var maxOddNums = nums.Where

(n =>n % 2 == 1).0rderByDescending(n => n).Max();
Console.WriteLine ("Largest odd number: {0}", maxOddNums); //---87---

The following statements print out the sum of all the odd numbers in nums:

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
var sumOfOddNums = nums.Where

(n =>n % 2 == 1) .0rderByDescending(n => n).Sum();
Console.WriteLine("Sum of all odd number: {0}", sumOfOddNums); //---197---

Joining Tables

So far you've been dealing with a single table. In real life, you often have multiple, related tables. A good
example is the Northwind sample database, which contains a number of related tables, three of which
are shown in Figure 14-7.

Customers & Orders €3] Order_Details &
= Properties = Properties = Properties
2 CustomerID S orderd o 2 2 OrderID
ﬁ CompanyName ﬁ} CustomerID 7 ﬁ ProductIDy
ﬁ ContactMName ﬁ EmployeelD ﬁ UnitPrice
j: ContactTitle » j_f CrderDate E '-_\ Quantity
P Address 7 RequiredDate 2 Discount
ﬁ City ﬁ: ShippedDate
i‘f‘ Region ﬁ] Shipvia
j“ PostalCode j?‘ Freight
j} Country j} ShipMame
j) Phone f ShipAddress
2 Fax 250 shipCity
237 ShipRegion
ﬁ" ShipPostalCode
257 shipCountry
b ot
Figure 14-7

443

Part |: C# Fundamentals

Here, the Customers table is related to the Orders table via the CustomerID field, while the Orders
table is related to the Order_Details table via the orderID field.

You can use LINQ to DataSet to join several tables stored in a DataSet. Here’s how. First, load the three
tables into the DataSet, using the following code:

conn = new SglConnection(@"Data Source=.\SQLEXPRESS;" +
"Initial Catalog=Northwind; Integrated Security=True");
comm = new SglCommand("SELECT * FROM Customers; SELECT * FROM Orders;
SELECT * FROM [Order Details]", conn);
adapter = new SglDataAdapter (comm) ;
adapter.Fill (ds);

The three tables loaded onto the DataSet can now be referenced using three DataTable objects:

DataTable customersTable = ds.Tables[0]; //---Customers---
DataTable ordersTable = ds.Tables[1l]; //---Orders---
DataTable orderDetailsTable = ds.Tables[2]; //---Order Details---

The following LINQ query joins two DataTable objects — customersTable and ordersTable —
using the query syntax:

//---using query syntax to join two tables - Customers and Orders---
var queryl =
(from customer in customersTable.AsEnumerable ()
join order in ordersTable.AsEnumerable() on
customer.Field<string> ("CustomerID") equals
order.Field<string> ("CustomerID")
select new
{
id = customer.Field<string> ("CustomerID"),
CompanyName = customer.Field<string> ("CompanyName"),
ContactName = customer.Field<string> ("ContactName"),
OrderDate = order.Field<DateTime> ("OrderDate"),
ShipCountry = order.Field<string> ("ShipCountry")
}) .ToList();

As evident in the query, the Customers and Orders table are joined using the CustomerID field. The
result is reshaped using an anonymous type and then converted to a List object using the ToList ()
extension method. You can now bind the result to a DataGridview control if desired. Figure 14-8 shows
the result bound to a DataGridView control.

444

Chapter 14: Language Integrated Query (LINQ)

Form1

id CompanyM ame ContactM ame OrderDiate ShipCauntry o
» Alfeds Futlerkiste | Maria Anders 8/251997 [Geinarsi 1
ALFKI | heds Funerkiste | Maris dnders | 10/3/1397 | Germany
ALFEI | Alfreds Futterkizte | Maria Anders 101341997 Germary
.ALFKI .Alfleds Futterkiste | Maria Anders 1/15/1338 | Germarny
.ALFKI .Alheds Futterkiste | Maria Anders 31671338 | Germany
.ALFKI .Alheds Futterkiste .Marla Anders 4/9/1938 .Eermany
| aNATR [&ra Trujilc Empa... | Ana Trjlle 9/18/19% | Mesica
| aNATR | & Tl Empa... | 4na Trujle 8/8M957 | Mesico
AMATR Ana Tjlla Empa... | Ana Trjilo 1172841997 Mexica
AMATR :Ana Tjillo Empa... .Ana Trujille 3/4/1938 | Mexica
.ANTEIN | Antonio Molen‘o. 3 .Antonlo Mareno 1142741996 .r;'!exlco
LTI b b, i’ ¥} A E100 1Y} o
Figure 14-8

You can also rewrite the query using the method syntax:

//---using method syntax to join two tables - Customers and Orders---

var queryl =

(customersTable.AsEnumerable () .Join (ordersTable.AsEnumerable(),
customer => customer.Field<string>("CustomerID"),
order => order.Field<string>("CustomerID"),

(customer, order) => new

{
id = customer.Field<string> ("CustomerID"),
CompanyName = customer.Field<string> ("CompanyName"),
ContactName = customer.Field<string> ("ContactName"),
OrderDate = order.Field<DateTime> ("OrderDate"),
ShipCountry = order.Field<string>("ShipCountry")

})) .ToList () ;

The following query joins three DataTable objects — customersTable, ordersTable, and
orderDetailsTable — and sorts the result according to the OrderID field:

//---three tables join---
var query2 =

(from customer in customersTable.AsEnumerable ()

join order in ordersTable.AsEnumerable() on

customer.Field<string> ("CustomerID") equals

order.Field<string> ("CustomerID")

join orderDetail in orderDetailsTable.AsEnumerable() on

order.Field<int> ("OrderID") equals

orderDetail.Field<int> ("OrderID")

orderby order.Field<int> ("OrderID")

select new

{
id = customer.Field<string> ("CustomerID"),
CompanyName = customer.Field<string> ("CompanyName"),
ContactName = customer.Field<string> ("ContactName"),
OrderDate = order.Field<DateTime> ("OrderDate"),
ShipCountry = order.Field<string>("ShipCountry"),
OrderID = orderDetail.Field<int>("OrderID"),
ProductID = orderDetail.Field<int> ("ProductID")

}) .ToList();

445

Part |: C# Fundamentals

As evident from the query, the Customers table is related to the Orders table via the CustomerID field,
and the orders table is related to the Order Details table via the OrderID field.

Figure 14-9 shows the result of the query.

id CompanyM ame ContactN ame OrderDiate ShipCountry OrderlD ProductiDl b

v Wins et alcools C... | Paul Herrict 7141133 [France 10248 [11 0
WINET Wing et alcools C... | Paul Henriot 7441906 France 10248 42
.VINE'IF Wing et alcools E.... .F;'au\ Henriot. 741906 .I-;rance 10248 ”72
.TDMSF Toms Spezialitaten .KannJosephs 7541996 .Germany 10249 .'M
.TDMSP Toms Spezialitaten .KannJﬂsephs 77541996 .Eermany 10249 .51
|HaNER HanariCames |MaioPontes 7/8/13% [Braci 10250 |41
[HaNER HanarCames |MarioPontes | 7/8/19% [Brasi 10250 [51
HAMAR Hanari Carnes Mario Pontes 7481906 Brrazil 10250 ES
.VICTE Victuailles en stock | Mary Saveley 77841996 | France 10251 | 22
.VIETE Victuailles en stock | Mary Saveley 77841996 | France 10251 | a7
.VIET.E Vlcluaille‘s en stack [Mary Saveley 7!5/1 936 [Iéranca 10251 [E5
| SUPFD Suprémes délices | Pascale Carain | 7/9/1996 | Belgium 10252 [20
| SUPFD Suprémes délices | Pascale Carain | 791936 | Belgium 10252 [33

P yorimec dolic Baccale Cotiain Tal e Eeloiro 1om =0l ¥,

Figure 14-9

Typed DataSet

So far you've used the Field () extension method to access the field of a DataTable object. For
example, the following program uses LINQ to DataSet to query all the customers living in the USA. The
result is then reshaped using an anonymous type:

SglConnection conn;
SglCommand comm;
SglDataAdapter adapter;
DataSet ds = new DataSet();

conn

new SglConnection(@"Data Source=.\SQLEXPRESS;" +
"Initial Catalog=Northwind;Integrated Security=True");
comm = new SglCommand ("SELECT * FROM Customers", conn);
adapter = new SglDataAdapter (comm) ;

adapter.Fill(ds, "Customers");

var queryl =
(from customer in ds.Tables[0].AsEnumerable()

where customer.Field<string>("Country") == "USA"
select new
{

CustomerID = customer.Field<string>("CustomerID"),

CompanyName = customer.Field<string> ("CompanyName"),

ContactName = customer.Field<string> ("ContactName"),

ContactTitle = customer.Field<string>("ContactTitle")
}) .ToList();

dataGridviewl .DataSource = queryl;

446

Chapter 14: Language Integrated Query (LINQ)

As your query gets more complex, the use of the Field() extension method makes the query unwieldy.
A good way to resolve this is to use the typed DataSet feature in ADO.NET. A typed DataSet provides

strongly typed methods, events, and properties and so this means you can access tables and columns by
name, instead of using collection-based methods.

To add a typed DataSet to your project, first add a Dataset item to your project in Visual Studio 2008
(see Figure 14-10). Name it TypedCustomersDataset .xsd.

Add New Item - LINQtoDataset EJE'

=
Categories: Templates; l@\
1= Wisual C# Items ¥isual Studio installed templates o]
Code
Data # MyC Contraller Class L& MW Wiew Content Page
General MyC Yiew Master Page l_p“N'I\dl: View Page
Web MY View User Control Abaut Box
‘Windows Forms LA ADOLNET Data Service Application Configuration File
WPF] Application Manifest File 2] Assembly Information File
Reparting | Bitmap File ﬁ Class i
Workflow &) Class Diagram] Code File
3] Component Class MCursUr File
[Custom Cantrol i L
EDebugger Wisualizer |#] HTML Page
|i4f) Tman File] Installer Class
¢y Interface 3] 75eript File
A LING to QL Classes [-J Local Database]
A Dataset for using data in your application
Mame: TypedCustomersDataSet, xsd |
Figure 14-10

In the Server Explorer window, open a connection to the database you want to use (in this case it
is the Northwind database) and drag and drop the Customers table onto the design surface of
TypedCustomersDataSet .xsd (see Figure 14-11). Save the TypedCustomersDataSet . xsd file.

2% LINQtoDataset - Microsoft Visual Studio

Fle Edit Wiew Build Debug

AR IR

Project

Data Tools Test

window Help

G- 5L | b Debug - Any

EIRGRESS. |
= [} Data Connections
B |k winxpsp2isglexpress.Northwind, dbo
[+ [Database Diagrams
= [Tables
] Categories

= CustomerCustomerDemn
S CustomerDemographics

[1]

[Emplovees

; EmployeeTerritories
[order Details

= orders

[products

; Region

[Shippers

= suppliers

; Tetritories

Figure 14-11

R B

Search: 2

TypedCustomersDataSet.xsd"“

* Customers

[

% CustomerID
CompanyMame
ConkackMarne
CortactTitls
Address
ity
Region
PostalCods
Counkry
Phone
Fax

%l Fill,GetData ()

447

Part |: C# Fundamentals

With the typed DataSet created, rewrite the query as follows:

SglConnection conn;
SglCommand comm;
SglDataAdapter adapter;

TypedCustomersDataSet ds = new TypedCustomersDataSet () ;

conn = new SglConnection(@"Data Source=.\SQLEXPRESS;" +
"Initial Catalog=Northwind;Integrated Security=True");

comm = new SglCommand ("SELECT * FROM Customers", conn);

adapter = new SglDataAdapter (comm) ;

adapter.Fill(ds, "Customers");

var queryl =
(from customer in ds.Customers

where customer.Country == "USA"
select new
{

customer.CustomerID,

customer .CompanyName,

customer.ContactName,

customer.ContactTitle
}) .ToList () ;

dataGridviewl .DataSource = queryl;

Notice that the query is now much clearer because there is no need to use the Field() extension
method. Figure 14-12 shows the output.

Customer|Dr CompangM ame ContactMame ContactTitle

3 Great Lakes Foo [Heoward Sryder [HMarketing Manager
HUNGC Hungiy Coyote |... .Yushi Latimer .Salas Fiepresent..
LAZYK [Lazy K Kountiyp 5. .Juhn Steel I arketing Manage.r
LETSS Let's Stop M Shop | Jaime Yores Owner
LOMER Lonesome Fine ... | Fran “ilson | Sales Manager
oLDw0 :Elld ‘World Delicat... .Hene Fhillips: :Salas Represent..
.F\ATTE Rattlesnake Ea‘n “Paula Wilson Assistant Sales R :
.SAVEA .Save-a-\ut tarkets .Juse Pavarott .Salas Fiepresent..
.SPLIF! .Spht Rail Beer & .. .Art Braunschweiger | Sales Manager
THEEBI The Big Cheese Liz Mison Marketing Manager
.THECFE .T?;we Cracker Box .Liu.Wo.ng Marketing Asswsla;ﬁt
| TRAIH | Trail's Head Gaur.. | Helvetiuz Hagy | Sales Associate
.WHITE .\N"hlle Clowver bar. .KarIJahInnskl .Elwner

Figure 14-12

448

Chapter 14: Language Integrated Query (LINQ)

Detecting Null Fields

Using the same query used in the previous section, let’s modify it so that you can retrieve all customers
living in the WA region:

var queryl =

(from customer in ds.Customers

where customer.Region=="WA"

select new

{
customer.CustomerID,
customer.CompanyName,
customer.ContactName,
customer.ContactTitle

}) .ToList () ;

When you execute the query, the program raises an exception. That’s because some of the rows in the
Customers table have null values for the Region field. To prevent this from happening, you need
to use the IsNull () method to check for null values, like this:

var queryl =
(from customer in ds.Customers
where !customer.IsNull ("Region") && customer.Region == "WA"
select new
{
customer.CustomerID,
customer .CompanyName,
customer .ContactName,
customer.ContactTitle
}) .ToList () ;

Notice that LINQ uses short-circuiting when evaluating the conditions in the where statement, so the
IsNull () method must be placed before other conditions.

Interestingly, the Field () extension method handles nullable types, so you do not have to explicitly
check for null values if you are not using typed DataSets.

Saving the Result of a Query to a DataTable

The result of a LINQ query can be saved into a DataTable object by using the CopyToDataTable ()
method. The CopyToDataTable () method takes the result of a query and copies the data into a
DataTable, which can then be used for data binding.

The following example shows a LINQ query using typed DataSet with the result copied to a DataTable
object and then bound to a DataGrid View control:

var queryl =
from customer in ds.Customers
where customer.Country == "USA"
select customer;

DataTable USACustomers = queryl.CopyToDataTable () ;
dataGridviewl.DataSource = USACustomers;

449

Part |: C# Fundamentals

Note that the CopyToDataTable () method only operates on an IEnumerable<T> source where
the generic parameter T is of type DataRow. Hence, it does not work for queries that project anonymous
types or queries that perform table joins.

LINQ to XML

Also very cool is LINQ’s capability to manipulate XML documents. In the past, you had to use XPath or
XQuery whenever you need to manipulate XML documents. Using LINQ to XML, you can now query
XML trees and documents using the familiar LINQ syntax.

To use the LINQ to XML, you must add a reference to the System.Xml.Ling.d1l in
your project and also import the System.Xml.Ling namespace.

Creating XML Trees

To create an XML document tree in memory, use the XDocument object, which represents an XML
document. To create an XML element, use the XElement class; for attributes, use the xAttribute class.
The following code shows how to build an XML document using these objects:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Xml.Ling;

namespace LINQtoXML
{
class Program
{
static void Main(string[] args)
{
XDocument library = new XDocument (
new XElement ("Library",
new XElement ("Book",
new XAttribute ("published", "NYP"),
new XElement ("Title", "C# 2008 Programmers' Reference"),
new XElement ("Publisher", "Wrox")
)
new XElement ("Book",
new XAttribute("published", "Published"),

new XElement ("Title", "Professional Windows Vista " +
"Gadgets Programming"),
new XElement ("Publisher", "Wrox")

)

new XElement ("Book",

450

Chapter 14: Language Integrated Query (LINQ)

new XAttribute("published", "Published"),

new XElement ("Title", "ASP.NET 2.0 - A Developer's " +
"Notebook") ,
new XElement ("Publisher", "O'Reilly")

)
new XElement ("Book",
new XAttribute("published", "Published"),
new XElement ("Title", ".NET 2.0 Networking Projects"),
new XElement ("Publisher", "Apress")
)
new XElement ("Book",
new XAttribute("published", "Published"),
new XElement ("Title", "Windows XP Unwired"),
new XElement ("Publisher", "O'Reilly")

The indentation gives you an overall visualization of the document structure.
To save the XML document to file, use the save () method:
library.Save ("Books.xml") ;
To print out the XML document as a string, use the ToString () method:
Console.WriteLine(library.ToString());
When printed, the XML document looks like this:

<Library>

<Book published="NYP">
<Title>C# 2008 Programmers' Reference</Title>
<Publisher>Wrox</Publisher>

</Book>

<Book published="Published">
<Title>Professional Windows Vista Gadgets Programming</Title>
<Publisher>Wrox</Publisher>

</Book>

<Book published="Published">
<Title>ASP.NET 2.0 - A Developer's Notebook</Title>
<Publisher>0'Reilly</Publisher>

</Book>

<Book published="Published">
<Title>.NET 2.0 Networking Projects</Title>
<Publisher>Apress</Publisher>

</Book>

<Book published="Published">
<Title>Windows XP Unwired</Title>
<Publisher>0'Reilly</Publisher>

</Book>

</Library>

451

Part |: C# Fundamentals

To load an XML document into the XDocument object, use the Load () method:

XDocument LibraryBooks = new XDocument () ;
LibraryBooks = XDocument.Load("Books.xml") ;

Querying Elements

You can use LINQ to XML to locate specific elements. For example, to retrieve all books published by
Wrox, you can use the following query:

var queryl =
from book in LibraryBooks.Descendants ("Book")
where book.Element ("Publisher") .Value == "Wrox"
select book.Element ("Title") .Value;

Console.WriteLine("------ ") ;
Console.WriteLine("Result");
Console.WriteLine("------ ")
foreach (var book in queryl)
{

Console.WriteLine (book) ;

This query generates the following output:

C# 2008 Programmers' Reference
Professional Windows Vista Gadgets Programming

To retrieve all not-yet-published (NYP) books from Wrox, you can use the following query:

var query2 =
from book in library.Descendants ("Book")
where book.Attribute("published").Value == "NYP" &&
book.Element ("Publisher") .Value=="Wrox"
select book.Element ("Title") .Value;

You can shape the result of a query as you've seen in earlier sections:

var query3 =
from book in library.Descendants ("Book")

where book.Element ("Publisher").Value == "Wrox"
select new
{
Name = book.Element ("Title") .Value,
Pub = book.Element ("Publisher") .Value
¥

Console.WriteLine("------ ")

452

Chapter 14: Language Integrated Query (LINQ)

Console.WriteLine("Result");
Console.WriteLine("------ ")
foreach (var book in query3)
{

Console.WriteLine("{0} ({1})", book.Name, book.Pub) ;
}

This code generates the following output:

C# 2008 Programmers' Reference (Wrox)
Professional Windows Vista Gadgets Programming (Wrox)

Besides using an anonymous type to reshape the result, you can also pass the result to a non-anonymous
type. For example, suppose that you have the following class definition:

public class Book

{
public string Name { get; set; }
public string Pub { get; set; }

You can shape the result of a query to the Book class, as the following example shows:

var queryd =
from book in library.Descendants ("Book")
where book.Element ("Publisher").Value ==
select new Book
{

"Wrox"

Name = book.Element ("Title") .Value,
Pub = book.Element ("Publisher") .Value
b3

List<Book> books = query4.ToList() ;

An Example Using RSS

Let’s now take a look at the usefulness of LINQ to XML. Suppose that you want to build an application
that downloads an RSS document, extracts the title of each posting, and displays the link to each post.

Figure 14-13 shows an example of an RSS document.

453

Part |: C# Fundamentals

Wrox All New Titles.xml
<?xmwl wersion="1.0"

<?xml-stylesheet Cit

fut£-35" 9
ormatting” type="text/xsl" href="/TUileyCDi/feed/R33 UWROX ALLNEW.x=l"?>

XSL

B <rss xmlns:de="http://purl.org/de/elements/1.1/" xmlns:rdf="http://wyw.w3.org/1999/02/22-rdf-syntax-nsf" xm
I_J—J <channe 1>
<title>Wrox: All New Titles</title>
<linkrhttp://www.wrox.com/ </ link:>
<descriptionsNew titles on Wrox.com £lt;!-- ckey="1ES5F1C44" —-sgt;:</description>
<copyright>Copyright famp:copy: Z000-2008 by John Wiley &am
<pubDate:Fri, 04 Apr 2008 14:22:23 GNT</pubDates:
<dc:date>2008-04-04T14:22:232</dodates
<de:rights>Copyright fsmp:copy:; Z000-Z2008 by John Wiley samp:amp:; Sons, Inc. or related companies. All right
= <image:>
<titlerWrox: ALl New Titles</titles
<urlzhttp://media.wiley.com/assets/ 1103/ 76/wrox logo sm.gif</ur 1>
<linkrhttp://www. wrox.com/ </ 1link>
- </ image>
= <item>
<titlex>Ivor Horton's Beginning Visual C++ 2008</titlex
<linkrhttp://www. wrox. com/TileyChi/MroxTitle/productCd-0470225904 . html 7cid=RSS5 WROX ALINEW</link:
<descriptionr<bragr; £lt:table cellpadding="0" cellspacing="0">: slt;trégt; <:td valign="top"igro: &
<pubDaterMon, 31 Mar 2008 04:00:00 GMT</pubDates
<guidrhttn:/fuww. mrox. comd WileyChi/MroxTitle/productCd-0470225904 . html 20 id=RS5 WROX ALIMNEW</cuids
<de:creator>Ivor Horton</dc:creators
<dec:date>2008-03-31T04:00: 002</de:dates
- </ items
= <itewms
<titlerxMigrating to LINQ to SQL in TheBeerHouse and ASP.NET 2.0 Website Programming Problem Design Solutic
<linkrhttn:/fuww. mrox. comd WileyChi/MroxTitle/productCd-0470375019 . html 20id=R55 WROX ALINEW</ links
<descriptionr<:bragr; £lt:table cellpadding="0" cellspacing="0">: £lt;tréagt: &1
<pubDaterMon, 31 Mar 2008 04:00:00 GMT</pubDate:
<guidrhttn:/fuww. wrox. comd WileyChi/MroxTitle/productCd-0470375019 . html 70id=RS5 WROX ALIMNEW</guids
<de:creator>Doug Parsons</dc:creators
<de:date>2008-03-31T04:00: 002</de: dates

Figure 14-13

Zons, Inc. or related companies. All right

std valign="top"sgt: &

To load an XML document directly from the Internet, you can use the Load () method from the
XDocument class:

XDocument rss =
XDocument .Load (@"http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml") ;

To retrieve the title of each posting and then reshape the result, use the following query:

var posts =
from item in rss.Descendants("item")
select new
{
Title = item.Element("title") .Value,
URL = item.Element ("link").Value
Y

In particular, you are looking for all the <item> elements and then for each <item> element found you
would extract the values of the <title> and <link> elements.

454

Chapter 14

Language Integrated Query (LINQ)

<rss>
<channel>
<item>
<title>...</title>
<link>...</link>

</item>

<item>
<title>...</title>
<link>...</link>

</item>

<item>
<title>...</title>
<link>...</link>

</item>

Finally, print out the title and URL for each post:

foreach (var post in posts)

{
Console.WriteLine("{0}",
Console.WriteLine("{0}",
Console.WriteLine();

}

Figure 14-14 shows the output.

post.Title);
post.URL) ;

[Professional I18 7
W
Wizual Basic Graphics Programming

W

3
tht tp:= /v wrox..com/WileyCDAAWroxTitle/productCd-B478238843 .html7cid=R85_WROX _AL|

W

(ht tp =/ wew . urox . com/UileyCDAAroxTitle /productCd-B478897825 _htm1?cid=RSS_WROX_AL

hﬁtp://uuu.urux.com/HileyCDR/UroxTitle/productcd—ﬂ47n343486.html?cid=RSS_HROx_ﬂL

Figure 14-14

455

Part |: C# Fundamentals

Query Elements with a Namespace

If you observe the RSS document structure carefully, you notice that the <creator> element has the dc
namespace defined (see Figure 14-15).

<items
<titlerIvor Horton's Beginning Visual C++ 2008</titlex
<linkrhttp:/ wrw. wrox. com TileyCDd/ TroxTitle/productCd-047022530<
<descriptions< ;bragt; £lt:table cellpadding="0" cellspacing="0'
<pubDate>Mon, 31 Mar 2008 04:00:00 GMT</pubDate:>
<guidrhttp:/fwww. wrox . com/ WileyChd/TroxTitle/ productCd-047022590<
I<dc:c:reatnr>Ivnr Hnrtnn</d::creatnr>|
<dc:date>2008-03-31T04:00:002</dc :datex

</ items

Figure 14-15

The dc namespace is defined at the top of the document, within the <rss> element (see Figure 14-16).

Wroxn All New Titles.xml
<?xml version="1.0" encoding="utf-8m2>
<?xml-stylesheet title="ESL_formatting” type="text/xsl

[<rss Ixmlns:dc="ht.t.u: purl.org/de/elements /1.1 "lxmlns
|j <channel>
<titlexWrox: All New Titles</titler
<linkrhttp://www. weox. comd </ links>
<description>New titles on WroX.com £1t; !—- ckey="

Figure 14-16

When using LINQ to XML to query elements defined with a namespace, you need to specify the
namespace explicitly. The following example shows how you can do so using the XNamespace element
and then using it in your code:

XDocument rss =
XDocument .Load (@"http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml") ;

XNamespace dcNamespace = "http://purl.org/dc/elements/1.1/";

var posts =
from item in rss.Descendants("item")
select new
{
Title = item.Element("title").Value,
URL = item.Element("link") .Value,
Creator = item.Element (dcNamespace + "creator") .Value

}i

foreach (var post in posts)

{
Console.WriteLine("{0}", post.Title);
Console.WriteLine("{0}", post.URL);
Console.WriteLine("{0}", post.Creator);

()

Console.WriteLine

456

Chapter 14: Language Integrated Query (LINQ)

Figure 14-17 shows the query result.

file:///C: /Documents and Settings/Wei-Meng Lee/My Documents/Visual Sti

Ivor Horton’s Beginning Visual C++ 2808

rofessional CH 2008

Iﬁgﬁ://uuu.urux.com/HileyCDﬂ/HroxTitle/productcd—ﬂ473191376.html?cid=RSS_HROH_HL

hristian Nagel, Bill Euwjen. Jay Glynn, Karli Watson, Morgan Bkinner

ional Uisuwal Studio Extensibility
. wrox..comsWileyCDAAVlro le/productCd-B8478230843 .html7cid=RES_WROX _AL|

Figure 14-17

Retrieving Postings in the Last 10 Days

The <pubbDate> element in the RSS document contains the date the posting was created. To retrieve all
postings published in the last 10 days, you would need to use the Parse () method (from the DateTime
class) to convert the string into a DateTime type and then deduct it from the current time. Here’s how

that can be done:

XDocument rss =
XDocument . Load (
@"http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml") ;

XNamespace dcNamespace = "http://purl.org/dc/elements/1.1/";

var posts =
from item in rss.Descendants("item")

where (DateTime.Now -

DateTime.Parse (item.Element ("pubDate") .Value)) .Days < 10

select new

{
Title = item.Element("title") .Value,
URL = item.Element ("link") .Value,
Creator = item.Element (dcNamespace + "creator").Value,
PubDate = DateTime.Parse(item.Element ("pubDate") .Value)
Y

Console.WriteLine("Today's date: {0}",

DateTime.Now.ToShortDateString()) ;

foreach (var post in posts)

{

Console.WriteLine("{0}", post.Title);
Console.WriteLine("{0}", post.URL);
Console.WriteLine("{0}", post.Creator);
Console.WriteLine("{0}", post.PubDate.ToShortDateString());
Console.WriteLine() ;

Part |: C# Fundamentals

LINQ to SQL

LINQ to SQL is a component of the .NET Framework (v3.5) that provides a runtime infrastructure for
managing relational data as objects.

