

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Visual Studio®
Extensibility
Keyvan Nayyeri

Wrox Programmer to Programmer TM

 Enhance Your Knowledge
Advance Your Career

Professional Visual Studio 2008
978-0-470-22988-0
In these pages you’ll learn to harness every key feature of Visual Studio.
The opening section will familiarize you with the IDE structure and layout,
various options and settings, and other core aspects of Visual Studio
2008. Then you will examine each of the nine major categories composing
the functions of Visual Studio 2008. Every chapter is cross-referenced,
so you can achieve a complete understanding of each feature and how
all the elements work together to produce an effective programming
environment.

Professional Visual Studio Extensibility
978-0-470-23084-8
Whether you want to integrate optimized builds, enhanced programming
tools, or other rapid application development features, this unique
resource shows you how to develop customized addins using C#.

C# 2008 Programmer’s Reference
978-0-470-28581-7
C# 2008 Programmers Reference provides a concise and thorough
reference on all aspects of the language. Each chapter contains detailed
code samples that provide a quick and easy way to understand the key
concepts covered.

Professional C# 2008
978-0-470-19137-8
Updated for .NET 3.5 and Visual Studio® 2008, this book is the ultimate
guide to C# 2008 and its environment. The team of superlative authors
explain why the C# language cannot be viewed in isolation, but rather,
must be considered in parallel with the .NET Framework.

Beginning Microsoft Visual C# 2008
978-0-470-19135-4
Aimed at novice programmers who wish to learn programming with C# and
the .NET framework, this book starts with absolute programming basics,
then moves into Web and Windows programming, data access (databases
and XML), and more advanced technologies.

Beginning C# 3.0:
An Introduction to Object Oriented Programming
978-0-470-26129-3
This book is written for those readers with no prior programming
experience who want a thorough, yet easy to understand, introduction to
C# and Object Oriented Programming.

C# 2008
Programmer’s Reference

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.68"

C# 2008 Programmer’s Reference

Introduction ... xxv

Part I: C# Fundamentals
Chapter 1: The .NET Framework ..3
Chapter 2: Getting Started with Visual Studio 200811
Chapter 3: C# Language Foundations ..61
Chapter 4: Classes and Objects ..125
Chapter 5: Interfaces ..171
Chapter 6: Inheritance ..183
Chapter 7: Delegates and Events ..213
Chapter 8: Strings and Regular Expressions ..241
Chapter 9: Generics ..265
Chapter 10: Threading ..293
Chapter 11: Files and Streams ..321
Chapter 12: Exception Handling ..377
Chapter 13: Arrays and Collections ...397
Chapter 14: Language Integrated Query (LINQ) ...425
Chapter 15: Assemblies and Versioning ...467

Part II: Application Development Using C#
Chapter 16: Developing Windows Applications ..503
Chapter 17: Developing ASP.NET Web Applications545
Chapter 18: Developing Windows Mobile Applications573
Chapter 19: Developing Silverlight Applications ...617
Chapter 20: Windows Communication Foundation ..695

Part III: Appendixes
Appendix A: C# Keywords ...749
Appendix B: Examining the .Net Class Libraries Using the Object Browser757
Appendix C: Generating Documentation for Your C# Applications765
Index ...781

ffirs.indd iffirs.indd i 10/1/08 12:13:05 PM10/1/08 12:13:05 PM

ffirs.indd iiffirs.indd ii 10/1/08 12:13:06 PM10/1/08 12:13:06 PM

C# 2008
Programmer’s Reference

ffirs.indd iiiffirs.indd iii 10/1/08 12:13:06 PM10/1/08 12:13:06 PM

ffirs.indd ivffirs.indd iv 10/1/08 12:13:06 PM10/1/08 12:13:06 PM

C# 2008
Programmer’s Reference

Wei-Meng Lee

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 10/1/08 12:13:06 PM10/1/08 12:13:06 PM

C# 2008 Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-28581-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Lee, Wei-Meng.
 C# 2008 programmer’s reference / Wei-Meng Lee.
 p. cm.
 Includes index.
 ISBN 978-0-470-28581-7 (paper/website)
 1. C# (Computer program language) I. Title.
 QA76.73.C154L33 2009
 005.13'3—dc22

2009036345

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 10/1/08 12:13:06 PM10/1/08 12:13:06 PM

www.wiley.com

 To my family and wife, Shihua, for their support and love.

ffirs.indd viiffirs.indd vii 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

ffirs.indd viiiffirs.indd viii 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

 About the Author
 Wei - Meng Lee, Microsoft MVP, is a technologist and founder of Developer Learning Solutions
(www.learn2develop.net), a technology company specializing in hands - on training in the latest
Microsoft and Apple technologies.

 Wei - Meng writes extensively for online publications such as DevX.com and the O’Reilly Network and
magazines such as CoDe Magazine and asp.netPRO magazine on topics ranging from .NET to Mac OS X.
He is also the author of Professional Windows Vista Gadgets Programming (Wrox) and Practical .NET 2.0
Networking Projects (Apress).

 You can contact Wei - Meng at weimenglee@learn2develop.net.

 About the Technical Editor
 Andrew Moore is a graduate of Purdue University – Calumet in Hammond, Indiana, and has been
developing software since 1998 for radar systems, air traffic management, discrete - event simulation, and
business communications applications using C, C++, C#, and Java on the Windows, UNIX, and Linux
platforms. Andrew is the author of Wrox Blox articles titled “ Create Amazing Custom User Interfaces
with WPF, C#, and XAML in .NET 3.0, ” , “ .NET 3.5 CD Audio Player, ” and “ Power Programming with
ReSharper. ” He is currently a senior software engineer at Interactive Intelligence, Inc. in Indianapolis
developing Microsoft - based applications for business communications. Andrew lives in Indiana with his
wife, Barbara, and children, Sophia and Andrew.

ffirs.indd ixffirs.indd ix 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

ffirs.indd xffirs.indd x 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

Credits
 Acquisitions Editor
 Katie Mohr

 Development Editor
 Maryann Steinhart

 Technical Editor
 Andrew Moore

 Production Editor
 Christine O ’ Connor

 Copy Editor
 Foxxe Editorial Services

 Editorial Manager
 Mary Beth Wakefield

 Production Manager
 Tim Tate

 Vice President and Executive Group Publisher
 Richard Swadley

 Vice President and Executive Publisher
 Joseph B. Wikert

 Project Coordinator, Cover
 Lynsey Stanford

 Proofreader
 C.M. Jones

 Indexer
 Robert Swanson

ffirs.indd xiffirs.indd xi 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

ffirs.indd xiiffirs.indd xii 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

 Acknowledgments

 Writing a book is like running a long race — you need stamina, training, and perseverance. But these are
not the most important factors that ensure you reach the finishing line. The most important factor is the
motivation that keeps you going, on and on, even though you may be physically exhausted and don ’ t
think you can move any farther. While this is not the first book I have written, I am always very excited
when embarking on a new book project. After the excitement comes a lot of hard work — coping with
missed deadlines, changing work schedules, writer ’ s block, and so forth.

 For this book, I am extremely lucky to work with two very important people — my acquisitions editor,
Katie Mohr, and development editor, Maryann Steinhart. Both Katie and Maryann have been very
patient with me when the going gets tough. Katie has always egged me on, and offered many
suggestions to scope the book to what it is today. Maryann has been the studious timekeeper, with a
gentle but firm voice telling me to press forward when I missed the deadline. Maryann has also
painstakingly read and reread every sentence I wrote, and I am always surprised with her attention to
detail which has definitely made this book a better one. With heart - felt sincerity, I want to say a big
thank you to both of them!

 I would also like to thank the technical editor, Andrew Moore, for giving me many suggestions for
improving the book. Writing this book has made me learn a lot of things I never knew. Thanks, Andrew!

 Last but not least, I want to take this opportunity to thank my parents and my wife, Shihua, for their
understanding and support when I have had to take time away to work on this book. Thanks!

ffirs.indd xiiiffirs.indd xiii 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

ffirs.indd xivffirs.indd xiv 10/1/08 12:13:07 PM10/1/08 12:13:07 PM

Contents

Introduction XXV

Part I: C# Fundamentals 1

Chapter 1: The .NET Framework 3

What’s the .NET Framework? 3
Common Language Runtime 3
.NET Framework Class Library 4

Assemblies and the Microsoft Intermediate Language (MSIL) 6
Versions of the .NET Framework and Visual Studio 8
Summary 9

Chapter 2: Getting Started with Visual Studio 2008 11

Visual Studio 2008 Overview 11
Choosing the Development Settings 12
Resetting the Development Settings 13
Creating a New Project 14
Components of the IDE 17

Code and Text Editor 34
Code Snippets 35
IntelliSense 37
Refactoring Support 39

Debugging 49
Setting Breakpoints 49
Stepping through the Code 51
Watching 52
Autos and Immediate Windows 53

Unit Testing 53
Creating the Test 54
Running the Test 57
Testing with Floating Point Numbers 58
Adding Additional Test Methods 59

Summary 59

ftoc.indd xvftoc.indd xv 10/1/08 12:11:27 PM10/1/08 12:11:27 PM

Contents

xvi

Chapter 3: C# Language Foundations 61

Using Visual Studio 2008 61
Using the C# Compiler (csc.exe) 64
Dissecting the Program 66

Passing Arguments to Main() 68
Language Syntax 68

Keywords 68
Variables 69
Scope of Variables 71
Constants 74
Comments 74
XML Documentation 74

Data Types 78
Value Types 79
Reference Types 84
Enumerations 85
Arrays 87
Implicit Typing 88
Type Conversion 89

Flow Control 92
if-else Statement 92
switch Statement 94

Looping 96
for Loop 96
Nested for Loop 97
foreach 98
while and do-while Loops 99
Exiting from a Loop 99
Skipping an Iteration 102

Operators 102
Assignment Operators 103
Relational Operators 105
Logical Operators 106
Mathematical Operators 108
Operator Precedence 109

Preprocessor Directives 110
#define and #undef 111
#if, #else, #elif, and #endif 115
#warning and #error 117
#line 118

ftoc.indd xviftoc.indd xvi 10/1/08 12:11:28 PM10/1/08 12:11:28 PM

Contents

xvii

#region and #endregion 120
#pragma warning 122

Summary 123

Chapter 4: Classes and Objects 125

Classes 125
Defining a Class 126
Using Partial Classes 126
Creating an Instance of a Class (Object Instantiation) 127
Anonymous Types (C# 3.0) 128
Class Members 131
Function Members 134
Static Classes 156

System.Object Class 157
Testing for Equality 158
Implementing Equals 159
ToString() Method 161
Attributes 162

Structures 165
Summary 169

Chapter 5: Interfaces 171

Defining an Interface 172
Implementing an Interface 173
Implementing Multiple Interfaces 174
Extending Interfaces 175
Interface Casting 177
The is and as Operators 178
Overriding Interface Implementations 179
Summary 181

Chapter 6: Inheritance 183

Understanding Inheritance in C# 183
Implementation Inheritance 184

Abstract Class 186
Abstract Methods 186
Virtual Methods 189
Sealed Classes and Methods 191
Overloading Methods 192

ftoc.indd xviiftoc.indd xvii 10/1/08 12:11:28 PM10/1/08 12:11:28 PM

Contents

xviii

Overloading Operators 195
Extension Methods (C# 3.0) 198
Access Modifiers 200
Inheritance and Constructors 202
Calling Base Class Constructors 203

Interface Inheritance 204
Explicit Interface Members Implementation 208
Summary 211

Chapter 7: Delegates and Events 213

Delegates 213
Creating a Delegate 214
Delegates Chaining (Multicast Delegates) 217
Implementing Callbacks Using Delegates 220
Asynchronous Callbacks 222
Anonymous Methods and Lambda Expressions 225

Events 226
Handling Events 229
Implementing Events 232
Difference between Events and Delegates 235
Passing State Information to an Event Handler 237

Summary 240

Chapter 8: Strings and Regular Expressions 241

The System.String Class 241
Escape Characters 243
String Manipulations 247
String Formatting 254
The StringBuilder Class 257

Regular Expressions 259
Searching for a Match 259
More Complex Pattern Matching 261

Summary 263

Chapter 9: Generics 265

Understanding Generics 265
Generic Classes 268
Using the default Keyword in Generics 270
Advantages of Generics 271

ftoc.indd xviiiftoc.indd xviii 10/1/08 12:11:28 PM10/1/08 12:11:28 PM

Contents

xix

Using Constraints in a Generic Type 271
Generic Interfaces 275
Generic Structs 276
Generic Methods 276
Generic Operators 278
Generic Delegates 280

Generics and the .NET Framework Class Library 280
Using the LinkedList<T> Generic Class 284
System.Collections.ObjectModel 288
Summary 291

Chapter 10: Threading 293

The Need for Multithreading 293
Starting a Thread 295
Aborting a Thread 297
Passing Parameters to Threads 301

Thread Synchronization 303
Using Interlocked Class 304
Using C# Lock 304
Monitor Class 307

Thread Safety in Windows Forms 312
Using the BackgroundWorker Control 315
Testing the Application 320

Summary 320

Chapter 11: Files and Streams 321

Working with Files and Directories 321
Working with Directories 322
Working with Files Using the File and FileInfo Classes 326
Creating a FileExplorer 329

The Stream Class 331
BufferedStream 333
The FileStream Class 334
MemoryStream 337
NetworkStream Class 338

Cryptography 343
Hashing 344
Salted Hash 346
Encryption and Decryption 347

ftoc.indd xixftoc.indd xix 10/1/08 12:11:29 PM10/1/08 12:11:29 PM

Contents

xx

Compressions for Stream Objects 353
Compression 353
Decompression 354

Serialization 359
Binary Serialization 359
XML Serialization 365

Summary 375

Chapter 12: Exception Handling 377

Handling Exceptions 377
Handling Exceptions Using the try-catch Statement 378
Handling Multiple Exceptions 381
Throwing Exceptions Using the throw Statement 383
Rethrowing Exceptions 386
Exception Chaining 387
Using Exception Objects 389
The finally Statement 391

Creating Custom Exceptions 393
Summary 395

Chapter 13: Arrays and Collections 397

Arrays 397
Accessing Array Elements 400
Multidimensional Arrays 400
Arrays of Arrays: Jagged Arrays 402
Parameter Arrays 403
Copying Arrays 404

Collections Interfaces 404
Dynamic Arrays Using the ArrayList Class 405
Indexers and Iterators 407
Implementing IEnumerable<T> and IEnumerator<T> 410
Implementing Comparison Using IComparer<T> and IComparable<T> 413
Dictionary 420
Stacks 422
Queues 423

Summary 424

ftoc.indd xxftoc.indd xx 10/1/08 12:11:29 PM10/1/08 12:11:29 PM

Contents

xxi

Chapter 14: Language Integrated Query (LINQ) 425

LINQ Architecture 425
LINQ to Objects 426

Query Syntax versus Method Syntax and Lambda Expressions 429
LINQ and Extension Methods 430
LINQ and Anonymous Types 436

LINQ to DataSet 438
Reshaping Data 441
Aggregate Functions 442
Joining Tables 443
Typed DataSet 446
Detecting Null Fields 449
Saving the Result of a Query to a DataTable 449

LINQ to XML 450
Creating XML Trees 450
Querying Elements 452
An Example Using RSS 453

LINQ to SQL 458
Using the Object Relational Designer 458
Querying 460
Inserting New Rows 461
Updating Rows 463
Deleting Rows 463

Summary 465

Chapter 15: Assemblies and Versioning 467

Assemblies 467
Structure of an Assembly 467
Examining the Content of an Assembly 468
Single and Multi-File Assemblies 469
Understanding Namespaces and Assemblies 480

Private versus Shared Assemblies 486
Creating a Shared Assembly 488
The Global Assembly Cache 492
Putting the Shared Assembly into GAC 493
Making the Shared Assembly Visible in Visual Studio 495
Using the Shared Assembly 496

Summary 499

ftoc.indd xxiftoc.indd xxi 10/1/08 12:11:29 PM10/1/08 12:11:29 PM

Contents

xxii

Part II: Application Development Using C# 501

Chapter 16: Developing Windows Applications 503

The Project 503
Configuring the F TP Server 504
Creating the Application 506
Using Application Settings 508
Coding the Application 513
Building the Directory Tree and Displaying Images 515
Creating a New Directory 522
Removing a Directory 523
Uploading Photos 524
Deleting a Photo 525
Testing the Application 526

Adding Print Capability 526
Basics of Printing in .NET 526
Adding Print Support to the Project 527

Deploying the Application 533
Publishing the Application Using ClickOnce 534
Updating the Application 536
Programmatically Updating the Application 538
Rolling Back 541
Under the Hood: Application and Deployment Manifests 541

Summary 543

Chapter 17: Developing ASP.NET Web Applications 545

About ASP.NET 545
How ASP.NET Works 546
What Do You Need to Run ASP.NET? 546

Data Binding 547
Modeling Databases Using LINQ to SQL 548
Data Binding Using the GridView Control 549
Displaying Publisher’s Name 554
Displaying Titles from a Selected Publisher 555
Making the Publisher Field Editable 559

Building Responsive Applications Using AJAX 560
AJAX Control Toolkit 561
AJAX-Enabling a Page Using the ScriptManager Control 563
Using the UpdatePanel Control 563
Using Triggers to Cause an Update 564

ftoc.indd xxiiftoc.indd xxii 10/1/08 12:11:30 PM10/1/08 12:11:30 PM

Contents

xxiii

Displaying Progress Using the UpdateProgress Control 565
Displaying a Modal Dialog Using the ModalPopupExtender Control 566

Summary 572

Chapter 18: Developing Windows Mobile Applications 573

The Windows Mobile Platform 574
Developing Windows Mobile Applications Using the .NET Compact Framework 576
Obtaining the Appropriate SDKs and Tools 578
Building the RSS Reader Application 580

Building the User Interface 581
Creating the Helper Methods 583
Wiring All the Event Handlers 589
Testing Using Emulators 596
Testing Using Real Devices 597

Deploying the Application 598
Creating a CAB File 598
Creating a Setup Application 603

Summary 616

Chapter 19: Developing Silverlight Applications 617

The State of Silverlight 617
Obtaining the Tools 619
Architecture of Silverlight 620

Building a Silverlight UI Using XAML 621
Creating a Bare-Bones Silverlight Application 621
Understanding XAML 623
Crafting XAML Using Expression Blend 2 635

Silverlight 1.0 645
Animation — Part 1 645
Animations — Part 2 650
Playing Media 654
Creating Your Own Media Player 663

Silverlight 2.0 675
Creating the Project Using Visual Studio 2008 676

Summary 694

ftoc.indd xxiiiftoc.indd xxiii 10/1/08 12:11:30 PM10/1/08 12:11:30 PM

Contents

xxiv

Chapter 20: Windows Communication Foundation 695

What Is WCF? 695
Comparing WCF with ASMX Web Services 700
Your First WCF Service 700
Consuming the WCF Service 708

Understanding How WCF Works 710
WCF Communication Protocols 710
The ABCs of WCF 710
Messaging Patterns 713
Hosting Web Services 713

Building WCF Services 714
Exposing Multiple Endpoints 714
Creating Self-Hosted WCF Service 720
Implementing WCF Callbacks 728
Calling WCF Services from an AJAX Page 741

Summary 745

Part III: Appendixes 747

Appendix A: C# Keywords 749

Appendix B: Examining the .Net Class Libraries Using the Object Browser 757

Appendix C: Generating Documentation for Your C# Applications 765

Index 781

ftoc.indd xxivftoc.indd xxiv 10/1/08 12:11:30 PM10/1/08 12:11:30 PM

 Introduction

 Since the release of the Microsoft .NET Framework in July 2000, the C# programming language has
gone through a few iterations to its latest version, 3.0. Over the years, the C# language has gained a lot
of followers, partly due to its syntax, which is familiar to Java and C programmers. The clear syntax of
the language made it easy to learn, and it ’ s a popular choice for beginning programmers. In addition, the
C# language is gaining a lot of traction in the Visual Basic camp, especially among VB6 programmers,
who needed to move to .NET and did not want to learn a totally new variant of the Visual Basic
language — Visual Basic .NET.

 The latest version of C# 3.0 comes with .NET Framework 3.5. It contains many new features that
makes the language more intuitive and powerful. Coupled with Visual Studio 2008, Microsoft ’ s flagship
development environment, developing applications using C# is now available to a wide audience.

 In writing this book, I used the approach I believe is the easiest way to learn a new language — by
examples. Often, books and articles get into too much of the theory without showing the readers what
the concept looks like in code. For each topic, I try to provide numerous examples to illustrate the
concept, and I would encourage you to make changes to the program to explore further. If you are an
experienced programmer, you can jump directly to a particular chapter, as each chapter comes with
independent examples.

 Who This Book Is For
 This book is for programmers of all levels. Beginning programmers should find the C# language easy to
learn through the many code examples provided in each chapter. Experienced programmers can jump
directly to individual chapters covering the topics of interest to them.

 A conscious effort is made to illustrate each topic with independent code examples so that readers who
want clarification on a topic do not need to wade through the entire chapter.

 This book is ideal for the working programmer as well as students taking a semester course in
C# programming. The sample projects covered in chapters16 to 20 provide numerous project ideas as
well as motivation for readers to get started working on bigger projects.

 What This Book Covers
 This book is divided into three parts. Part I covers the C# language fundamentals; Part II covers
application development using C#, and Part III provides three appendices that cover the list of
C# keywords, the .NET class libraries, and document generation using the Sandcastle utility.

flast.indd xxvflast.indd xxv 10/1/08 12:06:45 PM10/1/08 12:06:45 PM

 Introduction

xxvi

 Part I: C# Fundamentals
 Chapter 1 introduces the .NET Framework. It examines the key components in the .NET
Framework as well as the role played by each of the components. In addition, it discusses the
relationships between the various versions of the framework, from version 1.0 to the latest 3.5.

 Chapter 2 covers the use of Microsoft Visual Studio 2008 as the tool for C# development. Visual
Studio 2008 is an extremely versatile and powerful environment for developing .NET
applications. This chapter explores some of the common features that you will likely use in the
process of your development work.

 Chapter 3 introduces the syntax of the C# language and covers all the important topics:
C# keywords, variables, constants, comments, XML documentation, data types, flow control,
loops, operators, and preprocessor directives.

 Chapter 4 tackles one of the most important topics in C# programming — classes and objects.
Classes are essentially templates in from which you create objects. In C# .NET programming,
everything you deal with involves classes and objects. This chapter provides a firm foundation
in the use and creation of classes for code reuse.

 Chapter 5 explains how interfaces can be used to define the contract for a class. It also discusses
difference between an interface and an abstract class.

 Chapter 6 looks at how inheritance facilitates code reuse, enabling you to extend the
functionality of code that you have already written. This book explains the different types of
inheritance and how to define overloaded methods and operators.

 Chapter 7 introduces the concept of delegates and events used in object oriented programming,
and discusses what a delegate is and how delegates are used to implement events.

 Chapter 8 examines strings handling in C# and the various ways to manipulate them. For more
complex strings pattern matching, you can use regular expressions. This chapter also covers the
various ways to format your strings data.

 Chapter 9 looks into the basics of generics and how you can use them to enhance efficiency and
type safety in your applications. Generics enable developers to define type - safe data structures
without binding to specific fixed data types at design time.

 Chapter 10 explains how to write multithreaded applications using the Thread class in the .NET
Framework. It also shows you how to create and synchronize threads as well as how to write
thread - safe Windows applications.

 Chapter 11 delves into the concepts of files and streams in .NET. With streams, you can perform
a wide range of tasks, including compressing and decompressing data, serializing and
deserializing data, and encrypting and decrypting data. This chapter covers the various ways to
manipulate files and the various stream objects in .NET.

 Chapter 12 deals with exception handling. An exception is a situation that occurs when your
program encounters an error that it is not expecting during runtime. Understanding how to
handle exceptions makes your program more robust and resilient.

 Chapter 13 examines arrays and collections. It discusses the many collection classes that you can
use to represent groups of data in .NET.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviflast.indd xxvi 10/1/08 12:06:46 PM10/1/08 12:06:46 PM

Introduction

xxvii

 Chapter 14 introduces a new feature in .NET 3.5: Language Integrated Query (LINQ). It covers
all the important implementations of LINQ — LINQ to Objects, LINQ to XML, LINQ to Dataset,
and LINQ to SQL.

 Chapter 15 explores the concept of assemblies. In .NET, the basic unit deployable is called an
assembly. Assemblies play an important part of the development process where understanding
how they work is useful in helping you develop scalable and efficient .NET applications.

 Part II: Application Development Using C#
 Chapter 16 demonstrates how you can build a Windows application using the C# language. The
sample application illustrates how to perform FTP using the classes available in the .NET
Framework. You will also see how to perform printing in a.NET application and how to deploy
Windows applications using the ClickOnce technology.

 Chapter 17 takes you through building an ASP.NET web application in C#. You perform data
binding using the new LinqDataSource control and see how to AJAX - enable your web pages.

 Chapter 18 illustrates Windows Mobile development using the .NET Compact Framework, a
subset of the .NET Framework. It examines the basics of the Windows Mobile development and
builds a sample RSS reader application. Finally, it shows you how to create a professional setup
package for your application so that it can be distributed to your readers for installation.

 Chapter 19 helps you get started with Silverlight and provides an opportunity for you to get a
feel for Silverlight development works. It covers Silverlight 1.0 and 2, and contains several
examples showing the capabilities of Silverlight, including animation, media, and .NET
integration.

 Chapter 20 provides a quick introduction to the new Windows Communication Foundation
(WCF) technology and shows how it addresses some of the limitations of today ’ s web services
technology. While most books and conferences focus heavily on the theory behind WCF, this
chapter shows you how to build WCF services and then explains the theory behind them. It
ends with an example that creates a ticketing application, allowing multiple clients to obtain
updated seat information in real time.

 Part III: Appendixes
 Appendix A lists the various keywords in C# that are predefined and have special meanings to
the compiler.

 Appendix B summarizes the features of the various versions of the .NET Framework and
explains how to use the Object Browser feature in Visual Studio 2008 to browse the available
namespaces and classes in the .NET Framework.

 Appendix C shows you how to generate MSDN - style documentation for your project using
Visual Studio 2008 and a third - party documentation generation tool — Sandcastle.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviiflast.indd xxvii 10/1/08 12:06:46 PM10/1/08 12:06:46 PM

 Introduction

xxviii

 What You Need to Use This Book
 For all the examples demonstrated in this book, I used Microsoft Visual Studio Team System 2008.
However, Microsoft has released a plethora of editions of Visual Studio designed for the different types
of C# developers:

 Visual Web Developer 2008 Express Edition

 Visual C# 2008 Express Edition

 Visual Studio 2008 Standard Edition

 Visual Studio 2008 Professional Edition

 Visual Studio 2008 Team System 2008 Architecture Edition

 Visual Studio 2008 Team System 2008 Database Edition

 Visual Studio 2008 Team System 2008 Development Edition

 Visual Studio 2008 Team System 2008 Test Edition

 Visual Studio 2008 Team System 2008 Team Suite

 For a detailed discussion of the features available in each edition, check out the following URL:
 http://msdn.microsoft.com/en - us/vs2008/products/cc149003.aspx.

 Express editions are designed for hobbyists and are available for download at no charge. This is a great
way to get started with Visual Studio 2008 and is ideal for students and beginning programmers.
However, if you are a professional developer, you should purchase either the Standard or Professional
Edition. If you are developing Windows Mobile applications, you need the Professional Edition (or
higher). If you are working in a large development environment and need to develop collaboratively
with other developers on large projects, check out the Team System editions.

 If you are not ready to purchase Visual Studio 2008, you can always download a 90 - day trial edition of
Visual Studio 2008 Professional from http://msdn.microsoft.com/en - us/vs2008/
products/cc268305.aspx.

 Depending on the edition of Visual Studio you are using, some of the steps illustrated in this book may
not appear exactly the same on your screen. However, the differences are minor, and you should not
have any problem in following the steps outlines in each chapter.

 In addition, readers using Windows Vista should launch Visual Studio 2008 (as well as the Command
Prompt window) in Administrator mode. To do so:

 Click on Vista Start button.

 Locate the program you want to launch (Visual Studio 2008, or Command Prompt).

 Right - click on the program and select Run as Administrator.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviiiflast.indd xxviii 10/1/08 12:06:46 PM10/1/08 12:06:46 PM

Introduction

xxix

 Conventions
 A number of conventions are used throughout the book to help you get the most from the text and keep
track of what ’ s happening.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

 Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

 New terms and important words are highlighted introduced.

 Keyboard strokes look like this: Ctrl+A.

 Filenames, URLs, and code within the text looks like this: persistence.properties .

 Code is presented in two different ways:

Code examples nearly always look like this.

Gray highlighting is used to show where new code is added to existing code,
or to point out a specific section of code that ’ s being explained in the text.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com . Once at the site, simply locate the book ’ s title (either by using
the Search box or by using one of the title lists), and click the Download Code link on the book ’ s detail
page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 28581 - 7.

 Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 Every effort is made to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error such as a spelling mistake or faulty piece of code in
one of our books, we would be grateful for your feedback. By sending in errata, you may save another

❑

❑

❑

❑

flast.indd xxixflast.indd xxix 10/1/08 12:06:47 PM10/1/08 12:06:47 PM

 Introduction

xxx

reader hours of frustration, and at the same time you will be helping us provide even higher - quality
information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml , and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

 1. Go to p2p.wrox.com , and click the Register link.

 2. Read the terms of use, and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P but to post your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxflast.indd xxx 10/1/08 12:06:47 PM10/1/08 12:06:47 PM

Part I

C# Fundamentals

Chapter 1: The .NET Framework

Chapter 2: Getting Started with Visual Studio 2008

Chapter 3: C# Language Foundations

Chapter 4: Classes and Objects

Chapter 5: Interfaces

Chapter 6: Inheritance

Chapter 7: Delegates and Events

Chapter 8: Strings and Regular Expressions

Chapter 9: Generics

Chapter 10: Threading

Chapter 11: Files and Streams

Chapter 12: Exception Handling

Chapter 13: Arrays and Collections

Chapter 14: Language Integrated Query (LINQ)

Chapter 15: Assemblies and Versioning

c01.indd 1c01.indd 1 10/1/08 11:29:12 AM10/1/08 11:29:12 AM

c01.indd 2c01.indd 2 10/1/08 11:29:14 AM10/1/08 11:29:14 AM

 The .NET Framework
 The .NET Framework is a development framework created by Microsoft to enable developers
to build applications that run on Microsoft (and other) platforms. Understanding the basics
of the .NET Framework is essential because a large part of C# development revolves around
using the classes in that framework.

 This chapter explains the key components in the .NET Framework as well as the role played by
each of the components. In addition, it examines the relationships among the various versions of
the Framework, from version 1.0 to the latest 3.5.

 What ’ s the . NET Framework?
 The .NET Framework has two components:

 Common Language Runtime

 .NET Framework class library

 The Common Language Runtime (CLR) is the agent that manages your .NET applications at
execution time. It provides core services such as memory, thread, and resource management.
Applications that run on top of the CLR are known as managed code ; all others are known as
unmanaged code.

 The .NET Framework class library is a comprehensive set of reusable classes that provides all the
functionalities your application needs. This library enables you to develop applications ranging
from desktop Windows applications to ASP.NET web applications, and Windows Mobile
applications that run on Pocket PCs.

 Common Language Runtime
 The Common Language Runtime (CLR) is the virtual machine in the .NET Framework. It sits
on top of the Windows operating system (Windows XP, Windows Vista, Windows Server 2008,
and so on). A .NET application is compiled into a bytecode format known as MSIL

❑

❑

c01.indd 3c01.indd 3 10/1/08 11:29:14 AM10/1/08 11:29:14 AM

Part I: C# Fundamentals

4

(Microsoft Intermediate Language). During execution, the CLR JIT (just - in - time) compiles the bytecode
into the processor ’ s native code and executes the application. Alternatively, MSIL code can be
precompiled into native code so that JIT compiling is no longer needed; that speeds up the execution
time of your application.

 The CLR also provides the following services:

 Memory management/garbage collection

 Thread management

 Exception handling

 Security

 .NET developers write applications using a .NET language such as C#, VB.NET, or C++. The MSIL
bytecode allows .NET applications to be portable (at least theoretically) to other platforms because the
application is compiled to native code only during runtime.

❑

❑

❑

❑

Common Language
Runtime

Windows OS

Unmanaged
Code (native apps)

Managed Code

Figure 1-1

 Figure 1 - 1 shows the relationships between the CLR, unmanaged and managed code.

 At the time of writing, Microsoft ’ s implementation of the .NET Framework runs only
on Windows operating systems. However, there is an open - source implementation of
the .NET Framework, called “ Mono, ” that runs on Mac and Linux.

 . NET Framework Class Library
 The .NET Framework class library contains classes that allow you to develop the following types of
applications:

 Console applications

 Windows applications

 Windows services

❑

❑

❑

c01.indd 4c01.indd 4 10/1/08 11:29:15 AM10/1/08 11:29:15 AM

Chapter 1: The .NET Framework

5

 ASP.NET Web applications

 Web Services

 Windows Communication Foundation (WCF) applications

 Windows Presentation Foundation (WPF) applications

 Windows Workflow Foundation (WF) applications

 The library ’ s classes are organized using a hierarchy of namespaces. For example, all the classes for
performing I/O operations are located in the System.IO namespace, and classes that manipulate
regular expressions are located in the System.Text.RegularExpressions namespace.

 The .NET Framework class library is divided into two parts:

 * Framework Class Library (FCL)

 * Base Class Library (BCL)

 The BCL is a subset of the entire class library and contains the set of classes that provide core
functionalities for your applications. Some of the classes in the BCL are contained in the mscorlib.dll ,
 System.dll , and System.core.dll assemblies. The BCL is available to all the languages using the
.NET Framework. It encapsulates all the common functions such as file handling, database access,
graphics manipulation, and XML document manipulation.

 The FCL is the entire class library and it provides the classes for you to develop all the different types of
applications listed previously.

 Figure 1 - 2 shows the key components that make up the .NET Framework.

❑

❑

❑

❑

❑

❑

❑

Windows Operating System

Common Language Runtime

Framework Base Classes

Data and XML Classes

Windows Forms Web Forms WCF WPF ...

Figure 1-2

c01.indd 5c01.indd 5 10/1/08 11:29:17 AM10/1/08 11:29:17 AM

Part I: C# Fundamentals

6

 Assemblies and the Microsoft Intermediate
Language (MSIL)

 In .NET, an application compiled into MSIL bytecode is stored in an assembly. The assembly is contained
in one or more PE (portable executable) files and may end with an EXE or DLL extension.

 Some of the information contained in an assembly includes:

 Manifest — Information about the assembly, such as identification, name, version, and so on.

 Versioning — The version number of an assembly.

 Metadata — Information that describes the types and methods of the assembly .

 Assemblies are discussed in more detail in Chapter 15.

 To get a better idea of a MSIL file and its content, take a look at the following example, which has two
console applications — one written in C# and the other written in VB.NET.

 The following C# code displays the “ Hello, World ” string in the console window:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorldCS
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“Hello, World!”);
 Console.ReadLine();
 }
 }
}

 Likewise, the following VB.NET code displays the “ Hello, World ” string in the console window:

Module Module1

 Sub Main()
 Console.WriteLine(“Hello, World!”)
 Console.ReadLine()
 End Sub

End Module

❑

❑

❑

c01.indd 6c01.indd 6 10/1/08 11:29:18 AM10/1/08 11:29:18 AM

Chapter 1: The .NET Framework

7

 When both programs are compiled, the assembly for each program has an .exe extension. To view the
content of each assembly, you can use the ildasm (MSIL Disassembler) tool.

 Launch the ildasm tool from the Visual Studio 2008 Command Prompt window (Start Programs
 Microsoft Visual Studio 2008 Visual Studio Tools Visual Studio 2008 Command Prompt).

 The following command uses the ildasm tool to view the assemblies for the C# and VB.NET programs:

C:\MSIL > ildasm HelloWorldCS.exe
C:\MSIL > ildasm HelloWorldVB.exe

 Figure 1 - 3 shows the content of the C# and VB.NET assemblies, respectively.

Figure 1-3

 The Main method of the C# MSIL looks like this:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 19 (0x13)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr “Hello, World!”
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: ret
} // end of method Program::Main

c01.indd 7c01.indd 7 10/1/08 11:29:18 AM10/1/08 11:29:18 AM

Part I: C# Fundamentals

8

 The Main method of the VB.NET MSIL looks very similar to that of the C# program:

.method public static void Main() cil managed
{
 .entrypoint
 .custom instance void [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)
 // Code size 20 (0x14)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr “Hello, World!”
 IL_0006: call void [mscorlib]System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: call string [mscorlib]System.Console::ReadLine()
 IL_0011: pop
 IL_0012: nop
 IL_0013: ret
} // end of method Module1::Main

 The important thing to note here is that regardless of the language you use to develop your .NET
applications, all .NET applications are compiled to the MSIL bytecode as this example shows. This
means that you can mix and match languages in a .NET project — you can write a component in C# and
use VB.NET to derive from it.

 Versions of the . NET Framework and
Visual Studio

 Microsoft officially released the .NET Framework in January 2002. Since then, the .NET Framework
has gone through a few iterations, and at the time of writing it stands at version 3.5. While technically
you can write .NET applications using a text editor and a compiler, it is always easier to write .NET
applications using Visual Studio, the integrated development environment from Microsoft. With Visual
Studio, you can use its built - in debugger and support for IntelliSense to effectively and efficiently build
.NET applications. The latest version of Visual Studio is Visual Studio 2008.

 The following table shows the various versions of the .NET Framework, their release dates, and the
versions of Visual Studio that contain them.

 Version Version Number Release Date
 Versions of Visual Studio
shipped

 1.0 1.0.3705.0 2002 - 01 - 05 Visual Studio .NET 2002

 1.1 1.1.4322.573 2003 - 04 - 01 Visual Studio .NET 2003

 2.0 2.0.50727.42 2005 - 11 - 07 Visual Studio 2005

 3.0 3.0.4506.30 2006 - 11 - 06 Shipped with Windows Vista

 3.5 3.5.21022.8 2007 - 11 - 19 Visual Studio 2008

Starting with Visual Studio 2005, Microsoft dropped the .Net name from the Visual Studio.

c01.indd 8c01.indd 8 10/1/08 11:29:19 AM10/1/08 11:29:19 AM

Chapter 1: The .NET Framework

9

 The .NET Framework 3.5 builds upon version 2.0 and 3.0 of the .NET Framework, so it essentially
contains the following components:

 .NET Framework 2.0 and .NET Framework 2.0 Service Pack 1

 .NET Framework 3.0 and .NET Framework 3.0 Service Pack 1

 New features in .NET 3.5

❑

❑

❑

 .NET Framework version 3.5 is dependent on .NET 2.0 and 3.0. If you have a
computer with .NET 1.0, 1.1, and 2.0 installed, these three versions are completely
separate from each other. When you install .NET 3.5 on a computer without the .NET
Framework installed, it will first install .NET 2.0, followed by .NET 3.0, and then
finally the new assemblies new in .NET 3.5.

 Figure 1 - 4 summarizes the relationships between .NET 2.0, 3.0, and 3.5.

.NET 2.0

.NET 3.0

.NET 3.5

Figure 1-4

 Summary
 This chapter provided a quick overview of the .NET Framework and the various versions that make
up the latest .NET Framework (3.5). Regardless of the language you use, all .NET applications will
compile to a bytecode format known as MSIL. The MSIL is then JIT - compiled during runtime by the
CLR to generate the native code to be executed by the processor.

 In the next chapter, you start your journey to C# programming by learning use the development
environment of Visual Studio 2008.

c01.indd 9c01.indd 9 10/1/08 11:29:20 AM10/1/08 11:29:20 AM

c01.indd 10c01.indd 10 10/1/08 11:29:21 AM10/1/08 11:29:21 AM

 Getting Started with Visual
Studio 2008

 Microsoft Visual Studio 2008 is an extremely versatile and powerful environment for developing
.NET applications. This chapter explores some of the commonly used features that you will likely
use in the process of your development work. Because there are literally hundreds and thousands
of ways in which you can customize Visual Studio 2008, this chapter can only explore, for the most
part, the default settings in Visual Studio. While some of the topics covered are discussed in more
detail in subsequent chapters, you ’ ll want to breeze through this chapter to get an overall look at
this version of Visual Studio.

 This chapter examines:

 Components of the IDE (Menu bar, Toolbar, Toolbox, and so on)

 Code and Text Editor and the features it contains, including IntelliSense and Refactoring
support

 Using the debugger in Visual Studio 2008

 Unit testing in Visual Studio 2008

 Visual Studio 2008 Overview
 In early 2008, Microsoft released the latest version of Visual Studio — Visual Studio 2008. With it
comes a plethora of editions designed for the different types of developers in mind:

 Visual Web Developer 2008 Express Edition

 Visual Basic 2008 Express Edition

 Visual C# 2008 Express Edition

 Visual C++ 2008 Express Edition

 Visual Studio 2008 Standard Edition

❑

❑

❑

❑

❑

❑

❑

❑

❑

c02.indd 11c02.indd 11 10/1/08 11:37:46 AM10/1/08 11:37:46 AM

Part I: C# Fundamentals

12

 Visual Studio 2008 Professional Edition

 Visual Studio 2008 Team System 2008 Architecture Edition

 Visual Studio 2008 Team System 2008 Database Edition

 Visual Studio 2008 Team System 2008 Development Edition

 Visual Studio 2008 Team System 2008 Test Edition

 Visual Studio 2008 Team System 2008 Team Suite

 For a detailed discussion of the features available in each edition, check out the following URL:
 http://msdn.microsoft.com/en - us/vs2008/products/cc149003.aspx .

 The Express editions are designed for hobbyists and are available for download at no charge. This is a
great way to get started with Visual Studio 2008 and is ideal for students and beginning programmers.
However, if you are a professional developer, you should purchase either the Standard or Professional
Edition. Note that if you are developing Windows Mobile applications, you need the Professional Edition
(or higher). If you are working in a large development environment and need to develop collaboratively
with other developers on large projects, check out the Team System editions.

 If you are not ready to purchase Visual Studio 2008, you can always download a 90 - day trial edition
of Visual Studio 2008 Professional from http://msdn.microsoft.com/en - us/vs2008/
products/cc268305.aspx .

 Choosing the Development Settings
 The first time you launch Visual Studio 2008, you choose the default environment settings. If you are
going to use the C# language most of the time, choose the Visual C# Development Settings (see
Figure 2 - 1). Choosing this option does not mean that you cannot use other languages (such as Visual
Basic); it just means that C# will be listed as the default project type when you create a new project.

❑

❑

❑

❑

❑

❑

Figure 2-1

c02.indd 12c02.indd 12 10/1/08 11:37:47 AM10/1/08 11:37:47 AM

Chapter 2: Getting Started with Visual Studio 2008

13

 If the Visual C# Development Settings is chosen, Visual C# appears at the top of the Project Types list (see
the left screenshot in Figure 2 - 2). In contrast, choosing the General Development Settings puts the Visual
Basic language at the top (see the right screenshot in Figure 2 - 2).

Figure 2-2

Figure 2-3

 Resetting the Development Settings
 If for some reason you want to change the development settings after you have set them, you can always
select Tools Import and Export Settings to reset the settings. In the Import and Export Settings Wizard
dialog that appears (see Figure 2 - 3), you can:

c02.indd 13c02.indd 13 10/1/08 11:37:48 AM10/1/08 11:37:48 AM

Part I: C# Fundamentals

14

 Export the settings to a file so that they can be exported to another machine

 Import a saved setting

 Reset all the settings

 To reset to another setting, check the Reset All Settings option and click Next. In the next step, you can
choose either to save your current settings or to just reset the settings without saving. Once you have
selected the option, click Next, and you can select another setting (see Figure 2 - 4).

❑

❑

❑

Figure 2-4

 Creating a New Project
 After you select a default setting, Visual Studio 2008 takes a couple of minutes to initialize. Once that ’ s
done, you will see something as shown in Figure 2 - 5 .

c02.indd 14c02.indd 14 10/1/08 11:37:48 AM10/1/08 11:37:48 AM

Chapter 2: Getting Started with Visual Studio 2008

15

 To create a new project, select File New Project (see Figure 2 - 6).

Figure 2-6

Figure 2-5

 In the Visual C# development setting, you see the New Project dialog shown in Figure 2 - 7 .

c02.indd 15c02.indd 15 10/1/08 11:37:49 AM10/1/08 11:37:49 AM

Part I: C# Fundamentals

16

 The default project name (WindowsFormApplication1 in this example) is provided, along with the
following:

 The default location for saving the project.

 The solution name. The solution name by default is the same as your project name and is
changed automatically to be the same as the project name. However, you can modify the
solution name if you want it to have a different name than the project name.

 A separate directory to store the solution; if you uncheck the Create Directory For Solution
checkbox, a solution is not be created for your project.

 You can target a different version of the .NET Framework by selecting it from the dropdown list at the
top right corner of the New Project dialog (see Figure 2 - 8).

 Remember: A solution contains one or more projects.

❑

❑

❑

Figure 2-7

Figure 2-8

c02.indd 16c02.indd 16 10/1/08 11:37:49 AM10/1/08 11:37:49 AM

Chapter 2: Getting Started with Visual Studio 2008

17

 Components of the IDE
 Figure 2 - 9 shows the various parts of the Visual Studio 2008 development environment.

Figure 2-9

 These parts are described in the following sections.

 Menu Bar
 The Menu bar contains standard Visual Studio commands. For example, Figure 2 - 10 shows that the File
menu (see Figure 2 - 10) contains commands that enable you to create new projects, open existing projects,
save the current form, and so on.

c02.indd 17c02.indd 17 10/1/08 11:37:50 AM10/1/08 11:37:50 AM

Part I: C# Fundamentals

18

 To customize the items displayed in the Menu bar, select Tools Customize to display the Customize
dialog (see Figure 2 - 11). Click on the Commands tab; the list of main menu items (Action, Addins,
Analyze, and so forth) is on the left. Selecting a main menu item displays the list of available submenu
items on the right. You can rearrange the submenu items by dragging them and dropping them onto the
desired main menu item.

Figure 2-10

Figure 2-11

 To add a new submenu item to a main menu item, click the Rearrange Commands button. In the
Rearrange Commands dialog (see Figure 2 - 12), select the menu you want to customize, and click
the Add button. You can then select the various submenu items from the different categories to add
to the menu.

c02.indd 18c02.indd 18 10/1/08 11:37:50 AM10/1/08 11:37:50 AM

Chapter 2: Getting Started with Visual Studio 2008

19

 Toolbar
 The Toolbar (see Figure 2 - 13) contains shortcuts to many of the often used commands contained in the
Menu bar.

Figure 2-12

Figure 2-13

 As with the Menu bar, the Toolbar is also customizable. To add additional toolbars, simply right - click on
any existing toolbar and check the toolbar(s) you want to add to Visual Studio from the list of toolbars
available (see Figure 2 - 14).

c02.indd 19c02.indd 19 10/1/08 11:37:50 AM10/1/08 11:37:50 AM

Part I: C# Fundamentals

20

Figure 2-14

 To customize the Toolbar, select Tools Customize. On the Toolbars tab of the Customize dialog (see
Figure 2 - 15), check the toolbar(s) you want to add to Visual Studio. You can create your own custom
toolbar by clicking the New button.

c02.indd 20c02.indd 20 10/1/08 11:37:51 AM10/1/08 11:37:51 AM

Chapter 2: Getting Started with Visual Studio 2008

21

As with the Menu bar, you can also rearrange the items displayed in each toolbar. To customize the
items displayed in the Toolbar, select Toolsv Customize to open the Customize dialog and then click
the Rearrange Commands button. The Rearrange Commands dialog allows you to add/delete items
from each toolbar (see Figure 2 - 16).

Figure 2-15

Figure 2-16

c02.indd 21c02.indd 21 10/1/08 11:37:51 AM10/1/08 11:37:51 AM

Part I: C# Fundamentals

22

 Each toolbar in the Toolbar can also be physically rearranged in Visual Studio by dragging the four - dot
line on the left edge of the toolbar (see Figure 2 - 17) and relocating it to the new desired position.

Figure 2-17

Figure 2-18

 Toolbox
 The Toolbox (see Figure 2 - 18) contains all the controls that you can use in your applications. You can
drag controls from the Toolbox and drop them onto the design surface of your application.

 Each tab in the Toolbox contains controls that are related to a specific purpose. You can create your own
tab to house your own controls. To do so, right - click on the Toolbox and select Add Tab. Name the newly
created tab (see Figure 2 - 19).

c02.indd 22c02.indd 22 10/1/08 11:37:52 AM10/1/08 11:37:52 AM

Chapter 2: Getting Started with Visual Studio 2008

23

Figure 2-19

Figure 2-20

 To add controls to the Toolbox, right - click on the tab to which you want the controls added and select
Choose Items. The Choose Toolbox Items dialog (see Figure 2 - 20) opens.

 You can add the following types of controls to the Toolbox:

 .NET Framework components

 COM components

 WPF components

 Workflow activities

 You can also click the Browse button to locate the .dll file that contains your own custom controls.

❑

❑

❑

❑

c02.indd 23c02.indd 23 10/1/08 11:37:52 AM10/1/08 11:37:52 AM

Part I: C# Fundamentals

24

 Another way to add controls to the Toolbox is to simply drag the DLL containing the controls and drop it
directly onto the Toolbox.

 You can relocate the Toolbox by dragging it and repositioning it on the various anchor points on the
screen. Figure 2 - 21 shows the anchor points displayed by Visual Studio 2008 when you drag the Toolbox.

 If you have limited screen real estate, you might want to auto - hide the Toolbox by clicking the Auto Hide
button (see Figure 2 - 22).

Figure 2-21

c02.indd 24c02.indd 24 10/1/08 11:37:53 AM10/1/08 11:37:53 AM

Chapter 2: Getting Started with Visual Studio 2008

25

Figure 2-22

Missing Controls in Toolbox
Sometimes, for some unknown reasons, the controls in the Toolbox may suddenly go
missing. The usual remedy is to right-click the Toolbox and select Reset Toolbox. This
works most of the time. However, if that fails to work, you may need to do the
following:

Navigate to C:\Documents and Settings\<user_name>\Local Settings\
Application Data\Microsoft\VisualStudio\9.0.

Within this folder are some hidden files. Simply delete the following files:
toolbox.tbd, toolboxIndex.tbd, toolbox_reset.tbd, and toolboxIndex_
reset.tbd.

Then restart Visual Studio 2008. Your controls should now come back up!

c02.indd 25c02.indd 25 10/1/08 11:37:53 AM10/1/08 11:37:53 AM

Part I: C# Fundamentals

26

 Solution Explorer
 The Solution Explorer window contains all the files and resources used in your project. A solution
contains one or more projects. Figure 2 - 23 shows the various buttons available in the Solution Explorer.

Figure 2-23

The buttons in the Solution Explorer window are context sensitive, which means
that some buttons will not be visible when certain items are selected. For instance, if
you select the project name, the View Code and View Designer buttons will not be
shown.

Figure 2-24

To add additional items such as a Windows Form or a Class to your current project, right - click the
project name in Solution Explorer, select Add (see Figure 2 - 24), and then choose the item you want to
add from the list.

c02.indd 26c02.indd 26 10/1/08 11:37:53 AM10/1/08 11:37:53 AM

Chapter 2: Getting Started with Visual Studio 2008

27

 You can also add new (or existing) projects to the current solution. To do so, right - click on the solution
name in Solution Explorer, select Add (see Figure 2 - 25), and then select what you want to add.

Figure 2-26

Figure 2-25

 When you have multiple projects in a solution, one of the projects will be set as the startup project (the
project name that is displayed in bold in Solution Explorer is the startup project). That is, when you press
F5 to debug the application, the project set as the startup project will be debugged. To change the startup
project, right - click the project that you want to set as the startup and select Set as Startup Project (see
Figure 2 - 26).

 To debug multiple projects at the same time when you press the F5 key, set multiple projects as the
startup projects. To do so, right - click on the solution name in Solution Explorer and select Properties.

 Select the Multiple Startup Projects option (see Figure 2 - 27), and set the appropriate action for each
project (None, Start, or Start Without Debugging).

c02.indd 27c02.indd 27 10/1/08 11:37:54 AM10/1/08 11:37:54 AM

Part I: C# Fundamentals

28

Figure 2-27

 Then when you press F5, the projects configured to start launch at the same time.

 Properties
 The Properties window shows the list of properties associated with the various items in your projects
(Windows Forms, controls, projects, solutions, etc).

 Figure 2 - 28 shows the Properties window displaying the list of properties of a Windows Form (Form1 , in
this example). By default, the properties are displayed in Categorized view, but you can change it to
Alphabetical view, which lists all the properties in alphabetical order.

Figure 2-28

c02.indd 28c02.indd 28 10/1/08 11:37:54 AM10/1/08 11:37:54 AM

Chapter 2: Getting Started with Visual Studio 2008

29

Figure 2-29

Figure 2-30

 All default property values are displayed in normal font, while nondefault values are displayed in bold.
This feature is very useful for debugging because it enables you to quickly trace the property values that
you have changed.

 Besides displaying properties of items, the Properties window also displays events. When the Properties
window is displaying an item (such as a Windows Form or a control) that supports events, you can click
the Events icon (see left side of Figure 2 - 29) to view the list of events supported by that item. To create an
event handler stub for an event, simply double - click the event name and Visual Studio 2008
automatically creates an event handler for you (see right side of Figure 2 - 29).

 Error List
 The Error List window (see Figure 2 - 30) is used to display:

 Errors, warnings, and messages produced as you edit and compile code.

 Syntax errors noted by IntelliSense.

❑

❑

c02.indd 29c02.indd 29 10/1/08 11:37:55 AM10/1/08 11:37:55 AM

Part I: C# Fundamentals

30

 To display the Error List window, select View Error List.

 You can double - click on an error message to open the source file and locate the position of the error.
Once the error is located, press F1 for help.

 Output Window
 The Output window (View Output) displays status messages for your application when you are
debugging in Visual Studio 2008. The Output window is useful for displaying debugging messages in
your application. For example, you can use the Console.WriteLine() statement to display a message
to the Output window:

 Console.WriteLine(DateTime.Now.ToString());

 Figure 2 - 31 shows the message displayed in the Output window.

Figure 2-31

 Designer Window
 The Designer window enables you to visually design the UI of your application. Depending on the type
of projects you are creating, the Designer displays a different design surface where you can drag and
drop controls onto it. Figure 2 - 32 shows the Designer for creating different types of projects — Windows
Forms (left), Windows Mobile (right), and Web (bottom left).

 To switch to the code - behind of the application, you can either double - click on the surface of the
designer, or right - click the item in Solution Explorer and select View Code. For example, if you are
developing a Windows Forms application, you can right - click on a form, say Form1.cs , in Solution
Explorer and select View Code. The code - behind for Form1 then displays (see Figure 2 - 33).

c02.indd 30c02.indd 30 10/1/08 11:37:56 AM10/1/08 11:37:56 AM

Chapter 2: Getting Started with Visual Studio 2008

31

Figure 2-32

Figure 2-33

c02.indd 31c02.indd 31 10/1/08 11:37:56 AM10/1/08 11:37:56 AM

Part I: C# Fundamentals

32

Figure 2-34

Figure 2-35

 Code View
 Code view is where you write the code for your application. You can switch between design view
and code view by clicking on the relevant tabs (see Figure 2 - 34).

 In Visual Studio, you can right - click on the tabs (see Figure 2 - 35) to arrange the code view either
horizontally or vertically, to maximize the use of your monitor(s).

c02.indd 32c02.indd 32 10/1/08 11:37:57 AM10/1/08 11:37:57 AM

Chapter 2: Getting Started with Visual Studio 2008

33

Figure 2-36

 Figure 2 - 36 shows the code view and design view displaying horizontally.

 Figure 2 - 37 shows the code view and design view displaying vertically.

c02.indd 33c02.indd 33 10/1/08 11:37:57 AM10/1/08 11:37:57 AM

Part I: C# Fundamentals

34

Figure 2-37

 Having multiple views at the same time is useful if you have a big monitor (or multiple monitors).

 Code and Text Editor
 Within the code view of Visual Studio 2008 is the Code and Text Editor, which provides several rich
features that make editing your code easy and efficient, including:

 Code Snippets

 IntelliSense statement completion

 IntelliSense support for object properties, methods and events

 Refactoring support

❑

❑

❑

❑

c02.indd 34c02.indd 34 10/1/08 11:37:58 AM10/1/08 11:37:58 AM

Chapter 2: Getting Started with Visual Studio 2008

35

 Code Snippets
 The Code Snippet feature in Visual Studio 2008 enables you to insert commonly used code blocks into
your project, thereby improving the efficiency of your development process. To insert a code snippet,
right - click on the location where you want to insert the code snippet in the Code Editor, and select Insert
Snippet (see Figure 2 - 38).

Figure 2-38

Figure 2-39

 Select the snippet category by clicking on the category name (see the top of Figure 2 - 39) and then
selecting the code snippet you want to insert (see bottom of Figure 2 - 39).

c02.indd 35c02.indd 35 10/1/08 11:37:58 AM10/1/08 11:37:58 AM

Part I: C# Fundamentals

36

Figure 2-40

 For example, suppose that you select the try code snippet. The following block of code will be inserted
automatically:

 private void Form1_Load(object sender, EventArgs e)
 {

 try
 {

 }
 catch (Exception)
 {

 throw;
 }

 }

 You can also use the Surround With code snippets feature. Suppose that you have the following
statements:

 private void Form1_Load(object sender, EventArgs e)
 {

 int num1 = 5;
 int num2 = 0;
 int result = num1 / num2;

 }

 The third statement is dangerous because it could result in a division - by - zero runtime error, so it would
be good to wrap the code in a try - catch block. To do so, you can highlight the block of code you want
to put within a try - catch block and right - click it. Select Surround With (see Figure 2 - 40), and then
select the try code snippet.

c02.indd 36c02.indd 36 10/1/08 11:37:58 AM10/1/08 11:37:58 AM

Chapter 2: Getting Started with Visual Studio 2008

37

Figure 2-41

 Your code now looks like this:

 private void Form1_Load(object sender, EventArgs e)
 {

 try
 {

 int num1 = 5;
 int num2 = 0;
 int result = num1 / num2;

 }
 catch (Exception)
 {

 throw;
 }

 }

 IntelliSense
 IntelliSense is one of the most useful tools in Visual Studio 2008. IntelliSense automatically detects the
properties, methods, events, and so forth of an object as you type in the code editor. You do not need to
remember the exact member names of an object because IntelliSense helps you by dynamically
providing you with a list of relevant members as you enter your code.

 For example, when you type the word Console in the code editor followed by the . , IntelliSense
displays a list of relevant members pertaining to the Console class (see Figure 2 - 41).

 When you have selected the member you want to use, press the Tab key and IntelliSense will insert the
member into your code.

c02.indd 37c02.indd 37 10/1/08 11:37:59 AM10/1/08 11:37:59 AM

Part I: C# Fundamentals

38

 IntelliSense in Visual Studio 2008 has some great enhancements. For example, the IntelliSense dropdown
list often obscures the code that is behind when it pops up. You can now make the dropdown list
disappear momentarily by pressing the Control key. Figure 2 - 42 shows the IntelliSense dropdown list
blocking the code behind it (top) and having it be translucent by pressing the Control key (bottom).

Figure 2-42

Figure 2-43

 You can also use IntelliSense to tidy up the namespaces at the top of your code. For example, you often
import a lot of namespaces at the beginning of your code and some of them might not ever be used by
your application. In Visual Studio 2008, you can select the namespaces, right - click, and select Organize
Usings (see Figure 2 - 43).

c02.indd 38c02.indd 38 10/1/08 11:37:59 AM10/1/08 11:37:59 AM

Chapter 2: Getting Started with Visual Studio 2008

39

 Then you can choose to:

 Remove all unused using statements

 Sort the using statements alphabetically

 Remove all unused using statements and sort the remaining namespace alphabetically

 Refactoring Support
 Another useful feature available in Visual Studio 2008 is code refactoring . Even though the term may
sound unfamiliar, many of you have actually used it. In a nutshell, code refactoring means restructuring
your code so that the original intention of the code is preserved. For example, you may rename a
variable so that it better reflects its usage. In that case, the entire application that uses the variable needs
to be updated with the new name. Another example of code refactoring is extracting a block of code and
placing it into a function for more efficient code reuse. In either case, you would need to put in
significant amount of effort to ensure that you do not inadvertently inject errors into the modified code.
In Visual Studio 2008, you can perform code refactoring easily. The following sections explain how to use
this feature.

 Rename
 Renaming variables is a common programming task. However, if you are not careful, you may
inadvertently rename the wrong variable (most people use the find - and - replace feature available in the
IDE, which is susceptible to wrongly renaming variables). In C# refactoring, you can rename a variable
by selecting it, right - clicking, and choosing Refactoring Rename (see Figure 2 - 44).

❑

❑

❑

Figure 2-44

Figure 2-45

 You are prompted for a new name (see Figure 2 - 45). Enter a new name, and click OK.

c02.indd 39c02.indd 39 10/1/08 11:38:00 AM10/1/08 11:38:00 AM

Part I: C# Fundamentals

40

Figure 2-46

Figure 2-47

 You can preview the change (see Figure 2 - 46) before it is applied to your code.

 Click the Apply button to change the variable name.

 Extract Method
 Very often, you write repetitive code within your application. Consider the following example:

 private void Form1_Load(object sender, EventArgs e)
 {
 int num = 10, sum = 0;
 for (int i = 1; i < = num; i++)
 {
 sum += i;
 }
 }

 Here, you are summing up all the numbers from 1 to num , a common operation. It would be better for
you to package this block of code into a function. So, highlight the code (see Figure 2 - 47), right - click
it, and select Refactor Extract Method.

c02.indd 40c02.indd 40 10/1/08 11:38:01 AM10/1/08 11:38:01 AM

Chapter 2: Getting Started with Visual Studio 2008

41

Figure 2-48

 Supply a new name for your method (see Figure 2 - 48). You can also preview the default method
signature that the refactoring engine has created for you. Click OK.

 The block of statements is now encapsulated within a function and the original block of code is replaced
by a call to that function:

 private void Form1_Load(object sender, EventArgs e)
 {

 Summation();

 }

 private static void Summation()
 {
 int num = 10, sum = 0;
 for (int i = 1; i < = num; i++)
 {
 sum += i;
 }
 }

 However, you still need to do some tweaking because the variable sum should be returned from the
function. The code you highlight will affect how the refactoring engine works. For example, if you
include the variables declaration in the highlighting, a void function is created.

 While the method extraction feature is useful, you must pay close attention to the new method signature
and the return type. Often, some minor changes are needed to get what you want. Here ’ s another
example:

 Single radius = 3.5f;
 Single height = 5;
 double volume = Math.PI * Math.Pow(radius, 2) * height;

c02.indd 41c02.indd 41 10/1/08 11:38:01 AM10/1/08 11:38:01 AM

Part I: C# Fundamentals

42

 If you exclude the variables declaration in the refactoring (instead of selecting all the three lines; see
Figure 2 - 49) and name the new method VolumeofCylinder , a method with two parameters is created:

 private void Form1_Load(object sender, EventArgs e)
 {
 Single radius = 3.5f;
 Single height = 5;

 double volume = VolumeofCylinder(radius, height);
 }

 private static double VolumeofCylinder(Single radius, Single height)
 {
 return Math.PI * Math.Pow(radius, 2) * height;
 }

Figure 2-49

 Here are some observations:

 Variables that are defined outside of the highlighted block for refactoring are used as an input
parameter in the new method.

 If variables are declared within the block selected for refactoring, the new method will have no
signature.

 Values that are changed within the block of highlighted code will be passed into the new
method by reference.

 Reorder and Remove Parameters
 You can use code refactoring to reorder the parameters in a function. Consider the following function
from the previous example:

 private static double VolumeofCylinder(Single radius, Single height)
 {
 return Math.PI * Math.Pow(radius, 2) * height;
 }

 Highlight the function signature, right - click it, and select Refactor Reorder Parameters (see Figure 2 - 50).

❑

❑

❑

c02.indd 42c02.indd 42 10/1/08 11:38:02 AM10/1/08 11:38:02 AM

Chapter 2: Getting Started with Visual Studio 2008

43

Figure 2-52

Figure 2-50

Figure 2-51

 You can then rearrange the order of the parameter list (see Figure 2 - 51).

 Click OK. You can preview the changes before they are made (see Figure 2 - 52).

c02.indd 43c02.indd 43 10/1/08 11:38:02 AM10/1/08 11:38:02 AM

Part I: C# Fundamentals

44

 Once you click the Apply button, your code is changed automatically:

 private void Form1_Load(object sender, EventArgs e)
 {
 Single radius = 3.5f;
 Single height = 5;

 double volume = VolumeofCylinder(height, radius);
 }

 private static double VolumeofCylinder(Single height, Single radius)

 {
 return Math.PI * Math.Pow(radius, 2) * height;
 }

 All statements that call the modified function will have their arguments order changed automatically.

 You can also remove parameters from a function by highlighting the function signature, right - clicking,
and selecting Refactor Remove Parameters. Then remove the parameter(s) you want to delete (see
Figure 2 - 53). All statements that call the modified function will have their calls changed automatically.

Figure 2-53

 Encapsulate Field
 Consider the following string declaration:

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {

 public string caption;

 private void Form1_Load(object sender, EventArgs e)
 {
 //...
 }
 }
}

c02.indd 44c02.indd 44 10/1/08 11:38:03 AM10/1/08 11:38:03 AM

Chapter 2: Getting Started with Visual Studio 2008

45

 Instead of exposing the caption variable as public, it is a better idea to encapsulate it as a property and
use the set and get accessors to access it. To do that, right - click on the caption variable and select
Refactor Encapsulate Field (see Figure 2 - 54).

Figure 2-54

Figure 2-55

Figure 2-56

 Assign a name to your property (see Figure 2 - 55). You have the option to update all external references
or all references (including the one within the class), and you can choose to preview your reference
changes. When you ’ re ready, click OK.

 After you ’ ve previewed the changes (see Figure 2 - 56), click Apply to effect the change.

c02.indd 45c02.indd 45 10/1/08 11:38:03 AM10/1/08 11:38:03 AM

Part I: C# Fundamentals

46

 Here is the result after applying the change:

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {

 private string caption;

 public string Caption
 {
 get { return caption; }
 set { caption = value; }
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 //...
 }
 }
}

 Extract Interface
 You can use the refactoring engine to extract an interface from a class definition. Consider the following
 Contact class:

namespace WindowsFormsApplication1
{

 class Contact
 {
 public string FirstName
 {
 get;
 set;
 }
 public string LastName
 {
 get;
 set;
 }
 public string Email
 {
 get;
 set;
 }
 public DateTime DOB
 {
 get;
 set;
 }
 }

}

c02.indd 46c02.indd 46 10/1/08 11:38:04 AM10/1/08 11:38:04 AM

Chapter 2: Getting Started with Visual Studio 2008

47

 Right - click the Contact class name and select Refactor Extract Interface (see Figure 2 - 57).

Figure 2-57

Figure 2-58

 The Extract Interface dialog opens, and you can select the individual public members to form the
interface (see Figure 2 - 58).

 The new interface is saved in a new .cs file. In this example, the filename is IContact.cs :

using System;
namespace WindowsFormsApplication1
{
 interface IContact
 {
 DateTime DOB { get; set; }
 string Email { get; set; }
 string FirstName { get; set; }
 string LastName { get; set; }
 }
}

c02.indd 47c02.indd 47 10/1/08 11:38:04 AM10/1/08 11:38:04 AM

Part I: C# Fundamentals

48

Figure 2-59

 The original Contact class definition has now been changed to implements the newly created interface:

 class Contact : WindowsFormsApplication1.IContact

 {
 public string FirstName
 ...

 Promote Local Variable to Parameter
 You can promote a local variable into a parameter. Here ’ s an example:

 private void Form1_Load(object sender, EventArgs e)
 {
 LogError(“File not found.”);
 }

 private void LogError(string message)
 {
 string SourceFile = “Form1.cs”;
 Console.WriteLine(SourceFile + “: “ + message);
 }

 You want to promote the variable SourceFile into a parameter so that callers of this function can pass
in its value through an argument. To do so, select the variable SourceFile , right - click, and then select
Refactor Promote Local Variable to Parameter (see Figure 2 - 59).

 Note that the local variable to be promoted must be initialized or an error will occur. The promoted
variable is now in the parameter list and the call to it is updated accordingly:

 private void Form1_Load(object sender, EventArgs e)
 {

 LogError(“File not found.”, “Form1.cs”);

 }

 private void LogError(string message, string SourceFile)

 {
 Console.WriteLine(SourceFile + “: “ + message);
 }

c02.indd 48c02.indd 48 10/1/08 11:38:05 AM10/1/08 11:38:05 AM

Chapter 2: Getting Started with Visual Studio 2008

49

 Debugging
 Debugging is an important part of the development cycle. Naturally, Visual Studio 2008 contains
debugging tools that enable you to observe the runtime behavior of your program. This section takes a
look at those tools.

 Suppose that you have the following program:

using System;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 Console.WriteLine(“Start”);
 printAllOddNumbers(9);
 Console.WriteLine(“End”);
 }

 private void printAllOddNumbers(int num)
 {
 for (int i = 1; i < = num; i++)
 {
 if (i % 2 == 1)
 {
 Console.WriteLine(i);
 }
 }
 }
 }
}

 The following sections show how you can insert breakpoints into the application so that you can
debug the application during runtime.

 Setting Breakpoints
 To set a breakpoint in your application, in the Visual Studio 2008 Code Editor, click in the left column
beside the statement at which you want to set the breakpoint (see Figure 2 - 60).

c02.indd 49c02.indd 49 10/1/08 11:38:05 AM10/1/08 11:38:05 AM

Part I: C# Fundamentals

50

Figure 2-60

 Press F5 to debug the application. When the execution reaches the statement with the breakpoint set,
Visual Studio 2008 pauses the application and shows the breakpoint (see Figure 2 - 61).

Figure 2-61

c02.indd 50c02.indd 50 10/1/08 11:38:05 AM10/1/08 11:38:05 AM

Chapter 2: Getting Started with Visual Studio 2008

51

 Stepping through the Code
 With the application stopped at the breakpoint, you have a choice of what to do:

 Step Into — Press F11 (see Figure 2 - 62). Stepping into the code means that if the breakpoint
statement is a function call, execution is transferred to the first statement in the function and you
can step through the function one statement at a time.

 Step Over — Press F10. Stepping over the code means that if the breakpoint statement is a
function call, the entire function is executed and control is transferred to the next statement after
the function.

 Step Out — Press Shift+F11 to step out of the code (Step Out). If the statement at the breakpoint
is part of a function, execution is resumed until the function exits. The control is transferred to
the returning point in the calling function.

 Step Into and Step Over are basically the same, except when it comes to executing functions.

❑

❑

❑

Figure 2-62

Figure 2-63

 While you are at a breakpoint stepping through the code (using either F10 or F11), you can also examine
the values of variables by hovering the mouse over the object you want to examine. Figure 2 - 63 shows
value of i when the mouse is over i .

c02.indd 51c02.indd 51 10/1/08 11:38:06 AM10/1/08 11:38:06 AM

Part I: C# Fundamentals

52

Figure 2-64

Figure 2-65

Figure 2-66

 Watching
 You can also right - click on the object you want to monitor and select Add Watch or QuickWatch (see
Figure 2 - 64).

 When you use the Add Watch feature, the variable you are watching will be displayed in the Watch
window (see Figure 2 - 65). As you step through your code, changes in the variable are reflected in
the Watch window. In addition, you have the option to change the value of the variable directly in the
Watch window.

 The QuickWatch feature also enables you to monitor the value of variables, except that the execution
cannot continue until you have closed the QuickWatch window (see Figure 2 - 66). You can also enter an
expression to evaluate and at the same time add a variable into the Add Watch window.

c02.indd 52c02.indd 52 10/1/08 11:38:06 AM10/1/08 11:38:06 AM

Chapter 2: Getting Started with Visual Studio 2008

53

Figure 2-67

Figure 2-68

 Autos and Immediate Windows
 To automatically view all the relevant variables in scope, you can launch the Autos window (see Figure
 2 - 67) during a breakpoint by selecting Debug Windows Autos.

 You can use the Immediate Window (see Figure 2 - 68) at runtime to evaluate expressions, execute
statements, print variable values, and so on. You can launch the Immediate window during a breakpoint
by selecting Debug Windows Immediate.

 Unit Testing
 Application testing is one of the tasks that every programmer worth his salt needs to do. For example,
after writing a class, you often need to write additional code to instantiate the class and test the various
methods and properties defined within it. Visual Studio 2008 Professional (and higher) provides a Unit
Testing feature to auto - generate the code needed to test your application.

c02.indd 53c02.indd 53 10/1/08 11:38:07 AM10/1/08 11:38:07 AM

Part I: C# Fundamentals

54

 This section demonstrates how unit testing is performed in Visual Studio 2008. Use the following Point
class definition located within a Class Library project:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace UnitTesting
{
 class Point
 {
 public Point() { }
 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public int x { get; set; }
 public int y { get; set; }

 //---calculates the length between 2 points
 public double length(Point pointOne)
 {
 return Math.Sqrt(
 Math.Pow(this.x - pointOne.x, 2) +
 Math.Pow(this.y - pointOne.y, 2));
 }
 }
}

 Creating the Test
 For this example, create a unit test to test the length() method. To do so, right - click on the length()
method and select Create Unit Tests (see Figure 2 - 69).

Figure 2-69

c02.indd 54c02.indd 54 10/1/08 11:38:07 AM10/1/08 11:38:07 AM

Chapter 2: Getting Started with Visual Studio 2008

55

 In the Create Unit Tests dialog, select any other additional members you want to test and click OK (see
Figure 2 - 70).

Figure 2-70

Figure 2-72

Figure 2-71

 You are prompted to name the test project. Use the default TestProject1 and click Create. You may
also be prompted with the dialog shown in Figure 2 - 71 . Click Yes.

 The TestProject1 is be added to Solution Explorer (see Figure 2 - 72).

c02.indd 55c02.indd 55 10/1/08 11:38:07 AM10/1/08 11:38:07 AM

Part I: C# Fundamentals

56

 The content of the PointTest.cs class is now displayed in Visual Studio 2008. This class contains the
various methods that you can use to test the Point class. In particular, note the lengthTest() method:

 /// < summary >
 ///A test for length
 /// < /summary >
 [TestMethod()]
 public void lengthTest()
 {
 Point target = new Point(); // TODO: Initialize to an appropriate value
 Point pointOne = null; // TODO: Initialize to an appropriate value
 double expected = 0F; // TODO: Initialize to an appropriate value
 double actual;
 actual = target.length(pointOne);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive(“Verify the correctness of this test method.”);
 }

 The lengthTest() method has the [TestMethod] attribute prefixing it. Methods with that attribute are
known as test methods .

 Now modify the implementation of the lengthTest() method to basically create and initialize two
 Point objects and then call the length() method of the Point class to calculate the distance between
the two points:

 /// < summary >
 ///A test for length
 /// < /summary >
 [TestMethod()]
 public void lengthTest()
 {

 int x = 3;
 int y = 4;

 Point target = new Point(x, y);
 Point pointOne = new Point(0,0);
 double expected = 5F;

 double actual;
 actual = target.length(pointOne);

 Assert.AreEqual(expected, actual,
 “UnitTesting.Point.length did not return the expected value.”);

 }

 Once the result is returned from the length() method, you use the AreEqual() method from the
 Assert class to check the returned value against the expected value. If the expected value does not
match the returned result, the error message set in the AreEqual() method is displayed.

c02.indd 56c02.indd 56 10/1/08 11:38:08 AM10/1/08 11:38:08 AM

Chapter 2: Getting Started with Visual Studio 2008

57

Figure 2-74

Figure 2-75

Figure 2-73

 To run the unit test, click the Run All Tests in Solution button in the toolbar. In this case, the
 lengthTest() method passed the test. The length between two points (3,4) and (0,0) is indeed 5 (see
Figure 2 - 74).

 You can make modifications to the lengthTest() method to test other parameters. In the Test Results
window, you have the option to view the previous test results (see Figure 2 - 75).

 Running the Test
 Before you run the unit test, take a look at the Test Tools toolbar (see Figure 2 - 73) automatically shown in
Visual Studio 2008.

c02.indd 57c02.indd 57 10/1/08 11:38:08 AM10/1/08 11:38:08 AM

Part I: C# Fundamentals

58

Figure 2-76

 Testing with Floating Point Numbers
 You need to take special note when your test involves comparing floating point numbers. Consider the
following example:

 [TestMethod()]
 public void lengthTest()
 {
 int x = 4;
 int y = 5;

 Point target = new Point(x, y);
 Point pointOne = new Point(1,2);

 double expected = 4.24264F;

 double actual;
 actual = target.length(pointOne);
 Assert.AreEqual(expected, actual,
 “UnitTesting.Point.length did not return the expected value.”);
 }

 When you run the test, the test will fail (see Figure 2 - 76).

 Why is this so? The reason is that floating point numbers (such as Single and Double) are not stored
exactly as what they have been assigned. For example, in this case, the value of 4.24264 is stored
internally as 4.2426400184631348, and the result returned by the length() method is actually
4.2426406871192848. The AreEqual() method actually fails if you compare them directly.

 To address this issue, the AreEqual() method supports a third parameter — delta — that specifies the
maximum difference allowed for the two numbers that you are comparing. In this case, the difference
between the two numbers is 0.0000066865615. And so the following code will pass the test:

 Assert.AreEqual(expected, actual, 0.0000066865616,
 “UnitTesting.Point.length did not return the expected value.”);

 But this code will fail:

 Assert.AreEqual(expected, actual, 0.0000066865615,
 “UnitTesting.Point.length did not return the expected value.”);

 Assert.AreEqual(expected, actual, 0.0000066865614,
 “UnitTesting.Point.length did not return the expected value.”);

c02.indd 58c02.indd 58 10/1/08 11:38:09 AM10/1/08 11:38:09 AM

Chapter 2: Getting Started with Visual Studio 2008

59

Figure 2-77

 Although the documentation says that the delta specifies the maximum difference allowed for the two
numbers, in actual testing the difference should be less than the delta for the Assert.AreEqual()
method to pass. This explains why that first statement fails.

 Adding Additional Test Methods
 You can insert additional test methods by adding new subroutines to the PointTest.cs file and
prefixing them with the [TestMethod] attribute. For example, the following test method uses the
 AreSame() method of the Assert class to check whether two objects are pointing to the same reference:

 [TestMethod()]
 public void objectTest()
 {
 Point point1 = new Point(4, 5);
 Point point2 = new Point() { x = 4, y = 5 };
 Point point3 = point2;

 //---Failed---
 Assert.AreSame(point1, point2, “point1 is not the same as point2”);

 //---Passed---
 Assert.AreSame(point2, point3, “point2 is not the same as point3”);
 }

 Figure 2 - 77 shows the test results.

 Summary
 This chapter provided a quick overview of the common features and tools available in Visual Studio
2008. Visual Studio 2008 is highly configurable, so you ’ ll want to take some time to familiarize yourself
with the environment. If you ’ re totally new to C#, some Visual Studio features like code refactoring and
unit testing may not seem all that important to you now, but once you ’ ve gotten some C# under your
belt, you ’ ll want to take another look at those features.

 When you ’ re ready, the next chapter gets you started in writing code in C#.

c02.indd 59c02.indd 59 10/1/08 11:38:09 AM10/1/08 11:38:09 AM

c02.indd 60c02.indd 60 10/1/08 11:38:10 AM10/1/08 11:38:10 AM

 C# Language Foundations
 The best way to get started in a new programming language is to create a simple program and
then examine the various parts that compose it. With this principle in mind, you ’ ll create a simple
C# program — first using Visual Studio 2008 and then using a plain text editor.

 In this chapter you build and run the HelloWorld application, using Visual Studio 2008 as well as
using the command line. After that, you tackle the syntax of the C# language and all the important
topics, such as:

 C# keywords

 Variables

 Constants

 Comments

 XML documentation

 Data types

 Flow control

 Loops

 Operators

 Preprocessor directives

 Using Visual Studio 2008
 The easiest way to create your first C# program is to use Visual Studio 2008.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 61c03.indd 61 10/1/08 11:40:10 AM10/1/08 11:40:10 AM

Part I: C# Fundamentals

62

 1. Launch Visual Studio 2008.

 2. Create a new Console Application project by selecting File New Project.

 3. Expand the Visual C# item on the left of the dialog, and select Windows. Then, select
the Console Application template on the right (see Figure 3 - 1). Name the project HelloWorld.

Figure 3-1

 Editions of Visual Studio 2008
 You can use any of the following editions of Visual Studio 2008 to create a C# program:

❑ Visual C# 2008 Express Edition

❑ Visual Studio 2008 Standard Edition

❑ Visual Studio 2008 Professional Edition

❑ Visual Studio 2008 Team Suite Edition

All the code samples and screen shots shown in this book were tested using
Visual Studio 2008 Professional Edition.

c03.indd 62c03.indd 62 10/1/08 11:40:12 AM10/1/08 11:40:12 AM

Chapter 3: C# Language Foundations

63

 4. Click OK. Figure 3 - 2 shows the skeleton of the console application.

Figure 3-2

 5. Type the following highlighted code into the Main() method as shown:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {

 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;

 }
 }
}

 6. To debug the application and see how it looks like when executed, press F5 in Visual Studio
2008. Figure 3 - 3 shows the output in the Console window.

c03.indd 63c03.indd 63 10/1/08 11:40:12 AM10/1/08 11:40:12 AM

Part I: C# Fundamentals

64

 To return to Visual Studio 2008, press the Enter key and the console window will disappear.

 Using the C# Compiler (csc.exe)
 Besides using Visual Studio 2008 to compile and run the application, you can build the application
using Visual Studio 2008 and use the C# compiler (csc.exe) to manually compile and then run the
application. This option is useful for large projects where you have a group of programmers working on
different sections of the application.

 Alternatively, if you prefer to code a C# program using a text editor, you can use the Notepad
(Programs Accessories Notepad) application included in every Windows computer. (Be aware,
however, that using Notepad does not give you access to the IntelliSense feature, which is available only
in Visual Studio 2008.)

 1. Using Notepad, create a text file, name it HelloWorld.cs , and save it into a folder on your hard
disk, say in C:\C#.

 2. Populate HelloWorld.cs with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;
 }
 }
}

Figure 3-3

c03.indd 64c03.indd 64 10/1/08 11:40:12 AM10/1/08 11:40:12 AM

Chapter 3: C# Language Foundations

65

 3. Use the command - line C# compiler (csc.exe) that ships with Visual Studio 2008 to compile the
program. The easiest way to invoke csc.exe is to use the Visual Studio 2008 command prompt,
which has all the path references added for you.

 4. To launch the Visual Studio 2008 command prompt, select Start Programs Microsoft Visual
Studio 2008 Visual Studio Tools Visual Studio 2008 Command Prompt.

 5. In the command prompt, change to the directory containing the C# program (C:\C# for this
example), and type the following command (see Figure 3 - 4):

 C:\C# > csc HelloWorld.cs

Figure 3-4

Figure 3-5

 6. Once the program is compiled, you will find the HelloWorld.exe executable in the same
directory (C:\C#). Type the following to execute the application (see Figure 3 - 5):

 C:\C# > HelloWorld

 7. To return to the command prompt, press Enter.

c03.indd 65c03.indd 65 10/1/08 11:40:13 AM10/1/08 11:40:13 AM

Part I: C# Fundamentals

66

 Dissecting the Program
 Now that you have written your first C# program, let ’ s take some time to dissect it and understand some
of the important parts.

 The first few lines specify the various namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

 As mentioned in Chapter 1 , all the class libraries in the .NET Framework are grouped using namespaces.
In C#, you use the using keyword to indicate that you will be using library classes from the specified
namespace. In this example, you use the Console class ’ s WriteLine() method to write a message to the
console. The Console class belongs to the System namespace, and if you do not have the using
System statement at the top of the program, you need to specify the fully qualified name for Console ,
which is:

System.Console.WriteLine(“Hello, world! This is my first C# program!”);

 The next keyword of interest is namespace . It allows you to assign a namespace to your class, which is
 HelloWorld in this example:

namespace HelloWorld
{

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;
 }
 }

}

 Next, you define the class name as Program :

 class Program
 {

 static void Main(string[] args)
 {
 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;
 }

 }

 All C# code must be contained within a class. Because this class is within the HelloWorld namespace, its
fully qualified name is HelloWorld.Program .

c03.indd 66c03.indd 66 10/1/08 11:40:13 AM10/1/08 11:40:13 AM

Chapter 3: C# Language Foundations

67

 Classes and objects are discussed in detail in Chapter 4 .

 Within the Program class, you have the Main() method:

 class Program
 {

 static void Main(string[] args)
 {

 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;

 }

 }

 Every C# program must have an entry point, which in this case is Main() . An entry point is the method
that is first executed when an application starts up. The static keyword indicates that this method
can be called without creating an instance of the class.

 Chapters 4 and 5 provide more information about object - oriented programming.

 Unlike languages such as VB.NET in which a method can be either a function or a subroutine (a function
returns a value; a subroutine does not), C# only supports functions. If a function does not return a result,
you simply prefix the function name with the void keyword; otherwise, you indicate the return type by
specifying its type.

 You will find more about functions in Chapter 4 .

 Finally, you write the statements within the Main() method:

 static void Main(string[] args)
 {

 Console.WriteLine(“Hello, world! This is my first C# program!”);
 Console.ReadLine();
 return;

 }

 The WriteLine() method from the Console class writes a string to the command prompt. Notice that
in C# you end each statement with a semicolon (;), which indicates to the compiler the end of each
statement. Hence, you can rewrite the WriteLine() statement like this:

 Console.WriteLine(
 “Hello, world! This is my first C# program!”);

 This is useful when you have a long statement and need to format it to fit into multiple lines for ease
of reading.

 The use of the ReadLine() statement is to accept inputs from the user. The statement is used here
mainly to keep the command window visible. If you run this program in Visual Studio 2008 without
using the ReadLine() method, the program will print the hello world statement and then close the
window immediately.

c03.indd 67c03.indd 67 10/1/08 11:40:14 AM10/1/08 11:40:14 AM

Part I: C# Fundamentals

68

 Passing Arguments to Main()
 If you run a program in the command prompt as described earlier in the chapter, you can pass in
arguments to the application. For example, you might want the program to display your name. To do so,
pass in the name like this:

C:\C# > HelloWorld Wei-Meng Lee

 The argument passed into the program can be accessed by the args parameter (a string array) defined
in the Main() method. Hence, you need to modify the program by displaying the values contained in
the args string array, like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {

 Console.Write(“Hello, “);
 for (int i = 0; i < args.Length; i++)
 Console.Write(“{0} “,args[i]);
 Console.Write(“! This is my first C# program!”);

 Console.ReadLine();
 return;
 }
 }
}

 Chapter 8 covers string arrays in depth.

 Language Syntax
 C# is a case - sensitive language that is highly expressive yet simple to learn and use. The following
sections describe the various syntax of the language.

 Keywords
 In any programming language, there is always a list of identifiers that have special meanings to the
compiler. These identifiers are known as keywords, and you should not use them as identifiers in your
program.

c03.indd 68c03.indd 68 10/1/08 11:40:14 AM10/1/08 11:40:14 AM

Chapter 3: C# Language Foundations

69

 Here ’ s the list of keywords in C# 2008:

 abstract event new struct
 as explicit null switch
 base extern object this
 bool false operator throw
 break finally out true
 byte fixed override try
 case float params typeof
 catch for private uint
 char foreach protected ulong
 checked goto public unchecked
 class if readonly unsafe
 const implicit ref ushort
 continue in return using
 decimal int sbyte virtual
 default interface sealed volatile
 delegate internal short void
 do is sizeof while
 double lock stackalloc
 else long static
 enum namespace string

 Variables
 In C#, you declare variables using the following format:

datatype identifier;

 The following example declares and uses four variables:

class Program
 {
 static void Main(string[] args)
 {
 //---declare the variables---

 int num1;
 int num2 = 5;
 float num3, num4;

 //---assign values to the variables---
 num1 = 4;
 num3 = num4 = 6.2f;

 //---print out the values of the variables---
 Console.WriteLine(“{0} {1} {2} {3}”, num1, num2, num3, num4);
 Console.ReadLine();
 return;
 }
 }

c03.indd 69c03.indd 69 10/1/08 11:40:14 AM10/1/08 11:40:14 AM

Part I: C# Fundamentals

70

 Note the following:

 num1 is declared as an int (integer).

 num2 is declared as an int and assigned a value at the same time.

 num3 and num4 are declared as float (floating point number)

 You need to declare a variable before you can use it. If not, C3 compiler will flag that as
an error.

 You can assign multiple variables in the same statement, as is shown in the assignment of
num3 and num4 .

 This example will print out the following output:

4 5 6.2 6.2

 The following declaration is also allowed:

 //---declares both num5 and num6 to be float
 // and assigns 3.4 to num5---
 float num5 = 3.4f, num6;

 But this one is not allowed:

 //---cannot mix different types in a declaration statement---
 int num7, float num8;

❑

❑

❑

❑

❑

 The name of the variable cannot be one of the C# keywords. If you absolutely
must use one of the keywords as a variable name, you need to prefix it with the
@ character, as the following example shows:

 int @new = 4;
 Console.WriteLine(@new);

c03.indd 70c03.indd 70 10/1/08 11:40:15 AM10/1/08 11:40:15 AM

Chapter 3: C# Language Foundations

71

 Scope of Variables
 The scope of a variable (that is, its visibility and accessibility) that you declare in C# is affected by the
location in which the variable is declared. Consider the following example where a variable num is
declared within the Program class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {

 static int num = 7;

 static void Main(string[] args)
 {

 Console.WriteLine(“num in Main() is {0}”, num); //---7---

 HelloWorld.Program.Method1();

 Console.ReadLine();
 return;
 }

 static private void Method1()
 {

 Console.WriteLine(“num in Method1() is {0}”, num); //---7---

 }
 }
}

 Because the num variable is declared in the class, it is visible (that is, global) to all the methods declared
within the class, and you see the following output:

num in Main() is 7
num in Method1() is 7

c03.indd 71c03.indd 71 10/1/08 11:40:15 AM10/1/08 11:40:15 AM

Part I: C# Fundamentals

72

 However, if you declare another variable with the same name (num) within Main() and Method1() ,
like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {

 static int num = 7;

 static void Main(string[] args)
 {

 int num = 5;

 Console.WriteLine(“num in Main() is {0}”, num); //---5---
 HelloWorld.Program.Method1();

 Console.ReadLine();
 return;
 }

 static private void Method1()
 {

 int num = 10;

 Console.WriteLine(“num in Method1() is {0}”, num); //---10---
 }
 }
}

 You get a very different output:

num in Main() is 5
num in Method1() is 10

 That ’ s because the num variables in Main() and Method1() have effectively hidden the num variable in
the Program class. In this case, the num in the Program class is known as the global variable while the
 num variables in Main and Method1 are known as local variables. The num variable in Main() is only
visible within Main() . Likewise, this also applies to the num variable in Method1() .

 What if you need to access the num declared in the Program class? In that case, you just need to specify
its full name:

Console.WriteLine(“num in Program is {0}”, HelloWorld.Program.num); //---7---

c03.indd 72c03.indd 72 10/1/08 11:40:16 AM10/1/08 11:40:16 AM

Chapter 3: C# Language Foundations

73

 While a local variable can hide the scope of a global variable, you cannot have two variables with the
same scope and identical names. The following makes it clear:

 static void Main(string[] args)
 {
 int num = 5;
 Console.WriteLine(“num in Main() is {0}”, num); //---5---

 int num = 6; //---error: num is already declared---

 return;
 }

 However, two identically named variables in different scope would be legal, as the following shows:

 static void Main(string[] args)
 {

 for (int i = 0; i < 5; i++)
 { //---i is visible within this loop only---
 Console.WriteLine(i);
 } //---i goes out of scope here---

 for (int i = 0; i < 3; i++)
 { //---i is visible within this loop only---
 Console.WriteLine(i);
 } //---i goes out of scope here---

 Console.ReadLine();
 return;
 }

 Here, the variable i appears in two for loops (looping is covered later in this chapter). The scope for
each i is restricted to within the loop, so there is no conflict in the scope and this is allowed.

 Declaring another variable named i outside the loop or inside it will cause a compilation error as the
following example shows:

 static void Main(string[] args)
 {

 int i = 4; //---error---

 for (int i = 0; i < 5; i++)
 {

 int i = 6; //---error---

 Console.WriteLine(i);
 }

 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine(i);
 }

 Console.ReadLine();
 return;
 }

c03.indd 73c03.indd 73 10/1/08 11:40:16 AM10/1/08 11:40:16 AM

Part I: C# Fundamentals

74

 This code results in an error: “ A local variable named ‘ i ’ cannot be declared in this scope because it
would give a different meaning to ‘ i’, which is already used in a ‘ parent or current ’ scope to denote
something else. ”

 Constants
 To declare a constant in C#, you use the const keyword, like this:

 //---declared the PI constant---
 const float PI=3.14f;

 You cannot change the value of a constant (during runtime) once it has been declared and assigned
a value.

 As a good programming practice, you should always use constants whenever you use values that do not
change during runtime.