With LINQ to SQL, a relational database is mapped to an object model. Instead of manipulating the
database directly, developers manipulate the object model, which represents the database. After changes
are made to it, the object model is submitted to the database for execution.

Visual Studio 2008 includes the new Object Relational Designer (O/R Designer), which provides a user

interface for creating LINQ to SQL entity classes and relationships. It enables you to easily model and
visualize a database as a LINQ to SQL object model.

Using the Object Relational Designer

To see how LINQ to SQL works, create a new Windows application using Visual Studio 2008.

First, add a new LINQ to SQL Classes item to the project. Use the default name of DataClassesl.dbml
(see Figure 14-18).

Add New ltem - LINQtoSQL

! =
"= Local Database Cache
ﬂ Report

\aResources File

2] Settings File

Categories: Templates:
= Visual C# Items E‘ Bitmap File (f__-‘j s

i 240 2 Class Diagram o] Code File

H Ez:aeral o] Component Class Rﬂ.‘ Cursor File

web gCustUm Control |5Dataset
Windows Forms " Debugger Visualizer |#] HTML Page

L WPF i) Teon File 3] Installer Class

- Reporting 0y Interface 2] 35eript File

- warkflow : 5 | | Local Database

EMDI Parent Form

,J Report Wizard

iJ Service-based Database W
A Style Sheet

=] TextFile 2] User Control
= o
[F=]User Control {wPF) HZWCF Service =
= bt B =5 Aevie Eevink Lot o
| LING ta SQL classes mapped to relational objects,
Mame: DataClasses1.dbml !

Figure 14-18

In Server Explorer, open a connection to the database you want to use. For this example, use the pubs
sample database. Drag and drop the following tables onto the design surface of DataClassesl.dbml:

0 authors

U publishers
0 titleauthor
a

titles

458

Chapter 14: Language Integrated Query (LINQ)

Figure 14-19 shows the relationships among these four tables.

% LINQtoSQL - Microsoft Visual Studio

File Edit ‘ew Project Build Debug Dagka Tools Test Window Help
E R RN - N e WEe W = - ZL | b Debug ~ Any CPU - | [xmins:de
Search: - _
-
Server Explarer >3 X DataClasses1.dbml*
EINENACS.
= ‘J';J Data Connections
- [winxpsp2isglexpress.Morthwind, dbo
I= [winxpspzisglexpress.pubs.dbo author 23] publisher [E3]
B [Datsbase Diagrams
- 3 Tables = =
I.:J j s (=l Properties = Properties
|+1 [discounts ¥ faqu ¥ ﬁpude
® [emplayes 0 au_lname 57 pub_name
& B jobs 5 a0 _frame P ity
Hn 0 pub_info 5 phane 57 state
@ [publishers gaddress 5 country
& [roysched ?E‘ty G
& [sales fstate |
o j stares @::’ntract i
- [titleauthor = = |
@ [titles T v
e [views | 3 =
- [Stored Procedures " it =
- [Functions % [3) = =
8- CF Svnonvms titleauthor = 1= Propertties
- [Types 2 #57 title_id
Bl [Assemblies =l Properties 5 it
@ 54 Servers 7 e d - ftVDE
7 2 title_id fﬁ?pgb id
?au_ﬂrd == price
o rayaltyper ﬁadvance
25 royalty
250 ytd _sales
i-’fnotes
25 pubdate

Figure 14-19

Now save the DataClassesl.dbml file, and Visual Studio 2008 will create the relevant classes to
represent the tables and relationships that you just modeled. For every LINQ to SQL file you added
to your solution, a DataContext class is generated. You can view this using the Class Viewer
(View = Class View; see Figure 14-20). In this case, the name of the DataContext class is
DataClasseslDataContext. The name of this class is based on the name of the . dbml file; if you
named the .dbml file Pubs, this class is named PubsDataContext.

459

Part |: C# Fundamentals

Cile = | F- &

<searchs - &
=-{Z] LINQtoSQL

1 Project References

{} LIngtosqL
“1% authar

D&

#

“§ Form1

4% Program

“1% publisher

s title

[E- 15 titleauthor

{} LINGtoSQL Properties

E-E-E-E

)

=]

% DataClasses1DataContext()
% DataClasses1DataContext{string)
% DataClasses1DataCaontext(System, Data, IDbConnection)
% DataClasses1DataCantext(string, System,Data.Ling.Mapping.MappingSource)
% DataClasses1DataContext(System, Data, IDbConnection, System,Data,Ling. Mapping, MappingSource)
4% Deleteauthor{LINGtoSQL. authar)
g% Deletepublisher(INQEoSGL publisher)
2% Deletetitle(LINGtaSOL Litle)
¥ Deletetitleauthor(LINGtoSOL ktleauthar)
4% Insertauthor({LINGtoSQL author)
4% Insertpublisher(LINGEoSCL. publisher)
2 Inserthitle(LINQEOSCL Htle)
g Inserttitleauthor(LINGEoSOL titleauthor)
5 OnCreated()
4% Updateauthor{LINQE0SQL. authior)
" Updatepublisher(LINGtoSOL . publisher)
2% Updatetide(LINOEoSOL title)
g Updatetitleauthor(LINQEoSCL Eidleauthor)
29 anthars
i f‘pub\ishers
f‘ titleauthors
L bitles

‘g mappingSource

Figure 14-20

Querying

With the database modeled using the LINQ to SQL designer, it’s time to write some code to query the
database. First, create an instance of the DataClasseslDataContext class:

DataClasseslDataContext database = new DataClasseslDataContext () ;
To retrieve all the authors living in CA, use the following code:

var authors = from a in database.authors

where (a.state == "CA")
select new
{
Name = a.au_fname + " " + a.au_lname
Y

foreach (var a in authors)
Console.WriteLine (a.Name) ;

460

Chapter 14: Language Integrated Query (LINQ)

To retrieve all the titles in the titles table and at the same time print out the publisher name of each
title, you first retrieve all the titles from the titles table:

var titles = from t in database.titles
select t;

And then you retrieve each title’s associated publisher:

foreach (var t in titles)

{
Console.Write("{0} ", t.titlel);

var publisher = from p in database.publishers
where p.pub_id == t.pub_id

select p;
if (publisher.Count() > 0)
Console.WriteLine (" ({0})", publisher.First () .pub_name) ;

The output looks something like this:

Cooking with Computers: Surreptitious Balance Sheets (Algodata Infosystems)

You Can Combat Computer Stress! (New Moon Books)

How to Motivate Your Employees Straight Talk About Computers (Algodata Infosystems)
Silicon Valley Gastronomic Treats (Binnet & Hardley)

The Gourmet Microwave (Binnet & Hardley)

The Psychology of Computer Cooking (Binnet & Hardley)

But Is It User Friendly? (Algodata Infosystems)

Secrets of Silicon Valley (Algodata Infosystems)

Net Etiquette (Algodata Infosystems)

Computer Phobic AND Non-Phobic Individuals: Behavior Variations (Binnet & Hardley)
Is Anger the Enemy? (New Moon Books)

Life Without Fear (New Moon Books)

Prolonged Data Deprivation: Four Case Studies (New Moon Books)

Emotional Security: A New Algorithm (New Moon Books)

Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean (Binnet & Hardley)
Fifty Years in Buckingham Palace Kitchens (Binnet & Hardley)

Sushi, Anyone? (Binnet & Hardley)

Inserting New Rows

To insert a row into a table, use the InsertOnSubmit () method. For example, the following code inserts
a new author into the authors table:

DataClasseslDataContext database = new DataClasseslDataContext () ;

author a = new author ()

{
au_id = "789-12-3456",
au_fname = "James",
au_lname = "Bond",

phone = "987654321"
Y

//---record is saved to object model---
database.authors.InsertOnSubmit (a) ;

461

Part |: C# Fundamentals

Note that the InsertonSubmit () method only affects the object model; it does not save the changes
back to the database. To save the changes back to the database, you need to use the Submi tChanges ()
method:

//---send changes to database---
database.SubmitChanges () ;

What happens when you need to insert a new book title from a new author? As you saw earlier, the
titles table is related to the titleauthors via the title_id field, while the authors table is
related to the titleauthors table via the author_id field. Therefore, if you insert a new row into the
titles table, you need to insert a new row into the authors and titleauthors tables as well.

To do so, you first create a new author and title row:

DataClasseslDataContext database = new DataClasseslDataContext();
author a = new author()
{
au_id = "123-45-6789",
au_fname = "Wei-Meng",
au_lname = "Lee",
phone = "123456789"
}i

title t = new title()
{
title_id = "BU5555",

titlel = "How to Motivate Your Employees",
pubdate = System.DateTime.Now,
type = "business"

Y

Then, add a new titleauthor row by associating its author and title properties with the new title
and author row you just created:

titleauthor ta = new titleauthor()
{

author = a,

title = t
Y

Finally, save the changes to the object model and submit the changes to the database:

//---record is saved to object model---
database.titleauthors.InsertOnSubmit (ta) ;

//---send changes to database---
database.SubmitChanges () ;

Notice that you do not need to worry about indicating the title_id and author_id fields in the
titleauthors table; LINQ to SQL does those for you automatically.

462

Chapter 14: Language Integrated Query (LINQ)

Updating Rows

Updating rows using LINQ to SQL is straightforward — you retrieve the record you need to modify:
DataClasseslDataContext database = new DataClasseslDataContext();
title bookTitle = (from t in database.titles

where (t.title_id == "BU5555")
select t).Single();

The single () method returns the only element of a sequence, and throws an exception if there is not
exactly one element in the sequence.

Modify the field you want to change:

bookTitle.titlel = "How to Motivate Your Staff";
And submit the changes using the SubmitChanges () method:

database. SubmitChanges () ;
The query can alternatively be written using the method syntax, like this:

title bookTitle = database.titles.Single(t => t.title_id == "BU5555");

Deleting Rows

To delete a row, you first retrieve the row to delete:

DataClasseslDataContext database = new DataClasseslDataContext();
//---find author ---
var author = from a in database.authors

where a.au_id == "789-12-3456"

select a;

Then, locate the row to delete by using the First () method, and finally call the DeleteOnSubmit ()
method to delete the row:

if (author.Count() > 0)
{

database.authors.DeleteOnSubmit (author.First());
database. SubmitChanges () ;

The First () method returns the first element of a sequence.

463

Part |: C# Fundamentals

If you have multiple rows to delete, you need to delete each row individually, like this:

//---find author ---
var authors = from a in database.authors
where a.au_id == "111-11-1111" ||
a.au_id == "222-22-1111"
select a;

foreach (author a in authors)
{
database.authors.DeleteOnSubmit (a) ;
}
database. SubmitChanges () ;

So far the deletion works only if the author to be deleted has no related rows in the titleauthors
and titles tables. If the author has associated rows in the titleauthors and titles tables, these
examples cause an exception to be thrown because the deletions violate the referential integrity of the
database (see Figure 14-21).

_:\, SqlException was unhandled X

The DELETE statement conflicted with the REFERENCE constraint
"Fk__titleauth__au_id__0AD2A00S", The conflict occurred in database "pubs”, table
"dbo.titeauthor”, column 'au_id',

The statement has been terminated.

Troubleshooting tips:
ket general heln For this exception, A

Search For mare Help Online. ..

Actions:
Wiew Detai. .,
Copy exception detail to the clipboard

Figure 14-21

Because LINQ to SQL does not support cascade-delete operations, you need to make sure that rows in
related tables are also deleted when you delete a row. The following code example shows how to delete a
title from the titles and titleauthors tables:

DataClasseslDataContext database = new DataClasseslDataContext();
string titleid_to_remove = "BU5555";

//---find all associated row in Titles table---
var title = from t in database.titles
where t.title_id == titleid_to_remove
select t;

//---delete the row in the Titles table---
foreach (var t in title)

database.titles.DeleteOnSubmit (t) ;

//---find all associated row in TitleAuthors table---

464

Chapter 14: Language Integrated Query (LINQ)

var titleauthor = from ta in database.titleauthors
where ta.title_id == titleid_to_remove
select ta;

//---delete the row in the TitleAuthors table---
foreach (var ta in titleauthor)
database.titleauthors.DeleteOnSubmit (ta) ;

//---submit changes to database---
database. SubmitChanges () ;

Summary

This chapter, provides a quick introduction to the Language Integrated Query (LINQ) feature, which is
new in .NET 3.5. It covered LINQ's four key implementations: LINQ to Objects, LINQ to XML, LINQ to
Dataset, and LINQ to SQL. LINQ enables you to query various types of data sources, using a unified
query language, making data access easy and efficient.

465

19

Assemblies and Versioning

In .NET, the basic unit deployable is called an assembly. Assemblies play an important part of the
development process where understanding how they work is useful in helping you develop
scalable, efficient .NET applications. This chapter explores:
Q The components that make up a .NET assembly
The difference between single-file and multi-file assemblies

Q

Q The relationships between namespaces and assemblies
Q The role played by the Global Assembly Cache (GAC)
Q

How to develop a shared assembly, which can be shared by other applications

Assemblies

In .NET, an assembly takes the physical form of an EXE (known as a process assembly) or DLL
(known as a library assembly) file, organized in the Portable Executable (PE) format. The PE
format is a file format used by the Windows operating system for storing executables, object code,
and DLLs. An assembly contains code in IL (Intermediate Language; compiled from a .NET
language), which is then compiled into machine language at runtime by the Common Language
Runtime (CLR) just-in-time compiler.

Structure of an Assembly

An assembly consists of the following four parts (see Figure 15-1).

Part Description

Assembly metadata Describes the assembly and its content

Type metadata Defines all the types and methods exported from the assembly
IL code Contains the MSIL code compiled by the compiler

Resources Contains icons, images, text strings, as well as other resources

used by your application

Part |: C# Fundamentals

Assembly
Metadata

Type Metadata

IL Code

Resources

Figure 15-1

Physically, all four parts can reside in one physical file, or some parts of an assembly can be stored other
modules. A module can contain type metadata and IL code, but it does not contain assembly metadata.
Hence, a module cannot be deployed by itself; it must be combined with an assembly to be used.

Figure 15-2 shows part of an assembly stored in two modules.

Assembly Type Metadata
Metadata

IL Code
Type Metadata
IL Code Type Metadata
Resources IL Code

Figure 15-2

An assembly is the basic unit of installation. In this example, the assembly is made up of three files (one

assembly and two modules). The two modules by themselves cannot be installed separately; they must
accompany the assembly.

Examining the Content of an Assembly

As mentioned briefly in Chapter 1, you can use the MSIL Disassembler tool (i1dasm. exe) to examine
the content of an assembly. Figure 15-3 shows the tool displaying an assembly’s content.

£ WinBase64.exe - IL DASM (=113
File Wiew Help

B WinBasetd exe
b
= WinBased
e ' WinBaset4 Properties
£ B WinBasec4 Forml
—E WinBasetd Program
b .class private abstract auto ansi sealed beforefieldinit
o Main : void()

.assembly WinBaset4 o~

Figure 15-3
468

Chapter 15: Assemblies and Versioning

Among the various components in an assembly, the most important is the manifest (shown as
MANIFEST in Figure 15-3), which is part of the assembly metadata. The manifest contains information
such as the following:

Q Name, version, public key, and culture of the assembly
Q Files belonging to the assembly

O References assemblies (other assemblies referenced by this assembly)
0 Permission sets

O Exported types

Figure 15-4 shows the content of the manifest of the assembly shown in Figure 15-3.

£ MANIFEST 9 [=11E3]
Eind Find Next
// Metadata version: v2.0.56727 A
-assenbly extern mscorlib Tl
-publickeytoken = (B7 7A 5C 56 19 34 E@ 89) F AN N
-ver 2:08:08:8

.assenbly Base64Codec

{
.custom instance wvoid [mscorlib]System.Reflection.AssemblyTitlenattribute::.ctor{string) = {
-custom instance wvoid [mscorlib]System_Reflection._AssemblyDescriptionAttribute::.ctor(strinc
.custom instance wvoid [mscorlib]System.Reflection.AssemblyConfigurationAttribute::.ctor(str
.custom instance woid [mscorlib]System.Reflection.AssemblyCompanyAttribute::.ctor{string) =
-custom instance void [mscorlib]System.Reflection.AssemblyProductAttribute:z:_ctor({string) =
.custom instance wvoid [mscorlib]System.Reflection.AssemblyCopyrightAttribute::.ctor(string)

.custom instance wvoid [mscorlib]System.Reflection.AssemblyTrademarkAttribute::.ctor(string)
-custom instance void [mscorlib]System.Runtime.InteropServices.ComUisibleAttribute::_ctor{b
.custom instance void [mscorlib]System.Runtime.InteropServices.GuidAttribute::.ctor(string)

-custom instance void [mscnrlih]System.REFlectinn.RssemhlyFileUersiunnttrihute::.ctur(stringv

< | 3

Figure 15-4

Single and Multi-File Assemblies

In Visual Studio, each project that you create will be compiled into an assembly (either EXE or DLL). By
default, a single-file assembly is created. Imagine you are working on a large project with10 other
programmers. Each one of you is tasked with developing part of the project. But how do you test the
system as a whole? You could ask every programmer in the team to send you his or her code and then
you could compile and test the system as a whole. However, that really isn’t feasible, because you have
to wait for everyone to submit his or her source code. A much better way is to get each programmer to
build his or her part of the project as a standalone library (DLL). You can then get the latest version of
each library and test the application as a whole. This approach has an added benefit — when a deployed
application needs updating, you only need to update the particular library that needs updating. This is
extremely useful if the project is large. In addition, organizing your project into multiple assemblies
ensures that only the needed libraries (DLLs) are loaded during runtime.

469

Part |: C# Fundamentals

To see the benefit of creating multi-file assemblies, let’s create a new Class Library project, using
Visual Studio 2008, and name it Mathutil. In the default Classl.cs, populate it with the
following code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace MathUtil
{
public class Utils
{
public int Fibonacci (int num)

{
if (num <= 1) return 2; //---should return 1; error on purpose---
return Fibonacci(num - 1) + Fibonacci (num - 2);

}

This Utils class contains a method called Fibonacci (), which returns the n™ number in the Fibonacci
sequence (note that I have purposely injected an error into the code so that I can later show you how
the application can be easily updated by replacing the DLL). Figure 15-5 shows the first 20 numbers

in the correct Fibonacci sequence.

Fo|F1|F2|Fa| Fa| Fs|Fg| Fr | Fa|Fa| Fro|F11|F12 | Fis [Fua |F1s |Fie |[Fiz [Fis |Fis [P0

0 (1 |1(2|3|5|8 13|21 34|55 |89 |144 233|377 |610|987 1597 2584 4181|6765

Figure 15-5

Build the Class Library project (right-click on the project’s name in Solution Explorer, and select Build) so
that it will compile into a DLL —MathUtil.dl11.

Add a Windows Application project to the current solution, and name it windowsApp-Util. This
application will use the Fibonacci () method defined in Mathutil.dll. Because the MathUtil.dll
assembly is created in the same solution as the Windows project, you can find it in the Projects tab of the
Add Reference dialog (see Figure 15-6). Select the assembly, and click OK.

470

Chapter 15: Assemblies and Versioning

Add Reference E|

NET | com | Prajects | Browse | Recent |

Project Mameg =
M akhLItl

Figure 15-6

The Mathutil.dl1 assembly will now be added to the project. Observe that the Copy Local property
for the Mathutil.dl1 assembly is set to True (see Figure 15-7). This means that a copy of the assembly
will be placed in the project’s output directory (that is, the bin\Debug folder).

lution Explorer - Solution "Windo... [X| [l Properties =
éﬂ MathUtil Reference Properties -
m Solution "Windowsapp-Utl' (1 project)
= [wWindowsapp-Util
- [=d| Properties
= | References
«J System
L o System. Core
< System.Data
~2 System.Data,DataSetExten:
+«3 System.Deployment:
-« Syskem,Drawing
Lo« System, Windows, Farms
o« System, ¥ml
wo o+ Syskem. ¥ml.Ling
= [E] Forml.cs
H E Farm1 Designer.cs
‘ﬁ Farm1.resx
5 ‘ﬁ Program.cs

MathLl [

Copy Local

Indicates whether the reference wil be copied to the
output direckory,

< | @

Figure 15-7

When you add a reference to one of the classes in the .NET class library, the Copy
Local property for the added assembly will be set to False. That’s because the
.NET assembly is in the Global Assembly Cache (GAC), and all computers with
the .NET Framework installed have the GAC. The GAC is discussed later in this
chapter.

471

Part |: C# Fundamentals

Switch to the code-behind of the default Forml and code the following statements:

namespace WindowsApp_Util

{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
}
private void Forml_Load(object sender, EventArgs e)
{
Callutil();
}
private void CallUtil ()
{
MathUtil.Utils util = new MathUtil.Utils();
MessageBox.Show (util.Fibonacci (7) .ToString()) ;
}
}
}

Set a breakpoint at the CallMathutil () method (see Figure 15-8).

private void Forml_Load({okbject sender, Eventlirgs e)

@ CallMathUcil();

private vold CallMathUtil()
{
MachUtil.Ucils util = new MathUcil.Ucils():
MessageBox.Show(ucil.Fibonacei (7). ToStringi())
¥

Figure 15-8

Right-click on the windowsApp-Util project name in Solution Explorer, and select Start as Startup
Project. Press F5 to debug the application. When the application stops at the breakpoint, view the
modules loaded into memory by selecting Debug = Windows => Modules (see Figure 15-9).

472

Chapter 15: Assemblies and Versioning

8 MathUril (Debugging) - Microsoft Visual Studio

Fle Edit ‘iew Project Build Debug Data Tools Test Apalyze window Help

d windowsapn_Util exe InitializeComponent (] ;

o i
| 2] Systam, <ml, Ling.dil
%)
Ll Stystem. i, di o private void Forml Load(ohject sender, Eventirgs e)
| [2] system.windows.Forms.dl —

| {

2 |
[e ©
2] Systermn, Deployment,dil }
e| Systern,Data.dll
| |4 system.Data.DatasetExtensions di
| |2 system.Core.di
| [£] system. Configuration.d
| [2] system.Configuration.dl L '
| £ mscorib.di
| Iﬂ Microsoft, YisualStudio HostingProcess, Utilities, Sync, dil
Microsoft, YisualStudio HostingProcess, Utilities, il
[#] Microsoft visualstudio. Debugger Runtime. di

= private wvoid CallMathUtil()

{
MathUtil.TUcils util = new MathUtil.Tcils():
MessageBox.3how{util.Fibonacci (7). ToString()):

=

Figure 15-9

R R~ - N =T S I R = R = [# close -
B %h e
{ || Fwindowsapp Lt Form1 +| [a%Form1_Loastobject sender, Evertargs e
| = WindowsApp_Util yshost, exe il

Observe that Mathutil.d11 library has not been loaded yet. Press F11 to step into the CallMathutil ()

function (see Figure 15-10). The Mathutil.d11 library is now loaded into memory.

& MathUtil (Debugging) - Microsoft Visual Studio

File Edit Miew Project Buld Debug Data Tools Test Analyze Window Help

A - Ha | % G @ o [y cPU < [[close [&
o s : — i
Madules |* Forml.cs [Design] | Fo.cs | Classt.cs/ Forml.cs| - - -

| Hame | 1 “t¢windowsApp_Util. Form1 v | ‘QOCa\IMathUt\I()

| [Windowsapp_UIk,vshost, exe NI

9 7 InitializeComponent (]}
| [windowsapp_Ui.exe

] System.Xml.Ling.dll

| 2] system.xml.di

| [system.windows Forms.dl

| [System.Drawing. dil

: [system.di

| [System.Deployment, di

| B} System,Data dil

' [#] System.Data DatasetExtensions.di |
| &) System.Core dil i
| [2] system.configuration.di

| [system.configuration.di

| [mscorib.di

: B] Micrasoft, Visualstudio, HostingProcess, Utilities, Sync.dl

| 2] Micrasoft, Visualstudio, HostingProcess, Ltilities, dil

] Microsoft, YisualStudio, Debugger, Runtime, dil
| Mathitil.dil

Figure 15-10

r }

=] private void Forml_Load{object sender, Eventlrgs e)

=] private woid CallMachUtil()

1
MathUtil.Ucils util = new MathUcil.Ucils():
MessageBox.Showiucil.Fibonacci (7) . ToString ())

Press F5 to continue the execution. You should see a message box displaying the value 42. In the bin\
Debug folder of the Windows application project, you will find the EXE assembly as well as the DLL

assembly (see Figure 15-11).

473

Part |: C# Fundamentals

File Edit ‘iew Favorites Tools Help

address |£3 CriDocuments and Settingsiei-Meng Leettt ¥ | [Go
Mame -~ Size | Type

I'-'I.athl,lt\l.dll 4 KB Application Extensian
@) MathUt. pdb 12KB Program Debug Dat...

) G6KB Application
& Windowsapp_Utlpdb 24 KB Program Debug Dat...

_EW\ndnwsnpp_l_ltil.vshnst‘exe 14 KB Application
@W\ndnwsnpp_l_ltil.vshnst‘exe. . 1 KB MANIFEST File

¢] | ke
Figure 15-11

Updating the DLL

The Fibonacci () method defined in the MathUtil project contains a bug. When num is less than or
equal to 1, the method should return 1 and not 2. In the real world, the application and the DLL may
already been deployed to the end user’s computer. To fix this bug, you simply need to modify the Utils
class, recompile it, and then update the user’s computer with the new DLL:

namespace MathUtil

{
public class Utils

{

public int Fibonacci (int num)
{
if (num <= 1) return 1; //---fixed!---
return Fibonacci(num - 1) + Fibonacci(num - 2);

}

Copy the recompiled Mathutil.dll from the bin\Debug folder of the MathUtil project, and overwrite
the original MathUutil.d11l located in the bin\Debug folder of the Windows project. When the
application runs again, it will display the correct value, 21 (previously it displayed 42).

Because the MathUtil.d11 assembly is not digitally signed, a hacker could replace this assembly with
one that contains malicious code, and the client of this assembly (which is the WindowsApp-Util
application in this case) would not know that the assembly has been tampered with. Later in this
chapter, you will see how to give the assembly a unique identity using a strong name.

Modules and Assemblies
An application using a library loads it only when necessary — the entire library is loaded into memory
during runtime. If the library is large, your application uses up more memory and takes a longer time to
load. To solve this problem, you can split an assembly into multiple modules and then compile each
individually as a module. The modules can then be compiled into an assembly.

To see how you can use a module instead of an assembly, add a new Class Library project to the solution

used in the previous section. Name the Class Library project StringUtil. Populate the default Class1
.cs file as follows:

474

Chapter 15: Assemblies and Versioning

using System.Text.RegularExpressions;
namespace StringUtil

{
public class Utils
{
public bool ValidateEmail (string email)
{
string strRegEx = @""([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}" +
@"\.[0-91{1,3}\.[0-91{1,3}\.) | (([a-zA-Z0-9\-1+\" +
@".)+)) ([a-zA-21{2,4}|[0-91{1,3}) (\1?)$";
Regex regex = new Regex(strRegEXx) ;
if (regex.IsMatch(email))
return (true);
else
return (false);
}
}
}

Instead of using Visual Studio 2008 to build the project into an assembly, use the C# compiler to
manually compile it into a module.

To use the C# compiler, launch the Visual Studio 2008 Command Prompt (Start = Programs => Microsoft
Visual Studio 2008 = Visual Studio Tools = Visual Studio 2008 Command Prompt).

Navigate to the folder containing the StringUtil project, and type in the following command to create
a new module:

csc /target:module /out:StringUtil.netmodule Classl.cs

When the compilation is done, the StringUtil.netmodule file is created (see Figure 15-12).

Yisual Studio 200 mmand Prompt

IG: \Ducumen"“ and SettiogssUei—Meng LeesMy Docunentssllizual Studio 2ARB\Projectsy
5 Utilbcsc starget:module sout:Stwinglltil.netmodule Classi.cs
t TR U1SOAl W Z008 COMDLIEr UEPSion J.9.30928.1
3 rosoft (R> _NET Framework version 3.5
Copyright (C> Microsoft Corporation. All rights reserved.

IC:~Documents and Settings Wei-Meng Lee My Documents Visual Studio 2888-Projects
Stringltil>dir

Uolume in dllue C h no label.