 Comments
 In C#, you can insert comments into your program using either // or a mirrored pair of /* and */ .
The following example shows how to insert comments into your program using // :

 //---declare the variables---
 int num1; //---num1 variable---
 int num2 = 5; //---num2 variable---
 float num3, num4; //---num3 and num4 variables---

 And here ’ s an example of how to insert a multi - line block of comments into your program:

 /*
 Declares the following variables:
 num1, num2, num3, num4
 */

 int num1;
 int num2 = 5;
 float num3, num4;

 In general, use the // for short, single - line comments and /* */ for multi - line comments.

 XML Documentation
 One of the very cool features available in Visual Studio 2008 is the support for XML documentation.
This feature enables you to insert comments into your code using XML elements and then generate a
separate XML file containing all the documentation. You can then convert the XML file into professional -
 looking documentation for your code.

c03.indd 74c03.indd 74 10/1/08 11:40:16 AM10/1/08 11:40:16 AM

Chapter 3: C# Language Foundations

75

 To insert an XML comment into your code, position the cursor before a class or method name and type
three / characters (left window in Figure 3 - 6). The XML template is automatically inserted for you
(see the right window in Figure 3 - 6).

Figure 3-6

 The following code shows the XML documentation template created for the Program class, the Main()
method, and the AddNumbers() method (you need to fill in the description for each element):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HelloWorld
{

 /// < summary >
 /// This is my first C# program.
 /// < /summary >

 class Program
 {

 /// < summary >
 /// The entry point for the program
 /// < /summary >
 /// < param name=”args” > Argument(s) from the command line < /param >

(continued)

c03.indd 75c03.indd 75 10/1/08 11:40:17 AM10/1/08 11:40:17 AM

Part I: C# Fundamentals

76

 static void Main(string[] args)
 {
 Console.Write(“Hello, “);
 for (int i = 0; i < args.Length; i++)
 Console.Write(“{0} “, args[i]);
 Console.Write(“! This is my first C# program!”);
 Console.ReadLine();
 return;
 }

 /// < summary >
 /// Adds two numbers and returns the result
 /// < /summary >
 /// < param name=”num1” > Number 1 < /param >
 /// < param name=”num2” > Number 2 < /param >
 /// < returns > Sum of Number 1 and 2 < /returns >

 private int AddNumbers(int num1, int num2)
 {
 //---implementations here---
 }
 }
}

 To enable generation of the XML document containing the XML comments, right - click the project name
in Solution Explorer and select Properties.

(continued)

 You can also generate the XML documentation file using the csc.exe compiler at
the command prompt using the /doc option:

 csc Program.cs /doc:HelloWorld.xml

 In the Build tab, tick the XML Documentation File checkbox and use the default path suggested:
bin\Debug\HelloWorld.XML (see Figure 3 - 7).

c03.indd 76c03.indd 76 10/1/08 11:40:20 AM10/1/08 11:40:20 AM

Chapter 3: C# Language Foundations

77

 Build the project by right - clicking the project name in Solution Explorer and selecting Build.

 You will now find the HelloWorld.xml file (see Figure 3 - 8) located in the bin\Debug\ folder of the
project.

Figure 3-7

c03.indd 77c03.indd 77 10/1/08 11:40:21 AM10/1/08 11:40:21 AM

Part I: C# Fundamentals

78

 You can now convert this XML file into a MSDN - style documentation file. Appendix C shows you how
to use the SandCastle tool to do this.

 Data Types
 C# is a strongly typed language and as such all variables and objects must have a declared data type. The
data type can be one of the following:

 Value

 Reference

 User - defined

 Anonymous

 You ’ ll find more information about user - defined types in Chapter 4 and about anonymous types in
Chapter 14 .

❑

❑

❑

❑

Figure 3-8

c03.indd 78c03.indd 78 10/1/08 11:40:21 AM10/1/08 11:40:21 AM

Chapter 3: C# Language Foundations

79

 Value Types
 A value type variable contains the data that it is assigned. For example, when you declare an int
(integer) variable and assign a value to it, the variable directly contains that value. And when you assign
a value type variable to another, you make a copy of it. The following example makes this clear:

 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2;
 num1 = 5;
 num2 = num1;
 Console.WriteLine(“num1 is {0}. num2 is {1}”, num1, num2);

 num2 = 3;
 Console.WriteLine(“num1 is {0}. num2 is {1}”, num1, num2);
 Console.ReadLine();
 return;
 }
 }

 The output of this program is:

num1 is 5. num2 is 5
num1 is 5. num2 is 3

 As you can observe, num2 is initially assigned a value of num1 (which is 5). When num2 is later modified
to become 3, the value of num1 remains unchanged (it is still 5). This proves that the num1 and num2 each
contains a copy of its own value.

 Following is another example of value type. Point is a structure that represents an ordered pair of integer
x and y coordinates that defines a point in a two - dimensional plane (structure is another example of
value types). The Point class is found in the System.Drawing namespace and hence to test the
following statements you need to import the System.Drawing namespace.

 Chapter 4 discusses structures in more detail.

 Point pointA, pointB;
 pointA = new Point(3, 4);
 pointB = pointA;
 Console.WriteLine(“point A is {0}. pointB is {1}”,
 pointA.ToString(), pointB.ToString());

 pointB.X = 5;
 pointB.Y = 6;
 Console.WriteLine(“point A is {0}. pointB is {1}”,
 pointA.ToString(), pointB.ToString());

c03.indd 79c03.indd 79 10/1/08 11:40:21 AM10/1/08 11:40:21 AM

Part I: C# Fundamentals

80

 These statements yield the following output:

point A is {X=3,Y=4}. pointB is {X=3,Y=4}
point A is {X=3,Y=4}. pointB is {X=5,Y=6}

 As in the earlier example, changing the value of the pointB does not change the value of pointA .

 Predefined Value Types
 The .NET Framework ships with a set of predefined C# and .NET value types. These are described in the
following table.

 C# Type
 .NET Framework
Type Bits Range

 bool System.Boolean True or false

 byte System.Byte 8 Unsigned 8 - bit integer values from 0 to 255

 sbyte System.SByte 8 Signed 8 - bit integer values from – 128
to 127

 char System.Char 16 16 - bit Unicode character from U+0000 to
U+ffff

 decimal System.Decimal 128 Signed 128 - bit number from ± 1.0 � 10�28
to ± 7.9 � 1028

 double System.Double 64 Signed 64 - bit floating point number;
approximately from ± 5.0 � 10�324 to
± 1.7 � 10308

 float System.Single 32 Signed 32 - bit floating point number;
approximately from ± 1.5 � 10�45 to
 ± 3.4 � 1038

 int System.Int32 32 Signed 32 - bit integer number from
– 2,147,483,648 to 2,147,483,647

 uint System.UInt32 32 Unsigned 32 - bit integer number from 0 to
4,294,967,295

 long System.Int64 64 Signed 64 - bit integer number from
 – 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

 ulong System.UInt64 64 Unsigned 64 - bit integer number from 0 to
18,446,744,073,709,551,615

 short System.Int1616 Signed 16 - bit integer number from – 32,768
to 32,767

 ushort System.UInt16 16 Unsigned 16 - bit integer number from 0 to
65,535

c03.indd 80c03.indd 80 10/1/08 11:40:22 AM10/1/08 11:40:22 AM

Chapter 3: C# Language Foundations

81

 To declare a variable of a predefined type, you can either use the C# type or the .NET Framework type.
For example, to declare an integer variable, you can either use the int or System.Int32 type, as
shown here:

 int num1 = 5;
 //---or---
 System.Int32 num2 = 5;

 To get the type of a variable, use the GetType() method:

 Console.WriteLine(num1.GetType()); //---System.Int32---

 To get the .NET equivalent of a C# type, use the typeof() method. For example, to learn the .NET type
equivalent of C# ’ s float type, you can use the following statements:

 Type t = typeof(float);
 Console.WriteLine(t.ToString()); //---System.Single---

 To get the size of a type, use the sizeof() method:

 Console.WriteLine(“{0} bytes”, sizeof(int)); //---4 bytes---

 In C#, all noninteger numbers are always treated as a double. And so if you want to assign a noninteger
number like 3.99 to a float variable, you need to append it with the F (or f) suffix, like this:

 float price = 3.99F;

 If you don ’ t do this, the compiler will issue an error message: “ Literal of type double cannot be implicitly
converted to type ‘ float’; use an ‘ F ’ suffix to create a literal of this type. ”

 Likewise, to assign a noninteger number to a decimal variable, you need to use the M suffix:

 decimal d = 4.56M; //---suffix M to convert to decimal---
 float f = 1.23F; //---suffix F to convert to float---

 You can also assign integer values using hexadecimal representation. Simply prefix the hexadecimal
number with 0x , like this:

 int num1 = 0xA;
 Console.WriteLine(num1); //---10---

 Nullable Type
 All value types in C# have a default value when they are declared. For example, the following
declaration declares a Boolean and an int variable:

 Boolean married; //---default value is false---
 int age; //--- default value is 0---

c03.indd 81c03.indd 81 10/1/08 11:40:22 AM10/1/08 11:40:22 AM

Part I: C# Fundamentals

82

 However, C# forbids you from using a variable if you do not explicitly initialize it. The following
statements, for instance, cause the compiler to complain:

 Boolean married;
 //---error: Use of unassigned local variable ‘married’---
 Console.WriteLine(married);

 To use the variable, you first need to initialize it with a value:

 Boolean married = false;
 Console.WriteLine(married); //---now OK---

 Now married has a default value of false . There are times, though, when you do not know the marital
status of a person, and the variable should be neither true nor false . In C#, you can declare value types
to be nullable , meaning that they do not yet have a value.

 To make the married variable nullable, the above declaration can be rewritten in two different ways
(all are equivalent):

 Boolean? married = null;
 //---or---
 Nullable < Boolean > married = null;

 The syntax T? (example, Boolean?) is shorthand for Nullable < T > (example, Nullable < Boolean >),
where T is a type.

 You read this statement as “ Nullable of Boolean. ” The < > represents a generic type and will be discussed
in more detail in Chapter 9 .

 In this case, married can take one of the three values: true , false , or null .

 The following code snippet prints out “ Not Married ” :

 Boolean? married = null;
 if (married == true)
 Console.WriteLine(“Married”);
 else
 Console.WriteLine(“Not Married”); //---this will be printed---

 To learn the default value of a value type, use the default keyword, like this:

 object x;
 x = default(int);
 Console.WriteLine(x); //---0---
 x = default(bool);
 Console.WriteLine(x); //---false---

c03.indd 82c03.indd 82 10/1/08 11:40:23 AM10/1/08 11:40:23 AM

Chapter 3: C# Language Foundations

83

 That ’ s because the if statement evaluates to false (married is currently null), so the else block executes.
A much better way to check would be to use the following snippet:

 if (married == true)
 Console.WriteLine(“Married”);
 else if (married==false)
 Console.WriteLine(“Not Married”);
 else
 Console.WriteLine(“Not Sure”); //---this will be printed---

 Once a nullable type variable is set to a value, you can set it back to nothing by using null , as the
following example shows:

 married = true; //---set it to True---
 married = null; //---reset it back to nothing---

 To check the value of a nullable variable, use the HasValue property, like this:

 if (married.HasValue)
 {
 //---this line will be executed only
 // if married is either true or false---
 Console.WriteLine(married.Value);
 }

 You can also use the = = operator to test against null, like the following:

 if (married == null)
 {
 //---causes a runtime error---
 Console.WriteLine(married.Value);
 }

 But this results in an error because attempting to print out the value of a null variable using the Value
property causes an exception to be thrown. Hence, always use the HasValue property to check a
nullable variable before attempting to print its value.

 When dealing with nullable types, you may want to assign a nullable variable to another variable,
like this:

 int? num1 = null;
 int num2 = num1;

 In this case, the compiler will complain because num1 is a nullable type while num2 is not (by default,
 num2 cannot take on a null value unless it is declared nullable). To resolve this, you can use the null
 coalescing operator (??). Consider the following example:

 int? num1 = null;
 int num2 = num1 ?? 0;
 Console.WriteLine(num2); //---0---

c03.indd 83c03.indd 83 10/1/08 11:40:23 AM10/1/08 11:40:23 AM

Part I: C# Fundamentals

84

 In this statement, if num1 is null , 0 will be assigned to num2 . If num1 is not null , the value of num1 will
be assigned to num2 , as evident in the following few statements:

 num1 = 5;
 num2 = num1 ?? 0;
 Console.WriteLine(num2); //---5---

 Reference Types
 For reference types, the variable stores a reference to the data rather than the actual data. Consider the
following:

 Button btn1, btn2;
 btn1 = new Button();
 btn1.Text = “OK”;

 btn2 = btn1;
 Console.WriteLine(“{0} {1}”, btn1.Text, btn2.Text);

 btn2.Text = “Cancel”;
 Console.WriteLine(“{0} {1}”, btn1.Text, btn2.Text);

 Here, you first declare two Button controls — btn1 and btn2 . btn1 ’ s Text property is set to “ OK ” and
then btn2 is assigned btn1 . The first output will be:

OK OK

 When you change btn2 ’ s Text property to “ Cancel ” , you invariably change btn1 ’ s Text property, as
the second output shows:

Cancel Cancel

 That ’ s because btn1 and btn2 are both pointing to the same Button object. They both contain a
reference to that object instead of storing the value of the object. The declaration statement (Button
btn1, btn2;) simply creates two variables that contain references to Button objects (in the example
these two variables point to the same object).

 To remove the reference to an object in a reference type, simply use the null keyword:

 btn2 = null;

 When a reference type is set to null, attempting to access its members results in a runtime error.

c03.indd 84c03.indd 84 10/1/08 11:40:23 AM10/1/08 11:40:23 AM

Chapter 3: C# Language Foundations

85

 C# supports two predefined reference types — object and string — which are described in the
following table.

 C# Type .NET Framework Type Descriptions

 object System.Object Root type from which all types in the CTS
(Common Type System) derive

 string System.String Unicode character string

 Chapter 4 explores the System.Object type, and Chapter 8 covers strings in more detail.

 Enumerations
 You can create your own set of named constants by using enumerations. In C#, you define an
enumeration by using the enum keyword. For example, say that you need a variable to store the day of a
week (Monday, Tuesday, Wednesday, and so on):

 static void Main(string[] args)
 {

 int day = 1; //---1 to represent Monday---

 //...
 Console.ReadLine();
 return;
 }

Value Types versus Reference Types
 For any discussion about value types and reference types, it is important to understand
how the .NET Framework manages the data in memory.

 Basically, the memory is divided into two parts — the stack and the heap. The stack is a
data structure used to store value - type variables. When you create an int variable, the
value is stored on the stack. In addition, any call you make to a function (method) is
added to the top of the stack and removed when the function returns.

 In contrast, the heap is used to store reference - type variables. When you create an
instance of a class, the object is allocated on the heap and its address is returned and
stored in a variable located on the stack.

 Memory allocation and deallocation on the stack is much faster than on the heap, so if
the size of the data to be stored is small, it ’ s better to use a value - type variable than
reference - type variable. Conversely, if the size of data is large, it is better to use
a reference - type variable.

c03.indd 85c03.indd 85 10/1/08 11:40:24 AM10/1/08 11:40:24 AM

Part I: C# Fundamentals

86

 In this case, rather than use a number to represent the day of a week, it would be better if the user could
choose from a list of possible named values representing the days in a week. The following code example
declares an enumeration called Days that comprises seven names (Sun, Mon, Tue, and so forth). Each
name has a value assigned (Sun is 0, Mon is 1, and so on):

namespace HelloWorld
{

 public enum Days
 {
 Sun = 0,
 Mon = 1,
 Tue = 2,
 Wed = 3,
 Thur = 4,
 Fri = 5,
 Sat = 6
 }

 class Program
 {
 static void Main(string[] args)
 {

 Days day = Days.Mon;
 Console.WriteLine(day); //---Mon---
 Console.WriteLine((int) day); //---1---

 Console.ReadLine();
 return;
 }
 }
}

 Instead of representing the day of a week using an int variable, you can create a variable of type Days .
Visual Studio 2008 ’ s IntelliSense automatically displays the list of allowed values in the Days
enumeration (see Figure 3 - 9).

Figure 3-9

c03.indd 86c03.indd 86 10/1/08 11:40:24 AM10/1/08 11:40:24 AM

Chapter 3: C# Language Foundations

87

 By default, the first value in an enumerated type is zero. However, you can specify a different initial
value, such as:

 public enum Ranking
 {
 First = 100,
 Second = 50,
 Third = 25
 }

 To print out the value of an enumerated type, you can use the ToString() method to print out its name,
or typecast the enumerated type to int to obtain its value:

 Console.WriteLine(day); //---Mon---
 Console.WriteLine(day.ToString()); //---Mon---
 Console.WriteLine((int)day); //---1---

 For assigning a value to an enumerated type, you can either use the name directly or typecast the value
to the enumerated type:

 Days day;
 day = (Days)3; //---Wed---
 day = Days.Wed; //---Wed---

 Arrays
 An array is a data structure containing several variables of the same type. For example, you might
have an array of integer values, like this:

 int[] nums;

 In this case, nums is an array that has yet to contain any elements (of type int). To make nums an array
containing 10 elements, you can instantiate it with the new keyword followed by the type name and then
the size of the array:

 nums = new int[10];

 The index for each element in the array starts from 0 and ends at n - 1 (where n is the size of the array).
To assign a value to each element of the array, you can specify its index as follows:

 nums[0] = 0;
 nums[1] = 1;
 //...
 nums[9] = 9;

 Arrays are reference types, but array elements can be of any type.

 Instead of assigning values to each element in an array individually, you can combine them into one
statement, like this:

 int[] nums = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

c03.indd 87c03.indd 87 10/1/08 11:40:24 AM10/1/08 11:40:24 AM

Part I: C# Fundamentals

88

 Arrays can be single - dimensional (which is what you have seen so far), multi - dimensional, or jagged.
You ’ ll find more about arrays in Chapter 13 , in the discussion of collections.

 Implicit Typing
 In the previous versions of C#, all variables must be explicitly typed - declared. For example, if you want
to declare a string variable, you have to do the following:

 string str = “Hello World”;

 In C# 3.0, this is not mandatory — you can use the new var keyword to implicitly declare a variable.
Here ’ s an example:

 var str = “Hello world!”;

 Here, str is implicitly declared as a string variable. The type of the variable declared is based on the
value that it is initialized with. This method of variable declaration is known as implicit typing . Implicitly
typed variables must be initialized when they are declared. The following statement will not compile:

 var str; //---missing initializer---

 Also notice that IntelliSense will automatically know the type of the variable declared, as evident in
Figure 3 - 10 .

Figure 3-10

 You can also use implicit typing on arrays. For example, the following statement declares points to be
an array containing two Point objects:

var points = new[] { new Point(1, 2), new Point(3, 4) };

 When using implicit typing on arrays, all the members in the array must be of the same type.
The following won ’ t compile since its members are of different types — string and Boolean:

//---No best type found for implicitly-typed array---
var arr = new[] { “hello”, true, “world” };

 Implicit typing is useful in cases where you do not know the exact type of data you are manipulating
and want the compiler to determine it for you. Do not confuse the Object type with implicit typing.

c03.indd 88c03.indd 88 10/1/08 11:40:25 AM10/1/08 11:40:25 AM

Chapter 3: C# Language Foundations

89

Variables declared as Object types need to be cast during runtime, and IntelliSense does not know their
type at development time. On the other hand, implicitly typed variables are statically typed during
design time, and IntelliSense is capable of providing detailed information about the type. In terms of
performance, an implicitly typed variable is no different from a normal typed variable.

 Implicit - typing is very useful when using LINQ queries. Chapter 14 discusses LINQ in more detail.

 Type Conversion
 C# is a strongly typed language, so when you are assigning values of variables from one type to another,
you must take extra care to ensure that the assignment is compatible. Consider the following statements
where you have two variables — one of type int and another of type short :

 int num;
 short sNum = 20;

 The following statement assigns the value of sNum to num :

 num = sNum; //---OK---

 This statement works because you ’ re are assigning the value of a type (short) whose range is smaller
than that of the target type (int). In such instances, C# allows the assignment to occur, and that ’ s known
as implicit conversion .

 Converting a value from a smaller range to a bigger range is known as widening .

 The following table shows the implicit conversion between the different built - in types supported by C#.

 Convert from (type) To (type)

 sbyte short, int, long, float, double, or decimal

 byte short, ushort, int, uint, long, ulong, float, double,
or decimal

 short int, long, float, double, or decimal

 ushort int, uint, long, ulong, float, double, or decimal

 int long, float, double, or decimal

 uint long, ulong, float, double, or decimal

 long float, double, or decimal

 char ushort, int, uint, long, ulong, float, double,
or decimal

 float double

 ulong float, double, or decimal

c03.indd 89c03.indd 89 10/1/08 11:40:25 AM10/1/08 11:40:25 AM

Part I: C# Fundamentals

90

 If you try to assign the value of a type whose range is bigger than the target type, C# will raise an error.
Consider the following example:

 num = 5;
 sNum = num; //---not allowed---

 In this case, num is of type int and it may contain a big number (such as 40,000). When assigning it to
a variable of type short , that could cause a loss of data. To allow the assignment to proceed, C# requires
you to explicitly type - cast (convert) the value to the target type. This process is known as explicit
conversion .

 Converting a value from a bigger range to a smaller range is known as narrowing.
Narrowing can result in a loss of data, so be careful when performing
a narrowing operation.

 The preceding statement could be made valid when you perform a type casting operation by
prefixing the variable that you want to assign with the target type in parentheses:

 num = 5;
 sNum = (short) num; //---sNum is now 5---

 When performing type casting, you are solely responsible for ensuring that the target variable can
contain the value assigned and that no loss of data will happen. In the following example, the assignment
will cause an overflow, changing the value of num to � 25536, which is not the expected value:

 By default, Visual Studio 2008 checks statements involving constant assignments for
overflow during compile time. However, this checking is not enforced for statements
whose values cannot be determined at runtime.

 int num = 40000;
 short sNum;
 sNum =(short) num; //--- -25536; no exception is raised ---

 To ensure that an exception is thrown during runtime when an overflow occurs, you can use the
 checked keyword, which is used to explicitly enable overflow - checking for integral - type arithmetic
operations and conversions:

 try
 {

 sNum = checked((short)num); //---overflow exception---

 }
 catch (OverflowException ex)
 {
 Console.WriteLine(ex.Message);
 }

c03.indd 90c03.indd 90 10/1/08 11:40:26 AM10/1/08 11:40:26 AM

Chapter 3: C# Language Foundations

91

 If you try to initialize a variable with a value exceeding its range, Visual Studio 2008 raises an error at
compile time, as the following shows:

 int num = 400000 * 400000;
 //---overflows at compile time in checked mode

 To turn off the automatic check mode, use the unchecked keyword, like this:

 unchecked

 {
 int num = 400000 * 400000;
 }

 The compiler will now ignore the error and proceed with the compilation.

 Another way to perform conversion is to use the System.Convert class to perform the conversion for
you. The System.Convert class converts the value of a variable from one type into another type. It can
convert a value to one of the following types:

 Boolean Int16 UInt32 Decimal
 Char Int32 UInt64 DateTime
 SByte Int64 Single String
 Byte UInt16 Double

 Using an earlier example, you can convert a value to Int16 using the following statement:

 sNum = Convert.ToInt16(num);

 If a number is too big (or too small) to be converted to a particular type, an overflow exception is thrown,
and you need to catch the exception:

 int num = 40000;
 short sNum;
 try
 {
 sNum = Convert.ToInt16(num); //---overflow exception---
 }
 catch (OverflowException ex)
 {
 Console.WriteLine(ex.Message);
 }

 When converting floating point numbers to integer values, you need to be aware of one subtle difference
between type casting and using the Convert class. When you perform a type casting on a floating point

c03.indd 91c03.indd 91 10/1/08 11:40:26 AM10/1/08 11:40:26 AM

Part I: C# Fundamentals

92

number, it truncates the fractional part, but the Convert class performs numerical rounding for you,
as the following example shows:

 int num;
 float price = 5.99F;
 num = (int)price; //---num is 5---
 num = Convert.ToInt16(price); //---num is 6---

 When converting a string value type to a numerical type, you can use the Parse() method that is
available to all built in numeric types (such as int , float , double , and so on). Here ’ s how you can
convert the value stored in the str variable into an integer:

 string str = “5”;
 int num = int.Parse(str);

 Beware that using the Parse() method may trigger an exception, as demonstrated here:

 string str = “5a”;
 int num = int.Parse(str); //---format exception---

 This statement causes a format exception to be raised during runtime because the Parse() method
cannot perform the conversion. A safer way would be to use the TryParse() method, which will try to
perform the conversion. It returns a false if the conversion fails, or else it returns the converted value in
the out parameter:

 int num;
 string str = “5a”;
 if (int.TryParse(str, out num))
 Console.WriteLine(num);
 else
 Console.WriteLine(“Cannot convert”);

 Flow Control
 In C#, there are two ways to determine the selection of statements for execution:

 if - else statement

 switch statement

 if - else Statement
 The most common flow - control statement is the if - else statement. It evaluates a Boolean expression
and uses the result to determine the block of code to execute. Here ’ s an example:

 int num = 9;
 if (num % 2 == 0)
 Console.WriteLine(“{0} is even”, num);
 else
 Console.WriteLine(“{0} is odd”, num);

❑

❑

c03.indd 92c03.indd 92 10/1/08 11:40:26 AM10/1/08 11:40:26 AM

Chapter 3: C# Language Foundations

93

 In this example, if num modulus 2 equals to 0, the statement “ 9 is even ” is printed; otherwise (else),
“ 9 is odd ” is printed.

 If you have multiple statements to execute after an if - else expression, enclose them in {} , like this:

 int num = 9;
 if (num % 2 == 0)

 {
 Console.WriteLine(“{0} is even”, num);
 Console.WriteLine(“Print something here...”);
 }

 else

 {
 Console.WriteLine(“{0} is odd”, num);
 Console.WriteLine(“Print something here...”);
 }

 Here ’ s another example of an if - else statement:

 int num = 9;
 string str = string.Empty;

 if (num % 2 == 0)
 str = “even”;
 else
 str = “odd”;

 You can rewrite these statements using the conditional operator (?:), like this:

 str = (num % 2 == 0) ? “even” : “odd”;
 Console.WriteLine(str); //---odd---

 ?: is also known as the ternary operator.

 The conditional operator has the following format:

condition ? first_expression : second_expression;

 If condition is true, the first expression is evaluated and becomes the result; if false, the second
expression is evaluated and becomes the result.

 Remember to wrap the Boolean expression in a pair of parentheses when using the
 if statement.

c03.indd 93c03.indd 93 10/1/08 11:40:27 AM10/1/08 11:40:27 AM

Part I: C# Fundamentals

94

 switch Statement
 You can evaluate multiple expressions and conditionally execute blocks of code by using if - else
statements. Consider the following example:

 string symbol = “YHOO”;
 if (symbol == “MSFT”)
 {
 Console.WriteLine(27.96);
 }
 else if (symbol == “GOOG”)
 {
 Console.WriteLine(437.55);
 }
 else if (symbol == “YHOO”)
 {
 Console.WriteLine(27.15);
 }
 else
 Console.WriteLine(“Stock symbol not recognized”);

 One problem with this is that multiple if and else - if conditions make the code unwieldy — and this
gets worse when you have lots of conditions to check. A better way would be to use the switch
keyword:

 switch (symbol)
 {
 case “MSFT”: Console.WriteLine(27.96);
 break;
 case “GOOG”: Console.WriteLine(437.55);
 break;
 case “YHOO”: Console.WriteLine(27.15);
 break;
 default: Console.WriteLine(“Stock symbol not recognized”);
 break;
 }

 The switch keyword handles multiple selections and uses the case keyword to match the condition.
Each case statement must contain a unique value and the statement, or statements, that follow it is the
block to execute. Each case statement must end with a break keyword to jump out of the switch block.
The default keyword defines the block that will be executed if none of the preceding conditions is met.

 The following example shows multiple statements in a case statement:

 string symbol = “MSFT”;
 switch (symbol)
 {
 case “MSFT”:

 Console.Write(“Stock price for MSFT: “);
 Console.WriteLine(27.96);

 break;
 case “GOOG”:

c03.indd 94c03.indd 94 10/1/08 11:40:27 AM10/1/08 11:40:27 AM

Chapter 3: C# Language Foundations

95

 Console.Write(“Stock price for GOOG: “);
 Console.WriteLine(437.55);

 break;
 case “YHOO”:
 Console.Write(“Stock price for YHOO: “);

 Console.WriteLine(27.15);
 break;
 default: Console.WriteLine(“Stock symbol not recognized”);
 break;
 }

 In C#, fall - throughs are not allowed; that is, each case block of code must include the break keyword
so that execution can be transferred out of the switch block (and not “ fall through ” the rest of the case
statements). However, there is one exception to this rule — when a case block is empty. Here ’ s an
example:

 string symbol = “INTC”;

 switch (symbol)
 {
 case “MSFT”: Console.WriteLine(27.96);
 break;
 case “GOOG”: Console.WriteLine(437.55);
 break;

 case “INTC”:

 case “YHOO”: Console.WriteLine(27.15);
 break;
 default: Console.WriteLine(“Stock symbol not recognized”);
 break;
 }

 The case for “ INTC ” has no execution block/statement and hence the execution will fall through
into the case for “ YHOO ” , which will incorrectly print the output “ 27.15 ” . In this case, you need to
insert a break statement after the “ INTC ” case to prevent the fall - through:

 switch (symbol)
 {
 case “MSFT”: Console.WriteLine(27.96);
 break;
 case “GOOG”: Console.WriteLine(437.55);
 break;
 case “INTC”:

 break;

 case “YHOO”: Console.WriteLine(27.15);
 break;
 default: Console.WriteLine(“Stock symbol not recognized”);
 break;
 }

c03.indd 95c03.indd 95 10/1/08 11:40:27 AM10/1/08 11:40:27 AM

Part I: C# Fundamentals

96

 Looping
 A loop is a statement, or set of statements, repeated for a specified number of times or until some
condition is met. C# supports the following looping constructs:

 for

 foreach

 while and do - while

 for Loop
 The for loop executes a statement (or a block of statements) until a specified expression evaluates to
false. The for loop has the following format:

for (statement; expression; statement(s))
{
 //---statement(s)
}

 The expression inside the for loop is evaluated first, before the execution of the loop.

 Consider the following example:

 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 for (int i =0; i < 9; i++)
 {
 Console.WriteLine(nums[i].ToString());
 }

 Here, nums is an integer array with nine members. The initial value of i is 0 and after each iteration it
increments by 1. The loop will continue as long as i is less than 9. The loop prints out the numbers from
the array:

1
2
3
4
5
6
7
8
9

 Here ’ s another example:

 string[] words = { “C#”,”3.0”,”Programming”,”is”,”fun”};
 for (int j = 2; j < = 4; ++j) {
 Console.WriteLine(words[j]);
 }

❑

❑

❑

c03.indd 96c03.indd 96 10/1/08 11:40:27 AM10/1/08 11:40:27 AM

Chapter 3: C# Language Foundations

97

 This code prints the strings in the words array, from index 2 through 4. The output is:

Programming
is
fun

 You can also omit statements and expressions inside the for loop, as the following example illustrates:

 for (; ;)
 {
 Console.Write(“*”);
 }

 In this case, the for loop prints out a series of *s continuously (infinite loop).

 Nested for Loop
 It is common to nest two or more for loops within one another. The following example prints out the
times table from 1 to 10:

 for (int i = 1; i < = 10; i++)
 {
 Console.WriteLine(“Times table for {0}”, i);
 Console.WriteLine(“=================”);
 for (int j = 1; j < = 10; j++)
 {
 Console.WriteLine (“{0} x {1} = {2}”, i, j, i*j);
 }
 }

 Figure 3 - 11 shows the output.

Figure 3-11

c03.indd 97c03.indd 97 10/1/08 11:40:28 AM10/1/08 11:40:28 AM

Part I: C# Fundamentals

98

 Here, one for loop is nested within another for loop. The first pass of the outer loop (represented by i
in this example) triggers the inner loop (represented by j). The inner loop will execute to completion
and then the outer loop will move to the second pass, which triggers the inner loop again. This repeats
until the outer loop has finished executing.

 foreach
 One common use for the for loop is to iterate through a series of objects in a collection. In C# there is
another looping construct that is very useful for just this purpose — the foreach statement, which
iterates over each element in a collection. Take a look at an example:

 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 foreach (int i in nums)
 {
 Console.WriteLine(i);
 }

 This code block prints out all the numbers in the nums array (from 1 to 9). The value of i takes on
the value of each individual member of the array during each iteration. However, you cannot change the
value of i within the loop, as the following example demonstrates:

 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 foreach (int i in nums)
 {

 i += 4; //---error: cannot change the value of i---

 Console.WriteLine(i);
 }

 Here is another example of the use of the foreach loop:

 string[] words = { “C#”, “3.0”, “Programming”, “is”, “fun” };
 foreach (string w in words)
 {
 Console.WriteLine(w);
 }

 This code block prints out:

C#
3.0
Programming
is
fun

c03.indd 98c03.indd 98 10/1/08 11:40:28 AM10/1/08 11:40:28 AM

Chapter 3: C# Language Foundations

99

 while and do - while Loops
 In addition to for and foreach statements, you can use a while statement to execute a block of code
repeatedly. The while statement executes a code block until the specified condition is false. Here ’ s
an example:

 int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 int i = 0;
 while (i < 9)
 {
 Console.WriteLine(nums[i++]);
 }

 This code iterates through all the elements (from index 0 to 8) in the nums array and prints out each
number to the console window.

 The while statement checks the condition before executing the block of code. To execute the code at least
once before evaluating the condition, use the do - while statement. It executes its code and then evaluates
the condition specified by the while keyword, as the following example shows:

 string reply;
 do
 {
 Console.WriteLine(“Are you sure you want to quit? [y/n]”);
 reply = Console.ReadLine();
 } while (reply != “y”);

 In this code, you first print the message on the console and then wait for the user to enter a string. If the
string entered is not y , the loop continues. It will exit when the user enters y .

 Exiting from a Loop
 To break out of a loop prematurely (before the exit condition is met), you can use one of the following
keywords:

 break

 return

 throw

 goto

 break
 The break keyword allows you to break out of a loop prematurely:

 int counter = 0;
 do
 {
 Console.WriteLine(counter++);

 //---exits the loop when counter is more than 100
 if (counter > 100) break;

 } while (true);

❑

❑

❑

❑

c03.indd 99c03.indd 99 10/1/08 11:40:28 AM10/1/08 11:40:28 AM

Part I: C# Fundamentals

100

 In this example, you increment the value of counter in an infinite do - while loop. To break out of the
loop, you use a if statement to check the value of counter. If the value exceeds 100, you use the break
keyword to exit the do - while loop.

 You can also use the break keyword in while , for , and foreach loops.

 return
 The return keyword allows you to terminate the execution of a method and return control to the calling
method. When you use it within a loop, it will also exit from the loop. In the following example, the
 FindWord() function searches for a specified word (“ car ”) inside a given array. As soon as a match is
found, it exits from the loop and returns control to the calling method:

 class Program
 {
 static string FindWord(string[] arr, string word)
 {
 foreach (string w in arr)
 {
 //---if word is found, exit the loop and return back to the
 // calling function---
 if (w.StartsWith(word))

 return w;

 }
 return string.Empty;
 }

 static void Main(string[] args)
 {

 string[] words = {
 “-online”, “4u”, “adipex”, “advicer”, “baccarrat”, “blackjack”,
 “bllogspot”, “booker”, “byob”, “car-rental-e-site”,
 “car-rentals-e-site”, “carisoprodol”, “casino”, “casinos”,
 “chatroom”, “cialis”, “coolcoolhu”, “coolhu”, “credit-card-debt”,
 “credit-report-4u”
 };

 Console.WriteLine(FindWord(words, “car”)); //---car-rental-e-site---
 }
 }

 throw
 The throw keyword is usually used with the try - catch - finally statements to throw an exception.
However, you can also use it to exit a loop prematurely. Consider the following block of code that
contains the Sums() function to perform some addition and division on an array:

 class Program
 {
 static double Sums(int[] nums, int num)
 {
 double sum = 0;
 foreach (double n in nums)

c03.indd 100c03.indd 100 10/1/08 11:40:29 AM10/1/08 11:40:29 AM

Chapter 3: C# Language Foundations

101

 {

 if (n == 0)
 throw new Exception(“Nums contains zero!”);

 sum += num / n;
 }
 return sum;
 }

 static void Main(string[] args)
 {

 int[] nums = { 1, 2, 3, 4, 0, 6, 7, 8, 9 };

 try
 {
 Console.WriteLine(Sums(nums, 2));
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 }
 }

 When the foreach loop reaches the fifth element of the array (0), it throws an exception and exits the
loop. The exception is then caught by the try - catch loop in the Main() method.

 goto
 The goto keyword transfers program control directly to a labeled statement. Using goto is not
considered a best practice because it makes your program hard to read. Still, you want to be aware of
what it does, so the following example shows its use:

 string[] words = {
 “-online”, “4u”, “adipex”, “advicer”, “baccarrat”, “blackjack”,
 “bllogspot”, “booker”, “byob”, “car-rental-e-site”,
 “car-rentals-e-site”, “carisoprodol”, “casino”, “casinos”,
 “chatroom”, “cialis”, “coolcoolhu”, “coolhu”, “credit-card-debt”,
 “credit-report-4u”
 };

 foreach (string word in words)
 {
 if (word == “casino”)

 goto Found;

 }

 goto Resume;

 Found:
 Console.WriteLine(“Word found!”);

 Resume:
 //---other statements here---

c03.indd 101c03.indd 101 10/1/08 11:40:29 AM10/1/08 11:40:29 AM

Part I: C# Fundamentals

102

 In this example, if the word casino is found in the words array, control is transferred to the label named
 Found: and execution is continued from there. If the word is not found, control is transferred to the label
named Resume: .

 Skipping an Iteration
 To skip to the next iteration in the loop, you can use the continue keyword. Consider the following
block of code:

 for (int i = 0; i < 9; i++)
 {
 if (i % 2 == 0)
 {
 //---print i if it is even---
 Console.WriteLine(i);
 continue;
 }
 //---print this when i is odd---
 Console.WriteLine(“******”);
 }

 When i is an even number, this code block prints out the number and skips to the next number. Here ’ s
the result:

0

2

4

6

8

 Operators
 C# comes with a large set of operators that allows you to specify the operation to perform in an
expression. These operators can be broadly classified into the following categories:

 Assignment

 Relational

 Logical (also known as conditional)

 Mathematical

❑

❑

❑

❑

c03.indd 102c03.indd 102 10/1/08 11:40:29 AM10/1/08 11:40:29 AM

Chapter 3: C# Language Foundations

103

 Assignment Operators
 You ’ ve already seen the use of the assignment operator (=). It assigns the result of the expression on its
left to the variable on its right:

 string str = “Hello, world!”; //---str is now “Hello, world!”---
 int num1 = 5;
 int result = num1 * 6; //---result is now 30---

 You can also assign a value to a variable during declaration time. However, if you are declaring multiple
variables on the same line, only the variable that has the equal operator is assigned a value, as shown in
the following example:

 int num1, num2, num3 = 5; //---num1 and num2 are unassigned; num3 is 5---
 int i, j = 5, k; //---i and k are unassigned; j is 5---

 You can also use multiple assignment operators on the same line by assigning the value of one variable
to two or more variables:

 num1 = num2 = num3;
 Console.WriteLine(num1); //---5---
 Console.WriteLine(num2); //---5---
 Console.WriteLine(num3); //---5---

 If each variable has a unique value, it has to have its own line:

 int num1 = 4
 int num2 = 3
 int num3 = 5

 Self - Assignment Operators
 A common task in programming is to change the value of a variable and then reassign it to itself again.
For example, you could use the following code to increase the salary of an employee:

 double salary = 5000;
 salary = salary + 1000; //---salary is now 6000---

 Similarly, to decrease the salary, you can use the following:

 double salary = 5000;
 salary = salary - 1000; //---salary is now 4000---

 To halve the salary, you can use the following:

 double salary = 5000;
 salary = salary / 2; //---salary is now 2500---

 To double his pay, you can use the following:

 double salary = 5000;
 salary = salary * 2; //---salary is now 10000---

c03.indd 103c03.indd 103 10/1/08 11:40:30 AM10/1/08 11:40:30 AM

Part I: C# Fundamentals

104

 All these statements can be rewritten as follows using self - assignment operators:

 salary += 1000; //---same as salary = salary + 1000---
 salary -= 1000; //---same as salary = salary - 1000---
 salary /= 2; //---same as salary = salary / 2---
 salary *= 2; //---same as salary = salary * 2---

 A self - assignment operator alters its own value before assigning the altered value back to itself. In this
example, += , - = , /= , and *= are all self - assignment operators.

 You can also use the modulus self - assignment operator like this:

 int num = 5;
 num %= 2; //---num is now 1---

 Prefix and Postfix Operators
 The previous section described the use of the self - assignment operators. For example, to increase the
value of a variable by 1, you would write the statement as follows:

 int num = 5;
 num += 1; //---num is now 6---

 In C#, you can use the prefix or postfix operator to increment/decrement the value of a variable by 1.
The preceding statement could be rewritten using the prefix operator like this:

 ++num;

 Alternatively, it could also be rewritten using the postfix operator like this:

 num++;

 To decrement a variable, you can use either the prefix or postfix operator, like this:

 --num;
 //---or---
 num--;

 So what is the difference between the prefix and postfix operators? The following example makes it
clear:

 int num1 = 5;
 int num2 = 5;
 int result;

 result = num1++;
 Console.WriteLine(num1); //---6---
 Console.WriteLine(result); //---5---

 result = ++num2;
 Console.WriteLine(num2); //---6---
 Console.WriteLine(result); //---6---

c03.indd 104c03.indd 104 10/1/08 11:40:30 AM10/1/08 11:40:30 AM

Chapter 3: C# Language Foundations

105

 As you can see, if you use the postfix operator (num1++), the value of num1 is assigned to result before
the value of num1 is incremented by1. In contrast, the prefix operator (++num2) first increments the value
of num2 by 1 and then assigns the new value of num2 (which is now 6) to result .

 Here ’ s another example:

 int num1 = 5;
 int num2 = 5;
 int result;

 result = num1++ + ++num2;
 Console.WriteLine(num1); //---6---
 Console.WriteLine(num2); //---6---
 Console.WriteLine(result); //---11---

 In this case, both num1 and num2 are initially 5. Because a postfix operator is used on num1 , its initial
value of 5 is used for adding. And because num2 uses the prefix operator, its value is incremented before
adding, hence the value 6 is used for adding. This adds up to 11 (5 + 6). After the first statement, both
 num1 and num2 would have a value of 6.

 Relational Operators
 You use relational operators to compare two values and the result of the comparison is a Boolean
value — true or false. The following table lists all of the relational operators available in C#.

 Operator Description

 == Equal

 != Not equal

 > Greater than

 > = Greater than or equal to

 < Lesser than

 < = Lesser than or equal to

 The following statements compare the value of num with the numeric 5 using the various relational
operators:

 int num = 5;
 Console.WriteLine(num == 5); //---True---
 Console.WriteLine(num != 5); //---False---
 Console.WriteLine(num > 5); //---False---
 Console.WriteLine(num > = 5); //---True---
 Console.WriteLine(num < 5); //---False---
 Console.WriteLine(num < = 5); //---True---

c03.indd 105c03.indd 105 10/1/08 11:40:30 AM10/1/08 11:40:30 AM

Part I: C# Fundamentals

106

 A common mistake with the equal relational operator is omitting the second = sign. For example, the
following statement prints out the numeric 5 instead of True:

 Console.WriteLine(num = 5);

 A single = is the assignment operator.

 C programmers often make the following mistake of using a single = for testing equality of two
numbers:

 if (num = 5) //---use == for testing equality---

 {
 Console.WriteLine(“num is 5”);
 }

 Fortunately, the C# compiler will check for this mistake and issue a “ Cannot implicitly convert type ‘ int ’
to ‘ bool’ ” error.

 Logical Operators
 C# supports the use of logical operators so that you can evaluate multiple expressions. The following
table lists the logical operators supported in C#.

 Operator Description

 & & And

 || Or

 ! Not

 For example, consider the following code example:

 if (age < 12 || height < 120)
 {
 Console.WriteLine(“Student price applies”);
 }

 In this case, student price applies if either the age is less than 12, or the height is less than 120cm. As long
as at least one of the conditions evaluates to true, the statement is true. Following is the truth table for
the Or (||) operator.

 Operand A Operand B Result

 false false false

 false true true

 true false true

 true true true

c03.indd 106c03.indd 106 10/1/08 11:40:31 AM10/1/08 11:40:31 AM

Chapter 3: C# Language Foundations

107

 However, if the condition is changed such that student price applies only if a person is less than 12 years
old and with height less than 120cm, the statement would be rewritten as:

 if (age < 12 & & height < 120)
 {
 Console.WriteLine(“Student price applies”);
 }

 The truth table for the And (& &) operator follows.

 Operand A Operand B Result

 false false false

 false true false

 true false false

 true true true

 The Not operator (!) negates the result of an expression. For example, if student price does not apply to
those more than 12 years old, you could write the expression like this:

 if (!(age < = 12))
 Console.WriteLine(“Student price does not apply”);

 Following is the truth table for the Not operator.

 Operand A Result

 false true

 true false

 Short - Circuit Evaluation
 C# uses short - circuiting when evaluating logical operators. In short - circuiting, the second argument in
a condition is evaluated only when the first argument is not sufficient to determine the value of the
entire condition. Consider the following example:

 int div = 0;
 int num = 5;
 if ((div == 0) || (num / div == 1))
 {
 Console.WriteLine(num); //---5---
 }

 Here the first expression evaluates to true, so there is no need to evaluate the second expression
(because an Or expression evaluates to true as long as at least one expression evaluates to true).
The second expression, if evaluated, will result in a division - by - zero error. In this case, it won ’ t, and the
number 5 is printed.

c03.indd 107c03.indd 107 10/1/08 11:40:31 AM10/1/08 11:40:31 AM

Part I: C# Fundamentals

108

 If you reverse the placement of the expressions, as in the following example, a division - by - zero error
occurs:

 if ((num / div == 1) || (div == 0))
 {
 Console.WriteLine(num);
 }

 Short - circuiting also applies to the & & operator — if the first expression evaluates to false, the second
expression will not be evaluated because the final evaluation is already known.

 Mathematical Operators
 C# supports five mathematical operators, shown in the following table.

 Operator Description

 + Addition

� Subtraction

 / Division

 * Multiplication

 % Modulus

 One interesting thing about the division operator (/) is that when you divide two integers, the fractional
part is discarded:

 int num1 = 6;
 int num2 = 4;
 double result = num1 / num2;
 Console.WriteLine(result); //---1---

 Here both num1 and num2 are integers and hence after the division result only contains the integer
portion of the division. To divide correctly, one of the operands must be a noninteger, as the following
shows:

 int num1 = 6;

 double num2 = 4;

 double result = num1 / num2;
 Console.WriteLine(result); //---1.5---

 Alternatively, you can use type casting to force one of the operands to be of type double so that you can
divide correctly:

 int num1 = 6;
 int num2 = 4;

 double result = (double) num1 / num2;

 Console.WriteLine(result); //---1.5---

c03.indd 108c03.indd 108 10/1/08 11:40:31 AM10/1/08 11:40:31 AM

Chapter 3: C# Language Foundations

109

 The modulus operator (%) returns the reminder of a division:

 int num1 = 6;
 int num2 = 4;
 int remainder = num1 % num2;
 Console.WriteLine(remainder); //---2---

 The % operator is commonly used for testing whether a number is odd or even, like this:

 if (num1 % 2 == 0)
 Console.WriteLine(“Even”);
 else
 Console.WriteLine(“Odd”);

 Operator Precedence
 When you use multiple operators in the same statement, you need be aware of the precedence of each
operator (that is, which operator will evaluate first). The following table shows the various C# operators
grouped in the order of precedence. Operators within the same group have equal precedence
(operatorsinclude some keywords).

 Category Operators

 Primary x.y f(x) a[x] x++ x - - new typeof checked unchecked

 Unary + � ! ~ ++x - - x (T)x

 Multiplicative * / %

 Additive + �

 Shift < < > >

 Relational and type testing < > < = > = is as

 Equality == !=

 Logical AND &

 Logical XOR ̂

 Logical OR |

 Conditional AND & &

 Conditional OR ||

 Conditional ?:

 Assignment = *= /= %= += - = < < = > > = & = ^= |=

c03.indd 109c03.indd 109 10/1/08 11:40:32 AM10/1/08 11:40:32 AM

Part I: C# Fundamentals

110

 When you are in doubt of the precedence of two operators, always use parentheses to force the compiler
to evaluate the expression first. For example, the formula to convert a temperature from Fahrenheit to
Celsius is:

Tc = (5/9)*(Tf-32);

 When implemented in C#, the formula looks like this:

 double fahrenheit = 100;
 double celcius = 5.0 / 9.0 * fahrenheit - 32;
 Console.WriteLine(“{0:##.##} degrees C”,celcius); //---23.56 degrees C---

 But this produces a wrong answer because 5.0 / 9.0 and fahrenheit – 32 must be evaluated
separately before their results are multiplied to get the final answer. What ’ s happened is that, according
to the precedence table, 5.0 / 9.0 * fahrenheit is evaluated first and then 32 is subtracted from the
result. This gives the incorrect answer of 23.56 degrees C.

 To correct this, you use parentheses to group all the expressions that need to be evaluated first, like this:

 double fahrenheit = 100;
 double celcius = (5.0 / 9.0) * (fahrenheit - 32);
 Console.WriteLine(“{0:##.##} degrees C”,celcius); //---37.78 degrees C---

 This code gives the correct answer of 37.78 degrees C.

 Preprocessor Directives
 So far the programs you have seen in this chapter are pretty straightforward; you compile the entire
program and run it from beginning until end. However, there are times when you want to inject
debugging statements into your program — generally using methods such as Console.WriteLine() or
 MessageBox.Show() — and then remove them when the program is ready for deployment. But one
common mistake is that programmers often forget to remove all those statements after debugging. The
end result is that production code often contains many redundant code statements.

 A better way is to instruct the C# compile to conditionally omit some of the code during compilation. For
example, you can delineate some parts of your code as debugging statements that should not be present
in the production code. To do so, you can use preprocessor directives, which are special instructions to a
special program (known as the processor) that will prepare your code before sending it to the compiler.
C# supports the following preprocessor directives, most of which are discussed in the following sections:

 #define #elif #line #pragma warning

 #undef #endif #region #pragma checksum

 #if #warning #endregion

 #else #error #pragma

c03.indd 110c03.indd 110 10/1/08 11:40:32 AM10/1/08 11:40:32 AM

Chapter 3: C# Language Foundations

111

 #define and #undef
 The #define preprocessor directive allows you to define a symbol so that you can use the
 #if preprocessor directive to evaluate and then make conditional compilation. To see how the #define
preprocessor directive works, assume that you have a console application named TestDefine (saved
in C:\) created using Visual Studio 2008 (see Figure 3 - 12).

Figure 3-12

 The Main() method is located in the Program.cs file. The program basically asks the user to enter a
number and then sums up all the odd number from 1 to that number:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.Write(“Please enter a number: “);
 int num = int.Parse(Console.ReadLine());
 int sum = 0;
 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)
 sum += i;
 }
 Console.WriteLine(
 “Sum of all odd numbers from 1 to {0} is {1}”,
 num, sum);

 Console.ReadLine();
 }
 }
}

c03.indd 111c03.indd 111 10/1/08 11:40:33 AM10/1/08 11:40:33 AM

Part I: C# Fundamentals

112

 Suppose that you want to add some debugging statements to the program so that you can print out the
intermediate results. The additional lines of code are highlighted:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.Write(“Please enter a number: “);
 int num = int.Parse(Console.ReadLine());
 int sum = 0;
 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)

 {

 sum += i;

 Console.WriteLine(“i={0}, sum={1}”, i, sum);
 }

 }
 Console.WriteLine(
 “Sum of all odd numbers from 1 to {0} is {1}”,
 num, sum);

 Console.ReadLine();
 }
 }
}

 You do not want the debugging statements to be included in the production code so you first define a
symbol (such as DEBUG) using the #define preprocessor directive and wrap the debugging statements
with the #if and #endif preprocessor directives:

#define DEBUG

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {

c03.indd 112c03.indd 112 10/1/08 11:40:33 AM10/1/08 11:40:33 AM

Chapter 3: C# Language Foundations

113

 Console.Write(“Please enter a number: “);
 int num = int.Parse(Console.ReadLine());
 int sum = 0;
 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)
 {
 sum += i;

#if DEBUG
 Console.WriteLine(“i={0}, sum={1}”, i, sum);
#endif

 }
 }
 Console.WriteLine(
 “Sum of all odd numbers from 1 to {0} is {1}”,
 num, sum);

 Console.ReadLine();
 }
 }
}

 DEBUG is a common symbol that developers use to indicate debugging statements, which is why most
books use it in examples. However, you can define any symbol you want using the #define
preprocessor directive.

 Before compilation, the preprocessor will evaluate the #if preprocessor directive to see if the DEBUG
symbol has been defined. If it has, the statement(s) wrapped within the #if and #endif preprocessor
directives will be included for compilation. If the DEBUG symbol has not been defined, the statement —
 the statement(s) wrapped within the #if and #endif preprocessor — will be omitted from the
compilation.

 To test out the TestDefine program, follow these steps:

 1. Launch the Visual Studio 2008 command prompt (Start Programs Microsoft Visual Studio
2008 Visual Studio Tools Visual Studio 2008 Command Prompt).

 2. Change to the path containing the program (C:\TestDefine).

 3. Compile the application by issuing the command:

 csc Program.cs.

 4. Run the program by issuing the command:

 Program.exe.

c03.indd 113c03.indd 113 10/1/08 11:40:33 AM10/1/08 11:40:33 AM

Part I: C# Fundamentals

114

 To undefine a symbol, you can use the #undef preprocessor directive, like this:

#undef DEBUG

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
...

 If you recompile the program now, the debugging statement will be omitted.

 Another popular way of using the #define preprocessor directive is to omit the definition of the symbol
and inject it during compilation time. For example, if you remove the #define preprocessor directive
from the program, you can define it using the /define compiler option:

 1. In Visual Studio 2008 command prompt, compile the program using:

 csc Program.cs /define:DEBUG.

 2. Run the program by issuing the command:

 Program.exe.

 The output is identical to what you saw in Figure 3 - 13 — the debugging statement prints out the
intermediate results.

 If you now recompile the program by defining another symbol (other than DEBUG), you will realize that
the debugging output does not appear (see Figure 3 - 14).

Figure 3-13

 Figure 3 - 13 shows the output of the application. As you can see, the debugging statement prints out the
intermediate results.

c03.indd 114c03.indd 114 10/1/08 11:40:34 AM10/1/08 11:40:34 AM

Chapter 3: C# Language Foundations

115

 #if, #else, #elif, and #endif
 As you saw in the preceding section, the #if and #endif preprocessor directives defines a block of code
to include for compilation if a specified symbol is defined. You can also use the #else and #elif
preprocessor directives to create compound conditional directives.

 Using the previous example, you can add the #else and #elif preprocessor directives as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.Write(“Please enter a number: “);
 int num = int.Parse(Console.ReadLine());
 int sum = 0;
 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)
 {
 sum += i;

#if DEBUG
 Console.WriteLine(“i={0}, sum={1}”, i, sum);
#elif NORMAL
 Console.WriteLine(“sum={0}”, sum);
#else
 Console.WriteLine(“.”);
#endif

Figure 3-14

(continued)

c03.indd 115c03.indd 115 10/1/08 11:40:34 AM10/1/08 11:40:34 AM

Part I: C# Fundamentals

116

 }
 }
 Console.WriteLine(
 “Sum of all odd numbers from 1 to {0} is {1}”,
 num, sum);

 Console.ReadLine();
 }
 }
}

 Figure 3 - 15 shows the different output when different symbols are defined. The top screen shows the
output when the DEBUG symbol is defined. The middle screen shows the output when the NORMAL
symbol is defined. The bottom screen shows the output when no symbol is defined.

(continued)

Figure 3-15

c03.indd 116c03.indd 116 10/1/08 11:40:34 AM10/1/08 11:40:34 AM

Chapter 3: C# Language Foundations

117

 The #if preprocessor directive can also test for multiple conditions using the logical operators. Here are
some examples:

#if (DEBUG || NORMAL) //---either DEBUG or NORMAL is defined---
#if (DEBUG & & NORMAL) //---both DEBUG and NORMAL are defined---
#if (!DEBUG & & NORMAL) //---DEBUG is not defined AND NORMAL is defined---

 #warning and #error
 The #warning preprocessor directive lets you generate a warning from a specific location of your
code. The following example shows how you can use it to display warning messages during
compilation time.

 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)
 {
 sum += i;
#if DEBUG

#warning Debugging mode is on

 Console.WriteLine(“i={0}, sum={1}”, i, sum);
#elif NORMAL

#warning Normal mode is on

 Console.WriteLine(“sum={0}”, sum);
#else

#warning Default mode is on

 Console.WriteLine(“.”);
#endif
 }
 }

 Figure 3 - 16 shows the output when the DEBUG symbol is defined using the /define compiler option.

Figure 3-16

c03.indd 117c03.indd 117 10/1/08 11:40:34 AM10/1/08 11:40:34 AM

Part I: C# Fundamentals

118

 The #error preprocessor directive lets you generate an error. Consider the following example:

 for (int i = 1; i < = num; i++)
 {
 //---sum up all odd numbers---
 if (i % 2 == 1)
 {
 sum += i;
#if DEBUG
#warning Debugging mode is on
 Console.WriteLine(“i={0}, sum={1}”, i, sum);

#elif NORMAL
#error This mode is obsolete.

 Console.WriteLine(“sum={0}”, sum);
#else
#warning Default mode is on
 Console.WriteLine(“.”);
#endif
 }
 }

 Here, if the NORMAL symbol is defined, an error message is shown and the statement defined within the
conditional directive is ignored. Figure 3 - 17 shows that when you define the NORMAL symbol, the error
message is displayed and the compilation is aborted.

Figure 3-17

 #line
 The #line preprocessor directive lets you modify the compiler ’ s line number and (optionally) the file
name output for errors and warnings.

 The #line preprocessor directive is injected in the following example. The highlighted code indicates
statements that will cause the debugger to issue warning messages:

 1. using System;
 2. using System.Collections.Generic;
 3. using System.Linq;
 4. using System.Text;
 5.
 6. namespace TestDefine
 7. {
 8. class Program
 9. {
10. static void Main(string[] args)

c03.indd 118c03.indd 118 10/1/08 11:40:35 AM10/1/08 11:40:35 AM

Chapter 3: C# Language Foundations

119

11. {
12. #line 25

13. int i; //---treated as line 25---
14. char c; //---treated as line 26---

15. Console.WriteLine(“Line 1”); //---treated as line 27---
16. #line hidden //---treated as line 28---
17. Console.WriteLine(“Line 2”); //---treated as line 29---
18. Console.WriteLine(“Line 3”); //---treated as line 30---
19. #line default

20. double d; //---treated as line 20---

21. Console.WriteLine(“Line 4”); //---treated as line 21---
22. #line 45 “Program1.cs” //---treated as line 22---

23. Single s; //---treated as line 45---

24. Console.WriteLine(“Line 5”); //---treated as line 46---
25. Console.ReadLine(); //---treated as line 47---
26. }
27. }
28. }

 The line numbers are for illustration purposes and are not part of the program.

 The four highlighted lines are numbered 13, 14, 20, and 23. When you build the program in Visual Studio
2008, the lines reported are 25, 26, 20, and 45 (see Figure 3 - 18).

Figure 3-18

c03.indd 119c03.indd 119 10/1/08 11:40:35 AM10/1/08 11:40:35 AM

Part I: C# Fundamentals

120

 Let ’ s take a look at the #line directives in the example program:

 #line 25 means that you want to modify the line number to use the specified line number
(25 in this case) instead of the actual line number of the statement in error. This is useful if you
need to assign a fixed line number to a particular part of the code so that you can trace it easily.
Interestingly, the next line will continue from 25, that is, the next line is now line 26. This is
evident from the warning message for the char c; line.

 #line default means that the compiler will report the actual line number.

 #line 45 “ Program1.cs ” means that you want to fix the line number at 45 and specify the
name of the file in error (Program1.cs in this case). An example usage of it would be that
the statement in error might be a call to an external DLL and by specifying the filename of the
DLL here, it is clearer that the mistake might be from that DLL.

 What about the #line hidden statement? That preprocessor directive indicates to the debugger to skip
the block of code beginning with the #line hidden preprocessor directive. The debugger will skip the
line(s) until the next #line preprocessor directive is found. This is useful for skipping over method calls
that you are not interested in (such as those not written by you).

 Interestingly, you can replace the #line hidden preprocessor directive with #line 16707566
(0xFeeFee) and it will still work correctly.

 #region and #endregion
 The #region and #region preprocessor directives are used in conjunction with Visual Studio ’ s Code
Editor. Let ’ s work with the following example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {
 //---implementions here---
 }

 private void Method1()
 {
 //---implementions here---
 }

 private void Method2()
 {
 //---implementions here---
 }

❑

❑

❑

c03.indd 120c03.indd 120 10/1/08 11:40:35 AM10/1/08 11:40:35 AM

Chapter 3: C# Language Foundations

121

 private void Method3()
 {
 //---implementions here---
 }

 }
}

 Often, you have many functions that perform specific tasks. In such cases, it is often good to organize
them into regions so that they can be collapsed and expanded as and when needed. Using this example,
you can group all the methods — Method1() , Method2() , and Method3() — into a region using the
 #region and #region preprocessor directives:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 static void Main(string[] args)
 {

 }

 #region “Helper functions”

 private void Method1()
 {
 //---implementions here---
 }

 private void Method2()
 {
 //---implementions here---
 }

 private void Method3()
 {
 //---implementions here---
 }

 #endregion

 }
}

 In Visual Studio 2008, you can now collapse all the methods into a group called “ Helper functions ” .
Figure 3 - 19 shows the Code Editor before and after the region is collapsed.

c03.indd 121c03.indd 121 10/1/08 11:40:36 AM10/1/08 11:40:36 AM

Part I: C# Fundamentals

122

 The #region and #region preprocessor directives do not affect the logic of your code. They are used
purely in Visual Studio 2008 to better organize your code.

 #pragma warning
 The #pragma warning directive enables or disables compiler warning messages. For example,
consider the following program:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestDefine
{
 class Program
 {
 int num = 5;
 static void Main(string[] args)
 {
 }
 }
}

 In this program, the variable num is defined but never used. When you compile the application, the C#
compiler will show a warning message (see Figure 3 - 20).

Figure 3-19

Figure 3-20

c03.indd 122c03.indd 122 10/1/08 11:40:36 AM10/1/08 11:40:36 AM

Chapter 3: C# Language Foundations

123

 To suppress the warning message, you can use the #pragma warning directive together with the
warning number of the message that you want to suppress:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

#pragma warning disable 414

namespace TestDefine
{
 class Program
 {
 int num = 5;
 static void Main(string[] args)
 {
 }
 }
}

 This example suppresses warning message number 414 (“ The private field ‘ field ’ is assigned but its
value is never used ”). With the #pragma warning directive, the compiler will now suppress the
warning message (see Figure 3 - 21).

Figure 3-21

 You can suppress multiple warning messages by separating the message numbers with a comma (,)
like this:

#pragma warning disable 414, 3021, 1959

 Summary
 In this chapter, you explored the basic syntax of the C# language and saw how to use Visual Studio 2008
to compile and run a working C# application. You examined the different data types available in the
.NET Framework and how you can perform type conversion from one type to another. You have also
seen the various ways to perform looping, and the various processor directives with which you can
change the way your program is compiled.

c03.indd 123c03.indd 123 10/1/08 11:40:36 AM10/1/08 11:40:36 AM

c03.indd 124c03.indd 124 10/1/08 11:40:37 AM10/1/08 11:40:37 AM

 Classes and Objects
 One of the most important topics in C# programming — in fact, the cornerstone of .NET
development — is classes and objects.

 Classes are essentially templates from which you create objects. In C# .NET programming,
everything you deal with involves classes and objects. This chapter assumes that you already have
a basic grasp of object - oriented programming. It tackles:

 How to define a class

 How to create an object from a class

 The different types of members in a class

 The root of all objects — System.Object

 Classes
 Everything you encounter in .NET in based on classes. For example, you have a Windows Forms
application containing a default form called Form1 . Form1 itself is a class that inherits from the
base class System.Windows.Forms.Form , which defines the basic behaviors that a Windows
Form should exhibit:

using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Project1
{

 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 }
}

❑

❑

❑

❑

c04.indd 125c04.indd 125 10/1/08 11:41:36 AM10/1/08 11:41:36 AM

Part I: C# Fundamentals

126

 Within the Form1 class, you code in your methods. For example, to display a " Hello World " message
when the form is loaded, add the following statement in the Form1_Load() method:

 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 protected override void OnLoad(EventArgs e)
 {
 MessageBox.Show(“Hello World!”);

 }

 }

 The following sections walk you through the basics of defining your own class and the various members
you can have in the class.

 Defining a Class
 You use the class keyword to define a class. The following example is the definition of a class called
 Contact :

public class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;
}

 This Contact class has four public members — ID , FirstName , LastName , and Email . The syntax of a
class definition is:

 < access_modifiers > class Class_Name
{
 //--- Fields, properties, methods, and events ---
}

 Using Partial Classes
 Instead of defining an entire class by using the class keyword, you can split the definition into multiple
classes by using the partial keyword. For example, the Contact class defined in the previous section
can be split into two partial classes like this:

public partial class Contact
{
 public int ID;
 public string Email;

c04.indd 126c04.indd 126 10/1/08 11:41:36 AM10/1/08 11:41:36 AM

Chapter 4: Classes and Objects

127

}

public partial class Contact
{
 public string FirstName;
 public string LastName;
}

 When the application is compiled, the C# compiler will group all the partial classes together and treat
them as a single class.

Uses for Partial Classes
There are a couple of very good reasons to use partial classes. First, using partial classes
enables the programmers on your team to work on different parts of a class without
needing to share the same physical file. While this is useful for projects that involve big
class files, be wary: a huge class file may signal a design fault, and refactoring may be
required.

Second, and most compelling, you can use partial classes to separate your application
business logic from the designer-generated code. For example, the code generated by
Visual Studio 2008 for a Windows Form is kept separate from your business logic. This
prevents developers from messing with the code that is used for the user interface. At
the same time, it prevents you from losing your changes to the designer-generated code
when you change the user interface.

 Creating an Instance of a Class (Object Instantiation)
 A class works like a template. To do anything useful, you need to use the template to create an actual
object so that you can work with it. The process of creating an object from a class is known as
 instantiation .

 To instantiate the Contact class defined earlier, you first create a variable of type Contact :

 Contact contact1;

 At this stage, contact1 is of type Contact , but it does not actually contain the object data yet. For it to
contain the object data, you need to use the new keyword to create a new instance of the Contact class, a
process is known as object instantiation :

 contact1 = new Contact();

 Alternatively, you can combine those two steps into one, like this:

 Contact contact1 = new Contact();

c04.indd 127c04.indd 127 10/1/08 11:41:37 AM10/1/08 11:41:37 AM

Part I: C# Fundamentals

128

 Once an object is instantiated, you can set the various members of the object. Here ’ s an example:

 contact1.ID = 12;
 contact1.FirstName = “Wei-Meng”;
 contact1.LastName = “Lee”;
 contact1.Email = “weimenglee@learn2develop.net”;

 You can also assign an object to an object, like the following:

 Contact contact1 = new Contact();
 Contact contact2 = contact1;

 In these statements, contact2 and contact1 are now both pointing to the same object. Any changes
made to one object will be reflected in the other object, as the following example shows:

 Contact contact1 = new Contact();
 Contact contact2 = contact1;

 contact1.FirstName = “Wei-Meng”;
 contact2.FirstName = “Jackson”;

 //---prints out “Jackson”---
 Console.WriteLine(contact1.FirstName);

 It prints out “ Jackson ” because both contact1 and contact2 are pointing to the same object, and when
you assign “ Jackson ” to the FirstName property of contact2 , contact1 ’ s FirstName property also
sees “ Jackson ” .

 Anonymous Types (C# 3.0)
 C# 3.0 introduces a new feature known as anonymous types . Anonymous types enable you to define data
types without having to formally define a class. Consider the following example:

 var book1 = new
 {
 ISBN = “978-0-470-17661-0”,
 Title=”Professional Windows Vista Gadgets Programming”,
 Author = “Wei-Meng Lee”,
 Publisher=”Wrox”
 };

 Chapter 3 discusses the new C# 3.0 keyword var .

 Here, book1 is an object with 4 properties: ISBN , Title , Author , and Publisher (see Figure 4 - 1).

c04.indd 128c04.indd 128 10/1/08 11:41:37 AM10/1/08 11:41:37 AM

Chapter 4: Classes and Objects

129

 In this example, there ’ s no need for you to define a class containing the four properties. Instead, the
object is created and its properties initialized with their respective values.

Figure 4-1

 You can use variable names when assigning values to properties in an anonymous type; for example:

 var Title = “Professional Windows Vista Gadgets Programming”;
 var Author = “Wei-Meng Lee”;
 var Publisher = “Wrox”;

 var book1 = new
 {
 ISBN = “978-0-470-17661-0”,

 Title,
 Author,
 Publisher

 };

 In this case, the names of the properties will assume the names of the variables, as shown in Figure 4 - 2 .

C# anonymous types are immutable, which means all the properties are read-only —
their values cannot be changed once they are initialized.

c04.indd 129c04.indd 129 10/1/08 11:41:37 AM10/1/08 11:41:37 AM

Part I: C# Fundamentals

130

 However, you cannot create anonymous types with literals, as the following example demonstrates:

 //---error---
 var book1 = new
 {
 “978-0-470-17661-0”,
 “Professional Windows Vista Gadgets Programming”,
 “Wei-Meng Lee”,
 “Wrox”
 };

 When assigning a literal value to a property in an anonymous type, you must use an identifier, like this:

 var book1 = new
 {

 ISBN = “978-0-470-17661-0”,
 Title=”Professional Windows Vista Gadgets Programming”,
 Author = “Wei-Meng Lee”,
 Publisher=”Wrox”

 };

 So, how are anonymous types useful for your application? Well, they enable you to shape your data from
one type to another. You will look into more about this in Chapter 14, which tackles LINQ.

Figure 4-2

c04.indd 130c04.indd 130 10/1/08 11:41:38 AM10/1/08 11:41:38 AM

Chapter 4: Classes and Objects

131

 Class Members
 Variables and functions defined in a class are known as a class ’ s members. The Contact class definition,
for instance, has four members that you can access once an object is instantiated:

public class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;
}

 Members of a class are classified into two types:

 Type Description

 Data Members that store the data needed by your object so that they can be used by
functions to perform their work. For example, you can store a person ’ s name using
the FirstName and LastName members.

 Function Code blocks within a class. Function members allow the class to perform its work.
For example, a function contained within a class (such as the Contact class) can
validate the email of a person (stored in the Email member) to see if it is a valid
email address.

 Data members can be further grouped into instance members and static members .

 Instance Members
 By default, all data members are instance members unless they are constants or prefixed with the static
keyword (more on this in the next section). The variables defined in the Contact class are instance
members:

 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 Instance members can be accessed only through an instance of a class and each instance of the class
(object) has its own copy of the data. Consider the following example:

 Contact contact1 = new Contact();
 contact1.ID = 12;
 contact1.FirstName = “Wei-Meng”;
 contact1.LastName = “Lee”;
 contact1.Email = “weimenglee@learn2develop.net”;

 Contact contact2 = new Contact();
 contact2.ID = 35;
 contact2.FirstName = “Jason”;
 contact2.LastName = “Will”;
 contact2.Email = “JasonWill@company.net”;

c04.indd 131c04.indd 131 10/1/08 11:41:38 AM10/1/08 11:41:38 AM

Part I: C# Fundamentals

132

 The objects contact1 and contact2 each contain information for a different user. Each object maintains
its own copy of the ID , FirstName , LastName , and Email data members.

 Static Members
 Static data members belong to the class rather than to each instance of the class. You use the static
keyword to define them. For example, here the Contact class has a static member named count :

public class Contact
{

 public static int count;

 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;
}

 The count static member can be used to keep track of the total number of Contact instances, and thus it
should not belong to any instances of the Contact class but to the class itself.

 To use the count static variable, access it through the Contact class:

 Contact.count = 4;
 Console.WriteLine(Contact.count);

 You cannot access it via an instance of the class, such as contact1 :

 //---error---
 contact1.count = 4;

 Constants defined within a class are implicitly static, as the following example shows:

public class Contact
{

 public const ushort MAX_EMAIL = 5;

 public static int count;
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;
}

 In this case, you can only access the constant through the class name but not set a value to it:

 Console.WriteLine(Contact.MAX_EMAIL);
 Contact.MAX_EMAIL = 4; //---error---

c04.indd 132c04.indd 132 10/1/08 11:41:38 AM10/1/08 11:41:38 AM

Chapter 4: Classes and Objects

133

 Access Modifiers
 Access modifiers are keywords that you can add to members of a class to restrict their access. Consider the
following definition of the Contact class:

public class Contact
{
 public const ushort MAX_EMAIL = 5;
 public static int count;
 public int ID;
 public string FirstName;
 public string LastName;

 private string _Email;

}

 Unlike the rest of the data members, the _Email data member has been defined with the private
keyword. The public keyword indicates that the data member is visible outside the class, while the
 private keyword indicates that the data member is only visible within the class.

 By convention, you can denote a private variable by beginning its name with the underscore (_)
character. This is recommended, but not mandatory.

 For example, you can access the FirstName data member through an instance of the Contact class:

 //---this is OK---
 contact1.FirstName = “Wei-Meng”;

 But you cannot access the _Email data member outside the class, as the following statement
demonstrates:

 //---error: _Email is inaccessible---
 contact1._Email = “weimenglee@learn2develop.net”;

 C# has four access modifiers — private , public , protected , and internal . The last two are
discussed with inheritance in the next chapter.

 If a data member is declared without the public keyword, its scope (or access) is private by default.
So, _Email can also be declared like this:

public class Contact
{
 public const ushort MAX_EMAIL = 5;
 public static int count;
 public int ID;
 public string FirstName;
 public string LastName;

 string _Email;

}

c04.indd 133c04.indd 133 10/1/08 11:41:39 AM10/1/08 11:41:39 AM

Part I: C# Fundamentals

134

 Function Members
 A function member contains executable code that performs work for the class. The following are
examples of function members in C#:

 Methods

 Properties

 Events

 Indexers

 User - defined operators

 Constructors

 Destructors

 Events and indexers are covered in detail in Chapters 7 and 13.

 Methods
 In C#, every function must be associated with a class. A function defined with a class is known as a
 method . In C#, a method is defined using the following syntax:

[access_modifiers] return_type method_name(parameters)
{
 //---Method body---
}

 Here ’ s an example — the ValidateEmail() method defined in the Contact class:

public class Contact
{
 public static ushort MAX_EMAIL;
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 public Boolean ValidateEmail() {
 //---implementation here---
 Boolean valid=true;
 return valid;
 }

}

❑

❑

❑

❑

❑

❑

❑

c04.indd 134c04.indd 134 10/1/08 11:41:39 AM10/1/08 11:41:39 AM

Chapter 4: Classes and Objects

135

 If the method does not return a value, you need to specify the return type as void , as the following
 PrintName() method shows:

public class Contact
{
 public static ushort MAX_EMAIL;
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 public Boolean ValidateEmail() {
 //---implementation here---
 //...
 Boolean valid=true;
 return valid;
 }

 public void PrintName()
 {
 Console.WriteLine(“{0} {1}”, this.FirstName, this.LastName);
 }

}

 Passing Arguments into Methods
 You can pass values into a method using arguments . The words parameter and argument are often used
interchangeably, but they mean different things. A parameter is what you use to define a method. An
argument is what you actually use to call a method.

 In the following example, x and y are examples of parameters:

 public int AddNumbers(int x, int y) {}

 When you call the method, you pass in values/variables. In the following example, num1 and num2 are
examples of arguments:

 Console.WriteLine(AddNumbers(num1, num2));

 Consider the method named AddNumbers() with two parameters, x and y :

 public int AddNumbers(int x, int y)
 {
 x++;
 y++;
 return x + y;
 }

c04.indd 135c04.indd 135 10/1/08 11:41:39 AM10/1/08 11:41:39 AM

Part I: C# Fundamentals

136

 When you call this method, you also need to pass two integer arguments (num1 and num2), as the
following example shows:

 int num1 = 4, num2 = 5;
 //---prints out 11---
 Console.WriteLine(AddNumbers(num1, num2));
 Console.WriteLine(num1); //---4---
 Console.WriteLine(num2); //---5---

 In C#, all arguments are passed by value by default. In other words, the called method gets a copy of the
value of the arguments passed into it. In the preceding example, for instance, even though the value of
 x and y are both incremented within the method, this does not affect the values of num1 and num2 .

 If you want to pass in arguments to methods by reference , you need to prefix the parameters with the ref
keyword. Values of variables passed in by reference will be modified if there are changes made to them
in the method. Consider the following rewrite of the AddNumbers() function:

 Because C# functions can only return single values, passing arguments by reference is useful when you
need a method to return multiple values.

 public int AddNumbers(ref int x, ref int y)

 {
 x++;
 y++;
 return x + y;
 }

 In this case, the values of variables passed into this function will be modified, as the following example
illustrates:

 int num1 = 4, num2 = 5;
 //---prints out 11---

 Console.WriteLine(AddNumbers(ref num1, ref num2));
 Console.WriteLine(num1); //---5---
 Console.WriteLine(num2); //---6---

 After calling the AddNumbers() function, num1 becomes 5 and num2 becomes 6. Observe that you need
to prefix the arguments with the ref keyword when calling the function. In addition, you cannot pass
literal values as arguments into a method that requires parameters to be passed in by reference:

 //---invalid arguments---
 Console.WriteLine(AddNumbers(4, 5));

 Also note that the ref keyword requires that all the variables be initialized first. Here ’ s an example:

 public void GetDate(ref int day, ref int month, ref int year)
 {
 day = DateTime.Now.Day;
 month = DateTime.Now.Month;
 year = DateTime.Now.Year;
 }

c04.indd 136c04.indd 136 10/1/08 11:41:40 AM10/1/08 11:41:40 AM

Chapter 4: Classes and Objects

137

 The GetDate() method takes in three reference parameters and uses them to return the day, month,
and year.

 If you pass in the day, month and year reference variables without initializing them, an error will occur:

 //---Error: day, month, and year not initialized---
 int day, month, year;
 GetDate(ref day, ref month, ref year);

 If your intention is to use the variables solely to obtain some return values from the method, you can use
the out keyword, which is identical to the ref keyword except that it does not require the variables
passed in to be initialized first:

 public void GetDate(out int day, out int month, out int year)
 {
 day = DateTime.Now.Day;
 month = DateTime.Now.Month;
 year = DateTime.Now.Year;
 }

 Also, the out parameter in a function must be assigned a value before the function returns. If it isn ’ t, a
compiler error results.

 Like the ref keyword, you need to prefix the arguments with the out keyword when calling the
function:

 int day, month, year;
 GetDate(out day, out month, out year);

 The this Keyword
 The this keyword refers to the current instance of an object (in a nonstatic class; discussed later in the
section Static Classes). In the earlier section on methods, you saw the use of this :

 Console.WriteLine(“{0} {1}”, this.FirstName, this.LastName);

 While the FirstName and LastName variable could be referenced without using the this keyword,
prefixing them with it makes your code more readable, indicating that you are referring to an instance
member.

 However, if instance members have the same names as your parameters, using this allows you to
resolve the ambiguity:

 public void SetName(string FirstName, string LastName)
 {

 this.FirstName = FirstName;
 this.LastName = LastName;

 }

c04.indd 137c04.indd 137 10/1/08 11:41:40 AM10/1/08 11:41:40 AM

Part I: C# Fundamentals

138

 Another use of the this keyword is to pass the current object as a parameter to another method. For
example:

public class AddressBook
{
 public void AddContact(Contact c)
 {
 Console.WriteLine(c.ID);
 Console.WriteLine(c.FirstName);
 Console.WriteLine(c.LastName);
 Console.WriteLine(c.Email);
 //---other implementations here---
 //...
 }
}

 The AddContact() method takes in a Contact object and prints out the details of the contact. Suppose
that the Contact class has a AddToAddressBook() method that takes in an AddressBook object. This
method adds the Contact object into the AddressBook object:

public class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 public void AddToAddressBook(AddressBook addBook)
 {
 addBook.AddContact(this);
 }

}

 In this case, you use the this keyword to pass in the current instance of the Contact object into the
 AddressBook object. To test out that code, use the following statements:

 Contact contact1 = new Contact();
 contact1.ID = 12;
 contact1.FirstName = “Wei-Meng”;
 contact1.LastName = “Lee”;
 contact1.Email = “weimenglee@learn2develop.net”;

 AddressBook addBook1 = new AddressBook();
 contact1.AddToAddressBook(addBook1);

c04.indd 138c04.indd 138 10/1/08 11:41:40 AM10/1/08 11:41:40 AM

Chapter 4: Classes and Objects

139

 Properties
 Properties are function members that provide an easy way to read or write the values of private data
members. Recall the Contact class defined earlier:

public class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;
}

 You ’ ve seen that you can create a Contact object and set its public data members (ID , FirstName ,
 LastName , and Email) directly, like this:

 Contact c = new Contact();
 c.ID = 1234;
 c.FirstName = “Wei-Meng”;
 c.LastName = “Lee”;
 c.Email = “weimenglee@learn2develop.net”;

 However, if the ID of a person has a valid range of values — such as from 1 to 9999 — the following
value of 12345 would still be assigned to the ID data member:

 c.ID = 12345;

 Technically, the assignment is valid, but logically it should not be allowed — the number assigned
is beyond the range of values permitted for ID . Of course you can perform some checks before
assigning a value to the ID member, but doing so violates the spirit of encapsulation in object - oriented
programming — the checks should be done within the class.

 A solution to this is to use properties.

 The Contact class can be rewritten as follows with its data members converted to properties:

public class Contact
{

 int _ID;
 string _FirstName, _LastName, _Email;
 public int ID
 {
 get
 {
 return _ID;
 }
 set
 {
 _ID = value;
 }
 }

(continued)

c04.indd 139c04.indd 139 10/1/08 11:41:40 AM10/1/08 11:41:40 AM

Part I: C# Fundamentals

140

 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 _FirstName = value;
 }
 }
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 _LastName = value;
 }
 }
 public string Email
 {
 get
 {
 return _Email;
 }
 set
 {
 _Email = value;
 }
 }

}

 Note that the public members (ID , FirstName , LastName , and Email) have been replaced by properties
with the set and get accessors.

 The set accessor sets the value of a property. Using this example, you can instantiate a Contact class
and then set the value of the ID property, like this:

 Contact c = new Contact();
 c.ID = 1234;

 In this case, the set accessor is invoked:

 public int ID
 {
 get
 {
 return _ID;
 }

(continued)

c04.indd 140c04.indd 140 10/1/08 11:41:41 AM10/1/08 11:41:41 AM

Chapter 4: Classes and Objects

141

 set
 {
 _ID = value;
 }

 }

 The value keyword contains the value that is being assigned by the set accessor. You normally
assign the value of a property to a private member so that it is not visible to code outside the class,
which in this case is _ID .

 When you retrieve the value of a property, the get accessor is invoked:

 public int ID
 {

 get
 {
 return _ID;
 }

 set
 {
 _ID = value;
 }
 }

 The following statement shows an example of retrieving the value of a property:

 Console.WriteLine(c.ID); //---prints out 1234---

 The really useful part of properties is the capability for you to perform checking on the value assigned.
For example, before the ID property is set, you want to make sure that the value is between 1 and 9999,
so you perform the check at the set accessor, like this:

 public int ID
 {
 get
 {
 return _ID;
 }
 set
 {

 if (value > 0 & & value < = 9999)
 {
 _ID = value;
 }
 else
 {
 _ID = 0;
 };

 }
 }

 Using properties, you can now prevent users from setting invalid values.

c04.indd 141c04.indd 141 10/1/08 11:41:41 AM10/1/08 11:41:41 AM

Part I: C# Fundamentals

142

Read - Only and Write - Only Properties
 When a property definition contains the get and set accessors, that property can be read as well as
written. To make a property read - only, you simply leave out the set accessor, like this:

 public int ID
 {

 get
 {
 return _ID;
 }

 }

 You can now read but not write values into the ID property:

Console.WriteLine(c1.ID); //---OK---
c1.ID = 1234; //---Error---

 Likewise, to make a property write - only, simply leave out the get accessor:

 public int ID
 {

 set
 {
 _ID = value;
 }

 }

 You can now write but not read from the ID property:

Console.WriteLine(c1.ID); //---Error---
c1.ID = 1234; //---OK---

 You can also restrict the visibility of the get and set accessors. For example, the set accessor of a public
property could be set to private to allow only members of the class to call the set accessor, but any
class could call the get accessor. The following example demonstrates this:

 public int ID
 {
 get
 {
 return _ID;
 }

 private set

 {
 _ID = value;
 }
 }

 In this code, the set accessor of the ID property is prefixed with the private keyword to restrict its
visibility. That means that you now cannot assign a value to the ID property but you can access it:

c04.indd 142c04.indd 142 10/1/08 11:41:41 AM10/1/08 11:41:41 AM

Chapter 4: Classes and Objects

143

 c.ID = 1234; //---error---
 Console.WriteLine(c.ID); //---OK---

 You can, however, access the ID property anywhere within the Contact class itself, such as in the Email
property:

 public string Email
 {
 get
 {
 //...

 this.ID = 1234;

 //...
 }
 //...
 }

 Partial Methods (C# 3.0)
 Earlier on, you saw that a class definition can be split into one or more class definitions. In C# 3.0, this
concept is extended to methods — you can now have partial methods. To see how partial methods
works, consider the Contact partial class:

public partial class Contact

{
 //...
 private string _Email;
 public string Email
 {
 get
 {
 return _Email;
 }
 set
 {
 _Email = value;
 }
 }
}

 Suppose you that want to allow users of this partial class to optionally log the email address of each
contact when its Email property is set. In that case, you can define a partial method — LogEmail() in
this example — like this:

public partial class Contact
{
 //...
}

public partial class Contact
{
 //...

(continued)

c04.indd 143c04.indd 143 10/1/08 11:41:42 AM10/1/08 11:41:42 AM

Part I: C# Fundamentals

144

 private string _Email;
 public string Email
 {
 get
 {
 return _Email;
 }
 set
 {
 _Email = value;

 LogEmail();

 }
 }

 //---partial methods are private---
 partial void LogEmail();

}

 The partial method LogEmail() is called when a contact ’ s email is set via the Email property. Note that
this method has no implementation. Where is the implementation? It can optionally be implemented in
another partial class. For example, if another developer decides to use the Contact partial class, he or
she can define another partial class containing the implementation for the LogEmail() method:

public partial class Contact
{

 partial void LogEmail()
 {
 //---code to send email to contact---
 Console.WriteLine(“Email set: {0}”, _Email);
 }

}

 So when you now instantiate an instance of the Contact class, you can set its Email property as follows
and a line will be printed in the output window:

 Contact contact1 = new Contact();
 contact1.Email = “weimenglee@learn2develop.net”;

 What if there is no implementation of the LogEmail() method? Well, in that case the compiler simply
removes the call to this method, and there is no change to your code.

 Partial methods are useful when you are dealing with generated code. For example, suppose that the
 Contact class is generated by a code generator. The signature of the partial method is defined in
the class, but it is totally up to you to decide if you need to implement it.

 A partial method must be declared within a partial class or partial struct.

(continued)

c04.indd 144c04.indd 144 10/1/08 11:41:42 AM10/1/08 11:41:42 AM

Chapter 4: Classes and Objects

145

 Partial methods must adhere to the following rules:

 Must begin with the partial keyword and the method must return void

 Can have ref but not out parameters

 They are implicitly private, and therefore they cannot be virtual (virtual methods are discussed
in the next chapter)

 Parameter and type parameter names do not have to be the same in the implementing and
defining declarations

 Automatic Properties (C# 3.0)
 In the Contact class defined in the previous section, apart from the ID property, the properties are
actually not doing much except assigning their values to private members:

 public string FirstName
 {
 get
 {
 return _FirstName;
 }
 set
 {
 _FirstName = value;
 }
 }
 public string LastName
 {
 get
 {
 return _LastName;
 }
 set
 {
 _LastName = value;
 }
 }
 public string Email
 {
 get
 {
 return _Email;
 }
 set
 {
 _Email = value;
 }
 }

❑

❑

❑

❑

c04.indd 145c04.indd 145 10/1/08 11:41:43 AM10/1/08 11:41:43 AM

Part I: C# Fundamentals

146

 In other words, you are not actually doing any checking before the values are assigned. In C# 3.0, you
can shorten those properties that have no filtering (checking) rules by using a feature known as automatic
properties . The Contact class can be rewritten as:

public class Contact
{
 int _ID;
 public int ID
 {
 get
 {
 return _ID;
 }
 set
 {
 if (value > 0 & & value < = 9999)
 {
 _ID = value;
 }
 else
 {
 _ID = 0;
 };
 }
 }

 public string FirstName {get; set;}
 public string LastName {get; set;}
 public string Email {get; set;}

}

 Now there ’ s no need for you to define private members to store the values of the properties. Instead, you
just need to use the get and set keywords, and the compiler will automatically create the private
members in which to store the properties values. If you decide to add filtering rules to the properties
later, you can simply implement the set and get accessor of each property.

 To restrict the visibility of the get and set accessor when using the automatic properties feature, you
simply prefix the get or set accessor with the private keyword, like this:

 public string FirstName {get; private set;}

 This statement sets the FirstName property as read - only.

 You might be tempted to directly convert these properties (FirstName , LastName , and Email)
into public data members. But if you did that and then later decided to convert these public members into
properties, you would need to recompile all of the assemblies that were compiled against the old class.

 Constructors
 Instead of initializing the individual properties of an object after it has been instantiated, it is sometimes
useful to initialize them at the time of instantiation. Constructors are class methods that are executed
when an object is instantiated.

c04.indd 146c04.indd 146 10/1/08 11:41:43 AM10/1/08 11:41:43 AM

Chapter 4: Classes and Objects

147

 Using the Contact class as the example, the following constructor initializes the ID property to 9999
every time an object is instantiated:

public class Contact
{
 int _ID;
 public int ID
 {
 get
 {
 return _ID;
 }
 set
 {
 if (value > 0 & & value < = 9999)
 {
 _ID = value;
 }
 else
 {
 _ID = 0;
 };
 }
 }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }

 public Contact()
 {
 this.ID = 9999;
 }

}

 The following statement proves that the constructor is called:

 Contact c = new Contact();
 //---prints out 9999---
 Console.WriteLine(c.ID);

 Constructors have the same name as the class and they do not return any values. In this example,
the constructor is defined without any parameters. A constructor that takes in no parameters is called a
 default constructor . It is invoked when you instantiate an object without any arguments, like this:

 Contact c = new Contact();

 If you do not define a default constructor in your class, an implicit
default constructor is automatically created by the compiler.

c04.indd 147c04.indd 147 10/1/08 11:41:43 AM10/1/08 11:41:43 AM

Part I: C# Fundamentals

148

 You can have as many constructors as you need to, as long as each constructor ’ s signature (parameters) is
different. Let ’ s now add two more constructors to the Contact class:

public class Contact
{
 //...
 public Contact()
 {
 this.ID = 9999;
 }

 public Contact(int ID)
 {
 this.ID = ID;
 }

 public Contact(int ID, string FirstName, string LastName,
 string Email)
 {
 this.ID = ID;
 this.FirstName = FirstName;
 this.LastName = LastName;
 this.Email = Email;
 }

}

 When you have multiple methods (constructors in this case) with the same name but different
signatures, the methods are known as overloaded . IntelliSense will show the different signatures available
when you try to instantiate a Contact object (see Figure 4 - 3).

Figure 4-3

 You can create instances of the Contact class using the different constructors:

 //---first constructor is called---
 Contact c1 = new Contact();

 //---second constructor is called---
 Contact c2 = new Contact(1234);

 //---third constructor is called---
 Contact c3 = new Contact(1234, “Wei-Meng”, “Lee”, “weimenglee@learn2develop.net”);

c04.indd 148c04.indd 148 10/1/08 11:41:43 AM10/1/08 11:41:43 AM

Chapter 4: Classes and Objects

149

 Constructor Chaining
 Suppose that the Contact class has the following four constructors:

public class Contact
{
 //...

 public Contact()
 {
 this.ID = 9999;
 }

 public Contact(int ID)
 {
 this.ID = ID;
 }

 public Contact(int ID, string FirstName, string LastName)
 {
 this.ID = ID;
 this.FirstName = FirstName;
 this.LastName = LastName;
 }

 public Contact(int ID, string FirstName, string LastName, string Email)
 {
 this.ID = ID;
 this.FirstName = FirstName;
 this.LastName = LastName;
 this.Email = Email;
 }

}

 Instead of setting the properties individually in each constructor, each constructor itself sets some of the
properties for other constructors. A more efficient way would be for some constructors to call the other
constructors to set some of the properties. That would prevent a duplication of code that does the same
thing. The Contact class could be rewritten like this:

public class Contact
{
 //...