Uolume Serial Mumber is B4B6-8381

Dirvectory of C:“\Documents and Settings\Wei—Meng Lee My Documents*Uisual Studio
2008 Projects\Stringltil

Aa7./18/20A8 <DIR> =

A7/10/2008 <DIR> i

A710/2008 <DIR> hin

A7./10/2008 648 Classl.cs

A7./10./2008 <DIR> ohj

A7./108,/20088 <DIR> Propert

87/10/2008 2,496 Steingllt

87102088 PH 2,568 StllngUtll netmudule

s> 5,696
5 Dirdsd 113,820,983,296 hytea free

IC:“Documents and Settings‘\Wei-—Meng Lee“My Documents‘Uisual Studio ZBBAB“Projects\|
StringUtil>_

Figure 15-12

475

Part |: C# Fundamentals

Do the same for the Mathutil class that you created earlier (see Figure 15-13):

csc /target:module /out:MathUtil.netmodule Classl.cs

sual Studio 2008 Command Prompt

Mathltilfcsc target:module Sout:Mathltil.netmodule Classl.cs
Microsof € CRY UISUAl LW ZO08 GONPLICE UEPrS10n 3.5.30928.1
for Microsoft (R> _MET Framework version

C:\Documents_and Settinasslei—Mens LeesMu Nocupentssllisual Studio zags\p,.u‘]“t_‘\i
)
Copyright (C> Microsoft Corporation. All rights reserwved.

C:“Documents and SettingssWeiMeng Lee“My Documents“Visual Studioc 2B88“Projects\
Mathltil>dir

Uolume in drive C has no lahel.

Uolume Serial Number iz B4B6—8381

Directory of C:\Documents and Settings“Wei—Meng Lee“My Documents“Uisuwal Studio
2008\ Projects~MathUtil

07-18-2088 @2:26 <DIR>
07182088 : <DIR>
87182088 H <DIR> n
07182088 333 Classl.cs
07182088 2 Mot hlltd loaspned
07182088 MathUtil.netmodule
182 4 FECROCI L. S 1N
<DIR> ohj
H <{DIR> Properties
4 File(s> 6.767 bytes
5 Dir<s> 113.822,593.824 hytes free

C:=“Documents and Settings“Wei—Meng Lee My Documents“Uisual Studio 2008“Projects"
MathUtil>_

Figure 15-13

Copy the two modules that you have just created — StringUtil.netmodule and MathUtil
.netmodule — into a folder, say C:\Modules\. Now to combine these two modules into an assembly,
type the following command:

csc /target:library /addmodule:StringUtil.netmodule /addmodule:MathUtil.netmodule
/out:Utils.dll

This creates the Utils.d11 assembly (see Figure 15-14).

ual Studio 2008 Command Prom

il.netmodule Aout:lUtils.d

Microsoft (HY Ulsual CW d!‘lUB Lompller version J.5.J8948.1
for Microsoft (R} .MET Framework version 3.

Copyright ¢C> Microsoft Corporation. All prights reserved.

C:“Hodulesbcsc starget: lll:u-a}-y saddmodule:Stringltil_netmodule raddmodule: Hat}luti

C:“Modules>dir
Uolume in drive C has no lahel.
Uolume Serial Number is B4B6—8301

Directory of C:\Modules

B7-18-2808 ©B2:48 PH <DIR> o
A7-108,2008 <DIR> S
67182088 M » MathUtil.netmodule
07-18-2008 Steinglitil netmodule
A7-10.,2088 H Utllg.dll

i BUTES

s>
2 Dirds) 113.819. BB? 324 hytes free

C:“Modules>

Figure 15-14

476

Chapter 15: Assemblies and Versioning

In the windowsApp-Utils project, remove the previous versions of the Mathutil.dl1l assembly and
add a reference to the Utils.d11 assembly that you just created (see Figure 15-15). You can do so via the
Browse tab of the Add Reference dialog (navigate to the directory containing the modules and assembly,
C:\Modules). Click OK.

Add Reference [

MET | com | projects | Browse |Racent|
Loakin: | 3 Modules Yogem
[k
File name: |Umsdu V|
Files of type: | Camponent Files [dll;" Hb:" olb:" ock.” exe.” manifest] b |
Figure 15-15

In the code-behind of Form1, modify the following code as shown:

namespace WindowsApp_Util

{

public partial class Forml : Form

{
public Forml ()

{

InitializeComponent () ;

}

private void Forml_Load(object sender, EventArgs e)
{

CallMathUtil () ;

CallstringUtil () ;

}

private void CallMathUtil ()

{
MathUtil.Utils util = new MathUtil.Utils();
MessageBox.Show (util.Fibonacci (7) .ToString()) ;
}
private void CallStringUtil ()
{
StringUtil.Utils util = new StringUtil.Utils();
MessageBox.Show (util.ValidateEmail (
"weimenglee@learn2develop.net") .ToString()) ;
}

477

Part |: C# Fundamentals

The callMathUtil () function invokes the method defined in the Mathutil module. The
CallStringUtil () function invokes the method defined in the StringUtil module.

Set a break point in the Form1_Load event handler, as shown in Figure 15-16, and press F5 to debug the
application.

|_J—:| rrivate void Forml Load{ckhject sender, Eventlirgs e)

=] private wvoid CallMathUcili()
{
MathUtil.Ucils util = new MathUcil.Utils():
MessageBox.Show(util.Fibonacci (7). ToString())
- b
= private void Call3tringUtil ()
{
StringUcil.Utils util = new StringUcil.Ucils():
HessageBox.3how(util.ValidateEmail |
"ueimengleel learnzdevelop.net™) . ToString()) ;
= }
r H

Figure 15-16

When the breakpoint is reached, view the Modules window (Debug = Windows => Modules), and note
that the Utils.dll assembly has not been loaded yet (see Figure 15-17).

%8 MathUtil (Debugging) - Microsoft Visual Studio

Flle Edit Miew Project Build Debug Data Tools Test Apalyze indow Help

Gl i o el | X Ga 9 - - E b -|| (B closs =]
T = 2. 0) L
Madles Form1.cs [Design] | > X Forml.cs|
AL [g windowsapp_ti Form1 || g¥Form1_Loadiobject sender, Eventirgs &)
| 2 windawsApp_ Ut yvshost, exe I ;
| 8 windowsapp_Utilexs
2 -
d Frsemamlngic) = private void Forml Load(object sender, Eventlrgs e)
] Systamn, xml dil o

{
| @ :
| 4 system.windows.Forms.di) allMathleil {j 2
2] Systam, Drawing, dil

ﬂ System.d Call3StringUeili):

B }
(] system.Deployment.dl
| 2] system.Data.dl
|] sSystem.Data.DatasetExtensions di

3
S :Vstem'éwi_'d" . MathUtil.Utils util = new MathUtil.Teils():
| =l System.ConFiguration,

'@ b.dl MessageBox.Show(util.Fibonacei (7). ToString (1)
| &l mscorlib,

= private void CallMathUtil()
4

o }
QA i . ? < H
LJ Microsoft, VisualStudio HostingProcess, Ukilities, Sync. dil o) private void CallStringftil()
| 4] Microsoft, visualstudio HastingProcess. kiizs ol

{
A N . "
| 2] Microsoft, visualStudio.Debugger Runtime.di Stringltil.Urils util = new StringTeil.Ueils()

MessageBox.Showiutil.ValidateEmail |
"yeimengleel learnZdevelop.net™) . ToString())

Figure 15-17

478

Chapter 15: Assemblies and Versioning

Press F11 to step into the callMathutil () function, and observe that the Utils.dl1 assembly is now
loaded, together with the MathUtil.netmodule (see Figure 15-18).

8 MathUtil (Debugging) - Microsoft Visual Studio

File Edit Vew Project Build Debug Dgta Tools Test Apalyee Window Help

A il P bl R X Ba (A0 B | [close =
0 b ae E

18] windowsApp_UtL vshost.exe

#] Windowsapp_LItlL exe

1] Ukils. dll

System. ¥ml.Ling.dll

1] System.Xml.dll

o] System.Windows Forms.dl

: B System.Drawing. dll

|4 system.di

| System.Deployment. dl

| [4] System.Data.dl

[9] system.Data.DataSetExtensions.dl

[System.care.dl

2 System. Configuration. dll

| A mscorlib.dl

: B Micrasoft. VisualStudio. HostingProcess., Utilities. Syne.dl
|4 Micrasoft VisuslStudio, HastingProcess, Uilities. di
| ebugger. Runtime. dil

Figure 15-18

X F

orml.cs |

1 %WlndowsﬁpnfUtll.Forml

| % calmathiniy

}

private vold Forml Load({object sender, Eventlirgs e

CallstringUtil():

private void CallMathUtil()
e
HathUtil.Utils util = new MathUtil.Ucils():
MessageEBox.3how (util.Fibonacel (7) . ToString())
i
private vold CallStringUtil()
{
StringUtil.Utils util = new StringUcil.Utilsi():
HMessageBox.Show(util. . ValidateEmail |
"geimengleel learnzdevelop.net™) . ToStringi()) :

Press F11 a few times to step out of the callMathutil () function until you step into
CallStringUtil (). See that the StringUtil.netmodule is now loaded (see Figure 15-19).

%8 MathUtil (Debugging) - Microsoft ¥isual Studio

File Edit Aew Project EBuild Debug Data Tools Test Analyze Window Help
T - IR A R : || @ cose 2l
FEYT : =)
Modules | - B N]
"'_""N-amE - T .é"scauﬁtringut“o -

| 1|1 % windowsapp Ut Formt -
e windowsapp_Lkil, vshost.exe il
| 2] windowsapp_Lkl, exe
|4 rils.dl

| 4 System, xml.Ling.dll
Iﬂ System, Xml.dll

| l’J System, Windows, Forms.dll |
2] System, Drawing, dll | 3
2] System, dll

| B} System, Deployment. dil
| 2] System, Data,dll

B
| t‘]j S"Stem‘Data':I“atasetEXtE”””s'd" MathUtil.Ucils util = new MathUtil.Ucils():
& System.Lore. MessageBox. Show (util.Fibonacci(7) .To3tringi)) ;

System, Configuration, dil
Stringl trnodule I B !
d = private woid Call3tringUtil ()

| 12 mscorlib.di |

| & Microsoft VisualStudio, HostingProcess, Utilities, Sync.dil [|{
| 2] Microsoft, VisualStudio,HostingProcess, Utilities, dil
2] Microsoft, VisualStudio,Debugger, Runtime.dll

| 2] mathut. netmoduls

¥

= rrivate wvold Forml Load{chject sender, Eventlirgs e

Call3tringUcil():

= private woid CallMathlUtil()
{

StringUril.Utils util = new StringUcil.Ucils();
MessageEBox.3how(util.ValidateEmail |
"yeimengleel learnidevelop.net™) . To3tringi)) ;

Figure 15-19

479

Part |: C# Fundamentals

This example proves that modules in an assembly are loaded only as and when needed. Also, when
deploying the application, the Util.d11 assembly and the two modules must be in tandem. If any of the
modules is missing during runtime, you will encounter a runtime error, as shown in Figure 15-20.

Microsoft .NET Framework

5

Continue. the application will ignare this errar and attempt to continue. 1f

Unhandled exception has occurred in vour application. If vou click
Q you click Quit, the application will close immediately.

Could not load file or assembly ‘StinglItl netmodule’ or one of its
dependencies. The system cannot find the file specified.

T —r—

|See the end of this message for details on invoking
just-in-time: [JIT) debugging instead of this dialog box.

Erception Text
System |0 FileNotF oundE kception: Could not load file or assembly 'S tingUtl netmady
File name; 'StinglJtil.netmodule’ ---» System.|0.FileM otF oundE xception: The spstem c
at Windowsbpp_ UL Form1.CallS tinglJ)
at Windowsbpp ULFoiml.Form1_Load(Object sender, Eventérgs] in C:A\Docum
at Spstem.windows.Forms.Form. OnLoad(E ventargs =)
at Spstem.windows.Farms. Form. OnCreateControl(] hdl

< I | >

Figure 15-20

Understanding Namespaces and Assemblies

As you know from Chapter 1, the various class libraries in the .NET Framework are organized
using namespaces. So how do namespaces relate to assemblies? To understand the relationship
between namespaces and assemblies, it’s best to take a look at an example.

Create a new Class Library project in Visual Studio 2008, and name it ClassLibraryl. In the default
Classl.cs, populate it with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Learn2develop.net

{
public class Classl
{
public void DoSomething ()
{
}
}
}

480

Chapter 15: Assemblies and Versioning

Observe that the definition of Class1 is enclosed within the Learn2develop.net namespace. The class
also contains the DoSomething () method.

Add a new class to the project by right-clicking on the project’s name in Solution Explorer and
selecting Add = Class (see Figure 15-21).

%
BB E ES

[5A Solution ‘ClassLibrary1' (1 project)
= .‘E ClassLibraryl
: % Buid

Rebuild

Clean

Fun Code Analysis

Calculate Code Metrics

Add 4 Mew Ttem, .,

Add Reference... Existing Ttem...

Add Service Reference... Mew Folder

5‘4 View Class Diagram windows Form. ..

B i

Set as Startlp Project User Contral,..
Debug Y| Component..,
& | Cut A2 Class,.,

Figure 15-21

Use the default name of Class2.cs. In the newly added Class2.cs, code the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Learn2develop.net

{
public class Class2
{
public void DoSomething ()
{
}
}
}

Class?2 is enclosed within the same namespace — Learn2develop.net, and it also has a
DoSomething () method. Compile the ClassLibraryl project so that an assembly is generated in
the bin\Debug folder of the project — ClassLibraryl.dll. Add another Class Library project to the
current solution and name the project ClassLibrary?2 (see Figure 15-22).

481

Part |: C# Fundamentals

2 aEA
D Salution 'ClassLibraryl’ (2 projects)
= EEIassLibraryl

[H- [5d] Properties

[#- (=3 References

L dasslocs

o] Classz.cs
[=d] Properties
[:al References
o @) Classl.cs

Figure 15-22

Populate the default Classl.cs as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Learn2develop.net
{
public class Class3

{
public void DoSomething ()
{
}
}
}
namespace CoolLabs.net
{
public class Classb
{
public void DoSomething ()
{
}
}
}

This file contains two namespaces — Learn2develop.net and CoolLabs.net — each containing a
class and a method.

Compile the ClassLibrary?2 project so that an assembly is generated in the bin\Debug folder of the
project — ClassLibrary2.d11.

Now, add another Class Library project to the current solution, and this time use the Visual Basic
language. Name the project ClassLibrary3 (see Figure 15-23).

482

Chapter 15: Assemblies and Versioning

Project types: Templates: “MET Framework 3.5 Bt
§WCE A|| visual Studio installed templates
L_%, @
=) Other Languages wWindows
- Office WPF Browser Console Excel 2007 Cutlook 2007 WCF Service
orkflow word 2007 Windows Dynamic Data Dynamic Data

- WorkFlow
ASP.MET Web ASP.MET Web WPF
(= Visual Basic Forms fi...
atabase Application Application ‘Workbook, AddHin Application
| Docurment Forms Cont... Entities We.., ‘Web Applic...

[#- Microsoft SQL Server
Web i ["B%
- Smart Device [Y] "_-x-: 1]
CF

[=)-Datahase Projects
|
|
Application Service Ap... Application =
- Windoves |
|
|
eporting
H PR
m B % ®
=

- Mictial Ct

A project For creating a ¥B class library (.dil} (. MET Framework 3.5)

Mame: | ClassLibrary3 |

Location: | C:\Documents and Settings|wiei-Meng LeeMy Documents) visual Studio Z008\Projects ~ | [Browse. ..]

Figure 15-23

In the Properties page of the ClassLibrary3 project, set its root namespace to Learn2develop.net
(see Figure 15-24).

8 ClassLibrary1 - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Test Analyze Window Help
-E-EdE e %@ 965 E | b Debug - Any CPU - | [B§ chose
g 4‘El.assi_-ii:irary:é_ N .
i —
o
|l
g I Application
= Configuration: | N/& PlatForm: | NfA
| Compile
Assembly name: Rook namespace:
Debug
|CIassLibrary3 ‘ ‘LE&H‘IZdEVElUD.I‘IEt
References
Il Application bype:
FEEGUESE |Class Library
it Startup object:
|(None) v‘
Settings
Assembly Information
Signing
ble applicati ok
My Extensions
Windows application Framework properties
Code Analysis
=

Figure 15-24

In the default class1.vb, define Class4 and add a method to it:

Public Class Class4
Public Sub DoSomething ()
End Sub

End Class

483

Part |: C# Fundamentals

Compile the ClassLibrary3 project so that an assembly is generated in the bin\Debug folder of the
project — ClassLibrary3.dll.

Now add a new Windows application project (name it WindowsApp) to the current solution so that you
can use the three assemblies (ClassLibraryl.dll, ClassLibrary2.dll, and ClassLibrary3.d1l1)
that you have created.

To use the three assemblies, you need to add a reference to all of them. Because the assemblies are
created in the same solution as the current Windows project, you can find them in the Projects tab of the
Add Reference dialog (see Figure 15-25).

e

Add Reference |1H1|

| MET [com | Prajects |Browse | Recent |

Project Mame = ject Direckary

Figure 15-25

In the code-behind of the default Form1, type the Learn2develop.net namespace, and IntelliSense will
show that four classes are available (see Figure 15-26).

privace void Forml Load{okject sender, Eventlirgs e)
{
Learnzdevelop.net.

ezl
“f Classz
} % Class3

2 Class4

Figure 15-26

Even though the classes are located in different assemblies, IntelliSense still finds them because all these
classes are grouped within the same namespace. You can now use the classes as follows:

Learn2develop.net.Classl cl = new Learn2develop.net.Classl();
cl.DoSomething () ;

Learn2develop.net.Class2 c2 = new Learn2develop.net.Class2();
c2.DoSomething () ;

484

Chapter 15: Assemblies and Versioning

Learn2develop.net.Class3 c3 = new Learn2develop.net.Class3();
c3.DoSomething () ;

Learn2develop.net.Class4 c4 = new Learn2develop.net.Class4();
cd4 .DoSomething () ;

For class5, you need to use the CoolLabs.net namespace. If you don’t, IntelliSense will check against
all the referenced assemblies and suggest an appropriate namespace (see Figure 15-27).

|The type or namespace name 'Classs' could not be Found {are you missing a using directive or an assembly reference?)\

Classls c5;
=] |

"() using CoolLabs.net;

CoolLabs, net.Classs

Figure 15-27

You can use Class5 as follows:

CoolLabs.net.Classb5 ¢5 = new CoolLabs.net.Class5();
c5.DoSomething () ;

Namespace Alias

There are times when you want to specify the fully qualified name of a class so that
your code is easier to understand. For example, you usually import the namespace of a
class and use the class like this:

using CoolLabs.net;

/...
Classb c¢5 = Classbh();
c5.DoSomething () ;

However, you might want to use the fully qualified name for Class5 to make it clear
that Class5 belongs to the CoolLabs . net namespace. To do so, you can rewrite your
code like this:

CoolLabs.net.Class5 c¢5 = new CoolLabs.net.Class5() ;
c5.DoSomething () ;

But the CoolLabs .net namespace is quite lengthy and may make your code look long
and unwieldy. To simplify the coding, you can give an alias to the namespace, like this:

using cl = CoolLabs.net;

/...
cl.Class5 c5 = cl.Class5();
c5.DoSomething () ;

Then, instead of using the full namespace, you can simply refer to the CoolLabs.net
namespace as cl.

485

Part |: C# Fundamentals

To summarize, this example shows that:

0 Classes belonging to a specific namespace can be located in different assemblies.
0 Anassembly can contain one or more namespaces.

0 Assemblies created using different languages are transparent to each other.

Private versus Shared Assemblies

So far, all the assemblies you have seen and created are all private assemblies — that is, they are used
specifically by your application and nothing else. As private assemblies, they are stored in the same
folder as your executable and that makes deployment very easy — there is no risk that someone else has
another assembly that overwrites yours particular and thus breaks your application.

DLL Hell

If you programmed prior to the .NET era, you've no doubt heard of (maybe even
experienced) the phrase DLL Hell. Suppose that you have installed an application on
your customer’s computer and everything works fine until one day your customer
calls and says that your application has suddenly stopped working. Upon probing, you
realize that the customer has just downloaded and installed a new application from
another vendor. Your application stopped working because one of the libraries (DLLs)
that you have been using in your application has been overwritten by the application
from the other vendor. And because your application could no longer find the
particular DLL that it needs, it ceases to work.

NET eliminates this nightmare by ensuring that each application has its own copy of
the libraries it needs.

But assemblies can also be shared — that is, used by more than one application running on the computer.
Shared assemblies are useful if they provide generic functionalities needed by most applications. To
prevent DLL Hell, Microsoft has taken special care to make sure that shared assemblies are well
protected. First, all shared assemblies are stored in a special location known as the Global Assembly
Cache (GAC). Second, each shared assembly must have a strong name to uniquely identify itself so that
no other assemblies have the same name.

A strong name comprises the following:

0O Name of the assembly
O Version number

Q Public key
Qa

Culture

486

Chapter 15: Assemblies and Versioning

Understanding Cryptography

In the world of cryptography, there are two main types of encryption and encryption
algorithms — symmetric and asymmetric.

Symmetric encryption is also sometimes known as private key encryption. With private
key encryption, you encrypt a secret message using a key that only you know. To decrypt
the message, you need to use the same key. Private key encryption is effective only if the
key can be kept a secret. If too many people know the key;, its effectiveness is reduced.

Imagine that you are trying to send a secret message to your faraway friend, Susan, using
a private key. For Susan to decrypt the secret message, she must know the private key. So
you need to send it to her. But if the secrecy of the key is compromised somehow (such as
through people eavesdropping on your conversation), then the message is no longer
secure. Moreover, if Susan tells another friend about the private key, her friend can then
also decrypt the message. Despite the potential weakness of private key encryption, it is
very easy to implement and, computationally, it does not take up too many resources.

Private key encryption requires that the key used in the encryption process be kept a
secret. A more effective way to transport secret messages to your intended recipient is to
use asymmetric encryption (also known as public key encryption). In public key
encryption, there is a pair of keys involved. This pair, consisting of a private key and a
public key, is related mathematically such that messages encrypted with the public key
can only be decrypted with the corresponding private key. The contrary is true; messages
encrypted with the private key can only be decrypted with the public key. Let’s see an
example for each scenario.

Before you send a message to Susan, Susan needs to generate the key pair containing the
private key and the public key. Susan then freely distributes the public key to you

(and all her other friends) but keeps the private key to herself. When you want to send a
message to Susan, you use her public key to encrypt the message and then send it to her.
Upon receiving the encrypted message, Susan proceeds to decrypt it with her private key.
In this case, Susan is the only one who can decrypt the message because the key pair
works in such a way that only messages encrypted with the public key can be decrypted
with the private key. Also, there is no need to exchange secret keys, thus eliminating the
risk of compromising the secrecy of the key.

The reverse can happen. Suppose Susan now sends a message encrypted with her private
key to you. To decrypt the message, you need the public key. The scenario may seem
redundant because the public key is not a secret; everyone knows it. But using this
method guarantees that the message has not been tampered with and that it indeed
comes from Susan. If the message had been modified, you would not be able to decrypt
it. The fact that you can decrypt the message using the public key proves that the
message has not been modified.

In computing, public key cryptography is a secure way to encrypt information. However,
it is computationally expensive, because it is time-consuming to generate the key pairs
and to perform encryption and decryption. It is usually used for encrypting a small
amount of sensitive information.

487

Part |: C# Fundamentals

To deploy an assembly as a shared assembly, you need to create a signature for your assembly by
performing the following steps:

1. Generate a key pair containing a private key and a public key.

2. Write the public key to the manifest of the assembly.

3. Create a hash of all files belonging to the assembly.

4. Sign the hash with the private key (the private key is not stored within the assembly).

These steps guarantee that the assembly cannot be altered in any way, ensuring that the shared assembly
you are using is the authentic copy provided by the vendor. The signature can be verified using the
public key.

The following sections will show you how to perform each of these steps.

For the client application using the shared assembly, the compiler writes the public key of the shared
assembly to the manifest of the client so that it can unique identify the shared assembly (only the last

8 bytes of a hash of a public key are stored; this is known as the public key token and is always unique).
When an application loads the shared assembly, it uses the public key stored in the shared assembly to
decrypt the encrypted hash and match it against the hash of the shared assembly to ensure that the
shared assembly is authentic.

Creating a Shared Assembly

You'll better understand how to create a shared assembly by actually creating one. In this example, you
create a library to perform Base64 encoding and decoding. Basically, Base64 encoding is a technique to
encode binary data into a text-based representation so that it can be easily transported over networks
and Web Services. A common usage of Base64 is in emails.

Using Visual Studio 2008, create a new Class Library project and name it Base64Codec. In the default
Classl.cs, define the Helper class containing two methods — Decode () and Encode ():

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Baseb64Codec
{
public class Helper
{
public byte[] Decode(string base64string)
{
byte[] binaryData;
try
{
binaryData =
Convert.FromBase64String (base6b4string) ;
return binaryData;

488

Chapter 15: Assemblies and Versioning

catch (Exception)

{
return null;
}
}
public string Encode (byte[] binaryData)
{
string base64String;
try
{
baseb4String =
Convert.ToBase64String (
binaryData, 0, binaryData.Length);
return base64String;
}
catch (Exception)
{
return string.Empty;
}
}

Creating a Strong Name

To create a strong name for the assembly, you need to sign it. The easiest way is to use the Properties page
of the project in Visual Studio 2008. Right-click on the project name in Solution Explorer, and select
Properties. Select the Signing tab (see Figure 15-28), and check the Sign The Assembly checkbox. Select
<New> from the Choose A Strong Name Key File dropdown list to specify a name for the strong name file.

8 Base64Codec - Microsoft Visual Studio

File Edit Wew Project Build Debug Data

AR - R IR A R

Tools Test Analyze

- v__;'L I Debug

Window

Help

* any CPU

+ | [close

- BasebdCodec | Classi.cs | Object Browser |

|><oq|oa L :ﬁ

Application
Configuration:

LIS
Build

Platfarm:

(BFFS

Bl BV Sign the ClickDrce marifests

Debug

Resources

Services

Jettings

| Refirencapathe Timestamp server LIRL:

More Details. ..

Signing

[+] sign the assembly

Select from Stare. .
Select FromiFile. .

Create Test Certificate. .

Choose a strong name key file;

<MEw,

<Browse. . >

Wwhen delay signed, the project will not run or be debuggable,

Code Analysis

Figure 15-28

Change Password..,

489

Part |: C# Fundamentals

In the Create Strong Name Key dialog (see Figure 15-29), specify a name to store the pair of keys
(KeyFile. snk, for instance). You also have the option to protect the file with a password. Click OK.

An SNK file is a binary file containing the pair of public and private keys.

Create Strong Name Key E\El

Key file name:

| KeyFile.snk. |

[Ceratect my key file with a pessword

Enter password:

Confirm password:

| |

Figure 15-29

A strong name file is now created in your project (see Figure 15-30).

solution Explorer - Solution 'Base...[%]
m Solution ‘Baseb4Codec’ {1 project)
=] @ﬂ Base64Codec

B [Ed] Properties

- [References

b 0] Classt.cs

Figure 15-30

Alternatively, you can also use the command line to generate the strong name file:

sn -k KeyFile.snk

Versioning

With .NET, you can create different versions of the same assembly and share them with other
applications. To specify version information, you can edit the AssemblyInfo.cs file, located under the
Properties item in Solution Explorer (see Figure 15-31).

Solution Explorer - Solution *Baseb4...[X]
2 5E B8

m Solution 'Baset4Codec (1 project)
= ;B Baseb4Codec

- [z References
‘Q Classl.cs
o '7—13 keyFile,snk

Figure 15-31

490

Chapter 15: Assemblies and Versioning

In the AssemblyInfo.cs file, locate the following lines:

// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

The version number of an assembly is specified using the following format:

[Major Version, Minor Version, Build Number, Revision]

The AssemblyVersion attribute is used to identify the version number of an assembly. Applications that
use this particular assembly reference this version number. If this version number is changed,
applications using this assembly will not be able to find it and will break.

The AssemblyFileVersion attribute is used to specify the version number of the assembly, and it
shows up in the properties page of the assembly (more on this in a later section).