 //---first constructor---
 public Contact()
 {
 this.ID = 9999;
 }

 //---second constructor---
 public Contact(int ID)
 {

(continued)

c04.indd 149c04.indd 149 10/1/08 11:41:44 AM10/1/08 11:41:44 AM

Part I: C# Fundamentals

150

 this.ID = ID;
 }

 //---third constructor---

 public Contact(int ID, string FirstName, string LastName)
 : this(ID)

 {
 this.FirstName = FirstName;
 this.LastName = LastName;
 }

 //---fourth constructor---

 public Contact(int ID, string FirstName, string LastName, string Email)
 : this(ID,FirstName, LastName)

 {
 this.Email = Email;
 }
}

 In this case, the fourth constructor is calling the third constructor using the this keyword. In addition, it
is also passing in the arguments required by the third constructor. The third constructor in turn calls the
second constructor. This process of one constructor calling another is call constructor chaining .

 To prove that constructor chaining works, use the following statements:

Contact c1 = new Contact(1234, “Wei-Meng”, “Lee”, “weimenglee@learn2develop.net”);
Console.WriteLine(c1.ID); //---1234---
Console.WriteLine(c1.FirstName); //----Wei-Meng---
Console.WriteLine(c1.LastName); //---Lee---
Console.WriteLine(c1.Email); //--- weimenglee@learn2develop.net---

 To understand the sequence of the constructors that are called, insert the following highlighted
statements:

class Contact
{
 //...

 //---first constructor---
 public Contact()
 {
 this.ID = 9999;

 Console.WriteLine(“First constructor”);

 }

 //---second constructor---
 public Contact(int ID)
 {
 this.ID = ID;

(continued)

c04.indd 150c04.indd 150 10/1/08 11:41:44 AM10/1/08 11:41:44 AM

Chapter 4: Classes and Objects

151

 Console.WriteLine(“Second constructor”);

 }

 //---third constructor---
 public Contact(int ID, string FirstName, string LastName)
 : this(ID)
 {
 this.FirstName = FirstName;
 this.LastName = LastName;

 Console.WriteLine(“Third constructor”);

 }

 //---fourth constructor---
 public Contact(int ID, string FirstName, string LastName, string Email)
 : this(ID, FirstName, LastName)
 {
 this.Email = Email;

 Console.WriteLine(“Fourth constructor”);

 }
}

 The statement:

Contact c1 = new Contact(1234, “Wei-Meng”, “Lee”, “weimenglee@learn2develop.net”);

 prints the following output:

Second constructor
Third constructor
Fourth constructor

 Static Constructors
 If your class has static members, it is only sometimes necessary to initialize them before an object is
created and used. In that case, you can add static constructors to the class. For example, suppose that
the Contact class has a public static member count to record the number of the Contact object
created. You can add a static constructor to initialize the static member, like this:

public class Contact
{
 //...
 public static int count;

 static Contact()
 {
 count = 0;
 Console.WriteLine(“Static constructor”);
 }

 //---first constructor---

(continued)

c04.indd 151c04.indd 151 10/1/08 11:41:44 AM10/1/08 11:41:44 AM

Part I: C# Fundamentals

152

 public Contact()
 {
 count++;
 Console.WriteLine(“First constructor”);
 }

 //...
}

 When you now create instances of the Contact class, like this:

 Contact c1 = new Contact();
 Contact c2 = new Contact();
 Console.WriteLine(Contact.count);

 the static constructor is only called once, evident in the following output:

Static constructor
First constructor
First constructor
2

 Note the behavior of static constructors:

 A static constructor does not take access modifiers or have parameters.

 A static constructor is called automatically to initialize the class before the first instance is
created or any static members are referenced.

 A static constructor cannot be called directly.

 he user has no control on when the static constructor is executed in the program.

 Copy Constructor
 The C# language does not provide a copy constructor that allows you to copy the value of an existing
object into a new object when it is created. Instead, you have to write your own.

 The following copy constructor in the Contact class copies the values of the properties of an existing
object (through the otherContact parameter) into the new object:

class Contact
{
 //...
 //---a copy constructor---

 public Contact(Contact otherContact)
 {
 this.ID = otherContact.ID;
 this.FirstName = otherContact.FirstName;

❑

❑

❑

❑

(continued)

c04.indd 152c04.indd 152 10/1/08 11:41:45 AM10/1/08 11:41:45 AM

Chapter 4: Classes and Objects

153

 this.LastName = otherContact.LastName;
 this.Email = otherContact.Email;
 }

 //...
}

 To use the copy constructor, first create a Contact object:

 Contact c1 = new Contact(1234, “Wei-Meng”, “Lee”,
 “weimenglee@learn2develop.net”);

 Then, instantiate another Contact object and pass in the first object as the argument:

 Contact c2 = new Contact(c1);
 Console.WriteLine(c2.ID); //---1234---
 Console.WriteLine(c2.FirstName); //----Wei-Meng---
 Console.WriteLine(c2.LastName); //---Lee---
 Console.WriteLine(c2.Email); //--- weimenglee@learn2develop.net---

 Object Initializers (C# 3.0)
 Generally, there are two ways in which you can initialize an object — through its constructor(s) during
instantiation or by setting its properties individually after instantiation. Using the Contact class defined
in the previous section, here is one example of how to initialize a Contact object using its constructor:

Contact c1 = new Contact(1234, “Wei-Meng”, “Lee”, “weimenglee@learn2develop.net”);

 You can also set an object ’ s properties explicitly:

 Contact c1 = new Contact();
 c1.ID = 1234;
 c1.FirstName = “Wei-Meng”;
 c1.LastName = “Lee”;
 c1.Email = “weimenglee@learn2develop.net”;

 In C# 3.0, you have a third way of initializing objects — when they are instantiated. This feature is
known as the object initializers . The following statement shows an example:

 Contact c1 = new Contact()

 {
 ID = 1234,
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”

 };

 Here, when instantiating a Contact class, you are also setting its properties directly using the {} block.
To use the object initializers, you instantiate an object using the new keyword and then enclose the
properties that you want to initialize within the {} block. You separate the properties using commas.

c04.indd 153c04.indd 153 10/1/08 11:41:45 AM10/1/08 11:41:45 AM

Part I: C# Fundamentals

154

 Do not confuse the object initializer with a class ’ s constructor(s). You should continue to use
the constructor (if it has one) to initialize an object. The following example shows that you use the
 Contact ’ s constructor to initialize the ID property and then the object initializers to initialize the rest of
the properties:

 Contact c2 = new Contact(1234)
 {
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”
 };

 Destructors
 In C#, a constructor is called automatically when an object is instantiated. When you are done with the
object, the Common Language Runtime (CLR) will destroy them automatically, so you do not have to
worry about cleaning them up. If you are using unmanaged resources, however, you need to free them
up manually.

 When objects are destroyed and cleaned up by the CLR, the object ’ s destructor is called. A C# destructor
is declared by using a tilde (~) followed by the class name:

class Contact : Object
{
 //---constructor---
 public Contact()
 {
 //...
 }

 //---destructor---
 ~Contact()
 {
 //---release unmanaged resources here---
 }

 //...
}

 The destructor is a good place for you to place code that frees up unmanaged resources, such as COM
objects or database handles. One important point is that you cannot call the destructor explicitly — it
will be called automatically by the garbage collector.

 To manually dispose of your unmanaged resources without waiting for the garbage collector, you can
implement the IDisposable interface and the Dispose() method.

 Chapter 5 discusses the concept of interfaces in more detail.

c04.indd 154c04.indd 154 10/1/08 11:41:45 AM10/1/08 11:41:45 AM

Chapter 4: Classes and Objects

155

 The following shows the Contact class implementing the IDisposable class and implementing the
 Dispose() method:

class Contact : IDisposable

{
 //...
 ~Contact()
 {

 //---call the Dispose() method---
 Dispose();

 }

 public void Dispose()
 {
 //---release unmanaged resources here---
 }

}

 You can now manually dispose of unmanaged resources by calling the Dispose() method directly:

 Contact c1 = new Contact();
 //...
 //---done with c1 and want to dispose it---
 c1.Dispose();

 There is now a call to the Dispose() method within the destructor, so you must make sure that the code
in that method is safe to be called multiple times — manually by the user and also automatically by the
garbage collector.

The Using Statement
C# provides a convenient syntax for automatically calling the Dispose() method,
using the using keyword. In the following example, the conn object is only valid
within the using block and will be disposed automatically after the execution of the
block.

 using System.Data.SqlClient;

 ...

 using (SqlConnection conn = new SqlConnection())

 {

 conn.ConnectionString = “...”;

 //...
 }

Using the using keyword is a good way for you to ensure that resources (especially
COM objects and unmanaged code, which will not be unloaded automatically by the
garbage collector in the CLR) are properly disposed of once they are no longer needed.

c04.indd 155c04.indd 155 10/1/08 11:41:46 AM10/1/08 11:41:46 AM

Part I: C# Fundamentals

156

 Static Classes
 You can also apply the static keyword to class definitions. Consider the following FilesUtil class
definition:

public class FilesUtil
{
 public static string ReadFile(string Filename)
 {
 //---implementation---
 return “file content...”;
 }

 public static void WriteFile(string Filename, string content)
 {
 //---implementation---
 }
}

 Within this class are two static methods — ReadFile() and WriteFile() . Because this class contains
only static methods, creating an instance of this class is not very useful, as Figure 4 - 4 shows.

Figure 4-4

 As shown in Figure 4 - 4 , an instance of the FilesUtil class does not expose any of the static methods
defined within it. Hence, if a class contains nothing except static methods and properties, you can simply
declare the class as static, like this:

public static class FilesUtil

{
 public static string ReadFile(string Filename)
 {
 //---implementation---
 return “file content...”;
 }

 public static void WriteFile(string Filename, string content)
 {
 //---implementation---
 }
}

c04.indd 156c04.indd 156 10/1/08 11:41:46 AM10/1/08 11:41:46 AM

Chapter 4: Classes and Objects

157

The following statements show how to use the static class:
//---this is not allowed for static classes---
FilesUtil f = new FilesUtil();

//---these are OK---
Console.WriteLine(FilesUtil.ReadFile(@”C:\TextFile.txt”));
FilesUtil.WriteFile(@”C:\TextFile.txt”, “Some text content to be written”);

 Use static classes when the methods in a class are not associated with a particular object. You need not
create an instance of the static class before you can use it.

 System.Object Class
 In C#, all classes inherit from the System.Object base class (inheritance is discussed in the next
chapter). This means that all classes contain the methods defined in the System.Object class.

 All class definitions that do not inherit from other classes by default inherit directly from the System
.Object class. The earlier Contact class definition:

public class Contact

 for example, is equivalent to:

public class Contact: Object

 You can create an instance of the System.Object class if you want, but it is by itself not terribly useful:

 Object o = new object();

 The System.Object class exposes four instance methods (see Figure 4 - 5):

Figure 4-5

 Equals() — Checks whether the value of the current object is equal to that of another object. By
default, the Equals() method checks for reference equality (that is, if two objects are pointing to
the same object). You should override this method for your class.

 GetHashCode() — Returns a hash code for the class. The GetHashCode() method is suitable
for use in hashing algorithms and data structures, such as a hash table. There will be more about
hashing in Chapter 11

 GetType() — Returns the type of the current object

 ToString() — Returns the string representation of an object

❑

❑

❑

❑

c04.indd 157c04.indd 157 10/1/08 11:41:46 AM10/1/08 11:41:46 AM

Part I: C# Fundamentals

158

 In addition, the System.Object class also has two static methods (see Figure 4 - 6):

Figure 4-6

 Equals() — Returns true if the two objects are equal (see next section for more details)

 ReferenceEquals() — Returns true if two objects are from the same instance

 All classes that inherit from System.Object also inherit all the four instance methods, a couple of which
you will learn in more details in the following sections.

 Testing for Equality
 Consider the following three instances of the Contact class, which implicitly inherits from the System
.Object class:

 Contact c1 = new Contact()
 {
 ID = 1234,
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”
 };

 Contact c2 = new Contact()
 {
 ID = 1234,
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”
 };

 Contact c3 = new Contact()
 {
 ID = 4321,
 FirstName = “Lee”,
 LastName = “Wei-Meng”,
 Email = “weimenglee@gmail.com”
 };

❑

❑

c04.indd 158c04.indd 158 10/1/08 11:41:46 AM10/1/08 11:41:46 AM

Chapter 4: Classes and Objects

159

 As you can see, c1 and c2 are identical in data member values, while c3 is different. Now, let ’ s use the
following statements to see how the Equals() and ReferenceEquals() methods work:

 Console.WriteLine(c1.Equals(c2)); //---False---
 Console.WriteLine(c1.Equals(c3)); //---False---
 c3 = c1;
 Console.WriteLine(c1.Equals(c3)); //---True---

 Console.WriteLine(Object.ReferenceEquals(c1, c2)); //---False---
 Console.WriteLine(Object.ReferenceEquals(c1, c3)); //---True---

 The first statement might be a little surprising to you; did I not just mention that you can use the
 Equals() method to test for value equality?

 Console.WriteLine(c1.Equals(c2)); //---False---

 In this case, c1 and c2 have the exact same values for the members, so why does the Equals() method
return False in this case? It turns out that the Equals() method must be overridden in the Contact
class definition. This is because by itself, the System.Object class does not know how to test for the
equality of your custom class; the Equals() method is a virtual method and needs to be overridden in
derived classes. By default, the Equals() method tests for reference equality.

 The second statement is straightforward, as c1 and c3 are two different objects:

 Console.WriteLine(c1.Equals(c3)); //---False---

 The third and fourth statements assign c1 to c3 , which means that c1 and c3 are now two different
variables pointing to the same object. Hence, Equals() returns True :

 c3 = c1;
 Console.WriteLine(c1.Equals(c3)); //---True---

 The fifth and sixth statements test the reference equality of c1 against c2 and then c1 against c3 :

 Console.WriteLine(Object.ReferenceEquals(c1, c2)); //---False---
 Console.WriteLine(Object.ReferenceEquals(c1, c3)); //---True---

If two objects have reference equality, they also have value equality, but the reverse
is not necessarily true.

 Implementing Equals
 By default the Equals() method tests for reference equality. To ensure that it tests for value equality
rather than reference equality, you need to override the Equals() virtual method.

c04.indd 159c04.indd 159 10/1/08 11:41:47 AM10/1/08 11:41:47 AM

Part I: C# Fundamentals

160

 Using the same Contact class used in the previous section, add the methods highlighted in the
following code:

public class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 public override bool Equals(object obj)
 {
 //---check for null obj---
 if (obj == null) return false;

 //---see if obj can be cast to Contact---
 Contact c = obj as Contact;
 if ((System.Object)c == null) return false;

 //---check individual fields---
 return (ID == c.ID) & & (FirstName == c.FirstName) & &
 (LastName == c.LastName) & & (Email == c.Email);
 }

 public bool Equals(Contact c)
 {
 //---check for null obj---
 if (c == null) return false;

 //---check individual fields---
 return (ID == c.ID) & & (FirstName == c.FirstName) & &
 (LastName == c.LastName) & & (Email == c.Email);
 }

 public override int GetHashCode()
 {
 return ID;
 }

}

 Essentially, you ’ re adding the following:

 The Equals(object obj) method to override the Equals() virtual method in the
 System.Object class. This method takes in a generic object (System.Object) as argument.

 The Equals(Contact c) method to test for value equality. This method is similar to the first
method, but it takes in a Contact object as argument.

 The GetHashCode() method to override the GetHashCode() virtual method in the
System.Object class.

❑

❑

❑

c04.indd 160c04.indd 160 10/1/08 11:41:47 AM10/1/08 11:41:47 AM

Chapter 4: Classes and Objects

161

 Notice that the Equals() methods essentially performs the following to determine if two objects are
equal in value:

 It checks whether the object passed is in null . If it is, it returns false .

 It checks whether the object passed is a Contact object (the second Equals() method need not
check for this). If it isn ’ t, it returns false .

 Last, it checks to see whether the individual members of the passed - in Contact object are of the
same value as the members of the current object. Only when all the members have the same
values (which members to test are determined by you) does the Equals() method return true .
In this case, all the four members ’ values must be equal to the passed - in Contact object.

 The following statement will now print out True :

 Console.WriteLine(c1.Equals(c2)); //---True---

 ToString() Method
 All objects in C# inherits the ToString() method, which returns a string representation of the object.
For example, the DateTime class ’ s ToString() method returns a string containing the date and time, as
the following shows:

 DateTime dt = new DateTime(2008, 2, 29);
 //---returns 2/29/2008 12:00:00 AM---
 Console.WriteLine(dt.ToString());

 For custom classes, you need to override the ToString() method to return the appropriate string. Using
the example of the Contact class, an instance of the Contact class ’ s ToString() method simply
returns the string “ Contact “ :

 Contact c1 = new Contact()
 {
 ID = 1234,
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”
 };

 //---returns “Contact”---
 Console.WriteLine(c1.ToString());

❑

❑

❑

The as Keyword
In the Equals(object obj) method you saw the use of the as keyword:

 Contact c = obj as Contact;

The as operator performs conversions between compatible types. In this case, it tries to
cast the obj object into a Contact object. The as keyword is discussed in detail in
Chapter 5.

c04.indd 161c04.indd 161 10/1/08 11:41:48 AM10/1/08 11:41:48 AM

Part I: C# Fundamentals

162

 This is because the ToString() method from the Contact class inherits from the System.Object class,
which simply returns the name of the class.

 To ensure that the ToString() method returns something appropriate, you need to override it:

class Contact
{
 public int ID;
 public string FirstName;
 public string LastName;
 public string Email;

 public override string ToString()
 {
 return ID + “,” + FirstName + “,” +
 LastName + “,” + Email;
 }

 //...
}

 In this implementation of the ToString() method, you return the concatenation of the various data
members, as evident in the output of the following code:

 Contact c1 = new Contact()
 {
 ID = 1234,
 FirstName = “Wei-Meng”,
 LastName = “Lee”,
 Email = “weimenglee@learn2develop.net”
 };

 //---returns “1234,Wei-Meng,Lee,weimenglee@learn2develop.net”---
 Console.WriteLine(c1.ToString());

 Attributes
 Attributes are descriptive tags that can be used to provide additional information about types (classes),
members, and properties. Attributes can be used by .NET to decide how to handle objects while an
application is running.

 There are two types of attributes:

 Attributes that are defined in the CLR.

 Custom attributes that you can define in your code.

❑

❑

c04.indd 162c04.indd 162 10/1/08 11:41:48 AM10/1/08 11:41:48 AM

Chapter 4: Classes and Objects

163

 CLR Attributes
 Consider the following Contact class definition:

class Contact
{
 public string FirstName;
 public string LastName;

 public void PrintName()
 {
 Console.WriteLine(“{0} {1}”, this.FirstName, this.LastName);
 }

 [Obsolete(“This method is obsolete. Please use PrintName()”)]
 public void PrintName(string FirstName, string LastName)
 {
 Console.WriteLine(“{0} {1}”, FirstName, LastName);
 }

}

 Here, the PrintName() method is overloaded — once with no parameter and again with two input
parameters. Notice that the second PrintName() method is prefixed with the Obsolete attribute:

 [Obsolete(“This method is obsolete. Please use PrintName()”)]

 That basically marks the method as one that is not recommended for use. The class will still compile, but
when you try to use this method, a warning will appear (see Figure 4 - 7).

Figure 4-7

 The Obsolete attribute is overloaded — if you pass in true for the second parameter, the message set
in the first parameter will be displayed as an error (by default the message is displayed as a warning):

 [Obsolete(“This method is obsolete. Please use PrintName()”, true)]

 Figure 4 - 8 shows the error message displayed when you use the PrintName() method marked with the
 Obsolete attribute with the second parameter set to true .

c04.indd 163c04.indd 163 10/1/08 11:41:48 AM10/1/08 11:41:48 AM

Part I: C# Fundamentals

164

 Attributes can also be applied to a class. In the following example, the Obsolete attribute is applied to
the Contact class:

[Obsolete(“This class is obsolete. Please use NewContact”)]
class Contact
{
 //...
}

 Custom Attributes
 You can also define your own custom attributes. To do so, you just need to define a class that inherits
directly from System.Attribute . The following Programmer class is one example of a custom
attribute:

public class Programmer : System.Attribute
{
 private string _Name;
 public double Version;
 public string Dept { get; set; }
 public Programmer(string Name)
 {
 this._Name = Name;
 }
}

 In this attribute, there are:

 One private member (_Name)

 One public member (Version)

 One constructor, which takes in one string argument

❑

❑

❑

Figure 4-8

c04.indd 164c04.indd 164 10/1/08 11:41:49 AM10/1/08 11:41:49 AM

Chapter 4: Classes and Objects

165

 Here ’ s how to apply the Programmer attribute to a class:

[Programmer(“Wei-Meng Lee”, Dept=”IT”, Version=1.5)]

class Contact
{
 //...
}

 You can also apply the Programmer attribute to methods (as the following code shows), properties,
structure, and so on:

[Programmer(“Wei-Meng Lee”, Dept=”IT”, Version=1.5)]
class Contact
{

 [Programmer(“Jason”, Dept = “CS”, Version = 1.6)]

 public void PrintName()
 {
 Console.WriteLine(“{0} {1}”, this.FirstName, this.LastName);
 }
 //...
}

 Use the AttributeUsage attribute to restrict the use of any attribute to certain types:

[System.AttributeUsage(System.AttributeTargets.Class |
 System.AttributeTargets.Method |
 System.AttributeTargets.Property)]
public class Programmer : System.Attribute

{
 private string _Name;
 public double Version;
 public string Dept { get; set; }
 public Programmer(string Name)
 {
 this._Name = Name;
 }
}

 In this example, the Programmer attribute can only be used on class definitions, methods, and
properties.

 Structures
 An alternative to using classes is to use a struct (for structure). A struct is a lightweight user - defined type
that is very similar to a class, but with some exceptions:

 Structs do not support inheritance or destructors.

 A struct is a value type (class is a reference type).

 A struct cannot declare a default constructor.

❑

❑

❑

c04.indd 165c04.indd 165 10/1/08 11:41:49 AM10/1/08 11:41:49 AM

Part I: C# Fundamentals

166

 Structs implicitly derive from object and unlike classes, a struct is a value type. This means that when
an object is created from a struct and assigned to another variable, the variable will contain a copy of the
struct object.

 Like classes, structs support constructor, properties, and methods. The following code shows the
definition for the Coordinate struct:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }
 }
}

public struct Coordinate
{
 public double latitude { get; set; }
 public double longitude { get; set; }
}

 The Coordinate struct contains two properties (defined using the automatic properties feature). You
can add a constructor to the struct if you want:

public struct Coordinate
{
 public double latitude { get; set; }
 public double longitude { get; set; }

 public Coordinate(double lat, double lng)
 {
 latitude = lat;
 longitude = lng;
 }

}

Remember, a struct cannot have a default constructor.

c04.indd 166c04.indd 166 10/1/08 11:41:49 AM10/1/08 11:41:49 AM

Chapter 4: Classes and Objects

167

 Note that the compiler will complain with the message “ Backing field for automatically implemented
property ‘ Coordinate.latitude ’ must be fully assigned before control is returned to the caller ” when you
try to compile this application. This restriction applies only to structs (classes won ’ t have this problem).
To resolve this, you need to call the default constructor of the struct, like this:

public struct Coordinate
{
 public double latitude { get; set; }
 public double longitude { get; set; }

 public Coordinate(double lat, double lng)
 : this()

 {
 latitude = lat;
 longitude = lng;
 }
}
 You can also add methods to a struct. The following shows the ToString()
method defined in the Coordinate struct:
public struct Coordinate
{
 public double latitude { get; set; }
 public double longitude { get; set; }

 public Coordinate(double lat, double lng)
 : this()
 {
 latitude = lat;
 longitude = lng;
 }

 public override string ToString()
 {
 return latitude + “,” + longitude;
 }

}

 To use the Coordinate struct, create a new instance using the new keyword and then initialize its
individual properties:

 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)

(continued)

c04.indd 167c04.indd 167 10/1/08 11:41:49 AM10/1/08 11:41:49 AM

Part I: C# Fundamentals

168

 {

 Coordinate pt1 = new Coordinate();
 pt1.latitude = 1.33463167;
 pt1.longitude = 103.74697;

 }
 }

 Or you can use the object initializer feature:

 private void Form1_Load(object sender, EventArgs e)
 {
 //...

 Coordinate pt2 = new Coordinate()
 {
 latitude = 1.33463167,
 longitude = 103.74697
 };

 }

 Because structs are value types, assigning one struct to another makes a copy of its value, as the
following code sample shows:

 private void Form1_Load(object sender, EventArgs e)
 {
 //...
 Coordinate pt2 = new Coordinate()
 {
 latitude = 1.33463167,
 longitude = 103.74697
 };

 Coordinate pt3;
 pt3 = pt2;
 Console.WriteLine(“After assigning pt2 to pt3”);
 Console.WriteLine(“pt2: {0}”, pt2.ToString());
 Console.WriteLine(“pt3: {0}”, pt3.ToString());

 pt3.latitude = 1.45631234;
 pt3.longitude = 101.32355;

 Console.WriteLine(“After changing pt3”);
 Console.WriteLine(“pt2: {0}”, pt2.ToString());
 Console.WriteLine(“pt3: {0}”, pt3.ToString());

 }

 Here ’ s the program ’ s output:

After assigning pt2 to pt3
pt2: 1.33463167,103.74697
pt3: 1.33463167,103.74697
After changing pt3
pt2: 1.33463167,103.74697
pt3: 1.45631234,101.32355

(continued)

c04.indd 168c04.indd 168 10/1/08 11:41:50 AM10/1/08 11:41:50 AM

Chapter 4: Classes and Objects

169

 Notice that after changing the properties of pt3 , the latitude and longitude properties of pt2 and
 pt3 are different.

 Summary
 This chapter explained how to define a class and the various components that make up a class —
 properties, methods, constructors, and destructors. In addition, it explored the new features in C# 3.0 —
 object initializers, anonymous types, and automatic properties. While you need to use the new keyword
to instantiate a new object, you can also create static classes that can be used without instantiation.
Finally, you saw how to use structs, the lightweight alternative to classes, that behave much like classes
but are value types.

Memory Allocation
 When you use the new keyword to create an instance of a class, the object will be
allocated on the heap. When using structs, the struct object is created on the stack
instead. Because of this, using structs yields better performance gains. Also, when
passing a struct to a method, note that it is passed by value instead of passed by
reference.

 In general, use classes when dealing with large collections of data. When you have
smaller sets of data to deal with, using structs is more efficient.

c04.indd 169c04.indd 169 10/1/08 11:41:50 AM10/1/08 11:41:50 AM

c04.indd 170c04.indd 170 10/1/08 11:41:50 AM10/1/08 11:41:50 AM

 Interfaces
 When defining a class, you have to provide the implementation for all its methods and properties.
However, there are times when you do not want to provide the actual implementation of how a
class might work. Rather, you want to describe the functionalities of the class. This set of
descriptions is like a contract, dictating what the class will do, the types of parameters needed, and
the type of return results. In object - oriented programming, this contract is known as an interface .

 An interface defines a class and its members without providing any implementation. When using
interfaces in programming, generally three parties are involved:

 Interface definition — The interface defines the composition of a class, such as methods,
properties, and so on. However, the interface does not provide any implementation for
any of these members.

 Implementing class — The class that implements a particular interface provides the
implementation for all the members defined in that interface.

 Clients — Objects that instantiate from the implementing classes are known as the client .
The client invokes the methods defined in the interface, whose implementation is
provided by the implementing class.

❑

❑

❑

Differences between an Interface and an Abstract Base Class
 Conceptually, an abstract class is similar to an interface; however, they do have some
subtle differences:

❑ An abstract class can contain a mixture of concrete methods (implemented)
and abstract methods (an abstract class needs at least one abstract method); an
interface does not contain any method implementations.

❑ An abstract class can contain constructors and destructors; an interface
does not.

❑ A class can implement multiple interfaces, but it can inherit from only one
 abstract class.

c05.indd 171c05.indd 171 10/1/08 11:42:14 AM10/1/08 11:42:14 AM

Part I: C# Fundamentals

172

 This chapter explains how to define an interface and how to implement the interface using a class.

 Defining an Interface
 Defining an interface is similar to defining a class — you use the interface keyword followed by an
identifier (the name of the interface) and then specify the interface body. For example:

interface IPerson
{
 string Name { get; set; }
 DateTime DateofBirth { get; set; }
 ushort Age();
}

 Here you define the IPerson interface containing three members — two properties and one function.
You do not use any access modifiers on interface members — they are implicitly public . That ’ s because
the real use of an interface is to define the publicly accessible members (such as methods and properties)
of a class so that all implementing classes have the same public members. The implementation of each
individual member is left to the implementing class.

 The declaration for the Name property consists simply of get and set accessors without implementation:

 string Name { get; set; }

 And the Age() method simply contains its return type (and input parameters, if any) but without its
implementation:

 ushort Age();

 It ’ s important to note that you cannot create an instance of the interface directly; you can only instantiate
a class that implements that interface:

 //---error---
 IPerson person = new IPerson();

 Interface Naming Convention
By convention, begin the name of an interface with a capital I (such as IPerson ,
 IManager , IEmployee , and so on) so that it is clear that you are dealing with an
interface.

c05.indd 172c05.indd 172 10/1/08 11:42:14 AM10/1/08 11:42:14 AM

Chapter 5: Interfaces

173

 Implementing an Interface
 Once an interface is defined, you can create a new class to implement it. The class that implements that
particular interface must provide all the implementation for the members defined in that interface.

 For example, here ’ s an Employee class that implements the IPerson interface:

public class Employee : IPerson
{
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }
}

 To implement an interface, you define your class and add a colon (:) followed by the interface name:

public class Employee : IPerson

 You then provide the implementation for the various members:

{
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }

 Notice that I ’ m using the new automatic properties feature (discussed in Chapter 4) in C# 3.0 to
implement the Name and DateofBirth properties. That ’ s why the implementation looks the same as
the declaration in the interface.

 As explained, all implemented members must have the public access modifiers.

 You can now use the class as you would a normal class:

 Employee e1 = new Employee();
 e1.DateofBirth = new DateTime(1980, 7, 28);
 e1.Name = “Janet”;
 Console.WriteLine(e1.Age()); //---prints out 28---

 This could be rewritten using the new object initializer feature (also discussed in Chapter 4) in C# 3.0:

 Employee e1 = new Employee() {
 DateofBirth = new DateTime(1980, 7, 28), Name = “Janet”
 };
 Console.WriteLine(e1.Age()); //---prints out 28---

c05.indd 173c05.indd 173 10/1/08 11:42:15 AM10/1/08 11:42:15 AM

Part I: C# Fundamentals

174

 Implementing Multiple Interfaces
 A class can implement any number of interfaces. This makes sense because different interfaces can define
different sets of behaviors (that is, members) and a class may exhibit all these different behaviors at the
same time.

 For example, the IPerson interface defines the basic information about a user, such as name and date of
birth, while another interface such as IAddress can define a person ’ s address information, such as
street name and ZIP code:

interface IAddress
{
 string Street { get; set; }
 uint Zip { get; set; }
 string State();
}

 An employee working in a company has personal information as well as personal address information,
and you can define an Employee class that implements both interfaces, like this:

public class Employee : IPerson, IAddress

{
 //---implementation here---
}

 The full implementation of the Employee class looks like this:

public class Employee : IPerson, IAddress
{
 //---IPerson---
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }

 //---IAddress---

 public string Street { get; set; }
 public uint Zip { get; set; }
 public string State()
 {
 //---some implementation here---
 return “CA”;
 }

}

c05.indd 174c05.indd 174 10/1/08 11:42:15 AM10/1/08 11:42:15 AM

Chapter 5: Interfaces

175

 You can now use the Employee class like this:

 Employee e1 = new Employee()
 {
 DateofBirth = new DateTime(1980, 7, 28),
 Name = “Janet”,

 Zip = 123456,
 Street = “Kingston Street”

 };
 Console.WriteLine(e1.Age());

 Console.WriteLine(e1.State());

 Extending Interfaces
 You can extend interfaces if you need to add new members to an existing interface. For example, you
might want to define another interface named IManager to store information about managers. Basically,
a manager uses the same members defined in the IPerson interface, with perhaps just one more
additional property — Dept . In this case, you can define the IManager interface by extending the
 IPerson interface, like this:

interface IPerson
{
 string Name { get; set; }
 DateTime DateofBirth { get; set; }
 ushort Age();
}

interface IManager : IPerson
{
 string Dept { get; set; }
}

 To use the IManager interface, you define a Manager class that implements the IManager interface,
like this:

public class Manager : IManager
{
 //---IPerson---
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }

 //---IManager---
 public string Dept { get; set; }
}

c05.indd 175c05.indd 175 10/1/08 11:42:15 AM10/1/08 11:42:15 AM

Part I: C# Fundamentals

176

 The Manager class now implements all the members defined in the IPerson interface, as well as the
additional member defined in the IManager interface. You can use the Manager class like this:

 Manager m1 = new Manager()
 {
 Name = “John”,
 DateofBirth = new DateTime(1970, 7, 28),
 Dept = “IT”
 };
 Console.WriteLine(m1.Age());

 You can also extend multiple interfaces at the same time. The following example shows the IManager
interface extending both the IPerson and the IAddress interfaces:

interface IManager : IPerson, IAddress

{
 string Dept { get; set; }
}

 The Manager class now needs to implement the additional members defined in the IAddress interface:

public class Manager : IManager
{
 //---IPerson---
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }

 //---IManager---
 public string Dept { get; set; }

 //---IAddress---
 public string Street { get; set; }
 public uint Zip { get; set; }
 public string State()
 {
 //---some implementation here---
 return “CA”;
 }

}

 You can now access the Manager class like this:

 Manager m1 = new Manager()
 {
 Name = “John”,
 DateofBirth = new DateTime(1970, 7, 28),
 Dept = “IT”,

c05.indd 176c05.indd 176 10/1/08 11:42:15 AM10/1/08 11:42:15 AM

Chapter 5: Interfaces

177

 Street = “Kingston Street”,
 Zip = 12345

 };
 Console.WriteLine(m1.Age());

 Console.WriteLine(m1.State());

 Interface Casting
 In the preceding example, the IManager interface extends both the IPerson and IAddress interfaces.
So an instance of the Manager class (which implements the IManager interface) will contain members
defined in both the IPerson and IAddress interfaces:

 Manager m1 = new Manager()
 {
 Name = “John”, //---from IPerson---
 DateofBirth = new DateTime(1970, 7, 28), //---from IPerson---
 Dept = “IT”, //---from IManager---
 Street = “Kingston Street”, //---from IAddress---
 Zip = 12345 //---from IAddress---
 };
 Console.WriteLine(m1.Age()); //---from IPerson---
 Console.WriteLine(m1.State()); //---from IAddress---

 In addition to accessing the members of the Manager class through its instance (in this case m1), you can
access the members through the interface that it implements. For example, since m1 is a Manager object
that implements both the IPerson and IAddress interfaces, you can cast m1 to the IPerson interface
and then assign it to a variable of type IPerson , like this:

 //---cast to IPerson---
 IPerson p = (IPerson) m1;

 This is known as interface casting. Interface casting allows you to cast an object to one of its
implemented interfaces and then access its members through that interface.

 You can now access members (the Age() method and Name and DateofBirth properties) through p :

 Console.WriteLine(p.Age());
 Console.WriteLine(p.Name);
 Console.WriteLine(p.DateofBirth);

 Likewise, you can cast the m1 to the IAddress interface and then assign it to avariable to of type
 IAddress :

 //---cast to IAddress---
 IAddress a = (IAddress) m1;
 Console.WriteLine(a.Street);
 Console.WriteLine(a.Zip);
 Console.WriteLine(a.State());

c05.indd 177c05.indd 177 10/1/08 11:42:16 AM10/1/08 11:42:16 AM

Part I: C# Fundamentals

178

 Note that instead of creating an instance of a class and then type casting it to an interface, like this:

 Manager m2 = new Manager();
 IPerson p = (IPerson) m2;

 You can combine them into one statement:

 IPerson p = (IPerson) new Manager();

 The is and as Operators
 Performing a direct cast is safe only if you are absolutely sure that the object you are casting implements
the particular interface you are trying to assign to. Consider the following case where you have an
instance of the Employee class:

 Employee e1 = new Employee();

 The Employee class implements the IPerson and IAddress interfaces. And so if you try to cast it to an
instance of the IManager interface, you will get a runtime error:

 //---Error: Invalid cast exception---
 IManager m = (IManager) e1;

 To ensure that the casting is done safely, use the is operator. The is operator checks whether an object is
compatitble with a given type. It enables you to rewrite the casting as:

 if (m1 is IPerson)

 {
 IPerson p = (IPerson) m1;
 Console.WriteLine(p.Age());
 Console.WriteLine(p.Name);
 Console.WriteLine(p.DateofBirth);
 }

 if (m1 is IAddress)

 {
 IAddress a = (IAddress) m1;
 Console.WriteLine(a.Street);
 Console.WriteLine(a.Zip);
 Console.WriteLine(a.State());
 }

 if (e1 is IManager)

 {
 IManager m = (IManager) e1;
 }

 Using the is operator means that the compiler checks the type twice — once in the is statement and
again when performing the actual casting. So this is actually not very efficient. A better way would be to
use the as operator.

c05.indd 178c05.indd 178 10/1/08 11:42:16 AM10/1/08 11:42:16 AM

Chapter 5: Interfaces

179

 The as operator performs conversions between compatible types. Here ’ s the preceding casting rewritten
using the as operator:

 IPerson p = m1 as IPerson;
 if (p != null)

 {
 Console.WriteLine(p.Age());
 Console.WriteLine(p.Name);
 Console.WriteLine(p.DateofBirth);
 }

 IAddress a = m1 as IAddress;
 if (a != null)

 {
 Console.WriteLine(a.Street);
 Console.WriteLine(a.Zip);
 Console.WriteLine(a.State());
 }

 Employee e1 = new Employee();

 //---m is null after this statement---
 IManager m = e1 as IManager;
 if (m != null)

 {
 //...
 }

 If the conversion fails, the as operator returns null , so you need to check for null before you actually
use the instance of the interface.

 Overriding Interface Implementations
 When implementing an interface, you can mark any of the methods from the interface as virtual .
For example, you can make the Age() method of the Employee class virtual so that any other classes
that inherit from the Employee class can override its implementation:

public interface IPerson
{
 string Name { get; set; }
 DateTime DateofBirth { get; set; }
 ushort Age();
}

public class Employee : IPerson
{
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }

 public virtual ushort Age()

 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }
}

c05.indd 179c05.indd 179 10/1/08 11:42:16 AM10/1/08 11:42:16 AM

Part I: C# Fundamentals

180

 Suppose there is a new class called Director that inherits from the Employee class. The Director class
can override the Age() method, like this:

public class Director : Employee
{

 public override ushort Age()
 {
 return base.Age() + 1;
 }

}

 Notice that the Age() method increments the age returned by the base class by 1. To use the Director
class, create an instance of it and set its date of birth as follows:

 Director d = new Director();
 d.DateofBirth = new DateTime(1970, 7, 28);

 When you print out the age using the Age() method, you get 39 (2008 – 1970 = 38; increment it by 1 and
the result is 39):

 Console.WriteLine(d.Age()); //---39---

 This proves that the overriden method in the Age() method is invoked. If you typecast d to the IPerson
interface, assign it to an instance of the IPerson interface, and invoke the Age() method, it will still
print out 39:

 IPerson p = d as IPerson;
 Console.WriteLine(p.Age()); //---39---

 An interesting thing happens if, instead of overriding the Age() method in the Director class, you
create a new Age() class using the new keyword:

public class Director : Employee
{

 public new ushort Age()
 {
 return (ushort)(base.Age() + 1);
 }

}

 Create an instance of the Director class and invoke its Age() method; it returns 39 , as the following
statements show:

 Director d = new Director();
 d.DateofBirth = new DateTime(1970, 7, 28);
 Console.WriteLine(d.Age()); //---39---

c05.indd 180c05.indd 180 10/1/08 11:42:17 AM10/1/08 11:42:17 AM

Chapter 5: Interfaces

181

 However, if you typecast d to an instance of the IPerson interface and then use that interface to invoke
the Age() method, you get 38 instead:

 IPerson p = d as IPerson;
 Console.WriteLine(p.Age()); //---38---

 What ’ s happened is that the instance of the IPerson interface (p) uses the Age() method defined in the
 Employee class.

 Summary
 An interface defines the contract for a class — the various members that a class must have, the result
returned for each method, and so on. However, an interface does not provide the implementation for a
class; the actual implementation is left to the implementing classes. This chapter presented different
ways in which you can work with interfaces — implementing multiple interfaces, extending interfaces,
casting to an interface, and so forth.

c05.indd 181c05.indd 181 10/1/08 11:42:17 AM10/1/08 11:42:17 AM

c05.indd 182c05.indd 182 10/1/08 11:42:17 AM10/1/08 11:42:17 AM

 Inheritance
 Inheritance is one of the fundamental concepts in object - oriented programming. Inheritance
facilitates code reuse and allows you to extend the functionality of code that you have already
written. This chapter looks at:

 How inheritance works

 Implementing inheritance in C#

 Defining abstract methods and classes

 Sealing classes and methods

 Defining overloaded methods

 The different types of access modifiers you can use in inheritance

 Using inheritance in interfaces

 Understanding Inheritance in C#
 The following Employee class contains information about employees in a company:

public class Employee
{
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }
}

❑

❑

❑

❑

❑

❑

❑

c06.indd 183c06.indd 183 10/1/08 11:42:57 AM10/1/08 11:42:57 AM

184

Part I: C# Fundamentals

 Manager is a class containing information about managers:

public class Manager
{
 public string Name { get; set; }
 public DateTime DateofBirth { get; set; }
 public ushort Age()
 {
 return (ushort)(DateTime.Now.Year - this.DateofBirth.Year);
 }
 public Employee[] subordinates { get; set; }
}

 The key difference between the Manager class and the Employee class is that Manager has an additional
property, subordinates , that contains an array of employees under the supervision of a manager. In
fact, a manager is actually an employee, except that he has some additional roles. In this example, the
 Manager class could inherit from the Employee class and then add the additional subordinates
property that it requires, like this:

public class Manager: Employee
{
 public Employee[] subordinates { get; set; }
}

 By inheriting from the Employee class, the Manager class has all the members defined in the Employee
class made available to it. The relationships between the Employee and Manager classes can be
represented using a class diagram as shown in Figure 6 - 1 .

Figure 6-1

 Employee is known as the base class and Manager is a derived class . In object - oriented programming,
inheritance is classified into two types: implementation and interface. This chapter explores both.

 Implementation Inheritance
 Implementation inheritance is when a class derives from another base class, inheriting all the base class ’ s
members. To add new members to a class, you can define another class that derives from the existing
base class. Using implementation inheritance, the new derived class inherits all of the implementation
provided in the base class.

c06.indd 184c06.indd 184 10/1/08 11:42:58 AM10/1/08 11:42:58 AM

185

Chapter 6: Inheritance

 To understand how inheritance works in C#, define a simple class as follows:

 public class Shape
 {
 //---properties---
 public double length { get; set; }
 public double width { get; set; }
 //---method---
 public double Perimeter()
 {
 return 2 * (this.length + this.width);
 }
 }

 Here, the Shape class contains two properties and a single method. By itself, this class does not specify a
particular shape, but it does assume that a basic shape contains length and width. It also assumes that
the perimeter of a shape is simply double the sum of its length and width.

 Using this base class, you can define other shapes such as square, rectangle, and circle. Let ’ s start with
the rectangle shape. Using Shape as the base class, you can define a Rectangle class (a derived class
because it derives from the Shape class) by inheriting from the Shape class, like this:

 public class Rectangle : Shape
 {
 }

 In C#, you use the colon (:) operator to indicate that a class inherits from another class (known as the
base class). This example reads: “ The Rectangle class inherits from the Shape class. ” This means that
whatever members the Shape class has are inherited by the Rectangle class. (In this example, the
 Rectangle class has no implementation; that will be added in the next few sections.)

 C# supports only single - class inheritance, which means that a class can inherit directly from only one base
class. If you do not specify the base class, the C# compiler assumes that it is inheriting from the System
.Object class. Because the Shape class did not specify who it is inheriting from, it is equivalent to:

 public class Shape : Object

 {
 //---properties---
 public double length { get; set; }
 public double width { get; set; }

 //---method---
 public double Perimeter()
 {
 return 2 * (this.length + this.width);
 }
 }

 To use the Rectangle class, you instantiate it as you would other classes:

 Rectangle r = new Rectangle();

c06.indd 185c06.indd 185 10/1/08 11:42:58 AM10/1/08 11:42:58 AM

186

Part I: C# Fundamentals

 Because the Rectangle class inherits all the members of the Shape class, you can access its members as
if they are defined within the Rectangle class itself:

 r.length = 4;
 r.width = 5;
 Console.WriteLine(r.Perimeter()); //---18---

 Abstract Class
 The Shape class does not specify a particular shape, and thus it really does not make sense for you to
instantiate it directly, like this:

 Shape someShape = new Shape();

 Instead, all other shapes should inherit from this base class. To ensure that you cannot instantiate the
 Shape class directly, you can make it an abstract class by using the abstract keyword:

 public abstract class Shape

 {
 //---properties---
 public double length { get; set; }
 public double width { get; set; }

 //---method---
 public double Perimeter()
 {
 return 2 * (this.length + this.width);
 }
 }

 Once a class is defined as abstract, you can no longer instantiate it directly; the following is now not
permitted:

 //---cannot instantiate directly---
 Shape someShape = new Shape();

 The abstract keyword indicates that the class is defined solely for the purpose of inheritance; other
classes need to inherit from it in order to have objects of this base type.

 Abstract Methods
 Besides making a class abstract by using the abstract keyword, you can also create abstract methods . An
abstract method has no implementation, and its implementation is left to the classes that inherit from the
class that defines it. Using the Shape class as an example, you can now define an abstract method called
 Area() that calculates the area of a shape:

 public abstract class Shape
 {
 //---properties---
 public double length { get; set; }

c06.indd 186c06.indd 186 10/1/08 11:42:58 AM10/1/08 11:42:58 AM

187

Chapter 6: Inheritance

 public double width { get; set; }

 //---method---
 public double Perimeter()
 {
 return 2 * (this.length + this.width);
 }

 //---abstract method---
 public abstract double Area();

 }

 It is logical to make the Area() method an abstract one because at this point you don ’ t really know what
shape you are working on (circle, square, or triangle, for example), and thus you don ’ t know how to
calculate its area.

 An abstract method is defined just like a normal method without the normal method block ({}). Classes
that inherit from a class containing abstract methods must provide the implementation for those
methods.

 The Rectangle class defined earlier must now implement the Area() abstract method, using the
 override keyword:

 public class Rectangle : Shape
 {

 //---provide the implementation for the abstract method---
 public override double Area()
 {
 return this.length * this.width;
 }

 }

 Instead of using the this keyword to access the length and width properties, you can also use the
 base keyword:

 public class Rectangle : Shape
 {
 public override double Area()
 {

 return base.length * base.width;

 }
 }

 The base keyword is used to access members (such as properties and variables) of the base class from
within a derived class. You can also use the base keyword to access methods from the base class; here ’ s
an example:

 public class Rectangle : Shape
 {
 public override sealed double Area()
 {
 return this.length * this.width;

(continued)

c06.indd 187c06.indd 187 10/1/08 11:42:59 AM10/1/08 11:42:59 AM

188

Part I: C# Fundamentals

 //return base.length * base.width;
 }

 public override double Perimeter()
 {
 //---invokes the Perimeter() method in the Shape class---
 return base.Perimeter();
 }

 }

 You can now use the Rectangle class like this:

 Rectangle r = new Rectangle();
 r.length = 4;
 r.width = 5;
 Console.WriteLine(r.Perimeter()); //---18---
 Console.WriteLine(r.Area()); //---20---

 An abstract method can only be defined in an abstract class.

 The base keyword refers to the parent class of a derived class, not the root class. Consider the following
example where you have three classes — Class3 inherits from Class2 , which in turn inherits from
 Class1 :

 public class Class1
 {
 public virtual void PrintString()
 {
 Console.WriteLine(“Class1”);
 }
 }

 public class Class2: Class1
 {
 public override void PrintString()
 {
 Console.WriteLine(“Class2”);
 }
 }

 public class Class3 : Class2
 {
 public override void PrintString()
 {

 base.PrintString();

 }
 }

(continued)

c06.indd 188c06.indd 188 10/1/08 11:42:59 AM10/1/08 11:42:59 AM

189

Chapter 6: Inheritance

 In Class3 , the base.PrintString() statement invokes the PrintString() method defined in its
parent, Class2 . The following statements verify this:

 Class3 c3 = new Class3();
 //---prints out “Class2”---
 c3.PrintString();

 Virtual Methods
 Using the Rectangle class, you can find the perimeter and area of a rectangle with the Perimeter()
and Area() methods, respectively. But what if you want to define a Circle class? Obviously, the
perimeter (circumference) of a circle is not the length multiply by its width. For simplicity, though, let ’ s
assume that the diameter of a circle can be represented by the Length property.

 The definition of Circle will look like this:

 public class Circle : Shape
 {
 }

 However, the Perimeter() method should be reimplemented as the circumference of a circle is defined
to be 2* � *radius (or � *diameter). But the Perimeter() method has already been defined in the
base class Shape . In this case, you need to indicate to the compiler that the Perimeter() method in
the Shape class can be reimplemented by its derived class. To do so, you need to prefix the Perimeter()
method with the virtual keyword to indicate that all derived classes have the option to change its
implementation:

 public abstract class Shape
 {
 //---properties---
 public double length { get; set; }
 public double width { get; set; }

 //---make this method as virtual---

 public virtual double Perimeter()

 {
 return 2 * (this.length + this.width);
 }

 //---abstract method---
 public abstract double Area();
 }

 The Circle class now has to provide implementation for both the Perimeter() and Area() methods
(note the use of the override keyword):

 public class Circle : Shape
 {

 //---provide the implementation for the abstract method---
 public override double Perimeter()

(continued)

c06.indd 189c06.indd 189 10/1/08 11:42:59 AM10/1/08 11:42:59 AM

190

Part I: C# Fundamentals

 {
 return Math.PI * (this.length);
 }

 //---provide the implementation for the virtual method---
 public override double Area()
 {
 return Math.PI * Math.Pow(this.length /2 ,2);
 }

 }

 Bear in mind that when overriding a method in the base class, the new method must have the same
signature (parameter) as the overridden method. For example, the following is not allowed because the
new Perimeter() method has a single input parameter, but this signature does not match that of the
 Perimeter() method defined in the base class (Shape):

 public class Circle : Shape
 {

 //---signature does not match Perimeter() in base class---
 public override double Perimeter(int Diameter)

 {
 //...
 }
 }

 If you need to implement another new method also called Perimeter() in the Circle class but with a
different signature, use the new keyword, like this:

 public class Circle : Shape
 {

 //---a new Perimeter() method---
 public new double Perimeter(int diameter)

 {
 //...
 }
 }

 When a class has multiple methods each with the same name but a different signature (parameter), the
methods are known as overloaded . The Perimeter() method of the Circle class is now overloaded (see
Figure 6 - 2). Note that IntelliSense shows that the first method is from the Shape base class, while the
second one is from the Circle class.

Figure 6-2

(continued)

 See the “ Overloading Methods ” section later in this chapter.

c06.indd 190c06.indd 190 10/1/08 11:43:00 AM10/1/08 11:43:00 AM

191

Chapter 6: Inheritance

 Sealed Classes and Methods
 So far you ’ ve seen the class definition for Shape , Rectangle , and Circle . Now let ’ s define a class for
the shape Square . As you know, a square is just a special version of rectangle; it just happens to have the
same length and width. In this case, the Square class can simply inherit from the Rectangle class:

 public class Square : Rectangle
 {
 }

 You can instantiate the Square class as per normal and all the members available in the Rectangle
would then be available to it:

 Square s = new Square();
 s.length = 5;
 s.width = 5;
 Console.WriteLine(s.Perimeter()); //---20---
 Console.WriteLine(s.Area()); //---25---

 To ensure that no other classes can derive from the Square class, you can seal it using the sealed
keyword. A class prefixed with the sealed keyword prevents other classes inheriting from it. For
example, if you seal the Square class, like this:

 public sealed class Square : Rectangle
 {
 }

 The following will result in an error:

 //---Error: Square is sealed---
 public class Rhombus : Square

 {
 }

 A sealed class cannot contain virtual methods. In the following example, the Square class is sealed, so it
cannot contain the virtual method called Diagonal() :

 public sealed class Square : Rectangle
 {

 //---Error: sealed class cannot contain virtual methods---
 public virtual Single Diagonal()
 {
 //---implementation here---
 }

 }

 This is logical because a sealed class does not provide an opportunity for a derived class to implement its
virtual method. By the same argument, a sealed class also cannot contain abstract methods:

 public sealed class Square : Rectangle
 {

 //---Error: sealed class cannot contain abstract method---
 public abstract Single Diagonal();

 }

c06.indd 191c06.indd 191 10/1/08 11:43:00 AM10/1/08 11:43:00 AM

192

Part I: C# Fundamentals

 You can also seal methods so that other derived classes cannot override the implementation that you
have provided in the current class. For example, recall that the Rectangle class provides the
implementation for the abstract Area() method defined in the Shape class:

 public class Rectangle : Shape
 {

 public override double Area()
 {
 return this.length * this.width;
 }

 }

 To prevent the derived classes of Rectangle (such as Square) from modifying the Area()
implementation, prefix the method with the sealed keyword:

 public class Rectangle : Shape
 {

 public override sealed double Area()

 {
 return this.length * this.width;
 }
 }

 Now if you try to override the Area() method in the Square class, you get an error:

 public sealed class Square : Rectangle
 {

 //---Error: Area() is sealed in Rectangle class---
 public override double Area()
 {
 //---implementation here---
 }

 }

 Overloading Methods
 When you have multiple methods in a class having the same name but different signatures (parameters),
they are known as overloaded methods . Consider the following class definition:

 public class BaseClass
 {
 public void Method(int num)
 {
 Console.WriteLine(“Number in BaseClass is “ + num);
 }

 public void Method(string st)
 {
 Console.WriteLine(“String in BaseClass is “ + st);
 }
 }

c06.indd 192c06.indd 192 10/1/08 11:43:00 AM10/1/08 11:43:00 AM

193

Chapter 6: Inheritance

 Here, BaseClass has two methods called Method() with two different signatures — one integer and
another one string .

 When you create an instance of BaseClass , you can call Method() with either an integer or string
argument and the compiler will automatically invoke the appropriate method:

 BaseClass b = new BaseClass();

 //---prints out: Number in BaseClass is 5---
 b.Method(5);

 //---prints out: String in BaseClass is This is a string---
 b.Method(“This is a string”);

 Suppose that you have another class inheriting from BaseClass with a Method() method that has a
different signature, like this:

 public class DerivedClass : BaseClass
 {
 //---overloads the method---
 public void Method(char ch)
 {
 Console.WriteLine(“Character in DerivedClass is “ + ch);
 }
 }

 Then, DerivedClass now has three overloaded Method() methods, as illustrated in Figure 6 - 3 .

Figure 6-3

 You can now pass three different types of arguments into Method() — character, integer, and string:

 DerivedClass d = new DerivedClass();

 //---prints out: Character in DerivedClass is C---
 d.Method(‘C’);

 //---prints out: Number in BaseClass is 5---
 d.Method(5);

 //---prints out: String in BaseClass is This is a string---
 d.Method(“This is a string”);

c06.indd 193c06.indd 193 10/1/08 11:43:01 AM10/1/08 11:43:01 AM

194

Part I: C# Fundamentals

 What happens if you have a Method() having the same signature as another one in the base class, such
as the following?

 public class DerivedClass : BaseClass
 {

 //---overloads the method with the same parameter list---
 public void Method(int num)
 {
 Console.WriteLine(“Number in DerivedClass is “ + num);
 }

 //---overloads the method
 public void Method(char ch)
 {
 Console.WriteLine(“Character in DerivedClass is “ + ch);
 }
 }

 In this case, Method(int num) in DerivedClass will hide the same method in BaseClass , as the
following printout proves:

 DerivedClass d = new DerivedClass();

 //---prints out: Number in DerivedClass is 5---
 d.Method(5);

 //---prints out: String in BaseClass is This is a string---
 d.Method(“This is a string”);

 //---prints out: Character in DerivedClass is C---
 d.Method(‘C’);

 If hiding Method(int num) in BaseClass is your true intention, use the new keyword to denote that as
follows (or else the compiler will issue a warning):

 //---overloads the method with the same parameter list

 public new void Method(int num)

 {
 Console.WriteLine(“Number in DerivedClass is “ + num);
 }

In C#, you use the new keyword to hide methods in the base class by signature.
C# does not support hiding methods by name as is possible in VB.NET by using the
Shadows keyword.

c06.indd 194c06.indd 194 10/1/08 11:43:01 AM10/1/08 11:43:01 AM

195

Chapter 6: Inheritance

 The following table summarizes the different keywords used for inheritance.

 Modifier Description

 new Hides an inherited method with the same signature.

 static A member that belongs to the type itself and not to a specific object.

 virtual A method that can be overridden by a derived class.

 abstract Provides the signature of a method/class but does not contain any
implementation.

 override Overrides an inherited virtual or abstract method.

 sealed A method that cannot be overridden by derived classes; a class that cannot be
inherited by other classes.

 extern An “ extern ” method is one in which the implementation is provided elsewhere
and is most commonly used to provide definitions for methods invoked using
.NET interop.

 Overloading Operators
 Besides overloading methods, C# also supports the overloading of operators (such as + , - , / , and *).
Operator overloading allows you to provide your own operator implementation for your specific type.
To see how operator overloading works, consider the following program containing the Point class
representing a point in a coordinate system:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace OperatorOverloading
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }

 class Point
 {
 public Single X { get; set; }
 public Single Y { get; set; }

 public Point(Single X, Single Y)
 {
 this.X = X;
 this.Y = Y;
 }

(continued)

c06.indd 195c06.indd 195 10/1/08 11:43:01 AM10/1/08 11:43:01 AM

196

Part I: C# Fundamentals

 public double DistanceFromOrigin()
 {
 return (Math.Sqrt(Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));
 }
 }
}

 The Point class contains two public properties (X and Y), a constructor, and a method —
 DistanceFromOrigin() .

 If you constantly perform calculations where you need to add the distances of two points (from the
origin), your code may look like this:

 static void Main(string[] args)
 {

 Point ptA = new Point(4, 5);
 Point ptB = new Point(2, 7);

 double distanceA, distanceB;

 distanceA = ptA.DistanceFromOrigin(); //---6.40312423743285---
 distanceB = ptB.DistanceFromOrigin(); //---7.28010988928052---

 Console.WriteLine(distanceA + distanceB); //---13.6832341267134---

 Console.ReadLine();
 }

 A much better implementation is to overload the + operator for use with the Point class. To overload
the + operator, define a public static operator within the Point class as follows:

 class Point
 {
 public Single X { get; set; }
 public Single Y { get; set; }

 public Point(Single X, Single Y)
 {
 this.X = X;
 this.Y = Y;
 }
 public double DistanceFromOrigin()
 {
 return (Math.Sqrt(Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));
 }

 public static double operator +(Point A, Point B)
 {
 return (A.DistanceFromOrigin() + B.DistanceFromOrigin());
 }

 }

(continued)

c06.indd 196c06.indd 196 10/1/08 11:43:02 AM10/1/08 11:43:02 AM

197

Chapter 6: Inheritance

 The operator keyword overloads a built - in operator. In this example, the overloaded + operator allows
it to “ add ” two Point objects by adding the result of their DistanceFromOrigin() methods:

 static void Main(string[] args)
 {
 Point ptA = new Point(4, 5);
 Point ptB = new Point(2, 7);

 Console.WriteLine(ptA + ptB); //---13.6832341267134---
 Console.ReadLine();
 }

 You can also use the operator keyword to define a conversion operator, as the following example
shows:

 class Point
 {
 public Single X { get; set; }
 public Single Y { get; set; }

 public Point(Single X, Single Y)
 {
 this.X = X;
 this.Y = Y;
 }
 public double DistanceFromOrigin()
 {
 return (Math.Sqrt(Math.Pow(this.X, 2) + Math.Pow(this.Y, 2)));
 }

 public static double operator +(Point A, Point B)
 {
 return (A.DistanceFromOrigin() + B.DistanceFromOrigin());
 }

 public static implicit operator double(Point pt)
 {
 return (pt.X / pt.Y);
 }

 }

 Here, the implicit keyword indicates that you want to implicitly perform a conversion of the Point
class to a double value (this value is defined to be the ratio of the X and Y coordinates).

 Now when you assign a Point object to a double variable, the ratio of the X and Y coordinates is
assigned automatically, as the following statements prove:

 static void Main(string[] args)
 {
 Point ptA = new Point(4, 5);
 Point ptB = new Point(2, 7);

 double ratio = ptA; //---implicitly convert to a double type---

(continued)

c06.indd 197c06.indd 197 10/1/08 11:43:02 AM10/1/08 11:43:02 AM

198

Part I: C# Fundamentals

 ptB = ptA; //---assign to another Point object---
 Console.WriteLine(ratio); //---0.8---
 Console.WriteLine((double)ptB); //---0.8---

 Console.ReadLine();
 }

 Extension Methods (C# 3.0)
 Whenever you add additional methods to a class in previous versions of C#, you need to subclass it and
then add the required method. For example, consider the following predefined (meaning you cannot
modify it) classes:

public abstract class Shape
{
 //---properties---
 public double length { get; set; }
 public double width { get; set; }

 //---make this method as virtual---
 public virtual double Perimeter()
 {
 return 2 * (this.length + this.width);
 }

 //---abstract method---
 public abstract double Area();
}

public class Rectangle : Shape
{
 public override sealed double Area()
 {
 return this.length * this.width;
 }
}

 The only way to add a new method Diagonal() to the Rectangle class is to create a new class that
derives from it, like this:

public class NewRectangle : Rectangle
{
 public double Diagonal()
 {
 return Math.Sqrt(Math.Pow(this.length, 2) + Math.Pow(this.width, 2));
 }
}

(continued)

c06.indd 198c06.indd 198 10/1/08 11:43:03 AM10/1/08 11:43:03 AM

199

Chapter 6: Inheritance

 In C# 3.0, you just use the new extension method feature to add a new method to an existing type. To add
the Diagonal() method to the existing Rectangle class, define a new static class and define the
extension method (a static method) within it, like this:

public static class MethodsExtensions
{
 public static double Diagonal(this Rectangle rect)
 {
 return Math.Sqrt(Math.Pow(rect.length, 2) + Math.Pow(rect.width, 2));
 }
}

 In this example, Diagonal() is the extension method that is added to the Rectangle class. You can use
the Diagonal() method just like a method from the Rectangle class:

 Rectangle r = new Rectangle();
 r.length = 4;
 r.width = 5;
 //---prints out: 6.40312423743285---
 Console.WriteLine(r.Diagonal());

 The first parameter of an extension method is prefixed by the this keyword, followed by the type it is
extending (Rectangle in this example, indicating to the compiler that this extension method must be
added to the Rectangle class). The rest of the parameter list (if any) is then the signature of the
extension method. For example, to pass additional parameters into the Diagonal() extension method,
you can declare it as:

 public static double Diagonal(this Rectangle rect, int x, int y)

 {
 //---additional implementation here---
 return Math.Sqrt(Math.Pow(rect.length, 2) + Math.Pow(rect.width, 2));
 }

 To call this modified extension method, simply pass in two arguments, like this:

 Console.WriteLine(r.Diagonal(3,4));

 Figure 6 - 4 shows IntelliSense providing a hint on the parameter list.

Figure 6-4

 Although an extension method is a useful new feature in the C# language, use it sparingly. If an
extension method has the same signature as another method in the class it is trying to extend, the
method in the class will take precedence and the extension method will be ignored.

c06.indd 199c06.indd 199 10/1/08 11:43:03 AM10/1/08 11:43:03 AM

200

Part I: C# Fundamentals

 Access Modifiers
 Chapter 4 discussed two primary access modifiers — public and private , and introduced two others:
 protected and internal . Let ’ s take a look at how the latter are used. Consider the following class
definition:

 public class A
 {
 private int v;
 public int w;
 protected int x;
 internal int y;
 protected internal int z;
 }

 The A class has four data members, each with a different access modifiers. The fifth data member, z , has
a combination of two access modifiers — protected and internal . To see the difference between all
these different modifiers, create an instance of A and observe the members displayed by IntelliSense.

 Figure 6 - 5 shows that only the variables w , y , and z are accessible.

Figure 6-5

 At this moment, you can conclude that:

 The private keyword indicates that the member is not visible outside the type (class).

 The public keyword indicates that the member is visible outside the type (class).

 The protected keyword indicates that the member is not visible outside the type (class).

 The internal keyword indicates that the member is visible outside the type (class).

 The protected internal keyword combination indicates that the member is visible outside
the type (class).

 Now define a second class, B , that inherits from class A :

 public class B : A
 {
 public void Method()
 {

 }
 }

❑

❑

❑

❑

❑

c06.indd 200c06.indd 200 10/1/08 11:43:04 AM10/1/08 11:43:04 AM

201

Chapter 6: Inheritance

 Try to access the class A variables from within Method() . In Figure 6 - 6 , IntelliSense shows the variables
that are accessible.

Figure 6-6

 As you can see, member x is now visible (in addition to w , y , and z), so you can conclude that:

 The private keyword indicates that the member is not visible outside the type (class) or to any
derived classes.

 The public keyword indicates that the member is visible outside the type (class) and to all
derived classes.

 The protected keyword indicates that the member is not visible outside the type (class) but is
visible to any derived classes.

 The internal keyword indicates that the member is visible outside the type (class) as well as to
all derived classes.

 The protected internal keyword combination indicates that the item is visible outside the
type (class) as well as to all derived classes.

 From these conclusions, the difference among private , public , and protected is obvious. However,
there is no conclusive difference between internal and protected internal . The internal access
modifier indicates that the member is only visible within its containing assembly. The protected
 internal keyword combination indicates that the member is visible to any code within its containing
assembly as well as derived types.

 Besides applying the access modifiers to data members, you can also use them on type definitions.
However, you can only use the private and public access modifiers on class definitions.

❑

❑

❑

❑

❑

c06.indd 201c06.indd 201 10/1/08 11:43:04 AM10/1/08 11:43:04 AM

202

Part I: C# Fundamentals

 Inheritance and Constructors
 Consider the following BaseClass definition consisting of one default constructor:

 public class BaseClass
 {

 //---default constructor---
 public BaseClass()
 {
 Console.WriteLine(“Constructor in BaseClass”);
 }

 }

 Anther class, DerivedClass inheriting from the BaseClass , also has a default constructor:

 public class DerivedClass : BaseClass
 {
 //---default constructor---
 public DerivedClass()
 {
 Console.WriteLine(“Constructor in DerivedClass”);
 }
 }

 So when an object of DerivedClass is instantiated, which constructor will be invoked first? The
following statement shows that the constructor in the base class will be invoked before the constructor in
the current class will be invoked:

 DerivedClass dc = new DerivedClass();

 The outputs are:

Constructor in BaseClass
Constructor in DerivedClass

 What happens if there is no default constructor in the base class, but perhaps a parameterized
constructor like the following?

public class BaseClass
{

 //---constructor---
 public BaseClass(int x)

 {
 Console.WriteLine(“Constructor in BaseClass”);
 }
}

 In that case, the compiler will complain that BaseClass does not contain a default constructor.

 Remember that if a base class contains constructors, one of them must be a default
constructor.

c06.indd 202c06.indd 202 10/1/08 11:43:04 AM10/1/08 11:43:04 AM

203

Chapter 6: Inheritance

 Calling Base Class Constructors
 Suppose BaseClass contains two constructors — one default and one parameterized:

public class BaseClass
{
 //---default constructor---
 public BaseClass()
 {
 Console.WriteLine(“Default constructor in BaseClass”);
 }

 //---parameterized constructor---
 public BaseClass(int x)
 {
 Console.WriteLine(“Parameterized Constructor in BaseClass”);
 }
}

 And DerivedClass contains one default constructor:

public class DerivedClass : BaseClass
{
 //---default constructor---
 public DerivedClass()
 {
 Console.WriteLine(“Constructor in DerivedClass”);
 }
}

 When an instance of the DerivedClass is created like this:

 DerivedClass dc = new DerivedClass();

 The default constructor in BaseClass is first invoked followed by the DerivedClass . However, you
can choose which constructor you want to invoke in BaseClass by using the base keyword in the
default constructor in DerivedClass , like this:

public class DerivedClass : BaseClass
{
 //---default constructor---

 public DerivedClass(): base(4)

 {
 Console.WriteLine(“Constructor in DerivedClass”);
 }
}

 In this example, when an instance of the DerivedClass is created, the parameterized constructor in
 BaseClass is invoked first (with the argument 4 passed in), followed by the default constructor
in DerivedClass . This is shown in the output:

 DerivedClass dc = new DerivedClass();
 //---prints out:---
 //Parameterized Constructor in BaseClass
 //Constructor in DerivedClass

c06.indd 203c06.indd 203 10/1/08 11:43:05 AM10/1/08 11:43:05 AM

204

Part I: C# Fundamentals

 Figure 6 - 7 shows that IntelliSense lists the overloaded constructors in BaseClass .

Figure 6-7

 Interface Inheritance
 When an interface inherits from a base interface, it inherits all the base interface ’ s functions ’ signatures
(but no implementation).

 Let ’ s explore the concept of interface inheritance by using the hierarchy of various classes defined earlier
in the chapter, starting from the root class Shape , with the Circle and Rectangle classes inheriting
from it (the Square class in turn inherits from the Rectangle class), as Figure 6 - 8 shows.

Figure 6-8

c06.indd 204c06.indd 204 10/1/08 11:43:05 AM10/1/08 11:43:05 AM

205

Chapter 6: Inheritance

 One problem with this class hierarchy is that for the Circle class, using the inherited length property to
represent the diameter is a bit awkward. Likewise, for the Square class the width property should not be
visible because the length and width of a square are the same. Hence, these classes could be better rearranged.

 As you recall from Chapter 5, you can use an interface to define the signature of a class ’ s members.
Likewise, you can use interfaces to define the hierarchy of a set of classes. If you do so, developers who
implement this set of classes will have to follow the rules as defined in the interfaces.

 You can use interfaces to redefine the existing classes, as shown in Figure 6 - 9 .

Figure 6-9

 Here, the IShape interface contains two methods — Area() and Perimeter() :

public interface IShape
{
 //---methods---
 double Perimeter();
 double Area();
}

 Remember, an interface simply defines the members in a class; it does not contain any implementation.
Also, there is no modifier (like virtual or abstract) prefixing the function members here, so you need
not worry about the implementation of the Perimeter() and Area() methods — they could be
implemented by other derived classes.

 The ICircle interface inherits from the IShape interface and defines an additional radius property:

public interface ICircle : IShape
{
 //---property---
 double radius { get; set; }
}

c06.indd 205c06.indd 205 10/1/08 11:43:05 AM10/1/08 11:43:05 AM

206

Part I: C# Fundamentals

 The ISquare interface inherits from the IShape interface and defines an additional length property:

public interface ISquare : IShape
{
 //---property---
 double length { get; set; }
}

 The IRectangle interface inherits from both the IShape and ISquare interfaces. In addition, it also
defines a width property:

public interface IRectangle : IShape, ISquare
{
 //---property---
 double width { get; set; }
}

 So what does the implementation of these interfaces look like? First, implement the ISquare interface,
like this:

public class Square : ISquare
{
 //---property---
 public double length { get; set; }

 //---methods---
 public double Perimeter()
 {
 return 4 * (this.length);
 }

 public double Area()
 {
 return (Math.Pow(this.length, 2));
 }
}

 Here, you provide the implementation for the length property as well as the two methods —
 Perimeter() and Area() .

 You not need to implement the IShape class because you can ’ t provide any meaningful implementation
of the Area() and Perimeter() methods here.

 Because the IRectangle interface inherits from both the ISquare and IShape interfaces and the
 ISquare interface has already been implemented (by the Square class), you can simply inherit from the
 Square class and implement the IRectangle interface, like this:

public class Rectangle : Square, IRectangle
{
 //---property---
 public double width { get; set; }
}

c06.indd 206c06.indd 206 10/1/08 11:43:06 AM10/1/08 11:43:06 AM

207

Chapter 6: Inheritance

 If you implement the IRectangle interface directly (without inheriting from the
 Square class, you need to provide the implementation of the length property as
well as the methods Perimeter() and Area() .

 You need only provide the implementation for the width property here. The implementation for the
 Area() and Perimeter() methods is inherited from the Square class.

 The last implementation is the ICircle interface, for which you will implement the radius property as
well as the Perimeter() and Area() methods:

public class Circle : ICircle
{
 public double radius { get; set; }
 public double Perimeter()
 {
 return (2 * Math.PI * (this.radius));
 }

 //---provide the implementation for the virtual method---
 public double Area()
 {
 return (Math.PI * Math.Pow(this.radius, 2));
 }
}

 Figure 6 - 10 shows the classes that you have implemented for these three interfaces.

Figure 6-10

c06.indd 207c06.indd 207 10/1/08 11:43:06 AM10/1/08 11:43:06 AM

208

Part I: C# Fundamentals

 Explicit Interface Members Implementation
 A class can implement one or more interfaces. To implement a member in an interface, you simply need
to match the member name and its signature with the one defined in the interface. However, there are
times when two interfaces may have the same member name and signature. Here ’ s an example:

public interface IFileLogging
{
 void LogError(string str);
}

public interface IConsoleLogging
{
 void LogError(string str);
}

 In this example, both IFileLogging and IConsoleLogging have the same LogError() method.
Suppose that you have a class named Calculation that implements both interfaces:

public class Calculation : IFileLogging, IConsoleLogging
{

}

 The implementation of the LogError() method may look like this:

public class Calculation : IFileLogging, IConsoleLogging
{

 //---common to both interfaces---
 public void LogError(string str)
 {
 Console.WriteLine(str);
 }

}

 In this case, the LogError() method implementation will be common to both interfaces and you can
invoke it via an instance of the Calculation class:

 Calculation c = new Calculation();
 //---prints out: Some error message here---
 c.LogError(“Some error message here”);

 In some cases, you need to differentiate between the two methods in the two interfaces. For example, the
 LogError() method in the IFileLogging interface may write the error message into a text file, while
the LogError() method in the IConsoleLogging interface may write the error message into the
console window. In that case, you must explicitly implement the LogError() method in each of the two
interfaces. Here ’ s how:

public class Calculation : IFileLogging, IConsoleLogging
{
 //---common to both interfaces---
 public void LogError(string str)

c06.indd 208c06.indd 208 10/1/08 11:43:06 AM10/1/08 11:43:06 AM

209

Chapter 6: Inheritance

 {
 Console.WriteLine(str);
 }

 //---only available to the IFileLogging interface---
 void IFileLogging.LogError(string str)
 {
 Console.WriteLine(“In IFileLogging: “ + str);
 }

 //---only available to the IConsoleLogging interface---
 void IConsoleLogging.LogError(string str)
 {
 Console.WriteLine(“In IConsoleLogging: “ + str);
 }

}

 This example has three implementations of the LogError() method:

 One common to both interfaces that can be accessed via an instance of the Calculation class.

 One specific to the IFileLogging interface that can be accessed only via an instance of the
 IFileLogging interface.

 One specific to the IConsoleLogging interface that can be accessed only via an instance of the
 IConsoleLogging interface.

 You cannot use the public access modifier on the explicit interface methods ’
implementation.

 To invoke these implementations of the LogError() method, use the following statements:

 //---create an instance of Calculation---
 Calculation c = new Calculation();

 //---prints out: Some error message here---
 c.LogError(“Some error message here”);

 //---create an instance of IFileLogging---
 IFileLogging f = c;
 //---prints out: In IFileLogging: Some error message here---
 f.LogError(“Some error message here”);

 //---create an instance of IConsoleLogging---
 IConsoleLogging l = c;
 //---prints out: In IConsoleLogging: Some error message here---
 l.LogError(“Some error message here”);

❑

❑

❑

c06.indd 209c06.indd 209 10/1/08 11:43:07 AM10/1/08 11:43:07 AM

210

Part I: C# Fundamentals

 Another use of explicit interface member implementation occurs when two interfaces have the same
method name but different signatures. For example:

public interface IFileLogging
{
 void LogError(string str);
}

public interface IConsoleLogging
{
 void LogError();
}

 Here, the LogError() method in the IFileLogging interface has a string input parameter, while there
is no parameter in the IConsoleLogging interface. When you now implement the two interfaces, you
can provide two overloaded LogError() methods, together with an implementation specific to each
interface as illustrated here:

public class Calculation : IFileLogging, IConsoleLogging
{

 //---common to both interfaces---
 public void LogError(string str)
 {
 Console.WriteLine(“In LogError(str): “ + str);
 }
 public void LogError()
 {
 Console.WriteLine(“In LogError()”);
 }

 //---only available to the IFileLogging interface---
 void IFileLogging.LogError(string str)
 {
 Console.WriteLine(“In IFileLogging: “ + str);
 }

 //---only available to the IConsoleLogging interface---
 void IConsoleLogging.LogError()
 {
 Console.WriteLine(“In IConsoleLogging”);
 }

}

 As you can see , the first two LogError() methods are overloaded and are common to both interfaces.
This means that you can access them via an instance of the Calculation class. The next two
implementations are specific to the IFileLogging and IConsoleLogging interfaces and can be
accessed only via an instance of each interface:

 //---create an instance of Calculation---
 Calculation c = new Calculation();

 //---prints out: In LogError()---

c06.indd 210c06.indd 210 10/1/08 11:43:07 AM10/1/08 11:43:07 AM

211

Chapter 6: Inheritance

 c.LogError();

 //---prints out: In LogError(str)---
 c.LogError(“Some error message here”);

 //---create an instance of IFileLogging---
 IFileLogging f = c;
 //---prints out: In IFileLogging: Some error message here---
 f.LogError(“Some error message here”);

 //---create an instance of IConsoleLogging---
 IConsoleLogging l = c;
 //---prints out: In IConsoleLogging---
 l.LogError();

 Abstract Classes versus Interfaces
 An abstract class defines the members and optionally provides the implementations of
each member. Members that are not implemented in the abstract class must be
implemented by classes that inherit from it.

 An interface, on the other hand, defines the signatures of members but does not
provide any implementation. All the implementations must be provided by classes that
implement it.

 So which one should you use? There are no hard - and - fast rules, but here are a couple
of points to note:

❑ You can add additional members to classes as and when needed. In contrast,
once an interface is defined (and implemented by classes), adding additional
members will break existing code.

❑ Classes support only single - inheritance but can implement multiple interfaces.
So if you need to define multiple contracts (rules) for a type, it is always better
to use an interface.

 Summary
 This chapter explained how inheritance works in C# and the types of inheritances available —
 implementation and interface. One important topic covered in this chapter is that of abstract class versus
interface, both of which have their uses in C#.

 The chapter also described how you can provide overloaded methods and operators, as well as add
capabilities to a class without deriving from it by using the extension method feature new in C# 3.0.

c06.indd 211c06.indd 211 10/1/08 11:43:07 AM10/1/08 11:43:07 AM

c06.indd 212c06.indd 212 10/1/08 11:43:07 AM10/1/08 11:43:07 AM

 Delegates and Events
 Two of the most important aspects of object - oriented programming are delegates and events.
A delegate basically enables you to reference a function without directly invoking the function.
Delegates are often used to implement techniques called callbacks, which means that after a
function has finished execution, a call is made to a specific function to inform it that the execution
has completed. In addition, delegates are also used in event handling. Despite the usefulness of
delegates, it is a topic that not all .NET programmers are familiar with. An event, on the other
hand, is used by classes to notify clients when something of interest has happened. For example, a
 Button control has the Click even, which allows your program to be notified when someone
clicks the button.

 This chapter explores the following:

 What is a delegate?

 Using delegates

 Implementing callbacks using a delegate

 What are events?

 How to handle and implement events in your program

 Delegates
 In C#, a delegate is a reference type that contains a reference to a method. Think of a delegate as a
pointer to a function. Instead of calling a function directly, you use a delegate to point to it and
then invoke the method by calling the delegate. The following sections explain how to use a
delegate and how it can help improve the responsiveness of your application.

❑

❑

❑

❑

❑

c07.indd 213c07.indd 213 10/1/08 11:43:45 AM10/1/08 11:43:45 AM

Part I: C# Fundamentals

214

 Creating a Delegate
 To understand the use of delegates, begin by looking at the conventional way of invoking a function.
Consider the following program:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Delegates
{
 class Program
 {
 static void Main(string[] args)
 {
 int num1 = 5;
 int num2 = 3;
 Console.WriteLine(Add(num1, num2).ToString());
 Console.WriteLine(Subtract(num1, num2).ToString());
 Console.ReadLine();
 }

 static int Add(int num1, int num2)
 {
 return (num1 + num2);
 }

 static int Subtract(int num1, int num2)
 {
 return (num1 - num2);
 }
 }
}

 The program contains three methods: Main() , Add() , and Subtract() . Notice that the Add() and
 Subtract() methods have the same signature. In the Main() method, you invoke the Add()
and Subtract() methods by calling them directly, like this:

 Console.WriteLine(Add(num1, num2).ToString());
 Console.WriteLine(Subtract(num1, num2).ToString());

 Now create a delegate type with the same signature as the Add() method:

namespace Delegates
{
 class Program
 {

 delegate int MethodDelegate(int num1, int num2);

 static void Main(string[] args)
 {
 ...

c07.indd 214c07.indd 214 10/1/08 11:43:46 AM10/1/08 11:43:46 AM

Chapter 7: Delegates and Events

215

 You define a delegate type by using the delegate keyword, and its declaration is similar to that of a
function, except that a delegate has no function body.

 To make a delegate object point to a function, you create an object of that delegate type
(MethodDelegate , in this case) and instantiate it with the method you want to point to, like this:

 static void Main(string[] args)
 {
 int num1 = 5;
 int num2 = 3;

 MethodDelegate method = new MethodDelegate(Add);

 Alternatively, you can also assign the function name to it directly, like this:

 MethodDelegate method = Add;

 This statement declares method to be a delegate that points to the Add() method. Hence instead of
calling the Add() method directly, you can now call it using the method delegate:

 //---Console.WriteLine(Add(num1, num2).ToString());---

 Console.WriteLine(method(num1, num2).ToString());

 The beauty of delegates is that you can make the delegate call whatever function it refers to, without
knowing exactly which function it is calling until runtime. Any function can be pointed by the delegate,
as long as the function ’ s signature matches the delegate ’ s.

 For example, the following statements check the value of the Operation variable before deciding which
method the method delegate to point to:

 char Operation = ‘A’;
 MethodDelegate method = null;
 switch (Operation)
 {
 case ‘A’: method = new MethodDelegate(Add);
 break;
 case ‘S’: method = new MethodDelegate(Subtract);
 break;
 }
 if (method != null)
 Console.WriteLine(method(num1, num2).ToString());

c07.indd 215c07.indd 215 10/1/08 11:43:46 AM10/1/08 11:43:46 AM

Part I: C# Fundamentals

216

 You can also pass a delegate to a method as a parameter, as the following example shows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Delegates
{
 class Program
 {
 delegate int MethodDelegate(int num1, int num2);

 static void PerformMathOps(MethodDelegate method, int num1, int num2)
 {
 Console.WriteLine(method(num1, num2).ToString());
 }

 static void Main(string[] args)
 {
 int num1 = 5;
 int num2 = 3;
 char Operation = ‘A’;

 MethodDelegate method = null;
 switch (Operation)
 {
 case ‘A’: method = new MethodDelegate(Add);
 break;
 case ‘S’: method = new MethodDelegate(Subtract);
 break;
 }
 if (method != null)

 PerformMathOps(method, num1, num2);

 Console.ReadLine();
 }

 static int Add(int num1, int num2)
 {
 return (num1 + num2);
 }

 static int Subtract(int num1, int num2)
 {
 return (num1 - num2);
 }
 }
}

 In this example, the PerformMathOps() function takes in three arguments — a delegate of type
 MethodDelegate and two integer values. Which method to invoke is determined by the Operation
variable. Once the delegate is assigned to point to a method (Add() or Subtract()), it is passed to the
 PerformMathOps() method.

c07.indd 216c07.indd 216 10/1/08 11:43:46 AM10/1/08 11:43:46 AM

Chapter 7: Delegates and Events

217

 Delegates Chaining (Multicast Delegates)
 In the previous section, a delegate pointed to a single function. In fact, you can make a delegate point to
multiple functions. This is known as delegates chaining . Delegates that point to multiple functions are
known as multicast delegates .

 Consider the following example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Delegates
{
 class Program
 {
 delegate void MethodsDelegate();

 static void Main(string[] args)
 {
 MethodsDelegate methods = Method1;
 methods += Method2;
 methods += Method3;

 //---call the delegated method(s)---
 methods();
 Console.ReadLine();
 }

 static private void Method1()
 {
 Console.WriteLine(“Method 1”);
 }

 static private void Method2()
 {
 Console.WriteLine(“Method 2”);
 }

 static private void Method3()
 {
 Console.WriteLine(“Method 3”);
 }
 }
}

c07.indd 217c07.indd 217 10/1/08 11:43:46 AM10/1/08 11:43:46 AM

Part I: C# Fundamentals

218

 This program three methods: Method1() , Method2() , and Method3() . The methods delegate is first
assigned to point to Method1() . The next two statements add Method2() and Method3() to the
delegate by using the �� operator:

 MethodsDelegate methods = Method1;
 methods += Method2;
 methods += Method3;

 When the methods delegate variable is called, the following output results:

Method 1
Method 2
Method 3

 The output shows that the three methods are called in succession, in the order they were added.

 What happens when your methods each return a value and you call them using a multicast delegate?
Here ’ s an example in which the three methods each return an integer value:

 class Program
 {

 delegate int MethodsDelegate(ref int num1, ref int num2);

 static void Main(string[] args)
 {
 int num1 = 0, num2 = 0;
 MethodsDelegate methods = Method1;
 methods += Method2;
 methods += Method3;

 //---call the delegated method(s)---
 Console.WriteLine(methods(ref num1, ref num2));
 Console.WriteLine(“num1: {0} num2: {1}”, num1, num2);
 Console.ReadLine();
 }

 static private int Method1(ref int num1, ref int num2)
 {
 Console.WriteLine(“Method 1”);
 num1 = 1;
 num2 = 1;
 return 1;
 }

 static private int Method2(ref int num1, ref int num2)
 {
 Console.WriteLine(“Method 2”);
 num1 = 2;
 num2 = 2;
 return 2;
 }

 static private int Method3(ref int num1, ref int num2)

c07.indd 218c07.indd 218 10/1/08 11:43:47 AM10/1/08 11:43:47 AM

Chapter 7: Delegates and Events

219

 {
 Console.WriteLine(“Method 3”);
 num1 = 3;
 num2 = 3;
 return 3;
 }

 }

 When the methods delegate is called, Method1() , Method2() , and Method3() are called in succession.
However, only the last method (Method3()) returns a value back to the Main() function, as the output
shows:

Method 1
Method 2
Method 3
3
num1: 3 num2: 3

 If one of the methods pointed to by a delegate causes an exception, no results are returned.
The following modifications to the preceding program shows that Method2() throws an exception and
is caught by the Try - Catch block:

 class Program
 {
 delegate int MethodsDelegate(ref int num1, ref int num2);
 static void Main(string[] args)
 {
 int num1 = 0, num2 = 0;
 MethodsDelegate methods = Method1;
 methods += Method2;
 methods += Method3;

 try
 {
 //---call the delegated method(s)---
 Console.WriteLine(methods(ref num1, ref num2));
 Console.WriteLine(“num1: {0} num2: {1}”, num1, num2);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.WriteLine(“num1: {0} num2: {1}”, num1, num2);

 Console.ReadLine();
 }

 static private int Method1(ref int num1, ref int num2)
 {
 Console.WriteLine(“Method 1”);
 num1 = 1;
 num2 = 1;

(continued)

c07.indd 219c07.indd 219 10/1/08 11:43:47 AM10/1/08 11:43:47 AM

Part I: C# Fundamentals

220

 return 1;
 }

 static private int Method2(ref int num1, ref int num2)
 {

 throw new Exception();

 Console.WriteLine(“Method 2”);
 num1 = 2;
 num2 = 2;
 return 2;
 }

 static private int Method3(ref int num1, ref int num2)
 {
 Console.WriteLine(“Method 3”);
 num1 = 3;
 num2 = 3;
 return 3;
 }
 }

 The following output shows that num1 and num2 retain the values set by the last method that was
successfully invoked by the delegate:

Method 1
Exception of type ‘System.Exception’ was thrown.
num1: 1 num2: 1

 Just as you use the �� operator to add a method to a delegate, you use the � � operator to remove a
method from a delegate:

 static void Main(string[] args)
 {
 int num1 = 0, num2 = 0;
 MethodsDelegate methods = Method1;
 methods += Method2;
 methods += Method3;
 //...
 //...
 //---removes Method3---
 methods -= Method3;

 Implementing Callbacks Using Delegates
 One of the useful things you can do with delegates is to implement callbacks. Callbacks are methods
that you pass into a function that will be called when the function finishes execution. For example, you
have a function that performs a series of mathematical operations. When you call the function, you also
pass it a callback method so that when the function is done with its calculation, the callback method is
called to notify you of the calculation result.

(continued)

c07.indd 220c07.indd 220 10/1/08 11:43:47 AM10/1/08 11:43:47 AM

Chapter 7: Delegates and Events

221

 Following is an example of how to implement callbacks using delegates:

 class Program
 {
 delegate void callbackDelegate(string Message);

 static void Main(string[] args)
 {
 callbackDelegate result = ResultCallback;
 AddTwoNumbers(5, 3, result);

 Console.ReadLine();
 }

 static private void AddTwoNumbers(
 int num1, int num2, callbackDelegate callback)
 {
 int result = num1 + num2;
 callback(“The result is: “ + result.ToString());
 }

 static private void ResultCallback(string Message)
 {
 Console.WriteLine(Message);
 }
 }

 First, you declare two methods:

 AddTwoNumbers() — Takes in two integer arguments and a delegate of type
 callbackDelegate

 ResultCallback() — Takes in a string argument and displays the string in the console window

 Then you declare a delegate type:

 delegate void callbackDelegate(string Message);

 Before you call the AddTwoNumbers() function, you create a delegate of type callbackDelegate and
assign it to point to the ResultCallback() method. The AddTwoNumbers() function is then called with
two integer arguments and the result callback delegate:

 callbackDelegate result = ResultCallback;
 AddTwoNumbers(5, 3, result);

 In the AddTwoNumbers() function, when the calculation is done, you invoke the callback delegate and
pass to it a string:

 static private void AddTwoNumbers(
 int num1, int num2, callbackDelegate callback)
 {
 int result = num1 + num2;

 callback(“The result is: “ + result.ToString());

 }

❑

❑

c07.indd 221c07.indd 221 10/1/08 11:43:47 AM10/1/08 11:43:47 AM

Part I: C# Fundamentals

222

 The callback delegate calls the ResultCallback() function, which prints the result to the console. The
output is:

The result is: 8

 Asynchronous Callbacks
 Callbacks are most useful if they are asynchronous. The callback illustrated in the previous example is
 synchronous , that is, the functions are called sequentially. If the AddTwoNumbers() function takes a long
time to execute, all the statements after it will block. Figure 7 - 1 shows the flow of execution when the
callback is synchronous.

Main() AddTwoNumbers() ResultCallback() Console.ReadLine()

 Figure 7 - 1

AddTwoNumbers() ResultCallback()

Console.ReadLine()

Main()

 Figure 7 - 2

 A better way to organize the program is to call the AddTwoNumbers() method asynchronously, as shown
in Figure 7 - 2 . Calling a function asynchronously allows the main program to continue executing without
waiting for the function to return.

 In this asynchronous model, when the AddTwoNumbers() function is called, the statement(s) after it can
continue to execute. When the function finishes execution, it calls the ResultCallback() function.

 Here ’ s the rewrite of the previous program, using an asynchronous callback:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Runtime.Remoting.Messaging;

namespace Delegates
{
 class Program
 {

 //---delegate to the AddTwoNumbers() method---
 delegate int MethodDelegate(int num1, int num2);

 static void Main(string[] args)

c07.indd 222c07.indd 222 10/1/08 11:43:48 AM10/1/08 11:43:48 AM

Chapter 7: Delegates and Events

223

 {

 //---assign the delegate to point to AddTwoNumbers()---
 MethodDelegate del = AddTwoNumbers;

 //---creates a AsyncCallback delegate---
 AsyncCallback callback = new AsyncCallback(ResultCallback);

 //---invoke the method asychronously---
 Console.WriteLine(“Invoking the method asynchronously...”);
 IAsyncResult result = del.BeginInvoke(5, 3, callback, null);
 Console.WriteLine(“Continuing with the execution...”);

 Console.ReadLine();
 }

 //---method to add two numbers---
 static private int AddTwoNumbers(int num1, int num2)
 {

 //---simulate long execution---
 System.Threading.Thread.Sleep(5000);

 return num1 + num2;
 }

 static private void ResultCallback(IAsyncResult ar)
 {
 MethodDelegate del =
 (MethodDelegate)((AsyncResult)ar).AsyncDelegate;
 //---get the result---
 int result = del.EndInvoke(ar);
 Console.WriteLine(“Result of addition is: “ + result);
 }

 }
}

 First, you define a delegate type so that you can point to the AddTwoNumbers() method:

 delegate int MethodDelegate(int num1, int num2);

 Then create a delegate, and assign it to point to the AddTwoNumbers() method:

 //---assign the delegate to point to AddTwoNumbers()---
 MethodDelegate del = AddTwoNumbers;

 Next, define a delegate of type AsyncCallback :

 //---creates a AsyncCallback delegate---
 AsyncCallback callback = new AsyncCallback(ResultCallback);

 The AsyncCallback is a delegate that references a method to be called when an asynchronous operation
completes. Here, you set it to point to ResultCallback (which you will define later).

c07.indd 223c07.indd 223 10/1/08 11:43:48 AM10/1/08 11:43:48 AM

Part I: C# Fundamentals

224

 To call the AddTwoNumbers() methods asynchronously, you use the BeginInvoke() method of the del
delegate, passing it two integer values (needed by the AddTwoNumbers() method), as well as a delegate
to call back when the method finishes executing:

 //---invoke the method asychronously---
 Console.WriteLine(“Invoking the method asynchronously...”);
 IAsyncResult result = del.BeginInvoke(5, 3, callback, null);
 Console.WriteLine(“Continuing with the execution...”);

 The BeginInvoke() method calls the delegate asynchronously, and the next statement continues
execution after the async delegate is called. This method returns a variable of type IAsyncResult to
represent the status of an asynchronous operation.