Building the Assembly

Build the Class Library project so that Visual Studio 2008 will now generate the shared assembly and
sign it with the strong name. To examine the shared assembly created, navigate to the bin\Debug folder
of the project and type in the following command:

ildasm Base64Codec.dll

Figure 15-32 shows the public key stored in the manifest of the shared assembly.

MANIFEST
Eind Find Mext

/7 .custom instance void [mscorlib]System.Diagnostics.Debuggablenttribute::.ctor{ual A

.custom instance void [mscorlib]System.Runtime.CompilerServices.CompilationRelaxation
-custom instance wvoid [mscorlib]System_Runtime.CompilerServices.RuntimeCompatibilitynA

-publickey = (80 24 00 8P 04 80 6O 06 94 0O 00 00 D6 92 00 68
88 24 88 B8 52 53 41 31 688 B4 A8 88 81 88 81 68
ED BD 1B B8 94 F4 F6 S5E 61 88 2C 64 CE CC 18 45
7E 8A 9A F2 27 5F 15 D9 C1 8B 78 2B 84 AB FC 55
2C 2F E1 7F D6 56 59 11 6D 5A FF DD 64 AA CO A
27 DF 52 69 &C E5 AC ED CF 2C 78 65 2E C& 2E 31 --ape...1
EE 53 36 F4 33 18 44 A2 36 EB 71 75 B6 FO 77 39 F/ -536.3.D.6.qu..uw9
93 DB A3 9C F? &6 DB 1B BE 83 79 88 4F D7 CF 84 [. F....p.0...
2A 8F 88 33 B3 FB AB BB E3 56 SA B? B7 24 34 C8 o= .3..... uz. .38,
D2 3n BE 65 CB A2 B8 39 36 65 D5 2A A1 85 9C D6) /7 .:.e...96e.%._ ..

-hash algorithm 06x98008004

-ver 1:8:08:0

H

-module Base6i4Codec.dll

£ MUID: {3662C6C6-A913-4CEF-ANIL-SES3IBTL1CBCE}
.imagebase 0x80400000

£ |

Figure 15-32

|
|i€

You can obtain the public key token of the shared assembly by using the following command:

sn -T Baseb64Codec.dll

491

Part |: C# Fundamentals

Figure 15-33 shows the public key token displayed in the console window. Note this number because
you will use it for comparison later.

2008 Command Prompt

C:“Documents and SettingssUeiMeng LeesMy NocumentsS\Uisual Studio ZBBS\Prnjects\u
Baseb64Codechin\Debug —T Baseb4Codec.dll l

Microsoft (R> .NET Framework Strong Mame Utility Uersion 3.5.21822.8
Copyright (c> Microsoft Corporation. All rights reserwved.

EPuhlic key token is 2a7dedec4fchB@hbb

C:~Documents and SettingssWei—Meng Lee“My Documents\Uisual Studio 2088\Projects\
Baseb4Codec hin«Debug>

Figure 15-33

The Global Assembly Cache

Now that you have created a shared assembly, the next task is to put it into the GAC. The GACis a
central repository of .NET assemblies that can be shared by all applications. There are several reasons
why you should put your shared assembly into the GAC, some of which are:

Q Security — Assemblies stored in the GAC are required to be signed with a cryptographic key.
This makes it difficult for others to tamper with your assembly, such as replacing or injecting
your shared assembly with malicious code.

0 Version management — Multiple versions of the same assembly can reside in the GAC so that
each application can find and use the version of your assembly to which it was compiled. This
helps to avoid DLL Hell, where applications compiled to different versions of your assembly can
potentially break because they are all forced to use a single version of your assembly.

O Faster loading — Assemblies are verified when they are first installed in the GAC, eliminating
the need to verify an assembly each time it is loaded from the GAC. This improves the startup
speed of your application if you load many shared assemblies.

The GAC is located in <windows_directory>\ Assembly. In most cases, it is C:\Windows\ Assembly.
When you navigate to this folder by using Windows Explorer, the Assembly Cache Viewer launches to
display the list of assemblies stored in it (see Figure 15-34).

& assembly

File Edit “ew Favorites Tools Help f'
Address |\E| CHWINDOW S assembly v‘ G0
Assembly Name] Version J Culbure] Public Key Token J Proces. ..] ~
Hﬁlsystem 20,00 b77a5c561934e089 MSIL
dg‘system.ﬂdd[n 3500 b77a5c561934e059 M3IL
H@System.ﬂdd[n.cuntract 2.0.00 bO3fsf7F11ds0a3a MSIL
Hﬁlsystem.CompnnentModeI.DataAnnotatans 3500 31bf3856ad364e35 MSIL
aﬁ]system.canﬁguratmn 2.0.00 bO3fsf7F11ds0a3a MSIL
aﬁ]system.Conﬁguratmn‘lnstal\ 20,00 bO3fsf7F11ds0a3a MSIL
dﬁ]System.Core 3500 b77a5c561934e089 MSIL
aﬁ]system.Data 2.0,0.0 b77a5c561934e089 ®B6
Hﬁlsystem.Data.DataSetExtenslons 3500 b77a5c561934e089 MSIL
dﬁ]System.Data.Entlty 3500 b77a5c561934e089 MSIL
aﬁ]system.Data.Ennty.Deslgn 3500 b77a5c561934e089 MSIL
Eﬁlsystem.Data.L\nu 3500 b77a5c561934e089 MSIL =]
Eﬁlsystem.Data.OracIeCIlent 2.0.00 b77a5c561934e089 86
Eﬁlsystem.Data.Serwces 3500 b77a5c561934e089 MSIL
jgsystem.Data.Serwces.Chent 3500 b77a5c561934e089 MSIL =

Figure 15-34

492

Chapter 15: Assemblies and Versioning

Putting the Shared Assembly into GAC

To put the shared assembly that you have just built into the GAC, drag and drop it onto the Assembly
Cache Viewer. Alternatively, you can also use the gacutil.exe utility to install the shared assembly into
the GAC (see Figure 15-35):

gacutil /i Base64Codec.dll

Yisual Studio 2008 Command Prompt

Microsoft (R> _NET Gloim

IC:~Documents and Sett =Mang Laa DocunagtssUisual Studio ZBBS\Pl-ojects\B
. l

Azsembly successfully added to the cache

IC:“Documents and Settingz“Wei-Meng Lee My DocumentsUisual Studio 2808“Projects\|
Baseb4CodecshinsDebug?

Figure 15-35

If you are using Windows Vista, make sure to run the command prompt as
Administrator.

If the installation is successful, you will see the shared assembly in the Assembly Cache Viewer
(see Figure 15-36).

& assembly = ‘EJE'
Elle Edt Miew Favorites Tools Help 1','
= = . »
Q Back = J .? _/‘) Search |{— Folders E Iﬂ x v
Address |53 C:\WINDOWS) asserbly v B s
Assembly Mame J “Wersion J cul. J Public key Token] Proces.. [~
3ﬁ1ﬂccessihi\ity 2.0.0.0 bO3FSF7F11d50a3a MSIL T
’ﬁ‘h’\DODB 7.0.3300.0 bO3FSF7F11d50a3a
0,00 bO3FoF7E11do0a3a [M3IL,
1.0.0.0 2a7dedec4fcbObbe MSIL I
ppiodeProvider a.0.0.0 bO3FaF/F11d50a3a M3IL
uﬁ'lCRVsPackageLib 10.5.3700.0 692fbeas521e1304 MSIL
dﬁ'lCrystaIDecisions.Crys... 10.5.3700.0 692fbeat521e1304 MSIL
aﬁ'lCrystaIDecisions.Crys... 10.5.3700.0 692fbeatS21e1304 MSIL
1&1 CrystalDedsions,Data, .. 10.5.3700.0 692fbeats21e1304 MSIL 3
- PR R o, 1A Aman A FAACL - rEAd AR]
< | BB

Figure 15-36

The version number displayed next to the DLL is specified by using the AssemblyVersion attribute
in the AssemblyInfo.cs file (as discussed earlier). Select the Base64Codec DLL, and click the Properties
button (the button with the tick icon) to see the Properties page as shown in Figure 15-37.

493

Part |: C# Fundamentals

;84 Base64Codec Properties

General] Yersion 1

s

Nare! BascedCodec

Processor Architecture: MSIL

Last: Modified: 7i11/2008 9:39:12 &M
Culkure: Meutral

Wersion: 1.0.0.0

Public Key Token: Za?dedecdfcbObbs
CodeBase:

oK | Cancel Help

Figure 15-37

The version number displayed in this page is specified using the AssemblyFileVersion attribute.

To install different versions of the same assembly to the GAC, simply modify the version number in
AssemblyInfo.cs (via the AssemblyVersion attribute), recompile the assembly, and install it into
the GAC.

Physically, the shared assembly is copied to a folder located under the GAC_MSIL subfolder of the GAC,
in the following format:

<Windows_Directory>\assembly\GAC_MSIL\<Assembly_ Name>\<Version>_<Public_Key_Token>
In this example, it is located in:
C:\Windows\assembly\GAC_MSIL\Base64Codec\1.0.0.0_2a7dec4fb0bb6

Figure 15-38 shows the physical location of the Base64Codec.dl1 assembly.

sual Studio 2008 Command Prompt

C:~HINDOWS “assemblyN\GAC_MS L Baseb4Codec~1.8.8.0__ 2aYdedec4f chBbbb >dir v
Uolume in drive C has no lahel.
Uolune Serial Number iz B4B6—8381

Directory of GCisWINDOWS\assemhlyN\GAG_MSIL\Base64Codec™1.8.8.8__2a?dedec4fchB@hbb

[.] o Baseb4Codec.dll
i 3 4,688 bytes
113,.585.348.688 hytes free

C:~HINDOWS“assembly~GAC_MSI[L Baseb4Codec~1.8.0.8_ 2a?dedecdfchBbhb>_

Figure 15-38

494

Chapter 15: Assemblies and Versioning

Making the Shared Assembly Visible in Visual Studio

By default, adding a shared assembly into the GAC does not make it appear automatically in Visual Studio’s
Add Reference dialog. You need to add a registry key for that to happen. Here’s how to handle that.

First, launch the registry editor by typing regedit in the Run command box.

If you are using Windows Vista, make sure to run regedit as Administrator.

NaVigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders
key. Right-click on the AssemblyFolders key and select New = Key (see Figure 15-39).

223 Microsoft

4

m 23 palicy
&2 Security

fa Mlcmi

[:I Sym

-3 Syme
-E3 Thlrty
-3 v3.0 \

(B ER

| ®-{3 MNETCompactFramework

- =03 NETFramewaork

RS ot |
i -[:l ADOk

-3 MIEFD#

Collapse
New
Find..

-3 Mlcm# -
-{Z0 Micros
-3 soL 9

Delete
Rename

Export
Permissions...

Copy Key Mame

Skring Value

Binary Value

DWW ORD Yalug
Mulki-String Value
Expandable String Yalue

|

=)

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE Micrasoftl, METFrameworki AssemblyFolders I

Figure 15-39

Name the new key Base64Codec. Double-click on the key’s (Default) value, and enter the full path of
the shared assembly (for example, C: \Documents and Settings\Wei-Meng Lee\My Documents\
Visual Studio 2008\Projects\Base64Codec\bin\Debug; see Figure 15-40).

#:| Registry Editor

File Edit Yiew Favorites Help

LB

3

@[3 Macromedia

- =3 Microsoft

i EI METCompactFramework,
=] (23 METFramewark

13 AssemblyFolders
{23 ADOMD. Client

D Micrasoft (MET Frames
4 {23 Microsoft JMET Framey
(2] Microsoft SGL Server ¢
D Microsoft Synchronizat
D SOL Server Assemblies

- (13 symbol RFIDZ

(23 9ymbol Technologies

D ThirkyTwoFest
D v3.0
H D V¥3.5

13

I

>

8] (mefauley

Mame

Tvpe
REG_SZ C:\Documents and Settings)iWei-Meng Lee\My Docum. ..

Data

My Computer\HKEY _LOCAL_MACHIMELSOFTWARE Y Microsoft), NETFramework) AssemblyFoldersiBasefid4 Codec

Figure 15-40

Then restart Visual Studio 2008, and the assembly should appear in the Add Reference dialog.

495

Part |: C# Fundamentals

Using the Shared Assembly

Let’s now create a new Windows application project to use the shared assembly stored in the GAC.
Name the project winBase64.

To use the shared assembly, add a reference to the DLL. In the Add Reference dialog, select the
Base64Codec assembly, as shown in Figure 15-41, and click OK.

Add Reference @

WMET ‘ COM | Projects | Browse H Recent |

Component Mame = ‘ersion Rurttime: Path o
Accessibility Z.0.0.0 v2.0.50727 CAMINDOWSIMi—
adodb 7033000 w1.1.4322 CiiProgram Files'
adodb 7.0.33000 w1.1.4322 CiProgram Files'
adodb 7.0.3300.0 +1.1.4322 C:\Program Files'

2,0.0.0 v20.50727 CHWMINDOWSIMI

AsphetMMCE:xt

8 .0, i Tl les'
Crystal Reports for \WET Fram... 10.5.370... +2.0.507%7 C:\Program Files'
CrystalDecisions, CrystalReport,,, 10,5370, v2.0.50727 Ci\Program Files'
CrystalDecisions, ReportSource 10,5,370,,, ~2.0.50727 CiProgram Files'

CrystalDecisions. Shared 10.5.370... «2.0.50727 C:\Program Files'
CrystalDecisions, WShesigner 105,370, v2.0.50727 C:\Program Files'
CrystalDecisions, Web 10,5,370,,, v2.0.50727 CiProgram Files'
CrystalDecisions Windows Farms 10,5370, +2.0.50727 <i\Program Files'
cscompmgd &.0.0.0 w2.0.50757 CHMINDOWS|M v
< 1 | ¥

Figure 15-41

Note in the Properties window that the Copy Local property of the Base64Codec is set to False
(see Figure 15-42), indicating that the assembly is in the GAC.

Solution Explorer - Solution "WinBaseb4' (1 P[]

«id Syskem
«2 System.Core
«3 System.Data
-« System,Data DataSetExtensions
<3 System.Deployment
=~ System.Drawing
(3 System.Windows Forms
-« System.Xml
: =23 System.xml.Ling
2 B Forml.ce Copy Local
- '8 Fomt Designer.cs Indicates whether the reference will be copied ta the
- FormLresx output directary.
L,‘g Program,cs

m Solution “winBasead' {1 project)

- (] WinBasebd Properties 5]
- i| Properties
5 Base64Codec Reference Properties -
- eferences
{3 BasefdCodec

ks and Settings) 8

Figure 15-42

496

Chapter 15: Assemblies and Versioning

Populate the default Forml with the controls shown in Figure 15-43 (load the pictureBox1 with a
JPG image).

Button contral
(btnTest)

¥

C# 2008

| al

Picturegox control PictureBox control
(picturesoxl)

{pictureBoxz)
Figure 15-43

In the code-behind of Form1, define the two helper functions as follows:

Remember to import the System.I0 namespace for these two helper functions.

public byte[] ImageToByteArray (Image img)
{

MemoryStream ms = new MemoryStream() ;

img.Save (ms, System.Drawing.Imaging.ImageFormat.Jpeg) ;
return ms.ToArray () ;

}

public Image ByteArrayToImage (byte[] data)
{

MemoryStream ms = new MemoryStream(data) ;
Image img = new Bitmap (ms);
return img;

Code the Test button as follows:

private void btnTest_Click(object sender,

{

EventArgs e)

//---create an instance of the Helper class---

Baseb64Codec.Helper codec = new Base64Codec.Helper();

//---convert the image in pictureBoxl to base64---

(continued)

497

Part |: C# Fundamentals

(continued)

string base6dstring =
codec.Encode (ImageToByteArray (pictureBoxl.Image)) ;

//---decode the baseb4 to binary and display in pictureBox2---
pictureBox2.Image = ByteArrayToImage (codec.Decode (baseb4string)) ;

Here you are creating an instance of the Helper class defined in the shared assembly. To test that the
methods defined in the Helper class are working correctly, encode the image displayed in pictureBox1
to base64, decode it back to binary, and then display the image in pictureBox2.

Press F5 to test the application. When you click the Test button, an identical image should appear on the
right (see Figure 15-44).

 _‘

Figure 15-44

Examine the manifest of the WinBase64 . exe assembly to see the reference to the Base64Codec assembly
(see Figure 15-45). Observe the public key token stored in the manifest — it is the public key token of the
shared assembly.

¥ MANIFEST

Find Find Mext

-publickeytoken = (B7 7A 5C 56 19 34 E@ 89) oz
.ver 2:8:0:8

.assembly extern System.Drawing

{
.publickeytoken = (B8 3F 5F 7F 11 D5 @A 3a) &
-ver 2:0:0:8 =

.assembly extern BasedhCodec

.publickeytoken = {(2A 7D ED EC 4F CB OB B6) flo=}
ver 1:8:8:8

H
SASSEMDLY] WinbBaseod
{

.custom instance woid [mscorlib]System.Reflection.AssemblyGonfigurationAtt
.custom instance woid [mscorlib]System.Reflection.AssemblyConpanyAttribute
-custom instance void [mscorlib]System.Runtime.CompilerServices._ RuntimeCom

.custom instance void [mscorlib]System.Reflection.AssemblyTrademarkAttribu
cuctnm inctanca nnid FmecorlihiSuctanm Runtine MomnilerSoruicac Nomnilatin

£ i

Figure 15-45

~

498

Chapter 15: Assemblies and Versioning

Summary

This chapter explained the parts that make up a .NET assembly. Splitting your application into multiple
assemblies and modules will make your application easier to manage and update. At the same time, the
CLR will only load the required assembly and modules, thereby making your application more efficient.
If you have a shared assembly that can be used by other applications, consider deploying it into the
Global Assembly Cache (GAC).

499

Part Il

Application
Development Using C#

Chapter 16: Developing Windows Applications
Chapter 17: Developing ASP.NET Web Applications
Chapter 18: Developing Windows Mobile Applications
Chapter 19: Developing Silverlight Applications

Chapter 20: Windows Communication Foundation

16

Developing Windows
Applications

Chapters 16-19 show how you can use the C# language to create a different type of application.
This chapter tackles Windows application development. The best way to learn a language is to
actually work on a real project from the beginning to deployment. So, this chapter leads you
through creating a Windows application that performs some useful tasks and then shows you how
to deploy it using a technique in Visual Studio known as ClickOnce.

Specifically, the Windows application you build in this chapter demonstrates how to:

Q Programmatically access FTP servers using the FtpWebRequest and FtpWebResponse
classes (both derived from the WebRequest and WebResponse classes in the System.Net
namespace)

Q Incorporate printing capability in your Windows application using the PrintDocument
class (located in the System.Drawing.Printing namespace)

0 Deploy a Windows application using ClickOnce. You will also see how to
programmatically cause an application to update itself.

The Project

The project in this chapter is a photo viewer Windows application that accesses an FTP server.
Using this application, users can upload photos to an FTP server and also download and view
images stored on the FTP server. The application is useful for companies that may need to access
images uploaded by their partners. Insurance companies, for instance, may need to access
photographs of car damage taken by auto body shop mechanics to facilitate estimating the cost of
repair. Rather than build a complex web application, the shops and insurance companies can
simply use this application to quickly upload and view photos. Users can also print the photos
directly from the application.

Part II: Application Development Using C#

Figure 16-1 shows how the application will look like when it is completed.

Photo Viewer,

FTP Server = = Selected Photo
Server NamedIP |ED:r"r"1 2r.001

User Name [anonymaus

Password i’“‘ -

Select folder

=@/

Lk,

Folders
New falder nams

| | [Create Folder]

[Remove Folder]

Fhatos
[Upload Phatos]

[Delete Photo] [Update] [Preview

Daownloading image. .. complete (Ftp:ff127.0.0,1/20 May 2008/vehicle no. 12345%,jpg)

Figure 16-1

Configuring the FTP Server

Before you start writing the code of this application, you first need to configure FTP service for your
computer. For this project, use the FTP service on your development machine.

By default, FTP service is not installed in Windows (note that FTP service is not
available on Windows Vista Home editions). To add FTP Service to your computer,
select Control Panel = Add or Remove Programs. Click the Add/Remove Windows
Component tab, select Internet Information Services (IIS), and click the Details
button. Select File Transfer Protocol (FTP) Service, and click OK.

To configure the FTP service on your computer, launch the Internet Information Services management
console window by typing the command —inetmgr in the Run window. Your FTP site should look like
Figure 16-2.

504

Chapter 16:

Developing Windows Applications

nternet Information Services

File Action View Help

o O@EEFB @

ol

m Internet Information Services
= B WINXPSP3 {local computer)
(1 web Sites

=[] FTP Site:

ault T
1+ @& Defaul SMTP Yirtual Server

Mame

| Path

|~

There are no items ko show in this view,

|+

Figure 16-2

Right-click the Default FTP Site item, and select Properties. Click the Security Accounts tab. Ensure that
the Allow Anonymous Connections checkbox is checked (see Figure 16-3) to enable an anonymous user

to log in to your FTP service.

Default FTP Site Properties

FTP Site | Security Accounts | Messages | Home Directary |

low Anonpmous Connections

Select the Windaws User Account ta use far anonymous access to this resource

Usemame: | IUSR_WINXPSP3

| [Erowse..

] Allows only anorypmous connections
[#] &llow 115 to control password

FTF Site Operators

‘ g Adrninistrators
Figure 16-3

Next, click on the Home Directory tab, and check the Write checkbox (see Figure 16-4). This allows users
to your FTP service to upload files and create directories on the FTP server.

505

Part II: Application Development Using C#

Default FTP Site Properties El@l

FTP Silé! Security Accounts Messages‘| Home Directory [

‘when connecting to this resource, the content should come from:
(@ ia directon located on this computer
() a share ocated on another computer
FTP Site Directory
Local Path: ‘ c:hinetpubhftproot | [Browse..

ead

Log wisits
Directory Listing Style
O UHIE ®
® M5-D0S &
Figure 16-4

Click OK to finish the configuration of the FTP service.

Creating the Application

Using Visual Studio 2008, create a new Windows application and name it PhotoViewer. Populate the
default Form1 with the controls shown in Figure 16-5. These controls are:

Control Text Name

Button controls (4) Create Folder btnCreateFolder
Remove Folder btnRemoveFolder
Upload Photos btnUploadPhotos
Delete Photo btnDeletePhoto
GroupBox controls (3) FTP Server
Folders
Photos
Label controls (6) Server Name/IP
User Name
Password
Select folder
New folder name

Selected Photo

506

Chapter 16: Developing Windows Applications

Control

PictureBox

TextBox controls (4)

ToolStripStatusLabel

TreeView

contraol
control

GrouUpEoX

Lahel
Label control
Label control

Label control

Treeview control

Textgox control
(TxTUserKame)

TextBox control
(txtFTPSErver)

Photo Viewer

I FTP Server

— Server Name/IP

Text

TextBox control
(txtPassword)

— User Mame
— Password
— Select folder

ToolStripStatusLabell

Selected Phato

(Treeviewl)

GroupBox control
Lakel control
‘extBox control
tuthewFolder Name))
Button contral
Chtnremoverolder)
GroupBox control
gutton_control
(btnuploadrhotos)

Eutton control
(btnbeleterhotol

Figure 16-5

—H

—

gutton control
(btncreaterolder)

— Folders

—New folder name

—

! Create Folder

Femove Folder]

— Photos

Upload Photos

=2

Delete Photo

Name

PictureBoxl
txtFTPServer
txtUserName
txtPassword
txtNewFolderName
ToolStripStatusLabell

TreeViewl

Picturesox control

Label contraol (PictureBoxl)

ToDIStripSEatusLabell

ToolstripstatusLabel control
(ToolstripstatusLahell)

The source code for this project can be downloaded from Wrox’s web site at www . wrox . com.

507

Part II: Application Development Using C#

You'll also need to add an ImageList control (ImageListl) to Forml to contain three images

representing an opened folder, a closed folder, and an image file. You can specify these images in the
control’s Image property (see Figure 16-6).

Images Collection Editor

Members:

DPENFOLD, ICO properties:
: 1(¢] [EEpE
1| CLSDFOLD.ICO [-
2 |8 photaica B Misc
Name OPENFOLD.ICO

Add] [Remove

Figure 16-6
Set the control properties in the following table.

Control

Property Value
TreeViewl ImageList ImageListl
PictureBoxl SizeMode Zoom
txtPassword PasswordChar mxn

Using Application Settings
When users launch the PhotoViewer application, they need to supply three pieces of information to
access the FIP Server:

Q FTP Server name/IP address

a Username

Q Password

Because this information is needed every time the user uses the application, it would be helpful to save it

somewhere persistently so that the next time the user launches the application, it’s available without his
needing to type it in again.

508

Chapter 16: Developing Windows Applications

In Windows Forms, a feature known as application settings allows you to store information persistently in
a structured manner without resorting to using a database or forcing you to manually save it to a file.
So let’s see how application settings can help you in this instance.

Right-click on the PhotoViewer project in Solution Explorer and select Properties. In the Properties
page, click on the Settings tab and enter the three application settings in the following table

(see Figure 16-7).

Name Type Scope Value
FTP_SERVER string User ftp://127.0.0.1
UserName string User anonymous
Password string User password

2% PhotoViewer, - Microsoft ¥isual Studio

Reference Paths
Signing

Security

Publish

Code Analysis

Figure 16-7

Fle Edit ‘iew Project Build Debug Data Tools Test Apalyze window Help
RN W~ A TEENE- N I & - 5L b Debug = Ay CPU ~ | [# _passwor

}{; Photo¥iewer* Forml.cs =
5
)
e
g Application Synchronize [=] view Code | Access Modifier: Internal -
i
] e _ _ _ _
F:1 Application settings allow you to store and retrieve property settings and other information for wour
T X application dynamically, For example, the application can save a user's color preferences, then
o Build Events retrigve them the next time it runs, Learn more about application settings. ..
x
e
% Debug
= Mame Type Scope Yalue

Resoiess FTP_SERYER string ~ | User [ftpifi127,0,0.1

Services UserName string | Usar W anonymous

B Passward string “ | User “ |password
Settings® ' = i
| i * v v

As their names suggest, FTP_Server stores the name or IP address of the FTP server, UserName stores
the username used to log in to the FTP server, and Password stores the password used to log in to the

FTP server.

509

Part II: Application Development Using C#

Notice the following;:

Q The type of each application setting is string. You can also specify other .NET types for each
application setting.

Q The scope for each application setting is User. Application settings can be either user-scoped or
application-scoped. Application-scoped settings are not discussed because they are beyond the
scope of this book.

Q The default value for each application setting is also specified here.
Save the solution in Visual Studio 2008 so that the application settings can be saved.
Let’s examine the project a little closer to see how the application settings work. Figure 16-8 shows

the three files in Solution Explorer that are used to maintain your application settings (you need to
click the Show All Files button in Solution Explorer to view all these files).

_: Solution Photoviewer' (1 project)
= L] Photoviewer
=+ | Properties

]

BB E

o Gl d
[E] Form1.cs

2] Program.cs

&

L-—igSDIutlon Exzplorer !‘_7’5class Wiew |

Figure 16-8

The settings.settings file refers to the Settings page that you have been using to add the application
settings. The Settings.Designer.cs file is a compiler-generated file that contains the data types of the
various settings that you have defined. Here are the definitions for the various application settings:

namespace PhotoViewer.Properties
{
[global::System.Runtime.CompilerServices.CompilerGeneratedAttribute ()]
[global: :System.CodeDom.Compiler.GeneratedCodeAttribute (
"Microsoft.VisualStudio.Editors.SettingsDesigner
.SettingsSingleFileGenerator", "9.0.0.0")]
internal sealed partial class Settings
global::System.Configuration.ApplicationSettingsBase
{

private static Settings defaultInstance =
((Settings) (global::System.Configuration

.ApplicationSettingsBase.Synchronized(new Settings())));

public static Settings Default
{

510

Chapter 16: Developing Windows Applications

get

return defaultInstance;

[global: :System.Configuration.UserScopedSettingAttribute()]

[global: :System.Diagnostics.DebuggerNonUserCodeAttribute ()]

[global: :System.Configuration.DefaultSettingValueAttribute (
"ftp://127.0.0.1")]

public string FTP_SERVER

{
get
{
return ((string) (this["FTP_SERVER"])) ;
}
set
{
this["FTP_SERVER"] = value;

[global: :System.Configuration.UserScopedSettingAttribute ()]
[global: :System.Diagnostics.DebuggerNonUserCodeAttribute ()]
[global: :System.Configuration.DefaultSettingValueAttribute ("anonymous")]
public string UserName
{

get
{
return ((string) (this["UserName"])) ;
}
set
{
this["UserName"] = value;

[global: :System.Configuration.UserScopedSettingAttribute ()]
[global: :System.Diagnostics.DebuggerNonUserCodeAttribute ()]
[global: :System.Configuration.DefaultSettingValueAttribute ("password")]
public string Password
{

get
{

return ((string) (this["Password"]));

this["Password"] = value;

511

Part II: Application Development Using C#

The app. config file is an XML File containing the default values of your application settings.
Its content is:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<sectionGroup name="userSettings" type="System.Configuration.UserSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" >
<section name="PhotoViewer.Properties.Settings"
type="System.Configuration.ClientSettingsSection, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser"
requirePermission="false" />
</sectionGroup>
</configSections>
<userSettings>
<PhotoViewer.Properties.Settings>
<setting name="FTP_SERVER" serializeAs="String">
<value>ftp://127.0.0.1</value>
</setting>
<setting name="UserName" serializeAs="String">
<value>anonymous</value>
</setting>
<setting name="Password" serializeAs="String">
<value>password</value>
</setting>
</PhotoViewer.Properties.Settings>
</userSettings>
</configuration>

The highlighted code shows the settings that you added earlier and their default values. When the
project is compiled, this app . config file will be named <assembly_name>.exe.config and stored
in the bin\Debug (or bin\Release) folder of the project. For this project, the filename will be
PhotoViewer.exe.config

During runtime, any changes made to the application settings’ values will cause a user . config file to
be created in the following folder:

C:\Documents and Settings\<user_name>\Local Settings\Application Data\<application
name>\<application_name>.vshost.exe_Url_iwwpinbgsOmakur33stdvnin2nkwxgql\
<version_no>\

Notice the long string of random characters in the path. The folder name is generated by the system, and
each time you have a different folder name.

For this project, the user.config file will be stored in a folder with a name like this:

C:\Documents and Settings\Wei-Meng Lee\Local Settings\Application Data\PhotoViewer\
PhotoViewer.vshost.exe_Url_iwwpinbgsOmakur33stdvnin2nkwxggl\1.0.0.0

512

Chapter 16: Developing Windows Applications

The content of the user.config file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<userSettings>
<PhotoViewer.Properties.Settings>
<setting name="FTP_SERVER" serializeAs="String">
<value>ftp://127.0.0.1</value>
</setting>
<setting name="UserName" serializeAs="String">
<value>anonymousl</value>
</setting>
<setting name="Password" serializeAs="String">
<value>password</value>
</setting>
</PhotoViewer.Properties.Settings>
</userSettings>
</configuration>

Each user (of your computer) will maintain his own copy of the user.config file.

Coding the Application

Now to code the application. Switching to the code-behind of Form1, import the following namespaces:

using System.Net;
using System.IO;

Define the WebRequestMethod enumeration:

namespace PhotoViewer

{

enum WebRequestMethod

{
MakeDirectory,
DownloadFile,
ListDirectoryDetails,
RemoveDirectory,
DeleteFile

}

Declare the following constants and member variables:

public partial class Forml : Form

{
//---constants for the icon images---
const int ico_OPEN = 0
const int ico_CLOSE
const int ico_PHOTO =

’

1
2

In Forml, select the three TextBox controls (you can Ctrl+click each of them) that ask for the FTP server
name, user name, and password (see Figure 16-9). In the Properties window, double-click the Leave
property to generate an event handler stub for the Leave event.

513

Part II: Application Development Using C#

FTF Server - - Selected Phota
Server MamedIP |0 b

Ulser M.
sar Mame Propetties X
Password I
Select folder | =
DragOver)

EnabledChanged
Enter
FontChanged
ForeColorChanged
GiveFeedback
HelpRequested

Folders
Mew folder name

e L T HideSelectionChanged
| ‘ Create Folder] ImeModeChanged

[Remove Folder] Koylomn

KeyPress
Phuotos Keylp
[Upload Phatos] Layout

txtFTPServer_Leave ¥

[Delete Phata] LocationChanged

MarginChanged H

ToolStripStatusLabell ModifiedChanged

152

Leave

iccurs when the control is no longer the active control of the
farm,

Figure 16-9

Visual Studio 2008 then generates the txtFtpServer_Leave event handler:

private void txtFTPServer_Leave (object sender, EventArgs e)
{

The event handler is invoked whenever the focus leaves one of the three TextBox controls you have
selected. This is where you can save the information entered by the user into the application settings you
have created in the previous section.

Code the event handler as follows:

private void txtFTPServer_Leave (object sender, EventArgs e)

{
//---save the values in the textbox controls
// into the application settings---
Properties.Settings.Default.FTP_SERVER = txtFTPServer.Text;
Properties.Settings.Default.UserName = txtUserName.Text;
Properties.Settings.Default.Password = txtPassword.Text;
Properties.Settings.Default.Save() ;

}

You access the various application settings using the Properties.Settings.Default class
(as generated in the Settings.Designer.cs file). Once the application settings are assigned a value,
you need to persist them using the save () method.

514

Chapter 16: Developing Windows Applications

Building the Directory Tree and Displaying Images

When the form is loaded, you first load the values of the application settings into the TextBox controls,
and then display a node representing the root directory of the FTP server in the TreeView control:

private void Forml_Load(object sender, EventArgs e)

{

try
{

}

//---1load the application settings values

// into the textbox controls---

txtFTPServer.Text = Properties.Settings.Default.FTP_SERVER;
txtUserName.Text = Properties.Settings.Default.UserName;
txtPassword.Text = Properties.Settings.Default.Password;

//---create the root node for the TreeView---
TreeNode node = new TreeNode () ;
node.ImageIndex = ico_CLOSE;
node.SelectedImageIndex = ico_OPEN;

node.Text = @"/";

//---add the root node to the control---
TreeViewl .Nodes.Add (node) ;

//---add the dummy child node to the root node---
node.Nodes.Add("") ;

//---select the root node---
TreeViewl.SelectedNode = node;

catch (Exception ex)

{

MessageBox.Show (ex.ToString ()) ;

You will always add a dummy node in the Treeview control after a node is created to ensure that the
current node can be expanded to reveal subdirectories (even if there are none). This is shown in

Figure 16-10.

Photo Viewer

FTF Server i
Server NamedP |

Usger Mame
Password

Select falder

=]

Figure 16-10

515

Part II: Application Development Using C#

When a node is expanded (by clicking on the + symbol), the TreevViewl_BeforeExpand event is fired.
You have to write code that checks to see if the current node is a leaf node (meaning that it is not a
directory but a file). If it is a leaf node, exit the method. Otherwise, you need to display its subdirectories

(if any).

You should also change the current node icon to “open” if the node is selected and “closed” if the node is
not selected. Here’s the code for expanding folders and displaying the proper icon at each node:

private void TreeViewl_BeforeExpand (

{

object sender, TreeViewCancelEventArgs e)

//---if leaf node (photo) then exit---
if (e.Node.ImageIndex == ico_PHOTO) return;

//---remove the dummy node and display the subdirectories and files---
try
{

//---clears all the nodes and...---

e.Node.Nodes.Clear () ;

//---create the nodes again---
BuildDirectory (e.Node) ;
}
catch (Exception ex)
{
ToolStripStatusLabell.Text = ex.ToString();
}

//---change the icon for this node to open---
if (e.Node.GetNodeCount (false) > 0)
{
e.Node.ImageIndex = ico_CLOSE;
e.Node.SelectedImageIndex = ico_OPEN;

The BuildDirectory () function displays all the files and subdirectories within the current directory
in the TreeView control. Before you look at the definition of the BuildDirectory () function, you
define the GetDirectoryListing () function, whose main job is to request from the FTP server the
directory listing of a specified path:

//---Get the file/dir listings and return them as a string array---
private string[] GetDirectoryListing(string path)

{

516

try
{
//---get the directory listing---
FtpWebResponse FTPResp = PerformWebRequest (
path, WebRequestMethod.ListDirectoryDetails);

//---get the stream containing the directory listing---
Stream ftpRespStream = FTPResp.GetResponseStream() ;
StreamReader reader =

Chapter 16: Developing Windows Applications

new StreamReader (ftpRespStream, System.Text.Encoding.UTF8);

//---obtain the result as a string array---
string[] result = reader.ReadToEnd().Split(
Environment.NewLine.ToCharArray (),
StringSplitOptions.RemoveEmptyEntries) ;
FTPResp.Close() ;
return result;
}
catch (Exception ex)
{
MessageBox.Show (ex.ToString ()) ;
return null;

To view the directory listing of an FTP server, you make use of the Per formWebRequest () helper
function, which is defined as follows:

private FtpWebResponse PerformWebRequest (
string path, WebRequestMethod method)

//---display the hour glass cursor---
Cursor.Current = Cursors.WaitCursor;

FtpWebRequest ftpReqg = (FtpWebRequest)WebRequest.Create (path) ;
switch (method)
{
case WebRequestMethod.DeleteFile:
ftpReqg.Method = WebRequestMethods.Ftp.DeleteFile;
break;
case WebRequestMethod.DownloadFile:
ftpReqg.Method = WebRequestMethods.Ftp.DownloadFile;
break;
case WebRequestMethod.ListDirectoryDetails:
ftpReqg.Method = WebRequestMethods.Ftp.ListDirectoryDetails;
break;
case WebRequestMethod.MakeDirectory:
ftpReqg.Method = WebRequestMethods.Ftp.MakeDirectory;
break;
case WebRequestMethod.RemoveDirectory:
ftpReqg.Method = WebRequestMethods.Ftp.RemoveDirectory;
break;
}
ftpReqg.Credentials = new NetworkCredential (
Properties.Settings.Default.UserName,
Properties.Settings.Default.Password) ;

FtpWebResponse ftpResp = (FtpWebResponse) ftpReqg.GetResponse () ;
//---change back the cursor---

Cursor.Current = Cursors.Default;
return ftpResp;

517

Part II: Application Development Using C#

The PerformWebRequest () function contains two parameters:

Q A path representing the full FTP path

a A WebRequestMethod enumeration representing the type of request you are performing
In the PerformitebRequest () function, you perform the following;:

Q Create an instance of the FtpWebRequest class, using the WebRequest class’s Create ()
method. Create () takes in a URI parameter (containing the full FTP path).

0 Set the command to be sent to the FTP server, using the Method property of the FtpWebRequest
object.

Q Specify the login credential to the FTP server, using the NetwWorkCredential class.

Q Obtain the response from the FTP server, using the GetResponse () method from the
FtpWebRequest class.

The PerformwebRequest () function returns a FtpWebResponse object.

Back in the GetDirectoryListing () function, after the call to Per formwebRequest () returns, you
retrieve the stream containing the response data sent by the FTP server, using the

GetResponseStream () method from the FtpwebResponse class. You then use a StreamReader object
to read the directory listing:

//---Get the file/dir listings and return them as a string array---
private string[] GetDirectoryListing(string path)
{
try
{
//---get the directory listing---
FtpWebResponse FTPResp = PerformWebRequest (
path, WebRequestMethod.ListDirectoryDetails);

//---get the stream containing the directory listing---
Stream ftpRespStream = FTPResp.GetResponseStream() ;
StreamReader reader =

new StreamReader (ftpRespStream, System.Text.Encoding.UTF8) ;

//---obtain the result as a string array---
string[] result = reader.ReadToEnd () .Split(
Environment.NewLine.ToCharArray (),
StringSplitOptions.RemoveEmptyEntries) ;
FTPResp.Close() ;
return result;
}
catch (Exception ex)
{
MessageBox.Show (ex.ToString()) ;
return null;

518

Chapter 16: Developing Windows Applications

The directory listing is split into a string array. The directory listings are separated by newline characters.
If your FTP server is configured with an MS-DOS directory listing style (see Figure 16-11), the directory
listing will look something like this:

12-11-06 10:54PM 2074750 DSC00098.JPG
12-11-06 10:54PM 2109227 DSC00099.JPG
12-11-06 10:49PM <DIR> George
12-11-06 10:49PM <DIR> James
12-11-06 10:58PM <DIR> Wei-Meng Lee

Default FTP Site Properties El@

FTP Siléf -Securily Accounts .Messages.| Home Directory [

‘when connecting to this resource, the content should come from:

©fdr e
(7 a share located on another computer
FTP Site Directory
Local Path: | crhinetpubhtproot | [Browse..

Bead
Ylrite:
Lag wisits

Directary Lizting Style
O UNIR®

@ MsDO5 =

Figure 16-11

Because all subdirectories have the <DIR> field, you can easily differentiate subdirectories from files in
the BuildDirectory () function by looking for <DIR> in each line:

//---Build the directory in the TreeView control---
private void BuildDirectory (TreeNode ParentNode)
{
string[] listing = GetDirectoryListing(
Properties.Settings.Default.FTP_SERVER +
ParentNode.FullPath) ;
foreach (string line in listing)
{
if (line == String.Empty) break;

TreeNode node = new TreeNode() ;
if (line.Substring(24, 5) == "<DIR>")
{
(continued)

519

Part II: Application Development Using C#

(continued)
//---this is a directory; create a new node to be added---
node.Text = line.Substring(39);
node.ImageIndex = ico_CLOSE;
node.SelectedImageIndex = ico_OPEN;

//---add the dummy child node---
node.Nodes.Add("") ;
ParentNode.Nodes.Add (node) ;

}

else

{
//---this is a normal file; create a new node to be added---
node.Text = line.Substring(39);
node.ImageIndex = ico_PHOTO;
node.SelectedImageIndex = ico_PHOTO;
ParentNode.Nodes.Add (node) ;

}

When a node is selected, you first obtain its current path and then display that path in the status bar if it
is a folder. If it is an image node, download and display the photo, using the DownloadImage ()
function. All these are handled in the TreevViewl_AfterSelect event. Here’s the code:

private void TreeViewl_AfterSelect (object sender, TreeViewEventArgs e)
{
//---always ignore the first "/" char---
string FullPath =
Properties.Settings.Default.FTP_SERVER +
e.Node.FullPath.Substring (1) .Replace("\r", "");

//---display the current folder selected---
if (e.Node.ImageIndex != ico_PHOTO)

{
ToolStripStatusLabell.Text = FullPath;

return;

//---download image---
DownloadImage (FullPath) ;

520

Chapter 16: Developing Windows Applications

The DownloadImage () function downloads an image from the FTP server and displays the image in a
PictureBox control:

//---Download the image from the FTP server---
private void DownloadImage (string path)
{
try
{
ToolStripStatusLabell.Text = "Downloading image..." + path;
Application.DoEvents() ;

//---download the image---

FtpWebResponse FTPResp =
PerformWebRequest (path,
WebRequestMethod.DownloadFile) ;

//---get the stream containing the image---
Stream ftpRespStream = FTPResp.GetResponseStream() ;

//---display the image---
PictureBoxl.Image = Image.FromStream(ftpRespStream) ;
FTPResp.Close() ;

ToolStripStatusLabell.Text =
"Downloading image...complete (" + path + ")";

}

catch (Exception ex)
{

MessageBox.Show (ex.Message) ;

To download an image file using FTP and then bind it to a PictureBox control:

Q Call the PerformWebRequest () helper function you defined earlier.

Q Retrieve the stream that contains response data sent from the FTP server, using the
GetResponseStream () method from the FtpWebResponse class.

To set the PictureBox control to display the downloaded image, use the FromStream () method from
the Image class to convert the response from the FTP server (containing the image) into an image.

521

Part II: Application Development Using C#

Creating a New Directory

The user can create a new directory on the FIP server by clicking the Create Folder button.

To create a new directory, select a node (by clicking on it) to add the new folder, and then call the
PerformilebRequest () helper function you defined earlier. This is accomplished by the Create
Folder button:

//---Create a new folder---
private void btnCreateFolder_Click(object sender, EventArgs e)
{
//---ensure user selects a folder---
if (TreeViewl.SelectedNode.ImageIndex == ico_PHOTO)
{
MessageBox.Show ("Please select a folder first.");
return;

try

//---formulate the full path for the folder to be created---

string folder = Properties.Settings.Default.FTP_SERVER +
TreeViewl.SelectedNode.FullPath.Substring(1l) .Replace
("\xr", "") + @"/" + txtNewFolderName.Text;

//---make the new directory---
FtpWebResponse ftpResp =

PerformWebRequest (folder, WebRequestMethod.MakeDirectory) ;
ftpResp.Close();

//---refresh the newly added folder---
RefreshCurrentFolder () ;

//---update the statusbar---
ToolStripStatusLabell.Text =
ftpResp.StatusDescription.Replace("\r\n", string.Empty) ;
}
catch (Exception ex)
{
MessageBox.Show (ex.ToString ()) ;

When a new folder is created, you update the Treeview control to reflect the newly added folder. This is
accomplished by the RefreshCurrentFolder () function:

private void RefreshCurrentFolder ()

{
//---clears all the nodes and...---
TreeViewl.SelectedNode.Nodes.Clear () ;

//---...create the nodes again---
BuildDirectory (TreeViewl.SelectedNode) ;

522

Chapter 16: Developing Windows Applications

Removing a Directory

To remove (delete) a directory, a user first selects the folder to delete and then clicks the Remove Folder
button. To delete a directory, you call the PerformwWebRequest () helper function you defined earlier.
This is accomplished with the Remove Folder button:

//---Remove a folder---
private void btnRemoveFolder_Click(object sender, EventArgs e)
{
if (TreeViewl.SelectedNode.ImageIndex == ico_PHOTO)
{
MessageBox.Show ("Please select a folder to delete.");
return;

try

string FullPath =
Properties.Settings.Default.FTP_SERVER +
TreeViewl.SelectedNode.
FullPath.Substring(1l) .Replace("\r", "");

//---remove the folder---
FtpWebResponse ftpResp =
PerformWebRequest (FullPath, WebRequestMethod.RemoveDirectory) ;

//---delete current node---
TreeViewl.SelectedNode.Remove () ;

//---update the statusbar---
ToolStripStatusLabell.Text =
ftpResp.StatusDescription.Replace("\r\n", string.Empty);
}
catch (Exception ex)
{
MessageBox.Show (ex.ToString ()) ;
}

If a directory is not empty (that is, if it contains files and subdirectories), the deletion process will fail.
The user will have to remove its content before removing the directory.

523

Part II: Application Development Using C#

Uploading Photos

To upload photos to the FTP server, you first select a folder to upload the photos to and then use the
OpenFileDialog class to ask the user to select the photo(s) he wants to upload. Finally, you upload the
photos individually, using the UploadImage () function:

private void btnUploadPhotos_Click(object sender, EventArgs e)
{
//---ensure user selects a folder---
if (TreevViewl.SelectedNode.ImageIndex == ico_PHOTO)
{
MessageBox.Show("Please select a folder to upload the photos.");
return;

}

OpenFileDialog openFileDialogl = new OpenFileDialog()
{

Filter = "jpg files (*.jpg)|*.Jipg",

FilterIndex = 2,

RestoreDirectory = true,

Multiselect = true

Y

//---formulate the full path for the folder to be created---

string currentSelectedPath =
Properties.Settings.Default.FTP_SERVER +
TreeViewl.SelectedNode.FullPath.Substring(1l) .Replace("\r", "");

//---let user select the photos to upload---
if (openFileDialogl.ShowDialog() ==
System.Windows.Forms.DialogResult.OK)

//---upload each photo individually---
for (int i = 0; i1 <= openFileDialogl.FileNames.Length - 1; i++)
{

UploadImage (currentSelectedPath + "/" +
openFileDialogl.FileNames[1i].Substring(
openFileDialogl.FileNames[i].LastIndexOf (@"\") + 1),
openFileDialogl.FileNames[i]) ;

}

//---refresh the folder to show the uploaded photos---
RefreshCurrentFolder () ;

The UploadImage () function uploads a photo from the hard disk to the FTP server:

QO First, create a new instance of the webClient class.
Q Specify the login credential to the FTP server.

Q Upload the file to the FTP server, using the UploadFile () method from the webClient class.
Note that the full pathname of the file to be uploaded to the FTP server must be specified.

524

Chapter 16: Developing Windows Applications

//---upload a photo to the FTP server---
private void UploadImage (string path, string filename)

{

try
{

}

WebClient client = new WebClient () ;

client.Credentials = new NetworkCredential (
Properties.Settings.Default.UserName,
Properties.Settings.Default.Password) ;

//---upload the photo---
client.UploadFile(path, filename);

//---update the statusbar---
ToolStripStatusLabell.Text = filename + " uploaded!";

catch (Exception ex)

{

Console.WriteLine (ex.ToString());

Deleting a Photo

To delete a photo, the user first selects a photo to delete and then you call the Per formitebRequest ()
helper function you have defined earlier:

private void btnDeletePhoto_Click(object sender, EventArgs e)

{

if
{

try

}

(TreeViewl .SelectedNode.ImageIndex != ico_PHOTO)

MessageBox.Show ("Please select a photo to delete.");
return;

string FullPath = Properties.Settings.Default.FTP_SERVER +

TreeViewl.SelectedNode.FullPath.Substring(1l) .Replace("\r",

//---delete the photo---
FtpWebResponse ftpResp =
PerformWebRequest (FullPath, WebRequestMethod.DeleteFile) ;

//---delete the current node---
TreeViewl.SelectedNode.Remove () ;

//---update the statusbar---
ToolStripStatusLabell.Text =
ftpResp.StatusDescription.Replace("\r\n", string.Empty);

catch (Exception ex)

{

MessageBox.Show (ex.ToString ()) ;

nu);

525

Part II: Application Development Using C#

Once the photo is removed from the FTP server, you also need to delete its node in the Treeview
control.

Testing the Application

That’s it! You can now test the application by pressing F5. Ensure that the credentials for logging in to
the FTP server are correct. If the login is successful, you should be able to create a new folder on the FTP
server and then upload photos. Figure 16-12 shows the complete application.

Photo Viewer
Selected Phota

FTP Server =

Server Mame/IP |ftp.//1 27001 |

User Mame .anunymuus

Pagsword |"”‘”‘7|
Select folder

=203/

=+ 20 May 2008
] Vchicle no. 123454 pa
@ Wehicle no. G34742.pg

Folders
New folder name

20May2008 | [Create Falder

[Remove Folder]

Fhatos

(

Upload Phatos

]

(

Delete Photo

J

Downloading image. ..complete {ftp: {{127.0.0.1/20 May 2008/%ehicle no. 12345%.jpg)

Figure 16-12

Adding Print Capability

The .NET Framework contains classes that make it easy for you to support printing in your applications.
In this section, you add printing support to the PhotoViewer application so that you can print the
photos. You'll explore the basics of printing in .NET and see how to configure page setup, print

multiple pages, and preview a document before it is printed, as well as let users select a printer with
which to print.

Basics of Printing in .NET

In .NET, all the printing functionality is encapsulated within the PrintDocument control/class, which
can be found in the Toolbox (see Figure 16-13). The PrintDocument control defines the various methods
that allow you to send output to the printer.

526

Chapter 16: Developing Windows Applications

1 PerformanceCaounter
,_g PictureBox
_g PrintDialog

|{7g PrintDocurnent
% PrintPreviewCantral
j PrintPreviewDialog

_j Process

[0 ProgressBar
= R SRS i

Figure 16-13

PrintDocument
Wersion 2.0.0.0 from Microsoft Corporation
MET Component

Defines an object that sends output ko a printer,

I

To incorporate printing functionality into your Windows application, you can either drag and drop the
PrintDocument control onto your form or create an instance of the PrintDocument class at runtime.

This example uses the latter approach.

To start the printing process, you use the Print () method of the PrintDocument class. To customize
the printing process using the PrintDocument object, there are generally three events with which you

need to be acquainted:

Q BeginPrint — Occurs when the Print () method is called and before the first page of the
document prints. Typically, you use this event to initialize fonts, file streams, and other resources

used during the printing process.

a printPage — Occurs when the output to print for the current page is needed. This is the main
event to code the logic required for sending the outputs to the printer.

Q EndPrint — Occurs when the last page of the document has printed. Typically, you use this
event to release fonts, file streams, and other resources used during the printing process.

Adding Print Support to the Project

To add print support to the PhotoViewer application, first add the controls (see Figure 16-14) in the

following table.

Control

Label controls (2)

TextBox controls (2)

Button controls (2)

Text Name
Print from:
to
txtFrom
txtTo
Preview btnPreview
Print btnPrint

527

Part II: Application Development Using C#

Photo Viewer

FTP Server Selected Photo

Server Mame/|P |
Uzer Hame |
Password |

Select folder

Falders
New folder name

| | [Create Folder J

[Remove Folder]

Fhatos
[Upload Photos]

[Delete Photo] IPrinl from: |1__ ta I1___‘ [Freview] [Frint

ToolStripStatusLabel

Button contral
ChtnPreview)

Label control

TextBox control Texteox control Button contral
CtxtFrom) (TxtTo) (btnPrint)

Lakel control

Figure 16-14

Switch to the code-behind of Forml, and import the following namespace:
using System.Drawing.Printing;
Declare the following member variables:

public partial class Forml : Form

{
//---constants for the icon images---
const int ico_OPEN = 0;
const int ico_CLOSE = 1;
const int ico_PHOTO = 2

//---font variables---

Font f_title;
Font f_body;

//---page counter---
int pagecounter;

//---PrintDocument variable---
PrintDocument printDoc;

528

Chapter 16: Developing Windows Applications

When the form is loaded during runtime, create an instance of the PrintDocument class, and wire up
the three main event handlers described earlier:

private void Forml_Load(object sender, EventArgs e)
{
printDoc = new PrintDocument ()

{

DocumentName = "Printing from Photo Viewer"
}i
printDoc.BeginPrint += new PrintEventHandler (printDoc_BeginPrint) ;
printDoc.PrintPage += new PrintPageEventHandler (printDoc_PrintPage) ;
printDoc.EndPrint += new PrintEventHandler (printDoc_EndPrint) ;

try
{
//---1load the application settings values

// into the textbox controls---

In the event handler for the BeginPrint event, initialize the page counter as well as the fonts of the text
to be used for printing the page:

void printDoc_BeginPrint (object sender, PrintEventArgs e)
{

//---initialize the page counter---
pagecounter = int.Parse(txtFrom.Text) ;

//---initialize the fonts---
f_title = new Font("Arial", 16, FontStyle.Bold);
f_body = new Font ("Times New Roman", 10);

In the EndPrint event handler, dereference the font variables used:

void printDoc_EndPrint (object sender, PrintEventArgs e)

{
//---de-reference the fonts---
f title = null;
f_body = null;

Finally, the event handler for PrintPage is the place where you do the bulk of the work of sending
the output to the printer. Basically, you use the Graphics object in the PrintPageEventArgs

class to specify the output you want to print. For example, to draw a rectangle you would use the
e.Graphics.DrawRectangle () method (where e is an instance of the PrintPageEventArgs class).
To print a string, you use the e.Graphics.DrawString () method. After printing, you increment the

529

Part II: Application Development Using C#

page count and determine if there are any more pages to print. If there are, setting the HasMorePages
property of the PrintPageEventArgs class to true will cause the printDoc_PrintPage event
handler fire one more time. Once there are no more pages left to print, set the HasMorePages property
to false:

void printDoc_PrintPage (object sender, PrintPageEventArgs e)
{

Graphics g = e.Graphics;

//---draws the title---
g.DrawString (TreeViewl.SelectedNode. Text,
f_title, Brushes.Black, 20, 30);

//---draws a border...---
Rectangle border =
new Rectangle (10, 10,
PictureBoxl.Width + 20, PictureBoxl.Height + 60);

//---...using a thick pen---
Pen thickPen = new Pen(Color.Black, 3);
g.DrawRectangle (thickPen, border) ;

//---draws the picture---

if (PictureBoxl.Image != null)

{
g.DrawImage (PictureBoxl.Image, 20, 60,
PictureBoxl.Size.Width,
PictureBoxl.Size.Height);

//---draws the page count---
g.DrawString ("Page " + pagecounter,
f_body, Brushes.Black,
20, 420);

//---increments the page counter---
pagecounter += 1;

//---determine if you have more pages to print---
if (pagecounter <= int.Parse(txtTo.Text))
e.HasMorePages = true;
else
e.HasMorePages = false;

530

Chapter 16: Developing Windows Applications

To let the user preview the output before the image is sent to the printer for printing, use the

PrintPreviewDialog () class:

private void btnPreview_Click (object sender,

{
//---show preview---
PrintPreviewDialog dlg =
{

Document = printDoc

Y
dlg.ShowDialog() ;

}

EventArgs e)

new PrintPreviewDialog ()

This code previews the output in a separate window (see Figure 16-15). The user can click the printer

icon to send the output to the printer. The user can also choose to enlarge the page or view multiple

pages on one single screen.