 To obtain the result of the calculation, you define the ResultCallback() method, which takes in an
argument of type IAsyncResult :

 static private void ResultCallback(IAsyncResult ar)
 {
 MethodDelegate del =
 (MethodDelegate)((AsyncResult)ar).AsyncDelegate;
 //---get the result---
 int result = del.EndInvoke(ar);
 Console.WriteLine(“Result of addition is: “ + result);
 }

 Within the ResultCallback() method, you first obtain the delegate to the AddTwoNumbers() method
by using the AsyncDelegate property, which returns the delegate on which the asynchronous call was
invoked. You then obtain the result of the asynchronous call by using the EndInvoke() method, passing
it the IAsyncResult variable (ar).

 Finally, to demonstrate the asynchronous calling of the AddTwoNumbers() method, you can insert a
 Sleep() statement to delay the execution (simulating long execution):

 static private int AddTwoNumbers(int num1, int num2)
 {

 //---simulate long execution---
 System.Threading.Thread.Sleep(5000);

 return num1 + num2;
 }

 Figure 7 - 3 shows the output of this program.

 Figure 7 - 3

c07.indd 224c07.indd 224 10/1/08 11:43:49 AM10/1/08 11:43:49 AM

Chapter 7: Delegates and Events

225

 When using asynchronous callbacks, you can make your program much more responsive by executing
different parts of the program in different threads.

 Chapter 10 discusses more about threading.

 Anonymous Methods and Lambda Expressions
 Beginning with C# 2.0, you can use a feature known as anonymous methods to define a delegate.
An anonymous method is an “ inline ” statement or expression that can be used as a delegate parameter.
To see how it works, take a look at the following example:

 class Program
 {
 delegate void MethodsDelegate(string Message);

 static void Main(string[] args)
 {
 MethodsDelegate method = Method1;

 //---call the delegated method---
 method(“Using delegate.”);
 Console.ReadLine();
 }

 static private void Method1(string Message)
 {
 Console.WriteLine(Message);
 }
 }

 Instead of defining a separate method and then using a delegate variable to point to it, you can shorten
the code using an anonymous method:

 class Program
 {
 delegate void MethodsDelegate(string Message);

 static void Main(string[] args)
 {

 MethodsDelegate method = delegate(string Message)
 {
 Console.WriteLine(Message);
 };

 //---call the delegated method---

 method(“Using anonymous method.”);

 Console.ReadLine();
 }
 }

c07.indd 225c07.indd 225 10/1/08 11:43:49 AM10/1/08 11:43:49 AM

Part I: C# Fundamentals

226

 In this expression, the method delegate is an anonymous method:

 MethodsDelegate method = delegate(string Message)
 {
 Console.WriteLine(Message);
 };

 Anonymous methods eliminate the need to define a separate method when using delegates. This is
useful if your delegated method contains a few simple statements and is not used by other code because
you reduce the coding overhead in instantiating delegates by not having to create a separate method.

 In C# 3.0, anonymous methods can be further shortened using a new feature known as lambda
expressions . Lambda expressions are a new feature in .NET 3.5 that provides a more concise, functional
syntax for writing anonymous methods.

 The preceding code using anonymous methods can be rewritten using a lambda expression:

 class Program
 {
 delegate void MethodsDelegate(string Message);

 static void Main(string[] args)
 {

 MethodsDelegate method = (Message) = > { Console.WriteLine(Message); };

 //---call the delegated method---

 method(“Using Lambda Expression.”);

 Console.ReadLine();
 }
 }

 Lambda expressions are discussed in more detail in Chapter 14.

 Events
 One of the most important techniques in computer science that made today ’ s graphical user
interface operating systems (such as Windows, Mac OS X, Linux, and so on) possible is event - driven
programming. Event - driven programming lets the OS react appropriately to the different clicks made
by the user. A typical Windows application has various widgets such as buttons, radio buttons, and
checkboxes that can raise events when, say, a user clicks them. The programmer simply needs to write
the code to handle that particular event. The nice thing about events is that you do not need to know
when these events will be raised — you simply need to provide the implementation for the event
handlers that will handle the events and the OS will take care of invoking the necessary event handlers
appropriately.

 In .NET, events are implemented using delegates. An object that has events is known as a publisher .
Objects that subscribe to events (in other words, handle events) are known as subscribers . When an object
exposes events, it defines a delegate so that whichever object wants to handle this event will have to

c07.indd 226c07.indd 226 10/1/08 11:43:49 AM10/1/08 11:43:49 AM

Chapter 7: Delegates and Events

227

provide a function for this delegate. This delegate is known as an event , and the function that handles
this delegate is known as an event handler . Events are part and parcel of every Windows application.
For example, using Visual Studio 2008 you can create a Windows application containing a Button
control (see Figure 7 - 4).

 Figure 7 - 5

 Figure 7 - 4

 When you double - click the Button control, an event handler is automatically added for you:

 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {

 }

 }

 But how does your application know which event handler is for which event? Turns out that Visual
Studio 2008 automatically wires up the event handlers in the code - behind of the form (FormName
.Designer.cs ; see Figure 7 - 5) located in a function called InitializeComponent() :

 this.button1.Location = new System.Drawing.Point(12, 12);
 this.button1.Name = “button1”;
 this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0;
 this.button1.Text = “button1”;
 this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

c07.indd 227c07.indd 227 10/1/08 11:43:50 AM10/1/08 11:43:50 AM

Part I: C# Fundamentals

228

 Notice that the way you wire up an event handler to handle the Click event is similar to how you
assign a method name to a delegate.

 Alternatively, you can manually create the event handler for the Click event of the Button control.
In the Form() constructor, type �� after the Click event and press the Tab key. Visual Studio 2008
automatically completes the statement (see Figure 7 - 6).

 Figure 7 - 6

 Press the Tab key one more time, and Visual Studio 2008 inserts the stub of the event handler for you
(see Figure 7 - 7).

 Figure 7 - 7

 The completed code looks like this:

 public Form1()
 {
 InitializeComponent();

 this.button1.Click += new EventHandler(button1_Click);

 }

 void button1_Click(object sender, EventArgs e)
 {

 }

 Notice that Click is the event and the event handler must match the signature required by the event
(in this case, the event handler for the Click event must have two parameter — object and EventArgs).
By convention, event handlers in the .NET Framework return void and have two parameters. The first
is the source of the event (that is, the object that raises this event), and the second is an object derived
from EventArgs . The EventArgs parameter allows data to be passed from an event to the event handler.
The EventArgs class is discussed further later in this chapter.

c07.indd 228c07.indd 228 10/1/08 11:43:50 AM10/1/08 11:43:50 AM

Chapter 7: Delegates and Events

229

 Using the new lambda expressions in C# 3.0, the preceding event handler can also be written like this:

 public Form1()
 {
 InitializeComponent();

 this.button1.Click += (object sender, EventArgs e) = >
 {
 MessageBox.Show(“Button clicked!”);
 };

 }

 Handling Events
 Let ’ s take a look at how to handle events using a couple of simple examples. The Timer class (located in
the System.Timers namespace) is a class that generates a series of recurring events at regular intervals.
You usually use the Timer class to perform some background tasks, such as updating a ProgressBar
control when downloading some files from a server, or displaying the current time.

 The Timer class has one important event that you need to handle — Elapsed . The Elapsed event is
fired every time a set time interval has elapsed.

 The following program shows how you can use the Timer class to display the current time in the console
window:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Remoting.Messaging;
using System.Timers;
namespace Events
{
 class Program
 {
 static void Main(string[] args)
 {
 Timer t = new Timer(1000);
 t.Elapsed += new ElapsedEventHandler(t_Elapsed);
 t.Start();
 Console.ReadLine();
 }

 static void t_Elapsed(object sender, ElapsedEventArgs e)
 {
 Console.SetCursorPosition(0, 0);
 Console.WriteLine(DateTime.Now);
 }
 }
}

c07.indd 229c07.indd 229 10/1/08 11:43:51 AM10/1/08 11:43:51 AM

Part I: C# Fundamentals

230

 First, you instantiate a Timer class by passing it a value. The value is the time interval (in milliseconds)
between the Timer class ’ s firing (raising) of its Elapsed event. You next wire the Elapsed event with
the event handler t_Elapsed , which displays the current time in the console window. The Start()
method of the Timer class activates the Timer object so that it can start to fire the Elapsed event.
Because the event is fired every second, the console is essentially updating the time every second
(see Figure 7 - 8).

Figure 7-8

 Another useful class that is available in the .NET Framework class library is the FileSystemWatcher
class (located in the System.IO namespace). It watches the file system for changes and enables you to
monitor these changes by raising events. For example, you can use the FileSystemWatcher class
to monitor your hard drive for changes such as when a file/directory is deleted, is created, or has its
contents changed.

 To see how the FileSystemWatcher class works, consider the following program:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.Remoting.Messaging;
using System.IO;

namespace Events
{
 class Program
 {
 static void Main(string[] args)
 {
 FileSystemWatcher fileWatcher = new FileSystemWatcher()
 {
 Path = @”c:\”,
 Filter = “*.txt”
 };

 //---wire up the event handlers---
 fileWatcher.Deleted += new FileSystemEventHandler(fileWatcher_Deleted);
 fileWatcher.Renamed += new RenamedEventHandler(fileWatcher_Renamed);
 fileWatcher.Changed += new FileSystemEventHandler(fileWatcher_Changed);
 fileWatcher.Created += new FileSystemEventHandler(fileWatcher_Created);

 //---begin watching---
 fileWatcher.EnableRaisingEvents = true;
 Console.ReadLine();
 }

 static void fileWatcher_Created(object sender, FileSystemEventArgs e)

c07.indd 230c07.indd 230 10/1/08 11:43:51 AM10/1/08 11:43:51 AM

Chapter 7: Delegates and Events

231

 {
 Console.WriteLine(“File created: “ + e.FullPath);
 }

 static void fileWatcher_Changed(object sender, FileSystemEventArgs e)
 {
 Console.WriteLine(“File changed: “ + e.FullPath);
 }

 static void fileWatcher_Renamed(object sender, RenamedEventArgs e)
 {
 Console.WriteLine(“File renamed: “ + e.FullPath);
 }

 static void fileWatcher_Deleted(object sender, FileSystemEventArgs e)
 {
 Console.WriteLine(“File deleted: “ + e.FullPath);
 }
 }
}

 You first create an instance of the FileSystemWatcher class by initializing its Path and Filter
properties:

 FileSystemWatcher fileWatcher = new FileSystemWatcher()
 {
 Path = @”c:\”,
 Filter = “*.txt”
 };

 Here, you are monitoring the C:\ drive and all its files ending with the .txt extension.

 You then wire all the events with their respective event handlers:

 //---wire up the event handlers---
 fileWatcher.Deleted += new FileSystemEventHandler(fileWatcher_Deleted);
 fileWatcher.Renamed += new RenamedEventHandler(fileWatcher_Renamed);
 fileWatcher.Changed += new FileSystemEventHandler(fileWatcher_Changed);
 fileWatcher.Created += new FileSystemEventHandler(fileWatcher_Created);

 These statements handle four events:

 Deleted — Fires when a file is deleted

 Renamed — Fires when a file is renamed

 Changed — Fires when a file ’ s content is changed

 Created — Fires when a file is created

❑

❑

❑

❑

c07.indd 231c07.indd 231 10/1/08 11:43:51 AM10/1/08 11:43:51 AM

Part I: C# Fundamentals

232

 Finally, you define the event handlers for the four events:

 static void fileWatcher_Created(object sender, FileSystemEventArgs e)
 {
 Console.WriteLine(“File created: “ + e.FullPath);
 }

 static void fileWatcher_Changed(object sender, FileSystemEventArgs e)
 {
 Console.WriteLine(“File changed: “ + e.FullPath);
 }

 static void fileWatcher_Renamed(object sender, RenamedEventArgs e)
 {
 Console.WriteLine(“File renamed: “ + e.FullPath);
 }

 static void fileWatcher_Deleted(object sender, FileSystemEventArgs e)
 {
 Console.WriteLine(“File deleted: “ + e.FullPath);
 }

 To test the program, you can create a new text file in C:\ drive, make some changes to its content,
rename it, and then delete it. The output window will look like Figure 7 - 9 .

Figure 7-9

 Implementing Events
 So far you have been subscribing to events by writing event handlers. Now you will implement events
in your own class. For this example, you create a class called AlarmClock . AlarmClock allows you to
set a particular date and time so that you can be notified (through an event) when the time is up. For this
purpose, you use the Timer class.

 First, define the AlarmClock class as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Timers;

class AlarmClock
{

}

c07.indd 232c07.indd 232 10/1/08 11:43:52 AM10/1/08 11:43:52 AM

Chapter 7: Delegates and Events

233

 Declare a Timer variable and define the AlarmTime property to allow users of this class to set a date
and time:

class AlarmClock
{

 Timer t;
 public DateTime AlarmTime { get; set; }

}

 Next, define the Start() method so that users can start the monitoring by turning on the Timer object:

class AlarmClock
{
 //...

 public void Start()
 {
 t.Start();
 }

}

 Next, define a public event member in the AlarmClock class:

 public event EventHandler TimesUp;

 The EventHandler is a predefined delegate, and this statement defines TimesUp as an event for
your class.

 Define a protected virtual method in the AlarmClock class that will be used internally by your class to
raise the TimesUp event:

 protected virtual void onTimesUp(EventArgs e)
 {
 if (TimesUp != null)
 TimesUp(this, e);
 }

 The EventArgs class is the base class for classes that contain event data. This class does not pass any
data back to an event handler.

 The next section explains how you can create another class that derives from this EventArgs base class
to pass back information to an event handler.

 Define the constructor for the AlarmClock class so that the Timer object (t) will fire its Elapsed
event every 100 milliseconds. In addition, wire the Elapsed event with an event handler. The event

c07.indd 233c07.indd 233 10/1/08 11:43:52 AM10/1/08 11:43:52 AM

Part I: C# Fundamentals

234

handler will check the current time against the time set by the user of the class. If the time equals or
exceeds the user ’ s set time, the event handler calls the onTimesUp() method that you defined in the
previous step:

 public AlarmClock()
 {
 t = new Timer(100);
 t.Elapsed += new ElapsedEventHandler(t_Elapsed);
 }

 void t_Elapsed(object sender, ElapsedEventArgs e)
 {
 if (DateTime.Now > = this.AlarmTime)
 {
 onTimesUp(new EventArgs());
 t.Stop();
 }
 }

 That ’ s it! The entire AlarmClock class is:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Timers;

class AlarmClock
{
 Timer t;
 public DateTime AlarmTime { get; set; }

 public void Start()
 {
 t.Start();
 }

 public AlarmClock()
 {
 t = new Timer(100);
 t.Elapsed += new ElapsedEventHandler(t_Elapsed);
 }

 void t_Elapsed(object sender, ElapsedEventArgs e)
 {
 if (DateTime.Now > = this.AlarmTime)
 {
 onTimesUp(new EventArgs());

c07.indd 234c07.indd 234 10/1/08 11:43:52 AM10/1/08 11:43:52 AM

Chapter 7: Delegates and Events

235

 t.Stop();
 }
 }

 public event EventHandler TimesUp;
 protected virtual void onTimesUp(EventArgs e)
 {
 if (TimesUp != null)
 TimesUp(this, e);
 }
}

 To use the AlarmClock class, you first create an instance of the AlarmClock class and then set the time
for the alarm by using the AlarmTime property. You then wire the TimesUp event with an event handler
so that you can print a message when the set time is up:

 class Program
 {
 static void Main(string[] args)
 {
 AlarmClock c = new AlarmClock()
 {
 //---alarm to sound off at 16 May 08, 9.50am---
 AlarmTime = new DateTime(2008, 5, 16, 09, 50, 0, 0),
 };
 c.Start();
 c.TimesUp += new EventHandler(c_TimesUp);

 Console.ReadLine();
 }

 static void c_TimesUp(object sender, EventArgs e)
 {
 Console.WriteLine(“Times up!”);
 }
 }

 Difference between Events and Delegates
 Events are implemented using delegates, so what is the difference between an event and a delegate?
The difference is that for an event you cannot directly assign a delegate to it using the = operator; you
must use the �� operator.

c07.indd 235c07.indd 235 10/1/08 11:43:53 AM10/1/08 11:43:53 AM

Part I: C# Fundamentals

236

 To understand the difference, consider the following class definitions — Class1 and Class2 :

namespace DelegatesVsEvents
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }

 class Class1
 {
 public delegate void Class1Delegate();
 public Class1Delegate del;
 }

 class Class2
 {
 public delegate void Class2Delegate();
 public event Class2Delegate evt; }
}

 In this code, Class1 exposes a public delegate del , of type Class1Delegate . Class2 is similar to
 Class1 , except that it exposes an event evt , of type Class2Delegate . del and evt each expect a
delegate, with the exception that evt is prefixed with the event keyword.

 To use Class1 , you create an instance of Class1 and then assign a delegate to the del delegate using
the “ = ” operator:

 static void Main(string[] args)
 {
 //---create a delegate---
 Class1.Class1Delegate d1 =
 new Class1.Class1Delegate(DoSomething);

 Class1 c1 = new Class1();

 //---assign a delegate to del of c1---
 c1.del = new Class1.Class1Delegate(d1);
 }

 static private void DoSomething()
 {
 //...
 }

c07.indd 236c07.indd 236 10/1/08 11:43:53 AM10/1/08 11:43:53 AM

Chapter 7: Delegates and Events

237

 To use Class2 , you create an instance of Class2 and then assign a delegate to the evt event using the
 �� operator:

 static void Main(string[] args)
 {
 //...

 //---create a delegate---
 Class2.Class2Delegate e2 =
 new Class2.Class2Delegate(DoSomething);

 Class2 c2 = new Class2();

 //---assign a delegate to evt of c2---
 c2.evt += new Class2.Class2Delegate(d1);
 }

 If you try to use the = operator to assign a delegate to the evt event, you will get a compilation error:

 c2.evt = new Class2.Class2Delegate(d1); //---error---

 This important restriction of event is important because defining a delegate as an event will ensure that
if multiple clients are subscribed to an event, another client will not be able to set the delegate to null
(or simply set it to another delegate). If the client succeeds in doing so, all the other delegates set by
other client will be lost. Hence, a delegate defined as an event can only be set with the �� operator.

 Passing State Information to an Event Handler
 In the preceding program, you simply raise an event in the AlarmClock class; there is no passing of
information from the class back to the event handler. To pass information from an event back to an event
handler, you need to implement your own class that derives from the EventArgs base class.

 In this section, you modify the previous program so that when the set time is up, the event passes a
message back to the event handler. The message is set when you instantiate the AlarmClock class.

 First, define the AlarmClockEventArgs class that will allow the event to pass back a string to the event
handler. This class must derive from the EventArgs base class:

public class AlarmClockEventArgs : EventArgs
{
 public AlarmClockEventArgs(string Message)
 {
 this.Message = Message;
 }
 public string Message { get; set; }
}

c07.indd 237c07.indd 237 10/1/08 11:43:53 AM10/1/08 11:43:53 AM

Part I: C# Fundamentals

238

 Next, define a delegate called AlarmClockEventHandler with the following signature:

public delegate void AlarmClockEventHandler(object sender, AlarmClockEventArgs e);

 Replace the original TimesUp event statement with the following statement, which uses the
 AlarmClockEventHandler class:

 //---public event EventHandler TimesUp;---
 public event AlarmClockEventHandler TimesUp;

 Add a Message property to the class so that users of this class can set a message that will be returned by
the event when the time is up:

 public string Message { get; set; }

 Modify the onTimesUp virtual method by changing its parameter type to the new
 AlarmClockEventArgs class:

 protected virtual void onTimesUp(AlarmClockEventArgs e)

 {
 if (TimesUp != null)
 TimesUp(this, e);
 }

 Finally, modify the t_Elapsed event handler so that when you now call the onTimesUp() method, you
pass in an instance of the AlarmClockEventArgs class containing the message you want to pass back to
the event handler:

 void t_Elapsed(object sender, ElapsedEventArgs e)
 {
 if (DateTime.Now > = this.AlarmTime)
 {

 onTimesUp(new AlarmClockEventArgs(this.Message));

 t.Stop();
 }
 }

 Here ’ s the complete program:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Timers;

public class AlarmClockEventArgs : EventArgs
{

c07.indd 238c07.indd 238 10/1/08 11:43:53 AM10/1/08 11:43:53 AM

Chapter 7: Delegates and Events

239

 public AlarmClockEventArgs(string Message)
 {
 this.Message = Message;
 }
 public string Message { get; set; }
}

public delegate void AlarmClockEventHandler(object sender, AlarmClockEventArgs e);

class AlarmClock
{
 Timer t;

 public event AlarmClockEventHandler TimesUp;

 protected virtual void onTimesUp(AlarmClockEventArgs e)

 {
 if (TimesUp != null)
 TimesUp(this, e);
 }

 public DateTime AlarmTime { get; set; }

 public string Message { get; set; }

 public AlarmClock()
 {
 t = new Timer(100);
 t.Elapsed += new ElapsedEventHandler(t_Elapsed);
 }

 public void Start()
 {
 t.Start();
 }

 void t_Elapsed(object sender, ElapsedEventArgs e)
 {
 if (DateTime.Now > = this.AlarmTime)
 {

 onTimesUp(new AlarmClockEventArgs(this.Message));

 t.Stop();
 }
 }
}

c07.indd 239c07.indd 239 10/1/08 11:43:54 AM10/1/08 11:43:54 AM

Part I: C# Fundamentals

240

 With the modified AlarmClock class, your program will now look like this:

namespace Events
{
 class Program
 {

 static void c_TimesUp(object sender, AlarmClockEventArgs e)
 {
 Console.WriteLine(DateTime.Now.ToShortTimeString() + “: “ + e.Message);
 }

 static void Main(string[] args)
 {
 AlarmClock c = new AlarmClock()
 {
 //---alarm to sound off at 16 May 08, 9.50am---

 AlarmTime = new DateTime(2008, 5, 16, 09, 50, 0, 0),
 Message = “Meeting with customer.”

 };
 c.TimesUp += new AlarmClockEventHandler(c_TimesUp);
 c.Start();
 Console.ReadLine();
 }
 }
}

 Figure 7 - 10 shows the output when the AlarmClock fires the TimesUp event.

Figure 7-10

 Summary
 This chapter discussed what delegates are and how you can use them to invoke other functions, as well
as how you can use delegates to implement callbacks so that your application is more efficient and
responsive. One direct application of delegates is events, which make GUI operating systems such as
Windows possible. One important difference between delegates and events is that you cannot assign a
delegate to an event by using the = operator.

c07.indd 240c07.indd 240 10/1/08 11:43:54 AM10/1/08 11:43:54 AM

 Strings and Regular
Expressions

 One of the most common data types used in programming is the string. In C#, a string is a group
of one or more characters declared using the string keyword. Strings play an important part in
programming and are an integral part of our lives — our names, addresses, company names,
email addresses, web site URLs, flight numbers, and so forth are all made up of strings. To help
manipulate those strings and pattern matching, you use regular expressions , sequences of characters
that define the patterns of a string. In this chapter, then, you will:

 Explore the System.String class

 Learn how to represent special characters in string variables

 Manipulate strings with various methods

 Format strings

 Use the StringBuilder class to create and manipulate strings

 Use Regular Expressions to match string patterns

 The System.String Class
 The .NET Framework contains the System.String class for string manipulation. To create an
instance of the String class and assign it a string, you can use the following statements:

 String str1;
 str1 = “This is a string”;

 C# also provides an alias to the String class: string (lowercase “ s ”). The preceding statements
can be rewritten as:

 string str1; //---equivalent to String str1;---
 str1 = “This is a string”;

❑

❑

❑

❑

❑

❑

c08.indd 241c08.indd 241 10/1/08 11:44:20 AM10/1/08 11:44:20 AM

Part I: C# Fundamentals

242

 You can declare a string and assign it a value in one statement, like this:

 string str2 = “This is another string”;

 In .NET, a string is a reference type but behaves very much like a value type. Consider the following
example of a typical reference type:

 Button btn1 = new Button() { Text = “Button 1” };
 Button btn2 = btn1;

 btn1.Text += “ and 2”; //---btn1.text is now “Button 1 and 2”---
 Console.WriteLine(btn1.Text); //---Button 1 and 2---
 Console.WriteLine(btn2.Text); //---Button 1 and 2---

 Here, you create an instance of a Button object (btn1) and then assign it to another variable (btn2).
Both btn1 and btn2 are now pointing to the same object, and hence when you modify the Text
property of btn1 , the changes can be seen in btn2 (as is evident in the output of the WriteLine()
statements).

 Because strings are reference types, you would expect to see the same behavior as exhibited in the
preceding block of code. For example:

 string str1 = “String 1”;
 string str2 = str1;

 str1 and str2 should now be pointing to the same instance. Make some changes to str1 by appending
some text to it:

 str1 += “ and some other stuff”;

 And then print out the value of these two strings:

 Console.WriteLine(str1); //---String 1 and some other stuff---
 Console.WriteLine(str2); //---String 1---

 Are you surprised to see that the values of the two strings are different? What actually happens when
you do the string assignment (string str2 � str1) is that str1 is copied to str2 (str2 holds a copy
of str1 ; it does not points to it). Hence, changes made to str1 are not reflected in str2 .

A string cannot be a value type because of its unfixed size. All values types (int,
double, and so on) have fixed size.

 A string is essentially a collection of Unicode characters. The following statements show how you
enumerate a string as a collection of char and print out the individual characters to the console:

 string str1 = “This is a string”;
 foreach (char c in str1)
 {
 Console.WriteLine(c);
 }

c08.indd 242c08.indd 242 10/1/08 11:44:21 AM10/1/08 11:44:21 AM

Chapter 8: Strings and Regular Expressions

243

 Here ’ s this code ’ s output:

T
h
i
s

i
s

a

s
t
r
i
n
g

 Escape Characters
 Certain characters have special meaning in strings. For example, strings are always enclosed in double
quotation marks, and if you want to use the actual double - quote character in the string, you need
to tell the C# compiler by “ escaping ” the character ’ s special meaning. For instance, say you need to
represent the following in a string:

“I don’t necessarily agree with everything I say.” Marshall McLuhan

 Because the sentence contains the double - quote characters, simply using a pair of double - quotes to
contain it will cause an error:

//---error---
string quotation;
quotation = “”I don’t necessarily agree with everything I say.” Marshall McLuhan”;

 To represent the double - quote character in a string, you use the backslash (\) character to turn off its
special meanings, like this:

string quotation =
 “\”I don’t necessarily agree with everything I say.\” Marshall McLuhan”;
Console.WriteLine(quotation);

 The output is shown in Figure 8 - 1.

Figure 8-1

c08.indd 243c08.indd 243 10/1/08 11:44:22 AM10/1/08 11:44:22 AM

Part I: C# Fundamentals

244

 A backslash, then, is another special character. To represent the C:\Windows path, for example, you need
to turn off the special meaning of \ by using another \ , like this:

 string path = “C:\\Windows”;

 What if you really need two backslash characters in your string, as in the following?

 “\\servername\path”

 In that case, you use the backslash character twice, once for each of the backslash characters you want to
turn off, like this:

 string UNC = “\\\\servername\\path”;

 In addition to using the \ character to turn off the special meaning of characters like the double - quote (“)
and backslash (\), there are other escape characters that you can use in strings.

 One common escape character is the \n . Here ’ s an example:

 string lines = “Line 1\nLine 2\nLine 3\nLine 4\nLine 5”;
 Console.WriteLine (lines);

 The \n escape character creates a newline, as Figure 8 - 2 shows.

Figure 8-2

Figure 8-3

 You can also use \t to insert tabs into your string, as the following example shows (see also Figure 8 - 3):

 string columns1 = “Column 1\tColumn 2\tColumn 3\tColumn 4”;
 string columns2 = “1\t5\t25\t125”;
 Console.WriteLine(columns1);
 Console.WriteLine(columns2);

c08.indd 244c08.indd 244 10/1/08 11:44:22 AM10/1/08 11:44:22 AM

Chapter 8: Strings and Regular Expressions

245

You learn more about formatting options in the section “String Formatting” later in this chapter.

 Besides the \n and \t escape characters, C# also supports the \r escape character. \r is the carriage
return character. Consider the following example:

 string str1 = “ One”;
 string str2 = “Two”;
 Console.Write(str1);
 Console.Write(str2);

 The output is shown in Figure 8 - 4.

Figure 8-4

Figure 8-5

 However, if you prefix a \r escape character to the beginning of str2 , the effect will be different:

 string str1 = “ One”;

 string str2 = “\rTwo”;

 Console.Write(str1);
 Console.Write(str2);

 The output is shown in Figure 8 - 5.

 The \r escape character simply brings the cursor to the beginning of the line, and hence in the above
statements the word “ Two ” is printed at the beginning of the line. The \r escape character is often used
together with \n to form a new line (see Figure 8 - 6):

 string str1 = “Line 1\n\r”;
 string str2 = “Line 2\n\r”;
 Console.Write(str1);
 Console.Write(str2);

c08.indd 245c08.indd 245 10/1/08 11:44:22 AM10/1/08 11:44:22 AM

Part I: C# Fundamentals

246

 The following table summarizes the different escape sequences you have seen in this section:

 Sequence Purpose

 \n New line

 \r Carriage return

 \r\n Carriage return; New line

 \ “ Quotation marks

 \\ Backslash character

 \t Tab

 In C#, strings can also be @ - quoted. Earlier, you saw that to include special characters (such as
double - quote, backslash, and so on) in a string you need to use the backslash character to turn off its
special meaning:

 string path=”C:\\Windows”;

 You can actually use the @ character, and prefix the string with it, like this:

 string path=@”C:\Windows”;

 Using the @ character makes your string easier to read. Basically, the compiler treats strings that are
prefixed with the @ character verbatim — that is, it just accepts all the characters in the string (inside the
quotes). To better appreciate this, consider the following example where a string containing an XML
snippet is split across multiple lines (with each line ending with a carriage return):

 string XML = @”
 < Books >
 < title > C# 3.0 Programmers’ Reference < /title >
 < /Book > ”;
 Console.WriteLine(XML);

By default, when you use the \n to insert a new line, the cursor is automatically
returned to the beginning of the line. However, some legacy applications still
require you to insert newline and carriage return characters in strings.

Figure 8-6

c08.indd 246c08.indd 246 10/1/08 11:44:23 AM10/1/08 11:44:23 AM

Chapter 8: Strings and Regular Expressions

247

 Figure 8 - 7 shows the output. The WriteLine() method prints out the line verbatim.

Figure 8-7

 To illustrate the use of the @ character on a double - quoted string, the following:

string quotation =
 “\”I don’t necessarily agree with everything I say.\” Marshall McLuhan”;
Console.WriteLine(quotation);

 can be rewritten as:

string quotation =
 @”””I don’t necessarily agree with everything I say.”” Marshall McLuhan”;
Console.WriteLine(quotation);

Escape Code for Unicode
C# supports the use of escape code to represent Unicode characters. The four-digit
escape code format is: \udddd. For example, the following statement prints out the £
symbol:

 string symbol = “\u00A3”;
 Console.WriteLine(symbol);

For more information on Unicode, check out http://unicode.org/Public/
UNIDATA/NamesList.txt.

 String Manipulations
 Often, once your values are stored in string variables, you need to perform a wide variety of operations
on them, such as comparing the values of two strings, inserting and deleting strings from an existing
string, concatenating multiple strings, and so on. The String class in the .NET Framework provides a
host of methods for manipulating strings, some of the important ones of which are explained in the
following sections.

 You can find out about all of the String class methods at www.msdn.com .

c08.indd 247c08.indd 247 10/1/08 11:44:23 AM10/1/08 11:44:23 AM

Part I: C# Fundamentals

248

 Testing for Equality
 Even though string is a reference type, you will use the �� and !� operators to compare the value of
two strings (not their references).

 Consider the following three string variables:

 string str1 = “This is a string”;
 string str2 = “This is a “;
 str2 += “string”;
 string str3 = str2;

 The following statements test the equality of the values contained in each variable:

 Console.WriteLine(str1 == str2); //--True---
 Console.WriteLine(str1 == str3); //--True---
 Console.WriteLine(str2 != str3); //---False---

 As you can see from the output of these statements, the values of each three variables are identical.
However, to compare their reference equality, you need to cast each variable to object and then check
their equality using the �� operator, as the following shows:

 Console.WriteLine((object)str1 == (object)str2); //--False---
 Console.WriteLine((object)str2 == (object)str3); //--True---

 However, if after the assignment the original value of the string is changed, the two strings ’ references
will no longer be considered equal, as the following shows:

 string str3 = str2;
 Console.WriteLine((object)str2 == (object)str3); //--True---

 str2 = “This string has changed”;
 Console.WriteLine((object)str2 == (object)str3); //--False---

 Besides using the �� operator to test for value equality, you can also use the Equals() method, which
is available as an instance method as well as a static method:

 Console.WriteLine(str1 == str2); //--True---
 Console.WriteLine(str1.Equals(str2)); //--True---
 Console.WriteLine(string.Equals(str1,str2)); //--True---

 Comparing Strings
 String comparison is a common operation often performed on strings. Consider the following two string
variables:

 string str1 = “Microsoft”;
 string str2 = “microsoft”;

c08.indd 248c08.indd 248 10/1/08 11:44:24 AM10/1/08 11:44:24 AM

Chapter 8: Strings and Regular Expressions

249

 You can use the String.Compare() static method to compare two strings:

Console.WriteLine(string.Compare(str1, str2)); // 1;str1 is greater than str2
Console.WriteLine(string.Compare(str2, str1)); // -1;str2 is less than str1
Console.WriteLine(string.Compare(str1, str2, true)); // 0;str1 equals str2

 The lowercase character “ m ” comes before the capital “ M, ” and hence str1 is considered greater than
 str2 . The third statement compares the two strings without considering the casing (that is, case -
 insensitive; it ’ s the third argument that indicates that the comparison should ignore the casing of the
strings involved).

 The String.Compare() static method is overloaded, and besides the two overloaded methods (first
two statements and the third statement) just shown, there are additional overloaded methods as
described in the following table.

 Method Description

 Compare(String, String) Compares two specified String objects.

 Compare(String, String, Boolean) Compares two specified String objects, ignoring or
respecting their case.

 Compare(String, String,
StringComparison)

 Compares two specified String objects. Also
specifies whether the comparison uses the current
or invariant culture, honors or respects case, and
uses word or ordinal sort rules.

 Compare(String, String, Boolean,
CultureInfo)

 Compares two specified String objects, ignoring or
respecting their case, and using culture - specific
information for the comparison.

 Compare(String, Int32, String,
Int32, Int32)

 Compares substrings of two specified String
objects.

 Compare(String, Int32, String,
Int32, Int32, Boolean)

 Compares substrings of two specified String
objects, ignoring or respecting their case.

 Compare(String, Int32, String,
Int32, Int32, StringComparison)

 Compares substrings of two specified String
objects.

 Compare(String, Int32, String,
Int32, Int32, Boolean,
CultureInfo)

 Compares substrings of two specified String
objects, ignoring or respecting their case, and using
culture - specific information for the comparison.

 Alternatively, you can use the CompareTo() instance method, like this:

 Console.WriteLine(str1.CompareTo(str2)); // 1; str1 is greater than str2
 Console.WriteLine(str2.CompareTo(str1)); // -1; str2 is less than str1

 Note that comparisons made by the CompareTo() instance method are always case sensitive.

c08.indd 249c08.indd 249 10/1/08 11:44:24 AM10/1/08 11:44:24 AM

Part I: C# Fundamentals

250

 Creating and Concatenating Strings
 The String class in the .NET Framework provides a number of methods that enable you to create or
concatenate strings.

 The most direct way of concatenating two strings is to use the “ � ” operator, like this:

 string str1 = “Hello “;
 string str2 = “world!”;
 string str3 = str1 + str2;
 Console.WriteLine(str3); //---Hello world!---

 The String.Format() static method takes the input of multiple objects and creates a new string.
Consider the following example:

 string Name = “Wei-Meng Lee”;
 int age = 18;
 string str1 = string.Format(“My name is {0} and I am {1} years old”,
 Name, age);

 //---str1 is now “My name is Wei-Meng Lee and I am 18 years old”---
 Console.WriteLine(str1);

 Notice that you supplied two variables of string and int type and the Format() method automatically
combines them to return a new string.

 The preceding example can be rewritten using the String.Concat() static method, like this:

 string str1 = string.Concat(“My name is “, Name, “ and I am “, age ,
 “ years old”);
 //---str1 is now “My name is Wei-Meng Lee and I am 18 years old”---
 Console.WriteLine(str1);

Strings Are Immutable
 In .NET, all string objects are immutable . This means that once a string variable is
initialized, its value cannot be changed. And when you modify the value of a string, a
new copy of the string is created and the old copy is discarded. Hence, all methods that
process strings return a copy of the modified string — the original string remains
intact.

 For example, the Insert() instance method inserts a string into the current string and
returns the modified string:

 str1 = str1.Insert(10, “modified “);

 In this statement, you have to assign the returned result to the original string to ensure
that the new string is modified.

c08.indd 250c08.indd 250 10/1/08 11:44:24 AM10/1/08 11:44:24 AM

Chapter 8: Strings and Regular Expressions

251

 The String.Join() static method is useful when you need to join a series of strings stored in a string
array. The following example shows the strings in a string array joined using the Join() method:

 string[] pts = { “1,2”, “3,4”, “5,6” };
 string str1 = string.Join(“|”, pts);
 Console.WriteLine(str1); //---1,2|3,4|5,6---

 To insert a string into an existing string, use the instance method Insert() , as demonstrated in the
following example:

 string str1 = “This is a string”;
 str1 = str1.Insert(10, “modified “);
 Console.WriteLine(str1); //---This is a modified string---

 The Copy() instance method enables you to copy part of a string into a char array. Consider the
following example:

 string str1 = “This is a string”;
 char[] ch = { ‘*’, ‘*’, ‘*’, ‘*’, ‘*’, ‘*’,’*’, ‘*’ };
 str1.CopyTo(0, ch, 2, 4);
 Console.WriteLine(ch); //---**This**---

 The first parameter of the CopyTo() method specifies the index of the string to start copying from. The
second parameter specifies the char array. The third parameter specifies the index of the array to copy
into, while the last parameter specifies the number of characters to copy.

 If you need to pad a string with characters to achieve a certain length, use the PadLeft() and
 PadRight() instance methods, as the following statements show:

 string str1 = “This is a string”;
 string str2;

 str2 = str1.PadLeft(20, ‘*’);
 Console.WriteLine(str2); //---”****This is a string”---

 str2 = str1.PadRight(20, ‘*’);
 Console.WriteLine(str2); //---”This is a string****”---

 Trimming Strings
 To trim whitespace from the beginning of a string, the end of a string, or both, you can use the
 TrimStart() , TrimEnd() , or Trim() instance methods, respectively. The following statements
demonstrate the use of these methods:

 string str1 = “ Computer “;
 string str2;
 Console.WriteLine(str1); //---” Computer “---
 str2 = str1.Trim();
 Console.WriteLine(str2); //---”Computer”---

 str2 = str1.TrimStart();
 Console.WriteLine(str2); //---”Computer “---

 str2 = str1.TrimEnd();
 Console.WriteLine(str2); //---” Computer”---

c08.indd 251c08.indd 251 10/1/08 11:44:25 AM10/1/08 11:44:25 AM

Part I: C# Fundamentals

252

 Splitting Strings
 One common operation with string manipulation is splitting a string into smaller strings. Consider the
following example where a string contains a serialized series of points:

 string str1 = “1,2|3,4|5,6|7,8|9,10”;

 Each point (“ 1, 2 ” , “ 3, 4 ” , and so on) is separated with the | character. You can use the Split() instance
method to split the given string into an array of strings:

 string[] strArray = str1.Split(‘|’);

 Once the string is split, the result is stored in the string array strArray and you can print out each of the
smaller strings using a foreach statement:

 foreach (string s in strArray)
 Console.WriteLine(s);

 The output of the example statement would be:

1,2
3,4
5,6
7,8
9,10

 You can further split the points into individual coordinates and then create a new Point object, like this:

 string str1 = “1,2|3,4|5,6|7,8|9,10”;
 string[] strArray = str1.Split(‘|’);

 foreach (string s in strArray)
 {

 string[] xy= s.Split(‘,’);
 Point p = new Point(Convert.ToInt16(xy[0]), Convert.ToInt16(xy[1]));
 Console.WriteL ine(p.ToString());

 }

 The output of the above statements would be:

{X=1,Y=2}
{X=3,Y=4}
{X=5,Y=6}
{X=7,Y=8}
{X=9,Y=10}

 Searching and Replacing Strings
 Occasionally, you need to search for a specific occurrence of a string within a string. For this purpose,
you have several methods that you can use.

c08.indd 252c08.indd 252 10/1/08 11:44:25 AM10/1/08 11:44:25 AM

Chapter 8: Strings and Regular Expressions

253

 To look for the occurrence of a word and get its position, use the IndexOf() and LastIndexOf()
instance methods. IndexOf() returns the position of the first occurrence of a specific word from a string,
while LastIndexOf() returns the last occurrence of the word. Here ’ s an example:

 string str1 = “This is a long long long string...”;
 Console.WriteLine(str1.IndexOf(“long”)); //---10---
 Console.WriteLine(str1.LastIndexOf(“long”)); //---20---

 To find all the occurrences of a word, you can write a simple loop using the IndexOf() method,
like this:

 int position = -1;
 string str1 = “This is a long long long string...”;
 do
 {
 position = str1.IndexOf(“long”, ++position);
 if (position > 0)
 Console.WriteLine(position);
 } while (position > 0);

 This prints out the following:

10
15
20

 To search for the occurrence of particular character, use the IndexOfAny() instance method.
The following statements search the str1 string for the any of the characters a, b, c, d, or e, specified
in the char array:

 char[] anyof = “abcde”.ToCharArray();
 Console.WriteLine(str1.IndexOfAny(anyof)); //---8---

 To obtain a substring from within a string, use the Substring() instance method, as the following
example shows:

 string str1 = “This is a long string...”;
 string str2;
 Console.WriteLine(str1.Substring(10)); //---long string...---
 Console.WriteLine(str1.Substring(10, 4)); //---long---

 To find out if a string begins with a specific string, use the StartsWith() instance method. Likewise, to
find out if a string ends with a specific string, use the EndsWith() instance method. The following
statements illustrate this:

 Console.WriteLine(str1.StartsWith(“This”)); //---True---
 Console.WriteLine(str1.EndsWith(“...”)); //---True---

c08.indd 253c08.indd 253 10/1/08 11:44:25 AM10/1/08 11:44:25 AM

Part I: C# Fundamentals

254

 To remove a substring from a string beginning from a particular index, use the Remove() instance
method:

 str2 = str1.Remove(10);
 Console.WriteLine(str2); //---”This is a”---

 This statement removes the string starting from index position 10. To remove a particular number of
characters, you need to specify the number of characters to remove in the second parameter:

 str2 = str1.Remove(10,5); //---remove 5 characters from index 10---
 Console.WriteLine(str2); //---”This is a string...”---

 To replace a substring with another, use the Replace() instance method:

 str2 = str1.Replace(“long”, “short”);
 Console.WriteLine(str2); //---”This is a short string...”---

 To remove a substring from a string without specifying its exact length, use the Replace() method,
like this:

 str2 = str1.Replace(“long “, string.Empty);
 Console.WriteLine(str2); //---”This is a string...”---

 Changing Case
 To change the casing of a string, use the ToUpper() or ToLower() instance methods. The following
statements demonstrate their use:

 string str1 = “This is a string”;
 string str2;

 str2 = str1.ToUpper();
 Console.WriteLine(str2); //---”THIS IS A STRING”---

 str2 = str1.ToLower();
 Console.WriteLine(str2); //---”this is a string”---

 String Formatting
 You ’ ve seen the use of the Console.WriteLine() method to print the output to the console.
For example, the following statement prints the value of num1 to the console:

 int num1 = 5;
 Console.WriteLine(num1); //---5---

 You can also print the values of multiple variables like this:

 int num1 = 5;

 int num2 = 12345;
 Console.WriteLine(num1 + “ and “ + num2); //---5 and 12345---

c08.indd 254c08.indd 254 10/1/08 11:44:26 AM10/1/08 11:44:26 AM

Chapter 8: Strings and Regular Expressions

255

 If you have too many variables to print (say more than five), though, the code can get messy very
quickly. A better way would be to use a format specifier , like this:

 Console.WriteLine(“{0} and {1}”, num1, num2); //---5 and 12345---

 A format specifier ({0} , {1} , and so forth) automatically converts all data types to string. Format
specifiers are labeled sequentially ({0} , {1} , {2} , and so on). Each format specifier is then replaced with
the value of the variable to be printed. The compiler looks at the number in the format specifier, takes the
argument with the same index in the argument list, and makes the substitution. In the preceding
example, num1 and num2 are the arguments for the format specifiers.

 What happens if you want to print out the value of a number enclosed with the {} characters? For
example, say that you want to print the string {5} when the value of num1 is 5. You can do something
like this:

 num1 = 5;
 Console.WriteLine(“{{{0}}}”, num1); //---{5}---

 Why are there two additional sets of {} characters for the format specifier? Well, if you only have one
additional set of {} characters, the compiler interprets this to mean that you want to print the string
literal {0} , as the following shows:

 num1 = 5;
 Console.WriteLine(“{{0}}”, num1); //---{0}---

 The two additional sets of {} characters indicate to the compiler that you want to specify a format
specifier and at the same time surround the value with a pair of {} characters.

 And as demonstrated earlier, the String class contains the Format() static method, which enables you
to create a new string (as well as perform formatting on string data). The preceding statement could be
rewritten using the following statements:

 string formattedString = string.Format(“{{{0}}}”, num1);
 Console.WriteLine(formattedString); //---{5}---

 To format numbers, you can use the format specifiers as shown here:

 num1=5;
 Console.WriteLine(“{0:N}”, num1); //---5.00---

 Console.WriteLine(“{0:00000}”, num1); //---00005---
 //---OR---
 Console.WriteLine(“{0:d5}”, num1); //---00005---

 Console.WriteLine(“{0:d4}”, num1); //---0005---

 Console.WriteLine(“{0,5:G}”, num1); //--- 5 (4 spaces on left)---

 For a detailed list of format specifiers you can use for formatting strings, please refer to the MSDN
documentation under the topics “ Standard Numeric Format Strings ” and “ Custom Numeric Format
Strings. ”

c08.indd 255c08.indd 255 10/1/08 11:44:26 AM10/1/08 11:44:26 AM

Part I: C# Fundamentals

256

 You can also print out specific strings based on the value of a number. Consider the following example:

 num1 = 0;
 Console.WriteLine(“{0:yes;;no}”, num1); //---no---
 num1 = 1;
 Console.WriteLine(“{0:yes;;no}”, num1); //---yes---
 num1 = 5;
 Console.WriteLine(“{0:yes;;no}”, num1); //---yes---

 In this case, the format specifier contains two strings: yes and no. If the value of the variable (num) is
nonzero, the first string will be returned (yes). If the value is 0, then it returns the second string (no).
Here is another example:

 num1 = 0;
 Console.WriteLine(“{0:OK;;Cancel}”, num1); //---Cancel---
 num1 = 1;
 Console.WriteLine(“{0:OK;;Cancel}”, num1); //---OK---
 num1 = 5;
 Console.WriteLine(“{0:OK;;Cancel}”, num1); //---OK---

 For decimal number formatting, use the following format specifiers:

 double val1 = 3.5;
 Console.WriteLine(“{0:##.00}”, val1); //---3.50---
 Console.WriteLine(“{0:##.000}”, val1); //---3.500---
 Console.WriteLine(“{0:0##.000}”, val1); //---003.500---

 There are times when numbers are represented in strings. For example, the value 9876 may be
represented in a string with a comma denoting the thousandth position. In this case, you cannot simply
use the Parse() method from the int class, like this:

 string str2 = “9,876”;
 int num3 = int.Parse(str2); //---error---

 To correctly parse the string, use the following statement:

 int num3 = int.Parse(
 str2,

 System.Globalization.NumberStyles.AllowThousands);

 Console.WriteLine(num3); //---9876---

 Here is another example:

 string str3 = “1,239,876”;
 num3 = int.Parse(
 str3,
 System.Globalization.NumberStyles.AllowThousands);
 Console.WriteLine(num3); //---1239876---

c08.indd 256c08.indd 256 10/1/08 11:44:26 AM10/1/08 11:44:26 AM

Chapter 8: Strings and Regular Expressions

257

 What about the reverse — formatting a number with the comma separator? Here is the solution:

 num3 = 9876;
 Console.WriteLine(“{0:#,0}”, num3); //---9,876---

 num3 = 1239876;
 Console.WriteLine(“{0:#,0}”, num3); //---1,239,876---

 Last, to format a special number (such as a phone number), use the following format specifier:

 long phoneNumber = 1234567890;
 Console.WriteLine(“{0:###-###-####}”, phoneNumber); //---123-456-7890---

 The StringBuilder Class
 Earlier in this chapter you saw how to easily concatenate two strings by using the + operator. That ’ s fine
if you are concatenating a small number of strings, but it is not recommended for large numbers of
strings. The reason is that String objects in .NET are immutable , which means that once a string variable
is initialized, its value cannot be changed. When you concatenate another string to an existing one, you
actually discard its old value and create a new string object containing the result of the concatenation.
When you repeat this process several times, you incur a performance penalty as new temporary objects
are created and old objects discarded.

 Consider the following example, where you concatenate all the numbers from 0 to 9999:

 int counter = 9999;
 string s = string.Empty;
 for (int i = 0; i < = counter; i++) {
 s += i.ToString();
 }
 Console.WriteLine(s);

 One important application of the StringBuilder class is its use in .NET interop
with native C/C++ APIs that take string arguments and modify strings. One example
of this is the Windows API function GetWindowText() . This function has a second
argument that takes a TCHAR* parameter. To use this function from .NET code, you
would need to pass a StringBuilder object as this argument.

c08.indd 257c08.indd 257 10/1/08 11:44:26 AM10/1/08 11:44:26 AM

Part I: C# Fundamentals

258

 At first glance, the code looks innocent enough. But let ’ s use the Stopwatch object to time the operation.
Modify the code as shown here:

 int counter = 9999;
 System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
 sw.Start();

 string s = string.Empty;
 for (int i = 0; i < = counter; i++) {
 s += i.ToString();
 }

 sw.Stop();
 Console.WriteLine(“Took {0} ms”, sw.ElapsedMilliseconds);

 Console.WriteLine(s);

 On average, it took about 374 ms on my computer to run this operation. Let ’ s now use the
 StringBuilder class in .NET to perform the string concatenation, using its Append() method:

 System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
 sw.Start();

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < = 9999; i++) {
 sb.Append (i.ToString());
 }

 sw.Stop();

 Console.WriteLine(“Took {0} ms”, sw.ElapsedMilliseconds);

 Console.WriteLine(sb.ToString());

 On average, it took about 6 ms on my computer to perform this operation. As you can deduce, the
improvement is drastic — 98% ((374 – 6)/374). If you increase the value of the loop variant (counter), you
will find that the improvement is even more dramatic.

 The StringBuilder class represents a mutable string of characters. Its behavior is like the String
object except that its value can be modified once it has been created.

 The StringBuilder class contains some other important methods, which are described in the
following table.

c08.indd 258c08.indd 258 10/1/08 11:44:27 AM10/1/08 11:44:27 AM

Chapter 8: Strings and Regular Expressions

259

 Method Description

 Append Appends the string representation of a specified object to the end of this
instance.

 AppendFormat Appends a formatted string, which contains zero or more format specifiers,
to this instance. Each format specification is replaced by the string
representation of a corresponding object argument.

 AppendLine Appends the default line terminator, or a copy of a specified string and the
default line terminator, to the end of this instance.

 CopyTo Copies the characters from a specified segment of this instance to a specified
segment of a destination Char array.

 Insert Inserts the string representation of a specified object into this instance at a
specified character position.

 Remove Removes the specified range of characters from this instance.

 Replace Replaces all occurrences of a specified character or string in this instance
with another specified character or string.

 ToString Converts the value of a StringBuilder to a String .

 Regular Expressions
 When dealing with strings, you often need to perform checks on them to see if they match certain
patterns. For example, if your application requires the user to enter an email address so that you can
send them a confirmation email later on, it is important to at least verify that the user has entered a
correctly formatted email address. To perform the checking, you can use the techniques that you have
learnt earlier in this chapter by manually looking for specific patterns in the email address. However,
this is a tedious and mundane task.

 A better approach would be to use regular expressions — a language for describing and manipulating
text. Using regular expressions, you can define the patterns of a text and match it against a string. In the
.NET Framework, the System.Text.RegularExpressions namespace contains the RegEx class for
manipulating regular expressions.

 Searching for a Match
 To use the RegEx class, first you need to import the System.Text.RegularExpressions namespace:

using System.Text.RegularExpressions;

c08.indd 259c08.indd 259 10/1/08 11:44:27 AM10/1/08 11:44:27 AM

Part I: C# Fundamentals

260

 The following statements shows how you can create an instance of the RegEx class, specify the pattern to
search for, and match it against a string:

 string s = “This is a string”;
 Regex r = new Regex(“string”);
 if (r.IsMatch(s))
 {
 Console.WriteLine(“Matches.”);
 }

 In this example, the Regex class takes in a string constructor, which is the pattern you are searching
for. In this case, you are searching for the word “ string ” and it is matched against the s string variable.
The IsMatch() method returns True if there is a match (that is, the string s contains the word “ string ”).

 To find the exact position of the text “ string ” in the variable, you can use the Match() method of the
 RegEx class. It returns a Match object that you can use to get the position of the text that matches
the search pattern using the Index property:

 string s = “This is a string”;
 Regex r = new Regex(“string”);
 if (r.IsMatch(s))
 {
 Console.WriteLine(“Matches.”);
 }

 Match m = r.Match(s);
 if (m.Success)
 {
 Console.WriteLine(“Match found at “ + m.Index);
 //---Match found at 10---
 }

 What if you have multiple matches in a string? In this case, you can use the Matches() method of the
 RegEx class. This method returns a MatchCollection object, and you can iteratively loop through it to
obtain the index positions of each individual match:

 string s = “This is a string and a long string indeed”;

 Regex r = new Regex(“string”);

 MatchCollection mc = r.Matches(s);
 foreach (Match m1 in mc)
 {
 Console.WriteLine(“Match found at “ + m1.Index);
 //---Match found at 10---
 //---Match found at 28---
 }

c08.indd 260c08.indd 260 10/1/08 11:44:27 AM10/1/08 11:44:27 AM

Chapter 8: Strings and Regular Expressions

261

 More Complex Pattern Matching
 You can specify more complex searches using regular expressions operators . For example, to know if a
string contains either the word “ Mr ” or “ Mrs ” , you can use the operator | , like this:

 string gender = “Mr Wei-Meng Lee”;
 Regex r = new Regex(“Mr|Mrs”);
 if (r.IsMatch(gender))
 {
 Console.WriteLine(“Matches.”);
 }

 The following table describes regular expression operators commonly used in search patterns.

 Operator Description

 . Match any one character

 [] Match any one character listed between the brackets

 [^] Match any one character not listed between the brackets

 ? Match any character one time, if it exists

 * Match declared element multiple times, if it exists

 + Match declared element one or more times

 {n} Match declared element exactly n times

 {n,} Match declared element at least n times

 {n,N} Match declared element at least n times, but not more than N times

 ̂ Match at the beginning of a line

 $ Match at the end of a line

 \ < Match at the beginning of a word

 \ > Match at the end of a word

 \b Match at the beginning or end of a word

 \B Match in the middle of a word

 \d Shorthand for digits (0 – 9)

 \w Shorthand for word characters (letters and digits)

 \s Shorthand for whitespace

c08.indd 261c08.indd 261 10/1/08 11:44:28 AM10/1/08 11:44:28 AM

Part I: C# Fundamentals

262

 Another common search pattern is verifying a string containing a date. For example, if a string
contains a date in the format " yyyy/mm/dd ” , you would specify the search pattern as follows:
 " (19|20)\d\d[- /.](0[1 - 9]|1[012])[- /.](0[1 - 9]|[12][0 - 9]|3[01]) ” . This pattern will
match dates ranging from 1900 - 01 - 01 to 2099 - 12 - 31.

 string date = “2007/03/10”;
 Regex r = new Regex(@”(19|20)\d\d[- /.](0[1-9]|1[012])[- /.]
(0[1-9]|[12][0-9]|3[01])”);
 if (r.IsMatch(date))
 {
 Console.WriteLine(“Matches.”);
 }

 You can use the following date separators with the pattern specified above:

string date = “2007/03/10”;
string date = “2007-03-10”;
string date = “2007 03 10”;
string date = “2007.03.10”;

 Some commonly used search patterns are described in the following table.

 Pattern Description

 [0 - 9] Digits

 [A - Fa - f0 - 9] Hexadecimal digits

 [A - Za - z0 - 9] Alphanumeric characters

 [A - Za - z] Alphabetic characters

 [a - z] Lowercase letters

 [A - Z] Uppercase letters

 [\t] Space and tab

 [\x00 - \x1F\x7F] Control characters

 [\x21 - \x7E] Visible characters

 [\x20 - \x7E] Visible characters and spaces

 [! “ #$% & ’()*+, - ./:; < = > ?@[\\\]_`{|}~] Punctuation characters

 [\t\r\n\v\f] Whitespace characters

 \w+([- +.’]\w+)*@\w+([- .]\w+)*\.\w+([- .]\w+)* Email address

 http(s)?://([\w -]+\.)+[\w -]+(/[\w - ./?% & =]*)? Internet URL

 ((\(\d{3}\) ?)|(\d{3} -))?\d{3} - \d{4} U.S. phone number

 \d{3} - \d{2} - \d{4} U.S. Social Security number

 \d{5}(- \d{4})? U.S. ZIP code

c08.indd 262c08.indd 262 10/1/08 11:44:28 AM10/1/08 11:44:28 AM

Chapter 8: Strings and Regular Expressions

263

 To verify that an email address is correctly formatted, you can use the following statements with the
specified regular expression:

 string email = “weimenglee@learn2develop.net”;

 Regex r = new Regex(@”^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$”);

 if (r.IsMatch(email))
 Console.WriteLine(“Email address is correct.”);
 else
 Console.WriteLine(“Email address is incorrect.”);

 There are many different regular expressions that you can use to validate an email address.
However,there is no perfect regular expression to validate all email addresses. For more information
on validating email addresses using regular expressions, check out the following web sites:
http://regular - expressions.info/email.html and http://
fightingforalostcause.net/misc/2006/compare - email - regex.php .

 Summary
 String manipulations are common operations, so it ’ s important that you have a good understanding of
how they work and the various methods and classes that deal with them. This chapter provided a lot
of information about how strings are represented in C# and about using regular expressions to perform
matching on strings.

c08.indd 263c08.indd 263 10/1/08 11:44:29 AM10/1/08 11:44:29 AM

c08.indd 264c08.indd 264 10/1/08 11:44:29 AM10/1/08 11:44:29 AM

 Generics
 One of the new features in the .NET Framework (beginning with version 2.0) is the support of
generics in Microsoft Intermediate Language (MSIL). Generics use type parameters, which allow
you to design classes and methods that defer the specification of one or more types until the class
or method is declared and instantiated by client code. Generics enable developers to define type -
 safe data structures, without binding to specific fixed data types at design time.

 Generics are a feature of the IL and not specific to C# alone, so languages such as C# and VB.NET
can take advantage of them.

 This chapter discusses the basics of generics and how you can use them to enhance efficiency and
type safety in your applications. Specifically, you will learn:

 Advantages of using generics

 How to specify constraints in a generic type

 Generic interfaces, structs, methods, operators, and delegates

 The various classes in the .NET Framework class library that support generics

 Understanding Generics
 Let ’ s look at an example to see how generics work. Suppose that you need to implement your own
custom stack class. A stack is a last - in, first - out (LIFO) data structure that enables you to push
items into and pop items out of the stack. One possible implementation is:

public class MyStack
{
 private int[] _elements;
 private int _pointer;

 public MyStack(int size)
 {
 _elements = new int[size];

❑

❑

❑

❑

(continued)

c09.indd 265c09.indd 265 10/1/08 11:44:54 AM10/1/08 11:44:54 AM

266

Part I: C# Fundamentals

 _pointer = 0;
 }

 public void Push(int item)
 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public int Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {
 throw new Exception(“Stack is empty.”);
 }
 return _elements[_pointer];
 }
}

 In this case, the MyStack class allows data of int type to be pushed into and popped out of the stack.
The following statements show how to use the MyStack class:

 MyStack stack = new MyStack(3);
 stack.Push(1);
 stack.Push(2);
 stack.Push(3);

 Console.WriteLine(stack.Pop()); //---3---
 Console.WriteLine(stack.Pop()); //---2---
 Console.WriteLine(stack.Pop()); //---1---

 As you can see, this stack implementation accepts stack items of the int data type. To use this
implementation for another data type, say String , you need to create another class that uses the string
type. Obviously, this is not a very efficient way of writing your class definitions because you now have
several versions of essentially the same class to maintain.

 A common way of solving this problem is to use the Object data type so that the compiler will use
late - binding during runtime:

public class MyStack
{

 private object[] _elements;

 private int _pointer;

 public MyStack(int size)

(continued)

c09.indd 266c09.indd 266 10/1/08 11:44:55 AM10/1/08 11:44:55 AM

267

Chapter 9: Generics

 {

 _elements = new object[size];

 _pointer = 0;
 }

 public void Push(object item)

 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public object Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {
 throw new Exception(“Stack is empty.”);
 }
 return _elements[_pointer];
 }
}

 One problem with this approach is that when you use the stack class, you may inadvertently pop out the
wrong data type, as shown in the following highlighted code:

 MyStack stack = new MyStack(3);
 stack.Push(1);
 stack.Push(2);

 stack.Push(“A”);

 //---invalid cast---

 int num = (int) stack.Pop();

 Because the Pop() method returns a variable of Object type, IntelliSense cannot detect during design
time if this code is correct. It is only during runtime that when you try to pop out a string type and try
to typecast it into an int type that an error occurs. Besides, type casting (boxing and unboxing) during
runtime incurs a performance penalty.

 To resolve this inflexibility, you can make use of generics.

c09.indd 267c09.indd 267 10/1/08 11:44:55 AM10/1/08 11:44:55 AM

268

Part I: C# Fundamentals

 Generic Classes
 Using generics, you do not need to fix the data type of the items used by your stack class. Instead, you
use a generic type parameter (< T >) that identifies the data type parameter on a class, structure, interface,
delegate, or procedure. Here ’ s a rewrite of the MyStack class that shows the use of generics:

public class MyStack < T >

{

 private T[] _elements;

 private int _pointer;

 public MyStack(int size)
 {

 _elements = new T[size];

 _pointer = 0;
 }

 public void Push(T item)

 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public T Pop()

 {
 _pointer--;
 if (_pointer < 0)
 {
 throw new Exception(“Stack is empty.”);
 }
 return _elements[_pointer];
 }
}

 As highlighted, you use the type T as a placeholder for the eventual data type that you want to use for
the class. In other words, during the design stage of this class, you do not specify the actual data type
that the MyStack class will deal with. The MyStack class is now known as a generic type .

 When declaring the private member array _element , you use the generic parameter T instead of a
specific type such as int or string :

 private T[] _elements;

 In short, you replace all specific data types with the generic parameter T .

 You can use any variable name you want to represent the generic parameter. T is chosen as the generic
parameter for illustration purposes.

c09.indd 268c09.indd 268 10/1/08 11:44:56 AM10/1/08 11:44:56 AM

269

Chapter 9: Generics

 If you want the MyStack class to manipulate items of type int , specify that during the instantiation
stage (int is called the type argument):

 MyStack < int > stack = new MyStack < int > (3);

 The stack object is now known as a constructed type, and you can use the MyStack class normally:

 stack.Push(1);
 stack.Push(2);
 stack.Push(3);

 A constructed type is a generic type with at least one type argument.

 In Figure 9 - 1 IntelliSense shows that the Push() method now accepts arguments of type int .

Figure 9-2

Figure 9-1

 Trying to push a string value into the stack like this:

 stack.Push(“A”); //---Error---

 generates a compile - time error. That ’ s because the compiler checks the data type used by the MyStack
class during compile time. This is one of the key advantages of using generics in C#.

 To use the MyStack class for String data types, you simply do this:

 MyStack < string > stack = new MyStack < string > (3);
 stack.Push(“A”);
 stack.Push(“B”);
 stack.Push(“C”);

 Figure 9 - 2 summarizes the terms used in a generic type.

c09.indd 269c09.indd 269 10/1/08 11:44:56 AM10/1/08 11:44:56 AM

270

Part I: C# Fundamentals

 Using the default Keyword in Generics
 In the preceding implementation of the generic MyStack class, the Pop() method throws an exception
whenever you call it when the stack is empty:

 public T Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {

 throw new Exception(“Stack is empty.”);

 }
 return _elements[_pointer];
 }

 Rather than throwing an exception, you might want to return the default value of the type used in the class.
If the stack is dealing with int values, it should return 0; if the stack is dealing with string , it should
return an empty string. In this case, you can use the default keyword to return the default value of a type:

 public T Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {

 return default(T);

 }
 return _elements[_pointer];
 }

 For instance, if the stack deals with int values, calling the Pop() method on an empty stack will return 0 :

 MyStack < int > stack = new MyStack < int > (3);
 stack.Push(1);
 stack.Push(2);
 stack.Push(3);

 Console.WriteLine(stack.Pop()); //---3---
 Console.WriteLine(stack.Pop()); //---2---
 Console.WriteLine(stack.Pop()); //---1---

 Console.WriteLine(stack.Pop()); //---0---

 Likewise, if the stack deals with the string type, calling Pop() on an empty stack will return an empty
string:

 MyStack < string > stack = new MyStack < string > (3);
 stack.Push(“A”);
 stack.Push(“B”);
 stack.Push(“C”);

 Console.WriteLine(stack.Pop()); //---”C”---
 Console.WriteLine(stack.Pop()); //---”B”---
 Console.WriteLine(stack.Pop()); //---”A”---

 Console.WriteLine(stack.Pop()); //---””---

c09.indd 270c09.indd 270 10/1/08 11:44:57 AM10/1/08 11:44:57 AM

271

Chapter 9: Generics

 The default keyword returns null for reference types (that is, if T is a reference type) and 0 for
numeric types. If the type is a struct , it will return each member of the struct initialized to 0
(for numeric types) or null (for reference types).

 Advantages of Generics
 It ’ s not difficult to see the advantages of using generics:

 Type safety — Generic types enforce type compliance at compile time, not at runtime (as in the
case of using Object). This reduces the chances of data - type conflict during runtime.

 Performance — The data types to be used in a generic class are determined at compile time, so
there ’ s no need to perform type casting during runtime, which is a computationally costly
process.

 Code reuse — Because you need to write the class only once and then customize it for use with
the various data types, there is a substantial amount of code reuse.

 Using Constraints in a Generic Type
 Using the MyStack class, suppose that you want to add a method called Find() that allows users to
check if the stack contains a specific item. You implement the Find() method like this:

public class MyStack < T >
{
 private T[] _elements;
 private int _pointer;

 public MyStack(int size)
 {
 _elements = new T[size];
 _pointer = 0;
 }

 public void Push(T item)
 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public T Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {
 return default(T);
 //throw new Exception(“Stack is empty.”);
 }

❑

❑

❑

(continued)

c09.indd 271c09.indd 271 10/1/08 11:44:57 AM10/1/08 11:44:57 AM

272

Part I: C# Fundamentals

 return _elements[_pointer];
 }

 public bool Find(T keyword)
 {
 bool found = false;
 for (int i=0; i < _pointer; i++)
 {
 if (_elements[i] == keyword)
 {
 found = true;
 break;
 }
 }
 return found;
 }

}

 But the code will not compile. This is because of the statement:

 if (_elements[i] == keyword)

 That ’ s because the compiler has no way of knowing if the actual type of item and keyword (type T)
support this operator (see Figure 9 - 3). For example, you cannot by default compare two struct objects.

Figure 9-3

 A better way to resolve this problem is to apply constraint to the generic class so that only certain data
types can be used. In this case, because you want to perform comparison in the Find() method, the
data type used by the generic class must implement the IComparable < T > interface. This is enforced by
using the where keyword:

public class MyStack < T > where T : IComparable < T >

{
 private T[] _elements;
 private int _pointer;

 public MyStack(int size)
 {
 _elements = new T[size];
 _pointer = 0;
 }

 public void Push(T item)

(continued)

c09.indd 272c09.indd 272 10/1/08 11:44:57 AM10/1/08 11:44:57 AM

273

Chapter 9: Generics

 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public T Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {
 return default(T);
 }
 return _elements[_pointer];
 }

 public bool Find(T keyword)
 {
 bool found = false;
 for (int i=0; i < _pointer; i++)
 {

 if (_elements[i].CompareTo(keyword) == 0)

 {
 found = true;
 break;
 }
 }
 return found;
 }
}

 For the comparison, you use the CompareTo() method to compare two items of type T (which must
implement the IComparable interface). The CompareTo() method returns 0 if the two objects are equal.
You can now search for an item by using the Find() method:

 MyStack < string > stack = new MyStack < string > (3);
 stack.Push(“A”);
 stack.Push(“B”);
 stack.Push(“C”);

 if (stack.Find(“B”))
 Console.WriteLine(“Contains B”);

 In this case, the code works because the string type implements the IComparable interface. Suppose
that you have the following Employee class definition:

public class Employee
{
 public string ID { get; set; }
 public string Name { get; set; }
}

c09.indd 273c09.indd 273 10/1/08 11:44:58 AM10/1/08 11:44:58 AM

274

Part I: C# Fundamentals

 When you try to use the MyStack class with the Employee class, you get an error:

 MyStack < Employee > stack = new MyStack < Employee > (3); //---Error---

 That ’ s because the Employee class does not implement the IComparable < T > interface. To resolve this,
simply implement the IComparable < Employee > interface in the Employee class and implement the
 CompareTo() method:

public class Employee : IComparable < Employee >

{
 public string ID { get; set; }
 public string Name { get; set; }

 public int CompareTo(Employee obj)
 {
 return this.ID.CompareTo(obj.ID);
 }

}

 You can now use the Employee class with the generic MyStack class:

 MyStack < Employee > stack = new MyStack < Employee > (2);
 stack.Push(new Employee() { ID = “123”, Name = “John” });
 stack.Push(new Employee() { ID = “456”, Name = “Margaret” });

 Employee e1 = new Employee() { ID = “123”, Name = “John” };

 if (stack.Find(e1))
 Console.WriteLine(“Employee found.”);

 Specifying Multiple Constraints
 You can specify multiple constraints in a generic type. For example, if you want the MyStack class to
manipulate objects of type Employee and also implement the Icomparable interface, you can declare
the generic type as:

public class MyStack < T > where T : Employee, IComparable < T >

{
 //...
}

 Here, you are constraining that the MyStack class must use types derived from Employee and they must
also implement the IComparable interface.

 The base class constraint must always be specified first, before specifying the
interface.

c09.indd 274c09.indd 274 10/1/08 11:44:58 AM10/1/08 11:44:58 AM

275

Chapter 9: Generics

 Assuming that you have the following Manager class deriving from the Employee class:

public class Manager : Employee, IComparable < Manager >
{
 public int CompareTo(Manager obj)
 {
 return base.CompareTo(obj);
 }
}

 The following statement is now valid:

MyStack < Manager > stackM = new MyStack < Manager > (3);

 Multiple Type Parameter
 So far you have seen only one type parameter used in a generic type, but you can have multiple type
parameters. For example, the following MyDictionary class uses two generic type parameters — K and V :

public class MyDictionary < K, V >
{
 //...
}

 To apply constraints on multiple type parameters, use the where keyword multiple times:

public class MyDictionary < K, V >
 where K : IComparable < K >
 where V : ICloneable
{
 //...
}

 Generic Interfaces
 Generics can also be applied on interfaces. The following example defines the IMyStack interface:

interface IMyStack < T > where T : IComparable < T >
{
 void Push(T item);
 T Pop();
 bool Find(T keyword);
}

 A class implementing a generic interface must supply the same type parameter as well as satisfy the
constraints imposed by the interface.

 The following shows the generic MyStack class implementing the generic IMyStack interface:

public class MyStack < T > : IMyStack < T > where T : IComparable < T >
{
 //...
}

c09.indd 275c09.indd 275 10/1/08 11:44:58 AM10/1/08 11:44:58 AM

276

Part I: C# Fundamentals

Figure 9-4

 Figure 9 - 4 shows the error reported by Visual Studio 2008 if the generic MyStack class does not provide
the constraint imposed by the generic interface.

 Generic Structs
 Generics can also be applied to structs. For example, suppose that you have a Coordinate struct
defined as follows:

public struct Coordinate
{
 public int x, y, z;
}

 The coordinates for the Coordinate struct takes in int values.

 You can use generics on the Coordinate struct , like this:

public struct Coordinate < T >
{
 public T x, y, z;
}

 To use int values for the Coordinate struct , you can do so via the following statements:

 Coordinate < int > pt1;
 pt1.x = 5;
 pt1.y = 6;
 pt1.z = 7;

 To use float values for the Coordinate struct , utilize the following statements:

 Coordinate < float > pt2;
 pt2.x = 2.0F;
 pt2.y = 6.3F;
 pt2.z = 2.9F;

 Generic Methods
 In addition to generic classes and interfaces, you can also define generic methods. Consider the
following class definition and the method contained within it:

c09.indd 276c09.indd 276 10/1/08 11:44:58 AM10/1/08 11:44:58 AM

277

Chapter 9: Generics

public class SomeClass
{
 public void DoSomething < T > (T t)
 {
 }
}

 Here, DoSomething() is a generic method. To use a generic method, you need to provide the type when
calling it:

 SomeClass sc = new SomeClass();
 sc.DoSomething < int > (3);

 The C# compiler, however, is smart enough to deduce the type based on the argument passed into the
method, so the following statement automatically infers T to be of type String :

 sc.DoSomething(“This is a string”); //---T is String---

 This feature is known as generic type inference .

 You can also define a constraint for the generic type in a method, like this:

public class SomeClass
{

 public void DoSomething < T > (T t) where T : IComparable < T >
 {

 }
}

 If you need the generic type to be applicable to the entire class, define the type T at the class level:

public class SomeClass < T > where T : IComparable < T >

{

 public void DoSomething(T t)

 {
 }
}

 In this case, you specify the type during the instantiation of SomeClass :

 SomeClass < int > sc = new SomeClass < int > ();
 sc.DoSomething(3);

 You can also use generics on static methods, in addition to instance methods as just described.
For example, the earlier DoSomething() method can be modified to become a static method:

public class SomeClass
{

 public static void DoSomething < T > (T t) where T : IComparable < T >

 {
 }
}

c09.indd 277c09.indd 277 10/1/08 11:44:59 AM10/1/08 11:44:59 AM

278

Part I: C# Fundamentals

 To call this static generic method, you can either explicitly specify the type or use generic type inference:

 SomeClass.DoSomething(3);
 //---or---
 SomeClass.DoSomething < int > (3);

 Generic Operators
 Generics can also be applied to operators. Consider the generic MyStack class discussed earlier in this
chapter. Suppose that you want to be able to join two MyStack objects together, like this:

 MyStack < string > stack1 = new MyStack < string > (4);
 stack1.Push(“A”);
 stack1.Push(“B”);

 MyStack < string > stack2 = new MyStack < string > (2);
 stack2.Push(“C”);
 stack2.Push(“D”);

 stack1 += stack2;

 In this case, you can overload the + operator, as highlighted in the following code:

public class MyStack < T > where T : IComparable < T >
{
 private T[] _elements;
 private int _pointer;

 public MyStack(int size)
 {
 _elements = new T[size];
 _pointer = 0;
 }

 public void Push(T item)
 {
 if (_pointer > _elements.Length - 1)
 {
 throw new Exception(“Stack is full.”);
 }
 _elements[_pointer] = item;
 _pointer++;
 }

 public T Pop()
 {
 _pointer--;
 if (_pointer < 0)
 {
 return default(T);
 }
 return _elements[_pointer];
 }

c09.indd 278c09.indd 278 10/1/08 11:44:59 AM10/1/08 11:44:59 AM

279

Chapter 9: Generics

 public bool Find(T keyword)
 {
 bool found = false;
 for (int i = 0; i < _pointer; i++)
 {
 if (_elements[i].CompareTo(keyword) == 0)
 {
 found = true;
 break;
 }
 }
 return found;
 }

 public bool Empty
 {
 get{
 return (_pointer < = 0);
 }
 }

 public static MyStack < T > operator +
 (MyStack < T > stackA, MyStack < T > stackB)
 {
 while (!stackB.Empty)
 {
 T item = stackB.Pop();
 stackA.Push(item);
 }
 return stackA;
 }

}

 The + operator takes in two operands — the generic MyStack objects. Internally, you pop out each
element from the second stack and push it into the first stack. The Empty property allows you to know if
a stack is empty.

 To print out the elements of stack1 after the joining, use the following statements:

 stack1 += stack2;

 while (!stack1.Empty)
 Console.WriteLine(stack1.Pop());

 Here ’ s the output:

C
D
B
A

c09.indd 279c09.indd 279 10/1/08 11:44:59 AM10/1/08 11:44:59 AM

280

Part I: C# Fundamentals

 Generic Delegates
 You can also use generics on delegates. The following class definition contains a generic delegate,
 MethodDelegate :

public class SomeClass < T >
{
 public delegate void MethodDelegate(T t);
 public void DoSomething(T t)
 {
 }
}

 When you specify the type for the class, you also need to specify it for the delegate:

 SomeClass < int > sc = new SomeClass < int > ();
 SomeClass < int > .MethodDelegate del;
 del = new SomeClass < int > .MethodDelegate(sc.DoSomething);

 You can make direct assignment to the delegate using a feature known as delegate inferencing, as the
following code shows:

 del = sc.DoSomething;

 Generics and the . NET Framework
Class Library

 The .NET Framework class library contains a number of generic classes that enable users to create strongly
typed collections. These classes are grouped under the System.Collections.Generic namespace
(the nongeneric versions of the classes are contained within the System.Collections namespace). The
following tables show the various classes, structures, and interfaces contained within this namespace.

 The following table provides a look at the classes contained within the System.Collections.Generi c
namespace.

 Class Description

 Comparer < (Of < (T >) >) Provides a base class for implementations of the
 IComparer < (Of < (T >) >) generic interface.

 Dictionary < (Of < (TKey, TValue >) >) Represents a collection of keys and values.

 Dictionary < (Of
 < (TKey, TValue >) >)..::.KeyCollection

 Represents the collection of keys in a
 Dictionary < (Of < (TKey, TValue >) >) .
This class cannot be inherited.

 Dictionary < (Of < (TKey,
TValue >) >)..::.ValueCollection

 Represents the collection of values in a
 Dictionary < (Of < (TKey, TValue >) >) .
This class cannot be inherited.

c09.indd 280c09.indd 280 10/1/08 11:45:00 AM10/1/08 11:45:00 AM

281

Chapter 9: Generics

 Class Description

 EqualityComparer < (Of < (T >) >) Provides a base class for implementations of the
 IEqualityComparer < (Of < (T >) >) generic
interface.

 HashSet < (Of < (T >) >) Represents a set of values.

 KeyedByTypeCollection < (Of < (TItem >) >) Provides a collection whose items are types that
serve as keys.

 KeyNotFoundException The exception that is thrown when the key
specified for accessing an element in a collection
does not match any key in the collection.

 LinkedList < (Of < (T >) >) Represents a doubly linked list.

 LinkedListNode < (Of < (T >) >) Represents a node in a LinkedList < (Of
 < (T >) >) . This class cannot be inherited.

 List < (Of < (T >) >) Represents a strongly typed list of objects that
can be accessed by index. Provides methods to
search, sort, and manipulate lists.

 Queue < (Of < (T >) >) Represents a first - in, first - out collection of objects.

 SortedDictionary < (Of < (TKey,
TValue >) >)

 Represents a collection of key/value pairs that
are sorted on the key.

 SortedDictionary < (Of < (TKey,
TValue >) >)..::.KeyCollection

 Represents the collection of keys in a
 SortedDictionary < (Of < (TKey,
TValue >) >) . This class cannot be inherited.

 SortedDictionary < (Of < (TKey,
TValue >) >)..::.ValueCollection

 Represents the collection of values in a
 SortedDictionary < (Of < (TKey,
TValue >) >) . This class cannot be inherited .

 SortedList < (Of < (TKey, TValue >) >) Represents a collection of key/value pairs that
are sorted by key based on the associated
 IComparer < (Of < (T >) >) implementation.

 Stack < (Of < (T >) >) Represents a variable size last - in, first - out (LIFO)
collection of instances of the same arbitrary type.

 SynchronizedCollection < (Of < (T >) >) Provides a thread - safe collection that contains
objects of a type specified by the generic
parameter as elements.

 SynchronizedKeyedCollection < (Of
< (K, T >) >)

 Provides a thread - safe collection that contains
objects of a type specified by a generic parameter
and that are grouped by keys.

 SynchronizedReadOnlyCollection
< (Of < (T >) >)

 Provides a thread - safe, read - only collection that
contains objects of a type specified by the generic
parameter as elements.

c09.indd 281c09.indd 281 10/1/08 11:45:00 AM10/1/08 11:45:00 AM

282

Part I: C# Fundamentals

 The structures contained within the System.Collections.Generic namespace are described in the
following table.

 Structure Description

 Dictionary < (Of < (TKey,
TValue >) >)..::.Enumerator

 Enumerates the elements of a
 Dictionary < (Of < (TKey, TValue >) >)

 Dictionary < (Of < (TKey, TValue >) >)..::.
KeyCollection..::.Enumerator

 Enumerates the elements of a
 Dictionary < (Of < (TKey,
TValue >) >)..::.KeyCollection

 Dictionary < (Of < (TKey, TValue >) >)..::.
ValueCollection..::.Enumerator

 Enumerates the elements of a
 Dictionary < (Of < (TKey,
TValue >) >)..::.ValueCollection

 HashSet < (Of < (T >) >)..::.Enumerator Enumerates the elements of a
 HashSet < (Of < (T >) >) object

 KeyValuePair < (Of < (TKey, TValue >) >) Defines a key/value pair that can be set or
retrieved

 LinkedList < (Of < (T >) >)..::.Enumerator Enumerates the elements of a
 LinkedList < (Of < (T >) >)

 List < (Of < (T >) >)..::.Enumerator Enumerates the elements of a
List < (Of < (T >) >)

 Queue < (Of < (T >) >)..::.Enumerator Enumerates the elements of a
Queue < (Of < (T >) >)

 SortedDictionary < (Of < (TKey,
TValue >) >)..::.Enumerator

 Enumerates the elements of a
 SortedDictionary < (Of < (TKey,
TValue >) >)

 SortedDictionary < (Of < (TKey,
TValue >) >)..::.KeyCollection..::.
Enumerator

 Enumerates the elements of a
 SortedDictionary < (Of < (TKey,
TValue >) >)..::.KeyCollection

 SortedDictionary < (Of < (TKey,
TValue >) >)..::.ValueCollection..::.
Enumerator

 Enumerates the elements of a
 SortedDictionary < (Of < (TKey,
TValue >) >)..::.ValueCollection

 Stack < (Of < (T >) >)..::.Enumerator Enumerates the elements of a
Stack < (Of < (T >) >)

c09.indd 282c09.indd 282 10/1/08 11:45:01 AM10/1/08 11:45:01 AM

283

Chapter 9: Generics

 Following are descriptions of the interfaces contained within the System.Collections.Generic
namespace.

 Interface Description

 ICollection < (Of < (T >) >) Defines methods to manipulate generic collections

 IComparer < (Of < (T >) >) Defines a method that a type implements to compare
two objects

 IDictionary < (Of < (TKey,
TValue >) >)

 Represents a generic collection of key/value pairs

 IEnumerable < (Of < (T >) >) Exposes the enumerator, which supports a simple
iteration over a collection of a specified type

 IEnumerator < (Of < (T >) >) Supports a simple iteration over a generic collection

 IEqualityComparer < (Of < (T >) >) Defines methods to support the comparison of objects
for equality

 Ilist < (Of < (T >) >) Represents a collection of objects that can be
individually accessed by index

 Prior to .NET 2.0, all the data structures contained in the System.Collection namespace are object -
 based. With .NET 2.0, Microsoft has released generic equivalents of some of these classes. The following
table shows the mapping of these classes in the two namespaces.

 System.Collection System.Collection.Generic

 Comparer Comparer < T >

 HashTable Dictionary < K,T >

 - LinkedList < T >

 ArrayList List < T >

 Queue Queue < T >

 SortedList SortedDictionary < K,T >

 Stack Stack < T >

 ICollection ICollection < T >

 System.IComparable IComparable < T >

 IDictionary IDictionary < K,T >

 IEnumerable IEnumerable < T >

 IEnumerator IEnumerator < T >

 IList IList < T >

c09.indd 283c09.indd 283 10/1/08 11:45:01 AM10/1/08 11:45:01 AM

284

Part I: C# Fundamentals

 The Stack < T > , Queue < T > , and Dictionary < K,T > generic classes are discussed in more detail in
Chapter 13, “ Collections. ”

 Using the LinkedList < T > Generic Class
 One of the new classes in the System.Collection.Generic namespace is the LinkedList < T > generic
class. A linked list is a data structure containing a series of interconnected nodes. Linked lists have wide
usage in computer science and are often used to store related data.

 There are several types of linked lists:

 Singly linked list

 Doubly linked list

 Circularly linked list

 Figure 9 - 5 shows a singly linked list. Every node has a field that “ points ” to the next node. To move from
one node to another (known as list traversal), you start from the first node and follow the links leading to
the next node.

❑

❑

❑

25 5 36
Figure 9-5

 Figure 9 - 6 shows a doubly linked list. Doubly linked list nodes contains an additional field to point to
the previous node. You can traverse a doubly linked list in either direction. The LinkedList < T > class
implements a doubly linked list.

25 5 36
Figure 9-6

 Figure 9 - 7 shows a circularly linked list. A circularly linked list has its first and last node linked together.
A circularly linked list can either be a singly linked list (as shown in Figure 9 - 5) or a doubly linked list.

25 5 36

Figure 9-7

c09.indd 284c09.indd 284 10/1/08 11:45:02 AM10/1/08 11:45:02 AM

285

Chapter 9: Generics

 The next example shows how to use the LinkedList < T > class available in the .NET Framework to store
a list of random numbers. As each random number is generated, it is inserted into the linked list in
numeric sorted order (from small to big). The end result is a list of sorted random numbers. Specifically,
the example uses the LinkedList < T > class members shown in the following table.

 Member Description

 AddAfter() Adds a new node after an existing node

 AddBefore() Adds a new node before an existing node

 First Gets the first node

 Last Gets the last node

 Each node in the LinkedList < T> class is an object of type LinkedListNode < T> . The following table
shows the properties in the LinkedListNode < T> that are used in this example.

 Property Description

 Next Gets the next node

 Previous Gets the previous node

 Value Gets the value contained in the node

 Now for the example, first create an instance of the LinkedList < T > class using the int type:

 LinkedList < int > Numbers = new LinkedList < int > ();

 Define the InsertNumber() function, which accepts an int parameter:

 private void InsertNumber(int number)
 {
 //---start from first node---
 LinkedListNode < int > currNode = Numbers.First;
 LinkedListNode < int > newNode = new LinkedListNode < int > (number);

 if (currNode == null)
 {
 Numbers.AddFirst(newNode);
 return;
 }
 while (currNode != null)
 {
 if (currNode.Value > number)
 {
 if (currNode.Previous != null)
 //---Case 1 - add the node to the previous node---
 Numbers.AddAfter(currNode.Previous, newNode);

(continued)

c09.indd 285c09.indd 285 10/1/08 11:45:02 AM10/1/08 11:45:02 AM

286

Part I: C# Fundamentals

 else
 //--- Case 2 - the current node is the first node---
 Numbers.AddBefore(currNode, newNode);
 break;
 }
 else if (currNode.Next == null)
 {
 //--- Case 3 - if last node has been reached---
 Numbers.AddAfter(currNode, newNode);
 break;
 }
 //---traverse to the next node---
 currNode = currNode.Next;
 }
 }

 The InsertNumber() function initially creates a new node to contain the random number generated.
It then traverses the linked list to find the correct position to insert the number. Take a look at the
different possible cases when inserting a number into the linked list.

 Figure 9 - 8 shows the case when the node to be inserted (11) is between two nodes (9 and 15, the current
node). In this case, it must be added after node 9.

9
(CurrNode. Previous)

15
CurrNode

11
NewNode

Figure 9-8

 Figure 9 - 9 shows the case when the node to be inserted (11) is smaller than the first node (current node)
in the linked list. In this case, it must be added before the current node.

15
CurrNode

11
NewNode

Figure 9-9

(continued)

c09.indd 286c09.indd 286 10/1/08 11:45:03 AM10/1/08 11:45:03 AM

287

Chapter 9: Generics

 Figure 9 - 10 shows the case when the node to be inserted is larger than the last node (current node) in the
linked list. In this case, it must be added after the current node.

15
CurrNode

45
NewNode

Figure 9-10

 To insert a list of random numbers into the linked list, you can use the following statements:

 Random rnd = new Random();
 for (int i = 0; i < 20; i++)
 InsertNumber(rnd.Next(100)); //---random number from 0 to 100---

 To print out all the numbers contained within the linked list, traverse the link starting from the first
node:

 //---traverse forward---

 LinkedListNode < int > node = Numbers.First;

 while (node != null)
 {
 Console.WriteLine(node.Value);

 node = node.Next;

 }

 The result is a list of 20 random numbers in sorted order.

 Alternatively, you can traverse the list backward from the last node:

 //---traverse backward---

 LinkedListNode < int > node = Numbers.Last;

 while (node != null)
 {
 Console.WriteLine(node.Value);

 node = node.Previous;

 }

 The result would be a list of random numbers in reverse - sort order.

c09.indd 287c09.indd 287 10/1/08 11:45:03 AM10/1/08 11:45:03 AM

288

Part I: C# Fundamentals

 System.Collections.ObjectModel
 The System.Collections.ObjectModel namespace in the .NET class library contains several generic
classes that deal with collections. These classes are described in the following table.

 Generic Class Description

 Collection < T > Provides the base class for a generic collection.

 KeyedCollection < TKey,TItem > Provides the abstract base class for a collection whose
keys are embedded in the values.

 ObservableCollection < T > Represents a dynamic data collection that provides
notifications when items get added, removed, or when
the whole list is refreshed.

 ReadOnlyCollection < T > Provides the base class for a generic read - only collection.

 ReadOnlyObservableCollection < T > Represents a read - only ObservableCollection < T > .

 Let ’ s take a look at Collection < T > , one of the classes available. It is similar to the generic List < T >
class. Both Collection < T > and List < T > implement the IList < T > and ICollection < T > interfaces.
The main difference between the two is that Collection < T > contains virtual methods that can be
overridden, whereas List < T > does not have any.

 The List < T > generic class is discussed in details in Chapter 13.

 The following code example shows how to use the generic Collection < T > class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Collections.ObjectModel;

namespace CollectionEg1
{
 class Program
 {
 static void Main(string[] args)
 {

 Collection < string > names = new Collection < string > ();
 names.Add(“Johnny”);
 names.Add(“Michael”);
 names.Add(“Wellington”);

 foreach (string name in names)
 {
 Console.WriteLine(name);
 }
 Console.ReadLine();
 }
 }
}

c09.indd 288c09.indd 288 10/1/08 11:45:04 AM10/1/08 11:45:04 AM

289

Chapter 9: Generics

 Here ’ s the example ’ s output:

Johnny
Michael
Wellington

 To understand the usefulness of the generic Collection < T > class, consider the following example
where you need to write a class to contain the names of all the branches a company has:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Collections.ObjectModel;

namespace CollectionEg2
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }

 public class Branch
 {
 private List < string > _branchNames = new List < string > ();
 public List < string > BranchNames
 {
 get
 {
 return _branchNames;
 }
 }
 }

}

 In this example, the Branch class exposes a public read - only property called BranchNames of type
 List < T > . To add branch names to a Branch object, you first create an instance of the Branch class and
then add individual branch names to the BranchNames property by using the Add() method of the
 List < T > class:

 static void Main(string[] args)
 {

 Branch b = new Branch();
 b.BranchNames.Add(“ABC”);
 b.BranchNames.Add(“XYZ”);

 }

 Suppose now that your customers request an event for the Branch class so that every time a branch
name is deleted, the event fires so that the client of Branch class can be notified. The problem with the
generic List < T > class is that there is no way you can be informed when an item is removed.

c09.indd 289c09.indd 289 10/1/08 11:45:04 AM10/1/08 11:45:04 AM

290

Part I: C# Fundamentals

 A better way to resolve this issue is to expose BranchName as a property of type Collection < T > instead
of List < T > . That ’ s because the generic Collection < T > type provides four overridable methods —
 ClearItems() , InsertItem() , RemoveItem() , and SetItem() — which allow a derived class to be
notified when a collection has been modified.

 Here ’ s how rewriting the Branch class, using the generic Collection < T > type, looks:

 public class Branch
 {
 public Branch()
 {
 _branchNames = new BranchNamesCollection(this);
 }

 private BranchNamesCollection _branchNames;
 public Collection < string > BranchNames
 {
 get
 {
 return _branchNames;
 }
 }

 //---event raised when an item is removed---
 public event EventHandler ItemRemoved;

 //---called from within the BranchNamesCollection class---
 protected virtual void RaiseItemRemovedEvent(EventArgs e)
 {
 if (ItemRemoved != null)
 {
 ItemRemoved(this, e);
 }
 }

 private class BranchNamesCollection : Collection < string >
 {
 private Branch _b;
 public BranchNamesCollection(Branch b)
 {
 _b = b;
 }

 //---fired when an item is removed---
 protected override void RemoveItem(int index)
 {
 base.RemoveItem(index);
 _b.RaiseItemRemovedEvent(EventArgs.Empty);
 }
 }
 }

c09.indd 290c09.indd 290 10/1/08 11:45:04 AM10/1/08 11:45:04 AM

291

Chapter 9: Generics

 There is now a class named BranchNamesCollection within the Branch class. The
 BranchNamesCollection class is of type Collection < string > . It overrides the RemoveItem()
method present in the Collection < T > class. When an item is deleted from the collection, it proceeds to
remove the item by calling the base RemoveItem() method and then invoking a function defined in
the Branch class: RaiseItemRemovedEvent() . The RaiseItemRemovedEvent() function then raises the
 ItemRemoved event to notify the client that an item has been removed.

 To service the ItemRemoved event in the Branch class, modify the code as follows:

 static void Main(string[] args)
 {
 Branch b = new Branch();

 b.ItemRemoved += new EventHandler(b_ItemRemoved);

 b.BranchNames.Add(“ABC”);
 b.BranchNames.Add(“XYZ”);
 b.BranchNames.Remove(“XYZ”);

 foreach (string branchName in b.BranchNames)
 {
 Console.WriteLine(branchName);
 }
 Console.ReadLine();
 }

 static void b_ItemRemoved(object sender, EventArgs e)
 {
 Console.WriteLine(“Item removed!”);
 }

 And here ’ s the code ’ s output:

Item removed!

 As a rule of thumb, use the generic Collection < T > class (because it is more
extensible) as a return type from a public method, and use the generic List < T > class
for internal implementation.

 Summary
 Generics allow you define type - safe data structures without binding to specific fixed data types at design
time. The end result is that your code becomes safer without sacrificing performance. In addition to
showing you how to define your own generic class, this chapter also examined some of the generic
classes provided in the .NET Framework class library, such as the generic LinkedList < T > and
 Collection < T > classes.

c09.indd 291c09.indd 291 10/1/08 11:45:05 AM10/1/08 11:45:05 AM

c09.indd 292c09.indd 292 10/1/08 11:45:05 AM10/1/08 11:45:05 AM

 Threading
 Today ’ s computer runs at more than 2GHz, a blazing speed improvement over just a few years ago.
Almost all operating systems today are multitasking, meaning you can run more than one application
at the same time. However, if your application is still executing code sequentially, you are not really
utilizing the speed advancements of your latest processor. How many times have you seen an
unresponsive application come back to life after it has completed a background task such as
performing some mathematical calculations or network transfer? To fully utilize the extensive
processing power of your computer and write responsive applications, understanding and using
threads is important.

 A thread is a sequential flow of execution within a program. A program can consist
of multiple threads of execution, each capable of independent execution .

 This chapter explains how to write multithreaded applications using the Thread class in the .NET
Framework. It shows you how to:

 Create a new thread of execution and stop it

 Synchronize different threads using the various thread classes available

 Write thread - safe Windows applications

 Use the BackgroundWorker component in Windows Forms to program background tasks.

 The Need for Multithreading
 Multithreading is one of the most powerful concepts in programming. Using multithreading, you
can break a complex task in a single application into multiple threads that execute independently
of one another. One particularly good use of multithreading is in tasks that are synchronous in
nature, such as Web Services calls. By default, Web Services calls are blocking calls — that is, the
caller code does not continue until the Web Service returns the result. Because Web Services calls
are often slow, this can result in sluggish client - side performance unless you take special steps to
make the call an asynchronous one.

❑

❑

❑

❑

c10.indd 293c10.indd 293 10/1/08 11:45:38 AM10/1/08 11:45:38 AM

294

Part I: C# Fundamentals

 To see how multithreading works, first take a look at the following example:

 class Program
 {
 static void Main(string[] args)
 {
 DoSomething();
 Console.WriteLine(“Continuing with the execution...”);
 Console.ReadLine();
 }

 static void DoSomething()
 {
 while (true)
 {
 Console.WriteLine(“Doing something...”);
 }
 }
 }

 This is a simple application that calls the DoSomething() function to print out a series of strings (in fact,
it is an infinite loop, which will never stop; see Figure 10 - 1). Right after calling the DoSomething()
function, you try to print a string (“ Continuing with the execution... “) to the console window.
However, because the DoSomething() function is busy printing its own output, the “ Console
.WriteLine(“ Continuing with the execution... “); “ statement never gets a chance to execute.

 Figure 10 - 1

 This example illustrates the sequential nature of application — statements are executed sequentially. The
 DoSomething() function is analogous to consuming a Web Service, and as long as the Web Service does
not return a value to you (due to network latency or busy web server, for instance), the rest of your
application is blocked (that is, not able to continue).

c10.indd 294c10.indd 294 10/1/08 11:45:39 AM10/1/08 11:45:39 AM

295

Chapter 10: Threading

 Starting a Thread
 You can use threads to break up statements in your application into smaller chunks so that they can be
executed in parallel. You could, for instance, use a separate thread to call the DoSomething() function in
the preceding example and let the remaining of the code continue to execute.

 Every application contains one main thread of execution. A multithreaded application contains two or
more threads of execution.

 In C#, you can create a new thread of execution by using the Thread class found in the System
.Threading namespace. The Thread class creates and controls a thread. The constructor of the Thread
class takes in a ThreadStart delegate, which wraps the function that you want to run as a separate
thread. The following code shows to use the Thread class to run the DoSomething() function as a
separate thread:

Import the System.Threading namespace when using the Thread class.

 class Program
 {
 static void Main(string[] args)
 {

 Thread t = new Thread(new ThreadStart(DoSomething));
 t.Start();

 Console.WriteLine(“Continuing with the execution...”);
 Console.ReadLine();
 }

 static void DoSomething()
 {
 while (true)
 {
 Console.WriteLine(“Doing something...”);
 }
 }
 }

 Note that the thread is not started until you explicitly call the Start() method. When the Start()
method is called, the DoSomething() function is called and control is immediately returned to the
 Main() function. Figure 10 - 2 shows the output of the example application.

c10.indd 295c10.indd 295 10/1/08 11:45:39 AM10/1/08 11:45:39 AM

296

Part I: C# Fundamentals

 Figure 10 - 3 shows graphically the two different threads of execution.

Figure 10-2

DoSomething()
Console.WriteLine("Doing something...");

Main thread of execution
Console.WriteLine("Continuing with the execution...");

Figure 10-3

 As shown in Figure 10 - 2 , it just so happens that before the DoSomething() method gets the chance to
execute, the main thread has proceeded to execute its next statements. Hence, the output shows the main
thread executing before the DoSomething() method. In reality, both threads have an equal chance of
executing, and one of the many possible outputs could be:

Doing something...
Doing something...
Continuing with the execution...
Doing something...
Doing something...
...

 A thread executes until:

 It reaches the end of its life (method exits), or

 You prematurely kill (abort) it.

❑

❑

c10.indd 296c10.indd 296 10/1/08 11:45:39 AM10/1/08 11:45:39 AM

297

Chapter 10: Threading

 Aborting a Thread
 You can use the Abort() method of the Thread class to abort a thread after it has started executing.
Here ’ s an example:

 class Program
 {
 static void Main(string[] args)
 {
 Thread t = new Thread(new ThreadStart(DoSomething));
 t.Start();
 Console.WriteLine(“Continuing with the execution...”);

 while (!t.IsAlive) ;

 Thread.Sleep(1);
 t.Abort();

 Console.ReadLine();
 }

 static void DoSomething()
 {
 try
 {
 while (true)
 {
 Console.WriteLine(“Doing something...”);
 }
 }
 catch (ThreadAbortException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }
 }

 When the thread is started, you continue with the next statement and print out the message
 “ Continuing with the execution... “ . You then use the IsAlive property of the Thread class to
find out the execution status of the thread and block the execution of the Main() function (with the
 while statement) until the thread has a chance to start. The Sleep() method of the Thread class blocks
the current thread (Main()) for a specified number of milliseconds. Using this statement, you are
essentially giving the DoSomething() function a chance to execute. Finally, you kill the thread by using
the Abort() method of the Thread class.

c10.indd 297c10.indd 297 10/1/08 11:45:40 AM10/1/08 11:45:40 AM

298

Part I: C# Fundamentals

 The ThreadAbortException exception is fired on any thread that you kill. Ideally, you should clean
up the resources in this exception handler (via the finally statement):

 static void DoSomething()
 {
 try
 {
 while (true)
 {
 Console.WriteLine(“Doing something...”);
 }
 }
 catch (ThreadAbortException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally {
 //---clean up your resources here---
 }
 }

 The output of the preceding program may look like this:

Continuing with the execution...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Thread was being aborted.

 Notice that I say the program may look like this. When you have multiple threads running in your
application, you don ’ t have control over which threads are executed first. The OS determines the actual
execution sequence and that is dependent on several factors such as CPU utilization, memory usage, and
so on. It is possible, then, that the output may look like this:

Doing something...
Continuing with the execution...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Thread was being aborted.

 While you can use the Abort() method to kill a thread, it is always better to exit it gracefully
whenever possible.

c10.indd 298c10.indd 298 10/1/08 11:45:40 AM10/1/08 11:45:40 AM

299

Chapter 10: Threading

 Here ’ s a rewrite of the previous program:

 class Program
 {

 private static volatile bool _stopThread = false;

 static void Main(string[] args)
 {
 Thread t = new Thread(new ThreadStart(DoSomething));
 t.Start();

 Console.WriteLine(“Continuing with the execution...”);

 while (!t.IsAlive) ;

 Thread.Sleep(1);

 _stopThread = true;
 Console.WriteLine(“Thread ended.”);

 Console.ReadLine();
 }

 static void DoSomething()
 {
 try
 {

 while (!_stopThread)

 {
 Console.WriteLine(“Doing something...”);
 }
 }
 catch (ThreadAbortException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally {
 //---clean up your resources here---
 }
 }
 }

 First, you declare a static Boolean variable call _stopThread :

 private static volatile bool _stopThread = false;

 Notice that you prefix the declaration with the volatile keyword, which is used as a hint to the
compiler that this variable will be accessed by multiple threads. The variable will then not be subjected
to compiler optimization and will always have the most up - to - date value.

 To use the _stopThread variable to stop the thread, you modify the DoSomething() function, like this:

 while (!_stopThread)
 {
 Console.WriteLine(“Doing something...”);
 }

c10.indd 299c10.indd 299 10/1/08 11:45:40 AM10/1/08 11:45:40 AM

300

Part I: C# Fundamentals

 Finally, to stop the thread in the Main() function, you just need to set the _stopThread variable to true :

 _stopThread = true;
 Console.WriteLine(“Thread ended.”);

 The output of this program may look like this:

Continuing with the execution.
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Thread ended.
Doing something...

 The DoSomething() function may print another message after the ” Thread ended. ” message. That ’ s
because the thread might not end immediately. To ensure that the ” Thread ended. ” message is printed
only after the DoSomething() function ends, you can use the Join() method of the Thread class to join
the two threads:

 static void Main(string[] args)
 {
 Thread t = new Thread(new ThreadStart(DoSomething));
 t.Start();

 Console.WriteLine(“Continuing with the execution...”);

 while (!t.IsAlive) ;

 Thread.Sleep(1);
 _stopThread = true;

 //---joins the current thread (Main()) to t---
 t.Join();

 Console.WriteLine(“Thread ended.”);
 Console.ReadLine();
 }

 The Join() method essentially blocks the calling thread until the thread terminates. In this case, the
 Thread ended message will be blocked until the thread (t) terminates.

 The output of the program now looks like this:

Continuing with the execution.
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Doing something...
Thread ended.

c10.indd 300c10.indd 300 10/1/08 11:45:41 AM10/1/08 11:45:41 AM

301

Chapter 10: Threading

 Figure 10 - 4 shows graphically the two different threads of execution.

 Passing Parameters to Threads
 In the past few examples, you ’ ve seen how to create a thread using the ThreadStart delegate to point
to a method. So far, though, the method that you have been pointing to does not have any parameters:

 static void DoSomething()
 {
 ...
 ...
 }

 What if the function you want to invoke as a thread has a parameter? In that case, you have two choices:

 Wrap the function inside a class, and pass in the parameter via a property.

 Use the ParameterizedThreadStart delegate instead of the ThreadStart delegate.

 Using the same example, the first choice is to wrap the DoSomething() method as a class and then
expose a property to take in the parameter value:

 class Program
 {
 static void Main(string[] args)
 {

 SomeClass sc = new SomeClass();
 sc.msg = “useful”;

 Thread t = new Thread(new ThreadStart(sc.DoSomething));
 t.Start();
 }

 }

 class SomeClass

❑

❑

DoSomething()
Console.WriteLine("Doing Something..."); _stopThread == true

Console.WriteLine("Thread ended.");t.join();Main thread of
execution Console.WriteLine

("Continuing with the execution...");

Figure 10-4

(continued)

c10.indd 301c10.indd 301 10/1/08 11:45:41 AM10/1/08 11:45:41 AM

302

Part I: C# Fundamentals

 {

 public string msg { get; set; }

 public void DoSomething()
 {
 try
 {
 while (true)
 {
 Console.WriteLine(“Doing something...{0}”, msg);
 }
 }
 catch (ThreadAbortException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 //---clean up your resources here---
 }
 }
 }

 In this example, you create a thread for the DoSomething() method by creating a new instance of the
 SomeClass class and then passing in the value through the msg property.

 For the second choice, you use the ParameterizedThreadStart delegate instead of the ThreadStart
delegate. The ParameterizedThreadStart delegate takes a parameter of type object , so if the
function that you want to invoke as a thread has a parameter, that parameter must be of type object .

 To see how to use the ParameterizedThreadStart delegate, modify the DoSomething() function by
adding a parameter:

 static void DoSomething(object msg)

 {
 try
 {
 while (true)
 {

 Console.WriteLine(“Doing something...{0}”, msg);

 }
 }
 catch (ThreadAbortException ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally {
 //---clean up your resources here---
 }
 }

(continued)

c10.indd 302c10.indd 302 10/1/08 11:45:41 AM10/1/08 11:45:41 AM

303

Chapter 10: Threading

 To invoke DoSomething() as a thread and pass it a parameter, you use the ParameterizedThreadStart
delegate as follows:

 static void Main(string[] args)
 {

 Thread t = new Thread(new ParameterizedThreadStart(DoSomething));
 t.Start(“useful”);

 Console.WriteLine(“Continuing with the execution...”);
 ...

 The argument to pass to the function is passed in the Start() method.

 Thread Synchronization
 Multithreading enables you to have several threads of execution running at the same time. However,
when a number of different threads run at the same time, they all compete for the same set of resources,
so there must be a mechanism to ensure synchronization and communication among threads.

 One key problem with multithreading is thread safety. Consider the following subroutine:

 static void IncrementVar()
 {
 _value += 1;
 }

 If two threads execute the same routine at the same time, it is possible that _value variable will not
be incremented correctly. One thread may read the value for _value and increment the value by 1.
Before the incremented value can be updated, another thread may read the old value and increment it.
In the end, _value is incremented only once. For instances like this, it is important that when _value is
incremented, no other threads can access the region of the code that is doing the incrementing.
You accomplish that by locking all other threads during an incrementation.

 In C#, you can use the following ways to synchronize your threads:

 The Interlocked class

 The C# lock keyword

 The Monitor class

 The following sections discuss each of these.

❑

❑

❑

c10.indd 303c10.indd 303 10/1/08 11:45:42 AM10/1/08 11:45:42 AM

304

Part I: C# Fundamentals

 Using Interlocked Class
 Because incrementing and decrementing are such common operations in programming, the .NET
Framework class library provides the Interlocked class for performing atomic operations for variables
that are shared by multiple threads. You can rewrite the preceding example using the Increment()
method from the static Interlocked class:

 static void IncrementVar()
 {
 Interlocked.Increment(ref _value);
 }

 You need to pass in the variable to be incremented by reference to the Increment() method. When a
thread encounters the Increment() statement, all other threads executing the same statement must wait
until the incrementing is done.

 The Interlocked class also includes the Decrement() class that, as its name implies, decrements the
specified variable by one.

 Using C# Lock
 The Interlocked class is useful when you are performing atomic increment or decrement operations.
What happens if you have multiple statements that you need to perform atomically? Take a look at the
following program:

 class Program
 {
 //---initial balance amount---
 static int balance = 500;

 static void Main(string[] args)
 {
 Thread t1 = new Thread(new ThreadStart(Debit));
 t1.Start();

 Thread t2 = new Thread(new ThreadStart(Credit));
 t2.Start();

 Console.ReadLine();
 }

 static void Credit()
 {
 //---credit 1500---
 for (int i = 0; i < 15; i++)
 {
 balance += 100;
 Console.WriteLine(“After crediting, balance is {0}”, balance);
 }
 }

 static void Debit()

c10.indd 304c10.indd 304 10/1/08 11:45:42 AM10/1/08 11:45:42 AM

305

Chapter 10: Threading

 {
 //---debit 1000---
 for (int i = 0; i < 10; i++)
 {
 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);
 }
 }
 }

 Here two separate threads are trying to modify the value of balance . The Credit() function
increments balance by 1500 in 15 steps of 100 each, and the Debit() function decrements balance by
1000 in 10 steps of 100 each. After each crediting or debiting you also print out the value of balance .
With the two threads executing in parallel, it is highly probably that different threads may execute
different parts of the functions at the same time, resulting in the inconsistent value of the balance
variable.

 Figure 10 - 5 shows one possible outcome of the execution. Notice that some of the lines showing the
balance amount are inconsistent — the first two lines show that after crediting twice, the balance is still
500, and further down the balance jumps from 1800 to 400 and then back to 1700. In a correctly working
scenario, the balance amount always reflects the amount credited or debited. For example, if the balance
is 500, and 100 is credited, the balance should be 600. To ensure that crediting and debiting work
correctly, you need to obtain a mutually exclusive lock on the block of code performing the crediting or
debiting. A mutually exclusive lock means that once a thread is executing a block of code that is locked,
other threads that also want to execute that code block will have to wait.

Figure 10-5

 To enable you to create a mutually exclusive lock on a block of code (the code that is locked is called a
 critical section), C# provides the lock keyword. Using it, you can ensure that a block of code runs to
completion without any interruption by other threads.

c10.indd 305c10.indd 305 10/1/08 11:45:42 AM10/1/08 11:45:42 AM

306

Part I: C# Fundamentals

 To lock a block of code, give the lock statement an object as argument. The preceding code could be
written as follows:

 class Program
 {

 //---used for locking---
 static object obj = new object();

 //---initial balance amount---
 static int balance = 500;

 static void Main(string[] args)
 {
 Thread t1 = new Thread(new ThreadStart(Debit));
 t1.Start();

 Thread t2 = new Thread(new ThreadStart(Credit));
 t2.Start();

 Console.ReadLine();
 }

 static void Credit()
 {
 //---credit 1500---
 for (int i = 0; i < 15; i++)
 {

 lock (obj)
 {
 balance += 100;
 Console.WriteLine(“After crediting, balance is {0}”, balance);
 }

 }
 }

 static void Debit()
 {
 //---debit 1000---
 for (int i = 0; i < 10; i++)
 {

 lock (obj)
 {
 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);
 }

 }
 }
 }

 Notice that you first create an instance of an object that will be used for locking purposes:

 //---used for locking---
 static object obj = new object();

c10.indd 306c10.indd 306 10/1/08 11:45:43 AM10/1/08 11:45:43 AM

307

Chapter 10: Threading

 In general, it is best to avoid using a public object for locking purposes. This prevents situations in
which threads are all waiting for a public object, which may itself be locked by some other code.

 To delineate a block of code to lock, enclose the statements with the lock statement:

 lock (obj)
 {
 //---place code here---
 }

 As long as one thread is executing the statements within the block, all other threads will have to wait for
the statements to be completed before they can execute the statements.

 Figure 10 - 6 shows one possible outcome of the execution.

Figure 10-6

 Notice that the value of balance is now consistent after each credit/debit operation.

 Monitor Class
 The limitation of the lock statement is that you do not have the capability to release the lock halfway
through the critical section. This is important because there are situations in which one thread needs to
release the lock so that other threads have a chance to proceed before the first thread can resume its
execution.

 For instance, you saw in Figure 10 - 6 that on the fifth line the balance goes into a negative value. In real
life this might not be acceptable. The bank might not allow your account to go into a negative balance,
and thus you need to ensure that you have a positive balance before any more debiting can proceed.
Hence, you need to check the value of balance . If it is 0, then you should release the lock and let the
crediting thread have a chance to increment the balance before you do any more debiting.

c10.indd 307c10.indd 307 10/1/08 11:45:43 AM10/1/08 11:45:43 AM

308

Part I: C# Fundamentals

 For this purpose, you can use the Monitor class provided by the .NET Framework class library. Monitor
is a static class that controls access to objects by providing a lock. Here ’ s a rewrite of the previous
program using the Monitor class:

 class Program
 {
 //---used for locking---
 static object obj = new object();

 //---initial balance amount---
 static int balance = 500;

 static void Main(string[] args)
 {
 Thread t1 = new Thread(new ThreadStart(Debit));
 t1.Start();

 Thread t2 = new Thread(new ThreadStart(Credit));
 t2.Start();

 Console.ReadLine();
 }

 static void Credit()
 {
 //---credit 1500---
 for (int i = 0; i < 15; i++)
 {

 Monitor.Enter(obj);

 balance += 100;
 Console.WriteLine(“After crediting, balance is {0}”, balance);

 Monitor.Exit(obj);

 }
 }

 static void Debit()
 {
 //---debit 1000---
 for (int i = 0; i < 10; i++)
 {

 Monitor.Enter(obj);

 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);

 Monitor.Exit(obj);

 }
 }
 }

 The Enter() method of the Monitor class acquires a lock on the specified object, and the Exit()
method releases the lock. The code enclosed by the Enter() and Exit() methods is the critical section.
The C# lock statement looks similar to the Monitor class; in fact, it is implemented with the Monitor
class. The following lock statement, for instance:

c10.indd 308c10.indd 308 10/1/08 11:45:44 AM10/1/08 11:45:44 AM

309

Chapter 10: Threading

 lock (obj)
 {
 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);
 }

 Is equivalent to this Monitor class usage:

 Monitor.Enter(obj);
 try
 {
 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);
 }
 finally
 {
 Monitor.Exit(obj);
 }

 Now the code looks promising, but the debiting could still result in a negative balance. To resolve this,
you need to so some checking to ensure that the debiting does not proceed until there is a positive
balance. Here ’ s how:

 static void Debit()
 {
 //---debit 1000---
 for (int i = 0; i < 10; i++)
 {
 Monitor.Enter(obj);

 if (balance == 0)
 Monitor.Wait(obj);

 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);
 Monitor.Exit(obj);
 }
 }

 When you use the Wait() method of the Monitor class, you release the lock on the object and enter the
object ’ s waiting queue. The next thread that is waiting for the object acquires the lock. If the balance is 0,
the debit thread would give up control and let the credit thread have the lock.

 However, this code modification may result in the scenario shown in Figure 10 - 7 , in which after debiting
the balance five times, balance becomes 0. On the sixth time, the lock held by the debit thread is
released to the credit thread. The credit thread credits the balance 15 times. At that point, the program
freezes. Turns out that the credit thread has finished execution, but the debit thread is still waiting for the
lock to be explicitly returned to it.

c10.indd 309c10.indd 309 10/1/08 11:45:44 AM10/1/08 11:45:44 AM

310

Part I: C# Fundamentals

 To resolve this, you call the Pulse() method of the Monitor class in the credit thread so that it can send
a signal to the waiting thread that the lock is now released and is now going to pass back to it. The
modified code for the Credit() function now looks like this:

 static void Credit()
 {
 //---credit 1500---
 for (int i = 0; i < 15; i++)
 {
 Monitor.Enter(obj);
 balance += 100;

 if (balance > 0)
 Monitor.Pulse(obj);

 Console.WriteLine(“After crediting, balance is {0}”, balance);
 Monitor.Exit(obj);
 }
 }

 Figure 10 - 8 shows that the sequence now is correct.

Figure 10-7

Figure 10-8

c10.indd 310c10.indd 310 10/1/08 11:45:44 AM10/1/08 11:45:44 AM

311

Chapter 10: Threading

 The complete program is as follows:

 class Program
 {
 //---used for locking---
 static object obj = new object();

 //---initial balance amount---
 static int balance = 500;

 static void Main(string[] args)
 {
 Thread t1 = new Thread(new ThreadStart(Debit));
 t1.Start();

 Thread t2 = new Thread(new ThreadStart(Credit));
 t2.Start();

 Console.ReadLine();
 }

 static void Credit()
 {
 //---credit 1500---
 for (int i = 0; i < 15; i++)
 {

 Monitor.Enter(obj);

 balance += 100;

 if (balance > 0)
 Monitor.Pulse(obj);

 Console.WriteLine(“After crediting, balance is {0}”, balance);

 Monitor.Exit(obj);

 }
 }

 static void Debit()
 {
 //---debit 1000---
 for (int i = 0; i < 10; i++)
 {

 Monitor.Enter(obj);

 if (balance == 0)
 Monitor.Wait(obj);

 balance -= 100;
 Console.WriteLine(“After debiting, balance is {0}”, balance);

 Monitor.Exit(obj);

 }
 }
 }

c10.indd 311c10.indd 311 10/1/08 11:45:45 AM10/1/08 11:45:45 AM

312

Part I: C# Fundamentals

 Thread Safety in Windows Forms
 One of the common problems faced by Windows programmers is the issue of updating the UI in
multithreaded situations. To improve the efficiency of their applications, Windows developers often use
threads to perform different tasks in parallel. One thread may be consuming a Web Service, another
performing file I/O, another doing some mathematical calculations, and so on. As each thread
completes, the developers may want to display the result on the Windows form itself.

 However, it is important to know that controls in Windows Forms are bound to a specific thread and are
thus not thread safe; this means that if you are updating a control from another thread, you should not
call the control ’ s member directly. Figure 10 - 9 shows the conceptual illustration.

Separate thread

Main UI thread
Control

Figure 10-9

 To update a Windows Forms control from another thread, use a combination of the following members
of that particular control:

 InvokeRequired property — Returns a Boolean value indicating if the caller must use the
 Invoke() method when making call to the control if the caller is on a different thread than the
control. The InvokeRequired property returns true if the calling thread is not the thread that
created the control or if the window handle has not yet been created for that control.

 Invoke() method — Executes a delegate on the thread that owns the control ’ s underlying
windows handle.

 BeginInvoke() method — Calls the Invoke() method asynchronously.

 EndInvoke() method — Retrieves the return value of the asynchronous operation started by
the BeginInvoke() method.

 To see how to use these members, create a Windows application project in Visual Studio 2008. In the
default Form1 , drag and drop a Label control onto the form and use its default name of Label1 .
Figure 10 - 10 shows the control on the form.

❑

❑

❑

❑

Figure 10-10

c10.indd 312c10.indd 312 10/1/08 11:45:45 AM10/1/08 11:45:45 AM

313

Chapter 10: Threading

 Double - click the form to switch to its code - behind. The Form1_Load event handler is automatically
created for you.

 Add the following highlighted code:

 private void Form1_Load(object sender, EventArgs e)
 {

 if (label1.InvokeRequired)
 {
 MessageBox.Show(“Need to use Invoke()”);
 }
 else
 {
 MessageBox.Show(“No need to use Invoke()”);
 }

 }

 This code checks the InvokeRequired property to determine whether you need to call Invoke() if you
want to call the Label control ’ s members. Because the code is in the same thread as the Label control,
the value for the InvokeRequired property would be false and the message box will print the
message No need to use Invoke() .

 Now to write some code to display the current time on the Label control and to update the time every
second, making it look like a clock. Define the PrintTime() function as follows:

 private void PrintTime()
 {
 try
 {
 while (true)
 {
 if (label1.InvokeRequired)
 {
 label1.Invoke(myDelegate, new object[]
 {
 label1, DateTime.Now.ToString()
 });
 Thread.Sleep(1000);
 }
 else
 label1.Text = DateTime.Now.ToString();
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

c10.indd 313c10.indd 313 10/1/08 11:45:46 AM10/1/08 11:45:46 AM

314

Part I: C# Fundamentals

 Because the PrintTime() function is going to be executed on a separate thread (you will see this later),
you need to use the Invoke() method to call a delegate (myDelegate , which you will define shortly) so
that the time can be displayed in the Label control. You also insert a delay of one second so that the time
is refreshed every second.

 Define the updateLabel function so that you can set the Label ’ s control Text property to a specific
string:

 private void updateLabel(Control ctrl, string str)
 {
 ctrl.Text = str;
 }

 This function takes in two parameters — the control to update, and the string to display in the control.
Because this function resides in the UI thread, it cannot be called directly from the PrintTime()
function; instead, you need to use a delegate to point to it. So the next step is to define a delegate type for
this function and then create the delegate:

 public partial class Form1 : Form
 {

 //---delegate type for the updateLabel() function---
 private delegate void delUpdateControl(Control ctrl, string str);

 //---a delegate---
 private delUpdateControl myDelegate;

 Finally, create a thread for the PrintTime() method in the Form1_Load event handler and start it:

 private void Form1_Load(object sender, EventArgs e)
 {
 //...
 //...
 myDelegate = new delUpdateControl(updateLabel);
 Thread t = new Thread(PrintTime);
 t.Start();
 }

 That ’ s it! When you run the application, the time is displayed and updated every second on the Label
control (see Figure 10 - 11). At the same time, you can move the form, resize it, and so forth, and it is still
responsive.

Figure 10-11

c10.indd 314c10.indd 314 10/1/08 11:45:46 AM10/1/08 11:45:46 AM

315

Chapter 10: Threading

 Using the BackgroundWorker Control
 Because threading is such a common programming task in Windows programming, Microsoft has
provided a convenient solution to implementing threading: the BackgroundWorker control for
Windows applications. The BackgroundWorker control enables you to run a long background task such
as network access, file access, and so forth and receive continual feedback on the progress of the task. It
runs on a separate thread.

 This section creates a simple Windows application that will show you how the BackgroundWorker
component can help make your applications more responsive.

 First, start Visual Studio 2008 and create a new Windows application. Populate the default Windows
form with the following controls (see Figure 10 - 12).

 Control Name Text

 Label Number

 Label lblResult label2

 Label Progress

 TextBox txtNum

 Button btnStart Start

 Button btnCancel Cancel

 ProgressBar ProgressBar1

Figure 10-12

 Drag and drop the BackgroundWorker component from the Toolbox onto the form.
The BackgroundWorker is a nonvisual control, so it appears below the form in the component
section (see Figure 10 - 13).

c10.indd 315c10.indd 315 10/1/08 11:45:46 AM10/1/08 11:45:46 AM

316

Part I: C# Fundamentals

 Right - click on the BackgroundWorker component, and select Properties. Set the
 WorkerReportsProgress and WorkerSupportsCancellation properties to True so that the
component can report on the progress of the thread as well as be aborted halfway through the thread
(see Figure 10 - 14).

Figure 10-13

Figure 10-14

 Here is how the application works. The user enters a number in the TextBox control (txtNum) and clicks
the Start button. The application then sums all of the numbers from 0 to that number. The progress bar
at the bottom of the page displays the progress of the summation. The speed in which the progress
bar updates is dependent upon the number entered. For small numbers, the progress bar fills up very
quickly. To really see the effect of how summation works in a background thread, try a large number and
watch the progress bar update itself. Notice that the window is still responsive while the summation is
underway. To abort the summation process, click the Cancel button. Once the summation is done, the
result is printed on the Label control (lblResult).

c10.indd 316c10.indd 316 10/1/08 11:45:47 AM10/1/08 11:45:47 AM

317

Chapter 10: Threading

 Switch to the code behind of the Windows form to do the coding. When the Start button is clicked, you
first initialize some of the controls on the form. You then get the BackgroundWorker component to spin
off a separate thread by using the RunWorkAsync() method. You pass the number entered by the user as
the parameter for this method:

 private void btnStart_Click(object sender, EventArgs e)
 {
 lblResult.Text = string.Empty;
 btnCancel.Enabled = true;
 btnStart.Enabled = false;
 progressBar1.Value = 0;

 backgroundWorker1.RunWorkerAsync(txtNum.Text);
 }

 Now, double - click the BackgroundWorker control in design view to create the event handler for its
 DoWork event.

 private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
 {
 BackgroundWorker worker = (BackgroundWorker)sender;
 e.Result = SumNumbers(double.Parse(e.Argument.ToString()), worker, e);
 }

 The DoWork event of the BackgroundWorker component invokes the SumNumbers() function (which
you will define next) in a separate thread. This event is fired when you call the RunWorkerAsync()
method (as was done in the previous step).

 The DoWork event handler runs on a separate thread from the UI. Be sure not to
manipulate any Windows Forms controls created on the UI thread from this method.

 The SumNumbers() function basically sums up all the numbers from 0 to the number specified:

 private double SumNumbers(
 double number, BackgroundWorker worker, DoWorkEventArgs e)
 {
 int lastPercent = 0;
 double sum = 0;
 for (double i = 0; i < = number; i++)
 {
 //---check if user cancelled the process---
 if (worker.CancellationPending)
 {
 e.Cancel = true;
 }
 else
 {
 sum += i;
 if (i % 10 == 0)

(continued)

c10.indd 317c10.indd 317 10/1/08 11:45:48 AM10/1/08 11:45:48 AM

318

Part I: C# Fundamentals

 {
 int percentDone = (int)((i / number) * 100);
 //---update the progress bar if there is a change---
 if (percentDone > lastPercent)
 {
 worker.ReportProgress(percentDone);
 lastPercent = percentDone;
 }
 }
 }
 }
 return sum;
 }

 It takes in three arguments — the number to sum up to, the BackgroundWorker component, and the
 DoWorkEventArgs . Within the For loop, you check to see if the user has clicked the Cancel button (this
event is defined a little later in this chapter) by checking the value of the CancellationPending
property. If the user has canceled the process, set e.Cancel to True . After every 10 iterations, you
calculate the progress completed so far. If there is progress (when the current progress percentage is
greater than the last one recorded), you update the progress bar by calling the ReportProgress()
method of the BackgroundWorker component. Do not call the ReportProgress() method
unnecessarily because frequent calls to update the progress bar will freeze the UI of your application.

 It is important to note that in this method (which was invoked by the DoWork event), you cannot directly
access Windows controls because they are not thread - safe. Trying to do so will trigger a runtime error,
a useful feature in Visual Studio 2008.

 The ProgressChanged event is invoked whenever the ReportProgress() method is called. In this case,
you use it to update the progress bar. To generate the event handler for the ProgressChanged event,
switch to design view and look at the properties of the BackgroundWorker component. In the Properties
window, select the Events icon and double - click the ProgressChanged event (see Figure 10 - 15).

(continued)

Figure 10-15

c10.indd 318c10.indd 318 10/1/08 11:45:48 AM10/1/08 11:45:48 AM

319

Chapter 10: Threading

 Code the event handler for the ProgressChanged event as follows:

 private void backgroundWorker1_ProgressChanged(
 object sender, ProgressChangedEventArgs e)
 {
 //---updates the progress bar and label control---
 progressBar1.Value = e.ProgressPercentage;
 lblResult.Text = e.ProgressPercentage.ToString() + “%”;
 }

 Now double - click the RunWorkerCompleted event to generate its event handler:

 private void backgroundWorker1_RunWorkerCompleted(
 object sender, RunWorkerCompletedEventArgs e)
 {
 if (e.Error != null)
 MessageBox.Show(e.Error.Message);
 else if (e.Cancelled)
 MessageBox.Show(“Cancelled”);
 else
 {
 lblResult.Text = “Sum of 1 to “ +
 txtNum.Text + “ is “ + e.Result;
 }
 btnStart.Enabled = true;
 btnCancel.Enabled = false;
 }

 The RunWorkerCompleted event is fired when the thread (SumNumbers() , in this case) has completed
running. Here you print the result accordingly.

 Finally, when the user clicks the Cancel button, you cancel the process by calling the CancelAsync()
method:

 private void btnCancel_Click(object sender, EventArgs e)
 {
 //---Cancel the asynchronous operation---
 backgroundWorker1.CancelAsync();
 btnCancel.Enabled = false;
 }

c10.indd 319c10.indd 319 10/1/08 11:45:49 AM10/1/08 11:45:49 AM

320

Part I: C# Fundamentals

 Testing the Application
 To test the application, press F5, enter a large number (say, 9999999), and click the Start button.
The progress bar updating should begin updating. When the process is complete, the result is printed
in the Label control (see Figure 10 - 16).

Figure 10-16

 Summary
 This chapter explans the rationale for threading and how it can improve the responsiveness of your
applications. Threading is a complex topic and you need to plan carefully before using threads in
your application. For instance, you must identify the critical regions so that you can ensure that the different
threads accessing the critical region are synchronized. Finally, you saw that Windows Forms controls are
not thread - safe and that you need to use delegates when updating UI controls from another thread.

c10.indd 320c10.indd 320 10/1/08 11:45:50 AM10/1/08 11:45:50 AM

Files and Streams
At some stage in your development cycle, you need to store data on some persistent media so that
when the computer is restarted the data is still be available. In most cases, you either store the data
in a database or in files. A file is basically a sequence of characters stored on storage media such as
your hard disks, thumb drives, and so on. When you talk about files, you need to understand
another associated term — streams. A stream is a channel in which data is passed from one point
to another. In .NET, streams are divided into various types: file streams for files held on permanent
storage, network streams for data transferred across the network, memory streams for data stored
in internal storage, and so forth.

With streams, you can perform a wide range of tasks, including compressing and decompressing
data, serializing and deserializing data, and encrypting and decrypting data. This chapter examines:

Manipulating files and directories

How to quickly read and write data to files

The concepts of streams

Using the BufferedStream class to improve the performance of applications reading
from a stream

Using the FileStream class to read and write to files

Using the MemoryStream class to use the internal memory store as a buffer

Using the NetworkStream class for network programming

The various types of cryptographic classes available in .NET

Performing compressions and decompression on streams

Serializing and deserializing objects into binary and XML data

Working with Files and Directories
The System.IO namespace in the .NET Framework contains a wealth of classes that allow
synchronous and asynchronous reading and writing of data on streams and files. In the following
sections, you will explore the various classes for dealing with files and directories.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 321c11.indd 321 10/1/08 11:53:02 AM10/1/08 11:53:02 AM

322

Part I: C# Fundamentals

Working with Directories
The .NET Framework class library provides two classes for manipulating directories:

DirectoryInfo class

Directory class

The DirectoryInfo class exposes instance methods for dealing with directories while the Directory
class exposes static methods.

DirectoryInfo Class
The DirectoryInfo class provides various instance methods and properties for creating, deleting, and
manipulating directories. The following table describes some of the common methods you can use to
programmatically manipulate directories.

Method Description

Create Creates a directory.

CreateSubdirectory Creates a subdirectory.

Delete Deletes a directory.

GetDirectories Gets the subdirectories of the current
directory.

GetFiles Gets the file list from a directory.

And here are some of the common properties:

Properties Description

Exists Indicates if a directory exists.

Parent Gets the parent of the current directory.

FullName Gets the full path name of the directory.

CreationTime Gets or sets the creation time of current directory.

Refer to the MSDN documentation for a full list of methods and properties.

❑

❑

Remember to import the System.IO namespace when using the various classes in
the System.IO namespace.

c11.indd 322c11.indd 322 10/1/08 11:53:03 AM10/1/08 11:53:03 AM

Chapter 11: Files and Streams

323

To see how to use the DirectoryInfo class, consider the following example:

 static void Main(string[] args)
 {
 string path = @”C:\My Folder”;
 DirectoryInfo di = new DirectoryInfo(path);

 try
 {
 //---if directory does not exists---
 if (!di.Exists)
 {
 //---create the directory---
 di.Create(); //---c:\My Folder---

 //---creates subdirectories---
 di.CreateSubdirectory(“Subdir1”); //---c:\My Folder\Subdir1---
 di.CreateSubdirectory(“Subdir2”); //---c:\My Folder\Subdir2---
 }

 //---print out some info about the directory---
 Console.WriteLine(di.FullName);
 Console.WriteLine(di.CreationTime);

 //---get and print all the subdirectories---
 DirectoryInfo[] subDirs = di.GetDirectories();
 foreach (DirectoryInfo subDir in subDirs)
 Console.WriteLine(subDir.FullName);

 //---get the parent of C:\My folder---
 DirectoryInfo parent = di.Parent;
 if (parent.Exists)
 {
 //---prints out C:\---
 Console.WriteLine(parent.FullName);
 }

 //---creates C:\My Folder\Subdir3---
 DirectoryInfo newlyCreatedFolder =
 di.CreateSubdirectory(“Subdir3”);

 //---deletes C:\My Folder\Subdir3---
 newlyCreatedFolder.Delete();
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.ReadLine();
 }

c11.indd 323c11.indd 323 10/1/08 11:53:03 AM10/1/08 11:53:03 AM

324

Part I: C# Fundamentals

In this example, you first create an instance of the DirectoryInfo class by instantiating it with a path
(C:\My Folder). You check if the path exists by using the Exist property. If it does not exist, you create
the folder (C:\My Folder) and then create two subdirectories underneath it (Subdir1 and Subdir2).

Next, you print out the full pathname (using the FullName property) of the folder and its creation date
(using the CreationTime property). You then get all the subdirectories under C:\My Folder and display
their full pathnames. You can get the parent of the C:\My Folder using the Parent property.

Finally, you create a subdirectory named Subdir3 under C:\My Folder and pass a reference to the newly
created subdirectory to the newlyCreatedFolder object. You then delete the folder, using the Delete()
method.

Directory Class
The Directory class is similar to DirectoryInfo class. The key difference between is that Directory
exposes static members instead of instance members. The Directory class also exposes only methods —
no properties. Some of the commonly used methods are described in the following table.

Method Description

CreateDirectory Creates a subdirectory.

Delete Deletes a specified directory.

Exists Indicates if a specified path exists.

GetCurrentDirectory Gets the current working directory.

GetDirectories Gets the subdirectories of the specified path.

GetFiles Gets the file list from a specified directory.

SetCurrentDirectory Sets the current working directory.

Refer to the MSDN documentation for a full list of methods and properties.

Here’s the previous program using the DirectoryInfo class rewritten to use the Directory class:

 static void Main(string[] args)
 {
 string path = @”C:\My Folder”;
 try
 {
 //---if directory does not exists---
 if (!Directory.Exists(path))
 {
 //---create the directory---
 Directory.CreateDirectory(path);

 //---set the current directory to C:\My Folder---
 Directory.SetCurrentDirectory(path);

c11.indd 324c11.indd 324 10/1/08 11:53:04 AM10/1/08 11:53:04 AM

Chapter 11: Files and Streams

325

 //---creates subdirectories---
 //---c:\My Folder\Subdir1---
 Directory.CreateDirectory(“Subdir1”);
 //---c:\My Folder\Subdir2---
 Directory.CreateDirectory(“Subdir2”);
 }

 //---set the current directory to C:\My Folder---
 Directory.SetCurrentDirectory(path);

 //---print out some info about the directory---
 Console.WriteLine(Directory.GetCurrentDirectory());
 Console.WriteLine(Directory.GetCreationTime(path));

 //---get and print all the subdirectories---
 string[] subDirs = Directory.GetDirectories(path);
 foreach (string subDir in subDirs)
 Console.WriteLine(subDir);

 //---get the parent of C:\My folder---
 DirectoryInfo parent = Directory.GetParent(path);
 if (parent.Exists)
 {
 //---prints out C:\---
 Console.WriteLine(parent.FullName);
 }

 //---creates C:\My Folder\Subdir3---
 Directory.CreateDirectory(“Subdir3”);

 //---deletes C:\My Folder\Subdir3---
 Directory.Delete(“Subdir3”);
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

As you can see, most of the methods in the Directory class require you to specify the directory you are
working with. If you like to specify the directory path by using relative path names, you need to set the
current working directory using the SetCurrentDirectory() method; if not, the default current
directory is always the location of your program. Also, notice that some methods (such as GetParent())
still return DirectoryInfo objects.

In general, if you are performing a lot of operations with directories, use the DirectoryInfo class.
Once it is instantiated, the object has detailed information about the directory you are currently working
on. In contrast, the Directory class is much simpler and is suitable if you are occasionally dealing
with directories.

c11.indd 325c11.indd 325 10/1/08 11:53:04 AM10/1/08 11:53:04 AM

326

Part I: C# Fundamentals

Working with Files Using the File and FileInfo Classes
The .NET Framework class library contains two similar classes for dealing with files — FileInfo and File.

The File class provides static methods for creating, deleting, and manipulating files, whereas the
FileInfo class exposes instance members for files manipulation.

Like the Directory class, the File class only exposes static methods and does not contain any
properties.

Consider the following program, which creates, deletes, copies, renames, and sets attributes in files,
using the File class:

 static void Main(string[] args)
 {
 string filePath = @”C:\temp\textfile.txt”;
 string fileCopyPath = @”C:\temp\textfile_copy.txt”;
 string newFileName = @”C:\temp\textfile_newcopy.txt”;

 try
 {
 //---if file already existed---
 if (File.Exists(filePath))
 {
 //---delete the file---
 File.Delete(filePath);
 }

 //---create the file again---
 FileStream fs = File.Create(filePath);
 fs.Close();

 //---make a copy of the file---
 File.Copy(filePath, fileCopyPath);

 //--rename the file---
 File.Move(fileCopyPath, newFileName);

 //---display the creation time---
 Console.WriteLine(File.GetCreationTime(newFileName));

 //---make the file read-only and hidden---
 File.SetAttributes(newFileName, FileAttributes.ReadOnly);
 File.SetAttributes(newFileName, FileAttributes.Hidden);
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

c11.indd 326c11.indd 326 10/1/08 11:53:04 AM10/1/08 11:53:04 AM

Chapter 11: Files and Streams

327

This program first checks to see if a file exists by using the Exists() method. If the file exists, the
program deletes it using the Delete() method. It then proceeds to create the file by using the Create()
method, which returns a FileStream object (more on this in subsequent sections). To make a copy of the
file, you use the Copy() method. The Move() method moves a file from one location to another.
Essentially, you can use the Move() method to rename a file. Finally, the program sets the ReadOnly and
Hidden attribute to the newly copied file.

In addition to the File class, you have the FileInfo class that provides instance members for dealing
with files. Once you have created an instance of the FileInfo class, you can use its members to obtain
more information about a particular file. Figure 11-1 shows the different methods and properties exposed
by an instance of the FileInfo class, such as the Attributes property, which retrieves the attributes of
a file, the Delete() method that allows you to delete a file, and so on.

Figure 11-1

Reading and Writing to Files
The File class contains four methods to write content to a file:

WriteAllText() — Creates a file, writes a string to it, and closes the file

AppendAllText() — Appends a string to an existing file

WriteAllLines() — Creates a file, writes an array of string to it, and closes the file

WriteAllBytes() — Creates a file, writes an array of byte to it, and closes the file

The following statements show how to use the various methods to write some content to a file:

 string filePath = @”C:\temp\textfile.txt”;
 string strTextToWrite = “This is a string”;
 string[] strLinesToWrite = new string[] { “Line1”, “Line2” };
 byte[] bytesToWrite =
 ASCIIEncoding.ASCII.GetBytes(“This is a string”);

 File.WriteAllText(filePath, strTextToWrite);
 File.AppendAllText(filePath, strTextToWrite);
 File.WriteAllLines(filePath, strLinesToWrite);
 File.WriteAllBytes(filePath,bytesToWrite);

❑

❑

❑

❑

c11.indd 327c11.indd 327 10/1/08 11:53:04 AM10/1/08 11:53:04 AM

328

Part I: C# Fundamentals

The File class also contains three methods to read contents from a file:

ReadAllText() — Opens a file, reads all text in it into a string, and closes the file

ReadAllLines() — Opens a file, reads all the text in it into a string array, and closes the file

ReadAllBytes() — Opens a file, reads all the content in it into a byte array, and closes the file

The following statements show how to use the various methods to read contents from a file:

 string filePath = @”C:\temp\textfile.txt”;
 string strTextToRead = (File.ReadAllText(filePath));
 string[] strLinestoRead = File.ReadAllLines(filePath);
 byte[] bytesToRead = File.ReadAllBytes(filePath);

The beauty of these methods is that you need not worry about opening and closing the file after reading
or writing to it; they close the file automatically after they are done.

StreamReader and StreamWriter Classes
When dealing with text files, you may also want to use the StreamReader and StreamWriter classes.
StreamReader is derived from the TextReader class, an abstract class that represents a reader that can
read a sequential series of characters.

You’ll see more about streams in the “The Stream Class” section later in this chapter.

The following code snippet uses the StreamReader class to read lines from a text file:

 try
 {
 using (StreamReader sr = new StreamReader(filePath))
 {
 string line;
 while ((line = sr.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

In addition to the ReadLine() method, the StreamReader class supports the following methods:

Read() — Reads the next character from the input stream

ReadBlock() — Reads a maximum of specified characters

ReadToEnd() — Reads from the current position to the end of the stream

❑

❑

❑

❑

❑

❑

c11.indd 328c11.indd 328 10/1/08 11:53:05 AM10/1/08 11:53:05 AM

Chapter 11: Files and Streams

329

The StreamWriter class is derived from the abstract TextWriter class and is used for writing characters
to a stream. The following code snippet uses the StreamWriter class to write lines to a text file:

 try
 {
 using (StreamWriter sw = new StreamWriter(filePath))
 {
 sw.Write(“Hello, “);
 sw.WriteLine(“World!”);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

BinaryReader and BinaryWriter Classes
If you are dealing with binary files, you can use the BinaryReader and BinaryWriter classes.
The following example reads binary data from one file and writes it into another, essentially making
a copy of the file:

 string filePath = @”C:\temp\VS2008Pro.png”;
 string filePathCopy = @”C:\temp\VS2008Pro_copy.png”;

 //---open files for reading and writing---
 FileStream fs1 = File.OpenRead(filePath);
 FileStream fs2 = File.OpenWrite(filePathCopy);

 BinaryReader br = new BinaryReader(fs1);
 BinaryWriter bw = new BinaryWriter(fs2);

 //---read and write individual bytes---
 for (int i = 0; i <= br.BaseStream.Length - 1; i++)
 bw.Write(br.ReadByte());

 //---close the reader and writer---
 br.Close();
 bw.Close();

This program first uses the File class to open two files — one for reading and one for writing.
The BinaryReader class is then used to read the binary data from the FileStream, and the
BinaryWriter is used to write the binary data to the file.

The BinaryReader class contains many different read methods for reading different types of data —
Read(), Read7BitEncodedInt(), ReadBoolean(), ReadByte(), ReadBytes(), ReadChar(),
ReadChars(), ReadDecimal(), ReadDouble(), ReadInt16(), ReadInt32(), ReadInt64(),
ReadSByte(), ReadSingle(), ReadString(), ReadUInt16(), ReadUInt32(), and ReadUInt64().

Creating a FileExplorer
Now that you have seen how to use the various classes to manipulate files and directories, let’s put them
to good use by building a simple file explorer that displays all the subdirectories and files within a
specified directory.

c11.indd 329c11.indd 329 10/1/08 11:53:05 AM10/1/08 11:53:05 AM

330

Part I: C# Fundamentals

The following program contains the PrintFoldersinCurrentDirectory() function, which
recursively traverses a directory’s subdirectories and prints out its contents:

 class Program
 {
 static string path = @”C:\Program Files\Microsoft Visual Studio 9.0\VC#”;
 static void Main(string[] args)
 {
 DirectoryInfo di = new DirectoryInfo(path);
 Console.WriteLine(di.FullName);
 PrintFoldersinCurrentDirectory(di, -1);
 Console.ReadLine();
 }

 private static void PrintFoldersinCurrentDirectory(
 DirectoryInfo directory, int level)
 {
 level++;

 //---print all the subdirectories in the current directory---
 foreach (DirectoryInfo subDir in directory.GetDirectories())
 {
 for (int i = 0; i <= level * 3; i++)
 Console.Write(“ “);
 Console.Write(“|__”);

 //---display subdirectory name---
 Console.WriteLine(subDir.Name);

 //---display all the files in the subdirectory---
 FileInfo[] files = subDir.GetFiles();
 foreach (FileInfo file in files)
 {
 //---display the spaces---
 for (int i = 0; i <= (level+1) * 3; i++)
 Console.Write(“ “);

 //---display filename---
 Console.WriteLine(“* “ + file.Name);
 }

 //---explore its subdirectories recursively---
 PrintFoldersinCurrentDirectory(subDir, level);
 }
 }
 }

Figure 11-2 shows the output of the program.

c11.indd 330c11.indd 330 10/1/08 11:53:05 AM10/1/08 11:53:05 AM

Chapter 11: Files and Streams

331

The Stream Class
A stream is an abstraction of a sequence of bytes. The bytes may come from a file, a TCP/IP socket, or
memory. In .NET, a stream is represented, aptly, by the Stream class. The Stream class provides a
generic view of a sequence of bytes.

The Stream class forms the base class of all other streams, and it is also implemented by the following
classes:

BufferedStream — Provides a buffering layer on another stream to improve performance

FileStream — Provides a way to read and write files

MemoryStream — Provides a stream using memory as the backing store

NetworkStream — Provides a way to access data on the network

CryptoStream — Provides a way to supply data for cryptographic transformation

Streams fundamentally involve the following operations:

❑ Reading

❑ Writing

❑ Seeking

❑

❑

❑

❑

❑

❑

Figure 11-2

The Stream class is defined in the System.IO namespace. Remember to import that
namespace when using the class.

c11.indd 331c11.indd 331 10/1/08 11:53:06 AM10/1/08 11:53:06 AM

332

Part I: C# Fundamentals

The following code copies the content of one binary file and writes it into another using the Stream
class:

 try
 {
 const int BUFFER_SIZE = 8192;
 byte[] buffer = new byte[BUFFER_SIZE];
 int bytesRead;

 string filePath = @”C:\temp\VS2008Pro.png”;
 string filePath_backup = @”C:\temp\VS2008Pro_bak.png”;

 Stream s_in = File.OpenRead(filePath);
 Stream s_out = File.OpenWrite(filePath_backup);

 while ((bytesRead = s_in.Read(buffer, 0, BUFFER_SIZE)) > 0)
 {
 s_out.Write(buffer, 0, bytesRead);
 }
 s_in.Close();
 s_out.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

This first opens a file for reading using the static OpenRead() method from the File class. In addition,
it opens a file for writing using the static OpenWrite() method. Both methods return a FileStream
object.

While the OpenRead() and OpenWrite() methods return a FileStream object, you can actually
assign the returning type to a Stream object because the FileStream object inherits from the
Stream object.

To copy the content of one file into another, you use the Read() method from the Stream class and read
the content from the file into an byte array. Read() returns the number of bytes read from the stream
(in this case the file) and returns 0 if there are no more bytes to read. The Write() method of the Stream
class writes the data stored in the byte array into the stream (which in this case is another file). Finally,
you close both the Stream objects.

In addition to the Read() and Write() methods, the Stream object supports the following methods:

ReadByte() — Reads a byte from the stream and advances the position within the stream by
one byte, or returns -1 if at the end of the stream

WriteByte() — Writes a byte to the current position in the stream and advances the position
within the stream by 1 byte

Seek() — Sets the position within the current stream

❑

❑

❑

c11.indd 332c11.indd 332 10/1/08 11:53:06 AM10/1/08 11:53:06 AM

Chapter 11: Files and Streams

333

The following example writes some text to a text file, closes the file, reopens the file, seeks to the fourth
position in the file, and reads the next six bytes:

 try
 {
 const int BUFFER_SIZE = 8192;
 string text = “The Stream class is defined in the System.IO namespace.”;
 byte[] data = ASCIIEncoding.ASCII.GetBytes(text);
 byte[] buffer = new byte[BUFFER_SIZE];
 string filePath = @”C:\temp\textfile.txt”;

 //---writes some text to file---
 Stream s_out = File.OpenWrite(filePath);
 s_out.Write(data, 0, data.Length);
 s_out.Close();

 //---opens the file for reading---
 Stream s_in = File.OpenRead(filePath);

 //---seek to the fourth position---
 s_in.Seek(4, SeekOrigin.Begin);

 //---read the next 6 bytes---
 int bytesRead = s_in.Read(buffer, 0, 6);
 Console.WriteLine(ASCIIEncoding.ASCII.GetString(buffer, 0, bytesRead));

 s_in.Close();
 s_out.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

BufferedStream
To improve its performance, the BufferedStream class works with another Stream object. For instance,
the previous example used a buffer size of 8192 bytes when reading from a text file. However, that size
might not be the ideal size to yield the optimum performance from your computer. You can use the
BufferedStream class to let the operating system determine the optimum buffer size for you. While
you can still specify the buffer size to fill up your buffer when reading data, your buffer will now be
filled by the BufferedStream class instead of directly from the stream (which in the example is from a
file). The BufferedStream class fills up its internal memory store in the size that it determines is the
most efficient.

c11.indd 333c11.indd 333 10/1/08 11:53:06 AM10/1/08 11:53:06 AM

334

Part I: C# Fundamentals

The BufferedStream class is ideal when you are manipulating large streams. The following shows
how the previous example can be speeded up using the BufferedStream class:

 try
 {
 const int BUFFER_SIZE = 8192;
 byte[] buffer = new byte[BUFFER_SIZE];
 int bytesRead;

 string filePath = @”C:\temp\VS2008Pro.png”;
 string filePath_backup = @”C:\temp\VS2008Pro_bak.png”;

 Stream s_in = File.OpenRead(filePath);
 Stream s_out = File.OpenWrite(filePath_backup);

 BufferedStream bs_in = new BufferedStream(s_in);
 BufferedStream bs_out = new BufferedStream(s_out);

 while ((bytesRead = bs_in.Read(buffer, 0, BUFFER_SIZE)) > 0)
 {
 bs_out.Write(buffer, 0, bytesRead);
 }
 bs_out.Flush();
 bs_in.Close();
 bs_out.Close();

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

You use a BufferedStream object over a Stream object, and all the reading and writing is then done via
the BufferedStream objects.

The FileStream Class
The FileStream class is designed to work with files, and it supports both synchronous and
asynchronous read and write operations. Earlier, you saw the use of the Stream object to read and write
to file. Here is the same example using the FileStream class:

 try
 {
 const int BUFFER_SIZE = 8192;
 byte[] buffer = new byte[BUFFER_SIZE];
 int bytesRead;

 string filePath = @”C:\temp\VS2008Pro.png”;
 string filePath_backup = @”C:\temp\VS2008Pro_bak.png”;

 FileStream fs_in = File.OpenRead(filePath);
 FileStream fs_out = File.OpenWrite(filePath_backup);

c11.indd 334c11.indd 334 10/1/08 11:53:07 AM10/1/08 11:53:07 AM

Chapter 11: Files and Streams

335

 while ((bytesRead = fs_in.Read(buffer, 0, BUFFER_SIZE)) > 0)
 {
 fs_out.Write(buffer, 0, bytesRead);
 }

 fs_in.Dispose();
 fs_out.Dispose();
 fs_in.Close();
 fs_out.Close();

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

If the size of the file is large, this program will take a long time because it uses the blocking Read()
method. A better approach would be to use the asynchronous read methods BeginRead() and
EndRead().

BeginRead() starts an asynchronous read from a FileStream object. Every BeginRead() method
called must be paired with the EndRead() method, which waits for the pending asynchronous read
operation to complete. To read from the stream synchronously, you call the BeginRead() method as
usual by providing it with the buffer to read, the offset to begin reading, size of buffer, and a call back
delegate to invoke when the read operation is completed. You can also provide a custom object to
distinguish different asynchronous operations (for simplicity you just pass in null here):

 IAsyncResult result =
 fs_in.BeginRead(buffer, 0, BUFFER_SIZE,
 new AsyncCallback(readCompleted), null);

The following program shows how you can copy the content of a file into another asynchronously:

 class Program
 {
 static FileStream fs_in;
 static FileStream fs_out;
 const int BUFFER_SIZE = 8192;
 static byte[] buffer = new byte[BUFFER_SIZE];

 static void Main(string[] args)
 {
 try
 {
 string filePath = @”C:\temp\VS2008Pro.png”;
 string filePath_backup = @”C:\temp\VS2008Pro_bak.png”;

 //---open the files for reading and writing---
 fs_in = File.OpenRead(filePath);
 fs_out = File.OpenWrite(filePath_backup);

 Console.WriteLine(“Copying file...”);
 (continued)

c11.indd 335c11.indd 335 10/1/08 11:53:07 AM10/1/08 11:53:07 AM

336

Part I: C# Fundamentals

 //---begin to read asynchronously---
 IAsyncResult result =
 fs_in.BeginRead(buffer, 0, BUFFER_SIZE,
 new AsyncCallback(readCompleted), null);

 //---continue with the execution---
 for (int i = 0; i < 100; i++)
 {
 Console.WriteLine(“Continuing with the execution...{0}”, i);
 System.Threading.Thread.Sleep(250);
 }
 }
 catch (Exception ex)
 {

 Console.WriteLine(ex.ToString());
 }
 Console.ReadLine();
 }

 //---when a block of data is read---
 static void readCompleted(IAsyncResult result)
 {
 //---simulate slow reading---
 System.Threading.Thread.Sleep(500);

 //---reads the data---
 int bytesRead = fs_in.EndRead(result);

 //---writes to another file---
 fs_out.Write(buffer, 0, bytesRead);

 if (bytesRead > 0)
 {
 //---continue reading---
 result =
 fs_in.BeginRead(buffer, 0, BUFFER_SIZE,
 new AsyncCallback(readCompleted), null);
 }
 else
 {
 //---reading is done!---
 fs_in.Dispose();
 fs_out.Dispose();
 fs_in.Close();
 fs_out.Close();
 Console.WriteLine(“File copy done!”);
 }
 }

 }

(continued)

c11.indd 336c11.indd 336 10/1/08 11:53:07 AM10/1/08 11:53:07 AM

Chapter 11: Files and Streams

337

Because the reading may happen so fast for a small file, you can insert Sleep() statements to simulate
reading a large file. Figure 11-3 shows the output.

Figure 11-3

MemoryStream
Sometimes you need to manipulate data in memory without resorting to saving it in a file. A good
example is the PictureBox control in a Windows Form. For instance, you have a picture displayed in
the PictureBox control and want to send the picture to a remote server, say a Web Service. The
PictureBox control has a Save() method that enables you to save the image to a Stream object.

Instead of saving the image to a FileStream object and then reloading the data from the file into a byte
array, a much better way would be to use a MemoryStream object, which uses the memory as a backing
store (which is more efficient compared to performing file I/O; file I/O is relatively slower).

The following code shows how the image in the PictureBox control is saved into a MemoryStream object:

 //---create a MemoryStream object---
 MemoryStream ms1 = new MemoryStream();

 //---save the image into a MemoryStream object---
 pictureBox1.Image.Save(ms1, System.Drawing.Imaging.ImageFormat.Jpeg);

To extract the image stored in the MemoryStream object and save it to a byte array, use the Read()
method of the MemoryStream object:

 //---read the data in ms1 and write to buffer---
 ms1.Position = 0;
 byte[] buffer = new byte[ms1.Length];
 int bytesRead = ms1.Read(buffer, 0, (int)ms1.Length);

c11.indd 337c11.indd 337 10/1/08 11:53:08 AM10/1/08 11:53:08 AM

338

Part I: C# Fundamentals

With the data in the byte array, you can now proceed to send the data to the Web Service.To verify that
the data stored in the byte array is really the image in the PictureBox control, you can load it back to
another MemoryStream object and then display it in another PictureBox control, like this:

 //---read the data in buffer and write to ms2---
 MemoryStream ms2 = new MemoryStream();
 ms2.Write(buffer,0,bytesRead);

 //---load it in another PictureBox control---
 pictureBox2.Image = new Bitmap(ms2);

NetworkStream Class
The NetworkStream class provides methods for sending and receiving data over Stream sockets in
blocking mode. Using the NetworkStream class is more restrictive than using most other Stream
implementations. For example, the CanSeek() properties of the NetworkStream class are not supported
and always return false. Similarly, the Length() and Position() properties throw
NotSupportedException. It is not possible to perform a Seek() operation, and the SetLength()
method also throws NotSupportedException.

Despite these limitations, the NetworkStream class has made network programming very easy and
encapsulates much of the complexity of socket programming. Developers who are familiar with streams
programming can use the NetworkStream class with ease.

This section leads you through creating a pair of socket applications to illustrate how the
NetworkStream class works. The server will listen for incoming TCP clients and send back to the client
whatever it receives.

Building a Client-Server Application
The following code is for the server application:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Net.Sockets;

namespace Server
{
 class Program
 {
 const int PORT_NO = 5000;
 const string SERVER_IP = “127.0.0.1”;

 static void Main(string[] args)
 {
 //---listen at the specified IP and port no.---
 IPAddress localAdd = IPAddress.Parse(SERVER_IP);
 TcpListener listener = new TcpListener(localAdd, PORT_NO);
 Console.WriteLine(“Listening...”);

c11.indd 338c11.indd 338 10/1/08 11:53:09 AM10/1/08 11:53:09 AM

Chapter 11: Files and Streams

339

 listener.Start();

 //---incoming client connected---
 TcpClient client = listener.AcceptTcpClient();

 //---get the incoming data through a network stream---
 NetworkStream nwStream = client.GetStream();
 byte[] buffer = new byte[client.ReceiveBufferSize];

 //---read incoming stream---
 int bytesRead = nwStream.Read(buffer, 0, client.ReceiveBufferSize);

 //---convert the data received into a string---
 string dataReceived = Encoding.ASCII.GetString(buffer, 0, bytesRead);
 Console.WriteLine(“Received : “ + dataReceived);

 //---write back the text to the client---
 Console.WriteLine(“Sending back : “ + dataReceived);
 nwStream.Write(buffer, 0, bytesRead);

 client.Close();
 listener.Stop();
 Console.ReadLine();
 }
 }
}

Basically, you use the TcpListener class to listen for an incoming TCP connection. Once a connection is
made, you use a NetworkStream object to read data from the client, using the Read() method as well as
write data to the client by using the Write() method.

For the client, you use the TcpClient class to connect to the server using TCP and, as with the server,
you use the NetworkStream object to write and read data to and from the client:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Net.Sockets;

namespace Client
{
 class Program
 {
 const int PORT_NO = 5000;
 const string SERVER_IP = “127.0.0.1”;

 static void Main(string[] args)
 {
 //---data to send to the server---
 string textToSend = DateTime.Now.ToString();

 //---create a TCPClient object at the IP and port no.---

(continued)

c11.indd 339c11.indd 339 10/1/08 11:53:09 AM10/1/08 11:53:09 AM

340

Part I: C# Fundamentals

Figure 11-4

 TcpClient client = new TcpClient(SERVER_IP, PORT_NO);

 NetworkStream nwStream = client.GetStream();
 byte[] bytesToSend = ASCIIEncoding.ASCII.GetBytes(textToSend);

 //---send the text---
 Console.WriteLine(“Sending : “ + textToSend);
 nwStream.Write(bytesToSend, 0, bytesToSend.Length);

 //---read back the text---
 byte[] bytesToRead = new byte[client.ReceiveBufferSize];
 int bytesRead = nwStream.Read(bytesToRead, 0,
 client.ReceiveBufferSize);

 Console.WriteLine(“Received : “ +
 Encoding.ASCII.GetString(bytesToRead, 0, bytesRead));
 Console.ReadLine();

 client.Close();
 }
 }
}

Figure 11-4 shows how the server and client look like when you run both applications.

Building a Multi-User Server Application
The client-server applications built in the previous section can accept only a single client. A client
connects and sends some data to the server; the server receives it, sends the data back to the client, and
then exits. While this is a simple demonstration of a client-server application, it isn’t a very practical
application because typically a server should be able to handle multiple clients simultaneously and runs

(continued)

c11.indd 340c11.indd 340 10/1/08 11:53:10 AM10/1/08 11:53:10 AM

Chapter 11: Files and Streams

341

indefinitely. So let’s look at how you can extend the previous server so that it can handle multiple clients
simultaneously.

To do so, you can create a class named Client and code it as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;

namespace Server
{
 class Client
 {
 //---create a TCPClient object---
 TcpClient _client = null;

 //---for sending/receiving data---
 byte[] buffer;

 //---called when a client has connected---
 public Client(TcpClient client)
 {
 _client = client;
 //---start reading data asynchronously from the client---
 buffer = new byte[_client.ReceiveBufferSize];
 _client.GetStream().BeginRead(
 buffer, 0, _client.ReceiveBufferSize,
 receiveMessage, null);
 }

 public void receiveMessage(IAsyncResult ar)
 {
 int bytesRead;
 try
 {
 lock (_client.GetStream())
 {
 //---read from client---
 bytesRead = _client.GetStream().EndRead(ar);
 }

 //---if client has disconnected---
 if (bytesRead < 1)
 return;
 else
 {
 //---get the message sent---
 string messageReceived =
 ASCIIEncoding.ASCII.GetString(buffer, 0, bytesRead);
 Console.WriteLine(“Received : “ + messageReceived);
 (continued)

c11.indd 341c11.indd 341 10/1/08 11:53:10 AM10/1/08 11:53:10 AM

342

Part I: C# Fundamentals

 //---write back the text to the client---
 Console.WriteLine(“Sending back : “ + messageReceived);
 byte[] dataToSend =
 ASCIIEncoding.ASCII.GetBytes(messageReceived);
 _client.GetStream().Write(dataToSend, 0, dataToSend.Length);
 }

 //---continue reading from client---
 lock (_client.GetStream())
 {
 _client.GetStream().BeginRead(
 buffer, 0, _client.ReceiveBufferSize,
 receiveMessage, null);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 }
 }
}

Here, the constructor of the Client class takes in a TcpClient object and starts to read from it
asynchronously using the receiveMessage() method (via the BeginRead() method of the
NetworkStream object). Once the incoming data is read, the constructor continues to wait for more data.

To ensure that the server supports multiple users, you use a TcpListener class to listen for incoming
client connections and then use an infinite loop to accept new connections. Once a client is connected,
you create a new instance of the Client object and continue waiting for the next client. So the Main()
function of your application now looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Net.Sockets;

namespace Server
{
 class Program
 {
 const int PORT_NO = 5000;
 const string SERVER_IP = “127.0.0.1”;

 static void Main(string[] args)
 {
 //---listen at the specified IP and port no.---
 IPAddress localAddress = IPAddress.Parse(SERVER_IP);
 TcpListener listener = new TcpListener(localAddress, PORT_NO);
 Console.WriteLine(“Listening...”);
 listener.Start();

(continued)

c11.indd 342c11.indd 342 10/1/08 11:53:10 AM10/1/08 11:53:10 AM

Chapter 11: Files and Streams

343

 while (true)
 {
 //---incoming client connected---
 Client user = new Client(listener.AcceptTcpClient());
 }

 }
 }
}

Figure 11-5 shows the server with two clients connected to it.

Figure 11-5

Cryptography
The .NET framework contains a number of cryptography services that enable you to incorporate security
services into your .NET applications. These libraries are located under the System.Security
.Cryptography namespace and provide various functions such as encryption and decryption of data,
as well as other operations such as hashing and random-number generation. One of the core classes that
support the cryptographic services is the CryptoStream class, which links data streams to cryptographic
transformations.

This section explores how to use some of the common security APIs to make your .NET applications
more secure.

c11.indd 343c11.indd 343 10/1/08 11:53:10 AM10/1/08 11:53:10 AM

344

Part I: C# Fundamentals

Hashing
The most common security function that you will perform is hashing. Consider the situation where you
need to build a function to authenticate users before they can use your application. You would require
the user to supply a set of login credentials, generally containing a user name and a password. This login
information needs to be persisted to a database. Quite commonly, developers store the passwords of
users verbatim on a database. That’s a big security risk because hackers who get a chance to glance
at the users’ database would be able to obtain the passwords of your users. A better approach is to store
the hash values of the users’ passwords instead of the passwords themselves. A hashing algorithm has the
following properties:

It maps a string of arbitrary length to small binary values of a fixed length, known as a hash
value.

The hash value of a string is unique, and small changes in the original string will produce a
different hash value.

It is improbable that you’d find two different strings that produce the same hash value.

It is impossible to use the hash value to find the original string.

Then, when the user logs in to your application, the hash value of the password provided is compared
with the hash value stored in the database. In this way, even if hackers actually steal the users’ database,
the actual password is not exposed. One downside to storing the hash values of users’ passwords is that
in the event that a user loses her password, there is no way to retrieve it. You’d need to generate a new
password for the user and request that she change it immediately. But this inconvenience is a small price
to pay for the security of your application.

There are many hashing algorithms available in .NET, but the most commonly used are the SHA1 and
MD5 implementations. Let’s take a look at how they work in .NET.

Using Visual Studio 2008, create a new Console application project. Import the following namespaces:

using System.IO;
using System.Security.Cryptography;

Define the following function:

 static void Hashing_SHA1()
 {
 //---ask the user to enter a password---
 Console.Write(“Please enter a password: “);
 string password = Console.ReadLine();

 //---hash the password---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(password);
 byte[] passwordHash;
 SHA1CryptoServiceProvider sha = new SHA1CryptoServiceProvider();
 passwordHash = sha.ComputeHash(data);

 //---ask the user to enter the same password again---
 Console.Write(“Please enter password again: “);
 password = Console.ReadLine();

❑

❑

❑

❑

c11.indd 344c11.indd 344 10/1/08 11:53:11 AM10/1/08 11:53:11 AM

Chapter 11: Files and Streams

345

 //---hash the second password and compare it with the first---
 data = System.Text.Encoding.ASCII.GetBytes(password);

 if (ASCIIEncoding.ASCII.GetString(passwordHash) ==
 ASCIIEncoding.ASCII.GetString(sha.ComputeHash(data)))
 Console.WriteLine(“Same password”);
 else
 Console.WriteLine(“Incorrect password”);
 }

You first ask the user to enter a password, after which you will hash it using the SHA1 imple-
mentation. You then ask the user to enter the same password again. To verify that the second password
matches the first, you hash the second password and then compare the two hash values. For the SHA1
implementation, the hash value generated is 160 bits in length (the byte array passwordHash has
20 members: 8 bits × 20 = 160 bits). In this example, you convert the hash values into strings and perform
a comparison. You could also convert them to Base64 encoding and then perform a comparison.
Alternatively, you can also evaluate the two hash values by using their byte arrays, comparing them byte
by byte. As soon as one byte is different, you can conclude that the two hash values are not the same.

To test the function, simply call the Hashing_SHA1() function in Main():

 static void Main(string[] args)
 {
 Hashing_SHA1();
 Console.Read();
 }

Figure 11-6 shows the program in action.

Figure 11-6

You can also use the MD5 implementation to perform hashing, as the following function shows:

 static void Hashing_SHA1()
 {
 //---ask the user to enter a password---
 Console.Write(“Please enter a password: “);
 string password = Console.ReadLine();

 //---hash the password---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(password);
 byte[] passwordHash;

(continued)

c11.indd 345c11.indd 345 10/1/08 11:53:11 AM10/1/08 11:53:11 AM

346

Part I: C# Fundamentals

 MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider();
 passwordHash = md5.ComputeHash(data);

 //---ask the user to enter the same password again---
 Console.Write(“Please enter password again: “);
 password = Console.ReadLine();

 //---hash the second password and compare it with the first---
 data = System.Text.Encoding.ASCII.GetBytes(password);

 if (ASCIIEncoding.ASCII.GetString(passwordHash) ==

 ASCIIEncoding.ASCII.GetString(md5.ComputeHash(data)))

 Console.WriteLine(“Same password”);
 else
 Console.WriteLine(“Incorrect password”);
 }

The main difference is that the hash value for MD5 is 128 bits in length.

Salted Hash
With hashing, you simply store the hash value of a user’s password in the database. However, if two
users use identical passwords, the hash values for these two passwords will be also identical. Imagine a
hacker seeing that the two hash values are identical; it would not be hard for him to guess that the two
passwords must be the same. For example, users often like to use their own names or birth dates or
common words found in the dictionary as passwords. So, hackers often like to use dictionary attacks to
correctly guess users’ passwords. To reduce the chance of dictionary attacks, you can add a “salt” to the
hashing process so that no two identical passwords can generate the same hash values. For instance,
instead of hashing a user’s password, you hash his password together with his other information, such
as email address, birth date, last name, first name, and so on. The idea is to ensure that each user will
have a unique password hash value. While the idea of using the user’s information as a salt for the
hashing process sounds good, it is quite easy for hackers to guess. A better approach is to randomly
generate a number to be used as the salt and then hash it together with the user’s password.

The following function, Salted_Hashing_SHA1(), generates a random number using the
RNGCryptoServiceProvider class, which returns a list of randomly generated bytes (the salt). It then
combines the salt with the original password and performs a hash on it.

 static void Salted_Hashing_SHA1()
 {
 //---Random Number Generator---
 byte[] salt = new byte[8];

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
 rng.GetBytes(salt);

 //---ask the user to enter a password---
 Console.Write(“Please enter a password: “);
 string password = Console.ReadLine();

(continued)

c11.indd 346c11.indd 346 10/1/08 11:53:12 AM10/1/08 11:53:12 AM

Chapter 11: Files and Streams

347

 //---add the salt to the password---
 password += ASCIIEncoding.ASCII.GetString(salt);

 //---hash the password---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(password);
 SHA1CryptoServiceProvider sha = new SHA1CryptoServiceProvider();
 byte[] passwordHash;
 passwordHash = sha.ComputeHash(data);

 //---ask the user to enter the same password again---
 Console.Write(“Please enter password again: “);
 password = Console.ReadLine();
 Console.WriteLine(ASCIIEncoding.ASCII.GetString(salt));

 //---adding the salt to the second password---
 password += ASCIIEncoding.ASCII.GetString(salt);

 //---hash the second password and compare it with the first---
 data = ASCIIEncoding.ASCII.GetBytes(password);
 if (ASCIIEncoding.ASCII.GetString(passwordHash) ==
 ASCIIEncoding.ASCII.GetString(sha.ComputeHash(data)))
 Console.WriteLine(“Same password”);
 else
 Console.WriteLine(“Incorrect password”);
 }

If you use salted hash for storing passwords, the salt used for each password should be stored separately
from the main hash database so that hackers do not have a chance to obtain it easily.

Encryption and Decryption
Hashing is a one-way process, which means that once a value is hashed, you can’t obtain its original
value by reversing the process. This characteristic is particularly well suited for authentications as well
as digitally signing a document.

In reality, there are many situations that require information to be performed in a two-way process. For
example, to send a secret message to a recipient, you need to “scramble” it so that only the recipient can see
it. This process of scrambling is known as encryption. Undoing the scrambling process to obtain the original
message is known as decryption. There are two main types of encryption: symmetric and asymmetric.

Symmetric Encryption
Symmetric encryption is also sometimes known as private key encryption. You encrypt a secret message
using a key that only you know. To decrypt the message, you need to use the same key. Private key
encryption is effective only if the key can be kept a secret. If too many people know the key, its effectiveness
is reduced, and if the key’s secrecy is compromised somehow, then the message is no longer secure.

Despite the potential weakness of private key encryption, it is very easy to implement and,
computationally, it does not take up too many resources.

For private key encryption (symmetric), the .NET Framework supports the DES, RC2, Rijndael, and
TripleDES algorithms.

c11.indd 347c11.indd 347 10/1/08 11:53:12 AM10/1/08 11:53:12 AM

348

Part I: C# Fundamentals

To see how symmetric encryption works, you will use the RijndaelManaged class in the following
SymmetricEncryption() function. Three parameters are required — the string to be encrypted, the
private key, and the initialization vector (IV). The IV is a random number used in the encryption process
to ensure that no two strings will give the same cipher text (the encrypted text) after the encryption
process. You will need the same IV later on when decrypting the cipher text.

To perform the actual encryption, you initialize an instance of the CryptoStream class with a
MemoryStream object, the cryptographic transformation to perform on the stream, and the mode of the
stream (Write for encryption and Read for decryption):

 static string SymmetricEncryption(string str, byte[] key, byte[] IV)
 {
 MemoryStream ms = new MemoryStream();
 try
 {
 //---creates a new instance of the RijndaelManaged class---
 RijndaelManaged RMCrypto = new RijndaelManaged();

 //---creates a new instance of the CryptoStream class---
 CryptoStream cryptStream =
 new CryptoStream(
 ms, RMCrypto.CreateEncryptor(key, IV),
 CryptoStreamMode.Write);

 StreamWriter sWriter = new StreamWriter(cryptStream);

 //---encrypting the string---
 sWriter.Write(str);
 sWriter.Close();
 cryptStream.Close();

 //---return the encrypted data as a string---
 return System.Convert.ToBase64String(ms.ToArray());
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return (String.Empty);
 }
 }

The encrypted string is returned as a Base64-encoded string. You can check the allowable key sizes
for the RijndaelManaged class by using the following code:

 KeySizes[] ks;
 RijndaelManaged RMCrypto = new RijndaelManaged();
 ks = RMCrypto.LegalKeySizes;

 //---print out the various key sizes---
 Console.WriteLine(ks[0].MaxSize); // 256
 Console.WriteLine(ks[0].MinSize); // 128
 Console.WriteLine(ks[0].SkipSize); // 64

The valid key sizes are: 16 bytes (128 bit), 24 bytes (128 bits + 64 bits), and 32 bytes (256 bits).

c11.indd 348c11.indd 348 10/1/08 11:53:12 AM10/1/08 11:53:12 AM

Chapter 11: Files and Streams

349

You can get the system to generate a random key and IV (which you need to supply in the current
example) automatically:

 //---generate key---
 RMCrypto.GenerateKey();
 byte[] key = RMCrypto.Key;
 Console.WriteLine(“Key : “ + System.Convert.ToBase64String(key));

 //---generate IV---
 RMCrypto.GenerateIV();
 byte[] IV = RMCrypto.IV;
 Console.WriteLine(“IV : “ + System.Convert.ToBase64String(IV));

If the IV is null when it is used, the GenerateIV() method is called automatically. Valid size for the IV is
16 bytes.

To decrypt a string encrypted using the RijndaelManaged class, you can use the following
SymmetricDecryption() function:

 static string SymmetricDecryption(string str, byte[] key, byte[] IV)
 {
 try
 {
 //---converts the encrypted string into a byte array---
 byte[] b = System.Convert.FromBase64String(str);

 //---converts the byte array into a memory stream for decryption---
 MemoryStream ms = new MemoryStream(b);

 //---creates a new instance of the RijndaelManaged class---
 RijndaelManaged RMCrypto = new RijndaelManaged();

 //---creates a new instance of the CryptoStream class---
 CryptoStream cryptStream =
 new CryptoStream(
 ms, RMCrypto.CreateDecryptor(key, IV),
 CryptoStreamMode.Read);

 //---decrypting the stream---
 StreamReader sReader = new StreamReader(cryptStream);

 //---converts the decrypted stream into a string---
 String s = sReader.ReadToEnd();
 sReader.Close();

 return s;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return String.Empty;
 }
 }

c11.indd 349c11.indd 349 10/1/08 11:53:12 AM10/1/08 11:53:12 AM

350

Part I: C# Fundamentals

The following code snippet shows how to use the SymmetricEncryption() and
SymmetricDecryption() functions to encrypt and decrypt a string:

 RijndaelManaged RMCrypto = new RijndaelManaged();

 //---generate key---
 RMCrypto.GenerateKey();
 byte[] key = RMCrypto.Key;
 Console.WriteLine(“Key : “ + System.Convert.ToBase64String(key));

 //---generate IV---
 RMCrypto.GenerateIV();
 byte[] IV = RMCrypto.IV;
 Console.WriteLine(“IV : “ + System.Convert.ToBase64String(IV));

 //---encrypt the string---
 string cipherText =
 SymmetricEncryption(“This is a test string.”, key, IV);
 Console.WriteLine(“Ciphertext: “ + cipherText);

 //---decrypt the string---
 Console.WriteLine(“Original string: “ +
 SymmetricDecryption(cipherText, key, IV));

Figure 11-7 shows the output.

Figure 11-7

Asymmetric Encryption
Private key encryption requires the key used in the encryption process to be kept a secret. A more
effective way to transport secret messages to your intended recipient is to use asymmetric encryption
(also known as public key encryption), which involves a pair of keys involved. This pair, consisting of a
private key and a public key, is related mathematically such that messages encrypted with the public key
can only be decrypted with the corresponding private key. The reverse is also true; messages encrypted
with the private key can only be decrypted with the public key. Let’s see an example for each scenario.

Before you send a message to your friend Susan, Susan needs to generate the key pair containing the
private key and the public key. Susan then freely distributes the public key to you (and all her other
friends) but keeps the private key to herself. When you want to send a message to Susan, you use her
public key to encrypt the message. Upon receiving the encrypted message, Susan proceeds to decrypt it
with her private key. Susan is the only one who can decrypt the message because the key pair works in
such a way that only messages encrypted with the public key can be decrypted with the private key.
And there is no need to exchange keys, thus eliminating the risk of compromising the secrecy of the key.

c11.indd 350c11.indd 350 10/1/08 11:53:13 AM10/1/08 11:53:13 AM

Chapter 11: Files and Streams

351

Now suppose that Susan sends a message encrypted with her private key to you. To decrypt the
message, you need the public key. The scenario may seem odd because the public key is not a secret;
everyone knows it. But using this method guarantees that the message has not been tampered with and
confirms that it indeed comes from Susan. If the message had been modified, you would not be able to
decrypt it. The fact that you can decrypt the message using the public key proves that the message has
not been modified.

In computing, public key cryptography is a secure way to encrypt information, but it’s computationally
expensive because it is time-consuming to generate the key pairs and to perform encryption and
decryption. Therefore, it’s generally used only for encrypting a small amount of sensitive information.

For public key (asymmetric) encryptions, the .NET Framework supports the DSA and RSA algorithms.
The RSA algorithm is used in the following AsymmetricEncryption() function. This function takes in
two parameters: the string to be encrypted and the public key:

 static string AsymmetricEncryption(string str, string publicKey)
 {
 try
 {
 //---Creates a new instance of RSACryptoServiceProvider---
 RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();

 //---Loads the public key---
 RSA.FromXmlString(publicKey);

 //---Encrypts the string---
 byte[] encryptedStr =
 RSA.Encrypt(ASCIIEncoding.ASCII.GetBytes(str), false);

 //---Converts the encrypted byte array to string---
 return System.Convert.ToBase64String(encryptedStr);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return String.Empty;
 }
 }

The encrypted string is returned as a Base64-encoded string. To decrypt a string encrypted with the
public key, define the following AsymmetricDecryption() function. It takes in two parameters
(the encrypted string and the private key) and returns the decrypted string.

 static string AsymmetricDecryption(string str, string privateKey)
 {
 try
 {
 //---Creates a new instance of RSACryptoServiceProvider---
 RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();

 //---Loads the private key---
 RSA.FromXmlString(privateKey);
 (continued)

c11.indd 351c11.indd 351 10/1/08 11:53:13 AM10/1/08 11:53:13 AM

352

Part I: C# Fundamentals

 //---Decrypts the string---
 byte[] DecryptedStr =
 RSA.Decrypt(System.Convert.FromBase64String(str), false);

 //---Converts the decrypted byte array to string---
 return ASCIIEncoding.ASCII.GetString(DecryptedStr);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return String.Empty;
 }
 }

The following code snippet shows how to use the AsymmetricEncryption() and
AsymmetricDecryption() functions to encrypt and decrypt a string:

 string publicKey, privateKey;
 RSACryptoServiceProvider RSA =
 new RSACryptoServiceProvider();

 //---get public key---
 publicKey = RSA.ToXmlString(false);
 Console.WriteLine(“Public key: “ + publicKey);
 Console.WriteLine();

 //---get private and public key---
 privateKey = RSA.ToXmlString(true);
 Console.WriteLine(“Private key: “ + privateKey);
 Console.WriteLine();

 //---encrypt the string---
 string cipherText =
 AsymmetricEncryption(“C# 2008 Programmer’s Reference”, publicKey);
 Console.WriteLine(“Ciphertext: “ + cipherText);
 Console.WriteLine();

 //---decrypt the string---
 Console.WriteLine(“Original string: “ +
 AsymmetricDecryption(cipherText, privateKey));
 Console.WriteLine();

You can obtain the public and private keys generated by the RSA algorithm by using the
ToXmlString() method from the RSACryptoServiceProvider class. This method takes in a Bool
variable, and returns a public key if the value false is supplied. If the value true is supplied, it returns
both the private and public keys.

Figure 11-8 shows the output.

(continued)

c11.indd 352c11.indd 352 10/1/08 11:53:13 AM10/1/08 11:53:13 AM

Chapter 11: Files and Streams

353

Compressions for Stream Objects
The System.IO.Compression namespace contains classes that provide basic compression and
decompression services for streams. This namespace contains two classes for data compression:
DeflateStream and GZipStream. Both support lossless compression and decompression and are
designed for dealing with streams.

Compression is useful for reducing the size of data. If you have huge amount of data to store in your
SQL database, for instance, you can save on disk space if you compress the data before saving it into a
table. Moreover, because you are now saving smaller blocks of data into your database, the time spent in
performing disk I/O is significantly reduced. The downside of compression is that it takes additional
processing power from your machine (and requires additional processing time), and you need to factor
in this additional time before deciding you want to use compression in your application.

Compression is extremely useful in cases where you need to transmit data over networks, especially
slow and costly networks such as General Packet Radio Service (GPRS).connections. In such cases, using
compression can drastically cut down the data size and reduce the overall cost of communication. Web
Services are another area where using compression can provide a great advantage because XML data can
be highly compressed.

But once you’ve decided the performance cost is worth it, you’ll need help deciphering the utilization of
these two compression classes, which is what this section is about.

Compression
The compression classes read data (to be compressed) from a byte array, compress it, and store the
results in a Stream object. For decompression, the compressed data stored in a Stream object is
decompressed and then stored in another Stream object.

Let’s see how you can perform compression. First, define the Compress() function, which takes in two
parameters: algo and data. The first parameter specifies which algorithm to use (GZip or Deflate),

Figure 11-8

c11.indd 353c11.indd 353 10/1/08 11:53:14 AM10/1/08 11:53:14 AM

354

Part I: C# Fundamentals

and the second parameter is a byte array that contains the data to compress. A MemoryStream object will
be used to store the compressed data. The compressed data stored in the MemoryStream is then copied into
another byte array and returned to the calling function. The Compress() function is defined as follows:

 static byte[] Compress(string algo, byte[] data)
 {
 try
 {
 //---the ms is used for storing the compressed data---
 MemoryStream ms = new MemoryStream();
 Stream zipStream = null;
 switch (algo)
 {
 case “Gzip”: zipStream =
 new GZipStream(ms, CompressionMode.Compress, true);
 break;
 case “Deflat”: zipStream =
 new DeflateStream(ms, CompressionMode.Compress, true);
 break;
 default: return null;
 }

 //---compress the data stored in the data byte array---
 zipStream.Write(data, 0, data.Length);
 zipStream.Close();

 //---store the compressed data into a byte array---
 ms.Position = 0;
 byte[] c_data = new byte[ms.Length];

 //---read the content of the memory stream into the byte array---
 ms.Read(c_data, 0, (int)ms.Length);
 return c_data;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return null;
 }
 }

Decompression
The following Decompress() function decompresses the data compressed by the Compress()
fun ction. The first parameter specifies the algorithm to use, while the byte array containing the
compressed data is passed in as the second parameter, which is then copied into a MemoryStream object.

 static byte[] Decompress(string algo, byte[] data)
 {
 try
 {
 //---copy the data (compressed) into ms---
 MemoryStream ms = new MemoryStream(data);

c11.indd 354c11.indd 354 10/1/08 11:53:14 AM10/1/08 11:53:14 AM

Chapter 11: Files and Streams

355

 Stream zipStream = null;
 //---decompressing using data stored in ms---

 switch (algo)
 {
 case “Gzip”: zipStream =
 new GZipStream(ms, CompressionMode.Decompress, true);
 break;
 case “Deflat”: zipStream =
 new DeflateStream(ms, CompressionMode.Decompress, true);
 break;
 default: return null;
 }

 //---used to store the de-compressed data---
 byte[] dc_data;

 //---the de-compressed data is stored in zipStream;
 // extract them out into a byte array---
 dc_data = RetrieveBytesFromStream(zipStream, data.Length);

 return dc_data;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return null;
 }
 }

The compression classes then decompress the data stored in the memory stream and store the
decompressed data into another Stream object. To obtain the decompressed data, you need to read the
data from the Stream object. This is accomplished by the RetrieveBytesFromStream() function,
which is defined next:

 static byte[] RetrieveBytesFromStream(Stream stream, int bytesblock)
 {
 //---retrieve the bytes from a stream object---
 byte[] data = null;
 int totalCount = 0;
 try
 {
 while (true)
 {
 //---progressively increase the size of the data byte array---
 Array.Resize(ref data, totalCount + bytesblock);
 int bytesRead = stream.Read(data, totalCount, bytesblock);
 if (bytesRead == 0)
 {
 break;
 }
 totalCount += bytesRead;
 }
 (continued)

c11.indd 355c11.indd 355 10/1/08 11:53:14 AM10/1/08 11:53:14 AM

356

Part I: C# Fundamentals

 //---make sure the byte array contains exactly the number
 // of bytes extracted---
 Array.Resize(ref data, totalCount);
 return data;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 return null;
 }
 }

The RetrieveBytesFromStream() function takes in two parameters — a Stream object and an integer —
and returns a byte array containing the decompressed data. The integer parameter is used to determine
how many bytes to read from the stream object into the byte array at a time. This is necessary because you
do not know the exact size of the decompressed data in the stream object. And hence it is necessary to
dynamically expand the byte array in blocks to hold the decompressed data during runtime. Reserving too
large a block wastes memory, and reserving too small a block loses valuable time while you continually
expand the byte array. It is therefore up to the calling routine to determine the optimal block size to read.