H Photo Viewer

FTR Server Selected Phota

Server Name/IP |fp:/4127.0.01

Select folder
=20/
=21 20May 2008
3 ,‘ﬁi Wehicle no. 12345 pg
@ Vehicle no. G24742jpg

Folders
ey folder name

| Create Folder

[Remove Folder]

Phatos
[Upload Phatos]

[Delete Phato] P

Dawnloading image, . .complete (Ftpiff127.0,0,1/20 May 2005{Vehicle no, 12345

Figure 16-15

531

Part II: Application Development Using C#

To print the image to a printer, use the PrintDialog class to let the user choose the desired printer
(see Figure 16-16) instead of sending the output directly to the default printer:

private void btnPrint_Click(object sender,

{

Figure 16-17 shows the output if the user indicated that he wanted to print from page 1 to 3 (in Form1).

//---let user select a printer to print---
PrintDialog pd = new PrintDialog()
{

Document = printDoc,

AllowSomePages = true

Y
DialogResult result = pd.ShowDialog() ;

if (result == DialogResult.OK)
printDoc.Print () ;

Print Elgl

Frinter

v

Statuz: Ready

Type: Herox WarkCentre PE220

Where: USBO0T

Comment [Print to file

Print rangs Copies

®al Mumber of copies: |1 3

(O Pages from E tor |0 | E E
Figure 16-16

Note the page number displayed below the image.

532

EventArgs e)

Chapter 16: Developing Windows Applications

Vehicle no. 12345X.jpg

Vehicle no. 12345X.jpg

Vehicle no. 12345X.jpg

Page

Figure 16-17

Deploying the Application

Now the application is ready to be deployed to your customers. One of the most challenging tasks
faced by Windows application developers today is the deployment of their applications on the client
machines. Once an application is deployed, any change to or maintenance of the application requires
redeployment. Worse, with so many different client configurations, updating a Windows application is
always fraught with unknowns.

533

Part II: Application Development Using C#

Beginning with Visual Studio 2005, Microsoft rolled out a new deployment technology known as
ClickOnce, which makes such deployments and even updates extremely easy and painless. ClickOnce
was designed specifically to ease the deployment of Windows applications, in particular smart clients.

A smart client is basically a Windows application that leverages local resources and intelligently connects
to distributed data sources (such as Web Services) as and when needed. While a lot of companies are
deploying web applications (due to the web’s ubiquitous access) today, network latencies and server
delays are some of the problems that prevent developers from reaping the full benefits of the web.
Common frustrations over web applications include slow response time from web sites and limited
functionality (due to the stateless nature of the HTTP protocol). A smart client aims to reap the benefit of
the rich functionality of the client (Windows), while at the same time utilizing the power of Web Services
in the backend.

Using ClickOnce, a Windows application can be deployed through the convenience of a web server, file
servers, or even CDs. Once an application is installed using ClickOnce, it can automatically check for
new updates to the application from the publisher, saving a lot of effort in maintenance and application
upgrades. On the security front, ClickOnce applications run within a secure sandbox and are configured
using the Code Access Security model.

Publishing the Application Using ClickOnce

Deploying your application using ClickOnce is very straightforward. In Visual Studio 2008, select
Build = Publish PhotoViewer (see Figure 16-18).

% PhotoViewer, - Microsoft Visual Studio

File Edit Miew Project Debug Data Format Tools Test

j IR R =™ - Build Solution F& ug
Rebuild Solution
>§‘: P;’Dgram.cs Fowiiiliss Clean Solutian
é‘ (%3] Buid PhokaViewsr Shift+F5
g Photo Viewer Rebuild Phatotiewsr
uufl FTP Server Clean Photoviewer e
2 Server Name/IP Publish Photoviewer
E‘; User Mame Run Code Analysis on Photoviewst
% Password | Batch Build...

Select folder Configuration Manager...
| T
Figure 16-18

The Publish Wizard (see Figure 16-19) opens. By default, your application will be published to the
local web server (IIS) using the path shown in the textbox. However, you can also publish your
application using a disk path, file share, FTP, or an external web server. For this example, use the
default and click Next.

534

Chapter 16: Developing Windows Applications

Where do you want to publish the application? @

ify the location to publish this application:

|[Browse...]

‘ou may publish the application to a web site, FTP server, or file path.
Examples:

Disk path: c:ideploy\myapplication

File share: \iserverimyapplication

FTP server: Ftp:fiftp.microsoft, comfmyapplication

‘web site: http: [e, microsaft .comfmyapplication

Previous [Mext =][Einish][Cancel

Figure 16-19

In the next page, indicate if the application is available both online and offline or available online only.
Accept the default selection, and click Next to proceed to the next step.

In the next page, click Finish to complete the wizard and start the publishing process. When

publishing is completed, a web page (publish.htm) appears; it contains a link to install the application
(see Figure 16-20).

/= PhotoViewer - Windows Internet Explorer E
t—o;[- ¥ |§, http: fwinxpsp3fPhotoiewer publish. - V| || % | so0gle | P
= — T . »
S e |@Fhato\f|ewar [| 3 -8 s - |5hPage v {CF Tools ~

PhotoViewer

Name: PhotoViewer
Version: 1.0.0.0
Publisher:

The following prerequisices are required:

+ Windows Installer 3.1
+ .NET Framework 3.5

If these components are already installed, you can launch the application now.
Otherwise, click the button below to install the prerequisices and run the application.

Install

Done & mnternst Holo0 v

Figure 16-20

535

Part II: Application Development Using C#

The Publish.htm page lists the following:

0 Name, Version, and Publisher information

Q Prerequisites required for your application (automatically generated based on the application
you are deploying)

The URL http: //<server_name>/PhotoViewer/publish.htmis the deployment
location of your application. Users who want to install this application through
ClickOnce simply need to go to this URL, using their web browser. You provide the
URL to your users through email, brochures, and so on.

To install the application, click the Install button. You are presented with:

Q File Download dialog — Security Warning prompt. Click Run to download the application.
Q Internet Explorer dialog — Security Warning. Click Run to proceed with the installation.

0 Application Install dialog — Security Warning. Click Install to install the application
(see Figure 16-21).

Application Install - Security Warning

Publisher cannot be verified. ‘B’
Are you sure you want to install this application? ‘i
Marng: PhotoYiewer
From: winxpsp3

Publisher: Unknown Publisher

Install] [Dan't Install

‘While applications Fram the Internet can be useful, they can potentially harm your
computer, IF vou do not trust the source, do not install this software, Mare Information, ..

Figure 16-21

Once installed, the application is launched automatically. You can also launch the application from
Start & Programs => PhotoViewer = PhotoViewer.

Updating the Application

Let’s now update the application so that you can republish the application and see how the changes can
be updated on the client side. For simplicity, move the Preview button to the left of the Print from
label control as shown in Figure 16-22. This will enable you to verify that the application has been
updated after it is republished.

S |

Figure 16-22
536

Chapter 16: Developing Windows Applications

To republish the application, simply select Build => Publish PhotoViewer again. When the Publish Wizard
appears, click Finish so that it can publish the application using the default settings.

Each time you publish the application, the version number of the application is incremented automatically.
That’s controlled by the Publish settings page in the project’s properties page (see Figure 16-23).

22 PhotoViewer, - Microsoft ¥isual Studio

File Edit Build Tools Analyze Window Help

YT T I

Photo¥iewer ' program.cs | Forml.cs [Desion] | Forml.cs

Wiew Project Debug Data Test

 Debug - Any CPLU

- L-’.” _passwar

Referentce Paths () The application is available offline as wel (launchable from Start menu)

Signing
Security
Publish Yersion
PUHH Maiar: Minor: Build: Revision:
N N R N I

Code Analysis

Automatically increment revision with each publish

b
5
o
B
g Application
in|
L"l'l: Build
5 Publish Location
o) Build Events
e Publishing Folder Location (web site, ftp server, or file path):
z
o http:fflocalhost [PhotoViewer, v
T [nttps locahostf ! i)
Dicoirtas Installation Folder URL (if different than above):
I vI[.-]
Services
Install Mode and Settings
Settings () The application is available anline anty Application Files

Updates...

Publish \Wizard...] [

Publish Raw

Figure 16-23

In addition, the Publish settings page also contains the Updates button, which enables you to specify
how and when the application should check for updates (see Figure 16-24).

Application Updates

The application shauld check For updates
Choose when the application should check For updates:

() After the application starts

Choose this option to speed up application start time, Updates will not be installed
until the next time the application is run,

(3) Before the application starts
Choose this option o ensure that users wha are connected to the network always
run with the latest updates.,

[Specify a minimum required version for this application

Update location (if different than publish location)):

v|[Brawse...]

Figure 16-24

537

Part II: Application Development Using C#

By default, the application checks for updates every time before it starts.

When the user closes and then relaunches the PhotoViewer application, he gets a prompt, as shown in
Figure 16-25.

Update Available

application update B,
A newy version of Photoviewer is available. Do you want to download it =
now? =

Name: Photo¥iewer

From: winxkpsp3

Figure 16-25

The user can click OK to download the updated application, or click Skip if he doesn’t want to
update the application now. The updated application will look like Figure 16-26.

Photo Viewer,

FTP Server Selected Photo
Sewver Hame/AP [fip/7127.000 |

User Name anonymous

Password | il |

Select folder

=@/
=1 20 May 2008
@ Wehicl

Folders

Mew falder name

| | [Create Folder]

[Remove Folder]

Phatos

[Upload Phatos]

[Delete Photo] Print from: |1 ta |1 |
Downloading image. .. complete (ftp:ff127,0.0,1/20 May 2008/Yehicle no. G34742.jpa)

Figure 16-26

Programmatically Updating the Application

Instead of the application checking for updates before it starts, it would be a good idea for users to be
able to choose when they want to check for updates. For that, add a new button to the form, as shown in
Figure 16-27.

oool

_J
wd

Update

oF0

[Preview J Print fromm |1 ‘

Figure 16-27
538

Chapter 16: Developing Windows Applications

Import the following namespace:
using System.Deployment.Application;
Code the Update button like this:

private void btnUpdate_Click(object sender, EventArgs e)
{
//---check if the application is deployed by ClickOnce---
if (ApplicationDeployment.IsNetworkDeployed)
{
//---Get an instance of the deployment---
ApplicationDeployment deployment =
ApplicationDeployment.CurrentDeployment ;

//---if there is any update---

if (deployment.CheckForUpdate())

{

DialogResult response =

MessageBox.Show(("A new version of the " +
"application is available. " +
"Do you want to update application?"),
("Application Updates"),
MessageBoxButtons.YesNo) ;

//---if user wants to update---
if (response == DialogResult.Yes)
{

Cursor.Current = Cursors.WaitCursor;

//---update the application---
deployment.Update() ;

//---prompt the user to restart---

MessageBox.Show ("Update completed. You need to restart" +
" the application.",
("Update Completed"), MessageBoxButtons.OK,
MessageBoxIcon.Information) ;

//---restart the application---
Application.Restart();

}

else
{
//---application is up-to-date---
MessageBox.Show(("Application is up-to-date."), "Update",
MessageBoxButtons.OK, MessageBoxIcon.Information) ;

else

(continued)

539

Part II: Application Development Using C#

(continued)
{
//---application is not installed using ClickOnce---
MessageBox.Show(("Application is not installed " +
"using ClickOnce"),
("Updates not available"),
MessageBoxButtons.OK, MessageBoxIcon.Information);
}

You first check to see if the application is deployed using ClickOnce. This can be done by using the
IsNetworkDeployed property from the ApplicationDeployment static class. If the application

is indeed deployed using ClickOnce, you proceed to obtain an instance of the deployment using

the currentDeployment property of the ApplicationDeployment class. Using this instance of the
deployment, you call the CheckForUpdate () method to check whether there is a newer version of
the application available from the publishing server. If there is, you prompt the user by asking if he
wants to update the application. If he does, you update the application, using the Update () method.
After that, you force the user to restart the application, using the Restart () method.

To test the update, first run an instance of the PhotoViewer application by launching it from the Start
menu. Next, republish the application in Visual Studio 2008. Click the Update button to see if an update
is available. You should see the prompt shown in Figure 16-28. Click Yes, and the application will be
updated.

E5 Photo Viewer.

FTF Server Selected Photo

Server Mame/IP | ftp:/A127.0.0.1
User Hame anonymous |

Paszzword

Select folder
=@/
=1 20 May 2008
@ Wehicle no. 12345x]
- @ Wehicle no. G474

Folders
New falder name

| | [Create Folder]

[Remove Folder]

Fhatos
[Upload Phatos]

[Delete Photo] l Update] [Preview] Frint from: |1 to |1 |

Downloading image. .. complete (Fepiff127.0.0,1/20 May 2008/Yehicle no. 12345%.jpg)

Figure 16-28

540

Chapter 16: Developing Windows Applications

Rolling Back

Once an application is updated, the user has a choice to roll it back to its previous version. To do so, go
to the Control Panel and run the Add or Remove Programs application. Locate the application (in this
case, PhotoViewer) and click on the Change/Remove button. You have two choices — restore the
application to its previous state or remove the application from the computer (see Figure 16-29).

PhotoViewer Maintenance @
PhotoViewer E,'
Choose the type of maintenance you need, b ot

:‘iﬁ @ Restore the application to its previous state,

g () Remove the application from this computer,

Figure 16-29

An application can be rolled back only to its previous version. If it’s been updated several times, it only
rolls back to the version preceding the last update.

Under the Hood: Application and Deployment Manifests

When you use the Publish Wizard to publish your application using ClickOnce, Visual Studio 2008
publishes your application to the URL that you have indicated. For example, if you specified
http://localhost/PhotoViwer/ as the publishing directory and your web publishing directory is
C:\Inetpub\wwwroot\, then the virtual directory Photoviewer will be mapped to the local

path C:\Inetpub\wwwroot\PhotoViewer\.

Two types of files will be created under the C:\Inetpub\wwwroot\PhotoViewer directory:

Q Application Manifest
Q Deployment Manifest

The next two sections take a closer look at these two types of files.

Application Manifest

When you publish your application, three files and a folder are created in the publishing directory
(see Figure 16-30):

Q Application Files — Folder containing the deployment files.

0 Apublish.htmweb page — This contains instructions on how to install the application.

541

Part II: Application Development Using C#

Q Application manifest — PhotoViewer.application. This is the file that is referenced by the
publish.htm file. An application manifest is an XML file that contains detailed information
about the current application as well as its version number. Chapter 15 has more about
application manifests.

0 setup.exe — A setup application that installs the application onto the target computer.

& PhotoViewer

© Ele Edt Mew Favorkes Took Help 0

: Address 13 CiInetpubiwwwrootiPhototiewer Vi (=t

Marne Size Type
|_aapplication Files File Folder
jPhotoViewar.apphcat\on &FKE Application Manifest
£ | publish.htm SKBE HTML Document
;_',asetup‘exe 455 KB Application
£ | >
Figure 16-30

The Application Files folder contains the various versions of the application that have been published
(see Figure 16-31).

L Application Files E@El
"}l

File Edit Wiew Favorites Tools Help

Address Ij Ci\Inetpublwenwroot|Photoviewer Application Files | -9 Go

Mame Size Type Date Modified
|_JPhotoViewer 1 0. 00 File Folder 5f20f2008 320 PM
|_JPhotoviewer 1 0.0 1 File Folder 5f20f2008 326 PM
|)Phokatiewer 1 0.0 2 File Folder Siz1f2008 9126 AM
|[JPhotoviewer 1 0.0 3 File Folder Siz1{2008 940 AM
|[JPhotoviewer 1 0 0 4 File Folder Siz1/2008 9143 AM
|[JPhotoYiewer 1 0 05 File Folder Siz1{2008 9:45 AM
|[JPhotoviewer_1_0_0_& File Folder 5fz1f2008 10:03 AM

Figure 16-31

When you republish your application using ClickOnce, the content of PhotoViewer.application,
publish.htm, and setup.exe are modified, and one new application manifest is created inside a new
folder (for instance, PhotoViewer_1_0_0_6; located within the Application Files folder), containing the
new version of deployment files, will be created.

As mentioned, the PhotoViewer.application application manifest is an XML file that contains
detailed information about the current application as well as its version number. It allows the client to
know if he needs to update his application.

Deployment Manifest

The deployment manifest — PhotoViewer . exe.manifest, in this example — is located in the
C:\Inetpub\wwwroot\PhotoViewer\ Application Files\PhotoViewer_1_0_0_6 directory (assuming that
the latest version published is 1.0.0.6; see Figure 16-32). It contains detailed information about the
application (such as dependencies and attached files).

542

Chapter 16: Developing Windows Applications

The PhotoViewer.exe.deploy file is the executable of your application. Other files in the same
directory may include files/databases used by your application. During installation these files will be
deployed (downloaded) onto the user’s machine.

& photoViewer 1 0.0 6

: FEle Edic View Favorites Tools Help .‘,’

Mame Size Type
B Phototfiewer, application 6KE Application Manifest
@ Fhotoviewer exe. config. deploy ZKE DEFLOY File
Fhotoviewer exe. deploy #5KE DEPLOY File
%] Photaiewer exe. manifest BKE MANIFEST File
< | >
Figure 16-32

Where Are the Files Installed Locally?

When the user installs an application onto his computer via ClickOnce, he does not have a choice of
where to store the application. In fact, the application is stored on a per-user basis, and different versions
of the application are stored in different folders. For example, when I installed the example application
on my computer, the application files were stored in:

C:\Documents and Settings\Wei-Meng Lee\Local Settings\Apps\2.0\JGEG6REQ.YQK\
C2N9065K.16D\phot..tion_4£f46313378dcdeb5_0001.0000_ff3a6bf346a40edd

Generally, application files are stored in subdirectories under the C:\Documents and Settings\<User
Name>\Local Settings\ Apps\2.0 folder. To find this directory programmatically during runtime, use the
following code snippet:

//---ExecutablePath includes the executable name---
string path = Application.ExecutablePath;
//---Strip away the executable name---

path = path.Substring (0, path.LastIndexOf (@"\"));

Summary

This chapter explained how to develop a Windows application to upload and download pictures to and
from an FTP server. Several Windows Forms controls were used to build the application’s user interface,
and you saw how to use the application settings feature in .NET to preserve the status of an application
even after it has exited. Finally, the application was deployed using the ClickOnce, which allows
applications to be easily updated after they have been deployed.

543

17

Developing ASP.NET Web
Applications

ASPNET (Active Server Pages .NET) is a web development technology from Microsoft. Part of
the NET Framework, ASP.NET enables developers to build dynamic web applications and Web
Services using compiled languages like VB.NET and C#. Developers can use Visual Studio 2008 to
develop compelling web applications using ASP.NET, with the ease of drag-and-drop server
controls. The latest version of ASP.NET is version 3.5.

This chapter explains how to:

Q Display database records using a server control call Gridview
Q Perform data binding in an ASPNET application using the new LingDataSource control

0 AJAX-enable your application by using the new AJAX framework in ASP.NET 3.5 and the
AJAX Control Toolkit

Q Deploy your web application to a web server

About ASP.NET

In the early days of the web, the contents of web pages were largely static. Pages needed to be
constantly — and manually — modified. To create web sites that were dynamic and would update
automatically, a number of server-side technologies sprouted up, including Microsoft’s Active
Server Pages (ASP). ASP executed on the server side, with its output sent to the user’s web
browser, thus allowing the server to generate dynamic web pages based on the actions of the user.

These server-side technologies are important contributions to the development of the web.
Without them, web applications that users are accustomed to today, such as Amazon.com and
eBay.com, would not be possible.

Microsoft ASP began as a public beta (v1.0) in October 1996 as an upgrade to Internet Information
Server (IIS) 2.0. In the initial three versions, ASP used a scripting language, VBScript, as the default

Part II: Application Development Using C#

language. Using a scripting language had its flaws — code is interpreted rather than compiled, and
using VBScript as the default language turned some people off (although technically you could configure
ASP to use other languages such as JScript and Perl, but this was not commonly done). This interpreted
code model of ASP seriously limited performance.

In early 2000, Microsoft introduced the.NET Framework and, together with it, the upgrade of ASP:
ASP.NET 1.0 (previously known as ASP+). Over the last few years, ASPNET has evolved to ASPNET 3.5.

In ASP.NET, you are not limited to scripting languages; you can use the following .NET languages:

a Cc#
O VB.NET

How ASP.NET Works

When a web browser requests a page from a web server, the web server (IIS) first checks whether
the request is for an HTML page. If it is, the request is filled by fetching the files from the hard drive
and returning them to the client (web browser). If the client is requesting an ASP.NET page, IIS
passes the request to the ASPNET runtime, which then processes the application and returns the
output to the client.

ASP.NET pages use the . aspx extension, which ensures that ASPNET can run side by side with
classic ASP, which uses the extension . asp.

One of the inherent problems with the HTTP protocol is its stateless nature. Put simply, a request

made by a user is loaded into memory, fulfilled, and then unloaded. Subsequent requests by the same
user are treated just like any other request; the server makes no attempt to remember what the user has
previously requested. This stateless nature makes writing web applications a challenge because the
application developer must explicitly devise mechanisms to enable the server to remember the previous
state of the application. Several mechanisms have been devised over the years, including cookies and
query strings for passing information to and from the server and the client.

In classic ASP, you typically need to write pages of code to preserve the state of the page after the user
has posted a value back to the server. In ASP.NET, all of these mundane tasks (collectively known as
state management) are accomplished by the ASPNET runtime.

What Do You Need to Run ASP.NET?

ASP.NET is supported on the following operating systems:

Q Microsoft Windows 2000 Professional and Server (SP 2 recommended)
Q Microsoft Windows XP Professional

Q Microsoft Windows Server 2003 /2008
a

Microsoft Windows Vista

546

Chapter 17: Developing ASP.NET Web Applications

To run ASP.NET applications, you need to install IIS on your computer (IIS is not installed by default;
you can install IIS on your computer by running the Add or Remove Programs application in the Control
Panel and then selecting the Add/Remove Windows Components tab). To obtain the ASPNET runtime,
you must install the .NET Framework on your machine. You can obtain the latest NET Framework from
the following site: http://microsoft.com/downloads.

Data Binding

One of the most common tasks a web application does is display records from a database. For

example, you may have an inventory web application with which your staff can check the latest pricing
information and stock availability. This chapter explains how to retrieve records from a database and
use data binding in ASPNET to display them on a page. In addition, it shows how to use the new
LingDataSource control, which enables you to use LINQ to talk to databases without needing to write
complex SQL queries.

To start, launch Visual Studio 2008 and create a new ASP.NET Web Site project (see Figure 17-1).

New Web Site 23

Templates: JNET Framework 3.5 v I'E|

Yisual Studio installed templates

2 2 e & @ & & @

ASP.MET Web ASP.MET Web Empty Web WOCF Service ASP.NET Dynamic Data Dynaic Data ASP.MET
Site Service Site Reports V.., Entities We... Web Site Crystal Re...

My Templates

Search Onling
Templates...

A blank ASP.MET Web site {.NET Framewark 3.5)

Location: iF\Ie System v| ‘ eng LesiMy Documentst isual Studio ZUUS\WebSltaI\DatablndlngI v‘ I Browse. ..]

Language: | wisual C# N

Figure 17-1

The default location is File System (see Figure 17-2), which means that you can save your ASPNET
project in any folder on your local drive so that during debugging a built-in web server is automatically
launched to host your ASPNET application. Alternatively, you can choose the HTTP option, which
means that your ASPNET application will be hosted by a web server (most commonly the local IIS), or
the FTP option, which uses an FTP Server. For this example, use File System, the default option.

547

Part II: Application Development Using C#

[
| A blank ASP.NET Web site { NET Framewark 3.5)

Location: |File System v E

Language:

Figure 17-2

Modeling Databases Using LINQ to SQL

The example web application will display records from two tables in the pubs sample database.
Because you are going to use LINQ to access the database, you do not connect to the database directly.
Instead, you generate classes that represent the database and its tables and then use those classes to

interact with the data. To begin, add a new item to the project and select the LINQ to SQL Classes
template (see Figure 17-3).

Add New ltem - C:\Documents and SettingsiWei-Meng Lee\Desktop\C# 2008 PR\Chapter 17 - ASP.N...

Templates: —= =
¥isual Studio installed templates -~
| H= 51 & =
| g & g g |8
web Form Master Page wieb User ADOJMET Data ADOLMET Ada Client AJAY Client AJAY Client
Contral Service Entity D... Behavior Cantrol Library
Ol (] ® j hﬁ;] %] @ il] 3
==5 .ﬁ:. = - =]
AJAY Master AJAM \Web AJA¥-snabled Browser File Class Class Diagram Crystal Report DataSet
Page Form WCF Service
A= = = @ = E=: if_
{j 7 = éj = ﬁs il il
Dynamic Data Generic Global HTML Page: J5cript File Report Report Wizard
Field Handler Applicati,.. -
LING ta SQL classes mapped to relational objects.

[ame: ‘ DataClasses,dbml
Language: ‘ wisual C# b
Figure 17-3

Use the default name of DataClasses.dbml. When prompted to save the item in the App_Code folder,
click Yes. The bataClasses.dbml file is created in the App_Code folder of your project (see Figure 17-4).

Solution Explorer - Solution 'Databinding {... [%

'_j Solution 'Datab‘ind\n‘g .(3)'. (.l.pro.j.éc.t.)

-~
= P C:\..\Databinding', 3
=
DataClasses,dbml.layout
‘%] DataClasses.designer.cs
5 App_Data .

Figure 17-4

548

Chapter 17: Developing ASP.NET Web Applications

The Object Relational Designer (O/R Designer) then launches so that you can visually edit the
databases and tables you want to use. Open the Server Explorer window, and connect to the pubs
sample database. Drag and drop the publisher and title tables onto the design surface of
DataClasses.dbml (see Figure 17-5).

8 Datahinding - Microsoft Visual Studio

File Edit \View ‘Webste Build Debug Data Tools Test Anpalyze ‘Window Help
e RAEE RN B HEEE=ECY = - 5L b Debug = MET - [reminder
it App_EudejDatalflasses.dbml* Default,aspx | Start Page |
ERENEY - ;
= [} Data Connections
=] |J; winxpsp3isglexpress,pubs,dbo
(- [Database Diagrams i =
- [Tables
®- [authors i - -
B B dscounts publisher =2 Pr?pertles
®- [employes ?ftﬁtle_\d
®- [jobs [= Propetties ﬁtltlel
@ [pub_info ?®obd 0 B 4 Zrbype 1
2 pub_name 5 ﬁDL!b_\d 2
- [roysched 5 city ;;E_I’P”EE
®- [sales 7 state o advance
@ [stores 7 country I royaky
- [titleauthar A i %ytd;ales
] j ;_;?nntes
& [views 7 pubdate J
&~ B Stored Procedures e
#- [Functions
Figure 17-5

Save the DataClasses.dbml file by pressing Ctrl+S. When you save the file, Visual Studio 2008 persists
out .NET classes that represent the entities and database relationships that you have just added. For each
LINQ to SQL designer file you add to your solution, a custom DataContext class is generated. It is the
main object that you use to manipulate the table. In this example, the DataContext class is named
DataClassesDataContext.

Be sure to save DataClasses.dbml before proceeding.

Data Binding Using the GridView Control

To display the records from a table, you can use the Gridview control, which displays the values of a
data source in a table where each column represents a field and each row represents a record. Drag
the Gridview control from the Toolbox and drop it onto the design surface of Default.aspx. In the

SmartTag of the Gridview control, select <New data source . .. > in the Choose Data Source dropdown
list (see Figure 17-6).