The block size is the size of the compressed data (data.Length):

 //---the de-compressed data is stored in zipStream;
 // extract them out into a byte array---

 dc_data = RetrieveBytesFromStream(zipStream, data.Length);

In most cases, the uncompressed data is a few times larger than the compressed data, so you would at
most expand the byte array dynamically during runtime a couple of times. For instance, suppose that the
compression ratio is 20% and the size of the compressed data is 2MB. In that case, the uncompressed
data would be 10MB, and the byte array would be expanded dynamically five times. Ideally, the byte
array should not be expanded too frequently during runtime because it severely slows down the
application. Using the size of the compressed data as a block size is a good compromise.

Use the following statements to test the Compress() and Decompress() functions:

 static void Main(string[] args)
 {
 byte[] compressedData = Compress(“Gzip”,
 System.Text.Encoding.ASCII.GetBytes(
 “This is a uncompressed string”));
 Console.WriteLine(“Compressed: {0}”,
 ASCIIEncoding.ASCII.GetString(compressedData));
 Console.WriteLine(“Uncompressed: {0}”,
 ASCIIEncoding.ASCII.GetString(Decompress(“Gzip”, compressedData)));
 Console.ReadLine();
 }

The output is as shown in Figure 11-9.

(continued)

c11.indd 356c11.indd 356 10/1/08 11:53:15 AM10/1/08 11:53:15 AM

Chapter 11: Files and Streams

357

The compressed data contains some unprintable characters, so you may hear some beeps when it prints.
To display the compressed data using printable characters, you can define two helper functions —
byteArrayToString() and stringToByteArray():

 //---converts a byte array to a string---
 static string byteArrayToString(byte[] data)
 {
 //---copy the compressed data into a string for presentation---
 System.Text.StringBuilder s = new System.Text.StringBuilder();
 for (int i = 0; i <= data.Length - 1; i++)
 {
 if (i != data.Length - 1)
 s.Append(data[i] + “ “);
 else
 s.Append(data[i]);
 }
 return s.ToString();
 }

 //---converts a string into a byte array---
 static byte[] stringToByteArray(string str)
 {
 //---format the compressed string into a byte array---
 string[] eachByte = str.Split(‘ ‘);
 byte[] data = new byte[eachByte.Length];
 for (int i = 0; i <= eachByte.Length - 1; i++)
 data[i] = Convert.ToByte(eachByte[i]);
 return data;
 }

Figure 11-9

c11.indd 357c11.indd 357 10/1/08 11:53:15 AM10/1/08 11:53:15 AM

358

Part I: C# Fundamentals

To use the two helper functions, make the following changes to the statements:

 static void Main(string[] args)
 {
 byte[] compressedData = Compress(“Gzip”,
 System.Text.Encoding.ASCII.GetBytes(
 “This is a uncompressed string”));

 string compressedDataStr = byteArrayToString(compressedData);
 Console.WriteLine(“Compressed: {0}”, compressedDataStr);

 byte[] data = stringToByteArray(compressedDataStr);
 Console.WriteLine(“Uncompressed: {0}”,
 ASCIIEncoding.ASCII.GetString(Decompress(“Gzip”, data)));

 Console.ReadLine();
 }

Figure 11-10 shows the output when using the two helper functions.

Figure 11-10

Figure 11-11

Alternatively, you can also convert the compressed data to a Base64-encoded string, like this:

 byte[] compressedData = Compress(“Gzip”,
 System.Text.Encoding.ASCII.GetBytes(
 “This is a uncompressed string”));

 string compressedDataStr = Convert.ToBase64String(compressedData);

 Console.WriteLine(“Compressed: {0}”, compressedDataStr);

 byte[] data = Convert.FromBase64String((compressedDataStr));

 Console.WriteLine(“Uncompressed: {0}”,

 ASCIIEncoding.ASCII.GetString(Decompress(“Gzip”, data)));

Figure 11-11 shows the output using the base64 encoding.

c11.indd 358c11.indd 358 10/1/08 11:53:15 AM10/1/08 11:53:15 AM

Chapter 11: Files and Streams

359

Serialization
Many a time you may need to persist the value of an object to secondary storage. For example, you may
want to save the values of a couple of Point objects representing the positioning of an item on-screen to
secondary storage. The act of “flattening” an object into a serial form is known as serialization. The .NET
Framework supports binary and XML serialization.

Binary Serialization
Consider the following class, BookMark, which is used to stored information about web addresses and
their descriptions:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

namespace Serialization
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }

 class BookMark
 {
 private DateTime _dateCreated;
 public BookMark()
 {
 _dateCreated = DateTime.Now;
 }
 public DateTime GetDateCreated()
 {
 return _dateCreated;
 }
 public string URL { get; set; }
 public string Description { get; set; }
 public BookMark NextURL { get; set; }
 }

}

c11.indd 359c11.indd 359 10/1/08 11:53:15 AM10/1/08 11:53:15 AM

360

Part I: C# Fundamentals

The BookMark class contains properties as well as private variables. The NextURL property links multiple
BookMark objects, much like a linked list. Let’s now create two BookMark objects and link them:

 static void Main(string[] args)
 {

 BookMark bm1, bm2;

 bm1 = new BookMark
 {
 URL = “http://www.amazon.com”,
 Description = “Amazon.com Web site”
 };

 bm2 = new BookMark()
 {
 URL = “http://www.wrox.com”,
 Description = “Wrox.com Web site”,
 NextURL = null
 };

 //---link the first BookMark to the next---
 bm1.NextURL = bm2;

 }

You can serialize the objects into a binary stream by writing the Serialize() function:

 static void Main(string[] args)
 {
 //...
 }

 static MemoryStream Serialize(BookMark bookMark)
 {
 MemoryStream ms = new MemoryStream();
 FileStream fs = new FileStream(
 @”C:\Bookmarks.dat”,
 FileMode.Create,
 FileAccess.Write);

 BinaryFormatter formatter = new BinaryFormatter();
 //---serialize to memory stream---
 formatter.Serialize(ms, bookMark);
 ms.Position = 0;

 //---serialize to file stream---
 formatter.Serialize(fs, bookMark);
 return ms;
 }

For binary serialization, you need to import the System.Runtime.Serialization
.Formatters.Binary namespace.

c11.indd 360c11.indd 360 10/1/08 11:53:16 AM10/1/08 11:53:16 AM

Chapter 11: Files and Streams

361

The Serialize() function takes in a single parameter (the BookMark object to serialize) and returns a
MemoryStream object representing the serialized BookMark object. You use the BinaryFormatter class
from the System.Runtime.Serialization.Formatters.Binary namespace to serialize an object. One
side effect of this function is that it also serializes the BookMark object to file, using the FileStream class.

Before you serialize an object, you need to prefix the class that you want to serialize name with the
[Serializable] attribute:

 [Serializable]

 class BookMark
 {
 private DateTime _dateCreated;
 public BookMark()
 {
 _dateCreated = DateTime.Now;
 }
 public DateTime GetDateCreated()
 {
 return _dateCreated;
 }
 public string URL { get; set; }
 public string Description { get; set; }
 public BookMark NextURL { get; set; }
 }

The following statement serializes the bm1 BookMark object, using the Serialize() function:

 static void Main(string[] args)
 {
 BookMark bm1, bm2;

 bm1 = new BookMark
 {
 URL = “http://www.amazon.com”,
 Description = “Amazon.com Web site”
 };

 bm2 = new BookMark()
 {
 URL = “http://www.wrox.com”,
 Description = “Wrox.com Web site”,
 NextURL = null
 };

 //---link the first BookMark to the next---
 bm1.NextURL = bm2;

 //========Binary Serialization=========
 //---serializing an object graph into a memory stream---
 MemoryStream ms = Serialize(bm1);

 }

c11.indd 361c11.indd 361 10/1/08 11:53:16 AM10/1/08 11:53:16 AM

362

Part I: C# Fundamentals

To prove that the object is serialized correctly, you deserialize the memory stream (that is, “unflatten” the
data) and assign it back to a BookMark object:

 static void Main(string[] args)
 {
 BookMark bm1, bm2;

 bm1 = new BookMark
 {
 URL = “http://www.amazon.com”,
 Description = “Amazon.com Web site”
 };

 bm2 = new BookMark()
 {
 URL = “http://www.wrox.com”,
 Description = “Wrox.com Web site”,
 NextURL = null
 };

 //---link the first BookMark to the next---
 bm1.NextURL = bm2;

 //========Binary Serialization=========
 //---serializing an object graph into a memory stream---
 MemoryStream ms = Serialize(bm1);

 //---deserializing a memory stream into an object graph---
 BookMark bm3 = Deserialize(ms);

 }

Here is the definition for the DeSerialize() function:

 static void Main(string[] args)
 {
 //...
 }

 static MemoryStream Serialize(BookMark bookMark)
 {
 //...
 }

 static BookMark Deserialize(MemoryStream ms)
 {
 BinaryFormatter formatter = new BinaryFormatter();
 return (BookMark)formatter.Deserialize(ms);
 }

c11.indd 362c11.indd 362 10/1/08 11:53:16 AM10/1/08 11:53:16 AM

Chapter 11: Files and Streams

363

To display the values of the deserialized BookMark object, you can print out them out like this:

 static void Main(string[] args)
 {
 BookMark bm1, bm2;

 bm1 = new BookMark
 {
 URL = “http://www.amazon.com”,
 Description = “Amazon.com Web site”
 };

 bm2 = new BookMark()
 {
 URL = “http://www.wrox.com”,
 Description = “Wrox.com Web site”,
 NextURL = null
 };

 //---link the first BookMark to the next---
 bm1.NextURL = bm2;

 //========Binary Serialization=========
 //---serializing an object graph into a memory stream---
 MemoryStream ms = Serialize(bm1);

 //---deserializing a memory stream into an object graph---
 BookMark bm3 = Deserialize(ms);

 //---print out all the bookmarks---
 BookMark tempBookMark = bm3;
 do
 {
 Console.WriteLine(tempBookMark.URL);
 Console.WriteLine(tempBookMark.Description);
 Console.WriteLine(tempBookMark.GetDateCreated());
 Console.WriteLine(“---”);
 tempBookMark = tempBookMark.NextURL;
 } while (tempBookMark != null);

 Console.ReadLine();

 }

If the objects are serialized and deserialized correctly, the output is as shown in Figure 11-12.

Figure 11-12

c11.indd 363c11.indd 363 10/1/08 11:53:17 AM10/1/08 11:53:17 AM

364

Part I: C# Fundamentals

But what does the binary stream look like? To answer that question, take a look at the c:\BookMarks
.dat file that you have created in the process. To view the binary file, simply drag and drop the
BookMarks.dat file into Visual Studio 2008. You should see something similar to Figure 11-13.

Figure 11-13

A few observations are worth noting at this point:

Private variables and properties are all serialized. In binary serialization, both the private
variables and properties are serialized. This is known as deep serialization, as opposed to shallow
serialization in XML serialization (which only serializes the public variables and properties).
The next section discusses XML serialization.

Object graphs are serialized and preserved. In this example, two BookMark objects are linked,
and the serialization process takes care of the relationships between the two objects.

There are times when you do not want to serialize all of the data in your object. If you don’t want to
persist the date and time that the BookMark objects are created, for instance, you can prefix the variable
name (that you do not want to serialize) with the [NonSerialized] attribute:

 [Serializable]
 class BookMark
 {

 [NonSerialized]

 private DateTime _dateCreated;
 public BookMark()
 {
 _dateCreated = DateTime.Now;
 }
 public DateTime GetDateCreated()

❑

❑

c11.indd 364c11.indd 364 10/1/08 11:53:17 AM10/1/08 11:53:17 AM

Chapter 11: Files and Streams

365

 {
 return _dateCreated;
 }
 public string URL { get; set; }
 public string Description { get; set; }
 public BookMark NextURL { get; set; }
 }

The dateCreated variable will not be serialized. Figure 11-14 shows that when the dateCreated
variable is not serialized, its value is set to the default date when the object is deserialized.

Figure 11-14

XML Serialization
You can also serialize an object into an XML document. There are many advantages to XML serialization.
For instance, XML documents are platform-agnostic because they are in plain text format and that makes
cross-platform communication quite easy. XML documents are also easy to read and modify, which
makes XML a very flexible format for data representation.

The following example illustrates XML serialization and shows you some of its uses.

Defining a Sample Class
Let’s define a class so that you can see how XML serialization works. For this example, you define three
classes that allow you to store information about a person, such as name, address, and date of birth. Here
are the class definitions:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.VisualBasic;
using System.IO;
using System.Xml.Serialization;
using System.Xml;

namespace Serialization
{
 class Program
 {
 static void Main(string[] args)

(continued)

c11.indd 365c11.indd 365 10/1/08 11:53:17 AM10/1/08 11:53:17 AM

366

Part I: C# Fundamentals

 {
 }
 }

 public class Member
 {
 private int age;
 public MemberName Name;
 public MemberAddress[] Addresses;
 public DateTime DOB;
 public int currentAge
 {
 get
 {
 //---add a reference to Microsoft.VisualBasic.dll---
 age = (int)DateAndTime.DateDiff(
 DateInterval.Year, DOB,
 DateTime.Now,
 FirstDayOfWeek.System,
 FirstWeekOfYear.System);
 return age;
 }
 }
 }

 public class MemberName
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

 public class MemberAddress
 {
 public string Line1;
 public string Line2;
 public string City;
 public string Country;
 public string Postal;
 }

}

The various classes are deliberately designed to illustrate the various aspects of XML
serialization. They may not adhere to the best practices for defining classes.

(continued)

c11.indd 366c11.indd 366 10/1/08 11:53:17 AM10/1/08 11:53:17 AM

Chapter 11: Files and Streams

367

Here are the specifics for the classes:

The Member class contains both private and public members. It also contains a read-only
property.

The Member class contains a public array containing the address of a Member.

The Member class contains a variable of Date data type.

The MemberName class contains two properties.

The MemberAddress class contains only public members.

Serializing the Class
To serialize a Member object into a XML document, you can use the XMLSerializer class from the
System.Xml.Serialization namespace:

 static void Main(string[] args)
 {
 }

 //========XML Serialization=========
 static void XMLSerialize(Member mem)
 {
 StreamWriter sw = new StreamWriter(@”c:\Members.xml”);
 try
 {
 XmlSerializer s = new XmlSerializer(typeof(Member));
 s.Serialize(sw, mem);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 finally
 {
 sw.Close();
 }

 }

❑

❑

❑

❑

❑

For XML serialization, you need to import the System.Xml.Serialization namespace.

In the XMLSerialize() function, you first create a new StreamWriter object so that you can save the
serialized XML string to a file. The Serialize() method from the XMLSerializer class serializes
the Member object into an XML string, which is then written to file by using the StreamWriter class.

c11.indd 367c11.indd 367 10/1/08 11:53:18 AM10/1/08 11:53:18 AM

368

Part I: C# Fundamentals

To test the XMLSerialize() function, assume that you have the following object declarations:

 static void Main(string[] args)
 {

 MemberAddress address1 = new MemberAddress()
 {
 Line1 = “One Way Street”,
 Line2 = “Infinite Loop”,
 Country = “SINGAPORE”,
 Postal = “456123”
 };

 MemberAddress address2 = new MemberAddress()
 {
 Line1 = “Two Way Street”,
 Country = “SINGAPORE”,
 Postal = “456123”
 };

 Member m1 = new Member()
 {
 Name = new MemberName()
 {
 FirstName = “Wei-Meng”,
 LastName = “Lee”
 },
 DOB = Convert.ToDateTime(@”5/1/1972”),
 Addresses = new MemberAddress[] { address1, address2 }

 };
 }

To serialize the Member object, invoke the XMLSerialize() method like this:

 static void Main(string[] args)
 {
 MemberAddress address1 = new MemberAddress()
 {
 Line1 = “One Way Street”,
 Line2 = “Infinite Loop”,
 Country = “SINGAPORE”,
 Postal = “456123”
 };

 MemberAddress address2 = new MemberAddress()
 {
 Line1 = “Two Way Street”,
 Country = “SINGAPORE”,
 Postal = “456123”
 };

 Member m1 = new Member()
 {
 Name = new MemberName()
 {

c11.indd 368c11.indd 368 10/1/08 11:53:18 AM10/1/08 11:53:18 AM

Chapter 11: Files and Streams

369

 FirstName = “Wei-Meng”,
 LastName = “Lee”
 },
 DOB = Convert.ToDateTime(@”5/1/1972”),
 Addresses = new MemberAddress[] { address1, address2 }
 };

 XMLSerialize(m1);

 }

Figure 11-15 shows the XML document generated by the XMLSerialize() function.

Figure 11-15

As you can see, the object is serialized into an XML document with a format corresponding to the
structure of the object. Here are some important points to note:

The City information is not persisted in the XML document (nor as the Line2 in the second
Address element) because it was not assigned in the objects. You will see later how to persist
empty elements, even though a value is not assigned.

All read/write properties in the object are persisted in the XML document, except the read-only
currentAge property in the Member class.

Only public variables are persisted; private variables are not persisted in XML serialization.

The default name for each element in the XML document is drawn from the variable (or class)
name. In most cases this is desirable, but sometimes the element names might not be obvious.

❑

❑

❑

❑

c11.indd 369c11.indd 369 10/1/08 11:53:18 AM10/1/08 11:53:18 AM

370

Part I: C# Fundamentals

Deserializing the Class
To deserialize the XML document, simply use the Deserialize() method from the XMLSerializer
class. Define the XMLDeserialize() function as follows:

 static void Main(string[] args)
 {
 //...
 }

 //========XML Serialization=========
 static Member XMLDeserialize(string xmlFile)
 {
 Member obj;
 XmlReader xr = XmlReader.Create(xmlFile);
 try
 {
 XmlSerializer s = new XmlSerializer(typeof(Member));
 obj = (Member)s.Deserialize(xr);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 obj = null;
 }
 finally
 {
 xr.Close();
 }

 return obj;
 }

Here, you can use the XmlReader class’s Create() method to open an XML file for reading.
The XmlReader class is used to read the data from the XML file. The deserialized object is then returned
to the calling function.

Remember to import the System.Xml namespace for the XmlReader class.

To test the XMLDeserialize() function, call it directly after an object has been serialized, like this:

 static void Main(string[] args)
 {
 MemberAddress address1 = new MemberAddress()
 {
 Line1 = “One Way Street”,
 Line2 = “Infinite Loop”,
 Country = “SINGAPORE”,
 Postal = “456123”

c11.indd 370c11.indd 370 10/1/08 11:53:19 AM10/1/08 11:53:19 AM

Chapter 11: Files and Streams

371

 };

 MemberAddress address2 = new MemberAddress()
 {
 Line1 = “Two Way Street”,
 Country = “SINGAPORE”,
 Postal = “456123”
 };

 Member m1 = new Member()
 {
 Name = new MemberName()
 {
 FirstName = “Wei-Meng”,
 LastName = “Lee”
 },
 DOB = Convert.ToDateTime(@”5/1/1972”),
 Addresses = new MemberAddress[] { address1, address2 }
 };

 XMLSerialize(m1);

 Member m2 = XMLDeserialize(@”c:\Members.xml”);

 Console.WriteLine(“{0}, {1}”, m2.Name.FirstName, m2.Name.LastName);
 Console.WriteLine(“{0}”, m2.currentAge);
 foreach (MemberAddress a in m2.Addresses)
 {
 Console.WriteLine(“{0}”, a.Line1);
 Console.WriteLine(“{0}”, a.Line2);
 Console.WriteLine(“{0}”, a.Country);
 Console.WriteLine(“{0}”, a.Postal);
 Console.WriteLine();
 }
 Console.ReadLine();

 }

The output of these statements is shown in Figure 11-16.

Figure 11-16

c11.indd 371c11.indd 371 10/1/08 11:53:20 AM10/1/08 11:53:20 AM

372

Part I: C# Fundamentals

Customizing the Serialization Process
Despite the fairly automated task performed by the XMLSerializer object, you can customize the way
the XML document is generated. Here’s an example of how you can modify classes with a few attributes:

 [XmlRoot(“MemberInformation”,
 Namespace = “http://www.learn2develop.net”,
 IsNullable = true)]

 public class Member
 {
 private int age;

 //---specify the element name to be MemberName---
 [XmlElement(“MemberName”)]

 public MemberName Name;

 //---specify the sub-element(s) of Addresses to be Address---
 [XmlArrayItem(“Address”)]

 public MemberAddress[] Addresses;
 public DateTime DOB;
 public int currentAge
 {
 get
 {
 //---add a reference to Microsoft.VisualBasic.dll---
 age = (int)DateAndTime.DateDiff(
 DateInterval.Year, DOB,
 DateTime.Now,
 FirstDayOfWeek.System,
 FirstWeekOfYear.System);
 return age;
 }
 }
 }

 public class MemberName
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }

 public class MemberAddress
 {
 public string Line1;
 public string Line2;

 //---empty element if city is not specified---
 [XmlElement(IsNullable = true)]

 public string City;

 //---specify country and postal as attribute---
 [XmlAttributeAttribute()]

 public string Country;

c11.indd 372c11.indd 372 10/1/08 11:53:20 AM10/1/08 11:53:20 AM

Chapter 11: Files and Streams

373

 [XmlAttributeAttribute()]

 public string Postal;
 }

When the class is serialized again, the XML document will look like Figure 11-17.

Figure 11-17

Notice that the root element of the XML document is now <MemberInformation>. Also,
<MemberAddress> has now been changed to <Address>, and the <Country> and <Postal> elements
are now represented as attributes. Finally, the <City> element is always persisted regardless of whether
or not it has been assigned a value.

Here are the uses of each attribute:

 [XmlRoot(“MemberInformation”,
 Namespace = “http://www.learn2develop.net”,
 IsNullable = true)]

 public class Member
 {
 ...

 Sets the root element name of the XML document to MemberInformation (default element
name is Member, which follows the class name), with a specific namespace. The IsNullable
attribute indicates if empty elements must be displayed.

❑

c11.indd 373c11.indd 373 10/1/08 11:53:20 AM10/1/08 11:53:20 AM

374

Part I: C# Fundamentals

 //---specify the element name to be MemberName---

 [XmlElement(“MemberName”)]

 public MemberName Name;
 ...

 Specifies that the element name MemberName be used in place of the current variable name
(as defined in the class as Name).

 //---specify the sub-element(s) of Addresses to be Address---

 [XmlArrayItem(“Address”)]

 public MemberAddress[] Addresses;
 ...

 Specifies that the following variable is repeating (an array) and that each repeating element
be named as Address.

 //---empty element if city is not specified---

 [XmlElement(IsNullable = true)]

 public string City;
 ...

Indicates that the document must include the City element even if it is empty.

 //---specify country and postal as attribute---

 [XmlAttributeAttribute()]

 public string Country;

 [XmlAttributeAttribute()]

 public string Postal;
 ...

 Indicates that the Country and Postal property be represented as an attribute.

XML Serialization Needs a Default Constructor
There is one more thing that you need to note when doing XML serialization. If your class has a
constructor (as in the following example), you also need a default constructor:

 [XmlRoot(“MemberInformation”,
 Namespace = “http://www.learn2develop.net”,
 IsNullable = true)]
 public class Member
 {
 private int age;

❑

❑

❑

❑

c11.indd 374c11.indd 374 10/1/08 11:53:21 AM10/1/08 11:53:21 AM

Chapter 11: Files and Streams

375

 public Member(MemberName Name)
 {
 this.Name = Name;
 }

 //---specify the element name to be MemberName---
 [XmlElement(“MemberName”)]
 public MemberName Name;
 ...

This example results in an error when you try to perform XML serialization on it. To solve the problem,
simply add a default constructor to your class definition:

 [XmlRoot(“MemberInformation”,
 Namespace = “http://www.learn2develop.net”,
 IsNullable = true)]
 public class Member
 {
 private int age;

 public Member() { }

 public Member(MemberName Name)
 {
 this.Name = Name;
 }
 ...

Uses of XML Serialization
XML serialization can help you to preserve the state of your object (just like the binary serialization that
you saw in previous section) and makes transportation easy. More significantly, you can use XML
serialization to manage configuration files. You can define a class to store configuration information and
use XML serialization to persist it on file. By doing so, you have the flexibility to modify the
configuration information easily because the information is now represented in XML; at the same time,
you can programmatically manipulate the configuration information by accessing the object’s properties
and methods.

Summary
In this chapter, you explored the basics of files and streams and how to use the Stream object to perform
a wide variety of tasks, including network communication, cryptography, and compression. In addition,
you saw how to preserve the state of objects using XML and binary serialization. In the .NET
Framework, the Stream object is extremely versatile and its large number of derived classes is designed
to deal with specific tasks such as file I/O, memory I/O, network I/O, and so on.

c11.indd 375c11.indd 375 10/1/08 11:53:21 AM10/1/08 11:53:21 AM

c11.indd 376c11.indd 376 10/1/08 11:53:21 AM10/1/08 11:53:21 AM

 Exception Handling
 An exception is a situation that occurs when your program encounters an error that it is not
expecting during runtime. Examples of exceptions include trying to divide a number by zero,
trying to write to a file that is read - only, trying to delete a nonexistent file, and trying to access
more members of an array than it actually holds. Exceptions are part and parcel of an application,
and as a programmer you need to look out for them by handling the various exceptions that may
occur. That means your program must be capable of responding to the exceptions by offering some
ways to remedy the problem instead of exiting midway through your program (that is, crashing).

 Handling Exceptions
 To understand the importance of handling exceptions, consider the following case, a classic
example of dividing two numbers:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApp
{
 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2, result;

 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 result = num1 / num2;

(continued)

c12.indd 377c12.indd 377 10/1/08 11:53:47 AM10/1/08 11:53:47 AM

378

Part I: C# Fundamentals

 Console.WriteLine(“The result of {0}/{1} is {2}”, num1, num2, result);

 Console.ReadLine();
 }
 }
}

 In this example, there are several opportunities for exceptions to occur:

❑ If the user enters a noninteger value for num1 or num2 .

❑ If the user enters a non - numeric value for num1 and num2 .

❑ If num2 is zero, resulting in a division by zero error.

 Figure 12 - 1 shows the program halting abruptly when the user enters 3.5 for num1 .

(continued)

Figure 12-1

 Hence, you need to anticipate all the possible scenarios and handle the exceptions gracefully.

 Handling Exceptions Using the try - catch Statement
 In C#, you can use the try - catch statement to enclose a block of code statements that may potentially
cause exceptions to be raised. You enclose these statements within the catch block and that block to catch
the different types of exceptions that may occur.

 Using the previous example, you can enclose the statements that ask the user to input num1 and num2
and then performs the division within a catch block. You then use the catch block to catch possible
exceptions, like this:

 static void Main(string[] args)
 {
 int num1, num2, result;

 try
 {

c12.indd 378c12.indd 378 10/1/08 11:53:48 AM10/1/08 11:53:48 AM

Chapter 12: Exception Handling

379

 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 result = num1 / num2;
 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2, result);

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.ReadLine();
 }

 The Exception class is the base class for all exceptions; that is, it catches all the various types of
exceptions. The class contains the details of the exception that occurred, and includes a number
of properties that help identify the code location, the type, the help file, and the reason for the exception.
The following table describes these properties.

Property Description

Data Gets a collection of key/value pairs that provide additional user-defined
information about the exception.

HelpLink Gets or sets a link to the help file associated with this exception.

HResult Gets or sets HRESULT, a coded numerical value that is assigned to a
specific exception.

InnerException Gets the Exception instance that caused the current exception.

Message Gets a message that describes the current exception.

Source Gets or sets the name of the application or the object that causes the
error.

StackTrace Gets a string representation of the frames on the call stack at the time the
current exception was thrown.

TargetSite Gets the method that throws the current exception.

 In the preceding program, if you type in a numeric value for num1 and then an alphabetical character for
 num2 , the exception is caught and displayed like this:

Please enter the first number:6
Please enter the second number:a
Input string was not in a correct format.

c12.indd 379c12.indd 379 10/1/08 11:53:49 AM10/1/08 11:53:49 AM

380

Part I: C# Fundamentals

 If, though, you enter 0 for the second number, you get a different description for the error:

Please enter the first number:7
Please enter the second number:0
Attempted to divide by zero.

 Notice that two different types of exceptions are caught using the same Exception class. The
description of the exception is contained within the Message property of the Exception class.

 You can use the ToString() method of the Exception class to retrieve more details about the
exception, such as the description of the exception as well as the stack trace.

 However, there are cases where you would like to print your own custom error messages for the
different types of exceptions. Using the preceding code, you would not be able to do that — you would
need a much finer way to catch the different types of possible exceptions.

 To know the different types of exceptions that your program can cause (such as entering “ a ” for num1 or
division by zero), you can set a breakpoint at a line within the catch block and try entering different values.
When an exception is raised during runtime, IntelliSense tells you the error and the type of the exception
raised. Figure 12 - 2 shows that the FormatException exception is raised when you enter a for num1 .

Figure 12-2

 If you are not sure what type of exception your program is going to raise during runtime, it is always
safe to use the base Exception class. If not — if the exception that is raised does not match the exception
you are trying to catch — a runtime error will occur. Here ’ s an example:

 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);

c12.indd 380c12.indd 380 10/1/08 11:53:49 AM10/1/08 11:53:49 AM

Chapter 12: Exception Handling

381

 num2 = int.Parse(Console.ReadLine());

 result = num1 / num2;
 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2, result);
 }

 catch (DivideByZeroException ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.ReadLine();
 }

 If a division - by - zero exception occurs (entering 0 for num2), the exception is caught. However, if you
enter an alphabetic character for num1 or num2 , a FormatException exception is raised. And because
you are only catching the DivideByZeroException exception, this exception goes unhandled and a
runtime error results.

 Handling Multiple Exceptions
 To handle different types of exceptions, you can have one or more catch blocks in the try - catch
statement. The following example shows how you can catch three different exceptions:

❑ DivideByZeroException — Thrown when there is an attempt to divide an integral or decimal
value by zero.

❑ FormatException — Thrown when the format of an argument does not meet the parameter
specifications of the invoked method.

❑ Exception — Represents errors that occur during application execution.

 This example handles the three different exceptions and then prints out a custom error message:

 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 result = num1 / num2;
 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2, result);
 }

 catch (DivideByZeroException ex)
 {
 Console.WriteLine(“Division by zero error.”);
 }

(continued)

c12.indd 381c12.indd 381 10/1/08 11:53:49 AM10/1/08 11:53:49 AM

382

Part I: C# Fundamentals

 catch (FormatException ex)
 {
 Console.WriteLine(“Input error.”);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.ReadLine();
 }

 In this program, typing in a numeric value for num1 and an alphabetic character for num2 produces the
 FormatException exception, which is caught and displayed like this?

Please enter the first number:6
Please enter the second number:a
Input error.

 Entering 0 for the second number throws the DivideByZeroException exception, which is caught and
displays a different error message:

Please enter the first number:7
Please enter the second number:0
Division by zero error.

 So far, all the statements are located in the Main() function. What happens if you have a function called
 PerformDivision() that divides the two numbers and returns the result, like this?

 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine(“Division by zero error.”);
 }
 catch (FormatException ex)
 {

(continued)

c12.indd 382c12.indd 382 10/1/08 11:53:50 AM10/1/08 11:53:50 AM

Chapter 12: Exception Handling

383

 Console.WriteLine(“Input error.”);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

 private int PerformDivision(int num1, int num2)
 {
 return num1 / num2;
 }

 }

 If num2 is zero, an exception is raised within the PerformDivision() function. You can either catch
the exception in the PerformDivision() function or catch the exception in the calling function — Main()
in this case. When an exception is raised within the PerformDivision() function, the system searches
the function to see if there is any catch block for the exception. If none is found, the exception is passed
up the call stack and handled by the calling function. If there is no try - catch block in the calling function,
the exception continues to be passed up the call stack again until it is handled. If no more frames exist
in the call stack, the default exception handler handles the exception and your program has a runtime error.

 Throwing Exceptions Using the throw Statement
 Instead of waiting for the system to encounter an error and raise an exception, you can programmatically
raise an exception by throwing one. Consider the following example:

 private int PerformDivision(int num1, int num2)
 {

 if (num1 == 0) throw new ArithmeticException();
 if (num2 == 0) throw new DivideByZeroException();

 return num1 / num2;
 }

 In this program, the PerformDivision() function throws an ArithmeticException exception when
 num1 is zero and it throws a DivideByZeroException exception when num2 is zero. Because there is no
 catch block in PerformDivision() , the exception is handled by the calling Main() function. In
 Main() , you can catch the ArithmeticException exception like this:

 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);

(continued)

c12.indd 383c12.indd 383 10/1/08 11:53:50 AM10/1/08 11:53:50 AM

384

Part I: C# Fundamentals

 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }

 catch (ArithmeticException ex)
 {
 Console.WriteLine(“Numerator cannot be zero.”);
 }

 catch (DivideByZeroException ex)
 {
 Console.WriteLine(“Division by zero error.”);
 }
 catch (FormatException ex)
 {
 Console.WriteLine(“Input error”);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

 private int PerformDivision(int num1, int num2)
 {

 if (num1 == 0) throw new ArithmeticException();
 if (num2 == 0) throw new DivideByZeroException();

 return num1 / num2;
 }
 }

 One interesting thing about the placement of the multiple catch blocks is that you place all specific
exceptions that you want to catch first before placing generic ones. Because the Exception class is the
base of all exception classes, it should always be placed last in a catch block so that any exception that is
not caught in the previous catch blocks is always caught. In this example, when the
 ArithmeticException exception is placed before the DivideByZeroException exception, IntelliSense
displays an error (see Figure 12 - 3).

(continued)

Figure 12-3

c12.indd 384c12.indd 384 10/1/08 11:53:50 AM10/1/08 11:53:50 AM

Chapter 12: Exception Handling

385

 That ’ s because the DivideByZeroException is derived from the ArithmeticException class, so if
there is a division - by - zero exception, the exception is always handled by the ArithmeticException
exception and the DivideByZeroException exception is never caught. To solve this problem, you must
catch the DivideByZeroException exception first before catching the ArithmeticException
exception:

 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }

 catch (DivideByZeroException ex)
 {
 Console.WriteLine(“Division by zero error.”);
 }
 catch (ArithmeticException ex)
 {
 Console.WriteLine(“Numerator cannot be zero.”);
 }

 catch (FormatException ex)
 {
 Console.WriteLine(“Input error.”);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

 The following shows the output when different values are entered for num1 and num2 :

Please enter the first number:5
Please enter the second number:0
Division by zero error.

Please enter the first number:0
Please enter the second number:5
Numerator cannot be zero.

Please enter the first number:a
Input error.

c12.indd 385c12.indd 385 10/1/08 11:53:51 AM10/1/08 11:53:51 AM

386

Part I: C# Fundamentals

 Rethrowing Exceptions
 There are times when after catching an exception, you want to throw the same (or a new type) exception
back to the calling function after taking some corrective actions. Take a look at this example:

 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 Console.WriteLine(ex.InnerException.ToString());
 }

 Console.ReadLine();
 }

 private int PerformDivision(int num1, int num2)
 {

 try
 {
 return num1 / num2;
 }
 catch (DivideByZeroException ex)
 {
 throw new Exception(“Division by zero error.”, ex);
 }

 }
 }

 Here, the PerformDivision() function tries to catch the DivideByZeroException exception and once
it succeeds, it rethrows a new generic Exception exception, using the following statements with two
arguments:

 throw new Exception(“Division by zero error.”, ex);

c12.indd 386c12.indd 386 10/1/08 11:53:51 AM10/1/08 11:53:51 AM

Chapter 12: Exception Handling

387

 The first argument indicates the description for the exception to be thrown, while the second argument is
for the inner exception . The inner exception indicates the exception that causes the current exception.
When this exception is rethrown, it is handled by the catch block in the Main() function:

 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 Console.WriteLine(ex.InnerException.ToString());
 }

 To retrieve the source of the exception, you can check the InnerException property and print out its
details using the ToString() method. Here ’ s the output when num2 is zero:

Please enter the first number:5
Please enter the second number:0
Division by zero error.
System.DivideByZeroException: Attempted to divide by zero.
 at ConsoleApp.Program.PerformDivision(Int32 num1, Int32 num2) in C:\Documents
 and Settings\Wei-Meng Lee\My Documents\Visual Studio 2008\Projects\ConsoleApp\
ConsoleApp\Program.cs:line 43

 As you can see, the message of the exception is “ Division by zero error ” (set by yourself) and the
 InnerException property shows the real cause of the error — “ Attempted to divide by zero. ”

 Exception Chaining
 The InnerException property is of type Exception , and it can be used to store a list of previous
exceptions. This is known as exception chaining .

 To see how exception chaining works, consider the following program:

 class Program
 {
 static void Main(string[] args)
 {
 Program myApp = new Program();

 try
 {
 myApp.Method1();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 Console.WriteLine(ex.InnerException.ToString());
 }
 Console.ReadLine();
 }

 private void Method1()

(continued)

c12.indd 387c12.indd 387 10/1/08 11:53:51 AM10/1/08 11:53:51 AM

388

Part I: C# Fundamentals

 {
 try
 {
 Method2();
 }
 catch (Exception ex)
 {
 throw new Exception(
 “Exception caused by calling Method2() in Method1().”, ex);
 }
 }

 private void Method2()
 {
 try
 {
 Method3();
 }
 catch (Exception ex)
 {
 throw new Exception(
 “Exception caused by calling Method3() in Method2().”, ex);
 }
 }

 private void Method3()
 {
 try
 {
 int num1 = 5, num2 = 0;
 int result = num1 / num2;
 }
 catch (DivideByZeroException ex)
 {
 throw new Exception(“Division by zero error in Method3().”, ex);
 }
 }
 }

 In this program, the Main() function calls Method1() , which in turns calls Method2() . Method2() then
calls Method3() . In Method3() , a division - by - zero exception occurs and you rethrow a new Exception
exception by passing in the current exception (DividebyZeroException). This exception is caught by
 Method2() , which rethrows a new Exception exception by passing in the current exception.
 Method1() in turn catches the exception and rethrows a new Exception exception. Finally, the Main()
function catches the exception and prints out the result as shown in Figure 12 - 4 .

(continued)

c12.indd 388c12.indd 388 10/1/08 11:53:51 AM10/1/08 11:53:51 AM

Chapter 12: Exception Handling

389

 If you set a breakpoint in the catch block within the Main() function, you will see that the
 InnerException property contains details of each exception and that all the exceptions are chained via
the InnerException property (see Figure 12 - 5).

Figure 12-4

Figure 12-5

 Using Exception Objects
 Instead of - using the default description for each exception class you are throwing, you can customize
the description of the exception by creating an instance of the exception and then setting the Message
property. You can also specify the HelpLink property to point to a URL where developers can find more
information about the exception. For example, you can create a new instance of the
 ArithmeticException class using the following code:

 if (num1 == 0)
 {
 ArithmeticException ex =
 new ArithmeticException(“Value of num1 cannot be 0.”)
 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;
 }

c12.indd 389c12.indd 389 10/1/08 11:53:52 AM10/1/08 11:53:52 AM

390

Part I: C# Fundamentals

 Here ’ s how you can modify the previous program by customizing the various existing exception classes:

 class Program
 {
 static void Main(string[] args)
 {
 int num1, num2;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }
 catch (DivideByZeroException ex)
 {

 Console.WriteLine(ex.Message);

 }
 catch (ArithmeticException ex)
 {

 Console.WriteLine(ex.Message);

 }
 catch (FormatException ex)
 {

 Console.WriteLine(ex.Message);

 }
 catch (Exception ex)
 {

 Console.WriteLine(ex.Message);

 }
 Console.ReadLine();
 }

 private int PerformDivision(int num1, int num2)
 {

 if (num1 == 0)
 {
 ArithmeticException ex =
 new ArithmeticException(“Value of num1 cannot be 0.”)
 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;
 }

c12.indd 390c12.indd 390 10/1/08 11:53:52 AM10/1/08 11:53:52 AM

Chapter 12: Exception Handling

391

 if (num2 == 0)
 {
 DivideByZeroException ex =
 new DivideByZeroException(“Value of num2 cannot be 0.”)
 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;
 }

 return num1 / num2;
 }
 }

 Here ’ s the output when different values are entered for num1 and num2 :

Please enter the first number:0
Please enter the second number:5
Value of num1 cannot be 0.

Please enter the first number:5
Please enter the second number:0
Value of num2 cannot be 0.

 The finally Statement
 By now you know that you can use the try - catch block to enclose potentially dangerous code. This is
especially useful for operations such as file manipulation, user input, and so on. Consider the following
example:

 FileStream fs = null;
 try
 {
 //---opens a file for reading---
 fs = File.Open(@”C:\textfile.txt”,
 FileMode.Open, FileAccess.Read);

 //---tries to write some text into the file---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(“some text”);
 fs.Write(data, 0, data.Length);

 //---close the file---
 fs.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 //---an error will occur here---
 fs = File.Open(@”C:\textfile.txt”, FileMode.Open, FileAccess.Read);

c12.indd 391c12.indd 391 10/1/08 11:53:52 AM10/1/08 11:53:52 AM

392

Part I: C# Fundamentals

 Suppose that you have a text file named textfile.txt located in C:\. In this example program, you
first try to open the file for reading. After that, you try to write some text into the file, which causes an
exception because the file was opened only for reading. After the exception is caught, you proceed to
open the file again. However, this fails because the file is still open (the fs.Close() statement within
the try block is never executed because the line before it has caused an exception). In this case, you need
to ensure that the file is always closed — with or without an exception. For this, you can use the
 finally statement.

 The statement(s) enclosed within a finally block is always executed, regardless of whether an
exception occurs. The following program shows how you can use the finally statement to ensure that
the file is always closed properly:

 FileStream fs = null;
 try
 {
 //---opens a file for reading---
 fs = File.Open(@”C:\textfile.txt”,
 FileMode.Open, FileAccess.Read);

 //---tries to write some text into the file---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(“1234567890”);
 fs.Write(data, 0, data.Length);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 finally
 {
 //---close the file stream object---
 if (fs != null) fs.Close();
 }

 //---this will now be OK---
 fs = File.Open(@”C:\textfile.txt”, FileMode.Open, FileAccess.Read);

 One important thing about exception handling is that the system uses a lot of resources to raise an
exception; thus, you should always try to prevent the system from raising exceptions. Using the preceding
example, instead of opening the file and then writing some text into it, it would be a good idea to first check
whether the file is writable before proceeding to write into it. If the file is read - only, you simply inform the
user that the file is read - only. That prevents an exception from being raised when you try to write into it.

 The following shows how to prevent an exception from being raised:

 FileStream fs = null;
 try
 {
 //---opens a file for reading---
 fs = File.Open(@”C:\textfile.txt”,
 FileMode.Open, FileAccess.Read);

 //---checks to see if it is writeable---
 if (fs.CanWrite)

c12.indd 392c12.indd 392 10/1/08 11:53:53 AM10/1/08 11:53:53 AM

Chapter 12: Exception Handling

393

 {
 //---tries to write some text into the file---
 byte[] data = ASCIIEncoding.ASCII.GetBytes(“1234567890”);
 fs.Write(data, 0, data.Length);
 } else
 Console.WriteLine(“File is read-only”);

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 finally
 {
 //---close the file stream object---
 if (fs != null) fs.Close();
 }

 Creating Custom Exceptions
 The .NET class libraries provide a list of exceptions that should be sufficient for most of your uses, but
there may be times when you need to create your own custom exception class. You can do so by deriving
from the Exception class. The following is an example of a custom class named
 AllNumbersZeroException :

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

public class AllNumbersZeroException : Exception
{
 public AllNumbersZeroException()
 {
 }
 public AllNumbersZeroException(string message)
 : base(message)
 {
 }
 public AllNumbersZeroException(string message, Exception inner)
 : base(message, inner)
 {
 }
}

 To create your own custom exception class, you need to inherit from the Exception base class and
implement the three overloaded constructors for it.

c12.indd 393c12.indd 393 10/1/08 11:53:53 AM10/1/08 11:53:53 AM

394

Part I: C# Fundamentals

 The AllNumbersZeroException class contains three overloaded constructors that initialize the
constructor in the base class. To see how you can use this custom exception class, let ’ s take another look
at the program you have been using all along:

 static void Main(string[] args)
 {
 int num1, num2, result;
 try
 {
 Console.Write(“Please enter the first number:”);
 num1 = int.Parse(Console.ReadLine());

 Console.Write(“Please enter the second number:”);
 num2 = int.Parse(Console.ReadLine());

 Program myApp = new Program();

 Console.WriteLine(“The result of {0}/{1} is {2}”,
 num1, num2,
 myApp.PerformDivision(num1, num2));
 }

 catch (AllNumbersZeroException ex)
 {
 Console.WriteLine(ex.Message);
 }

 catch (DivideByZeroException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (ArithmeticException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (FormatException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 Console.ReadLine();
 }

 private int PerformDivision(int num1, int num2)
 {

 if (num1 == 0 & & num2 == 0)
 {
 AllNumbersZeroException ex =
 new AllNumbersZeroException(“Both numbers cannot be 0.”)

c12.indd 394c12.indd 394 10/1/08 11:53:53 AM10/1/08 11:53:53 AM

Chapter 12: Exception Handling

395

 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;

 }

 if (num1 == 0)
 {
 ArithmeticException ex =
 new ArithmeticException(“Value of num1 cannot be 0.”)
 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;
 }
 if (num2 == 0)
 {
 DivideByZeroException ex =
 new DivideByZeroException(“Value of num2 cannot be 0.”)
 {
 HelpLink = “http://www.learn2develop.net”
 };
 throw ex;
 }
 return num1 / num2;
 }

 This program shows that if both num1 and num2 are zero, the AllNumbersException exception is raised
with the custom message set.

 Here ’ s the output when 0 is entered for both num1 and num2 :

Please enter the first number:0
Please enter the second number:0
Both numbers cannot be 0.

 Summary
 Handling exceptions is part and parcel of the process of building a robust application, and you should
spend considerable effort in identifying code that is likely to cause an exception. Besides catching all the
exceptions defined in the .NET Framework, you can also define your own custom exception containing
your own specific error message.

c12.indd 395c12.indd 395 10/1/08 11:53:53 AM10/1/08 11:53:53 AM

c12.indd 396c12.indd 396 10/1/08 11:53:53 AM10/1/08 11:53:53 AM

 Arrays and Collections
 In programming, you often need to work with collections of related data. For example, you may
have a list of customers and you need a way to store their email addresses. In that case, you can
use an array to store the list of strings.

 In .NET, there are many collection classes that you can use to represent groups of data. In addition,
there are various interfaces that you can implement so that you can manipulate your own custom
collection of data.

 This chapter examines:

 Declaring and initializing arrays

 Declaring and using multidimensional arrays

 Declaring a parameter array to allow a variable number of parameters in a function

 Using the various System.Collections namespace interfaces

 Using the different collection classes (such as Dictionary, Stacks, and Queue) in .NET

 Arrays
 An array is an indexed collection of items of the same type. To declare an array, specify the type
with a pair of brackets followed by the variable name. The following statements declare three
array variables of type int , string , and decimal , respectively:

 int[] num;
 string[] sentences;
 decimal[] values;

 Array variables are actually objects. In this example, num , sentences , and values are objects
of type System.Array .

❑

❑

❑

❑

❑

c13.indd 397c13.indd 397 10/1/08 11:54:17 AM10/1/08 11:54:17 AM

Part I: C# Fundamentals

398

 These statements simply declare the three variables as arrays; the variables are not initialized yet, and at
this stage you do not know how many elements are contained within each array.

 To initialize an array, use the new keyword. The following statements declare and initialize three arrays:

 int[] num = new int[5];
 string[] sentences = new string[3];
 decimal[] values = new decimal[4];

 The num array now has five members, while the sentences array has three members, and the values
array has four. The rank specifier of each array (the number you indicate within the []) indicates the
number of elements contained in each array.

 You can declare an array and initialize it separately, as the following statements show:

 //---declare the arrays---
 int[] num;
 string[] sentences;
 decimal[] values;

 //---initialize the arrays with default values---
 num = new int[5];
 sentences = new string[3];
 values = new decimal[4];

 When you declare an array using the new keyword, each member of the array is initialized with the
default value of the type. For example, the preceding num array contains elements of value 0 . Likewise,
for the sentences string array, each of its members has the default value of null .

 To learn the default value of a value type, use the default keyword, like this:

 object x;
 x = default(int); //---0---
 x = default(char); //---0 ‘\0‘---
 x = default(bool); //---false---

 To initialize the array to some value other than the default, you use an initialization list. The number of
elements it includes must match the array ’ s rank specifier. Here ’ s an example:

 int[] num = new int[5] { 1, 2, 3, 4, 5 };
 string[] sentences = new string[3] {
 “C#”, “Programmers”, “Reference”
 };
 decimal[] values = new decimal[4] {1.5M, 2.3M, 0.3M,5.9M};

 Because the initialization list already contains the exact number of elements in the array, the rank
specifier can be omitted, like this:

 int[] num = new int[] { 1, 2, 3, 4, 5 };
 string[] sentences = new string[] {
 “C#”, “Programmers”, “Reference”
 };
 decimal[] values = new decimal[] {1.5M, 2.3M, 0.3M,5.9M};

c13.indd 398c13.indd 398 10/1/08 11:54:18 AM10/1/08 11:54:18 AM

Chapter 13: Arrays And Collections

399

 Use the new var keyword in C# to declare an implicitly typed array:

 var num = new [] { 1, 2, 3, 4, 5 };
 var sentences = new [] {
 “C#”, “Programmers”, “Reference”
 };
 var values = new [] {1.5M, 2.3M, 0.3M,5.9M};

 For more information on the var keyword, see Chapter 3 .

 In C#, arrays all derive from the abstract base class Array (in the System namespace) and have access to
all the properties and methods contained in that. In Figure 13 - 1 IntelliSense shows some of the properties
and methods exposed by the num array.

 Figure 13 - 1

 Figure 13 - 2

 That means you can use the Rank property to learn the dimension of an array. To find out how many
elements are contained within an array, you can use the Length property. The following statements
produce the output shown in Figure 13 - 2 .

 Console.WriteLine(“Dimension of num is {0}”, num.Rank);
 Console.WriteLine(“Number of elements in num is {0}”, num.Length);

 To sort an array, you can use the static Sort() method in the Array class:

 int[] num = new int[] { 5, 3, 1, 2, 4 };

 Array.Sort(num);

 foreach (int i in num)
 Console.WriteLine(i);

c13.indd 399c13.indd 399 10/1/08 11:54:18 AM10/1/08 11:54:18 AM

Part I: C# Fundamentals

400

 These statements print out the array in sorted order:

1
2
3
4
5

 Accessing Array Elements
 To access an element in an array, you specify its index, as shown in the following statements:

 int[] num = new int[5] { 1, 2, 3, 4, 5 };
 Console.WriteLine(num[0]); //---1---
 Console.WriteLine(num[1]); //---2---
 Console.WriteLine(num[2]); //---3---
 Console.WriteLine(num[3]); //---4---
 Console.WriteLine(num[4]); //---5---

 The index of an array starts from 0 to n - 1 . For example, num has size of 5 so the index runs from 0 to 4.

 You usually use a loop construct to run through the elements in an array. For example, you can use the
 for statement to iterate through the elements of an array:

 for (int i = 0; i < num.Length; i++)
 Console.WriteLine(num[i]);

 You can also use the foreach statement, which is a clean way to iterate through the elements of an array
quickly:

 foreach (int n in num)
 Console.WriteLine(n);

 Multidimensional Arrays
 So far the arrays you have seen are all one - dimensional ones. Arrays may also be multidimensional.
To declare a multidimensional array, you can the comma (,) separator. The following declares xy to be a
2 - dimensional array:

 int[,] xy;

 To initialize the two - dimensional array, you use the new keyword together with the size of the array:

 xy = new int[3,2];

c13.indd 400c13.indd 400 10/1/08 11:54:18 AM10/1/08 11:54:18 AM

Chapter 13: Arrays And Collections

401

 With this statement, xy can now contain six elements (three rows and two columns). To initialize xy with
some values, you can use the following statement:

 xy = new int[3, 2] { { 1, 2 }, { 3, 4 }, { 5, 6 } }; ;

 The following statement declares a three - dimensional array:

 int[, ,] xyz;

 To initialize it, you again use the new keyword together with the size of the array:

 xyz = new int[2, 2, 2];

 To initialize the array with some values, you can use the following:

 int[, ,] xyz;
 xyz = new int[,,] {
 { { 1, 2 }, { 3, 4 } },
 { { 5, 6 }, { 7, 8 } }
 };

 To access all the elements in the three - dimensional array, you can use the following code snippet:

 for (int x = xyz.GetLowerBound(0); x < = xyz.GetUpperBound(0); x++)
 for (int y = xyz.GetLowerBound(1); y < = xyz.GetUpperBound(1); y++)
 for (int z = xyz.GetLowerBound(2); z < = xyz.GetUpperBound(2); z++)
 Console.WriteLine(xyz[x, y, z]);

 The Array abstract base class contains the GetLowerBound() and GetUpperBound() methods to let
you know the size of an array. Both methods take in a single parameter, which indicates the dimension of
the array about which you are inquiring. For example, GetUpperBound(0) returns the size of the first
dimension, GetUpperBound(1) returns the size of the second dimension, and so on.

 You can also use the foreach statement to access all the elements in a multidimensional array:

 foreach (int n in xyz)
 Console.WriteLine(n);

 These statements print out the following:

1
2
3
4
5
6
7
8

c13.indd 401c13.indd 401 10/1/08 11:54:19 AM10/1/08 11:54:19 AM

Part I: C# Fundamentals

402

 Arrays of Arrays: Jagged Arrays
 An array ’ s elements can also contain arrays. An array of arrays is known as a jagged array . Consider the
following statements:

 Point[][] lines = new Point[5][];
 lines[0] = new Point[4];
 lines[1] = new Point[15];
 lines[2] = new Point[7];
 lines[3] = ...
 lines[4] = ...

 Here, lines is a jagged array. It has five elements and each element is a Point array. The first element is
an array containing four elements, the second contains 15 elements, and so on.

 The Point class represents an ordered pair of integer x - and y - coordinates that defines a point in a
two - dimensional plane.

 You can use the array initializer to initialize the individual array within the lines array, like this:

 Point[][] lines = new Point[3][];
 lines[0] = new Point[] {
 new Point(2, 3), new Point(4, 5)
 }; //---2 points in lines[0]---

 lines[1] = new Point[] {
 new Point(2, 3), new Point(4, 5) , new Point(6, 9)
 }; //---3 points in lines[1]---

 lines[2] = new Point[] {
 new Point(2, 3)
 }; //---1 point in lines[2]---

 To access the individual Point objects in the lines array, you first specify which Point array you
want to access, followed by the index for the elements in the Point array, like this:

 //---get the first point in lines[0]---
 Point ptA = lines[0][0]; //---(2,3)

 //---get the third point in lines[1]---
 Point ptB = lines[1][2]; //---(6,9)---

 A jagged array can also contain multidimensional arrays. For example, the following declaration declares
 nums to be a jagged array with each element pointing to a two - dimensional array:

 int[][,] nums = new int[][,]
 {
 new int[,] {{ 1, 2 }, { 3, 4 }},
 new int[,] {{ 5, 6 }, { 7, 8 }}
 };

c13.indd 402c13.indd 402 10/1/08 11:54:19 AM10/1/08 11:54:19 AM

Chapter 13: Arrays And Collections

403

 To access an individual element within the jagged array, you can use the following statements:

 Console.WriteLine(nums[0][0, 0]); //---1---
 Console.WriteLine(nums[0][0, 1]); //---2---
 Console.WriteLine(nums[0][1, 0]); //---3---
 Console.WriteLine(nums[0][1, 1]); //---4---
 Console.WriteLine(nums[1][0, 0]); //---5---
 Console.WriteLine(nums[1][0, 1]); //---6---
 Console.WriteLine(nums[1][1, 0]); //---7---
 Console.WriteLine(nums[1][1, 1]); //---8---

 Used on a jagged array, the Length property of the Array abstract base class returns the number of
arrays contained in the jagged array:

 Console.WriteLine(nums.Length); //---2---

 Parameter Arrays
 In C#, you can pass variable numbers of parameters into a function/method using a feature known as
 parameter arrays . Consider the following statements:

 string firstName = “Wei-Meng”;
 string lastName = “Lee”;
 Console.WriteLine(“Hello, {0}”, firstName);
 Console.WriteLine(“Hello, {0} {1}”, firstName, lastName);

 Observe that the last two statements contain different numbers of parameters. In fact, the WriteLine()
method is overloaded, and one of the overloaded methods has a parameter of type params (see
Figure 13 - 3). The params keyword lets you specify a method parameter that takes an argument where
the number of arguments is variable.

Figure 13-3

 A result of declaring the parameter type to be of params is that callers to the method do not need to
explicitly create an array to pass into the method. Instead, they can simply pass in a variable number of
parameters.

 To use the params type in your own function, you define a parameter with the params keyword:

 private void PrintMessage(string prefix, params string[] msg)
 {
 }

c13.indd 403c13.indd 403 10/1/08 11:54:19 AM10/1/08 11:54:19 AM

Part I: C# Fundamentals

404

 To extract the parameter array passed in by the caller, treat the params parameter like a normal array,
like this:

 private void PrintMessage(string prefix, params string[] msg)
 {
 foreach (string s in msg)
 Console.WriteLine(“{0} > {1}”, prefix, s);
 }

 When calling the PrintMessage() function, you can pass in a variable number of parameters:

 PrintMessage(“C# Part 1”, “Arrays”, “Index”, “Collections”);
 PrintMessage(“C# Part 2”, “Objects”, “Classes”);

 These statements generate the following output:

C# Part 1 > Arrays
C# Part 1 > Index
C# Part 1 > Collections
C# Part 2 > Objects
C# Part 2 > Classes

 Copying Arrays
 To copy from one array to another, use the Copy() method from the Array abstract base class:

 int[] num = new int[5] { 1, 2, 3, 4, 5 };
 int[] num1 = new int[5];
 num.CopyTo(num1, 0);

 These statements copy all the elements from the num array into the num1 array. The second parameter in
the CopyTo() method specifies the index in the array at which the copying begins.

 Collections Interfaces
 The System.Collections namespace contains several interfaces that define basic collection
functionalities:

A params parameter must always be the last parameter defined in a method
declaration.

c13.indd 404c13.indd 404 10/1/08 11:54:19 AM10/1/08 11:54:19 AM

Chapter 13: Arrays And Collections

405

 The interfaces described in the following list are the generic versions of the respective interfaces.
Beginning with C# 2.0, you should always try to use the generic versions of the interfaces for type safety.
Chapter 9 discusses the use of generics in the C# language.

 Interface Description

 IEnumerable < T > and
 IEnumerator < T >

 Enable you to loop through the elements in a collection.

 ICollection < T > Contains items in a collection and provides the functionality to copy
elements to an array. Inherits from IEnumerable < T > .

 IComparer < T > and
 IComparable < T >

 Enable you to compare objects in a collection.

 IList < T > Inherits from ICollection and provides functionality to allow
members to be accessed by index.

 IDictionary < K,V > Similar to IList < T > , but members are accessed by key value rather than
index.

 The ICollection < T > interface is the base interface for classes in the System.Collections namespace.

 Dynamic Arrays Using the ArrayList Class
 Arrays in C# have a fixed size once they are initialized. For example, the following defines a fixed - size
array of five integer elements:

 int[] num = new int[5];

 If you need to dynamically increase the size of an array during runtime, use the ArrayList class
instead. You use it like an array, but its size can be increased dynamically as required.

 The ArrayList class is located within the System.Collections namespace, so you need to import
that System.Collections namespace before you use it. The ArrayList class implements the IList
interface.

 To use the ArrayList class, you first create an instance of it:

 ArrayList arrayList = new ArrayList();

 Use the Add() method to add elements to an ArrayList object:

 arrayList.Add(“Hello”);
 arrayList.Add(25);
 arrayList.Add(new Point(3,4));
 arrayList.Add(3.14F);

 Notice that you can add elements of different types to an ArrayList object.

c13.indd 405c13.indd 405 10/1/08 11:54:20 AM10/1/08 11:54:20 AM

Part I: C# Fundamentals

406

 To access an element contained within an ArrayList object, specify the element ’ s index like this:

 Console.WriteLine(arrayList[0]); //---Hello---
 Console.WriteLine(arrayList[1]); //---25---
 Console.WriteLine(arrayList[2]); //---{X=3, Y=4}
 Console.WriteLine(arrayList[3]); //---3.14---

 The ArrayList object can contain elements of different types, so when retrieving items from an
 ArrayList object make sure that the elements are assigned to variables of the correct type. Elements
retrieved from an ArrayList object belong to Object type.

 You can insert elements to an ArrayList object using the Insert() method:

 arrayList.Insert(1, “ World!”);

 After the insertion, the ArrayList object now has five elements:

 Console.WriteLine(arrayList[0]); //---Hello---
 Console.WriteLine(arrayList[1]); //---World!---
 Console.WriteLine(arrayList[2]); //---25---
 Console.WriteLine(arrayList[3]); //---{X=3,Y=4}---
 Console.WriteLine(arrayList[4]); //---3.14---

 To remove elements from an ArrayList object, use the Remove() or RemoveAt() methods:

 arrayList.Remove(“Hello”);
 arrayList.Remove(“Hi”); //---cannot find item---
 arrayList.Remove(new Point(3, 4));
 arrayList.RemoveAt(1);

 After these statements run, the ArrayList object has only two elements:

 Console.WriteLine(arrayList[0]); //---World!---
 Console.WriteLine(arrayList[1]); //---3.14---

 If you try to remove an element that is nonexistent, no exception is raised (which is not very useful). It
would be good to use the Contains() method to check whether the element exists before attempting to
remove it:

 if (arrayList.Contains(“Hi”))
 arrayList.Remove(“Hi”);
 else
 Console.WriteLine(“Element not found.”);

 You can also assign the elements in an ArrayList object to an array using the ToArray() method:

 object[] objArray;
 objArray = arrayList.ToArray();

 foreach (object o in objArray)
 Console.WriteLine(o.ToString());

c13.indd 406c13.indd 406 10/1/08 11:54:20 AM10/1/08 11:54:20 AM

Chapter 13: Arrays And Collections

407

 Because the elements in the ArrayList can be of different types you must be careful handling them or
you run the risk of runtime exceptions. To work with data of the same type, it is more efficient to use the
generic equivalent of the ArrayList class — the List < T > class, which is type safe. To use the List < T >
class, you simply instantiate it with the type you want to use and then use the different methods
available just like in the ArrayList class:

 List < int > nums = new List < int > ();
 nums.Add(4);
 nums.Add(1);
 nums.Add(3);
 nums.Add(5);
 nums.Add(7);
 nums.Add(2);
 nums.Add(8);

 //---sorts the list---
 nums.Sort();

 //---prints out all the elements in the list---
 foreach (int n in nums)
 Console.WriteLine(n);

If you try to sort an ArrayList object containing elements of different types, you are
likely to run into an exception because the compiler may not be able to compare the
values of two different types.

 Indexers and Iterators
 Sometimes you may have classes that encapsulate an internal collection or array. Consider the following
 SpamPhraseList class:

 public class SpamPhraseList
 {
 protected string[] Phrases =
 new string[]{
 “pain relief”,”paxil”,”pharmacy”,”phendimetrazine”,
 “phentamine”,”phentermine”,”pheramones”,”pherimones”,
 “photos of singles”,”platinum-celebs”,”poker-chip”,
 “poze”,”prescription”,”privacy assured”,”product for less”,
 “products for less”,”protect yourself”,”psychic”
 };

 public string Phrase(int index)
 {
 if (index > = 0 & & index < Phrases.Length)
 return Phrases[index];
 else
 return string.Empty;
 }
 }

c13.indd 407c13.indd 407 10/1/08 11:54:20 AM10/1/08 11:54:20 AM

Part I: C# Fundamentals

408

 The SpamPhraseList class has a protected string array called Phrases . It also exposes the Phrase()
method, which takes in an index and returns an element from the string array:

 SpamPhraseList list = new SpamPhraseList();
 Console.WriteLine(list.Phrase(17)); //---psychic---

 Because the main purpose of the SpamPhraseList class is to return one of the phrases contained within
it, it might be more intuitive to access it more like an array, like this:

 SpamPhraseList list = new SpamPhraseList();
 Console.WriteLine(list[17]); //---psychic---

 In C#, you can use the indexer feature to make your class accessible just like an array. Using the
 SpamPhraseList class, you can use the this keyword to declare an indexer on the class:

 public class SpamPhraseList
 {
 protected string[] Phrases =
 new string[]{
 “pain relief”,”paxil”,”pharmacy”,”phendimetrazine”,
 “phentamine”,”phentermine”,”pheramones”,”pherimones”,
 “photos of singles”,”platinum-celebs”,”poker-chip”,
 “poze”,”prescription”,”privacy assured”,”product for less”,
 “products for less”,”protect yourself”,”psychic”
 };

 public string this[int index]
 {
 get
 {
 if (index > = 0 & & index < Phrases.Length)
 return Phrases[index];
 else
 return string.Empty;
 }
 set
 {
 if (index > = 0 & & index < Phrases.Length)
 Phrases[index] = value;
 }
 }

 }

 Once the indexer is added to the SpamPhraseList class, you can now access the internal array of string
just like an array, like this:

 SpamPhraseList list = new SpamPhraseList();
 Console.WriteLine(list[17]); //---psychic---

 Besides retrieving the elements from the class, you can also set a value to each individual element,
like this:

 list[17] = “psycho”;

c13.indd 408c13.indd 408 10/1/08 11:54:21 AM10/1/08 11:54:21 AM

Chapter 13: Arrays And Collections

409

 The indexer feature enables you to access the internal arrays of elements using array syntax, but you
cannot use the foreach statement to iterate through the elements contained within it. For example, the
following statements give you an error:

 SpamPhraseList list = new SpamPhraseList();
 foreach (string s in list) //---error---
 Console.WriteLine(s);

 To ensure that your class supports the foreach statement, you need to use a feature known as iterators .
Iterators enable you to use the convenient foreach syntax to step through a list of items in a class.
To create an iterator for the SpamPhraseList class, you only need to implement the GetEnumerator()
method, like this:

 public class SpamPhraseList
 {
 protected string[] Phrases =
 new string[]{
 “pain relief”,”paxil”,”pharmacy”,”phendimetrazine”,
 “phentamine”,”phentermine”,”pheramones”,”pherimones”,
 “photos of singles”,”platinum-celebs”,”poker-chip”,
 “poze”,”prescription”,”privacy assured”,”product for less”,
 “products for less”,”protect yourself”,”psychic”
 };

 public string this[int index]
 {
 get
 {
 if (index > = 0 & & index < Phrases.Length)
 return Phrases[index];
 else
 return string.Empty;
 }
 set
 {
 if (index > = 0 & & index < Phrases.Length)
 Phrases[index] = value;
 }
 }

 public IEnumerator < string > GetEnumerator()
 {
 foreach (string s in Phrases)
 {
 yield return s;
 }
 }

 }

 Within the GetEnumerator() method, you can use the foreach statement to iterate through all
the elements in the Phrases array and then use the yield keyword to return individual elements
in the array.

c13.indd 409c13.indd 409 10/1/08 11:54:21 AM10/1/08 11:54:21 AM

Part I: C# Fundamentals

410

 You can now iterate through the elements in a SpamPhraseList object using the foreach statement:

 SpamPhraseList list = new SpamPhraseList();
 foreach (string s in list)
 Console.WriteLine(s);

 Implementing IEnumerable < T > and IEnumerator < T >
 Besides using the iterators feature in your class to allow clients to step through its internal elements with
 foreach , you can make your class support the foreach statement by implementing the IEnumerable
and IEnumerator interfaces. The generic equivalents of these two interfaces are IEnumerable < T > and
 IEnumerator < T > , respectively.

Use the generic versions because they are type safe.

All the discussions from this point onward use the generic versions of the
IEnumerable and IEnumerator interfaces because they are type-safe.

 In .NET, all classes that enumerate objects must implement the IEnumerable (or the generic
 IEnumerable < T >) interface. The objects enumerated must implement the IEnumerator (or the
generic IEnumerable < T >) interface, which has the following members:

 Current — Returns the current element in the collection

 MoveNext() — Advances to the next element in the collection

 Reset() — Resets the enumerator to its initial position

 The IEnumerable interface has one member:

 GetEnumerator() — Returns the enumerator that iterates through a collection

❑

❑

❑

❑

 To understand how the IEnumerable < T > and IEnumerator < T > interfaces work, modify
 SpamPhraseList class to implement the IEnumerable < T > interface:

public class SpamPhraseList : IEnumerable < string >

{
 protected string[] Phrases =
 new string[]{
 “pain relief”,”paxil”,”pharmacy”,”phendimetrazine”,
 “phentamine”,”phentermine”,”pheramones”,”pherimones”,
 “photos of singles”,”platinum-celebs”,”poker-chip”,

c13.indd 410c13.indd 410 10/1/08 11:54:21 AM10/1/08 11:54:21 AM

Chapter 13: Arrays And Collections

411

 “poze”,”prescription”,”privacy assured”,”product for less”,
 “products for less”,”protect yourself”,”psychic”
 };

 //---for generic version of the class---
 public IEnumerator < string > GetEnumerator()
 {

 }

 //---for non-generic version of the class---
 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {

 }

 }

 Notice that for the generic version of the IEnumerable interface, you need to implement two versions
of the GetEnumerator() methods — one for the generic version of the class and one for the
nongeneric version.

 To ensure that the SpamPhraseList class can enumerate the strings contained within it, you define an
enumerator class within the SpamPhraseList class:

public class SpamPhraseList : IEnumerable < string >
{

 private class SpamPhrastListEnum : IEnumerator < string >
 {
 private int index = -1;
 private SpamPhraseList spamlist;

 public SpamPhrastListEnum(SpamPhraseList sl)
 {
 this.spamlist = sl;
 }

 //---for generic version of the class---
 string IEnumerator < string > .Current
 {
 get
 {
 return spamlist.Phrases[index];
 }
 }

 //---for non-generic version of the class---
 object System.Collections.IEnumerator.Current
 {
 get

(continued)

c13.indd 411c13.indd 411 10/1/08 11:54:22 AM10/1/08 11:54:22 AM

Part I: C# Fundamentals

412

 {
 return spamlist.Phrases[index];
 }
 }

 bool System.Collections.IEnumerator.MoveNext()
 {
 index++;
 return index < spamlist.Phrases.Length;
 }

 void System.Collections.IEnumerator.Reset()
 {
 index = -1;
 }

 void IDisposable.Dispose() { }
 }

 protected string[] Phrases =
 new string[]{
 “pain relief”,”paxil”,”pharmacy”,”phendimetrazine”,
 “phentamine”,”phentermine”,”pheramones”,”pherimones”,
 “photos of singles”,”platinum-celebs”,”poker-chip”,
 “poze”,”prescription”,”privacy assured”,”product for less”,
 “products for less”,”protect yourself”,”psychic”
 };

 public IEnumerator < string > GetEnumerator()
 {

 return new SpamPhrastListEnum(this);

 }

 //---for non-generic version of the class---
 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {

 return new SpamPhrastListEnum(this);

 }
}

 In this example, the SpamPhrastListEnum class implements the IEnumerator < string > interface and
provides the implementation for the Current property and the MoveNext() and Reset() methods.

 To print out all the elements contained within a SpamPhraseList object, you can use the same
statements that you used in the previous section:

 SpamPhraseList list = new SpamPhraseList();
 foreach (string s in list) //---error---
 Console.WriteLine(s);

(continued)

c13.indd 412c13.indd 412 10/1/08 11:54:22 AM10/1/08 11:54:22 AM

Chapter 13: Arrays And Collections

413

 Behind the scenes, the compiler is generating the following code for the foreach statement:

 SpamPhraseList list = new SpamPhraseList();

 IEnumerator < string > s = list.GetEnumerator();
 while (s.MoveNext())
 Console.WriteLine((string)s.Current);

 Implementing Comparison Using IComparer < T > and
IComparable < T >

 One of the tasks you often need to perform on a collection of objects is sorting. You need to know the
order of the objects so that you can sort them accordingly. Objects that can be compared implement
the IComparable interface (the generic equivalent of this interface is IComparable < T >). Consider the
following example:

 string[] Names = new string[] {
 “John”, “Howard”,
 “Margaret”, “Brian” };

 foreach (string n in Names)
 Console.WriteLine(n);

 Here, Names is a string array containing four strings. This code prints out the following:

 John
 Howard
 Margaret
 Brian

 You can sort the Names array using the Sort() method from the abstract static class Array , like this:

 Array.Sort(Names);
 foreach (string n in Names)
 Console.WriteLine(n);

 Now the output is a sorted array of names:

 Brian
 Howard
 John
 Margaret

 In this case, the reason the array of string can be sorted is because the String type itself implements the
 IComparable interface, so the Sort() method knows how to sort the array correctly. The same applies
to other types such as int , single , float , and so on.

c13.indd 413c13.indd 413 10/1/08 11:54:22 AM10/1/08 11:54:22 AM

Part I: C# Fundamentals

414

 What if you have your own type and you want it to be sortable? Suppose that you have the Employee
class defined as follows:

public class Employee
{
 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 public int Salary
 { get; set; }

 public override string ToString()
 {
 return FirstName + “, “ + LastName +
 “ $” + Salary;
 }
}

 You can add several Employee objects to a List object, like this:

 List < Employee > employees = new List < Employee > ();
 employees.Add(new Employee()
 {
 FirstName = “John”,
 LastName = “Smith”,
 Salary = 4000
 });
 employees.Add(new Employee()
 {
 FirstName = “Howard”,
 LastName = “Mark”,
 Salary = 1500
 });
 employees.Add(new Employee()
 {
 FirstName = “Margaret”,
 LastName = “Anderson”,
 Salary = 3000
 });
 employees.Add(new Employee()
 {
 FirstName = “Brian”,
 LastName = “Will”,
 Salary = 3000
 });

 To sort a List object containing your Employee objects, you can use the following:

 employees.Sort();

c13.indd 414c13.indd 414 10/1/08 11:54:23 AM10/1/08 11:54:23 AM

Chapter 13: Arrays And Collections

415

 However, this statement results in a runtime error (see Figure 13 - 4) because the Sort() method does not
know how Employee objects should be sorted.

 To solve this problem, the Employee class needs to implement the IComparable < T > interface and then
implement the CompareTo() method:

public class Employee : IComparable < Employee >

{
 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 public int Salary
 { get; set; }

 public override string ToString()
 {
 return FirstName + “, “ + LastName +
 “ $” + Salary;
 }

 public int CompareTo(Employee emp)
 {
 return this.FirstName.CompareTo(emp.FirstName);

 }
}

 The CompareTo() method takes an Employee parameter, and you compare the current instance
(represented by this) of the Employee class ’ s FirstName property to the parameter ’ s FirstName
property. Here, you use the CompareTo() method of the String class (FirstName is of String type)
to perform the comparison.

Figure 13-4

c13.indd 415c13.indd 415 10/1/08 11:54:23 AM10/1/08 11:54:23 AM

Part I: C# Fundamentals

416

 The return value of the CompareTo(obj) method has the possible values as shown in the
following table.

 Value Meaning

 Less than zero The current instance is less than obj .

 Zero The current instance is equal to obj .

 Greater than zero The current instance is greater than obj .

 Now, when you sort the List object containing Employee objects, the Employee objects will be sorted
by first name:

 employees.Sort();
 foreach (Employee emp in employees)
 Console.WriteLine(emp.ToString());

 These statements produce the following output:

Brian, Will $3000
Howard, Mark $1500
John, Smith $4000
Margaret, Anderson $3000

 To sort the Employee objects using the LastName instead of FirstName , simply change the
 CompareTo() method as follows:

 public int CompareTo(Employee emp)
 {

 return this.LastName.CompareTo(emp.LastName);

 }

 The output becomes:

Margaret, Anderson $3000
Howard, Mark $1500
John, Smith $4000
Brian, Will $3000

 Likewise, to sort by salary, you compare the Salary property:

 public int CompareTo(Employee emp)
 {

 return this.Salary.CompareTo(emp.Salary);

 }

c13.indd 416c13.indd 416 10/1/08 11:54:23 AM10/1/08 11:54:23 AM

Chapter 13: Arrays And Collections

417

 The output is now:

Howard, Mark $1500
Margaret, Anderson $3000
Brian, Will $3000
John, Smith $4000

 Instead of using the CompareTo() method of the type you are comparing, you can manually perform
the comparison, like this:

 public int CompareTo(Employee emp)
 {

 if (this.Salary < emp.Salary)
 return -1;
 else if (this.Salary == emp.Salary)
 return 0;
 else
 return 1;

 }

 How the Employee objects are sorted is fixed by the implementation of the CompareTo() method.
If CompareTo() compares using the FirstName property, the sort is based on the FirstName property.
To give users a choice of which field they want to use to sort the objects, you can use the IComparer < T >
interface.

 To do so, first declare a private class within the Employee class and call it SalaryComparer .

public class Employee : IComparable < Employee >
{

 private class SalaryComparer : IComparer < Employee >
 {
 public int Compare(Employee e1, Employee e2)
 {
 if (e1.Salary < e2.Salary)
 return -1;
 else if (e1.Salary == e2.Salary)
 return 0;
 else
 return 1;
 }
 }

 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 public int Salary

(continued)

c13.indd 417c13.indd 417 10/1/08 11:54:24 AM10/1/08 11:54:24 AM

Part I: C# Fundamentals

418

 { get; set; }

 public override string ToString()
 {
 return FirstName + “, “ + LastName +
 “ $” + Salary;
 }

 public int CompareTo(Employee emp)
 {
 return this.FirstName.CompareTo(emp.FirstName);
 }
}

 The SalaryComparer class implements the IComparer < T > interface. IComparer < T > has one method —
 Compare() — that you need to implement. It compares the salary of two Employee objects.

 To use the SalaryComparer class, declare the SalarySorter static property within the Employee class
so that you can return an instance of the SalaryComparer class:

public class Employee : IComparable < Employee >
{
 private class SalaryComparer : IComparer < Employee >
 {
 public int Compare(Employee e1, Employee e2)
 {
 if (e1.Salary < e2.Salary)
 return -1;
 else if (e1.Salary == e2.Salary)
 return 0;
 else
 return 1;
 }
 }

 public static IComparer < Employee > SalarySorter
 {
 get { return new SalaryComparer(); }
 }

 public string FirstName
 { get; set; }

 public string LastName
 { get; set; }

 public int Salary
 { get; set; }

 public override string ToString()
 {
 return FirstName + “, “ + LastName +
 “ $” + Salary;

(continued)

c13.indd 418c13.indd 418 10/1/08 11:54:24 AM10/1/08 11:54:24 AM

Chapter 13: Arrays And Collections

419

 }
 public int CompareTo(Employee emp)
 {
 return this.FirstName.CompareTo(emp.FirstName);
 }
}

 You can now sort the Employee objects using the default, or specify the SalarySorter property:

 employees.Sort(); //---sort using FirstName (default)---
 employees.Sort(Employee.SalarySorter); //---sort using Salary---

 To allow the Employee objects to be sorted using the LastName property, you could define another
class (say LastNameComparer) that implements the IComparer < T > interface and then declare the
 SalarySorter static property, like this:

public class Employee : IComparable < Employee >
{
 private class SalaryComparer : IComparer < Employee >
 {
 public int Compare(Employee e1, Employee e2)
 {
 if (e1.Salary < e2.Salary)
 return -1;
 else if (e1.Salary == e2.Salary)
 return 0;
 else
 return 1;
 }
 }

 private class LastNameComparer : IComparer < Employee >
 {
 public int Compare(Employee e1, Employee e2)
 {
 return e1.LastName.CompareTo(e2.LastName);
 }
 }

 public static IComparer < Employee > SalarySorter
 {
 get { return new SalaryComparer(); }
 }

 public static IComparer < Employee > LastNameSorter
 {
 get { return new LastNameComparer(); }
 }

 public string FirstName
 { get; set; }

 public string LastName

(continued)

c13.indd 419c13.indd 419 10/1/08 11:54:24 AM10/1/08 11:54:24 AM

Part I: C# Fundamentals

420

 { get; set; }

 public int Salary
 { get; set; }

 public override string ToString()
 {
 return FirstName + “, “ + LastName +
 “ $” + Salary;
 }

 public int CompareTo(Employee emp)
 {
 return this.FirstName.CompareTo(emp.FirstName);
 }
}

 You can now sort by LastName using the LastNameSorter property:

 employees.Sort(Employee.LastNameSorter); //---sort using LastName---

 Dictionary
 Most of you are familiar with the term dictionary — a reference book containing an alphabetical list of
words with information about them. In computing, a dictionary object provides a mapping from a set
of keys to a set of values. In .NET, this dictionary comes in the form of the Dictionary class (the generic
equivalent is Dictionary < T,V >).

 The following shows how you can create a new Dictionary object with type int to be used for the key
and type String to be used for the values:

 Dictionary < int, string > employees = new Dictionary < int, string > ();

 To add items into a Dictionary object, use the Add() method:

 employees.Add(1001, “Margaret Anderson”);
 employees.Add(1002, “Howard Mark”);
 employees.Add(1003, “John Smith”);
 employees.Add(1004, “Brian Will”);

 Trying to add a key that already exists in the object produces an ArgumentException error:

 //---ArgumentException; duplicate key---
 employees.Add(1004, “Sculley Lawrence”);

 A safer way is to use the ContainsKey() method to check if the key exists before adding the new key:

 if (!employees.ContainsKey(1005))
 {
 employees.Add(1005, “Sculley Lawrence”);
 }

(continued)

c13.indd 420c13.indd 420 10/1/08 11:54:25 AM10/1/08 11:54:25 AM

Chapter 13: Arrays And Collections

421

 While having duplicate keys is not acceptable, you can have different keys with the same value:

 employees.Add(1006, “Sculley Lawrence”); //---duplicate value is OK---

 To retrieve items from the Dictionary object, simply specify the key:

 Console.WriteLine(employees[1002].ToString()); //---Howard Mark---

 When retrieving items from a Dictionary object, be certain that the key you specify is valid or you
encounter a KeyNotFoundException error:

 try
 {
 //---KeyNotFoundException---
 Console.WriteLine(employees[1005].ToString());
 }
 catch (KeyNotFoundException ex)
 {
 Console.WriteLine(ex.Message);
 }

 Rather than catching an exception when the specified key is not found, it ’ s more efficient to use the
 TryGetValue() method:

 string Emp_Name;
 if (employees.TryGetValue(1005, out Emp_Name))
 Console.WriteLine(Emp_Name);

 TryGetValue() takes in a key for the Dictionary object as well as an out parameter that will
contain the associated value for the specified key. If the key specified does not exist in the Dictionary
object, the out parameter (Emp_Name , in this case) contains the default value for the specified type
(string in this case, hence the default value is null).

 When you use the foreach statement on a Dictionary object to iterate over all the elements in it, each
 Dictionary object element is retrieved as a KeyValuePair object:

 foreach (KeyValuePair < int, string > Emp in employees)
 Console.WriteLine(“{0} - {1}”, Emp.Key, Emp.Value);

 Here ’ s the output from these statements:

1001 - Margaret Anderson
1002 - Howard Mark
1003 - John Smith
1004 - Brian Will

 To get all the keys in a Dictionary object, use the KeyCollection class:

 //---get all the employee IDs---
 Dictionary < int, string > .KeyCollection
 EmployeeID = employees.Keys;

 foreach (int ID in EmployeeID)
 Console.WriteLine(ID);

c13.indd 421c13.indd 421 10/1/08 11:54:25 AM10/1/08 11:54:25 AM

Part I: C# Fundamentals

422

 These statements print out all the keys in the Dictionary object:

1001
1002
1003
1004

 If you want all the employees ’ names, you can use the ValueCollection class, like this:

 //---get all the employee names---
 Dictionary < int, string > .ValueCollection
 EmployeeNames = employees.Values;

 foreach (string emp in EmployeeNames)
 Console.WriteLine(emp);

 You can also copy all the values in a Dictionary object into an array using the ToArray() method:

 //---extract all the values in the Dictionary object
 // and copy into the array---
 string[] Names = employees.Values.ToArray();
 foreach (string n in Names)
 Console.WriteLine(n);

 To remove a key from a Dictionary object, use the Remove() method, which takes the key to delete:

 if (employees.ContainsKey(1006))
 {
 employees.Remove(1006);
 }

 To sort the keys in a Dictionary object, use the SortedDictionary < K,V > class instead of the
 Dictionary < K,V > class:

 SortedDictionary < int, string > employees =
 new SortedDictionary < int, string > ();

 Stacks
 A stack is a last in, first out (LIFO) data structure — the last item added to a stack is the first to be
removed. Conversely, the first item added to a stack is the last to be removed.

 In .NET, you can use the Stack class (or the generic equivalent of Stack < T >) to represent a stack
collection. The following statement creates an instance of the Stack class of type string :

 Stack < string > tasks = new Stack < string > ();

c13.indd 422c13.indd 422 10/1/08 11:54:25 AM10/1/08 11:54:25 AM

Chapter 13: Arrays And Collections

423

 To add items into the stack, use the Push() method. The following statements push four strings into the
 tasks stack:

 tasks.Push(“Do homework”); //---this item will be at the bottom of the stack
 tasks.Push(“Phone rings”);
 tasks.Push(“Get changed”);
 tasks.Push(“Go for movies”); //---this item will be at the top of the stack

 To retrieve the elements from a stack, use either the Peek() method or the Pop() method.
 Peek() returns the object at the top of the stack without removing it. Pop() removes and returns the
object at the top of the stack:

 Console.WriteLine(tasks.Peek()); //---Go for movies---
 Console.WriteLine(tasks.Pop()); //---Go for movies---
 Console.WriteLine(tasks.Pop()); //---Get changed---
 Console.WriteLine(tasks.Pop()); //---Phone rings---
 Console.WriteLine(tasks.Pop()); //---Do homework---

 If a stack is empty and you try to call the Pop() method, an InvalidOperationException error
occurs. For that reason, it is useful to check the size of the stack by using the Count property before you
perform a Pop() operation:

 if (tasks.Count > 0)
 Console.WriteLine(tasks.Pop());
 else
 Console.WriteLine(“Tasks is empty”);

 To extract all the objects within a Stack object without removing the elements, use a foreach statement,
like this:

 foreach (string t in tasks)
 Console.WriteLine(t);

 Here ’ s what prints out:

Go for movies
Get changed
Phone rings
Do homework

 Queues
 The queue is a first in, first out (FIFO) data structure. Unlike the stack, items are removed based on the
sequence that they are added.

 In .NET, you can use the Queue class (or the generic equivalent of Queue < T >) to represent a queue
collection. The following statement creates an instance of the Queue class of type string :

 Queue < string > tasks = new Queue < string > ();

c13.indd 423c13.indd 423 10/1/08 11:54:25 AM10/1/08 11:54:25 AM

Part I: C# Fundamentals

424

 To add items into the queue, use the Enqueue() method. The following statement inserts four strings
into the tasks queue:

 tasks.Enqueue(“Do homework”);
 tasks.Enqueue(“Phone rings”);
 tasks.Enqueue(“Get changed”);
 tasks.Enqueue(“Go for movies”);

 To retrieve the elements from a queue, you can use either the Peek() method or the Dequeue() method.
 Peek() returns the object at the beginning of the queue without removing it. Dequeue() removes and
returns the object at the beginning of the queue:

 Console.WriteLine(tasks.Peek()); //---Do homework---
 Console.WriteLine(tasks.Dequeue()); //---Do homework---
 Console.WriteLine(tasks.Dequeue()); //---Phone rings---
 Console.WriteLine(tasks.Dequeue()); //---Get changed---
 Console.WriteLine(tasks.Dequeue()); //---Go for movies---

 If a queue is empty and you try to call the Dequeue() method, an InvalidOperationException error
occurs, so it is useful to check the size of the queue using the Count property before you perform a
dequeue operation:

 if (tasks.Count > 0)
 Console.WriteLine(tasks.Dequeue());
 else
 Console.WriteLine(“Tasks is empty”);

 To extract all the objects within a Queue object without removing the elements, use the foreach
statement, like this:

 foreach (string t in tasks)
 Console.WriteLine(t);

 Here ’ s what prints out:

Do homework
Phone rings
Get changed
Go for movies

 Summary
 This chapter explained how to manipulate data using arrays. In addition, it explored the
System.Collections namespace, which contains the various interfaces that define basic collection
functions. It also contains several useful data structures, such as a dictionary, stacks, and queues, that
greatly simplify managing data in your application.

c13.indd 424c13.indd 424 10/1/08 11:54:26 AM10/1/08 11:54:26 AM

 Language Integrated Query
(LINQ)

 One of the most exciting new features in the .NET Framework v3.5 is the Language Integrated
Query (LINQ). LINQ introduces to developers a standard and consistent language for querying
and updating data, which include objects (such as arrays and collections), databases, XML
documents, ADO.NET DataSets, and so forth.

 Today, most developers need to know a myriad of technologies to successfully manipulate data.
For example, if you are dealing with databases, you have to understand Structured Query
Language (SQL). If you are dealing with XML documents, you must understand technologies such
as XPath, XQuery, and XSLT. And if you are working with ADO.NET DataSets, then you need to
know the various classes and properties in ADO.NET that you can use.

 A better approach would be to have a unified view of the data, regardless of its form and structure.
That is the motivation behind the design of LINQ. This chapter provides the basics of LINQ and
shows how you can use LINQ to access objects, DataSets, and XML documents, as well as SQL
databases.

 LINQ Architecture
 Figure 14 - 1 shows the architecture of LINQ. The bottom layer contains the various data sources
with which your applications could be working. On top of the data sources are the LINQ - enabled
data sources: LINQ to Objects, LINQ to DataSet, LINQ to SQL, LINQ to Entities, and LINQ to
XML. LINQ - enabled data sources are also known as LINQ providers; they translate queries
expressed in Visual Basic or C# into the native language of the data source. To access all these data
sources through LINQ, developers use either C# or Visual Basic and write LINQ queries.

c14.indd 425c14.indd 425 10/1/08 11:54:51 AM10/1/08 11:54:51 AM

426

Part I: C# Fundamentals

 So how does your application view the LINQ - enabled data sources?

 In LINQ to Objects, the source data is made visible as an IEnumerable<T> or IQueryable<T>
collection.

 In LINQ to XML, the source data is made visible as an IEnumerable < XElement > .

 In LINQ to DataSet, the source data is made visible as an IEnumerable < DataRow > .

 In LINQ to SQL, the source data is made visible as an IEnumerable or IQueryable of whatever
custom objects you have defined to represent the data in the SQL table.

 LINQ to Objects
 Let ’ s start with LINQ to Objects. It enables you to use LINQ to directly query any IEnumerable < T > or
 IQueryable < T > collections (such as string[] , int[] , and List < T >) directly without needing to use an
immediate LINQ provider or API such as the LINQ to SQL or LINQ to XML.

 Say that you have a collection of data stored in an array, and you want to be able to retrieve a subset of
the data quickly. In the old way of doing things, you write a loop and iteratively retrieve all the data that
matches your criteria. That ’ s time - consuming because you have to write all the logic to perform the

❑

❑

❑

❑

<book>
 <title/>
 <author/>
 <price/>
</book>

LINQ
To

DataSet

LINQ
To

Objects

LINQ
To

SQL

LINQ
To

Entities

LINQ
To

XML

.NET Language Integrated Query (LINQ)

C# Others...Visual Basic

LINQ Architecture

LINQ enabled data sources

LINQ enabled ADO.NET

Objects Relational XML

Figure 14-1

 LINQ to Entities is beyond the scope of this book. It was slated to be released later
in 2008 and is not part of Visual Studio 2008.

c14.indd 426c14.indd 426 10/1/08 11:54:52 AM10/1/08 11:54:52 AM

Chapter 14: Language Integrated Query (LINQ)

427

comparison and so on. Using LINQ, you can declaratively write the condition using an SQL - like
statement, and the compiler des the job of retrieving the relevant data for you.

 Suppose that you have an array of type string that contains a list of names. The following program
prints out all the names in the string array that start with the character G:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace LINQ
{
 class Program
 {
 static void Main(string[] args)
 {
 string[] allNames = new string[] {
 “Jeffrey”, “Kirby”, “Gabriel”,
 “Philip”, “Ross”, “Adam”,
 “Alston”, “Warren”, “Garfield”};

 foreach (string str in allNames)
 {
 if (str.StartsWith(“G”))
 {
 Console.WriteLine(str);
 }
 }

 Console.ReadLine();
 }
 }
}

 Using LINQ to Objects, you can rewrite the program as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace LINQ
{
 class Program
 {
 static void Main(string[] args)
 {
 string[] allNames = new string[] {
 “Jeffrey”, “Kirby”, “Gabriel”,
 “Philip”, “Ross”, “Adam”,

(continued)

c14.indd 427c14.indd 427 10/1/08 11:54:53 AM10/1/08 11:54:53 AM

428

Part I: C# Fundamentals

 “Alston”, “Warren”, “Garfield”};

 IEnumerable < string > foundNames =
 from name in allNames
 where name.StartsWith(“G”)
 select name;

 foreach (string str in foundNames)
 Console.WriteLine(str);

 Console.ReadLine();
 }
 }
}

 Notice that you have declared the foundNames variable to be of type IEnumerable < string > , and the
expression looks similar to that of SQL:

 IEnumerable < string > foundNames =
 from name in allNames
 where name.StartsWith(“G”)
 select name;

 The one important difference from SQL queries is that in a LINQ query the operator sequence is
reversed. In SQL, you use the select - from - where format, while LINQ queries use the format from -
 where - select . This reversal in order allows IntelliSense to know which data source you are using so
that it can provide useful suggestions for the where and select clauses.

 The result of the query in this case is IEnumerable < string > . You can also use the new implicit typing
feature in C# 3.0 to let the C# compiler automatically infer the type for you, like this:

 var foundNames =

 from name in allNames
 where name.StartsWith(“G”)
 select name;

 When you now use a foreach loop to go into the foundNames variable, it will contain a collection of
names that starts with the letter G. In this case, it returns Gabriel , Garfield .

 The usefulness of LINQ is more evident when you have more complex filters. For example:

 var foundNames =
 from name in allNames
 where name.StartsWith(“G”) & & name.EndsWith(“l”)
 select name;

 In this case, only names that begin with G and end with “ l ” will be retrieved (Gabriel).

(continued)

c14.indd 428c14.indd 428 10/1/08 11:54:53 AM10/1/08 11:54:53 AM

Chapter 14: Language Integrated Query (LINQ)

429

 Here ’ s an example where you have an array of integer values. You want to retrieve all the odd numbers
in the array and sort them in descending order (that is, the bigger numbers come before the smaller
numbers). Using LINQ, your code looks like this:

 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };

 var oddNums = from n in nums
 where (n % 2 == 1)
 orderby n descending
 select n;

 foreach (int n in oddNums)
 Console.WriteLine(n);

 And here ’ s what the code will print out:

87
49
45
13
3

 To find out the total number of odd numbers found by the query, you can use the Count() method from
the oddNums variable (of type IEnumerable < int >):

 int count = oddNums.Count();

 You can also convert the result into an int array, like this:

 int[] oddNumsArray = oddNums.ToArray();

 Query Syntax versus Method Syntax and
Lambda Expressions

 The two LINQ queries in the previous section use the query syntax , which is written in a declarative
manner, like this:

 var oddNums = from n in nums
 where (n % 2 == 1)
 orderby n descending
 select n;

 In addition to using the query syntax, you can also use the method syntax , which is written using method
calls like Where and Select , like this:

int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
IEnumerable < int > oddNums = nums.Where(n = > n % 2 == 1). OrderByDescending(n = > n);

 To find the total number of odd numbers in the array, you can also use the method syntax to query the
array directly, like this:

 int count = (nums.Where(n = > n % 2 == 1).OrderBy(n = > n)).Count();

c14.indd 429c14.indd 429 10/1/08 11:54:53 AM10/1/08 11:54:53 AM

430

Part I: C# Fundamentals

 Let ’ s take a look at method syntax and how it works. First, the expression:

(n = > n % 2 == 1)

is known as the lambda expression. The = > is the lambda operator. You read it as “ goes to, ” so this
expression reads as “ n goes to n modulus 2 equals to 1. ” Think of this lambda expression as a function
that accepts a single input parameter, contains a single statement, and returns a value, like this:

 static bool function(int n)
 {
 return (n % 2 == 1);
 }

 The compiler automatically infers the type of n (which is int in this case because nums is an int array)
in the lambda expression. However, you can also explicitly specify the type of n , like this:

IEnumerable < int > oddNums =

 nums.Where((int n) = > n % 2 == 1).OrderByDescending(n = > n);

 The earlier example of the string array can also be rewritten using the method syntax as follows:

 string[] allNames = new string[] {
 “Jeffrey”, “Kirby”, “Gabriel”,
 “Philip”, “Ross”, “Adam”,
 “Alston”, “Warren”, “Garfield”};

 var foundNames = allNames.Where(name = name.StartsWith(“G”) & &
 name.EndsWith(“l”));

 Which syntax should you use? Here ’ s some information regarding the two syntaxes:

 There is no performance difference between the method syntax and the query syntax.

 The query syntax is much more readable, so use it whenever possible.

 Use the method syntax for cases where there is no query syntax equivalent. For example, the
 Count and Max methods have no query equivalent syntax.

 LINQ and Extension Methods
 Chapter 4 explored extension methods and how you can use them to extend functionality to an existing
class without needing to subclass it. One of the main reasons why the extension method feature was
incorporated into the C# 3.0 language was because of LINQ.

 Consider the earlier example where you have an array called allNames containing an array of strings.
In .NET, objects that contain a collection of objects must implement the IEnumerable interface, so the
 allNames variable implicitly implements the IEnumerable interface, which only exposes one

❑

❑

❑

c14.indd 430c14.indd 430 10/1/08 11:54:54 AM10/1/08 11:54:54 AM

Chapter 14: Language Integrated Query (LINQ)

431

 In C# 3.0, all these additional methods are known as extension methods , and they are extended to objects
that implement the IEnumerable interface. These extension methods are the LINQ standard query
operators.

 In Visual Studio 2008, all extension methods are denoted by an additional arrow icon, as shown in
Figure 14 - 3 .

Figure 14-2

Figure 14-3

 To add extension methods to objects implementing the IEnumerable interface, you need a reference to
 System.Core.dll and import the namespace by specifying the namespace:

using System.Linq;

 The following table lists the LINQ standard query operators.

method — GetEnumerator . But when you use IntelliSense in Visual Studio 2008 to view the list of
methods available in the allNames object, you see a list of additional methods, such as Select , Take ,
 TakeWhile , Where , and so on (see Figure 14 - 2).

c14.indd 431c14.indd 431 10/1/08 11:54:54 AM10/1/08 11:54:54 AM

432

Part I: C# Fundamentals

 Operator Type Operator Name

 Aggregation Aggregate , Average , Count , LongCount , Max , Min , Sum

 Conversion Cast , OfType , ToArray , ToDictionary , ToList , ToLookup , ToSequence

 Element DefaultIfEmpty , ElementAt , ElementAtOrDefault , First ,
 FirstOrDefault , Last , LastOrDefault , Single , SingleOrDefault

 Equality EqualAll

 Generation Empty , Range , Repeat

 Grouping GroupBy

 Joining GroupJoin , Join

 Ordering OrderBy , ThenBy , OrderByDescending , ThenByDescending , Reverse

 Partitioning Skip , SkipWhile , Take , TakeWhile

 Quantifiers All , Any , Contains

 Restriction Where

 Selection Select , SelectMany

 Set Concat , Distinct , Except , Intersect , Union

 Deferred Query Execution
 The query variable itself only stores the query; it does not execute the query or store the result.

 Take another look at the preceding example:

 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
 var oddNums = nums.Where
 (n = > n % 2 == 1). OrderByDescending(n = > n);

 The oddNums variable simply stores the query (not the result of the query). The query is only executed
when you iterate over the query variable, like this:

 foreach (int n in oddNums)
 Console.WriteLine(n);

 This concept is known as deferred execution , and it means that every time you access the query variable,
the query is executed again. This is useful because you can just create one query and every time you
execute it you will always get the most recent result.

 To prove that deferred execution really works, the following program first defines a query and then
prints out the result using a foreach loop. Twenty is added to each element in the array, and then the
 foreach loop is executed again.

c14.indd 432c14.indd 432 10/1/08 11:54:54 AM10/1/08 11:54:54 AM

Chapter 14: Language Integrated Query (LINQ)

433

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication5
{
 class Program
 {
 static void Main(string[] args)
 {

 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
 var oddNums = nums.Where(n = > n % 2 == 1).OrderByDescending(n = > n);

 Console.WriteLine(“First execution”);
 Console.WriteLine(“---------------”);
 foreach (int n in oddNums)
 Console.WriteLine(n);

 //---add 20 to each number in the array---
 for (int i = 0; i < 11; i++)
 nums[i] += 20;

 Console.WriteLine(“Second execution”);
 Console.WriteLine(“----------------”);
 foreach (int n in oddNums)
 Console.WriteLine(n);

 Console.ReadLine();
 }
 }
}

 The program prints out the following output:

First execution

87
49
45
13
3
Second execution

107
69
65
33
23

 Because the output for the second foreach loop is different from the first, the program effectively
proves that the query is not executed until it is accessed.

c14.indd 433c14.indd 433 10/1/08 11:54:55 AM10/1/08 11:54:55 AM

434

Part I: C# Fundamentals

 Forced Immediate Query Execution
 One way to force an immediate execution of the query is to explicitly convert the query result into a
 List object. For example, the following query converts the result to a List object:

 var oddNums = nums.Where

 (n = > n % 2 == 1).OrderByDescending(n = > n).ToList();

 In this case, the query is executed immediately, as proven by the following program and its output:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication5
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };

 var oddNums = nums.Where
 (n = > n % 2 == 1).OrderByDescending(n = > n).ToList();

 Console.WriteLine(“First execution”);
 Console.WriteLine(“---------------”);
 foreach (int n in oddNums)
 Console.WriteLine(n);

 //---add 20 to each number in the array---
 for (int i = 0; i < 11; i++)
 nums[i] += 20;

 Console.WriteLine(“Second execution”);
 Console.WriteLine(“----------------”);
 foreach (int n in oddNums)
 Console.WriteLine(n);

 Console.ReadLine();
 }
 }
}

 Deferred execution works regardless of whether you are using the query or method
syntax.

c14.indd 434c14.indd 434 10/1/08 11:54:55 AM10/1/08 11:54:55 AM

Chapter 14: Language Integrated Query (LINQ)

435

 Here ’ s the program ’ s output:

First execution

87
49
45
13
3
Second execution

87
49
45
13
3

 The output of the first and second execution is the same, proving that the query is executed immediately
after it ’ s defined.

 To force a LINQ query to execute immediately, you can use aggregate functions so that the query must
iterate over the elements at once. An aggregate function takes a collection of values and returns a
scalar value.

 Aggregate functions are discussed in more detail later in this chapter.

 Following is an example that uses the Count() aggregate function. The program selects all the odd
numbers from an array and then counts the total number of odd numbers. Each number is then
multiplied by two (which makes them all become even numbers).

 static void Main(string[] args)
 {
 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
 var oddNumsCount = nums.Where

 (n = > n % 2 == 1).OrderByDescending(n = > n).Count();

 Console.WriteLine(“First execution”);
 Console.WriteLine(“---------------”);
 Console.WriteLine(“Count: {0}”, oddNumsCount);

 //---add 20 to each number in the array---
 for (int i = 0; i < 11; i++)
 nums[i] *= 2; //---all number should now be even---

 Console.WriteLine(“Second execution”);
 Console.WriteLine(“----------------”);
 Console.WriteLine(“Count: {0}”, oddNumsCount);

 Console.ReadLine();
 }

c14.indd 435c14.indd 435 10/1/08 11:54:55 AM10/1/08 11:54:55 AM

436

Part I: C# Fundamentals

 The output shows that once the query is executed, its value does not change:

First execution

Count: 5
Second execution

Count: 5

 LINQ and Anonymous Types
 Although Chapter 4 explored anonymous types and how they allow you to define data types without
having to formally define a class, you have not yet seen their real use. In fact, anonymous type is another
new feature that Microsoft has designed with LINQ in mind.

 Consider the following Contact class definition:

public class Contact
{
 public int id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

 Suppose that you have a list containing Contact objects, like this:

 List < Contact > Contacts = new List < Contact > () {
 new Contact() {id = 1, FirstName = “John”, LastName = “Chen”},
 new Contact() {id = 2, FirstName = “Maryann”, LastName = “Chen” },
 new Contact() {id = 3, FirstName = “Richard”, LastName = “Wells” }
 };

 You can use LINQ to query all contacts with Chen as the last name:

IEnumerable < Contact > foundContacts = from c in Contacts
 where c.LastName == “Chen”
 select c;

 The foundContacts object is of type IEnumerable < Contact > . To print out all the contacts in the result,
you can use the foreach loop:

 foreach (var c in foundContacts)
 {
 Console.WriteLine(“{0} - {1} {2}”, c.id, c.FirstName, c.LastName);
 }

 The output looks like this:

1 - John Chen
2 - Maryann Chen

c14.indd 436c14.indd 436 10/1/08 11:54:56 AM10/1/08 11:54:56 AM

Chapter 14: Language Integrated Query (LINQ)

437

 However, you can modify your query such that the result can be shaped into a custom class instead of
type Contact . To do so, modify the query as the following highlighted code shows:

 var foundContacts = from c in Contacts
 where c.LastName == “Chen”

 select new
 {
 id = c.id,
 Name = c.FirstName + “ “ + c.LastName
 };

 Here, you reshape the result using the anonymous type feature new in C# 3.0. Notice that you now have
to use the var keyword to let the compiler automatically infer the type of foundContacts . Because the
result is an anoymous type that you are defining, the following generates an error:

 IEnumerable < Contact > foundContacts = from c in Contacts

 where c.LastName == “Chen”
 select new
 {
 id = c.id,
 Name = c.FirstName + “ “ + c.LastName
 };

 To print the results, use the foreach loop as usual:

 foreach (var c in foundContacts)
 {
 Console.WriteLine(“{0} - {1}”, c.id, c.Name);
 }

 Figure 14 - 4 shows that IntelliSense automatically knows that the result is an anonymous type with two
fields — id and Name.

Figure 14-4

c14.indd 437c14.indd 437 10/1/08 11:54:56 AM10/1/08 11:54:56 AM

438

Part I: C# Fundamentals

 LINQ to DataSet
 Besides manipulating data in memory, LINQ can also be used to query data stored in structures like
DataSets and DataTables.

 ADO.NET is the data access technology in .NET that allows you to manipulate data sources such as
databases. If you are familiar with ADO.NET, you are familiar with the DataSet object, which represents
an in - memory cache of data. Using LINQ to DataSet, you can use LINQ queries to access data stored in a
DataSet object. Figure 14 - 5 shows the relationships between LINQ to DataSet and ADO.NET 2.0.

LINQ to DataSet

ADO.NET 2.0

ADO.NET
DataSet

Connection, Command,
DataReader

Concrete ADO.NET
Data Providers

Data Store

Figure 14-5

 Notice that LINQ to DataSet is built on top of ADO.NET 2.0. You can continue using your ADO.NET
code to access data stored in a DataSet, but using LINQ to DataSet will greatly simplify your tasks.

 The best way to understand LINQ to DataSet is to look at an example and see how it can simplify your
coding. The following code shows how, using ADO.NET, you can connect to the pubs sample database,
retrieve all the authors from the Authors table, and then print their IDs and names to the output
window:

c14.indd 438c14.indd 438 10/1/08 11:54:56 AM10/1/08 11:54:56 AM

Chapter 14: Language Integrated Query (LINQ)

439

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlClient;

namespace LINQtoDataset
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 SqlConnection conn;
 SqlCommand comm;
 SqlDataAdapter adapter;
 DataSet ds = new DataSet();

 //---loads the Authors table into the dataset---
 conn = new SqlConnection(@”Data Source=.\SQLEXPRESS;” +
 “Initial Catalog=pubs;Integrated Security=True”);
 comm = new SqlCommand(“SELECT * FROM Authors”, conn);
 adapter = new SqlDataAdapter(comm);

Preparing the Sample Database
Because SQL Server 2005 Express does not come with any sample databases, you need
to install the pubs database used in this section yourself.

You can install the pubs and Northwind databases by downloading the installation
scripts at http://microsoft.com/downloads. Search for: “Northwind and pubs
Sample Databases for SQL Server 2000.”

Once the scripts are installed on your system, go to the Visual Studio 2008 Command
Prompt (Start Programs Microsoft Visual Studio 2008 Visual Studio Tools
Visual Studio 2008 Command Prompt) and change to the directory containing your
installation scripts. Type in the following to install the two databases:

C:\SQL Server 2000 Sample Databases>sqlcmd -S .\SQLEXPRESS -i instpubs.sql
C:\SQL Server 2000 Sample Databases>sqlcmd -S .\SQLEXPRESS -i instnwnd.sql

(continued)

c14.indd 439c14.indd 439 10/1/08 11:54:57 AM10/1/08 11:54:57 AM

440

Part I: C# Fundamentals

 adapter.Fill(ds);

 foreach (DataRow row in ds.Tables[0].Rows)
 {
 Console.WriteLine(“{0} - {1} {2}”,
 row[“au_id”], row[“au_fname”], row[“au_lname”]);
 }
 }
 }
}

 Observe that all the rows in the Authors table are now stored in the ds DataSet object (in
ds.Tables[0]). To print only those authors living in CA, you would need to write the code to do
the filtering:

 foreach (DataRow row in ds.Tables[0].Rows)
 {

 if (row[“state”].ToString() == “CA”)

 {
 Console.WriteLine(“{0} - {1} {2}”,
 row[“au_id”], row[“au_fname”], row[“au_lname”]);
 }
 }

 Using LINQ to DataSet, you can write a query that only retrieves authors living in CA:

 //---query for authors living in CA---
 EnumerableRowCollection < DataRow > authors =
 from author in ds.Tables[0].AsEnumerable()
 where author.Field < string > (“State”) == “CA”
 select author;

 The result of the query is of type EnumerableRowCollection < DataRow > . Alternatively, you can also
use the var keyword to let the compiler determine the correct data type:

 var authors =

 from author in ds.Tables[0].AsEnumerable()
 where author.Field < string > (“State”) == “CA”
 select author;

(continued)

 To make use of LINQ to DataSet, ensure that you have a reference to System.Data
.DataSetExtensions.dll in your project.

c14.indd 440c14.indd 440 10/1/08 11:54:57 AM10/1/08 11:54:57 AM

Chapter 14: Language Integrated Query (LINQ)

441

 To display the result, you can either bind the result to a DataGridView control using the AsDataView()
method:

 //---bind to a datagridview control---
 dataGridView1.DataSource = authors.AsDataView();

 Or, iteratively loop through the result using a foreach loop:

 foreach (DataRow row in authors)
 {
 Console.WriteLine(“{0} - {1}, {2}”,
 row[“au_id”], row[“au_fname”], row[“au_lname”]);
 }

 To query the authors based on their contract status, use the following query:

 EnumerableRowCollection < DataRow > authors =
 from author in ds.Tables[0].AsEnumerable()
 where author.Field < Boolean > (“Contract”) == true
 select author;

 Reshaping Data
 Using the new anonymous types feature in C# 3.0, you can define a new type without needing to define
a new class. Consider the following statement:

 //---query for authors living in CA---
 var authors =
 from author in ds.Tables[0].AsEnumerable()
 where author.Field < string > (“State”) == “CA”
 select new
 {
 ID = author.Field < string > (“au_id”),
 FirstName = author.Field < string > (“au_fname”),
 LastName = author.Field < string > (“au_lname”)
 };

 Here, you select all the authors living in the CA state and at the same time create a new type consisting
of three properties: ID , FirstName , and LastName . If you now type the word authors , IntelliSense will
show you that authors is of type EnumerableRowCollection < ’a > authors , and ’a is an
anonymous type containing the three fields (see Figure 14 - 6).

Figure 14-6

c14.indd 441c14.indd 441 10/1/08 11:54:57 AM10/1/08 11:54:57 AM

442

Part I: C# Fundamentals

 You can now print out the result using a foreach loop:

 foreach (var row in authors)
 {
 Console.WriteLine(“{0} - {1}, {2}”,
 row.ID, row.FirstName, row.LastName);
 }

 To databind to a DataGridView control, you first must convert the result of the query to a List object:

 //---query for authors living in CA---
 var authors =

 (from author in ds.Tables[0].AsEnumerable()
 where author.Field < string > (“State”) == “CA”
 select new
 {
 ID = author.Field < string > (“au_id”),
 FirstName = author.Field < string > (“au_fname”),
 LastName = author.Field < string > (“au_lname”)
 }).ToList();

 //---bind to a datagridview control---
 dataGridView1.DataSource = authors;

 Aggregate Functions
 In an earlier section, you used the following query to obtain a list of authors living in CA:

 var authors =
 from author in ds.Tables[0].AsEnumerable()
 where author.Field < string > (“State”) == “CA”
 select author;

 To get the total number of authors living in CA, you can use the Count() extension method (also known
as an aggregate function), like this:

 Console.WriteLine(authors.Count());

 A much more efficient way would be to use the following query in method syntax:

 var query =
 ds.Tables[0].AsEnumerable()
 .Count(a = > a.Field < string > (“State”)==”CA”);
 Console.WriteLine(query);

c14.indd 442c14.indd 442 10/1/08 11:54:58 AM10/1/08 11:54:58 AM

Chapter 14: Language Integrated Query (LINQ)

443

 LINQ supports the following standard aggregate functions:

 Aggregate function Description

 Aggregate Performs a custom aggregation operation on the values of a
collection.

 Average Calculates the average value of a collection of values.

 Count Counts the elements in a collection, optionally only those elements
that satisfy a predicate function.

 LongCount Counts the elements in a large collection, optionally only those
elements that satisfy a predicate function.

 Max Determines the maximum value in a collection.

 Min Determines the minimum value in a collection.

 Sum Calculates the sum of the values in a collection.

 For example, the following statements print out the largest odd number contained in the nums array:

 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
 var maxOddNums = nums.Where
 (n = > n % 2 == 1).OrderByDescending(n = > n).Max();
 Console.WriteLine(“Largest odd number: {0}”, maxOddNums); //---87---

 The following statements print out the sum of all the odd numbers in nums :

 int[] nums = { 12, 34, 10, 3, 45, 6, 90, 22, 87, 49, 13, 32 };
 var sumOfOddNums = nums.Where
 (n = > n % 2 == 1).OrderByDescending(n = > n).Sum();
 Console.WriteLine(“Sum of all odd number: {0}”, sumOfOddNums); //---197---

 Joining Tables
 So far you ’ ve been dealing with a single table. In real life, you often have multiple, related tables. A good
example is the Northwind sample database, which contains a number of related tables, three of which
are shown in Figure 14 - 7 .

Figure 14-7

c14.indd 443c14.indd 443 10/1/08 11:54:58 AM10/1/08 11:54:58 AM

444

Part I: C# Fundamentals

 Here, the Customers table is related to the Orders table via the CustomerID field, while the Orders
table is related to the Order_Details table via the OrderID field.

 You can use LINQ to DataSet to join several tables stored in a DataSet. Here ’ s how. First, load the three
tables into the DataSet, using the following code:

 conn = new SqlConnection(@”Data Source=.\SQLEXPRESS;” +
 “Initial Catalog=Northwind;Integrated Security=True”);
 comm = new SqlCommand(“SELECT * FROM Customers; SELECT * FROM Orders;
SELECT * FROM [Order Details]”, conn);
 adapter = new SqlDataAdapter(comm);
 adapter.Fill(ds);

 The three tables loaded onto the DataSet can now be referenced using three DataTable objects:

 DataTable customersTable = ds.Tables[0]; //---Customers---
 DataTable ordersTable = ds.Tables[1]; //---Orders---
 DataTable orderDetailsTable = ds.Tables[2]; //---Order Details---

 The following LINQ query joins two DataTable objects — customersTable and ordersTable —
using the query syntax:

 //---using query syntax to join two tables - Customers and Orders---
 var query1 =
 (from customer in customersTable.AsEnumerable()
 join order in ordersTable.AsEnumerable() on
 customer.Field < string > (“CustomerID”) equals
 order.Field < string > (“CustomerID”)
 select new
 {
 id = customer.Field < string > (“CustomerID”),
 CompanyName = customer.Field < string > (“CompanyName”),
 ContactName = customer.Field < string > (“ContactName”),
 OrderDate = order.Field < DateTime > (“OrderDate”),
 ShipCountry = order.Field < string > (“ShipCountry”)
 }).ToList();

 As evident in the query, the Customers and Orders table are joined using the CustomerID field. The
result is reshaped using an anonymous type and then converted to a List object using the ToList()
extension method. You can now bind the result to a DataGridView control if desired. Figure 14 - 8 shows
the result bound to a DataGridView control.

c14.indd 444c14.indd 444 10/1/08 11:54:58 AM10/1/08 11:54:58 AM

Chapter 14: Language Integrated Query (LINQ)

445

 You can also rewrite the query using the method syntax:

 //---using method syntax to join two tables - Customers and Orders---
 var query1 =
 (customersTable.AsEnumerable().Join(ordersTable.AsEnumerable(),
 customer = > customer.Field < string > (“CustomerID”),
 order = > order.Field < string > (“CustomerID”),
 (customer, order) = > new
 {
 id = customer.Field < string > (“CustomerID”),
 CompanyName = customer.Field < string > (“CompanyName”),
 ContactName = customer.Field < string > (“ContactName”),
 OrderDate = order.Field < DateTime > (“OrderDate”),
 ShipCountry = order.Field < string > (“ShipCountry”)
 })).ToList();

 The following query joins three DataTable objects — customersTable , ordersTable , and
 orderDetailsTable — and sorts the result according to the OrderID field:

 //---three tables join---
 var query2 =

 (from customer in customersTable.AsEnumerable()
 join order in ordersTable.AsEnumerable() on
 customer.Field < string > (“CustomerID”) equals
 order.Field < string > (“CustomerID”)
 join orderDetail in orderDetailsTable.AsEnumerable() on
 order.Field < int > (“OrderID”) equals
 orderDetail.Field < int > (“OrderID”)
 orderby order.Field < int > (“OrderID”)

 select new
 {
 id = customer.Field < string > (“CustomerID”),
 CompanyName = customer.Field < string > (“CompanyName”),
 ContactName = customer.Field < string > (“ContactName”),
 OrderDate = order.Field < DateTime > (“OrderDate”),
 ShipCountry = order.Field < string > (“ShipCountry”),
 OrderID = orderDetail.Field < int > (“OrderID”),
 ProductID = orderDetail.Field < int > (“ProductID”)
 }).ToList();

Figure 14-8

c14.indd 445c14.indd 445 10/1/08 11:54:59 AM10/1/08 11:54:59 AM

446

Part I: C# Fundamentals

 As evident from the query, the Customers table is related to the Orders table via the CustomerID field,
and the Orders table is related to the Order Details table via the OrderID field.

 Figure 14 - 9 shows the result of the query.

Figure 14-9

 Typed DataSet
 So far you ’ ve used the Field() extension method to access the field of a DataTable object. For
example, the following program uses LINQ to DataSet to query all the customers living in the USA. The
result is then reshaped using an anonymous type:

 SqlConnection conn;
 SqlCommand comm;
 SqlDataAdapter adapter;
 DataSet ds = new DataSet();

 conn = new SqlConnection(@”Data Source=.\SQLEXPRESS;” +
 “Initial Catalog=Northwind;Integrated Security=True”);
 comm = new SqlCommand(“SELECT * FROM Customers”, conn);
 adapter = new SqlDataAdapter(comm);
 adapter.Fill(ds, “Customers”);

 var query1 =
 (from customer in ds.Tables[0].AsEnumerable()
 where customer.Field < string > (“Country”) == “USA”
 select new
 {
 CustomerID = customer.Field < string > (“CustomerID”),
 CompanyName = customer.Field < string > (“CompanyName”),
 ContactName = customer.Field < string > (“ContactName”),
 ContactTitle = customer.Field < string > (“ContactTitle”)
 }).ToList();

 dataGridView1.DataSource = query1;

c14.indd 446c14.indd 446 10/1/08 11:54:59 AM10/1/08 11:54:59 AM

Chapter 14: Language Integrated Query (LINQ)

447

 As your query gets more complex, the use of the Field() extension method makes the query unwieldy.
A good way to resolve this is to use the typed DataSet feature in ADO.NET. A typed DataSet provides
strongly typed methods, events, and properties and so this means you can access tables and columns by
name, instead of using collection - based methods.

 To add a typed DataSet to your project, first add a DataSet item to your project in Visual Studio 2008
(see Figure 14 - 10). Name it TypedCustomersDataset.xsd .

Figure 14-10

 In the Server Explorer window, open a connection to the database you want to use (in this case it
is the Northwind database) and drag and drop the Customers table onto the design surface of
 TypedCustomersDataSet.xsd (see Figure 14 - 11). Save the TypedCustomersDataSet.xsd file.

Figure 14-11

c14.indd 447c14.indd 447 10/1/08 11:55:00 AM10/1/08 11:55:00 AM

448

Part I: C# Fundamentals

 With the typed DataSet created, rewrite the query as follows:

 SqlConnection conn;
 SqlCommand comm;
 SqlDataAdapter adapter;

 TypedCustomersDataSet ds = new TypedCustomersDataSet();

 conn = new SqlConnection(@”Data Source=.\SQLEXPRESS;” +
 “Initial Catalog=Northwind;Integrated Security=True”);
 comm = new SqlCommand(“SELECT * FROM Customers”, conn);
 adapter = new SqlDataAdapter(comm);
 adapter.Fill(ds, “Customers”);

 var query1 =
 (from customer in ds.Customers
 where customer.Country == “USA”
 select new
 {
 customer.CustomerID,
 customer.CompanyName,
 customer.ContactName,
 customer.ContactTitle
 }).ToList();

 dataGridView1.DataSource = query1;

 Notice that the query is now much clearer because there is no need to use the Field() extension
method. Figure 14 - 12 shows the output.

Figure 14-12

c14.indd 448c14.indd 448 10/1/08 11:55:01 AM10/1/08 11:55:01 AM

Chapter 14: Language Integrated Query (LINQ)

449

 Detecting Null Fields
 Using the same query used in the previous section, let ’ s modify it so that you can retrieve all customers
living in the WA region:

 var query1 =
 (from customer in ds.Customers

 where customer.Region==”WA”

 select new
 {
 customer.CustomerID,
 customer.CompanyName,
 customer.ContactName,
 customer.ContactTitle
 }).ToList();

 When you execute the query, the program raises an exception. That ’ s because some of the rows in the
 Customers table have null values for the Region field. To prevent this from happening, you need
to use the IsNull() method to check for null values, like this:

 var query1 =
 (from customer in ds.Customers

 where !customer.IsNull(“Region”) & & customer.Region == “WA”

 select new
 {
 customer.CustomerID,
 customer.CompanyName,
 customer.ContactName,
 customer.ContactTitle
 }).ToList();

 Notice that LINQ uses short - circuiting when evaluating the conditions in the where statement, so the
 IsNull() method must be placed before other conditions.

 Interestingly, the Field() extension method handles nullable types, so you do not have to explicitly
check for null values if you are not using typed DataSets.

 Saving the Result of a Query to a DataTable
 The result of a LINQ query can be saved into a DataTable object by using the CopyToDataTable()
method. The CopyToDataTable() method takes the result of a query and copies the data into a
 DataTable , which can then be used for data binding.

 The following example shows a LINQ query using typed DataSet with the result copied to a DataTable
object and then bound to a DataGridView control:

 var query1 =
 from customer in ds.Customers
 where customer.Country == “USA”
 select customer;

 DataTable USACustomers = query1.CopyToDataTable ();

 dataGridView1.DataSource = USACustomers;

c14.indd 449c14.indd 449 10/1/08 11:55:01 AM10/1/08 11:55:01 AM

450

Part I: C# Fundamentals

 Note that the CopyToDataTable() method only operates on an IEnumerable < T > source where
the generic parameter T is of type DataRow . Hence, it does not work for queries that project anonymous
types or queries that perform table joins.

 LINQ to XML
 Also very cool is LINQ ’ s capability to manipulate XML documents. In the past, you had to use XPath or
XQuery whenever you need to manipulate XML documents. Using LINQ to XML, you can now query
XML trees and documents using the familiar LINQ syntax.

 To use the LINQ to XML, you must add a reference to the System.Xml.Linq.dll in
your project and also import the System.Xml.Linq namespace .

 Creating XML Trees
 To create an XML document tree in memory, use the XDocument object, which represents an XML
document. To create an XML element, use the XElement class; for attributes, use the XAttribute class.
The following code shows how to build an XML document using these objects:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;

namespace LINQtoXML
{
 class Program
 {
 static void Main(string[] args)
 {
 XDocument library = new XDocument(
 new XElement(“Library”,
 new XElement(“Book”,
 new XAttribute(“published”, “NYP”),
 new XElement(“Title”, “C# 2008 Programmers’ Reference”),
 new XElement(“Publisher”, “Wrox”)
),
 new XElement(“Book”,
 new XAttribute(“published”, “Published”),
 new XElement(“Title”, “Professional Windows Vista “ +
 “Gadgets Programming”),
 new XElement(“Publisher”, “Wrox”)
),
 new XElement(“Book”,

c14.indd 450c14.indd 450 10/1/08 11:55:01 AM10/1/08 11:55:01 AM

Chapter 14: Language Integrated Query (LINQ)

451

 new XAttribute(“published”, “Published”),
 new XElement(“Title”, “ASP.NET 2.0 - A Developer’s “ +
 “Notebook”),
 new XElement(“Publisher”, “O’Reilly”)
),
 new XElement(“Book”,
 new XAttribute(“published”, “Published”),
 new XElement(“Title”, “.NET 2.0 Networking Projects”),
 new XElement(“Publisher”, “Apress”)
),
 new XElement(“Book”,
 new XAttribute(“published”, “Published”),
 new XElement(“Title”, “Windows XP Unwired”),
 new XElement(“Publisher”, “O’Reilly”)
)
)
);
 }
 }
}

 The indentation gives you an overall visualization of the document structure.

 To save the XML document to file, use the Save() method:

 library.Save(“Books.xml”);

 To print out the XML document as a string, use the ToString() method:

 Console.WriteLine(library.ToString());

 When printed, the XML document looks like this:

 < Library >
 < Book published=”NYP” >
 < Title > C# 2008 Programmers’ Reference < /Title >
 < Publisher > Wrox < /Publisher >
 < /Book >
 < Book published=”Published” >
 < Title > Professional Windows Vista Gadgets Programming < /Title >
 < Publisher > Wrox < /Publisher >
 < /Book >
 < Book published=”Published” >
 < Title > ASP.NET 2.0 - A Developer’s Notebook < /Title >
 < Publisher > O’Reilly < /Publisher >
 < /Book >
 < Book published=”Published” >
 < Title > .NET 2.0 Networking Projects < /Title >
 < Publisher > Apress < /Publisher >
 < /Book >
 < Book published=”Published” >
 < Title > Windows XP Unwired < /Title >
 < Publisher > O’Reilly < /Publisher >
 < /Book >
 < /Library >

c14.indd 451c14.indd 451 10/1/08 11:55:01 AM10/1/08 11:55:01 AM

452

Part I: C# Fundamentals

 To load an XML document into the XDocument object, use the Load() method:

 XDocument LibraryBooks = new XDocument();
 LibraryBooks = XDocument.Load(“Books.xml”);

 Querying Elements
 You can use LINQ to XML to locate specific elements. For example, to retrieve all books published by
Wrox, you can use the following query:

 var query1 =
 from book in LibraryBooks.Descendants(“Book”)
 where book.Element(“Publisher”).Value == “Wrox”
 select book.Element(“Title”).Value;

 Console.WriteLine(“------”);
 Console.WriteLine(“Result”);
 Console.WriteLine(“------”);
 foreach (var book in query1)
 {
 Console.WriteLine(book);
 }

 This query generates the following output:

Result

C# 2008 Programmers’ Reference
Professional Windows Vista Gadgets Programming

 To retrieve all not - yet - published (NYP) books from Wrox, you can use the following query:

 var query2 =
 from book in library.Descendants(“Book”)
 where book.Attribute(“published”).Value == “NYP” & &
 book.Element(“Publisher”).Value==”Wrox”
 select book.Element(“Title”).Value;

 You can shape the result of a query as you ’ ve seen in earlier sections:

 var query3 =
 from book in library.Descendants(“Book”)
 where book.Element(“Publisher”).Value == “Wrox”

 select new
 {
 Name = book.Element(“Title”).Value,
 Pub = book.Element(“Publisher”).Value
 };

 Console.WriteLine(“------”);

c14.indd 452c14.indd 452 10/1/08 11:55:02 AM10/1/08 11:55:02 AM

Chapter 14: Language Integrated Query (LINQ)

453

 Console.WriteLine(“Result”);
 Console.WriteLine(“------”);
 foreach (var book in query3)
 {
 Console.WriteLine(“{0} ({1})”, book.Name, book.Pub);
 }

 This code generates the following output:

Result

C# 2008 Programmers’ Reference (Wrox)
Professional Windows Vista Gadgets Programming (Wrox)

 Besides using an anonymous type to reshape the result, you can also pass the result to a non - anonymous
type. For example, suppose that you have the following class definition:

 public class Book
 {
 public string Name { get; set; }
 public string Pub { get; set; }
 }

 You can shape the result of a query to the Book class, as the following example shows:

 var query4 =
 from book in library.Descendants(“Book”)
 where book.Element(“Publisher”).Value == “Wrox”

 select new Book
 {
 Name = book.Element(“Title”).Value,
 Pub = book.Element(“Publisher”).Value
 };

 List < Book > books = query4.ToList();

 An Example Using RSS
 Let ’ s now take a look at the usefulness of LINQ to XML. Suppose that you want to build an application
that downloads an RSS document, extracts the title of each posting, and displays the link to each post.

 Figure 14 - 13 shows an example of an RSS document.

c14.indd 453c14.indd 453 10/1/08 11:55:02 AM10/1/08 11:55:02 AM

454

Part I: C# Fundamentals

 To load an XML document directly from the Internet, you can use the Load() method from the
 XDocument class:

 XDocument rss =
XDocument.Load(@”http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml”);

 To retrieve the title of each posting and then reshape the result, use the following query:

 var posts =
 from item in rss.Descendants(“item”)
 select new
 {
 Title = item.Element(“title”).Value,
 URL = item.Element(“link”).Value
 };

 In particular, you are looking for all the < item > elements and then for each < item > element found you
would extract the values of the < title > and < link > elements.

Figure 14-13

c14.indd 454c14.indd 454 10/1/08 11:55:02 AM10/1/08 11:55:02 AM

Chapter 14: Language Integrated Query (LINQ)

455

 < rss >
 < channel >
 ...

 < item >
 < title > ... < /title >
 < link > ... < /link >
 ...
 < /item >

 < item >
 < title > ... < /title >
 < link > ... < /link >
 ...
 < /item >

 < item >
 < title > ... < /title >
 < link > ... < /link >
 ...
 < /item >

...

 Finally, print out the title and URL for each post:

 foreach (var post in posts)
 {
 Console.WriteLine(“{0}”, post.Title);
 Console.WriteLine(“{0}”, post.URL);
 Console.WriteLine();
 }

 Figure 14 - 14 shows the output.

Figure 14-14

c14.indd 455c14.indd 455 10/1/08 11:55:03 AM10/1/08 11:55:03 AM

456

Part I: C# Fundamentals

 Query Elements with a Namespace
 If you observe the RSS document structure carefully, you notice that the < creator > element has the dc
namespace defined (see Figure 14 - 15).

Figure 14-15

Figure 14-16

 The dc namespace is defined at the top of the document, within the < rss > element (see Figure 14 - 16).

 When using LINQ to XML to query elements defined with a namespace, you need to specify the
namespace explicitly. The following example shows how you can do so using the XNamespace element
and then using it in your code:

 XDocument rss =
XDocument.Load(@”http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml”);

 XNamespace dcNamespace = “http://purl.org/dc/elements/1.1/”;

 var posts =
 from item in rss.Descendants(“item”)
 select new
 {
 Title = item.Element(“title”).Value,
 URL = item.Element(“link”).Value,

 Creator = item.Element(dcNamespace + “creator”).Value

 };

 foreach (var post in posts)
 {
 Console.WriteLine(“{0}”, post.Title);
 Console.WriteLine(“{0}”, post.URL);

 Console.WriteLine(“{0}”, post.Creator);

 Console.WriteLine();
 }

c14.indd 456c14.indd 456 10/1/08 11:55:03 AM10/1/08 11:55:03 AM

Chapter 14: Language Integrated Query (LINQ)

457

 Figure 14 - 17 shows the query result.

Figure 14-17

 Retrieving Postings in the Last 10 Days
 The < pubDate > element in the RSS document contains the date the posting was created. To retrieve all
postings published in the last 10 days, you would need to use the Parse() method (from the DateTime
class) to convert the string into a DateTime type and then deduct it from the current time. Here ’ s how
that can be done:

 XDocument rss =
 XDocument.Load(
 @”http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml”);

 XNamespace dcNamespace = “http://purl.org/dc/elements/1.1/”;

 var posts =
 from item in rss.Descendants(“item”)

 where (DateTime.Now -
 DateTime.Parse(item.Element(“pubDate”).Value)).Days < 10

 select new
 {
 Title = item.Element(“title”).Value,
 URL = item.Element(“link”).Value,
 Creator = item.Element(dcNamespace + “creator”).Value,

 PubDate = DateTime.Parse(item.Element(“pubDate”).Value)

 };

 Console.WriteLine(“Today’s date: {0}”,
 DateTime.Now.ToShortDateString());
 foreach (var post in posts)
 {
 Console.WriteLine(“{0}”, post.Title);
 Console.WriteLine(“{0}”, post.URL);
 Console.WriteLine(“{0}”, post.Creator);
 Console.WriteLine(“{0}”, post.PubDate.ToShortDateString());
 Console.WriteLine();
 }

c14.indd 457c14.indd 457 10/1/08 11:55:03 AM10/1/08 11:55:03 AM

458

Part I: C# Fundamentals

 LINQ to SQL
 LINQ to SQL is a component of the .NET Framework (v3.5) that provides a runtime infrastructure for
managing relational data as objects.

 With LINQ to SQL, a relational database is mapped to an object model. Instead of manipulating the
database directly, developers manipulate the object model, which represents the database. After changes
are made to it, the object model is submitted to the database for execution.

 Visual Studio 2008 includes the new Object Relational Designer (O/R Designer), which provides a user
interface for creating LINQ to SQL entity classes and relationships. It enables you to easily model and
visualize a database as a LINQ to SQL object model.

 Using the Object Relational Designer
 To see how LINQ to SQL works, create a new Windows application using Visual Studio 2008.

 First, add a new LINQ to SQL Classes item to the project. Use the default name of DataClasses1.dbml
(see Figure 14 - 18).

Figure 14-18

 In Server Explorer, open a connection to the database you want to use. For this example, use the pubs
sample database. Drag and drop the following tables onto the design surface of DataClasses1.dbml :

 authors

 publishers

 titleauthor

 titles

❑

❑

❑

❑

c14.indd 458c14.indd 458 10/1/08 11:55:04 AM10/1/08 11:55:04 AM

Chapter 14: Language Integrated Query (LINQ)

459

 Figure 14 - 19 shows the relationships among these four tables.

Figure 14-19

 Now save the DataClasses1.dbml file, and Visual Studio 2008 will create the relevant classes to
represent the tables and relationships that you just modeled. For every LINQ to SQL file you added
to your solution, a DataContext class is generated. You can view this using the Class Viewer
(View Class View; see Figure 14 - 20). In this case, the name of the DataContext class is
 DataClasses1DataContext . The name of this class is based on the name of the .dbml file; if you
named the .dbml file Pubs , this class is named PubsDataContext .

c14.indd 459c14.indd 459 10/1/08 11:55:04 AM10/1/08 11:55:04 AM

460

Part I: C# Fundamentals

 Querying
 With the database modeled using the LINQ to SQL designer, it ’ s time to write some code to query the
database. First, create an instance of the DataClasses1DataContext class:

 DataClasses1DataContext database = new DataClasses1DataContext();

 To retrieve all the authors living in CA, use the following code:

 var authors = from a in database.authors
 where (a.state == “CA”)
 select new
 {
 Name = a.au_fname + “ “ + a.au_lname
 };

 foreach (var a in authors)
 Console.WriteLine(a.Name);

Figure 14-20

c14.indd 460c14.indd 460 10/1/08 11:55:05 AM10/1/08 11:55:05 AM

Chapter 14: Language Integrated Query (LINQ)

461

 To retrieve all the titles in the titles table and at the same time print out the publisher name of each
title, you first retrieve all the titles from the titles table:

 var titles = from t in database.titles
 select t;

 And then you retrieve each title ’ s associated publisher:

 foreach (var t in titles)
 {
 Console.Write(“{0} “, t.title1);

 var publisher = from p in database.publishers
 where p.pub_id == t.pub_id
 select p;
 if (publisher.Count() > 0)
 Console.WriteLine(“({0})”, publisher.First().pub_name);

 }

 The output looks something like this:

Cooking with Computers: Surreptitious Balance Sheets (Algodata Infosystems)
You Can Combat Computer Stress! (New Moon Books)
How to Motivate Your Employees Straight Talk About Computers (Algodata Infosystems)
Silicon Valley Gastronomic Treats (Binnet & Hardley)
The Gourmet Microwave (Binnet & Hardley)
The Psychology of Computer Cooking (Binnet & Hardley)
But Is It User Friendly? (Algodata Infosystems)
Secrets of Silicon Valley (Algodata Infosystems)
Net Etiquette (Algodata Infosystems)
Computer Phobic AND Non-Phobic Individuals: Behavior Variations (Binnet & Hardley)
Is Anger the Enemy? (New Moon Books)
Life Without Fear (New Moon Books)
Prolonged Data Deprivation: Four Case Studies (New Moon Books)
Emotional Security: A New Algorithm (New Moon Books)
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean (Binnet & Hardley)
Fifty Years in Buckingham Palace Kitchens (Binnet & Hardley)
Sushi, Anyone? (Binnet & Hardley)

 Inserting New Rows
 To insert a row into a table, use the InsertOnSubmit() method. For example, the following code inserts
a new author into the authors table:

 DataClasses1DataContext database = new DataClasses1DataContext();

 author a = new author()
 {
 au_id = “789-12-3456”,
 au_fname = “James”,
 au_lname = “Bond”,
 phone = “987654321”
 };

 //---record is saved to object model---
 database.authors.InsertOnSubmit(a);

c14.indd 461c14.indd 461 10/1/08 11:55:05 AM10/1/08 11:55:05 AM

462

Part I: C# Fundamentals

 Note that the InsertOnSubmit() method only affects the object model; it does not save the changes
back to the database. To save the changes back to the database, you need to use the SubmitChanges()
method:

 //---send changes to database---
 database.SubmitChanges();

 What happens when you need to insert a new book title from a new author? As you saw earlier, the
 titles table is related to the titleauthors via the title_id field, while the authors table is
related to the titleauthors table via the author_id field. Therefore, if you insert a new row into the
titles table, you need to insert a new row into the authors and titleauthors tables as well.

 To do so, you first create a new author and title row:

 DataClasses1DataContext database = new DataClasses1DataContext();
 author a = new author()
 {
 au_id = “123-45-6789”,
 au_fname = “Wei-Meng”,
 au_lname = “Lee”,
 phone = “123456789”
 };

 title t = new title()
 {
 title_id = “BU5555”,
 title1 = “How to Motivate Your Employees”,
 pubdate = System.DateTime.Now,
 type = “business”
 };

 Then, add a new titleauthor row by associating its author and title properties with the new title
and author row you just created:

 titleauthor ta = new titleauthor()
 {
 author = a,
 title = t
 };

 Finally, save the changes to the object model and submit the changes to the database:

 //---record is saved to object model---
 database.titleauthors.InsertOnSubmit(ta);

 //---send changes to database---
 database.SubmitChanges();

 Notice that you do not need to worry about indicating the title_id and author_id fields in the
 titleauthors table; LINQ to SQL does those for you automatically.

c14.indd 462c14.indd 462 10/1/08 11:55:05 AM10/1/08 11:55:05 AM

Chapter 14: Language Integrated Query (LINQ)

463

 Updating Rows
 Updating rows using LINQ to SQL is straightforward — you retrieve the record you need to modify:

 DataClasses1DataContext database = new DataClasses1DataContext();
 title bookTitle = (from t in database.titles
 where (t.title_id == “BU5555”)
 select t).Single();

 The Single() method returns the only element of a sequence, and throws an exception if there is not
exactly one element in the sequence.

 Modify the field you want to change:

 bookTitle.title1 = “How to Motivate Your Staff”;

 And submit the changes using the SubmitChanges() method:

 database.SubmitChanges();

 The query can alternatively be written using the method syntax, like this:

 title bookTitle = database.titles.Single(t = > t.title_id == “BU5555”);

 Deleting Rows
 To delete a row, you first retrieve the row to delete:

 DataClasses1DataContext database = new DataClasses1DataContext();
 //---find author ---
 var author = from a in database.authors
 where a.au_id == “789-12-3456”
 select a;

 Then, locate the row to delete by using the First() method, and finally call the DeleteOnSubmit()
method to delete the row:

 if (author.Count() > 0)
 {
 database.authors.DeleteOnSubmit(author.First());
 database.SubmitChanges();
 }

 The First() method returns the first element of a sequence.

c14.indd 463c14.indd 463 10/1/08 11:55:05 AM10/1/08 11:55:05 AM

464

Part I: C# Fundamentals

 If you have multiple rows to delete, you need to delete each row individually, like this:

 //---find author ---
 var authors = from a in database.authors
 where a.au_id == “111-11-1111” ||
 a.au_id == “222-22-1111”
 select a;

 foreach (author a in authors)
 {
 database.authors.DeleteOnSubmit(a);
 }
 database.SubmitChanges();

 So far the deletion works only if the author to be deleted has no related rows in the titleauthors
and titles tables. If the author has associated rows in the titleauthors and titles tables, these
examples cause an exception to be thrown because the deletions violate the referential integrity of the
database (see Figure 14 - 21).

Figure 14-21

 Because LINQ to SQL does not support cascade - delete operations, you need to make sure that rows in
related tables are also deleted when you delete a row. The following code example shows how to delete a
title from the titles and titleauthors tables:

 DataClasses1DataContext database = new DataClasses1DataContext();
 string titleid_to_remove = “BU5555”;

 //---find all associated row in Titles table---
 var title = from t in database.titles
 where t.title_id == titleid_to_remove
 select t;

 //---delete the row in the Titles table---
 foreach (var t in title)
 database.titles.DeleteOnSubmit(t);

 //---find all associated row in TitleAuthors table---

c14.indd 464c14.indd 464 10/1/08 11:55:06 AM10/1/08 11:55:06 AM

Chapter 14: Language Integrated Query (LINQ)

465

 var titleauthor = from ta in database.titleauthors
 where ta.title_id == titleid_to_remove
 select ta;

 //---delete the row in the TitleAuthors table---
 foreach (var ta in titleauthor)
 database.titleauthors.DeleteOnSubmit(ta);

 //---submit changes to database---
 database.SubmitChanges();

 Summary
 This chapter, provides a quick introduction to the Language Integrated Query (LINQ) feature, which is
new in .NET 3.5. It covered LINQ ’ s four key implementations: LINQ to Objects, LINQ to XML, LINQ to
Dataset, and LINQ to SQL. LINQ enables you to query various types of data sources, using a unified
query language, making data access easy and efficient.

c14.indd 465c14.indd 465 10/1/08 11:55:06 AM10/1/08 11:55:06 AM

c14.indd 466c14.indd 466 10/1/08 11:55:06 AM10/1/08 11:55:06 AM

 Assemblies and Versioning
 In .NET, the basic unit deployable is called an assembly. Assemblies play an important part of the
development process where understanding how they work is useful in helping you develop
scalable, efficient .NET applications. This chapter explores:

 The components that make up a .NET assembly

 The difference between single - file and multi - file assemblies

 The relationships between namespaces and assemblies

 The role played by the Global Assembly Cache (GAC)

 How to develop a shared assembly, which can be shared by other applications

 Assemblies
 In .NET, an assembly takes the physical form of an EXE (known as a process assembly) or DLL
(known as a library assembly) file, organized in the Portable Executable (PE) format. The PE
format is a file format used by the Windows operating system for storing executables, object code,
and DLLs. An assembly contains code in IL (Intermediate Language; compiled from a .NET
language), which is then compiled into machine language at runtime by the Common Language
Runtime (CLR) just - in - time compiler.

 Structure of an Assembly
 An assembly consists of the following four parts (see Figure 15 - 1).

 Part Description

 Assembly metadata Describes the assembly and its content

 Type metadata Defines all the types and methods exported from the assembly

 IL code Contains the MSIL code compiled by the compiler

 Resources Contains icons, images, text strings, as well as other resources
used by your application

❑

❑

❑

❑

❑

c15.indd 467c15.indd 467 10/1/08 11:56:01 AM10/1/08 11:56:01 AM

468

Part I: C# Fundamentals

 Physically, all four parts can reside in one physical file, or some parts of an assembly can be stored other
 modules . A module can contain type metadata and IL code, but it does not contain assembly metadata.
Hence, a module cannot be deployed by itself; it must be combined with an assembly to be used.
Figure 15 - 2 shows part of an assembly stored in two modules.

Figure 15-1

Figure 15-2

 An assembly is the basic unit of installation. In this example, the assembly is made up of three files (one
assembly and two modules). The two modules by themselves cannot be installed separately; they must
accompany the assembly.

 Examining the Content of an Assembly
 As mentioned briefly in Chapter 1 , you can use the MSIL Disassembler tool (ildasm.exe) to examine
the content of an assembly. Figure 15 - 3 shows the tool displaying an assembly ’ s content.

Figure 15-3

c15.indd 468c15.indd 468 10/1/08 11:56:02 AM10/1/08 11:56:02 AM

469

Chapter 15: Assemblies and Versioning

 Among the various components in an assembly, the most important is the manifest (shown as
MANIFEST in Figure 15 - 3), which is part of the assembly metadata. The manifest contains information
such as the following:

 Name, version, public key, and culture of the assembly

 Files belonging to the assembly

 References assemblies (other assemblies referenced by this assembly)

 Permission sets

 Exported types

 Figure 15 - 4 shows the content of the manifest of the assembly shown in Figure 15 - 3 .

❑

❑

❑

❑

❑

Figure 15-4

 Single and Multi - File Assemblies
 In Visual Studio, each project that you create will be compiled into an assembly (either EXE or DLL). By
default, a single - file assembly is created. Imagine you are working on a large project with10 other
programmers. Each one of you is tasked with developing part of the project. But how do you test the
system as a whole? You could ask every programmer in the team to send you his or her code and then
you could compile and test the system as a whole. However, that really isn ’ t feasible, because you have
to wait for everyone to submit his or her source code. A much better way is to get each programmer to
build his or her part of the project as a standalone library (DLL). You can then get the latest version of
each library and test the application as a whole. This approach has an added benefit — when a deployed
application needs updating, you only need to update the particular library that needs updating. This is
extremely useful if the project is large. In addition, organizing your project into multiple assemblies
ensures that only the needed libraries (DLLs) are loaded during runtime.

c15.indd 469c15.indd 469 10/1/08 11:56:02 AM10/1/08 11:56:02 AM

470

Part I: C# Fundamentals

 To see the benefit of creating multi - file assemblies, let ’ s create a new Class Library project, using
Visual Studio 2008, and name it MathUtil . In the default Class1.cs , populate it with the
following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MathUtil
{
 public class Utils
 {
 public int Fibonacci(int num)
 {
 if (num < = 1) return 2; //---should return 1; error on purpose---
 return Fibonacci(num - 1) + Fibonacci(num - 2);
 }
 }
}

 This Utils class contains a method called Fibonacci() , which returns the n th number in the Fibonacci
sequence (note that I have purposely injected an error into the code so that I can later show you how
the application can be easily updated by replacing the DLL). Figure 15 - 5 shows the first 20 numbers
in the correct Fibonacci sequence.

Figure 15-5

 Build the Class Library project (right - click on the project ’ s name in Solution Explorer, and select Build) so
that it will compile into a DLL — MathUtil.dll .

 Add a Windows Application project to the current solution, and name it WindowsApp - Util . This
application will use the Fibonacci() method defined in MathUtil.dll . Because the MathUtil.dll
assembly is created in the same solution as the Windows project, you can find it in the Projects tab of the
Add Reference dialog (see Figure 15 - 6). Select the assembly, and click OK.

c15.indd 470c15.indd 470 10/1/08 11:56:03 AM10/1/08 11:56:03 AM

471

Chapter 15: Assemblies and Versioning

 The MathUtil.dll assembly will now be added to the project. Observe that the Copy Local property
for the MathUtil.dll assembly is set to True (see Figure 15 - 7). This means that a copy of the assembly
will be placed in the project ’ s output directory (that is, the bin\Debug folder).

Figure 15-6

Figure 15-7

 When you add a reference to one of the classes in the .NET class library, the Copy
Local property for the added assembly will be set to False. That ’ s because the
.NET assembly is in the Global Assembly Cache (GAC), and all computers with
the .NET Framework installed have the GAC. The GAC is discussed later in this
chapter.

c15.indd 471c15.indd 471 10/1/08 11:56:03 AM10/1/08 11:56:03 AM

472

Part I: C# Fundamentals

Switch to the code - behind of the default Form1 and code the following statements:

namespace WindowsApp_Util
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 CallUtil();

 }

 private void CallUtil()
 {
 MathUtil.Utils util = new MathUtil.Utils();
 MessageBox.Show(util.Fibonacci(7).ToString());
 }

 }
}

 Set a breakpoint at the CallMathUtil() method (see Figure 15 - 8).

Figure 15-8

 Right - click on the WindowsApp - Util project name in Solution Explorer, and select Start as Startup
Project. Press F5 to debug the application. When the application stops at the breakpoint, view the
modules loaded into memory by selecting Debug Windows Modules (see Figure 15 - 9).

c15.indd 472c15.indd 472 10/1/08 11:56:04 AM10/1/08 11:56:04 AM

473

Chapter 15: Assemblies and Versioning

 Observe that MathUtil.dll library has not been loaded yet. Press F11 to step into the CallMathUtil()
function (see Figure 15 - 10). The MathUtil.dll library is now loaded into memory.

Figure 15-9

Figure 15-10

 Press F5 to continue the execution. You should see a message box displaying the value 42. In the bin\
Debug folder of the Windows application project, you will find the EXE assembly as well as the DLL
assembly (see Figure 15 - 11).

c15.indd 473c15.indd 473 10/1/08 11:56:04 AM10/1/08 11:56:04 AM

474

Part I: C# Fundamentals

 Updating the DLL
 The Fibonacci() method defined in the MathUtil project contains a bug. When num is less than or
equal to 1, the method should return 1 and not 2. In the real world, the application and the DLL may
already been deployed to the end user ’ s computer. To fix this bug, you simply need to modify the Utils
class, recompile it, and then update the user ’ s computer with the new DLL:

namespace MathUtil
{
 public class Utils
 {
 public int Fibonacci(int num)
 {

 if (num < = 1) return 1; //---fixed!---

 return Fibonacci(num - 1) + Fibonacci(num - 2);
 }
 }
}

 Copy the recompiled MathUtil.dll from the bin\Debug folder of the MathUtil project, and overwrite
the original MathUtil.dll located in the bin\Debug folder of the Windows project. When the
application runs again, it will display the correct value, 21 (previously it displayed 42).

 Because the MathUtil.dll assembly is not digitally signed, a hacker could replace this assembly with
one that contains malicious code, and the client of this assembly (which is the WindowsApp - Util
application in this case) would not know that the assembly has been tampered with. Later in this
chapter, you will see how to give the assembly a unique identity using a strong name.

 Modules and Assemblies
 An application using a library loads it only when necessary — the entire library is loaded into memory
during runtime. If the library is large, your application uses up more memory and takes a longer time to
load. To solve this problem, you can split an assembly into multiple modules and then compile each
individually as a module. The modules can then be compiled into an assembly.

 To see how you can use a module instead of an assembly, add a new Class Library project to the solution
used in the previous section. Name the Class Library project StringUtil . Populate the default Class1
.cs file as follows:

Figure 15-11

c15.indd 474c15.indd 474 10/1/08 11:56:04 AM10/1/08 11:56:04 AM

475

Chapter 15: Assemblies and Versioning

using System.Text.RegularExpressions;
namespace StringUtil
{
 public class Utils
 {
 public bool ValidateEmail(string email)
 {
 string strRegEx = @”^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}” +
 @”\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\” +
 @”.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$”;
 Regex regex = new Regex(strRegEx);
 if (regex.IsMatch(email))
 return (true);
 else
 return (false);
 }
 }
}

 Instead of using Visual Studio 2008 to build the project into an assembly, use the C# compiler to
manually compile it into a module.

 To use the C# compiler, launch the Visual Studio 2008 Command Prompt (Start Programs Microsoft
Visual Studio 2008 Visual Studio Tools Visual Studio 2008 Command Prompt).

 Navigate to the folder containing the StringUtil project, and type in the following command to create
a new module:

csc /target:module /out:StringUtil.netmodule Class1.cs

 When the compilation is done, the StringUtil.netmodule file is created (see Figure 15 - 12).

Figure 15-12

c15.indd 475c15.indd 475 10/1/08 11:56:05 AM10/1/08 11:56:05 AM

476

Part I: C# Fundamentals

 Do the same for the MathUtil class that you created earlier (see Figure 15 - 13):

csc /target:module /out:MathUtil.netmodule Class1.cs

Figure 15-13

 Copy the two modules that you have just created — StringUtil.netmodule and MathUtil
.netmodule — into a folder, say C:\Modules\. Now to combine these two modules into an assembly,
type the following command:

csc /target:library /addmodule:StringUtil.netmodule /addmodule:MathUtil.netmodule
/out:Utils.dll

 This creates the Utils.dll assembly (see Figure 15 - 14).

Figure 15-14

c15.indd 476c15.indd 476 10/1/08 11:56:05 AM10/1/08 11:56:05 AM

477

Chapter 15: Assemblies and Versioning

 In the WindowsApp - Utils project, remove the previous versions of the MathUtil.dll assembly and
add a reference to the Utils.dll assembly that you just created (see Figure 15 - 15). You can do so via the
Browse tab of the Add Reference dialog (navigate to the directory containing the modules and assembly,
C:\Modules). Click OK.

Figure 15-15

 In the code - behind of Form1 , modify the following code as shown:

namespace WindowsApp_Util
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 CallMathUtil();
 CallStringUtil();

 }

 private void CallMathUtil()
 {
 MathUtil.Utils util = new MathUtil.Utils();
 MessageBox.Show(util.Fibonacci(7).ToString());
 }

 private void CallStringUtil()
 {

 StringUtil.Utils util = new StringUtil.Utils();
 MessageBox.Show(util.ValidateEmail(
 “weimenglee@learn2develop.net”).ToString());
 }

 }
}

c15.indd 477c15.indd 477 10/1/08 11:56:06 AM10/1/08 11:56:06 AM

478

Part I: C# Fundamentals

 The CallMathUtil() function invokes the method defined in the MathUtil module. The
 CallStringUtil() function invokes the method defined in the StringUtil module.

 Set a break point in the Form1_Load event handler, as shown in Figure 15 - 16 , and press F5 to debug the
application.

Figure 15-16

 When the breakpoint is reached, view the Modules window (Debug Windows Modules), and note
that the Utils.dll assembly has not been loaded yet (see Figure 15 - 17).

Figure 15-17

c15.indd 478c15.indd 478 10/1/08 11:56:06 AM10/1/08 11:56:06 AM

479

Chapter 15: Assemblies and Versioning

 Press F11 to step into the CallMathUtil() function, and observe that the Utils.dll assembly is now
loaded, together with the MathUtil.netmodule (see Figure 15 - 18).

Figure 15-18

 Press F11 a few times to step out of the CallMathUtil() function until you step into
 CallStringUtil() . See that the StringUtil.netmodule is now loaded (see Figure 15 - 19).

Figure 15-19

c15.indd 479c15.indd 479 10/1/08 11:56:07 AM10/1/08 11:56:07 AM

480

Part I: C# Fundamentals

 This example proves that modules in an assembly are loaded only as and when needed. Also, when
deploying the application, the Util.dll assembly and the two modules must be in tandem. If any of the
modules is missing during runtime, you will encounter a runtime error, as shown in Figure 15 - 20 .

Figure 15-20

 Understanding Namespaces and Assemblies
 As you know from Chapter 1 , the various class libraries in the .NET Framework are organized
using namespaces. So how do namespaces relate to assemblies? To understand the relationship
between namespaces and assemblies, it ’ s best to take a look at an example.

 Create a new Class Library project in Visual Studio 2008, and name it ClassLibrary1 . In the default
 Class1.cs , populate it with the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Learn2develop.net

{
 public class Class1
 {

 public void DoSomething()
 {
 }

 }
}

c15.indd 480c15.indd 480 10/1/08 11:56:07 AM10/1/08 11:56:07 AM

481

Chapter 15: Assemblies and Versioning

 Use the default name of Class2.cs . In the newly added Class2.cs , code the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Learn2develop.net

{

 public class Class2

 {

 public void DoSomething()
 {
 }

 }
}

 Class2 is enclosed within the same namespace — Learn2develop.net , and it also has a
 DoSomething() method. Compile the ClassLibrary1 project so that an assembly is generated in
the bin\Debug folder of the project — ClassLibrary1.dll . Add another Class Library project to the
current solution and name the project ClassLibrary2 (see Figure 15 - 22).

Figure 15-21

 Observe that the definition of Class1 is enclosed within the Learn2develop.net namespace. The class
also contains the DoSomething() method.

 Add a new class to the project by right - clicking on the project ’ s name in Solution Explorer and
selecting Add Class (see Figure 15 - 21).

c15.indd 481c15.indd 481 10/1/08 11:56:07 AM10/1/08 11:56:07 AM

482

Part I: C# Fundamentals

 Populate the default Class1.cs as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Learn2develop.net

{

 public class Class3

 {

 public void DoSomething()
 {
 }

 }
}

namespace CoolLabs.net
{
 public class Class5
 {
 public void DoSomething()
 {
 }
 }
}

 This file contains two namespaces — Learn2develop.net and CoolLabs.net — each containing a
class and a method.

 Compile the ClassLibrary2 project so that an assembly is generated in the bin\Debug folder of the
project — ClassLibrary2.dll .

 Now, add another Class Library project to the current solution, and this time use the Visual Basic
language. Name the project ClassLibrary3 (see Figure 15 - 23).

Figure 15-22

c15.indd 482c15.indd 482 10/1/08 11:56:08 AM10/1/08 11:56:08 AM

483

Chapter 15: Assemblies and Versioning

 In the Properties page of the ClassLibrary3 project, set its root namespace to Learn2develop.net
(see Figure 15 - 24).

Figure 15-23

Figure 15-24

 In the default Class1.vb , define Class4 and add a method to it:

Public Class Class4
 Public Sub DoSomething()
 End Sub

End Class

c15.indd 483c15.indd 483 10/1/08 11:56:08 AM10/1/08 11:56:08 AM

484

Part I: C# Fundamentals

 Compile the ClassLibrary3 project so that an assembly is generated in the bin\Debug folder of the
project — ClassLibrary3.dll .

 Now add a new Windows application project (name it WindowsApp) to the current solution so that you
can use the three assemblies (ClassLibrary1.dll , ClassLibrary2.dll , and ClassLibrary3.dll)
that you have created.

 To use the three assemblies, you need to add a reference to all of them. Because the assemblies are
created in the same solution as the current Windows project, you can find them in the Projects tab of the
Add Reference dialog (see Figure 15 - 25).

Figure 15-25

 In the code - behind of the default Form1 , type the Learn2develop.net namespace, and IntelliSense will
show that four classes are available (see Figure 15 - 26).

Figure 15-26

 Even though the classes are located in different assemblies, IntelliSense still finds them because all these
classes are grouped within the same namespace. You can now use the classes as follows:

 Learn2develop.net.Class1 c1 = new Learn2develop.net.Class1();
 c1.DoSomething();

 Learn2develop.net.Class2 c2 = new Learn2develop.net.Class2();
 c2.DoSomething();

c15.indd 484c15.indd 484 10/1/08 11:56:09 AM10/1/08 11:56:09 AM

485

Chapter 15: Assemblies and Versioning

 Learn2develop.net.Class3 c3 = new Learn2develop.net.Class3();
 c3.DoSomething();

 Learn2develop.net.Class4 c4 = new Learn2develop.net.Class4();
 c4.DoSomething();

 For Class5 , you need to use the CoolLabs.net namespace. If you don ’ t, IntelliSense will check against
all the referenced assemblies and suggest an appropriate namespace (see Figure 15 - 27).

Figure 15-27

Namespace Alias
There are times when you want to specify the fully qualified name of a class so that
your code is easier to understand. For example, you usually import the namespace of a
class and use the class like this:

 using CoolLabs.net;
 //...
 Class5 c5 = Class5();
 c5.DoSomething();

However, you might want to use the fully qualified name for Class5 to make it clear
that Class5 belongs to the CoolLabs.net namespace. To do so, you can rewrite your
code like this:

 CoolLabs.net.Class5 c5 = new CoolLabs.net.Class5();
 c5.DoSomething();

But the CoolLabs.net namespace is quite lengthy and may make your code look long
and unwieldy. To simplify the coding, you can give an alias to the namespace, like this:

 using cl = CoolLabs.net;
 //...
 cl.Class5 c5 = cl.Class5();
 c5.DoSomething();

Then, instead of using the full namespace, you can simply refer to the CoolLabs.net
namespace as cl.

 You can use Class5 as follows:

 CoolLabs.net.Class5 c5 = new CoolLabs.net.Class5();
 c5.DoSomething();

c15.indd 485c15.indd 485 10/1/08 11:56:09 AM10/1/08 11:56:09 AM

486

Part I: C# Fundamentals

 To summarize, this example shows that:

 Classes belonging to a specific namespace can be located in different assemblies.

 An assembly can contain one or more namespaces.

 Assemblies created using different languages are transparent to each other.

 Private versus Shared Assemblies
 So far, all the assemblies you have seen and created are all private assemblies — that is, they are used
specifically by your application and nothing else. As private assemblies, they are stored in the same
folder as your executable and that makes deployment very easy — there is no risk that someone else has
another assembly that overwrites yours particular and thus breaks your application.

❑

❑

❑

DLL Hell
If you programmed prior to the .NET era, you’ve no doubt heard of (maybe even
experienced) the phrase DLL Hell. Suppose that you have installed an application on
your customer’s computer and everything works fine until one day your customer
calls and says that your application has suddenly stopped working. Upon probing, you
realize that the customer has just downloaded and installed a new application from
another vendor. Your application stopped working because one of the libraries (DLLs)
that you have been using in your application has been overwritten by the application
from the other vendor. And because your application could no longer find the
particular DLL that it needs, it ceases to work.

.NET eliminates this nightmare by ensuring that each application has its own copy of
the libraries it needs.

 But assemblies can also be shared — that is, used by more than one application running on the computer.
Shared assemblies are useful if they provide generic functionalities needed by most applications. To
prevent DLL Hell, Microsoft has taken special care to make sure that shared assemblies are well
protected. First, all shared assemblies are stored in a special location known as the Global Assembly
Cache (GAC). Second, each shared assembly must have a strong name to uniquely identify itself so that
no other assemblies have the same name.

 A strong name comprises the following:

 Name of the assembly

 Version number

 Public key

 Culture

❑

❑

❑

❑

c15.indd 486c15.indd 486 10/1/08 11:56:10 AM10/1/08 11:56:10 AM

487

Chapter 15: Assemblies and Versioning

Understanding Cryptography
In the world of cryptography, there are two main types of encryption and encryption
algorithms — symmetric and asymmetric.

Symmetric encryption is also sometimes known as private key encryption. With private
key encryption, you encrypt a secret message using a key that only you know. To decrypt
the message, you need to use the same key. Private key encryption is effective only if the
key can be kept a secret. If too many people know the key, its effectiveness is reduced.

Imagine that you are trying to send a secret message to your faraway friend, Susan, using
a private key. For Susan to decrypt the secret message, she must know the private key. So
you need to send it to her. But if the secrecy of the key is compromised somehow (such as
through people eavesdropping on your conversation), then the message is no longer
secure. Moreover, if Susan tells another friend about the private key, her friend can then
also decrypt the message. Despite the potential weakness of private key encryption, it is
very easy to implement and, computationally, it does not take up too many resources.

Private key encryption requires that the key used in the encryption process be kept a
secret. A more effective way to transport secret messages to your intended recipient is to
use asymmetric encryption (also known as public key encryption). In public key
encryption, there is a pair of keys involved. This pair, consisting of a private key and a
public key, is related mathematically such that messages encrypted with the public key
can only be decrypted with the corresponding private key. The contrary is true; messages
encrypted with the private key can only be decrypted with the public key. Let’s see an
example for each scenario.

Before you send a message to Susan, Susan needs to generate the key pair containing the
private key and the public key. Susan then freely distributes the public key to you
(and all her other friends) but keeps the private key to herself. When you want to send a
message to Susan, you use her public key to encrypt the message and then send it to her.
Upon receiving the encrypted message, Susan proceeds to decrypt it with her private key.
In this case, Susan is the only one who can decrypt the message because the key pair
works in such a way that only messages encrypted with the public key can be decrypted
with the private key. Also, there is no need to exchange secret keys, thus eliminating the
risk of compromising the secrecy of the key.

The reverse can happen. Suppose Susan now sends a message encrypted with her private
key to you. To decrypt the message, you need the public key. The scenario may seem
redundant because the public key is not a secret; everyone knows it. But using this
method guarantees that the message has not been tampered with and that it indeed
comes from Susan. If the message had been modified, you would not be able to decrypt
it. The fact that you can decrypt the message using the public key proves that the
message has not been modified.

In computing, public key cryptography is a secure way to encrypt information. However,
it is computationally expensive, because it is time-consuming to generate the key pairs
and to perform encryption and decryption. It is usually used for encrypting a small
amount of sensitive information.

c15.indd 487c15.indd 487 10/1/08 11:56:10 AM10/1/08 11:56:10 AM

488

Part I: C# Fundamentals

 To deploy an assembly as a shared assembly, you need to create a signature for your assembly by
performing the following steps:

 1. Generate a key pair containing a private key and a public key.

 2. Write the public key to the manifest of the assembly.

 3. Create a hash of all files belonging to the assembly.

 4. Sign the hash with the private key (the private key is not stored within the assembly).

 These steps guarantee that the assembly cannot be altered in any way, ensuring that the shared assembly
you are using is the authentic copy provided by the vendor. The signature can be verified using the
public key.

 The following sections will show you how to perform each of these steps.

 For the client application using the shared assembly, the compiler writes the public key of the shared
assembly to the manifest of the client so that it can unique identify the shared assembly (only the last
8 bytes of a hash of a public key are stored; this is known as the public key token and is always unique).
When an application loads the shared assembly, it uses the public key stored in the shared assembly to
decrypt the encrypted hash and match it against the hash of the shared assembly to ensure that the
shared assembly is authentic.

 Creating a Shared Assembly
 You ’ ll better understand how to create a shared assembly by actually creating one. In this example, you
create a library to perform Base64 encoding and decoding. Basically, Base64 encoding is a technique to
encode binary data into a text - based representation so that it can be easily transported over networks
and Web Services. A common usage of Base64 is in emails.

 Using Visual Studio 2008, create a new Class Library project and name it Base64Codec . In the default
 Class1.cs , define the Helper class containing two methods — Decode() and Encode() :

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Base64Codec
{
 public class Helper
 {
 public byte[] Decode(string base64string)
 {
 byte[] binaryData;
 try
 {
 binaryData =
 Convert.FromBase64String(base64string);
 return binaryData;
 }

c15.indd 488c15.indd 488 10/1/08 11:56:11 AM10/1/08 11:56:11 AM

489

Chapter 15: Assemblies and Versioning

 catch (Exception)
 {
 return null;
 }
 }

 public string Encode(byte[] binaryData)
 {
 string base64String;
 try
 {
 base64String =
 Convert.ToBase64String(
 binaryData, 0, binaryData.Length);
 return base64String;
 }
 catch (Exception)
 {
 return string.Empty;
 }
 }
 }
}

 Creating a Strong Name
 To create a strong name for the assembly, you need to sign it. The easiest way is to use the Properties page
of the project in Visual Studio 2008. Right - click on the project name in Solution Explorer, and select
Properties. Select the Signing tab (see Figure 15 - 28), and check the Sign The Assembly checkbox. Select
 < New > from the Choose A Strong Name Key File dropdown list to specify a name for the strong name file.

Figure 15-28

c15.indd 489c15.indd 489 10/1/08 11:56:11 AM10/1/08 11:56:11 AM

490

Part I: C# Fundamentals

 In the Create Strong Name Key dialog (see Figure 15 - 29), specify a name to store the pair of keys
(KeyFile.snk , for instance). You also have the option to protect the file with a password. Click OK.

 An SNK file is a binary file containing the pair of public and private keys.

Figure 15-29

 A strong name file is now created in your project (see Figure 15 - 30).

Figure 15-30

 Alternatively, you can also use the command line to generate the strong name file:

sn -k KeyFile.snk

 Versioning
 With .NET, you can create different versions of the same assembly and share them with other
applications. To specify version information, you can edit the AssemblyInfo.cs file, located under the
Properties item in Solution Explorer (see Figure 15 - 31).

Figure 15-31

c15.indd 490c15.indd 490 10/1/08 11:56:11 AM10/1/08 11:56:11 AM

491

Chapter 15: Assemblies and Versioning

 In the AssemblyInfo.cs file, locate the following lines:

...
// You can specify all the values or you can default the Build and Revision Numbers
// by using the ‘*’ as shown below:
// [assembly: AssemblyVersion(“1.0.*”)]

[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

 The version number of an assembly is specified using the following format:

[Major Version, Minor Version, Build Number, Revision]

 The AssemblyVersion attribute is used to identify the version number of an assembly. Applications that
use this particular assembly reference this version number. If this version number is changed,
applications using this assembly will not be able to find it and will break.

 The AssemblyFileVersion attribute is used to specify the version number of the assembly, and it
shows up in the properties page of the assembly (more on this in a later section).

 Building the Assembly
 Build the Class Library project so that Visual Studio 2008 will now generate the shared assembly and
sign it with the strong name. To examine the shared assembly created, navigate to the bin\Debug folder
of the project and type in the following command:

ildasm Base64Codec.dll

 Figure 15 - 32 shows the public key stored in the manifest of the shared assembly.

Figure 15-32

 You can obtain the public key token of the shared assembly by using the following command:

sn -T Base64Codec.dll

c15.indd 491c15.indd 491 10/1/08 11:56:12 AM10/1/08 11:56:12 AM

492

Part I: C# Fundamentals

 Figure 15 - 33 shows the public key token displayed in the console window. Note this number because
you will use it for comparison later.

Figure 15-33

 The Global Assembly Cache
 Now that you have created a shared assembly, the next task is to put it into the GAC. The GAC is a
central repository of .NET assemblies that can be shared by all applications. There are several reasons
why you should put your shared assembly into the GAC, some of which are:

 Security — Assemblies stored in the GAC are required to be signed with a cryptographic key.
This makes it difficult for others to tamper with your assembly, such as replacing or injecting
your shared assembly with malicious code.

 Version management — Multiple versions of the same assembly can reside in the GAC so that
each application can find and use the version of your assembly to which it was compiled. This
helps to avoid DLL Hell, where applications compiled to different versions of your assembly can
potentially break because they are all forced to use a single version of your assembly.

 Faster loading — Assemblies are verified when they are first installed in the GAC, eliminating
the need to verify an assembly each time it is loaded from the GAC. This improves the startup
speed of your application if you load many shared assemblies.

 The GAC is located in < windows_directory > \Assembly. In most cases, it is C:\Windows\Assembly.
When you navigate to this folder by using Windows Explorer, the Assembly Cache Viewer launches to
display the list of assemblies stored in it (see Figure 15 - 34).

❑

❑

❑

Figure 15-34

c15.indd 492c15.indd 492 10/1/08 11:56:12 AM10/1/08 11:56:12 AM

493

Chapter 15: Assemblies and Versioning

 Putting the Shared Assembly into GAC
 To put the shared assembly that you have just built into the GAC, drag and drop it onto the Assembly
Cache Viewer. Alternatively, you can also use the gacutil.exe utility to install the shared assembly into
the GAC (see Figure 15 - 35):

gacutil /i Base64Codec.dll

Figure 15-35

 If you are using Windows Vista, make sure to run the command prompt as
Administrator.

 If the installation is successful, you will see the shared assembly in the Assembly Cache Viewer
(see Figure 15 - 36).

Figure 15-36

 The version number displayed next to the DLL is specified by using the AssemblyVersion attribute
in the AssemblyInfo.cs file (as discussed earlier). Select the Base64Codec DLL, and click the Properties
button (the button with the tick icon) to see the Properties page as shown in Figure 15 - 37 .

c15.indd 493c15.indd 493 10/1/08 11:56:13 AM10/1/08 11:56:13 AM

494

Part I: C# Fundamentals

 The version number displayed in this page is specified using the AssemblyFileVersion attribute.

 To install different versions of the same assembly to the GAC, simply modify the version number in
 AssemblyInfo.cs (via the AssemblyVersion attribute), recompile the assembly, and install it into
the GAC.

 Physically, the shared assembly is copied to a folder located under the GAC_MSIL subfolder of the GAC,
in the following format:

 < Windows_Directory > \assembly\GAC_MSIL\ < Assembly_Name > \ < Version > _ < Public_Key_Token >

 In this example, it is located in:

C:\Windows\assembly\GAC_MSIL\Base64Codec\1.0.0.0_2a7dec4fb0bb6

 Figure 15 - 38 shows the physical location of the Base64Codec.dll assembly.

Figure 15-37

Figure 15-38

c15.indd 494c15.indd 494 10/1/08 11:56:13 AM10/1/08 11:56:13 AM

495

Chapter 15: Assemblies and Versioning

 Making the Shared Assembly Visible in Visual Studio
 By default, adding a shared assembly into the GAC does not make it appear automatically in Visual Studio ’ s
Add Reference dialog. You need to add a registry key for that to happen. Here ’ s how to handle that.

 First, launch the registry editor by typing regedit in the Run command box.

Figure 15-39

 Name the new key Base64Codec . Double - click on the key ’ s (Default) value, and enter the full path of
the shared assembly (for example, C:\Documents and Settings\Wei - Meng Lee\My Documents\
Visual Studio 2008\Projects\Base64Codec\bin\Debug ; see Figure 15 - 40).

Figure 15-40

 If you are using Windows Vista, make sure to run regedit as Administrator.

 Navigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders
key. Right - click on the AssemblyFolders key and select New Key (see Figure 15 - 39).

 Then restart Visual Studio 2008, and the assembly should appear in the Add Reference dialog.

c15.indd 495c15.indd 495 10/1/08 11:56:13 AM10/1/08 11:56:13 AM

496

Part I: C# Fundamentals

 Using the Shared Assembly
 Let ’ s now create a new Windows application project to use the shared assembly stored in the GAC.
Name the project WinBase64 .

 To use the shared assembly, add a reference to the DLL. In the Add Reference dialog, select the
 Base64Codec assembly, as shown in Figure 15 - 41 , and click OK.

Figure 15-41

 Note in the Properties window that the Copy Local property of the Base64Codec is set to False
(see Figure 15 - 42), indicating that the assembly is in the GAC.

Figure 15-42

c15.indd 496c15.indd 496 10/1/08 11:56:14 AM10/1/08 11:56:14 AM

497

Chapter 15: Assemblies and Versioning

 Populate the default Form1 with the controls shown in Figure 15 - 43 (load the pictureBox1 with a
JPG image).

Figure 15-43

 In the code - behind of Form1 , define the two helper functions as follows:

 Remember to import the System.IO namespace for these two helper functions.

 public byte[] ImageToByteArray(Image img)
 {
 MemoryStream ms = new MemoryStream();
 img.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg);
 return ms.ToArray();
 }

 public Image ByteArrayToImage(byte[] data)
 {
 MemoryStream ms = new MemoryStream(data);
 Image img = new Bitmap(ms);
 return img;
 }

 Code the Test button as follows:

 private void btnTest_Click(object sender, EventArgs e)
 {
 //---create an instance of the Helper class---
 Base64Codec.Helper codec = new Base64Codec.Helper();

 //---convert the image in pictureBox1 to base64---

(continued)

c15.indd 497c15.indd 497 10/1/08 11:56:14 AM10/1/08 11:56:14 AM

498

Part I: C# Fundamentals

 string base64string =
 codec.Encode(ImageToByteArray(pictureBox1.Image));

 //---decode the base64 to binary and display in pictureBox2---
 pictureBox2.Image = ByteArrayToImage(codec.Decode(base64string));
 }

 Here you are creating an instance of the Helper class defined in the shared assembly. To test that the
methods defined in the Helper class are working correctly, encode the image displayed in pictureBox1
to base64, decode it back to binary, and then display the image in pictureBox2 .

 Press F5 to test the application. When you click the Test button, an identical image should appear on the
right (see Figure 15 - 44).

(continued)

Figure 15-44

 Examine the manifest of the WinBase64.exe assembly to see the reference to the Base64Codec assembly
(see Figure 15 - 45). Observe the public key token stored in the manifest — it is the public key token of the
shared assembly.

Figure 15-45

c15.indd 498c15.indd 498 10/1/08 11:56:15 AM10/1/08 11:56:15 AM

499

Chapter 15: Assemblies and Versioning

 Summary
 This chapter explained the parts that make up a .NET assembly. Splitting your application into multiple
assemblies and modules will make your application easier to manage and update. At the same time, the
CLR will only load the required assembly and modules, thereby making your application more efficient.
If you have a shared assembly that can be used by other applications, consider deploying it into the
Global Assembly Cache (GAC).

c15.indd 499c15.indd 499 10/1/08 11:56:15 AM10/1/08 11:56:15 AM

c15.indd 500c15.indd 500 10/1/08 11:56:15 AM10/1/08 11:56:15 AM

Part II

Application
Development Using C#

Chapter 16: Developing Windows Applications

Chapter 17: Developing ASP.NET Web Applications

Chapter 18: Developing Windows Mobile Applications

Chapter 19: Developing Silverlight Applications

Chapter 20: Windows Communication Foundation

c16.indd 501c16.indd 501 10/1/08 11:57:52 AM10/1/08 11:57:52 AM

c16.indd 502c16.indd 502 10/1/08 11:57:52 AM10/1/08 11:57:52 AM

 Developing Windows
Applications

 Chapters 16 – 19 show how you can use the C# language to create a different type of application.
This chapter tackles Windows application development. The best way to learn a language is to
actually work on a real project from the beginning to deployment. So, this chapter leads you
through creating a Windows application that performs some useful tasks and then shows you how
to deploy it using a technique in Visual Studio known as ClickOnce.

 Specifically, the Windows application you build in this chapter demonstrates how to:

 Programmatically access FTP servers using the FtpWebRequest and FtpWebResponse
classes (both derived from the WebRequest and WebResponse classes in the System.Net
namespace)

 Incorporate printing capability in your Windows application using the PrintDocument
class (located in the System.Drawing.Printing namespace)

 Deploy a Windows application using ClickOnce. You will also see how to
programmatically cause an application to update itself.

 The Project
 The project in this chapter is a photo viewer Windows application that accesses an FTP server.
Using this application, users can upload photos to an FTP server and also download and view
images stored on the FTP server. The application is useful for companies that may need to access
images uploaded by their partners. Insurance companies, for instance, may need to access
photographs of car damage taken by auto body shop mechanics to facilitate estimating the cost of
repair. Rather than build a complex web application, the shops and insurance companies can
simply use this application to quickly upload and view photos. Users can also print the photos
directly from the application.

❑

❑

❑

c16.indd 503c16.indd 503 10/1/08 11:57:53 AM10/1/08 11:57:53 AM

Part II: Application Development Using C#

504

 Figure 16 - 1 shows how the application will look like when it is completed.

 Figure 16 - 1

 Configuring the F TP Server
 Before you start writing the code of this application, you first need to configure FTP service for your
computer. For this project, use the FTP service on your development machine.

By default, FTP service is not installed in Windows (note that FTP service is not
available on Windows Vista Home editions). To add FTP Service to your computer,
select Control Panel Add or Remove Programs. Click the Add/Remove Windows
Component tab, select Internet Information Services (IIS), and click the Details
button. Select File Transfer Protocol (FTP) Service, and click OK.

 To configure the FTP service on your computer, launch the Internet Information Services management
console window by typing the command – inetmgr in the Run window. Your FTP site should look like
Figure 16 - 2 .

c16.indd 504c16.indd 504 10/1/08 11:57:53 AM10/1/08 11:57:53 AM

Chapter 16: Developing Windows Applications

505

 Right - click the Default FTP Site item, and select Properties. Click the Security Accounts tab. Ensure that
the Allow Anonymous Connections checkbox is checked (see Figure 16 - 3) to enable an anonymous user
to log in to your FTP service.

 Figure 16 - 2

 Figure 16 - 3

 Next, click on the Home Directory tab, and check the Write checkbox (see Figure 16 - 4). This allows users
to your FTP service to upload files and create directories on the FTP server.

c16.indd 505c16.indd 505 10/1/08 11:57:53 AM10/1/08 11:57:53 AM

Part II: Application Development Using C#

506

 Click OK to finish the configuration of the FTP service.

 Creating the Application
 Using Visual Studio 2008, create a new Windows application and name it PhotoViewer . Populate the
default Form1 with the controls shown in Figure 16 - 5 . These controls are:

 Control Text Name

 Button controls (4) Create Folder btnCreateFolder

 Remove Folder btnRemoveFolder

 Upload Photos btnUploadPhotos

 Delete Photo btnDeletePhoto

 GroupBox controls (3) FTP Server

 Folders

 Photos

 Label controls (6) Server Name/IP

 User Name

 Password

 Select folder

 New folder name

 Selected Photo

 Figure 16 - 4

c16.indd 506c16.indd 506 10/1/08 11:57:54 AM10/1/08 11:57:54 AM

Chapter 16: Developing Windows Applications

507

 Control Text Name

 PictureBox PictureBox1

 TextBox controls (4) txtFTPServer

 txtUserName

 txtPassword

 txtNewFolderName

 ToolStripStatusLabel ToolStripStatusLabel1 ToolStripStatusLabel1

 TreeView TreeView1

 Figure 16 - 5

 The source code for this project can be downloaded from Wrox ’ s web site at www.wrox.com .

c16.indd 507c16.indd 507 10/1/08 11:57:54 AM10/1/08 11:57:54 AM

Part II: Application Development Using C#

508

 Figure 16 - 6

 You ’ ll also need to add an ImageList control (ImageList1) to Form1 to contain three images
representing an opened folder, a closed folder, and an image file. You can specify these images in the
control ’ s Image property (see Figure 16 - 6).

 Set the control properties in the following table.

 Control Property Value

 TreeView1 ImageList ImageList1

 PictureBox1 SizeMode Zoom

 txtPassword PasswordChar “ * “

 Using Application Settings
 When users launch the PhotoViewer application, they need to supply three pieces of information to
access the FTP Server:

 FTP Server name/IP address

 Username

 Password

 Because this information is needed every time the user uses the application, it would be helpful to save it
somewhere persistently so that the next time the user launches the application, it ’ s available without his
needing to type it in again.

❑

❑

❑

c16.indd 508c16.indd 508 10/1/08 11:57:55 AM10/1/08 11:57:55 AM

Chapter 16: Developing Windows Applications

509

 In Windows Forms, a feature known as application settings allows you to store information persistently in
a structured manner without resorting to using a database or forcing you to manually save it to a file.
So let ’ s see how application settings can help you in this instance.

 Right - click on the PhotoViewer project in Solution Explorer and select Properties. In the Properties
page, click on the Settings tab and enter the three application settings in the following table
(see Figure 16 - 7).

 Name Type Scope Value

 FTP_SERVER string User ftp://127.0.0.1

 UserName string User anonymous

 Password string User password

 Figure 16 - 7

 As their names suggest, FTP_Server stores the name or IP address of the FTP server, UserName stores
the username used to log in to the FTP server, and Password stores the password used to log in to the
FTP server.

c16.indd 509c16.indd 509 10/1/08 11:57:55 AM10/1/08 11:57:55 AM

Part II: Application Development Using C#

510

 Notice the following:

 The type of each application setting is string . You can also specify other .NET types for each
application setting.

 The scope for each application setting is User. Application settings can be either user - scoped or
application - scoped. Application - scoped settings are not discussed because they are beyond the
scope of this book.

 The default value for each application setting is also specified here.

 Save the solution in Visual Studio 2008 so that the application settings can be saved.

 Let ’ s examine the project a little closer to see how the application settings work. Figure 16 - 8 shows
the three files in Solution Explorer that are used to maintain your application settings (you need to
click the Show All Files button in Solution Explorer to view all these files).