B Uatabinding - Microsoit Visual Studio
P - — — — —
File Edit View ‘Website Buld Debug Data Format Table Tools Test Analyze Window Help
- Sl B N SEEWE - I S+l b Debug - NET = [# reminder
2 = ®HTML 1.0 Transitional { = @ = Style Application: Manual = Target Rule: (Mew Inline Style) -
T:UI_‘_JEECW‘C -1 x| App_CUdefDatéClassEs.dbml Default.aspx™® | Start Page |
T
F‘I“Data o | | aspigridview Gridview 1 B)
R Fointer Column0 Colunnl | Column2 | <] Grid¥iew Tasks
[Gridview | abe abe labe A
] Datalist abec ‘abc labe Choose Data Source: | (None) [
2l Detailsview abe abc | Edit Calumns. ..
5 Formbtiew b abe Add Mew Column, .
=) Listiiew e e | Edit Templates
Repeater |

Figure 17-6

549

Part II: Application Development Using C#

In the Data Source Configuration Wizard (see Figure 17-7), select LINQ and click OK. Use the default
name of LingDataSourcel. Click OK.

Data Source Configuration Wizard

Choose a Data Source Type

Where will the application get data from?

L U & B @ Bk &

ACCEss Database Entity LIMG Object Site Map %ML File
Database

Use LING to connect to a DataContext or object in the Bin or App_Code directory For the application,

Specify an ID For the data source:

LingataSourcel

Figure 17-7

For those of you familiar with the various data source controls (such as SqglDataSource and
ObjectDataSource) in ASPNET 2.0, the LingDataSource control works much like them. What is
special about the LingDataSource control is that instead of binding directly to a database (as with the
SglDataSource), it binds to a LINQ-enabled data model. The beauty of this is that you need not write
the various complex SQL queries (such as insert, delete, and modi fy) to use it. Instead, you just need
to specify the data model you are working with, and the type of operations you want to perform on it (such
as delete, insert, or update) and then the control takes care of performing those operations by itself.

The DataClassesDataContext object that you generated earlier is automatically selected for you
(see Figure 17-8). Click Next.

Configure Data Source - LingDataSource1

| Choose a Context Object
U

Select a context object that can be used to retrieve or update data.

Show only DataContext objects

Choose your context object:

|DataCIassesDataCUntExt w

Figure 17-8
550

Chapter 17: Developing ASP.NET Web Applications

Select the titles table, and click the * checkbox to select all fields (see Figure 17-9).

Configure Data Source - LingDataSource1 E”?
J Configure Data Selection
o
Table:
|t|t|es {Table <title =) v |
iGroupBy:
|[Nune] - |
Select:
(TN _ =iy tihere...
[title_id [vtd_sales
[title1 [nates
[tvpe [pubdate
[pub_d [publsher
[price
[] advance
Figure 17-9

Click the Advanced button and check all the checkboxes. Click OK (see Figure 17-10) and then
click Finish.

Configure Data Source -

_d Configure Data Selection

|. J\@j

Tahle: 7
T~ Advanced Options
titles {Table <!
GroupBy: The data source can automatically insert, update, and delete data.
[Mone]
Enable the LingDataSource ba perform automatic deletes
. Enable the LingDataSource to perform automatic inserts
Select:
v
M Enable the LingDataSource ko perform automatic updates Where...
] title1 OrderBy...
[tvpe
[pub_id l OK] [Cancel] Advanced...]
[price
[] advance ‘
Figure 17-10

551

Part II: Application Development Using C#

Switch to the source view of Default.aspx page, and observe the <asp:LingDataSource> element:

<asp:LingDataSource
ID="LingDataSourcel"
runat="server"
ContextTypeName="DataClassesDataContext"
EnableDelete="True"
EnableInsert="True"
EnableUpdate="True"
TableName="titles">
</asp:LingDataSource>

Select the Gridview control’s SmartTag, and check the five checkboxes (see Figure 17-11).

Start Page App_CodefDataclasses.doml - Default.aspr™

[aspeGridview# Gridview] |

title_id title] type pub_id price advance royalty ytd_sales notes pubdate Grid¥iew Tasks

abc abc abc abc 0 0 0 0 abc 8/1/2008 12:00:00 AWf| | Auto Format...

abc abc abc abeo 0.1 0.1 1 1 abec (8/1/2008 12:00:00 .A_M Choose Data Source: | LingDataSourcel v
abc abc abc abeo 0.2 02 2 2 abc (87172008 12:00:00 AN Configure Data Source, .,

abc abc abc abe 03 0.3 3 3 abc (8/1/2008 12:00:00 AN | | Refresh Schema

abc abc abc abc 04 04 4 4 abc 8/1/2008 12:00:00 AN| | Edi Columns...

LingDataSource - LingDataSourcel Add Mew Calumn. ..
[[] Enatle Paging
[] Enable Sorting
[] Enable Editing
[[] Enatle Deleting
[] Enable Selection
Add Extender...
Edit Templates

Check all of these boxes

Figure 17-11

This makes the Gridview look like Figure 17-12. The column names are now clickable and that new
column containing Edit, Delete, and Select is added to the Gridview control. Also, paging is now
enabled (located at the bottom of the Gridview control).

App_Code/DataClasses,doml ~ Default.asps® | start page

asp: gridview GridVieul
Sig'itle id title] type pub _id price advance rovalty vtd salesnotes pubdate I I
Edit Delete Selectabe abc abc abc 0 a i} 0 abc 5282008 12:00:00 AL

Edit Delote Selecthbe abe abs abe 01 01 1 1 abc 5/28/2008 12:0000 AM
Edit Delete Selectpbc abc abc abc 0.2 02 2 2 abc 3/28/2008 12:00.00 AN
Edit Delete Sclectpbc abc abc abc (0.3 0.3 3 3 abc 5/28/2008 12:00.00 AN
Edit Delete Selecthbc abc abc abc 04 04 4 4 abe 3/28/2008 12:00:00 AM
Edit Delete Selecthbc abc abc abc 0.5 0.5 5 5 abc 5/28/2008 12:00:00 AM]
Edit Delete Sclecthbe abc abc abc 0.6 06 6 6 abc 3/28/2008 12:00:00 AN
Edit Delete Seloctpbe abe abc abe 07 07 7 7 abc 5/28/2008 12:0000 AM
Edit Delete Selecthbc abc abc abc 0.8 08 g g abc 3/28/2008 12:00.00 AN
Edit Delete Sclectibc abc abc abc (0.9 0.9 9 9 abc 5/28/2008 12:00.00 AN
12
Figure 17-12

552

Chapter 17: Developing ASP.NET Web Applications

Click the Auto Format link in the SmartTag of the Gridview control, and select the Sand and

Sky scheme.

The Gridview control contains all the fields of the titles table, but there are some that you don’t really
need. So select the notes column, and remove it by choosing Remove Column from GridView Tasks

(see Figure 17-13). Delete the advance, royalty, and ytd_sales columns as well.

\lty ytd sale: notes

B e R L R =
=
o
o

2872008 12:00:00 ANL
f28/2008 12:00:00 AbL
2872008 12:00:00 AN
(2872008 12:00:00 ANL
f28/2008 12:00:00 AL
(2872008 12:00:00 AL
28/2008 12:00:00 AdL
f28/2008 12:00:00 AN
2872008 12:00:00 AL

pr2B8/2008 12:00:00 AN

~ ¥ Solution Explorer - Cii,..\Databindingy, >~ 1 x

pubdate E‘ Grid¥iew Tasks

Auto Farmat, .,

Choose Data Source: | LingDataSourcel w
Configure Data Source...

Refresh Schema

Edit Colurins. ..

Add Mew Column,

Move Calumn Left

Move Column Right

| Remove Column

Enable‘Remnve the: selected column From the GridYisw
Enable Sorting

Enable Editing
Enable Deleting

Enable Selection

Edit Templates

Figure 17-13

The Gridview control should now look like Figure 17-14.

App_Code/DatacClasses,dbml

title id title] tvpe pub id price pubdate
Edit Delete Select abe abc abc
Edit Delete Select abe abc abc
Edit Delete Select abc abc abc
Edit Delete Select abe abc abc
Edit Delete Select abc abc abc
Edit Delete Select abe abc abc
Edit Delete Select abc abc abc
Edit Delete Select abc abc abc
Edit Delete Select abe abc abc
Edit Delete Select abe abc abc

LingDataSource - LingDataSourcel

Default.aspx™ | skart Page

abc 0 5/28/2008 12:00:00 AM
abc 0.1 5/28/2008 12:00:00 AM
abe 0.2 5/28/2008 12:00:00 AN
abc 0.3 52872008 12:00:00 AM
abc 0.4 5/28/2008 12:00:00 AM
abc 0.5 5/28/2008 12:00:00 AM
abc 0.6 5/28/2008 12:00:00 AM
abc 07 5/2B/2008 12:00:00 AM
abc 0.8 52872008 12:00:00 AM
abc 0.8 5/28/2008 12:00:00 AM
112

Figure 17-14

553

Part II: Application Development Using C#

Now, to debug the application, press F5. You are asked to modify the web. config file for debugging;
click OK. You also are prompted that script debugging is disabled in Internet Explorer; click Yes to

continue debugging.

Figure 17-15 shows the Gridview control displaying the rows in the titles table. You can sort the rows by

clicking on the column headers, and edit and delete records.

{2 hitp:fiocalhost:4675/Matabinding/Default.aspx - Windows Internet Explorer DE&®
~ | &) htpiffiocalnost: 4675 DatabindngiDefaul aspc o [42] [] | 2]
o ‘ {8 http:/flacalhost 46 75(Dat abindingDef alt aspx ‘_‘ B - B # - [hpage v FTesk v
title id titlel type pub id price pubdate

Edit Delete Select BU1032 The Busy Executive's Database Guide business 1389 19.9900 6/12/1991 12:00:00 AM

Edit Delete Select BU1111 Cooking with Computers: Surreptitions Balance Sheets business 1389 11.9500 6/9/1991 12:00-00 AM

Edit Delete Select BU2075 You Can Combat Computer Stress! business 0736 29900 6/30/1991 12:00:00 AM

Edit Delete Select BU7832 Straight Talk About Computers business 1389 19.9900 6/22/1991 12:00:00 AM

Edit Delete Select MC2222 Silicon Valley Gastronomic Treats mod_cook 0877 19.9900 6/9/1991 12:00:00 AM

Edit Delete Select MC3021 The Gourmet Microwave mod_cook 0877 2.9900 6/18/1991 12:00:00 AM

Edit Delete Select MC3026 The Psychology of Computer Cooking UNDECIDED 0877 5/26/2008 9:20:27 AM

Edit Delete Select PC1035 But Is It User Friendly? popular comp 1389 22.9500 6/30/1991 12:00:00 AM

Edit Delete Select PC8888 Secrets of Silicon Valley popular_comp 1389 20.0000 6/12/1994 12:00:00 AM

Edit Delete Select PC9999 Net Etiquetie popular_comp 1389 5/26/2008 92027 AM

12
€ Internet H100% -

Figure 17-15

Displaying Publisher’'s Name

As Figure 17-15 shows, the publisher’s ID appears in the Gridview control under the pub_id field. It
would be helpful to the user if the publisher’s name displayed instead of its ID. To do that, switch to the
source view of Default.aspx and within the <asp:Gridview> element, replace the following element:

<asp:BoundField
DataField="pub_id"
HeaderText="pub_id"
SortExpression="pub_id" />

with this:

<asp:TemplateField
HeaderText="Publisher">
<ItemTemplate>
<%#Eval ("publisher.pub_name") %>
</ItemTemplate>
</asp:TemplateField>

Essentially, this changes the header for the publisher column in the GridView to Publisher,
and the values are now derived from the publisher.pub_name property of the

DataClassesDataContext class.

554

Chapter 17: Developing ASP.NET Web Applications

Press F5 to debug the application again to see the publishers” names instead of the publishers’ IDs

(see Figure 17-16).

el http:/ilocalhost:4675/Databinding/Default.aspx - Windows Internet Explorer

- Ig http:/flocalhost: 4675 Databinding/Default. aspx

=[x |

[

e e | @ hittp:fflocalhost 4675/ Databinding/Def ault. aspx | | fr - B - - [rPage v & Tooks -
title id titlel tvpe Publisher price pubdate
12/ 200
Edit Delete Select BUL032 The Busy Executive's Database Guide business Algodata 19,9909 5/12/1951 12:00:00
Infosystems AM
Edit Delete Select BUL111 Cooking with Computers: Surreptitious Balance bisinecs Algodata 11.9500 6/9/1991 12:00:00
e Sheets Infosystems AM
Edit Delete Select BU2075 You Can Combat Computer Stress! business New Moon Books |2.9900 ii,?ﬂ 22LL2 0000
: - 5 : Algodata 6/22/1991 12:00:00
Edit Delete Select BU7832 Straight Talk About Computers business T e 19.9900 AM
3 o - " ’ 6/9/1991 12:00:00
Edit Delete Select MC2222 Silicon Valley Gastronomic Treats mod _cook | Binnet & Hardley |19.9900 AM
Edit Delete Select MC3021 The Gourmet Microwave mod_cook | Binnet & Hardley |2.9900 Z}f"l iy
5 5 5 5/26/2008 9:20:27
Edit Delete Select MC3026 The Psychology of Computer Cooking UNDECIDEL Binnet & Hardley AM
: 4 . Algodata 6/30/1991 12:00:00
] 7 5
Edit Delete Select PC1035 But Is It User Friendly? popular_comp Tifieystems 22.9500 AM
3 - o Algodata - 6/12/1994 12:00:00
Edit Delete Select PC8888 Secrets of Silicon Valley popular_comp Tk epctams 20.0000 AM
. SoiTa Algodata 5/26/2008 9:20:27
Edit Delete Select PC9999 Net Etiquette popular_comp T AM

Diore:

& Internet

100 -

Figure 17-16

Displaying Titles from a Selected Publisher

So far, all the titles in the titles table are displayed in the Gridview control. You might want to restrict
the titles displayed to a particular selected publisher. To do so, insert another LingDataSource control
to the Default.aspx page by adding the following highlighted code:

<asp:LingDataSource
ID="LingDataSourcel"
runat="gserver"

ContextTypeName="DataClassesDataContext"

EnableDelete="True"
EnableInsert="True"
EnableUpdate="True"
TableName="titles">
</asp:LingDataSource>

<asp:LingDataSource
ID="LingDataSource2"
runat="server"

ContextTypeName="DataClassesDataContext"

OrderBy="pub_name"

Select="new (pub_name, pub_id)"

TableName="publishers">
</asp:LingDataSource>

555

Part II: Application Development Using C#

Notice that the second LingDataSource control has the Select attribute where you can specify the
name of the fields you want to retrieve (pub_name and pub_1id, in this example).

Add a DropDownList control to the top of the page by adding the following highlighted code:

<body>

<form id="forml" runat="server">
<div>
Display titles by publisher:
<asp:DropDownList
ID="DropDownListl"
runat="server"
DataSourceID="LingDataSource2"
DataTextField="pub_name"
DatavValueField="pub_id"
AutoPostBack="True">
</asp:DropDownList>

<asp:Gridview ID="GridvViewl" runat="server"

This addition binds a DropDownList control to the LingbataSource control. The DropDownList
control will display the list of publisher names (pub_name), and each publisher’s name has the pub-id
as its value.

Default.aspx should now look like Figure 17-17 in design view. You will see the text “Display titles by
publisher:” as well as a dropdown list control.

Default.aspx

|Disp1ay titles by publisher: I Databound v] I

Bt Thalat, lact ob 1 b Tiatal,

title id title] tvpe Publisher price
Edit Delete Select abc abc abc Databound 0
Edit Delete Selectabc abec abc Databeund 0.1 8/1/2008 12:00:00 AM
Edit Delete Selectabe abe abec Databeound 0.2 8/1/2008 12:00:00 AN

pubdate
Bf1/2008 12:00:00 AM

ATl QATINNR 10 NN00 AT

Figure 17-17

To configure the first LingDataSource control so that the GridView control will only display titles from
the selected publisher, click on the SmartTag of the Gridview control, and click the Configure Data
Source link (see Figure 17-18).

556

sher price pubdate

ound 0 B/1/2008 12:00:00 AL
ound 0.1 8172008 12:00:00 AW
ound 0.2 B/1/2008 12:00:00 A1
ound 0.3 8172008 12:00:00 AW

ound 0.4 8/1/2008 12:00:00 A
A NS RN 12ANAN AHrT

GridYiew Tasks
Auta Farmat,

Choose Data Source! |LingDataSourcel ~

Configure Data Source...

Edit Colurnns. ..

|
|
|
|
Refresh Schema ‘
Add New Column, .. ‘

i

Configure Data Source

Figure 17-18

Chapter 17: Developing ASP.NET Web Applications

Click Next, and then click the Where button. Enter the following values in the dialog (see Figure 17-19).

Condition Value

Column pub_id
Operator ==

Source Control
Control ID DropDownListl

Choose Diata Source: | L

Ed| add one or more conditions to the Where expression. For each condition you can specify either a literal
B walue or a parameterized value. Parameterized values get their values at run time based on their
= properties,
E_ Column: Parameter properties
E_ |Dub7|d a | Contral ID:
Operator: DropDownlist1 w
== Default value:
L == v =
|Contro\ » |
OrdetBy...
Expression: alue:
|puh_id == @pub_id ‘ |DmpannList1.Selected\ia\ue |[add JI Advanced, .,
Preview:
Expression Walue
]
Cancel

Figure 17-19

Click Add, OK, and then Finish. Visual Studio 2008 will ask if you want to regenerate the GridView
columns fields and data keys. Click No.

This will make the Gridview control display titles whose pub_id file match the pub-id value of the
selected publisher in the DropDownList1 control.

557

Part II: Application Development Using C#

The source of the LingbataSource control now looks like this:

<asp:LingDataSource
ID="LingDataSourcel"
runat="server"
ContextTypeName="DataClassesDataContext"
EnableDelete="True"
EnableInsert="True"
EnableUpdate="True"
TableName="titles"
Where="pub_id == @pub_id">

<WhereParameters>
<asp:ControlParameter
ControlID="DropDownListl"
Name="pub_id"
PropertyName="SelectedValue"
Type="String" />
</WhereParameters>

</asp:LingDataSource>

Press F5 to debug the application. When you select a publisher now, all books published by that
publisher are displayed in the Gridview control (see Figure 17-20).

= http:/flocalhost:4675/Matabinding/Default.aspx - Windows Internet Explorer E”El@
@ ﬁ ~ |2 hitp:/fiacaihost 4675/ Databinding/Def ault aspx) 451 [x] [50002 I2E
W | 8 it o slhost: 4675 Disksbinding DeF Ul aspse |7‘ C v B S [rpage - {BTovs - T
Display titles by publisher: TAltha Infosystems ¥
i Algodata Infosystems titlel tvpe Publisher price pubdate
Binnet & Hardl |
Ecit Delete Select BUL03 Fivs | gies Publshing fizbase Guide business Alzodata Infosystems 19.9900 6/12/1991 12:00:00 AM
Edit Delete Select BU111GGG&G rrs: Surreptitious Balance Sheets business Algodata Infosystems 11 9500 6/9/1991 12:00:00 AM
Edit Delete Select BUTS3 il puters business Algodata Infosystems 19.9900 6/22/1991 12:00-00 AM
Edit Delete Select PCIO}! Ramona Publishers popular_comp Algodata Infosystems 22.9500 6/30/1991 12:00:00 AM
Bdit Delete Select PCggg Sc0tney Bocks .,.i popular_comp Algodata Infosystems 20,0000 6/12/1994 12:00-00 AM
Edit Delete Select PC9999 Net Etiquette popular_comp Algodata Infosystems 5/26/2008 920227 AM
Dane: & Internet H100% v

Figure 17-20

558

Chapter 17: Developing ASP.NET Web Applications

Making the Publisher Field Editable

Now select a record, and click the Edit link. Notice that the publisher is not editable (see Figure 17-21).

= http:Hlocalhost: 46 75/Matabinding/Default.aspx - Windows Internet Explorer.

@? |] hitp: flocalhost:4675/Databinding/Defaul. aspx | [#2][%] [2]
Wk ‘@http:fflncalhnst:46751DatahmdmgtDeFau\t.aspx ‘_| M~ B & [rpags - GFTosk -
[£
Display tifles by publisher: | Algodata Infosystems |
title id tiflel type Publisher price pubdate
Edit Delete Select BU1032 11¢ Busy Bxecutive's Database | o Algodata 19.9900 6/12/1991 12:00:00 AM
Guide Infosystems
. . - . Algodata T v
Update Cancel BU1111 |Cooking with Computers: | |business | s |11.9500 |[6/9/1991 12:00:00 AM |
. . : - Algodata st R §
Edit Delete Select BU7832 Straight Talk About Computers business 19.9900 6/22/1991 12:00:00 AM
Infosystems
7 5 Algodata 7
5 7 9 5 30/ -004
Edit Delete Select PC1033 But Is It User Frieadly? popular_comp) 6301991 120000 AM.|
& Internet H100%

Figure 17-21

Here’s how to make the publisher field editable. In the source view of Default

. aspx, insert the
following highlighted code:

<asp:TemplateField HeaderText="Publisher">
<ItemTemplate>
<%#Eval ("publisher.pub_name") %>
</ItemTemplate>

<EditItemTemplate>
<asp:DropDownList
ID="DropDownList2"
DataSourceID="LingDataSource2"
DataTextField="pub_name"
DataValueField="pub_id"
SelectedValue="'<%#Bind ("pub_id") %>"
runat="server">
</asp:DropDownList>
</EditItemTemplate>

</asp:TemplateField>

This creates a dropdown list within the Gridview control (under the Publisher column) and displays a
list of publishers available.

Press F5 to debug the application again. A title’s publisher can now be changed (see Figure 17-22).

559

Part II: Application Development Using C#

/= hitp:/fiocalhost:4675/Matabinding/Mefault.aspx - Windows Internet Explorer

;é http:ff\nca\hnst:4675/Datab\ndingtDeFauItTaspT "1 11X | \ 2
g ‘@http:Mnca\hnst:46751Datahindmg;‘Dafau\t.aspx |_‘ i~ B - oo e - @FTos -
Display tils by publisher:| Algodata Infosystems v/
title id titlel tvpe Publisher price pubdate
Edit Delete Select BU1032 1e Busy Bxecutive's (o Algodata Infosystems ~ 19.9900 6/12/1991 12:00:00 AM
Database Guide
Update Cancel BU1111 |Cooking with Computers: | |business || Algodata Infosystems ‘;-lﬁ.QSUU ||6ra1991 12:00:00 AW |
. Alqo'iialta Infosystems
Edit Delete Sclect BU7832 i‘mg"t Lallcdbow business |Binnet & Hardlzy 119.9900 6/22/1991 12:00:00 AM
ARAELS |Five Lakes Publishing ‘
Edit Delete Select PC1035 But Is It User Friendly? popular_comp leleleT¥e! 22,9500 6/30/1991 12:00:00 AM
Edit Delete Select PC8888 Secrets of Siicon Valley popular comp !hi;emuﬁlug‘;‘z“k‘gg 1200000 6/12/1994 12:00:00 AM
|
Edit Delete Select PC9999 Net Etiquette popular_comp |Ramona Publishers ‘ 5/26/2008 9:20:27 AM
EScnnlnex Books
Done & Internet E100% -

Figure 17-22

Building Responsive Applications
Using AJAX

One of the challenges developers face in building appealing web applications is overcoming the constant
need to refresh entire web pages to update just portions of their content. In the real world, network
latencies prevent web applications from refreshing as often as you might want. Typically, when a user
submits a request to a web server, the entire page must be refreshed and the user is forced to wait while
it makes a round trip to the server even when only a fraction of the page has to be changed. Clearly, this
is a key usability issue that developers want to put behind them in their quest to build applications that
are more desktop-like in their responsiveness.

Enter AJAX, originally an acronym for Asynchronous JavaScript and XML but increasingly a term that
embraces a collection of techniques for creating more responsive and feature-rich web applications.
Instead of waiting for web pages to refresh, AJAX-enabled web sites dynamically and asynchronously
update portions of the pages, thus providing a much more responsive experience to the user. What's
more, with AJAX you can now develop richer applications that draw on the JavaScript and CSS
support found in modern web browsers such as Firefox and Internet Explorer (IE) 6 and later. A quick
look at the Windows Live Local site (see http: //maps.live.com) or Google Spreadsheets (see

http://spreadsheets.google.com) should be enough to convince you of the wonders that AJAX
can deliver to a user experience.

AJAX is not a product but rather a collection of client-empowering web technologies, including XML,
JavaScript, HTTP, the DOM, JSON, and CSS. Writing AJAX-style applications is not easy and has

traditionally required that you have an intimate knowledge of client-side scripting languages, most
notably JavaScript.

With ASP.NET 3.5, Microsoft has built-in support for AJAX. In the Toolbox, you can find a new tab called
AJAX Extensions (see Figure 17-23) containing the various AJAX controls.

560

Chapter 17: Developing ASP.NET Web Applications

Toolbox =
[WebParts s
=/ AJAX Extensions
k Painter

f} ScriptManager

5;} ScriptManagerProxy
@ Timer

EI UpdatePane!

-] UpdateProgress

'+l Reporting

[# HTML i)
X‘Toolbux :fgsarver Explorer

Figure 17-23

AJAX Control Toolkit

While ASP.NET 3.5 comes with a built-in set of controls you can use to create AJAX-style web
applications, one of the greatest benefits of AJAX is that its framework is extensible, which allows you
and other developers to create your own AJAX controls by extending those that already exist. Microsoft
encourages this activity and sponsors an open-source-style project — the AJAX Control Toolkit that
makes available a set of controls developed by Microsoft and seeks to involve the community in creating
more elements to extend the functionality of AJAX. The AJAX Control Toolkit gives you access to a
growing collection of robust controls that give you additional AJAX-style functionality beyond that
provided by the basic AJAX framework.

You can download the AJAX Control Toolkit from: http: //codeplex.com/AtlasControlToolkit/
Release/ProjectReleases.aspx?Releaseld=11121.

You have a choice of two files to download:

0O AjaxControlToolkit-Framework3.5.zip is the full release package with complete source
code to all controls, the test framework, VSI, and more.

0 AjaxControlToolkit-Framework3.5-NoSource.zip contains only the sample web site and
VSI, and is for people who don’t need or want the source code for the controls.

The AJAX Control Toolkit comes with a set of AJAX Extender controls. Unlike the AJAX controls that

come with ASPNET 3.5, you need to manually add these to the Toolbox in Visual Studio 2008. To do so,
add a new tab in Toolbox (see Figure 17-24), and name it AJAX Control Toolkit.

561

Part II: Application Development Using C#

Timer

E UpdatePanel
&} UpdateProgress
1+l Reporting

[+ HTML

|2 General

There are no us.

]
Drag an ikem onl List View

Show Al

[
}t"TDOIbOX | -'E-_l_se Choose Ttems. .,

Reset Toolox k-

add Tab

Rename Tab

Mave Up

Figure 17-24

Extract the AjaxControlToolkit-Framework3.5-NoSource. zip file (assuming that you downloaded
the version without source code) into a folder (C:\ AJAXControlToolkit\, for instance). Inside the new
folder is a folder named SampleWebSite\Bin. Drag and drop the AjaxControlToolkit.dl1l library
from that Bin folder onto the new AJAX Control Toolkit tab. The set of AJAX Control Toolkit Extender
controls appears, as shown in Figure 17-25.

Toolbox

I+ Reporting

[+ HTML

= AJAX Control Toolkit

k Painter

& Accordion

£ AccordionPane

j AlwaysyisibleControlExtender
i AnimationExtender
AutoCompleteExtendesr

CalendarExtender

CascadingDropDown

= CollapsiblePanelExtender
% ConfirmButtonExtender
1?’ DragPanelExtender

= DropDownExtender

F DropShadowE:xtender
-] DynamicPopulateExtender
-"""1 FilteredTextBoxExtender

HoverMenuExtender

g} ListSearchExtender

MaskedEditExtender

MaskedEdityalidator =
_j ModalPopupExtender
MutuallyExclusiveCheckBoxExtender
A HoBot

L | MumericUpDownExtender

PagingBulletedListExtender
W oolbax ;!‘5 Server Explorer

| <

Figure 17-25

562

Chapter 17: Developing ASP.NET Web Applications

AJAX-Enabling a Page Using the ScriptManager Control

Now let’s use some of the core AJAX controls in ASP.NET 3.5 to AJAX-enable the sample project created
earlier in this chapter.

The first step toward AJAX-enabling an ASP.NET web page is to add the ScriptManager control to the
page. That’s the control that manages all the AJAX functionality on your page. It should be placed before
any AJAX controls, so it’s a good idea to place it at the top of the page, like this:

<body>
<form id="forml" runat="server">
<div>
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
Display titles by publisher:
<asp:DropDownList ID="DropDownListl" runat="server"
DataSourceID="LingDataSource2"
DataTextField="pub_name"
DataValueField="pub_id"
AutoPostBack="True">
</asp:DropDownList>

To place the ScriptManager control on the page, you can either type it manually or drag the
ScriptManager control from the Toolbox and drop it onto the code editor.

Using the UpdatePanel Control

To delineate the part of the page you want to update without causing the entire page to refresh, drag and
drop an UpdatePanel control from the AJAX Extensions tab of the Toolbox onto the Default.aspx
page, like this:

<body>
<form id="forml" runat="server">
<div>
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
Display titles by publisher:
<asp:DropDownList ID="DropDownListl" runat="server"
DataSourceID="LingDataSource2"
DataTextField="pub_name"
DatavValueField="pub_id"
AutoPostBack="True">
</asp:DropDownList>

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>

</ContentTemplate>
</asp:UpdatePanel>

563

Part II: Application Development Using C#

The <asp:UpdatePanel> control divides a web page into regions — each region can be updated
without refreshing the entire page. The <ContentTemplate> element sets the template that defines the
contents of the <asp:UpdatePanel> control.

Now, move a Gridview control into the <ContentTemplate> element so that the content of the
Gridview can be updated without causing a postback to the server:

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>
<asp:Gridview ID="Gridviewl" runat="server" AllowPaging="True"
AllowSorting="True"
AutoGenerateColumns="False" BackColor="LightGoldenrodYellow"
BorderColor="Tan"

</asp:Gridview>
</ContentTemplate>
</asp:UpdatePanel>

Press F5 to test the application again. This time, edit the record by clicking the Edit link (see
Figure 17-26). Notice that, as you click on the links (Edit, Update, Cancel, and Select), the page does
not reload. Instead, all the changes happen inside the Gridview control.

ff http:#localhost:4675/Databinding/Default.aspx - Windows Internet Exploren

J + [httpsJfocalhost 4675 iDatabinding Defaul aspx [l |
1'*‘ i M- B v [reags - @iTeds - T
title id titlel type Publisher price pubdate
Edit Delete Select BU1032 10 Busy Executive's o Algodata Infosystems ~ 19.9900 6/12/1991 12:00:00 AM
Database Guide
Cooking with Computers:
Edit Delete Select BU1111 Surreptitious Balance business Algodata Infosystems 11.9500 6/9/1991 12:00:00 AM
Sheets
Update Cancel ~ BU7832 Straight Talk About Comp] [business || Algodata infosystems v/|[19.9500 |[6/22/1991 12.00:00 AM_|
Edit Delete Select PC1035 But Is It User Friendly? popular_comp Algodata Infosystems ~ 22.9500 6/30/1991 12:00:00 AM
Edit Delete Select PC888R Secrets of Silicon Valley popular_comp Algodata Infosystems 20.0000 6/12/1994 12:00:00 AM
Edit Delete Select PC9999 Net Etiquette popular_comp Algodata Infosystems 5/26/2008 92027 AM
& Internet F00% v
Figure 17-26

Using Triggers to Cause an Update

So far, you have used the <asp:UpdatePanel> control to enclose controls to ensure that changes in this
control do not cause a postback to the server. If you select a publisher from the dropdown list, though,
you will realize that the entire page is refreshed. By adding a trigger to the page, you can specify a
control (and, optionally, its event) that causes an <asp : UpdatePanel> control to refresh. The trigger
<asp:AsyncPostBackTrigger> causes an update when the specified control raises an event.

In other words, when a control specified by a trigger causes an update to a control located with an
<asp:UpdatePanel> control, only the control is updated and not the entire page.

564

Chapter 17: Developing ASP.NET Web Applications

Here’s the markup you need to add a trigger to an <asp: UpdatePanel> control:

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<Triggers>
<asp:AsyncPostBackTrigger ControlID="DropDownListl" />
</Triggers>
<ContentTemplate>

Here, the <asp:UpdatePanel> control will refresh whenever the value of DropDownList1 changes.

Press F5 to test the application. Now selecting a publisher from the dropdown list updates the Gridview
control without causing a refresh in the page.

Displaying Progress Using the UpdateProgress Control

The refreshing of the Gridview control may happen very quickly on your computer because your web
server is running locally. In the real world, there is network latency, and users may experience a delay
but not be aware that a control is in the midst of a refresh. Therefore, it’s important to give visual cues to
users to let them know when an update is in progress.

You can display a progress report while an <asp:updatePanel> is being refreshed by using the <asp:
UpdateProgress> control. Add the following to the source view of Default.aspx:

<body>
<form id="forml" runat="server">
<div>
<asp:ScriptManager ID="ScriptManagerl" runat="server">
</asp:ScriptManager>
Display titles by publisher:
<asp:DropDownList ID="DropDownListl" runat="server"
DataSourceID="LingDataSource2"
DataTextField="pub_name" DataValueField="pub_id" AutoPostBack="True">
</asp:DropDownList>
<asp:UpdatePanel ID="UpdatePanell" runat="server">
<Triggers>
<asp:AsyncPostBackTrigger ControlID="DropDownListl" />
</Triggers>
<ContentTemplate>
<asp:UpdateProgress ID="UpdateProgressl" runat="server">
<ProgressTemplate>
<asp:Label ID="Labell" runat="server" Text="Label">
Displaying titles...Please wait.
</asp:Label>
</ProgressTemplate>
</asp:UpdateProgress>
<asp:Gridview ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True"
AutoGenerateColumns="False" BackColor="LightGoldenrodYellow"
BorderColor="Tan"

565

Part II: Application Development Using C#

To inject a delay, double-click on the dropdown list control and use the Sleep () method to insert a
two-second delay:

protected void DropDownListl_SelectedIndexChanged (object sender, EventArgs e)
{

System.Threading.Thread.Sleep (2000) ;
}

Within the <ProgressTemplate> element, you can embed a control such as an <asp: Label> control or
an <asp: img> control containing an animated GIF image to display some information to inform the
user. Here, you display the message “Displaying titles . . . Please wait” (see Figure 17-27) to let the user
know that the Gridview control is updating.

= http:fflocalhost: 4675Matabinding/Mefault.aspx - Windows Internet

) = | httpifjlocalhast4675/DakabindingiDef aul. aspx

w o

’_& httpijflacalhost: 4675 Databinding/Default. aspx | ‘

Display titles by publisher: I

Displaying titles. Please wait.
title id title]l

Edit Delete Select MC2222 Silicon Valley Gastronomic Treats.

Edit Delete Select MC3021 The Gourmet Microwave

Edit Delete Select MC3026 The Psychology of Computer Cooking

Edit Delete Select PS1372 Computer Phobic AND Non-Phobic Indi|

Edit Delete Select TC3218 Onions, Leeks, and Garlic: Cooking Secre]

Edit Delete Select TC4203 Fifty Years in Buckingham Palace Kitchen

Edit Delete Select TC7777 Sushi. Anyone?

Figure 17-27

Press F5 to test the application.

Displaying a Modal Dialog Using the

ModalPopupExtender Control
One problem with the current example is that when the user clicks the Delete link, the record in the
Gridview control is deleted straightaway. When you delete a record in the real world, it is always good

to confirm the action with the user. In the Windows world, you can easily display a message box to let
the user confirm the action. However, in a web application, it is slightly tricky.

The solution to this problem is to use the ModalPopupExtender control available in the AJAX Control
Toolkit. The ModalPopupExtender control uses a popup to display content to the user in a modal

fashion and prevents users from interacting with the rest of the page.

Let’s modify the application to show a modal popup whenever the user tries to delete a record.
Figure 17-28 shows the end result.

566

Chapter 17: Developing ASP.NET Web Applications

/= http:/llocalhost:4675/MDatabinding/Default.aspx - Windows Internet Explorer

FINTARN - T
Uh\—?‘ - \g, http:/flocalhost:4675/Databinding/Default, asp: v | !2| !5 |‘;. ogle

b H — e »
w o ‘ghttp:,iﬂn(alhust:46751Datahmdlnngafau\t‘aspx ‘ 4 f5i - B - - [2hPage -+ G Tods -

F5p

.":" % Are you sure you want to delete this record?
. pitl

& Internet H100% v

Figure 17-28

First, define the following CSS styles in the source view of the Default.aspx page:

<head runat="server">
<title></title>

<style type="text/css">
.modalBackground {
background-color:Blue;
filter:alpha (opacity=50) ;

opacity:0.5;

}

.dialog

{
border-left:5px solid #fff; border-right:5px solid #fff;
border-top:5px solid #fff; border-bottom:5px solid #£fff;
background: #ccc;
padding: 10px;
width: 350px;

}

</style>

The .modalBackground style defines the background color of the modal popup. In this case, it is used
to block off the rest of the page and prevent the user from interacting with that content. The .dialog
style defines the shape and color of the popup itself. Here it has a rectangular border of 5px and a width
of 350px.

567

Part II: Application Development Using C#

Next, add a <asp: Template> control to the Gridview control to display a Delete button:

<asp:Gridview ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True"
AutoGenerateColumns="False" BackColor="LightGoldenrodYellow"
BorderColor="Tan"
BorderWidth="1px" CellPadding="2" DataKeyNames="title_id"
DataSourceID="LingDataSourcel"
ForeColor="Black" GridLines="None">
<Columns>
<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" ShowSelectButton="True" />
<asp:TemplateField ControlStyle-Width="50px"
HeaderStyle-Width="60px"
ItemStyle-HorizontalAlign="Center">
<ItemTemplate>
<asp:Button ID="btnDelete"
runat="server"
OnClick="btnDelete_Click"
OnClientClick="displayPopup (this); return false;"
Text="Delete" />
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="title_id" HeaderText="title_id"
ReadOnly="True" SortExpression="title_id" />
<asp:BoundField DataField="titlel" HeaderText="titlel"
SortExpression="titlel" />

Notice that the Delete button has two events defined: onClick and onClientClick. In this example,
when the user clicks the button, the JavaScript function named displayPopup () (which you will define
shortly) is called. You insert the return false; statement to prevent a postback from occurring while
the dialog is being displayed.

You also need to disable the Delete link in the Gridview control because you now have the Delete
button. Set the ShowDeleteButton attribute in the <asp: CommandField> element to False:

<asp:CommandField
ShowDeleteButton="False"

ShowEditButton="True"
ShowSelectButton="True" />

The Default.aspx page now looks like Figure 17-29.

568

Chapter 17: Developing ASP.NET Web Applications

Start Page | Defaultaspx.cs. Default.aspx

ScriptManager - ScriptManager 1

Display titles by publisher: | Databound =

Displaying titles.. Please wait.
title id title] type Publisher price pubdate
abc abc abc Databound 0 53072008 12:00:00 AL

Edit Select | Delete

Edit Select | Delete || abe abc abc Databound 0.1 5/30/2008 12:00:00 AN

Edit Select | Delete || abc abc abc Databound 0.2 520/2008 12:00:00 AN

Edit Select | Delete | abc abc abc Databound 0.3 5302008 12:00:00 AN

Edit Select | Delete || abe abc abc Databound 0.4 5202008 12:00:00 AN

Edit Select | Delete || abic abc abc Databound 0.5 5/30/2008 12:00:00 AN

Edit Select | Delete || abc abc abc Databound 0.6 5/30/2008 12:00:00 AN

Edit Select | Delete || abc abc abc Databound 0.7 5/30/2008 12:00:00 AN

Edit Select | Delete || abc abc abc Databound 0.8 5/30/2008 12:00:00 AN

Edit Select | Delete || abic abc abc Databound 0.9 5/30/2008 12:00:00 AN

158

LingDataSource - LingDataSourcel

LingDataSource - LingDataSourcez

Figure 17-29

Create a new folder in the project and name it images. Add an image called delete.png into the
images folder (see Figure 17-30).

J Salution 'Databinding {3)' (1 project)
= P Ch...\Databinding',

_=| App_Code
- [2] DataClasses.dbml
. App_Data

= LSr Bin
] ‘:,] AjaxControlToolkit.dl
= | images

- o B B
=) j Default.aspx
@ wind webinfo
(5 web.config

Figure 17-30

You will now use a <div> element to define the content of the popup that you want to display:

<div id="divDialog" runat="server" class="dialog" style="display: none">
<center>
<img style="vertical-align: middle"
src="images/delete.png" width="60" />
Are you sure you want to delete this record?

(continued)

569

Part II: Application Development Using C#

(continued)
<asp:Button ID="btnOK" runat="server" Text="Yes" Width="50px" />
<asp:Button ID="btnNO" runat="server" Text="No" Width="50px" />
</center>
</div>
</form>
</body>
</html>

This block of code defines the popup shown in Figure 17-31.

% Are vou sure yvou want to delete this record?

Figure 17-31

To display the <div> element as a modal popup, use the ModalPopupExtender control:

<ccl:ModalPopupExtender
ID="popupDialog"
runat="server"
TargetControlID="divDialog"
PopupControlID="divDialog"
OkControlID="btnOK"
CancelControlID="btnNO"
OnOkScript="0K_Click();"
OnCancelScript="No_Click();"
BackgroundCssClass="modalBackground">

</ccl:ModalPopupExtender>

</form>
</body>
</html>

The ModalPopupExtender control has the attributes described in the following table.

Attribute Description

D Identifies the ModalPopupExtender control

TargetControlID Specifies the control that activates the ModalPopupExtender
control

PopupControlID Specifies the control to display as a modal popup

OkControlID Specifies the control that dismisses the modal popup

570

Chapter 17: Developing ASP.NET Web Applications

Attribute Description

CancelControlID Specifies the control that cancels the modal popup

OnOkScript Specifies the script to run when the modal popup is dismissed with
the OkControlID

OnCancelScript Specifies the script to run when the modal popup is canceled with
the cancelControlID

BackgroundCssClass Specifies the CSS class to apply to the background when the modal
popup is displayed

Finally, insert the JavaScript functions into the source view of Default.aspx:

<script type="text/javascript">
var _source;
var _popup;

function displayPopup (source) {
_source = source;
_popup = $find('popupDialog') ;
//---display the popup dialog---
_popup . show () ;

}

function OK_Click() {
//---hides the popup dialog---
_popup.hide () ;
//---posts back to the server---
_ doPostBack(_source.name, '');

}

function No_Click() {
//---hides the popup---
_popup.hide() ;
//---clears the event sourcesss
_source = null;
_popup = null;
}
</script>
</head>
<body>

The displayPopup () function looks for the ModalPopupExtender control in the page and displays the
modal popup. The 0K_click() function is called when the user decides to proceed with the deletion.
It hides the modal popup and initiates a postback to the server. The No_Click () function is called when

the user cancels the deletion. It hides the modal popup.

That’s it! Press F5 to test the application.

571

Part II: Application Development Using C#

In this particular example, you will get a runtime error if you proceed with the
deletion. That’s because the titles table is related to the titleauthor table (also
part of the pubs database), and deleting a record in the titles table violates the
reference integrity of the database.

Summary

This chapter developed a simple ASPNET web application that displays data stored in a database. One
of the new features in ASPNET 3.5 is the LingDataSource control that enables you to bind directly
against a LINQ-enabled data model instead of a database, so instead of specifying SQL statements for
querying data, you can use LINQ queries. You also saw how to use the built-in AJAX support in
ASP.NET 3.5 to create responsive AJAX applications.

572

18

Developing Windows Mobile
Applications

The mobile application platform has gained a lot of interest among enterprise developers in recent
years. With so many mobile platforms available, customers are spoiled for choice. However, at the
front of developers’ minds are the various criteria that they need to evaluate before deciding on
the platform to support. These factors are:

Q Size of device install base

0 Ease of development and support for widely known/used programming languages

Q Capability to run one version of an application on a large number of devices
One mobile platform of choice among developers is the Microsoft Windows Mobile platform, now
into its sixth generation. Today, the Windows Mobile platform is one of the most successful mobile

device platforms in the market, with several handset manufacturers (such as HP, Asus, HTC, and
even Sony Ericsson and Palm) supporting it.

This chapter presents the basics of Windows Mobile. It shows you how to create an RSS Reader
application and then how to test and deploy the application to a real device. In particular, you will:

0 Examine the basics of the Windows Mobile platform

Q Learn how to download and install the various Software Development Kits (SDKs) to
target the different platforms

Q Create an RSS Reader application that allows users to subscribe to RSS feeds

(]

Explore various ways to deploy your Windows Mobile applications

Q Create a professional-looking setup application to distribute your Windows Mobile
applications

Part II: Application Development Using C#

The Windows Mobile Platform

The Windows Mobile platform defines a device running the Windows CE operating system customized

with a standard set of Microsoft-designed user interface shells and applications. Devices that use the
Windows Mobile platform include:

QO Pocket PCs

QO Smartphones

O Portable Media Centers
a

Automobile computing devices

For this chapter, the discussion is restricted to the first two categories — Pocket PCs and Smartphones.
(The latter two categories use a different shell and are not widely used in today’s market.)

The latest version of the Windows Mobile platform at the time of writing is Windows Mobile 6.1. With

this new release, there are some new naming conventions. Here’s a list of the Pocket PC and Smartphone

names used by Microsoft over the years.

Pocket PCs

Pocket PC 2000/ Pocket PC 2000 Phone Edition
Pocket PC 2002 /Pocket PC 2002 Phone Edition

Windows Mobile 2003 for Pocket PC/Windows
Mobile 2003 for Pocket PC Phone Edition

Windows Mobile 2003 SE (Second Edition) for
Pocket PC/Windows Mobile 2003 SE (Second
Edition) for Pocket PC Phone Edition

Windows Mobile 5.0 for Pocket PC/Windows
Mobile 5.0 for Pocket PC Phone Edition

Windows Mobile 6 Classic/Windows Mobile 6
Professional

Smartphones

Smartphone 2002
Windows Mobile 2003 for Smartphone

Windows Mobile 2003 SE for Smartphone

Windows Mobile 5.0 for Smartphone

Windows Mobile 6 Standard

Beginning with Windows Mobile 6, Microsoft defines a device with a touch screen but without phone

capability as a Windows Mobile 6 Classic device (previously known as Pocket PC or Windows Mobile).

Figure 18-1 shows a Windows Mobile 6 Classic device (the iPaq 211).

574

Chapter 18: Developing Windows Mobile Applications

Figure 18-1

Touch-screen devices with phone functionality are now known as Windows Mobile 6 Professional
(previously Windows Mobile Phone Edition). Figure 18-2 shows such a device (the HTC Touch Cruise).

Figure 18-2

Devices that do not support touch screens are now known as Windows Mobile 6 Standard (previously
Smartphones). One is the Moto Q9h, shown in Figure 18-3.

575

Part II: Application Development Using C#

Figure 18-3

Developing Windows Mobile Applications
Using the .NET Compact Framework

The easiest way to develop for the Windows Mobile platform is to use the Microsoft NET Compact
Framework (NET CF). The .NET CF is a scaled-down version of the NET Framework and is designed

to work on Windows CE (a scaled-down version of the Windows OS supporting a subset of the Win32
APIs) based devices. The .NET CF contains a subset of the class libraries available on the desktop version
of the NET Framework and includes a few new libraries designed specifically for mobile devices.

At the time of writing, the latest version of .NET CF is version 3.5. Following is a list of the various
version names of the .NET CF and their corresponding version numbers:

Version Name

1.0 RTM
1.0SP1
1.0 SP2
1.0 SP3
2.0 R-TM
2.0 SP1
2.0 SP2
3.5Beta 1
3.5 Beta 2
RTM

Version Number

1.0.2268.0
1.0.3111.0
1.0.3316.0
1.0.4292.0
2.0.5238.0
2.0.6129.0
2.0.7045.0
3.5.7066.0
3.5.7121.0
3.5.7283.0

Source: http://en.wikipedia.org/wiki/

.NET_vCompact_Framework

576

Chapter 18: Developing Windows Mobile Applications

Knowing the version number of the .NET CF installed in your device is useful at development time
because it helps you determine the exact version of the .NET CF installed on the target device/emulator.

As a developer, you can use either the C# or VB.NET language to write applications for the Windows
Mobile platform. All the functionalities required by your applications can be satisfied by:

Q The class libraries in the .NET CF, and/or

Q APIs at the OS level via Platform Invoke (P/Invoke), and/or

Q Alternative third-party class libraries such as the OpenNetCF’s Smart Device Extension (SDE)
You can determine the versions of the .NET Compact Framework currently installed on your Windows

Mobile device by going to Start = File Explorer and launching the cgacutil. exe utility located
in \Windows.

Figure 18-4 shows the version of the .NET CF installed on a Windows Mobile emulator (more on
this later).

9 l
E Windows ~ Name |
%] bt_spc 12/4/06 3568 |+

[bt_tran 12/4/06 3108

IL 1%

Tin

Microsoft (R} NET |
Cormpact Framework

u_’-ai [3.5.7283.0, 2.0.7045.0]

B o— i 1)
T espw 0T L2ER
" certinstaller 39007 WSPK
" cgacutil /1007 22.3¢
" |cphase2 3/9/07 LA4K

j'

|ciphaseui 3/9/07 L.44K

!;

Figure 18-4

Windows Mobile 5.0 devices comes with the NET CF 1.0 preinstalled in ROM, whereas the
newer Windows Mobile 6 devices come with the .NET CF 2.0 preinstalled in ROM. If your application
uses the newer .NET CF v3.5, you will need to install it onto the device before applications based on it

can execute.

577

Part II: Application Development Using C#

Obtaining the Appropriate SDKs and Tools

To develop Windows Mobile applications using the .NET CF, you need to download the SDK for each
platform. Here are the SDKSs you need:

Q Windows Mobile 5.0 SDK for Pocket PC
QO Windows Mobile 5.0 SDK for Smartphone

QO Windows Mobile 6 Professional and Standard Software Development Kits Refresh

You can download the SDKs from Microsoft’s web site (http:// microsoft.com/downloads) atno
cost. The best tool to develop Windows Mobile applications using the .NET CF is to use the Visual Studio
IDE, using Visual Studio 2005 Professional or above.

If you are using Visual Studio 2005, you need to download the Windows Mobile 5.0 SDK for Pocket PC
and Smartphone (as described earlier). If you are using Visual Studio 2008, the Windows Mobile 5.0
SDKs for Pocket PC and Smartphone are already installed by default. For both versions, you need to
download the Windows Mobile 6 SDKs to develop applications for Windows Mobile 6 devices.

With the relevant SDKSs installed, the first step toward Windows Mobile development is to launch Visual
Studio 2008 and create a new project. Select the Smart Device project type, and then select the Smart
Device Project template (see Figure 18-5).

New Project @EJ
Project bypes: Templates: .MET Framework 3.5 v | '@
=) Visual C# Visual Studio installed templates
‘Windows
LoWeb _.’]Esmart Device Project
- Smart Device
[#- Office My Templates
Database
- Reporting ‘jsaarch Online Templates, ..
* - silverlight
- Test
WCF
- WarkFlow

[#- Other Languages
[Other Project Types
[+ Test Projects

A project For Smart Device applications, Choose target platfarm, Framework version, and template in the next dialog box,

Mame: ‘ SmartDeviceProject-1 |
Location: ‘ Z:\Documents and Settings)iei-Meng LeetMy Documentsiyisual Studio 200&\Projects v | [Browse, ..
Solution: ‘Create ey Solution p | [¥] Create dirsctary for solution
Solution Name: ‘ SmartDeviceProject-1 |
Figure 18-5

578

Chapter 18: Developing Windows Mobile Applications

The Add New Smart Device Project dialog opens. You can select the target platform as well as the
version of the .NET CF you want to use (see Figure 18-6).

Add New Smart Device Project - SmartDeviceProject-1

Target platform: Windaws Makbile 5.0 Packet PC 50K

Pocket PC 2003

Windows CE

'Windows Mobile 5.0 Pocket PC 50K
‘Windows Mobile 5.0 Smartphone SDE

'Windows Mol
L =
EEE# d’tic# ows Mabi
Device Class Library
Application

NET Compact Framework version:

Templates:

Description:

Console Cantrol Library Empty Project

A project For creating a WET

Target platform: |W\ndows Mabile & Standard DK et ‘
NET Compact Framework version: | NET Compact Framework Yersion 3.5 he \
Templates: "NET Compack Frs
F & N & Lic
Cl o ere = E: Description:
Device lass Library Console Control Library Empty Project A project for craating a NET
Application Application :

Compact Framework 3,5 Forms
application For Windows Mobile
6 Standard SO Platform

Download additonal ermul

Download additonal emulator images and smart device SDKS...

Figure 18-6

You are now ready to start developing for Windows Mobile. Figure 18-7 shows the design view of a
Windows Mobile Form in Visual Studio 2008 designer.

579

Part II: Application Development Using C#

#% SmartDeviceProject-1 - Microsoft Visual Studio

Ele Edt “ew Project Buld Desbug Dats Format JTools Test Window Help
- - & &R - Sl - =L b Debug ~ fAny CPU - [# stream =

Windows Mabile & Standard Emdlstor ~ | gly G20 40 ."j b | = & =) | F ef ul | S24] L} | oga 3 £ I = R |

' Search: =i
Toohoh ~ 0 X FormLcs [Design]*| ~ X | Solution Explorer - SmartDev... = 3 X
= all Dl Controls —— b2 & E EES
_: Roikel: [Salution ‘SmartDeviceProject-1' (1 pr
%7 Bindingsource £ 7 SmartDeviceProject-1
ChetkBox [[5d Properties

¥ ComboBox - = References

5 gy &[] Forml.cs
i Ll %] Program.cs
|25 Dataset
] DateTimePicker
%13 HerallBar
(=) ImageList
A Label
A LinkLabel
| MessageQueue
{1 Panel < | >
31 eitiren by i
&l PictursBox Properties -~ 3 X%

1 ProgressBar

= mainMenul System.Windows.Forms =
w SerialPort

Jsbll TextBox =
5 Timer . : (tame) mainMenul
G = GenerateMembe True
e ks . s Madfiers Private
v [—— L
5] WetBrowser : < =
% Common Device Controls =il =
¥ Device Containers e AR =
Device Menus & Toolbars maintenul
5 Device Data
'+ Device Components - |
T | Error List -1 ox
gTrgz: S:Zg"i:f;ﬂe;n”tgtx:z It:’a;{“:o Description File Line Column Project | (Name)
add it to the toolbox, Indicates the name used in code ta
identify the object.

Creating project 'SmartDeviceProject-1',.. project creation successful,

Figure 18-7

Building the RSS Reader Application

With the recent introduction of the Windows Mobile 6 platforms, we are now beginning to see a
proliferation of new devices supporting Windows Mobile 6 Standard (aka Smartphone). As Windows
Mobile 6 Standard devices do not have touch screens, they pose certain challenges when developing
applications to run on them. Hence, in this section you will learn how to develop a Windows Mobile
6 Standard application that allows users to subscribe to RSS feeds.

The RSS Reader application has the following capabilities:

A Can subscribe to RSS feeds as well as unsubscribe from feeds

Q Can cache the feeds as XML files on the device so that if the device goes offline the feeds are still
available

QO Uses a web browser to view the content of a post

580

Chapter 18: Developing Windows Mobile Applications

Building the User Interface

To get started, launch Visual Studio 2008 and create a new Windows Mobile 6 Standard application using

NET CF 3.5. Name the application RSSReader.

Don'’t forget to download the free Windows Mobile 6 Standard SDK (http://microsoft.com/
downloads). You need it to create the application detailed in this chapter.

The default Form1 uses the standard form factor of 176x180 pixels. As this application is targeted
at users with wide-screen devices, change the FormFactor property of Forml to Windows Mobile

6 Landscape QVGA.

Populate the default Forml with the following controls (see also Figure 18-8):

d One TreevView control

Q Four MenuItem controls

Formil.cs [Design]

RSS Reader

1 Subscribe
2 Unsubseribe
3 Collapse