❑

❑

❑

 Figure 16 - 8

 The Settings.settings file refers to the Settings page that you have been using to add the application
settings. The Settings.Designer.cs file is a compiler - generated file that contains the data types of the
various settings that you have defined. Here are the definitions for the various application settings:

namespace PhotoViewer.Properties
{
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute(
 “Microsoft.VisualStudio.Editors.SettingsDesigner
.SettingsSingleFileGenerator”, “9.0.0.0”)]
 internal sealed partial class Settings :
 global::System.Configuration.ApplicationSettingsBase
 {

 private static Settings defaultInstance =
 ((Settings)(global::System.Configuration
 .ApplicationSettingsBase.Synchronized(new Settings())));

 public static Settings Default
 {

c16.indd 510c16.indd 510 10/1/08 11:57:56 AM10/1/08 11:57:56 AM

Chapter 16: Developing Windows Applications

511

 get
 {
 return defaultInstance;
 }
 }

 [global::System.Configuration.UserScopedSettingAttribute()]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Configuration.DefaultSettingValueAttribute(
 “ftp://127.0.0.1”)]
 public string FTP_SERVER
 {
 get
 {
 return ((string)(this[“FTP_SERVER”]));
 }
 set
 {
 this[“FTP_SERVER”] = value;
 }
 }

 [global::System.Configuration.UserScopedSettingAttribute()]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Configuration.DefaultSettingValueAttribute(“anonymous”)]
 public string UserName
 {
 get
 {
 return ((string)(this[“UserName”]));
 }
 set
 {
 this[“UserName”] = value;
 }
 }

 [global::System.Configuration.UserScopedSettingAttribute()]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Configuration.DefaultSettingValueAttribute(“password”)]
 public string Password
 {
 get
 {
 return ((string)(this[“Password”]));
 }
 set
 {
 this[“Password”] = value;
 }
 }

 }
}

c16.indd 511c16.indd 511 10/1/08 11:57:56 AM10/1/08 11:57:56 AM

Part II: Application Development Using C#

512

 The app.config file is an XML File containing the default values of your application settings.
Its content is:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 < configSections >
 < sectionGroup name=”userSettings” type=”System.Configuration.UserSettingsGroup,
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089” >
 < section name=”PhotoViewer.Properties.Settings”
type=”System.Configuration.ClientSettingsSection, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089” allowExeDefinition=”MachineToLocalUser”
requirePermission=”false” / >
 < /sectionGroup >
 < /configSections >
 < userSettings >

 < PhotoViewer.Properties.Settings >
 < setting name=”FTP_SERVER” serializeAs=”String” >
 < value > ftp://127.0.0.1 < /value >
 < /setting >
 < setting name=”UserName” serializeAs=”String” >
 < value > anonymous < /value >
 < /setting >
 < setting name=”Password” serializeAs=”String” >
 < value > password < /value >
 < /setting >
 < /PhotoViewer.Properties.Settings >

 < /userSettings >
 < /configuration >

 The highlighted code shows the settings that you added earlier and their default values. When the
project is compiled, this app.config file will be named < assembly_name > .exe.config and stored
in the bin\Debug (or bin\Release) folder of the project. For this project, the filename will be
 PhotoViewer.exe.config .

 During runtime, any changes made to the application settings ’ values will cause a user.config file to
be created in the following folder:

C:\Documents and Settings\ < user_name > \Local Settings\Application Data\ < application_
name > \ < application_name > .vshost.exe_Url_iwwpinbgs0makur33st4vnin2nkwxgq1\
< version_no > \

 Notice the long string of random characters in the path. The folder name is generated by the system, and
each time you have a different folder name.

 For this project, the user.config file will be stored in a folder with a name like this:

C:\Documents and Settings\Wei-Meng Lee\Local Settings\Application Data\PhotoViewer\
PhotoViewer.vshost.exe_Url_iwwpinbgs0makur33st4vnin2nkwxgq1\1.0.0.0

c16.indd 512c16.indd 512 10/1/08 11:57:56 AM10/1/08 11:57:56 AM

Chapter 16: Developing Windows Applications

513

 The content of the user.config file looks like this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < configuration >
 < userSettings >
 < PhotoViewer.Properties.Settings >
 < setting name=”FTP_SERVER” serializeAs=”String” >
 < value > ftp://127.0.0.1 < /value >
 < /setting >
 < setting name=”UserName” serializeAs=”String” >
 < value > anonymous1 < /value >
 < /setting >
 < setting name=”Password” serializeAs=”String” >
 < value > password < /value >
 < /setting >
 < /PhotoViewer.Properties.Settings >
 < /userSettings >
 < /configuration >

 Each user (of your computer) will maintain his own copy of the user.config file.

 Coding the Application
 Now to code the application. Switching to the code - behind of Form1 , import the following namespaces:

using System.Net;
using System.IO;

 Define the WebRequestMethod enumeration:

namespace PhotoViewer
{

 enum WebRequestMethod
 {
 MakeDirectory,
 DownloadFile,
 ListDirectoryDetails,
 RemoveDirectory,
 DeleteFile
 }

 Declare the following constants and member variables:

 public partial class Form1 : Form
 {

 //---constants for the icon images---
 const int ico_OPEN = 0;
 const int ico_CLOSE = 1;
 const int ico_PHOTO = 2;

 In Form1 , select the three TextBox controls (you can Ctrl+click each of them) that ask for the FTP server
name, user name, and password (see Figure 16 - 9). In the Properties window, double - click the Leave
property to generate an event handler stub for the Leave event.

c16.indd 513c16.indd 513 10/1/08 11:57:57 AM10/1/08 11:57:57 AM

Part II: Application Development Using C#

514

 Visual Studio 2008 then generates the txtFtpServer_Leave event handler:

 private void txtFTPServer_Leave(object sender, EventArgs e)
 {

 }

 The event handler is invoked whenever the focus leaves one of the three TextBox controls you have
selected. This is where you can save the information entered by the user into the application settings you
have created in the previous section.

 Code the event handler as follows:

 private void txtFTPServer_Leave(object sender, EventArgs e)
 {

 //---save the values in the textbox controls
 // into the application settings---
 Properties.Settings.Default.FTP_SERVER = txtFTPServer.Text;
 Properties.Settings.Default.UserName = txtUserName.Text;
 Properties.Settings.Default.Password = txtPassword.Text;
 Properties.Settings.Default.Save();

 }

 You access the various application settings using the Properties.Settings.Default class
(as generated in the Settings.Designer.cs file). Once the application settings are assigned a value,
you need to persist them using the Save() method.

 Figure 16 - 9

c16.indd 514c16.indd 514 10/1/08 11:57:57 AM10/1/08 11:57:57 AM

Chapter 16: Developing Windows Applications

515

 Building the Directory Tree and Displaying Images
 When the form is loaded, you first load the values of the application settings into the TextBox controls,
and then display a node representing the root directory of the FTP server in the TreeView control:

 private void Form1_Load(object sender, EventArgs e)
 {
 try
 {
 //---load the application settings values
 // into the textbox controls---
 txtFTPServer.Text = Properties.Settings.Default.FTP_SERVER;
 txtUserName.Text = Properties.Settings.Default.UserName;
 txtPassword.Text = Properties.Settings.Default.Password;

 //---create the root node for the TreeView---
 TreeNode node = new TreeNode();
 node.ImageIndex = ico_CLOSE;
 node.SelectedImageIndex = ico_OPEN;
 node.Text = @”/”;

 //---add the root node to the control---
 TreeView1.Nodes.Add(node);

 //---add the dummy child node to the root node---
 node.Nodes.Add(“”);

 //---select the root node---
 TreeView1.SelectedNode = node;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

 You will always add a dummy node in the TreeView control after a node is created to ensure that the
current node can be expanded to reveal subdirectories (even if there are none). This is shown in
Figure 16 - 10 .

 Figure 16 - 10

c16.indd 515c16.indd 515 10/1/08 11:57:57 AM10/1/08 11:57:57 AM

Part II: Application Development Using C#

516

 When a node is expanded (by clicking on the � symbol), the TreeView1_BeforeExpand event is fired.
You have to write code that checks to see if the current node is a leaf node (meaning that it is not a
directory but a file). If it is a leaf node, exit the method. Otherwise, you need to display its subdirectories
(if any).

 You should also change the current node icon to “ open ” if the node is selected and “ closed ” if the node is
not selected. Here ’ s the code for expanding folders and displaying the proper icon at each node:

 private void TreeView1_BeforeExpand(
 object sender, TreeViewCancelEventArgs e)
 {
 //---if leaf node (photo) then exit---
 if (e.Node.ImageIndex == ico_PHOTO) return;

 //---remove the dummy node and display the subdirectories and files---
 try
 {
 //---clears all the nodes and...---
 e.Node.Nodes.Clear();

 //---create the nodes again---
 BuildDirectory(e.Node);
 }
 catch (Exception ex)
 {
 ToolStripStatusLabel1.Text = ex.ToString();
 }

 //---change the icon for this node to open---
 if (e.Node.GetNodeCount(false) > 0)
 {
 e.Node.ImageIndex = ico_CLOSE;
 e.Node.SelectedImageIndex = ico_OPEN;
 }
 }

 The BuildDirectory() function displays all the files and subdirectories within the current directory
in the TreeView control. Before you look at the definition of the BuildDirectory() function, you
define the GetDirectoryListing() function, whose main job is to request from the FTP server the
directory listing of a specified path:

 //---Get the file/dir listings and return them as a string array---
 private string[] GetDirectoryListing(string path)
 {
 try
 {
 //---get the directory listing---
 FtpWebResponse FTPResp = PerformWebRequest(
 path, WebRequestMethod.ListDirectoryDetails);

 //---get the stream containing the directory listing---
 Stream ftpRespStream = FTPResp.GetResponseStream();
 StreamReader reader =

c16.indd 516c16.indd 516 10/1/08 11:57:58 AM10/1/08 11:57:58 AM

Chapter 16: Developing Windows Applications

517

 new StreamReader(ftpRespStream, System.Text.Encoding.UTF8);

 //---obtain the result as a string array---
 string[] result = reader.ReadToEnd().Split(
 Environment.NewLine.ToCharArray(),
 StringSplitOptions.RemoveEmptyEntries);
 FTPResp.Close();
 return result;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 return null;
 }
 }

 To view the directory listing of an FTP server, you make use of the PerformWebRequest() helper
function, which is defined as follows:

 private FtpWebResponse PerformWebRequest(
 string path, WebRequestMethod method)
 {
 //---display the hour glass cursor---
 Cursor.Current = Cursors.WaitCursor;

 FtpWebRequest ftpReq = (FtpWebRequest)WebRequest.Create(path);
 switch (method)
 {
 case WebRequestMethod.DeleteFile:
 ftpReq.Method = WebRequestMethods.Ftp.DeleteFile;
 break;
 case WebRequestMethod.DownloadFile:
 ftpReq.Method = WebRequestMethods.Ftp.DownloadFile;
 break;
 case WebRequestMethod.ListDirectoryDetails:
 ftpReq.Method = WebRequestMethods.Ftp.ListDirectoryDetails;
 break;
 case WebRequestMethod.MakeDirectory:
 ftpReq.Method = WebRequestMethods.Ftp.MakeDirectory;
 break;
 case WebRequestMethod.RemoveDirectory:
 ftpReq.Method = WebRequestMethods.Ftp.RemoveDirectory;
 break;
 }
 ftpReq.Credentials = new NetworkCredential(
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password);

 FtpWebResponse ftpResp = (FtpWebResponse)ftpReq.GetResponse();

 //---change back the cursor---
 Cursor.Current = Cursors.Default;
 return ftpResp;
 }

c16.indd 517c16.indd 517 10/1/08 11:57:58 AM10/1/08 11:57:58 AM

Part II: Application Development Using C#

518

 The PerformWebRequest() function contains two parameters:

 A path representing the full FTP path

 A WebRequestMethod enumeration representing the type of request you are performing

 In the PerformWebRequest() function, you perform the following:

 Create an instance of the FtpWebRequest class, using the WebRequest class ’ s Create()
method. Create() takes in a URI parameter (containing the full FTP path).

 Set the command to be sent to the FTP server, using the Method property of the FtpWebRequest
object.

 Specify the login credential to the FTP server, using the NetWorkCredential class.

 Obtain the response from the FTP server, using the GetResponse() method from the
 FtpWebRequest class.

 The PerformWebRequest() function returns a FtpWebResponse object.

 Back in the GetDirectoryListing() function, after the call to PerformWebRequest() returns, you
retrieve the stream containing the response data sent by the FTP server, using the
 GetResponseStream() method from the FtpWebResponse class. You then use a StreamReader object
to read the directory listing:

 //---Get the file/dir listings and return them as a string array---
 private string[] GetDirectoryListing(string path)
 {
 try
 {
 //---get the directory listing---
 FtpWebResponse FTPResp = PerformWebRequest(
 path, WebRequestMethod.ListDirectoryDetails);

 //---get the stream containing the directory listing---
 Stream ftpRespStream = FTPResp.GetResponseStream();
 StreamReader reader =
 new StreamReader(ftpRespStream, System.Text.Encoding.UTF8);

 //---obtain the result as a string array---
 string[] result = reader.ReadToEnd().Split(
 Environment.NewLine.ToCharArray(),
 StringSplitOptions.RemoveEmptyEntries);
 FTPResp.Close();
 return result;

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 return null;
 }
 }

❑

❑

❑

❑

❑

❑

c16.indd 518c16.indd 518 10/1/08 11:57:58 AM10/1/08 11:57:58 AM

Chapter 16: Developing Windows Applications

519

 The directory listing is split into a string array. The directory listings are separated by newline characters.
If your FTP server is configured with an MS - DOS directory listing style (see Figure 16 - 11), the directory
listing will look something like this:

12-11-06 10:54PM 2074750 DSC00098.JPG
12-11-06 10:54PM 2109227 DSC00099.JPG
12-11-06 10:49PM < DIR > George
12-11-06 10:49PM < DIR > James
12-11-06 10:58PM < DIR > Wei-Meng Lee

Figure 16-11

 Because all subdirectories have the < DIR > field, you can easily differentiate subdirectories from files in
the BuildDirectory() function by looking for < DIR > in each line:

 //---Build the directory in the TreeView control---
 private void BuildDirectory(TreeNode ParentNode)
 {
 string[] listing = GetDirectoryListing(
 Properties.Settings.Default.FTP_SERVER +
 ParentNode.FullPath);
 foreach (string line in listing)
 {
 if (line == String.Empty) break;

 TreeNode node = new TreeNode();
 if (line.Substring(24, 5) == “ < DIR > ”)
 {

(continued)

c16.indd 519c16.indd 519 10/1/08 11:57:58 AM10/1/08 11:57:58 AM

Part II: Application Development Using C#

520

 //---this is a directory; create a new node to be added---
 node.Text = line.Substring(39);
 node.ImageIndex = ico_CLOSE;
 node.SelectedImageIndex = ico_OPEN;

 //---add the dummy child node---
 node.Nodes.Add(“”);
 ParentNode.Nodes.Add(node);
 }
 else
 {
 //---this is a normal file; create a new node to be added---
 node.Text = line.Substring(39);
 node.ImageIndex = ico_PHOTO;
 node.SelectedImageIndex = ico_PHOTO;
 ParentNode.Nodes.Add(node);
 }
 }
 }

 When a node is selected, you first obtain its current path and then display that path in the status bar if it
is a folder. If it is an image node, download and display the photo, using the DownloadImage()
function. All these are handled in the TreeView1_AfterSelect event. Here ’ s the code:

 private void TreeView1_AfterSelect(object sender, TreeViewEventArgs e)
 {
 //---always ignore the first “/” char---
 string FullPath =
 Properties.Settings.Default.FTP_SERVER +
 e.Node.FullPath.Substring(1).Replace(“\r”, “”);

 //---display the current folder selected---
 if (e.Node.ImageIndex != ico_PHOTO)
 {
 ToolStripStatusLabel1.Text = FullPath;
 return;
 }

 //---download image---
 DownloadImage(FullPath);
 }

(continued)

c16.indd 520c16.indd 520 10/1/08 11:57:59 AM10/1/08 11:57:59 AM

Chapter 16: Developing Windows Applications

521

 The DownloadImage() function downloads an image from the FTP server and displays the image in a
PictureBox control:

 //---Download the image from the FTP server---
 private void DownloadImage(string path)
 {
 try
 {
 ToolStripStatusLabel1.Text = “Downloading image...” + path;
 Application.DoEvents();

 //---download the image---
 FtpWebResponse FTPResp =
 PerformWebRequest(path,
 WebRequestMethod.DownloadFile);

 //---get the stream containing the image---
 Stream ftpRespStream = FTPResp.GetResponseStream();

 //---display the image---
 PictureBox1.Image = Image.FromStream(ftpRespStream);
 FTPResp.Close();

 ToolStripStatusLabel1.Text =
 “Downloading image...complete (“ + path + “)”;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 To download an image file using FTP and then bind it to a PictureBox control:

 Call the PerformWebRequest() helper function you defined earlier.

 Retrieve the stream that contains response data sent from the FTP server, using the
 GetResponseStream() method from the FtpWebResponse class.

 To set the PictureBox control to display the downloaded image, use the FromStream() method from
the Image class to convert the response from the FTP server (containing the image) into an image.

❑

❑

c16.indd 521c16.indd 521 10/1/08 11:57:59 AM10/1/08 11:57:59 AM

Part II: Application Development Using C#

522

 Creating a New Directory
 The user can create a new directory on the FTP server by clicking the Create Folder button.
To create a new directory, select a node (by clicking on it) to add the new folder, and then call the
 PerformWebRequest() helper function you defined earlier. This is accomplished by the Create
Folder button:

 //---Create a new folder---
 private void btnCreateFolder_Click(object sender, EventArgs e)
 {
 //---ensure user selects a folder---
 if (TreeView1.SelectedNode.ImageIndex == ico_PHOTO)
 {
 MessageBox.Show(“Please select a folder first.”);
 return;
 }

 try
 {
 //---formulate the full path for the folder to be created---
 string folder = Properties.Settings.Default.FTP_SERVER +
 TreeView1.SelectedNode.FullPath.Substring(1).Replace
 (“\r”, “”) + @”/” + txtNewFolderName.Text;

 //---make the new directory---
 FtpWebResponse ftpResp =
 PerformWebRequest(folder, WebRequestMethod.MakeDirectory);
 ftpResp.Close();

 //---refresh the newly added folder---
 RefreshCurrentFolder();

 //---update the statusbar---
 ToolStripStatusLabel1.Text =
 ftpResp.StatusDescription.Replace(“\r\n”,string.Empty);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

 When a new folder is created, you update the TreeView control to reflect the newly added folder. This is
accomplished by the RefreshCurrentFolder() function:

 private void RefreshCurrentFolder()
 {
 //---clears all the nodes and...---
 TreeView1.SelectedNode.Nodes.Clear();

 //---...create the nodes again---
 BuildDirectory(TreeView1.SelectedNode);
 }

c16.indd 522c16.indd 522 10/1/08 11:57:59 AM10/1/08 11:57:59 AM

Chapter 16: Developing Windows Applications

523

 Removing a Directory
 To remove (delete) a directory, a user first selects the folder to delete and then clicks the Remove Folder
button. To delete a directory, you call the PerformWebRequest() helper function you defined earlier.
This is accomplished with the Remove Folder button:

 //---Remove a folder---
 private void btnRemoveFolder_Click(object sender, EventArgs e)
 {
 if (TreeView1.SelectedNode.ImageIndex == ico_PHOTO)
 {
 MessageBox.Show(“Please select a folder to delete.”);
 return;
 }

 try
 {
 string FullPath =
 Properties.Settings.Default.FTP_SERVER +
 TreeView1.SelectedNode.
 FullPath.Substring(1).Replace(“\r”, “”);

 //---remove the folder---
 FtpWebResponse ftpResp =
 PerformWebRequest(FullPath, WebRequestMethod.RemoveDirectory);

 //---delete current node---
 TreeView1.SelectedNode.Remove();

 //---update the statusbar---
 ToolStripStatusLabel1.Text =
 ftpResp.StatusDescription.Replace(“\r\n”, string.Empty);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

 If a directory is not empty (that is, if it contains files and subdirectories), the deletion process will fail.
The user will have to remove its content before removing the directory.

c16.indd 523c16.indd 523 10/1/08 11:58:00 AM10/1/08 11:58:00 AM

Part II: Application Development Using C#

524

 Uploading Photos
 To upload photos to the FTP server, you first select a folder to upload the photos to and then use the
 OpenFileDialog class to ask the user to select the photo(s) he wants to upload. Finally, you upload the
photos individually, using the UploadImage() function:

 private void btnUploadPhotos_Click(object sender, EventArgs e)
 {
 //---ensure user selects a folder---
 if (TreeView1.SelectedNode.ImageIndex == ico_PHOTO)
 {
 MessageBox.Show(“Please select a folder to upload the photos.”);
 return;
 }

 OpenFileDialog openFileDialog1 = new OpenFileDialog()
 {
 Filter = “jpg files (*.jpg)|*.jpg”,
 FilterIndex = 2,
 RestoreDirectory = true,
 Multiselect = true
 };

 //---formulate the full path for the folder to be created---
 string currentSelectedPath =
 Properties.Settings.Default.FTP_SERVER +
 TreeView1.SelectedNode.FullPath.Substring(1).Replace(“\r”, “”);

 //---let user select the photos to upload---
 if (openFileDialog1.ShowDialog() ==
 System.Windows.Forms.DialogResult.OK)
 {
 //---upload each photo individually---
 for (int i = 0; i < = openFileDialog1.FileNames.Length - 1; i++)
 {
 UploadImage(currentSelectedPath + “/” +
 openFileDialog1.FileNames[i].Substring(
 openFileDialog1.FileNames[i].LastIndexOf(@”\”) + 1),
 openFileDialog1.FileNames[i]);
 }
 }

 //---refresh the folder to show the uploaded photos---
 RefreshCurrentFolder();
 }

 The UploadImage() function uploads a photo from the hard disk to the FTP server:

 First, create a new instance of the WebClient class.

 Specify the login credential to the FTP server .

 Upload the file to the FTP server, using the UploadFile() method from the WebClient class.
Note that the full pathname of the file to be uploaded to the FTP server must be specified.

❑

❑

❑

c16.indd 524c16.indd 524 10/1/08 11:58:00 AM10/1/08 11:58:00 AM

Chapter 16: Developing Windows Applications

525

 //---upload a photo to the FTP server---
 private void UploadImage(string path, string filename)
 {
 try
 {
 WebClient client = new WebClient();
 client.Credentials = new NetworkCredential(
 Properties.Settings.Default.UserName,
 Properties.Settings.Default.Password);

 //---upload the photo---
 client.UploadFile(path, filename);

 //---update the statusbar---
 ToolStripStatusLabel1.Text = filename + “ uploaded!”;
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 }

 Deleting a Photo
 To delete a photo, the user first selects a photo to delete and then you call the PerformWebRequest()
helper function you have defined earlier:

 private void btnDeletePhoto_Click(object sender, EventArgs e)
 {
 if (TreeView1.SelectedNode.ImageIndex != ico_PHOTO)
 {
 MessageBox.Show(“Please select a photo to delete.”);
 return;
 }
 try
 {
 string FullPath = Properties.Settings.Default.FTP_SERVER +
 TreeView1.SelectedNode.FullPath.Substring(1).Replace(“\r”, “”);

 //---delete the photo---
 FtpWebResponse ftpResp =
 PerformWebRequest(FullPath, WebRequestMethod.DeleteFile);

 //---delete the current node---
 TreeView1.SelectedNode.Remove();

 //---update the statusbar---
 ToolStripStatusLabel1.Text =
 ftpResp.StatusDescription.Replace(“\r\n”, string.Empty);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

c16.indd 525c16.indd 525 10/1/08 11:58:00 AM10/1/08 11:58:00 AM

Part II: Application Development Using C#

526

 Once the photo is removed from the FTP server, you also need to delete its node in the TreeView
control.

 Testing the Application
 That ’ s it! You can now test the application by pressing F5. Ensure that the credentials for logging in to
the FTP server are correct. If the login is successful, you should be able to create a new folder on the FTP
server and then upload photos. Figure 16 - 12 shows the complete application.

Figure 16-12

 Adding Print Capability
 The .NET Framework contains classes that make it easy for you to support printing in your applications.
In this section, you add printing support to the PhotoViewer application so that you can print the
photos. You ’ ll explore the basics of printing in .NET and see how to configure page setup, print
multiple pages, and preview a document before it is printed, as well as let users select a printer with
which to print.

 Basics of Printing in . NET
 In .NET, all the printing functionality is encapsulated within the PrintDocument control/class, which
can be found in the Toolbox (see Figure 16 - 13). The PrintDocument control defines the various methods
that allow you to send output to the printer.

c16.indd 526c16.indd 526 10/1/08 11:58:01 AM10/1/08 11:58:01 AM

Chapter 16: Developing Windows Applications

527

Figure 16-13

 To incorporate printing functionality into your Windows application, you can either drag and drop the
 PrintDocument control onto your form or create an instance of the PrintDocument class at runtime.
This example uses the latter approach.

 To start the printing process, you use the Print() method of the PrintDocument class. To customize
the printing process using the PrintDocument object, there are generally three events with which you
need to be acquainted:

 BeginPrint — Occurs when the Print() method is called and before the first page of the
document prints. Typically, you use this event to initialize fonts, file streams, and other resources
used during the printing process.

 PrintPage — Occurs when the output to print for the current page is needed. This is the main
event to code the logic required for sending the outputs to the printer.

 EndPrint — Occurs when the last page of the document has printed. Typically, you use this
event to release fonts, file streams, and other resources used during the printing process.

 Adding Print Support to the Project
 To add print support to the PhotoViewer application, first add the controls (see Figure 16 - 14) in the
following table.

 Control Text Name

 Label controls (2) Print from:

 to

 TextBox controls (2) txtFrom

 txtTo

 Button controls (2) Preview btnPreview

 Print btnPrint

❑

❑

❑

c16.indd 527c16.indd 527 10/1/08 11:58:01 AM10/1/08 11:58:01 AM

Part II: Application Development Using C#

528

 Switch to the code - behind of Form1 , and import the following namespace:

using System.Drawing.Printing;

 Declare the following member variables:

 public partial class Form1 : Form
 {
 //---constants for the icon images---
 const int ico_OPEN = 0;
 const int ico_CLOSE = 1;
 const int ico_PHOTO = 2;

 //---font variables---
 Font f_title;
 Font f_body;

 //---page counter---
 int pagecounter;

 //---PrintDocument variable---
 PrintDocument printDoc;

Figure 16-14

c16.indd 528c16.indd 528 10/1/08 11:58:03 AM10/1/08 11:58:03 AM

Chapter 16: Developing Windows Applications

529

 When the form is loaded during runtime, create an instance of the PrintDocument class, and wire up
the three main event handlers described earlier:

 private void Form1_Load(object sender, EventArgs e)
 {

 printDoc = new PrintDocument()
 {
 DocumentName = “Printing from Photo Viewer”
 };
 printDoc.BeginPrint += new PrintEventHandler(printDoc_BeginPrint);
 printDoc.PrintPage += new PrintPageEventHandler(printDoc_PrintPage);
 printDoc.EndPrint += new PrintEventHandler(printDoc_EndPrint);

 try
 {
 //---load the application settings values
 // into the textbox controls---
 ...

 In the event handler for the BeginPrint event, initialize the page counter as well as the fonts of the text
to be used for printing the page:

 void printDoc_BeginPrint(object sender, PrintEventArgs e)
 {
 //---initialize the page counter---
 pagecounter = int.Parse(txtFrom.Text);

 //---initialize the fonts---
 f_title = new Font(“Arial”, 16, FontStyle.Bold);
 f_body = new Font(“Times New Roman”, 10);
 }

 In the EndPrint event handler, dereference the font variables used:

 void printDoc_EndPrint(object sender, PrintEventArgs e)
 {
 //---de-reference the fonts---
 f_title = null;
 f_body = null;
 }

 Finally, the event handler for PrintPage is the place where you do the bulk of the work of sending
the output to the printer. Basically, you use the Graphics object in the PrintPageEventArgs
class to specify the output you want to print. For example, to draw a rectangle you would use the
e.Graphics.DrawRectangle() method (where e is an instance of the PrintPageEventArgs class).
To print a string, you use the e.Graphics.DrawString() method. After printing, you increment the

c16.indd 529c16.indd 529 10/1/08 11:58:03 AM10/1/08 11:58:03 AM

Part II: Application Development Using C#

530

page count and determine if there are any more pages to print. If there are, setting the HasMorePages
property of the PrintPageEventArgs class to true will cause the printDoc_PrintPage event
handler fire one more time. Once there are no more pages left to print, set the HasMorePages property
to false :

 void printDoc_PrintPage(object sender, PrintPageEventArgs e)
 {
 Graphics g = e.Graphics;

 //---draws the title---
 g.DrawString(TreeView1.SelectedNode.Text,
 f_title, Brushes.Black, 20, 30);

 //---draws a border...---
 Rectangle border =
 new Rectangle(10, 10,
 PictureBox1.Width + 20, PictureBox1.Height + 60);

 //---...using a thick pen---
 Pen thickPen = new Pen(Color.Black, 3);
 g.DrawRectangle(thickPen, border);

 //---draws the picture---
 if (PictureBox1.Image != null)
 {
 g.DrawImage(PictureBox1.Image, 20, 60,
 PictureBox1.Size.Width,
 PictureBox1.Size.Height);
 }

 //---draws the page count---
 g.DrawString(“Page “ + pagecounter,
 f_body, Brushes.Black,
 20, 420);

 //---increments the page counter---
 pagecounter += 1;

 //---determine if you have more pages to print---
 if (pagecounter < = int.Parse(txtTo.Text))
 e.HasMorePages = true;
 else
 e.HasMorePages = false;
 }

c16.indd 530c16.indd 530 10/1/08 11:58:03 AM10/1/08 11:58:03 AM

Chapter 16: Developing Windows Applications

531

 To let the user preview the output before the image is sent to the printer for printing, use the
 PrintPreviewDialog() class:

 private void btnPreview_Click(object sender, EventArgs e)
 {
 //---show preview---
 PrintPreviewDialog dlg = new PrintPreviewDialog()
 {
 Document = printDoc
 };
 dlg.ShowDialog();
 }

 This code previews the output in a separate window (see Figure 16 - 15). The user can click the printer
icon to send the output to the printer. The user can also choose to enlarge the page or view multiple
pages on one single screen.

Figure 16-15

c16.indd 531c16.indd 531 10/1/08 11:58:04 AM10/1/08 11:58:04 AM

Part II: Application Development Using C#

532

 To print the image to a printer, use the PrintDialog class to let the user choose the desired printer
(see Figure 16 - 16) instead of sending the output directly to the default printer:

 private void btnPrint_Click(object sender, EventArgs e)
 {
 //---let user select a printer to print---
 PrintDialog pd = new PrintDialog()
 {
 Document = printDoc,
 AllowSomePages = true
 };

 DialogResult result = pd.ShowDialog();
 if (result == DialogResult.OK)
 printDoc.Print();
 }

Figure 16-16

 Figure 16 - 17 shows the output if the user indicated that he wanted to print from page 1 to 3 (in Form1).
Note the page number displayed below the image.

c16.indd 532c16.indd 532 10/1/08 11:58:04 AM10/1/08 11:58:04 AM

Chapter 16: Developing Windows Applications

533

 Deploying the Application
 Now the application is ready to be deployed to your customers. One of the most challenging tasks
faced by Windows application developers today is the deployment of their applications on the client
machines. Once an application is deployed, any change to or maintenance of the application requires
redeployment. Worse, with so many different client configurations, updating a Windows application is
always fraught with unknowns.

Figure 16-17

c16.indd 533c16.indd 533 10/1/08 11:58:04 AM10/1/08 11:58:04 AM

Part II: Application Development Using C#

534

 Beginning with Visual Studio 2005, Microsoft rolled out a new deployment technology known as
ClickOnce, which makes such deployments and even updates extremely easy and painless. ClickOnce
was designed specifically to ease the deployment of Windows applications, in particular smart clients .
A smart client is basically a Windows application that leverages local resources and intelligently connects
to distributed data sources (such as Web Services) as and when needed. While a lot of companies are
deploying web applications (due to the web ’ s ubiquitous access) today, network latencies and server
delays are some of the problems that prevent developers from reaping the full benefits of the web.
Common frustrations over web applications include slow response time from web sites and limited
functionality (due to the stateless nature of the HTTP protocol). A smart client aims to reap the benefit of
the rich functionality of the client (Windows), while at the same time utilizing the power of Web Services
in the backend.

 Using ClickOnce, a Windows application can be deployed through the convenience of a web server, file
servers, or even CDs. Once an application is installed using ClickOnce, it can automatically check for
new updates to the application from the publisher, saving a lot of effort in maintenance and application
upgrades. On the security front, ClickOnce applications run within a secure sandbox and are configured
using the Code Access Security model.

 Publishing the Application Using ClickOnce
 Deploying your application using ClickOnce is very straightforward. In Visual Studio 2008, select
Build Publish PhotoViewer (see Figure 16 - 18).

Figure 16-18

 The Publish Wizard (see Figure 16 - 19) opens. By default, your application will be published to the
local web server (IIS) using the path shown in the textbox. However, you can also publish your
application using a disk path, file share, FTP, or an external web server. For this example, use the
default and click Next.

c16.indd 534c16.indd 534 10/1/08 11:58:05 AM10/1/08 11:58:05 AM

Chapter 16: Developing Windows Applications

535

 In the next page, indicate if the application is available both online and offline or available online only.
Accept the default selection, and click Next to proceed to the next step.

 In the next page, click Finish to complete the wizard and start the publishing process. When
publishing is completed, a web page (publish.htm) appears; it contains a link to install the application
(see Figure 16 - 20).

Figure 16-19

Figure 16-20

c16.indd 535c16.indd 535 10/1/08 11:58:05 AM10/1/08 11:58:05 AM

Part II: Application Development Using C#

536

 The Publish.htm page lists the following:

 Name, Version, and Publisher information

 Prerequisites required for your application (automatically generated based on the application
you are deploying)

❑

❑

 To install the application, click the Install button. You are presented with:

 File Download dialog — Security Warning prompt. Click Run to download the application.

 Internet Explorer dialog — Security Warning. Click Run to proceed with the installation.

 Application Install dialog — Security Warning. Click Install to install the application
(see Figure 16 - 21).

❑

❑

❑

The URL http://<server_name>/PhotoViewer/publish.htm is the deployment
location of your application. Users who want to install this application through
ClickOnce simply need to go to this URL, using their web browser. You provide the
URL to your users through email, brochures, and so on.

Figure 16-21

Figure 16-22

 Once installed, the application is launched automatically. You can also launch the application from
Start Programs PhotoViewer PhotoViewer.

 Updating the Application
 Let ’ s now update the application so that you can republish the application and see how the changes can
be updated on the client side. For simplicity, move the Preview button to the left of the Print from
label control as shown in Figure 16 - 22 . This will enable you to verify that the application has been
updated after it is republished.

c16.indd 536c16.indd 536 10/1/08 11:58:05 AM10/1/08 11:58:05 AM

Chapter 16: Developing Windows Applications

537

 To republish the application, simply select Build Publish PhotoViewer again. When the Publish Wizard
appears, click Finish so that it can publish the application using the default settings.

 Each time you publish the application, the version number of the application is incremented automatically.
That ’ s controlled by the Publish settings page in the project ’ s properties page (see Figure 16 - 23).

Figure 16-23

Figure 16-24

 In addition, the Publish settings page also contains the Updates button, which enables you to specify
how and when the application should check for updates (see Figure 16 - 24).

c16.indd 537c16.indd 537 10/1/08 11:58:06 AM10/1/08 11:58:06 AM

Part II: Application Development Using C#

538

 By default, the application checks for updates every time before it starts.

 When the user closes and then relaunches the PhotoViewer application, he gets a prompt, as shown in
Figure 16 - 25 .

Figure 16-25

 The user can click OK to download the updated application, or click Skip if he doesn ’ t want to
update the application now. The updated application will look like Figure 16 - 26 .

Figure 16-26

Figure 16-27

 Programmatically Updating the Application
 Instead of the application checking for updates before it starts, it would be a good idea for users to be
able to choose when they want to check for updates. For that, add a new button to the form, as shown in
Figure 16 - 27 .

c16.indd 538c16.indd 538 10/1/08 11:58:07 AM10/1/08 11:58:07 AM

Chapter 16: Developing Windows Applications

539

 Import the following namespace:

using System.Deployment.Application;

 Code the Update button like this:

 private void btnUpdate_Click(object sender, EventArgs e)
 {
 //---check if the application is deployed by ClickOnce---
 if (ApplicationDeployment.IsNetworkDeployed)
 {
 //---Get an instance of the deployment---
 ApplicationDeployment deployment =
 ApplicationDeployment.CurrentDeployment;

 //---if there is any update---
 if (deployment.CheckForUpdate())
 {
 DialogResult response =
 MessageBox.Show((“A new version of the “ +
 “application is available. “ +
 “Do you want to update application?”),
 (“Application Updates”),
 MessageBoxButtons.YesNo);

 //---if user wants to update---
 if (response == DialogResult.Yes)
 {
 Cursor.Current = Cursors.WaitCursor;

 //---update the application---
 deployment.Update();

 //---prompt the user to restart---
 MessageBox.Show(“Update completed. You need to restart” +
 “ the application.”,
 (“Update Completed”), MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 //---restart the application---
 Application.Restart();
 }
 }
 else
 {
 //---application is up-to-date---
 MessageBox.Show((“Application is up-to-date.”), “Update”,
 MessageBoxButtons.OK, MessageBoxIcon.Information);
 }
 }
 else

(continued)

c16.indd 539c16.indd 539 10/1/08 11:58:07 AM10/1/08 11:58:07 AM

Part II: Application Development Using C#

540

 {
 //---application is not installed using ClickOnce---
 MessageBox.Show((“Application is not installed “ +
 “using ClickOnce”),
 (“Updates not available”),
 MessageBoxButtons.OK, MessageBoxIcon.Information);
 }
 }

 You first check to see if the application is deployed using ClickOnce. This can be done by using the
 IsNetworkDeployed property from the ApplicationDeployment static class. If the application
is indeed deployed using ClickOnce, you proceed to obtain an instance of the deployment using
the currentDeployment property of the ApplicationDeployment class. Using this instance of the
deployment, you call the CheckForUpdate() method to check whether there is a newer version of
the application available from the publishing server. If there is, you prompt the user by asking if he
wants to update the application. If he does, you update the application, using the Update() method.
After that, you force the user to restart the application, using the Restart() method.

 To test the update, first run an instance of the PhotoViewer application by launching it from the Start
menu. Next, republish the application in Visual Studio 2008. Click the Update button to see if an update
is available. You should see the prompt shown in Figure 16 - 28 . Click Yes, and the application will be
updated.

Figure 16-28

(continued)

c16.indd 540c16.indd 540 10/1/08 11:58:07 AM10/1/08 11:58:07 AM

Chapter 16: Developing Windows Applications

541

 Rolling Back
 Once an application is updated, the user has a choice to roll it back to its previous version. To do so, go
to the Control Panel and run the Add or Remove Programs application. Locate the application (in this
case, PhotoViewer) and click on the Change/Remove button. You have two choices — restore the
application to its previous state or remove the application from the computer (see Figure 16 - 29).

Figure 16-29

 An application can be rolled back only to its previous version. If it ’ s been updated several times, it only
rolls back to the version preceding the last update.

 Under the Hood: Application and Deployment Manifests
 When you use the Publish Wizard to publish your application using ClickOnce, Visual Studio 2008
publishes your application to the URL that you have indicated. For example, if you specified
http://localhost/PhotoViwer/ as the publishing directory and your web publishing directory is
C:\Inetpub\wwwroot\, then the virtual directory PhotoViewer will be mapped to the local
path C:\Inetpub\wwwroot\PhotoViewer\.

 Two types of files will be created under the C:\Inetpub\wwwroot\PhotoViewer directory:

 Application Manifest

 Deployment Manifest

 The next two sections take a closer look at these two types of files.

 Application Manifest
 When you publish your application, three files and a folder are created in the publishing directory
(see Figure 16 - 30):

 Application Files — Folder containing the deployment files.

 A publish.htm web page — This contains instructions on how to install the application.

❑

❑

❑

❑

c16.indd 541c16.indd 541 10/1/08 11:58:08 AM10/1/08 11:58:08 AM

Part II: Application Development Using C#

542

 Application manifest — PhotoViewer.application . This is the file that is referenced by the
 publish.htm file. An application manifest is an XML file that contains detailed information
about the current application as well as its version number. Chapter 15 has more about
application manifests.

 setup.exe — A setup application that installs the application onto the target computer.

❑

❑

Figure 16-30

Figure 16-31

 The Application Files folder contains the various versions of the application that have been published
(see Figure 16 - 31).

 When you republish your application using ClickOnce, the content of PhotoViewer.application ,
 publish.htm , and setup.exe are modified, and one new application manifest is created inside a new
folder (for instance, PhotoViewer_1_0_0_6 ; located within the Application Files folder), containing the
new version of deployment files, will be created.

 As mentioned, the PhotoViewer.application application manifest is an XML file that contains
detailed information about the current application as well as its version number. It allows the client to
know if he needs to update his application.

 Deployment Manifest
 The deployment manifest — PhotoViewer.exe.manifest , in this example — is located in the
C:\Inetpub\wwwroot\PhotoViewer\Application Files\PhotoViewer_1_0_0_6 directory (assuming that
the latest version published is 1.0.0.6; see Figure 16 - 32). It contains detailed information about the
application (such as dependencies and attached files).

c16.indd 542c16.indd 542 10/1/08 11:58:08 AM10/1/08 11:58:08 AM

Chapter 16: Developing Windows Applications

543

 The PhotoViewer.exe.deploy file is the executable of your application. Other files in the same
directory may include files/databases used by your application. During installation these files will be
deployed (downloaded) onto the user ’ s machine.

Figure 16-32

 Where Are the Files Installed Locally?
 When the user installs an application onto his computer via ClickOnce, he does not have a choice of
where to store the application. In fact, the application is stored on a per - user basis, and different versions
of the application are stored in different folders. For example, when I installed the example application
on my computer, the application files were stored in:

C:\Documents and Settings\Wei-Meng Lee\Local Settings\Apps\2.0\JGEG6REQ.YQK\
C2N9O65K.16D\phot..tion_4f46313378dcdeb5_0001.0000_ff3a6bf346a40e4d

 Generally, application files are stored in subdirectories under the C:\Documents and Settings\ < User
Name > \Local Settings\Apps\2.0 folder. To find this directory programmatically during runtime, use the
following code snippet:

 //---ExecutablePath includes the executable name---
 string path = Application.ExecutablePath;
 //---Strip away the executable name---
 path = path.Substring(0, path.LastIndexOf(@”\”));

 Summary
 This chapter explained how to develop a Windows application to upload and download pictures to and
from an FTP server. Several Windows Forms controls were used to build the application ’ s user interface,
and you saw how to use the application settings feature in .NET to preserve the status of an application
even after it has exited. Finally, the application was deployed using the ClickOnce, which allows
applications to be easily updated after they have been deployed.

c16.indd 543c16.indd 543 10/1/08 11:58:08 AM10/1/08 11:58:08 AM

c16.indd 544c16.indd 544 10/1/08 11:58:09 AM10/1/08 11:58:09 AM

 Developing ASP.NET Web
Applications

 ASP.NET (Active Server Pages .NET) is a web development technology from Microsoft. Part of
the .NET Framework, ASP.NET enables developers to build dynamic web applications and Web
Services using compiled languages like VB.NET and C#. Developers can use Visual Studio 2008 to
develop compelling web applications using ASP.NET, with the ease of drag - and - drop server
controls. The latest version of ASP.NET is version 3.5.

 This chapter explains how to:

 Display database records using a server control call GridView

 Perform data binding in an ASP.NET application using the new LinqDataSource control

 AJAX - enable your application by using the new AJAX framework in ASP.NET 3.5 and the
AJAX Control Toolkit

 Deploy your web application to a web server

 About ASP.NET
 In the early days of the web, the contents of web pages were largely static. Pages needed to be
constantly — and manually — modified. To create web sites that were dynamic and would update
automatically, a number of server - side technologies sprouted up, including Microsoft ’ s Active
Server Pages (ASP). ASP executed on the server side, with its output sent to the user ’ s web
browser, thus allowing the server to generate dynamic web pages based on the actions of the user.

 These server - side technologies are important contributions to the development of the web.
Without them, web applications that users are accustomed to today, such as Amazon.com and
eBay.com, would not be possible.

 Microsoft ASP began as a public beta (v1.0) in October 1996 as an upgrade to Internet Information
Server (IIS) 2.0. In the initial three versions, ASP used a scripting language, VBScript, as the default

❑

❑

❑

❑

c17.indd 545c17.indd 545 10/1/08 11:58:57 AM10/1/08 11:58:57 AM

Part II: Application Development Using C#

546

language. Using a scripting language had its flaws — code is interpreted rather than compiled, and
using VBScript as the default language turned some people off (although technically you could configure
ASP to use other languages such as JScript and Perl, but this was not commonly done). This interpreted
code model of ASP seriously limited performance.

 In early 2000, Microsoft introduced the.NET Framework and, together with it, the upgrade of ASP:
ASP.NET 1.0 (previously known as ASP+). Over the last few years, ASP.NET has evolved to ASP.NET 3.5.

 In ASP.NET, you are not limited to scripting languages; you can use the following .NET languages:

 C#

 VB.NET

 How ASP.NET Works
 When a web browser requests a page from a web server, the web server (IIS) first checks whether
the request is for an HTML page. If it is, the request is filled by fetching the files from the hard drive
and returning them to the client (web browser). If the client is requesting an ASP.NET page, IIS
passes the request to the ASP.NET runtime, which then processes the application and returns the
output to the client.

 ASP.NET pages use the .aspx extension, which ensures that ASP.NET can run side by side with
classic ASP, which uses the extension .asp .

 One of the inherent problems with the HTTP protocol is its stateless nature. Put simply, a request
made by a user is loaded into memory, fulfilled, and then unloaded. Subsequent requests by the same
user are treated just like any other request; the server makes no attempt to remember what the user has
previously requested. This stateless nature makes writing web applications a challenge because the
application developer must explicitly devise mechanisms to enable the server to remember the previous
state of the application. Several mechanisms have been devised over the years, including cookies and
query strings for passing information to and from the server and the client.

 In classic ASP, you typically need to write pages of code to preserve the state of the page after the user
has posted a value back to the server. In ASP.NET, all of these mundane tasks (collectively known as
state management) are accomplished by the ASP.NET runtime.

 What Do You Need to Run ASP.NET ?
 ASP.NET is supported on the following operating systems:

 Microsoft Windows 2000 Professional and Server (SP 2 recommended)

 Microsoft Windows XP Professional

 Microsoft Windows Server 2003/2008

 Microsoft Windows Vista

❑

❑

❑

❑

❑

❑

c17.indd 546c17.indd 546 10/1/08 11:58:58 AM10/1/08 11:58:58 AM

Chapter 17: Developing ASP.NET Web Applications

547

 To run ASP.NET applications, you need to install IIS on your computer (IIS is not installed by default;
you can install IIS on your computer by running the Add or Remove Programs application in the Control
Panel and then selecting the Add/Remove Windows Components tab). To obtain the ASP.NET runtime,
you must install the .NET Framework on your machine. You can obtain the latest .NET Framework from
the following site: http://microsoft.com/downloads .

 Data Binding
 One of the most common tasks a web application does is display records from a database. For
example, you may have an inventory web application with which your staff can check the latest pricing
information and stock availability. This chapter explains how to retrieve records from a database and
use data binding in ASP.NET to display them on a page. In addition, it shows how to use the new
 LinqDataSource control, which enables you to use LINQ to talk to databases without needing to write
complex SQL queries.

 To start, launch Visual Studio 2008 and create a new ASP.NET Web Site project (see Figure 17 - 1).

Figure 17-1

 The default location is File System (see Figure 17 - 2), which means that you can save your ASP.NET
project in any folder on your local drive so that during debugging a built - in web server is automatically
launched to host your ASP.NET application. Alternatively, you can choose the HTTP option, which
means that your ASP.NET application will be hosted by a web server (most commonly the local IIS), or
the FTP option, which uses an FTP Server. For this example, use File System, the default option.

c17.indd 547c17.indd 547 10/1/08 11:58:58 AM10/1/08 11:58:58 AM

Part II: Application Development Using C#

548

 Modeling Databases Using LINQ to SQL
 The example web application will display records from two tables in the pubs sample database.
Because you are going to use LINQ to access the database, you do not connect to the database directly.
Instead, you generate classes that represent the database and its tables and then use those classes to
interact with the data. To begin, add a new item to the project and select the LINQ to SQL Classes
template (see Figure 17 - 3).

Figure 17-2

Figure 17-3

Figure 17-4

 Use the default name of DataClasses.dbml . When prompted to save the item in the App_Code folder,
click Yes. The DataClasses.dbml file is created in the App_Code folder of your project (see Figure 17 - 4).

c17.indd 548c17.indd 548 10/1/08 11:58:58 AM10/1/08 11:58:58 AM

Chapter 17: Developing ASP.NET Web Applications

549

 The Object Relational Designer (O/R Designer) then launches so that you can visually edit the
databases and tables you want to use. Open the Server Explorer window, and connect to the pubs
sample database. Drag and drop the publisher and title tables onto the design surface of
 DataClasses.dbml (see Figure 17 - 5).

Figure 17-5

Figure 17-6

 Save the DataClasses.dbml file by pressing Ctrl+S. When you save the file, Visual Studio 2008 persists
out .NET classes that represent the entities and database relationships that you have just added. For each
LINQ to SQL designer file you add to your solution, a custom DataContext class is generated. It is the
main object that you use to manipulate the table. In this example, the DataContext class is named
 DataClassesDataContext .

 Be sure to save DataClasses.dbml before proceeding.

 Data Binding Using the GridView Control
 To display the records from a table, you can use the GridView control, which displays the values of a
data source in a table where each column represents a field and each row represents a record. Drag
the GridView control from the Toolbox and drop it onto the design surface of Default.aspx . In the
SmartTag of the GridView control, select < New data source . . . > in the Choose Data Source dropdown
list (see Figure 17 - 6).

c17.indd 549c17.indd 549 10/1/08 11:58:59 AM10/1/08 11:58:59 AM

Part II: Application Development Using C#

550

 In the Data Source Configuration Wizard (see Figure 17 - 7), select LINQ and click OK. Use the default
name of LinqDataSource1 . Click OK.

Figure 17-7

Figure 17-8

 For those of you familiar with the various data source controls (such as SqlDataSource and
 ObjectDataSource) in ASP.NET 2.0, the LinqDataSource control works much like them. What is
special about the LinqDataSource control is that instead of binding directly to a database (as with the
 SqlDataSource), it binds to a LINQ - enabled data model. The beauty of this is that you need not write
the various complex SQL queries (such as insert , delete , and modify) to use it. Instead, you just need
to specify the data model you are working with, and the type of operations you want to perform on it (such
as delete , insert , or update) and then the control takes care of performing those operations by itself.

 The DataClassesDataContext object that you generated earlier is automatically selected for you
(see Figure 17 - 8). Click Next.

c17.indd 550c17.indd 550 10/1/08 11:58:59 AM10/1/08 11:58:59 AM

Chapter 17: Developing ASP.NET Web Applications

551

 Select the titles table, and click the * checkbox to select all fields (see Figure 17 - 9).

Figure 17-9

Figure 17-10

 Click the Advanced button and check all the checkboxes. Click OK (see Figure 17 - 10) and then
click Finish.

c17.indd 551c17.indd 551 10/1/08 11:59:00 AM10/1/08 11:59:00 AM

Part II: Application Development Using C#

552

 Switch to the source view of Default.aspx page, and observe the < asp:LinqDataSource > element:

 < asp:LinqDataSource
 ID=”LinqDataSource1”
 runat=”server”
 ContextTypeName=”DataClassesDataContext”
 EnableDelete=”True”
 EnableInsert=”True”
 EnableUpdate=”True”
 TableName=”titles” >
 < /asp:LinqDataSource >

 Select the GridView control ’ s SmartTag, and check the five checkboxes (see Figure 17 - 11).

Figure 17-11

Figure 17-12

 This makes the GridView look like Figure 17 - 12 . The column names are now clickable and that new
column containing Edit, Delete, and Select is added to the GridView control. Also, paging is now
enabled (located at the bottom of the GridView control).

c17.indd 552c17.indd 552 10/1/08 11:59:00 AM10/1/08 11:59:00 AM

Chapter 17: Developing ASP.NET Web Applications

553

 Click the Auto Format link in the SmartTag of the GridView control, and select the Sand and
Sky scheme.

 The GridView control contains all the fields of the titles table, but there are some that you don ’ t really
need. So select the notes column, and remove it by choosing Remove Column from GridView Tasks
(see Figure 17 - 13). Delete the advance , royalty , and ytd_sales columns as well.

Figure 17-13

Figure 17-14

 The GridView control should now look like Figure 17 - 14 .

c17.indd 553c17.indd 553 10/1/08 11:59:00 AM10/1/08 11:59:00 AM

Part II: Application Development Using C#

554

 Now, to debug the application, press F5. You are asked to modify the Web.config file for debugging;
click OK. You also are prompted that script debugging is disabled in Internet Explorer; click Yes to
continue debugging.

 Figure 17 - 15 shows the GridView control displaying the rows in the titles table. You can sort the rows by
clicking on the column headers, and edit and delete records.

Figure 17-15

 Displaying Publisher ’ s Name
 As Figure 17 - 15 shows, the publisher ’ s ID appears in the GridView control under the pub_id field. It
would be helpful to the user if the publisher ’ s name displayed instead of its ID. To do that, switch to the
source view of Default.aspx and within the < asp:GridView > element, replace the following element:

 < asp:BoundField
 DataField=”pub_id”
 HeaderText=”pub_id”
 SortExpression=”pub_id” / >

 with this:

 < asp:TemplateField
 HeaderText=”Publisher” >
 < ItemTemplate >
 < %#Eval(“publisher.pub_name”)% >
 < /ItemTemplate >
 < /asp:TemplateField >

 Essentially, this changes the header for the publisher column in the GridView to Publisher ,
and the values are now derived from the publisher.pub_name property of the
 DataClassesDataContext class.

c17.indd 554c17.indd 554 10/1/08 11:59:01 AM10/1/08 11:59:01 AM

Chapter 17: Developing ASP.NET Web Applications

555

 Press F5 to debug the application again to see the publishers ’ names instead of the publishers ’ IDs
(see Figure 17 - 16).

Figure 17-16

 Displaying Titles from a Selected Publisher
 So far, all the titles in the titles table are displayed in the GridView control. You might want to restrict
the titles displayed to a particular selected publisher. To do so, insert another LinqDataSource control
to the Default.aspx page by adding the following highlighted code:

 < asp:LinqDataSource
 ID=”LinqDataSource1”
 runat=”server”
 ContextTypeName=”DataClassesDataContext”
 EnableDelete=”True”
 EnableInsert=”True”
 EnableUpdate=”True”
 TableName=”titles” >
 < /asp:LinqDataSource >

 < asp:LinqDataSource
 ID=”LinqDataSource2”
 runat=”server”
 ContextTypeName=”DataClassesDataContext”
 OrderBy=”pub_name”
 Select=”new (pub_name, pub_id)”
 TableName=”publishers” >
 < /asp:LinqDataSource >

c17.indd 555c17.indd 555 10/1/08 11:59:01 AM10/1/08 11:59:01 AM

Part II: Application Development Using C#

556

 Notice that the second LinqDataSource control has the Select attribute where you can specify the
name of the fields you want to retrieve (pub_name and pub_id , in this example).

 Add a DropDownList control to the top of the page by adding the following highlighted code:

 < body >
 < form id=”form1” runat=”server” >
 < div >

 Display titles by publisher:
 < asp:DropDownList
 ID=”DropDownList1”
 runat=”server”
 DataSourceID=”LinqDataSource2”
 DataTextField=”pub_name”
 DataValueField=”pub_id”
 AutoPostBack=”True” >
 < /asp:DropDownList >

 < asp:GridView ID=”GridView1” runat=”server”
 ...
 ...

 This addition binds a DropDownList control to the LinqDataSource control. The DropDownList
control will display the list of publisher names (pub_name), and each publisher ’ s name has the pub - id
as its value.

 Default.aspx should now look like Figure 17 - 17 in design view. You will see the text “ Display titles by
publisher: ” as well as a dropdown list control.

Figure 17-18

Figure 17-17

 To configure the first LinqDataSource control so that the GridView control will only display titles from
the selected publisher, click on the SmartTag of the GridView control, and click the Configure Data
Source link (see Figure 17 - 18).

c17.indd 556c17.indd 556 10/1/08 11:59:02 AM10/1/08 11:59:02 AM

Chapter 17: Developing ASP.NET Web Applications

557

 Click Next, and then click the Where button. Enter the following values in the dialog (see Figure 17 - 19).

 Condition Value

 Column pub_id

 Operator ==

 Source Control

 Control ID DropDownList1

Figure 17-19

 Click Add, OK, and then Finish. Visual Studio 2008 will ask if you want to regenerate the GridView
columns fields and data keys. Click No.

 This will make the GridView control display titles whose pub_id file match the pub - id value of the
selected publisher in the DropDownList1 control.

c17.indd 557c17.indd 557 10/1/08 11:59:02 AM10/1/08 11:59:02 AM

Part II: Application Development Using C#

558

 The source of the LinqDataSource control now looks like this:

 < asp:LinqDataSource
 ID=”LinqDataSource1”
 runat=”server”
 ContextTypeName=”DataClassesDataContext”
 EnableDelete=”True”
 EnableInsert=”True”
 EnableUpdate=”True”
 TableName=”titles”
 Where=”pub_id == @pub_id” >

 < WhereParameters >
 < asp:ControlParameter
 ControlID=”DropDownList1”
 Name=”pub_id”
 PropertyName=”SelectedValue”
 Type=”String” / >
 < /WhereParameters >

 < /asp:LinqDataSource >

 Press F5 to debug the application. When you select a publisher now, all books published by that
publisher are displayed in the GridView control (see Figure 17 - 20).

Figure 17-20

c17.indd 558c17.indd 558 10/1/08 11:59:02 AM10/1/08 11:59:02 AM

Chapter 17: Developing ASP.NET Web Applications

559

 Here ’ s how to make the publisher field editable. In the source view of Default.aspx , insert the
following highlighted code:

 < asp:TemplateField HeaderText=”Publisher” >
 < ItemTemplate >
 < %#Eval(“publisher.pub_name”)% >
 < /ItemTemplate >

 < EditItemTemplate >
 < asp:DropDownList
 ID=”DropDownList2”
 DataSourceID=”LinqDataSource2”
 DataTextField=”pub_name”
 DataValueField=”pub_id”
 SelectedValue=’ < %#Bind(“pub_id”)% > ’
 runat=”server” >
 < /asp:DropDownList >
 < /EditItemTemplate >

 < /asp:TemplateField >

 This creates a dropdown list within the GridView control (under the Publisher column) and displays a
list of publishers available.

 Press F5 to debug the application again. A title ’ s publisher can now be changed (see Figure 17 - 22).

Figure 17-21

 Making the Publisher Field Editable
 Now select a record, and click the Edit link. Notice that the publisher is not editable (see Figure 17 - 21).

c17.indd 559c17.indd 559 10/1/08 11:59:03 AM10/1/08 11:59:03 AM

Part II: Application Development Using C#

560

 Building Responsive Applications
Using AJAX

 One of the challenges developers face in building appealing web applications is overcoming the constant
need to refresh entire web pages to update just portions of their content. In the real world, network
latencies prevent web applications from refreshing as often as you might want. Typically, when a user
submits a request to a web server, the entire page must be refreshed and the user is forced to wait while
it makes a round trip to the server even when only a fraction of the page has to be changed. Clearly, this
is a key usability issue that developers want to put behind them in their quest to build applications that
are more desktop - like in their responsiveness.

 Enter AJAX, originally an acronym for Asynchronous JavaScript and XML but increasingly a term that
embraces a collection of techniques for creating more responsive and feature - rich web applications.
Instead of waiting for web pages to refresh, AJAX - enabled web sites dynamically and asynchronously
update portions of the pages, thus providing a much more responsive experience to the user. What ’ s
more, with AJAX you can now develop richer applications that draw on the JavaScript and CSS
support found in modern web browsers such as Firefox and Internet Explorer (IE) 6 and later. A quick
look at the Windows Live Local site (see http://maps.live.com) or Google Spreadsheets (see
 http://spreadsheets.google.com) should be enough to convince you of the wonders that AJAX
can deliver to a user experience.

 AJAX is not a product but rather a collection of client - empowering web technologies, including XML,
JavaScript, HTTP, the DOM, JSON, and CSS. Writing AJAX - style applications is not easy and has
traditionally required that you have an intimate knowledge of client - side scripting languages, most
notably JavaScript.

 With ASP.NET 3.5, Microsoft has built - in support for AJAX. In the Toolbox, you can find a new tab called
AJAX Extensions (see Figure 17 - 23) containing the various AJAX controls.

Figure 17-22

c17.indd 560c17.indd 560 10/1/08 11:59:03 AM10/1/08 11:59:03 AM

Chapter 17: Developing ASP.NET Web Applications

561

 AJAX Control Toolkit
 While ASP.NET 3.5 comes with a built - in set of controls you can use to create AJAX - style web
applications, one of the greatest benefits of AJAX is that its framework is extensible, which allows you
and other developers to create your own AJAX controls by extending those that already exist. Microsoft
encourages this activity and sponsors an open - source - style project — the AJAX Control Toolkit that
makes available a set of controls developed by Microsoft and seeks to involve the community in creating
more elements to extend the functionality of AJAX. The AJAX Control Toolkit gives you access to a
growing collection of robust controls that give you additional AJAX - style functionality beyond that
provided by the basic AJAX framework.

 You can download the AJAX Control Toolkit from: http://codeplex.com/AtlasControlToolkit/
Release/ProjectReleases.aspx?ReleaseId=11121 .

 You have a choice of two files to download:

 AjaxControlToolkit - Framework3.5.zip is the full release package with complete source
code to all controls, the test framework, VSI, and more.

 AjaxControlToolkit - Framework3.5 - NoSource.zip contains only the sample web site and
VSI, and is for people who don ’ t need or want the source code for the controls.

 The AJAX Control Toolkit comes with a set of AJAX Extender controls. Unlike the AJAX controls that
come with ASP.NET 3.5, you need to manually add these to the Toolbox in Visual Studio 2008. To do so,
add a new tab in Toolbox (see Figure 17 - 24), and name it AJAX Control Toolkit.

❑

❑

Figure 17-23

c17.indd 561c17.indd 561 10/1/08 11:59:04 AM10/1/08 11:59:04 AM

Part II: Application Development Using C#

562

 Extract the AjaxControlToolkit - Framework3.5 - NoSource.zip file (assuming that you downloaded
the version without source code) into a folder (C:\AJAXControlToolkit\, for instance). Inside the new
folder is a folder named SampleWebSite\Bin. Drag and drop the AjaxControlToolkit.dll library
from that Bin folder onto the new AJAX Control Toolkit tab. The set of AJAX Control Toolkit Extender
controls appears, as shown in Figure 17 - 25 .

Figure 17-24

Figure 17-25

c17.indd 562c17.indd 562 10/1/08 11:59:04 AM10/1/08 11:59:04 AM

Chapter 17: Developing ASP.NET Web Applications

563

 AJAX - Enabling a Page Using the ScriptManager Control
 Now let ’ s use some of the core AJAX controls in ASP.NET 3.5 to AJAX - enable the sample project created
earlier in this chapter.

 The first step toward AJAX - enabling an ASP.NET web page is to add the ScriptManager control to the
page. That ’ s the control that manages all the AJAX functionality on your page. It should be placed before
any AJAX controls, so it ’ s a good idea to place it at the top of the page, like this:

 < body >
 < form id=”form1” runat=”server” >
 < div >

 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < /asp:ScriptManager >

 Display titles by publisher:
 < asp:DropDownList ID=”DropDownList1” runat=”server”
 DataSourceID=”LinqDataSource2”
 DataTextField=”pub_name”
 DataValueField=”pub_id”
 AutoPostBack=”True” >
 < /asp:DropDownList >
 ...

 To place the ScriptManager control on the page, you can either type it manually or drag the
 ScriptManager control from the Toolbox and drop it onto the code editor.

 Using the UpdatePanel Control
 To delineate the part of the page you want to update without causing the entire page to refresh, drag and
drop an UpdatePanel control from the AJAX Extensions tab of the Toolbox onto the Default.aspx
page, like this:

 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < /asp:ScriptManager >
 Display titles by publisher:
 < asp:DropDownList ID=”DropDownList1” runat=”server”
 DataSourceID=”LinqDataSource2”
 DataTextField=”pub_name”
 DataValueField=”pub_id”
 AutoPostBack=”True” >
 < /asp:DropDownList >

 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >

 < /ContentTemplate >
 < /asp:UpdatePanel >

...

c17.indd 563c17.indd 563 10/1/08 11:59:05 AM10/1/08 11:59:05 AM

Part II: Application Development Using C#

564

 The < asp:UpdatePanel > control divides a web page into regions — each region can be updated
without refreshing the entire page. The < ContentTemplate > element sets the template that defines the
contents of the < asp:UpdatePanel > control.

 Now, move a GridView control into the < ContentTemplate > element so that the content of the
 GridView can be updated without causing a postback to the server:

 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < ContentTemplate >

 < asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”
 AllowSorting=”True”
 AutoGenerateColumns=”False” BackColor=”LightGoldenrodYellow”
 BorderColor=”Tan”
 ...
 < /asp:GridView >

 < /ContentTemplate >
 < /asp:UpdatePanel >

 Press F5 to test the application again. This time, edit the record by clicking the Edit link (see
Figure 17 - 26). Notice that, as you click on the links (Edit, Update, Cancel, and Select), the page does
not reload. Instead, all the changes happen inside the GridView control.

Figure 17-26

 Using Triggers to Cause an Update
 So far, you have used the < asp:UpdatePanel > control to enclose controls to ensure that changes in this
control do not cause a postback to the server. If you select a publisher from the dropdown list, though,
you will realize that the entire page is refreshed. By adding a trigger t o the page, you can specify a
control (and, optionally, its event) that causes an < asp:UpdatePanel > control to refresh. The trigger
 < asp:AsyncPostBackTrigger > causes an update when the specified control raises an event.
In other words, when a control specified by a trigger causes an update to a control located with an
 < asp:UpdatePanel > control, only the control is updated and not the entire page.

c17.indd 564c17.indd 564 10/1/08 11:59:05 AM10/1/08 11:59:05 AM

Chapter 17: Developing ASP.NET Web Applications

565

 Here ’ s the markup you need to add a trigger to an < asp:UpdatePanel > control:

 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >

 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”DropDownList1” / >
 < /Triggers >

 < ContentTemplate >
 ...

 Here, the < asp:UpdatePanel > control will refresh whenever the value of DropDownList1 changes.

 Press F5 to test the application. Now selecting a publisher from the dropdown list updates the GridView
control without causing a refresh in the page.

 Displaying Progress Using the UpdateProgress Control
 The refreshing of the GridView control may happen very quickly on your computer because your web
server is running locally. In the real world, there is network latency, and users may experience a delay
but not be aware that a control is in the midst of a refresh. Therefore, it ’ s important to give visual cues to
users to let them know when an update is in progress.

 You can display a progress report while an < asp:updatePanel > is being refreshed by using the < asp:
UpdateProgress > control. Add the following to the source view of Default.aspx :

 < body >
 < form id=”form1” runat=”server” >
 < div >
 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < /asp:ScriptManager >
 Display titles by publisher:
 < asp:DropDownList ID=”DropDownList1” runat=”server”
 DataSourceID=”LinqDataSource2”
 DataTextField=”pub_name” DataValueField=”pub_id” AutoPostBack=”True” >
 < /asp:DropDownList >
 < asp:UpdatePanel ID=”UpdatePanel1” runat=”server” >
 < Triggers >
 < asp:AsyncPostBackTrigger ControlID=”DropDownList1” / >
 < /Triggers >
 < ContentTemplate >

 < asp:UpdateProgress ID=”UpdateProgress1” runat=”server” >
 < ProgressTemplate >
 < asp:Label ID=”Label1” runat=”server” Text=”Label” >
 Displaying titles...Please wait.
 < /asp:Label >
 < /ProgressTemplate >
 < /asp:UpdateProgress >

 < asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”
 AllowSorting=”True”
 AutoGenerateColumns=”False” BackColor=”LightGoldenrodYellow”
 BorderColor=”Tan”
 ...

c17.indd 565c17.indd 565 10/1/08 11:59:05 AM10/1/08 11:59:05 AM

Part II: Application Development Using C#

566

 To inject a delay, double - click on the dropdown list control and use the Sleep() method to insert a
two - second delay:

 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
 {
 System.Threading.Thread.Sleep(2000);
 }

 Within the < ProgressTemplate > element, you can embed a control such as an < asp:Label > control or
an < asp:img > control containing an animated GIF image to display some information to inform the
user. Here, you display the message “ Displaying titles . . . Please wait ” (see Figure 17 - 27) to let the user
know that the GridView control is updating.

Figure 17-27

 Press F5 to test the application.

 Displaying a Modal Dialog Using the
ModalPopupExtender Control

 One problem with the current example is that when the user clicks the Delete link, the record in the
 GridView control is deleted straightaway. When you delete a record in the real world, it is always good
to confirm the action with the user. In the Windows world, you can easily display a message box to let
the user confirm the action. However, in a web application, it is slightly tricky.

 The solution to this problem is to use the ModalPopupExtender control available in the AJAX Control
Toolkit. The ModalPopupExtender control uses a popup to display content to the user in a modal
fashion and prevents users from interacting with the rest of the page.

 Let ’ s modify the application to show a modal popup whenever the user tries to delete a record.
Figure 17 - 28 shows the end result.

c17.indd 566c17.indd 566 10/1/08 11:59:06 AM10/1/08 11:59:06 AM

Chapter 17: Developing ASP.NET Web Applications

567

 First, define the following CSS styles in the source view of the Default.aspx page:

 < head runat=”server” >
 < title > < /title >

 < style type=”text/css” >
 .modalBackground {
 background-color:Blue;
 filter:alpha(opacity=50);
 opacity:0.5;
 }

 .dialog
 {
 border-left:5px solid #fff; border-right:5px solid #fff;
 border-top:5px solid #fff; border-bottom:5px solid #fff;
 background:#ccc;
 padding: 10px;
 width: 350px;
 }

 < /style >

...

 The .modalBackground style defines the background color of the modal popup. In this case, it is used
to block off the rest of the page and prevent the user from interacting with that content. The .dialog
style defines the shape and color of the popup itself. Here it has a rectangular border of 5px and a width
of 350px.

Figure 17-28

c17.indd 567c17.indd 567 10/1/08 11:59:06 AM10/1/08 11:59:06 AM

Part II: Application Development Using C#

568

 Next, add a < asp:Template > control to the GridView control to display a Delete button:

 < asp:GridView ID=”GridView1” runat=”server” AllowPaging=”True”
 AllowSorting=”True”
 AutoGenerateColumns=”False” BackColor=”LightGoldenrodYellow”
 BorderColor=”Tan”
 BorderWidth=”1px” CellPadding=”2” DataKeyNames=”title_id”
 DataSourceID=”LinqDataSource1”
 ForeColor=”Black” GridLines=”None” >
 < Columns >
 < asp:CommandField ShowDeleteButton=”True”
 ShowEditButton=”True” ShowSelectButton=”True” / >

 < asp:TemplateField ControlStyle-Width=”50px”
 HeaderStyle-Width=”60px”
 ItemStyle-HorizontalAlign=”Center” >
 < ItemTemplate >
 < asp:Button ID=”btnDelete”
 runat=”server”
 OnClick=”btnDelete_Click”
 OnClientClick=”displayPopup(this); return false;”
 Text=”Delete” / >
 < /ItemTemplate >
 < /asp:TemplateField >

 < asp:BoundField DataField=”title_id” HeaderText=”title_id”
 ReadOnly=”True” SortExpression=”title_id” / >
 < asp:BoundField DataField=”title1” HeaderText=”title1”
 SortExpression=”title1” / >
 ...

 Notice that the Delete button has two events defined: OnClick and OnClientClick . In this example,
when the user clicks the button, the JavaScript function named displayPopup() (which you will define
shortly) is called. You insert the return false; statement to prevent a postback from occurring while
the dialog is being displayed.

 You also need to disable the Delete link in the GridView control because you now have the Delete
button. Set the ShowDeleteButton attribute in the < asp:CommandField > element to False :

 < asp:CommandField

 ShowDeleteButton=”False”

 ShowEditButton=”True”
 ShowSelectButton=”True” / >

 The Default.aspx page now looks like Figure 17 - 29 .

c17.indd 568c17.indd 568 10/1/08 11:59:07 AM10/1/08 11:59:07 AM

Chapter 17: Developing ASP.NET Web Applications

569

 Create a new folder in the project and name it images . Add an image called delete.png into the
 images folder (see Figure 17 - 30).

Figure 17-29

Figure 17-30

 You will now use a < div > element to define the content of the popup that you want to display:

 < div id=”divDialog” runat=”server” class=”dialog” style=”display: none” >
 < center >
 < img style=”vertical-align: middle”
 src=”images/delete.png” width=”60” / >
 Are you sure you want to delete this record? < br / >

(continued)

c17.indd 569c17.indd 569 10/1/08 11:59:07 AM10/1/08 11:59:07 AM

Part II: Application Development Using C#

570

 < asp:Button ID=”btnOK” runat=”server” Text=”Yes” Width=”50px” / >
 < asp:Button ID=”btnNO” runat=”server” Text=”No” Width=”50px” / >
 < /center >
 < /div >

 < /form >
 < /body >
 < /html >

 This block of code defines the popup shown in Figure 17 - 31 .

Figure 17-31

 To display the < div > element as a modal popup, use the ModalPopupExtender control:

 < cc1:ModalPopupExtender
 ID=”popupDialog”
 runat=”server”
 TargetControlID=”divDialog”
 PopupControlID=”divDialog”
 OkControlID=”btnOK”
 CancelControlID=”btnNO”
 OnOkScript=”OK_Click();”
 OnCancelScript=”No_Click();”
 BackgroundCssClass=”modalBackground” >
 < /cc1:ModalPopupExtender >

 < /form >
 < /body >
 < /html >

 The ModalPopupExtender control has the attributes described in the following table.

 Attribute Description

 ID Identifies the ModalPopupExtender control

 TargetControlID Specifies the control that activates the ModalPopupExtender
control

 PopupControlID Specifies the control to display as a modal popup

 OkControlID Specifies the control that dismisses the modal popup

(continued)

c17.indd 570c17.indd 570 10/1/08 11:59:08 AM10/1/08 11:59:08 AM

Chapter 17: Developing ASP.NET Web Applications

571

 Attribute Description

 CancelControlID Specifies the control that cancels the modal popup

 OnOkScript Specifies the script to run when the modal popup is dismissed with
the OkControlID

 OnCancelScript Specifies the script to run when the modal popup is canceled with
the CancelControlID

 BackgroundCssClass Specifies the CSS class to apply to the background when the modal
popup is displayed

 Finally, insert the JavaScript functions into the source view of Default.aspx :

 < script type=”text/javascript” >
 var _source;
 var _popup;

 function displayPopup(source) {
 _source = source;
 _popup = $find(‘popupDialog’);
 //---display the popup dialog---
 _popup.show();
 }

 function OK_Click() {
 //---hides the popup dialog---
 _popup.hide();
 //---posts back to the server---
 __doPostBack(_source.name, ‘’);
 }

 function No_Click() {
 //---hides the popup---
 _popup.hide();
 //---clears the event sourcesss
 _source = null;
 _popup = null;
 }
 < /script >

 < /head >
 < body >

 The displayPopup() function looks for the ModalPopupExtender control in the page and displays the
modal popup. The OK_Click() function is called when the user decides to proceed with the deletion.
It hides the modal popup and initiates a postback to the server. The No_Click() function is called when
the user cancels the deletion. It hides the modal popup.

 That ’ s it! Press F5 to test the application.

c17.indd 571c17.indd 571 10/1/08 11:59:08 AM10/1/08 11:59:08 AM

Part II: Application Development Using C#

572

 In this particular example, you will get a runtime error if you proceed with the
deletion. That ’ s because the titles table is related to the titleauthor table (also
part of the pubs database), and deleting a record in the titles table violates the
reference integrity of the database.

 Summary
 This chapter developed a simple ASP.NET web application that displays data stored in a database. One
of the new features in ASP.NET 3.5 is the LinqDataSource control that enables you to bind directly
against a LINQ - enabled data model instead of a database, so instead of specifying SQL statements for
querying data, you can use LINQ queries. You also saw how to use the built - in AJAX support in
ASP.NET 3.5 to create responsive AJAX applications.

c17.indd 572c17.indd 572 10/1/08 11:59:08 AM10/1/08 11:59:08 AM

 Developing Windows Mobile
Applications

 The mobile application platform has gained a lot of interest among enterprise developers in recent
years. With so many mobile platforms available, customers are spoiled for choice. However, at the
front of developers ’ minds are the various criteria that they need to evaluate before deciding on
the platform to support. These factors are:

 Size of device install base

 Ease of development and support for widely known/used programming languages

 Capability to run one version of an application on a large number of devices

 One mobile platform of choice among developers is the Microsoft Windows Mobile platform, now
into its sixth generation. Today, the Windows Mobile platform is one of the most successful mobile
device platforms in the market, with several handset manufacturers (such as HP, Asus, HTC, and
even Sony Ericsson and Palm) supporting it.

 This chapter presents the basics of Windows Mobile. It shows you how to create an RSS Reader
application and then how to test and deploy the application to a real device. In particular, you will:

 Examine the basics of the Windows Mobile platform

 Learn how to download and install the various Software Development Kits (SDKs) to
target the different platforms

 Create an RSS Reader application that allows users to subscribe to RSS feeds

 Explore various ways to deploy your Windows Mobile applications

 Create a professional - looking setup application to distribute your Windows Mobile
applications

❑

❑

❑

❑

❑

❑

❑

❑

c18.indd 573c18.indd 573 10/1/08 11:59:52 AM10/1/08 11:59:52 AM

Part II: Application Development Using C#

574

 The Windows Mobile Platform
 The Windows Mobile platform defines a device running the Windows CE operating system customized
with a standard set of Microsoft - designed user interface shells and applications. Devices that use the
Windows Mobile platform include:

 Pocket PCs

 Smartphones

 Portable Media Centers

 Automobile computing devices

 For this chapter, the discussion is restricted to the first two categories — Pocket PCs and Smartphones.
(The latter two categories use a different shell and are not widely used in today ’ s market.)

 The latest version of the Windows Mobile platform at the time of writing is Windows Mobile 6.1. With
this new release, there are some new naming conventions. Here ’ s a list of the Pocket PC and Smartphone
names used by Microsoft over the years.

 Pocket PCs Smartphones

 Pocket PC 2000/Pocket PC 2000 Phone Edition

 Pocket PC 2002/Pocket PC 2002 Phone Edition Smartphone 2002

 Windows Mobile 2003 for Pocket PC/Windows
Mobile 2003 for Pocket PC Phone Edition

 Windows Mobile 2003 for Smartphone

 Windows Mobile 2003 SE (Second Edition) for
Pocket PC/Windows Mobile 2003 SE (Second
Edition) for Pocket PC Phone Edition

 Windows Mobile 2003 SE for Smartphone

 Windows Mobile 5.0 for Pocket PC/Windows
Mobile 5.0 for Pocket PC Phone Edition

 Windows Mobile 5.0 for Smartphone

 Windows Mobile 6 Classic/Windows Mobile 6
Professional

 Windows Mobile 6 Standard

 Beginning with Windows Mobile 6, Microsoft defines a device with a touch screen but without phone
capability as a Windows Mobile 6 Classic device (previously known as Pocket PC or Windows Mobile).
Figure 18 - 1 shows a Windows Mobile 6 Classic device (the iPaq 211).

❑

❑

❑

❑

c18.indd 574c18.indd 574 10/1/08 11:59:53 AM10/1/08 11:59:53 AM

Chapter 18: Developing Windows Mobile Applications

575

 Touch - screen devices with phone functionality are now known as Windows Mobile 6 Professional
(previously Windows Mobile Phone Edition). Figure 18 - 2 shows such a device (the HTC Touch Cruise).

Figure 18-1

Figure 18-2

 Devices that do not support touch screens are now known as Windows Mobile 6 Standard (previously
Smartphones). One is the Moto Q9h, shown in Figure 18 - 3 .

c18.indd 575c18.indd 575 10/1/08 11:59:54 AM10/1/08 11:59:54 AM

Part II: Application Development Using C#

576

Figure 18-3

 Developing Windows Mobile Applications
Using the . NET Compact Framework

 The easiest way to develop for the Windows Mobile platform is to use the Microsoft .NET Compact
Framework (.NET CF). The .NET CF is a scaled - down version of the .NET Framework and is designed
to work on Windows CE (a scaled - down version of the Windows OS supporting a subset of the Win32
APIs) based devices. The .NET CF contains a subset of the class libraries available on the desktop version
of the .NET Framework and includes a few new libraries designed specifically for mobile devices.

 At the time of writing, the latest version of .NET CF is version 3.5. Following is a list of the various
version names of the .NET CF and their corresponding version numbers:

 Version Name Version Number

 1.0 RTM 1.0.2268.0

 1.0 SP1 1.0.3111.0

 1.0 SP2 1.0.3316.0

 1.0 SP3 1.0.4292.0

 2.0 RTM 2.0.5238.0

 2.0 SP1 2.0.6129.0

 2.0 SP2 2.0.7045.0

 3.5 Beta 1 3.5.7066.0

 3.5 Beta 2 3.5.7121.0

 RTM 3.5.7283.0

Source: http://en.wikipedia.org/wiki/
.NET_vCompact_Framework

c18.indd 576c18.indd 576 10/1/08 11:59:54 AM10/1/08 11:59:54 AM

Chapter 18: Developing Windows Mobile Applications

577

 Knowing the version number of the .NET CF installed in your device is useful at development time
because it helps you determine the exact version of the .NET CF installed on the target device/emulator.

 As a developer, you can use either the C# or VB.NET language to write applications for the Windows
Mobile platform. All the functionalities required by your applications can be satisfied by:

 The class libraries in the .NET CF, and/or

 APIs at the OS level via Platform Invoke (P/Invoke), and/or

 Alternative third - party class libraries such as the OpenNetCF ’ s Smart Device Extension (SDE)

 You can determine the versions of the .NET Compact Framework currently installed on your Windows
Mobile device by going to Start File Explorer and launching the cgacutil.exe utility located
in \Windows.

 Figure 18 - 4 shows the version of the .NET CF installed on a Windows Mobile emulator (more on
this later).

❑

❑

❑

Figure 18-4

 Windows Mobile 5.0 devices comes with the .NET CF 1.0 preinstalled in ROM, whereas the
newer Windows Mobile 6 devices come with the .NET CF 2.0 preinstalled in ROM. If your application
uses the newer .NET CF v3.5, you will need to install it onto the device before applications based on it
can execute.

c18.indd 577c18.indd 577 10/1/08 11:59:55 AM10/1/08 11:59:55 AM

Part II: Application Development Using C#

578

 Obtaining the Appropriate SDK s and Tools
 To develop Windows Mobile applications using the .NET CF, you need to download the SDK for each
platform. Here are the SDKs you need:

 Windows Mobile 5.0 SDK for Pocket PC

 Windows Mobile 5.0 SDK for Smartphone

 Windows Mobile 6 Professional and Standard Software Development Kits Refresh

 You can download the SDKs from Microsoft ’ s web site (http:// microsoft.com/downloads) at no
cost. The best tool to develop Windows Mobile applications using the .NET CF is to use the Visual Studio
IDE, using Visual Studio 2005 Professional or above.

 If you are using Visual Studio 2005, you need to download the Windows Mobile 5.0 SDK for Pocket PC
and Smartphone (as described earlier). If you are using Visual Studio 2008, the Windows Mobile 5.0
SDKs for Pocket PC and Smartphone are already installed by default. For both versions, you need to
download the Windows Mobile 6 SDKs to develop applications for Windows Mobile 6 devices.

 With the relevant SDKs installed, the first step toward Windows Mobile development is to launch Visual
Studio 2008 and create a new project. Select the Smart Device project type, and then select the Smart
Device Project template (see Figure 18 - 5).

❑

❑

❑

Figure 18-5

c18.indd 578c18.indd 578 10/1/08 11:59:56 AM10/1/08 11:59:56 AM

Chapter 18: Developing Windows Mobile Applications

579

 You are now ready to start developing for Windows Mobile. Figure 18 - 7 shows the design view of a
Windows Mobile Form in Visual Studio 2008 designer.

 The Add New Smart Device Project dialog opens. You can select the target platform as well as the
version of the .NET CF you want to use (see Figure 18 - 6).

Figure 18-6

c18.indd 579c18.indd 579 10/1/08 11:59:57 AM10/1/08 11:59:57 AM

Part II: Application Development Using C#

580

 Building the RSS Reader Application
 With the recent introduction of the Windows Mobile 6 platforms, we are now beginning to see a
proliferation of new devices supporting Windows Mobile 6 Standard (aka Smartphone). As Windows
Mobile 6 Standard devices do not have touch screens, they pose certain challenges when developing
applications to run on them. Hence, in this section you will learn how to develop a Windows Mobile
6 Standard application that allows users to subscribe to RSS feeds.

 The RSS Reader application has the following capabilities:

 Can subscribe to RSS feeds as well as unsubscribe from feeds

 Can cache the feeds as XML files on the device so that if the device goes offline the feeds are still
available

 Uses a web browser to view the content of a post

❑

❑

❑

Figure 18-7

c18.indd 580c18.indd 580 10/1/08 11:59:58 AM10/1/08 11:59:58 AM

Chapter 18: Developing Windows Mobile Applications

581

 Building the User Interface
 To get started, launch Visual Studio 2008 and create a new Windows Mobile 6 Standard application using
.NET CF 3.5. Name the application RSSReader .

 Don ’ t forget to download the free Windows Mobile 6 Standard SDK (http://microsoft.com/
downloads). You need it to create the application detailed in this chapter.

 The default Form1 uses the standard form factor of 176x180 pixels. As this application is targeted
at users with wide - screen devices, change the FormFactor property of Form1 to Windows Mobile
6 Landscape QVGA .

 Populate the default Form1 with the following controls (see also Figure 18 - 8):

 One TreeView control

 Four MenuItem controls

❑

❑

Figure 18-8

 Add an ImageList control to Form1 and add three images to its Images property (see Figure 18 - 9).

 You can download the images from this book ’ s source code at its Wrox web site.

c18.indd 581c18.indd 581 10/1/08 11:59:58 AM10/1/08 11:59:58 AM

Part II: Application Development Using C#

582

 These images will be used by the TreeView control to display its content when the tree is expanded or
closed. Hence, associate the ImageList control to the TreeView control by setting the ImageList
property of the TreeView control to ImageList1 .

 Add a new Windows Form to the project, and populate it with a WebBrowser and MenuItem control
(see Figure 18 - 10). The WebBrowser control will be used to view the content of a posting.

Figure 18-9

Figure 18-10

 Set the Modifiers property of the WebBrowser control to Internal so that the control is accessible
from other forms. Specifically, you want to set the content of the control from within Form1 .

c18.indd 582c18.indd 582 10/1/08 11:59:59 AM10/1/08 11:59:59 AM

Chapter 18: Developing Windows Mobile Applications

583

 Switch to the code behind of Form1 , and import the following namespaces:

using System.IO;
using System.Net;
using System.Xml;
using System.Text.RegularExpressions;

 Declare the following constants and variable:

namespace RSSReader
{
 public partial class Form1 : Form
 {
 //---constants for icons---
 const int ICO_OPEN = 0;
 const int ICO_CLOSE = 1;
 const int ICO_POST = 2;

 //---file containing the list of subscribed feeds---
 string feedsList = @”\Feeds.txt”;

 //---app’s current path---
 string appPath = string.Empty;

 //---the last URL entered (subscribe)---
 string lastURLEntered = string.Empty;

 //---used for displaying a wait message panel---
 Panel displayPanel;

 //---for displaying individual post---
 Form2 frm2 = new Form2();

 Creating the Helper Methods
 When RSS feeds are being downloaded, you want to display a message on the screen to notify the user
that the application is downloading the feed (see Figure 18 - 11).

Figure 18-11

c18.indd 583c18.indd 583 10/1/08 12:00:00 PM10/1/08 12:00:00 PM

Part II: Application Development Using C#

584

 For this purpose, you can improvise with the aid of the Panel and Label controls. Define the
 CreatePanel() function so that you can dynamically create the message panel using a couple of Panel
controls and a Label control:

 //---create a Panel control to display a message---
 private Panel CreatePanel(string str)
 {
 //---background panel---
 Panel panel1 = new Panel()
 {
 BackColor = Color.Black,
 Location = new Point(52, 13),
 Size = new Size(219, 67),
 Visible = false,
 };
 panel1.BringToFront();

 //---foreground panel---
 Panel panel2 = new Panel()
 {
 BackColor = Color.LightYellow,
 Location = new Point(3, 3),
 Size = new Size(panel1.Size.Width - 6, panel1.Size.Height - 6)
 };

 //---add the label to display text---
 Label label = new Label()
 {
 Font = new Font(FontFamily.GenericSansSerif, 12, FontStyle.Bold),
 TextAlign = ContentAlignment.TopCenter,
 Location = new Point(3, 3),
 Size = new Size(panel2.Size.Width - 6, panel2.Size.Height - 6),
 Text = str
 };

 //---adds the label to Panel2---
 panel2.Controls.Add(label);

 //---adds the Panel2 to Panel1---
 panel1.Controls.Add(panel2);
 return panel1;
 }

 For simplicity, you are hardcoding the location of panel1 (assuming that this application is running on a
wide - screen device). Figure 18 - 12 shows the various controls forming the display panel.

Figure 18-12

c18.indd 584c18.indd 584 10/1/08 12:00:00 PM10/1/08 12:00:00 PM

Chapter 18: Developing Windows Mobile Applications

585

 Next, define the IsConnected() function to test whether the user is connected to the Internet:

 //---check if you are connected to the Internet---
 private bool IsConnected()
 {
 try
 {
 string hostName = Dns.GetHostName();
 IPHostEntry curhost = Dns.GetHostEntry(hostName);
 return (curhost.AddressList[0].ToString() !=
 IPAddress.Loopback.ToString());
 }
 catch (Exception)
 {
 return false;
 }
 }

 Dns is a static class that provides simple domain name resolution. The GetHostName() method gets
the host name of the local computer, which is then passed to the GetHostEntry() method of the Dns
class to obtain an IPHostEntry object. IPHostEntry is a container class for Internet host address
information. Using this object, you can access its AddressList property to obtain the list of IP addresses
associated with it. If the first member of the AddressList property array is not the loopback address
(127.0.0.1 ; represented by IPAddress.Loopback), it is assumed that there is Internet connectivity.

 Next, define the DownloadFeed() function, which takes in the URL for the feed you want to download
and a title argument (to return the title of the feed). Each post title and its corresponding description is
appended to a string and returned to the calling function:

 //---download feed and extract Title and Description for each post---
 private string DownloadFeed(string feedURL, ref string title)
 {
 XmlDocument xml = new XmlDocument();

 //---always load from storage first---
 string FileName =
 appPath + @”\” + RemoveSpecialChars(feedURL) + “.xml”;

 if (File.Exists(FileName))
 {
 xml.Load(FileName);
 }
 else
 {
 //---check if there is network connectivity---
 if (IsConnected())
 {
 WebRequest ftpReq = null;
 WebResponse ftpResp = null;
 Stream ftpRespStream = null;
 StreamReader reader = null;
 bool getRSSFeedFailed = false;

(continued)

c18.indd 585c18.indd 585 10/1/08 12:00:01 PM10/1/08 12:00:01 PM

Part II: Application Development Using C#

586

 try
 {
 //---download the RSS document---
 ftpReq = WebRequest.Create(feedURL);
 ftpResp = ftpReq.GetResponse();
 ftpRespStream = ftpResp.GetResponseStream();
 reader = new StreamReader(ftpRespStream,
 System.Text.Encoding.UTF8);

 //---load the RSS document into an XMLDocument object---
 xml.Load(reader);

 //---save a local copy of the feed document---
 xml.Save(FileName);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 getRSSFeedFailed = true;
 }
 finally
 {
 if (ftpRespStream != null)
 {
 ftpRespStream.Dispose();
 ftpRespStream.Close();
 };
 if (ftpResp != null) ftpResp.Close();
 }
 if (getRSSFeedFailed) return String.Empty;
 }
 else
 {
 return String.Empty;
 }
 }

 //---get the title of the feed---
 XmlNode titleNode = xml.SelectSingleNode(@”rss/channel/title”);
 title = titleNode.InnerText;

 //---select all < rss > < channel > < item > elements---
 XmlNodeList nodes = xml.SelectNodes(“rss/channel/item”);

 string result = String.Empty;
 foreach (XmlNode node in nodes)
 {
 //---select each post’s < title > and < description > elements---
 result += node.SelectSingleNode(“title”).InnerText + ((char)3);
 result += node.SelectSingleNode(“description”).InnerText +
 ((char)12);
 }
 return result;
 }

(continued)

c18.indd 586c18.indd 586 10/1/08 12:00:01 PM10/1/08 12:00:01 PM

Chapter 18: Developing Windows Mobile Applications

587

 To download the RSS feed XML documents, you use the WebRequest and WebResponse classes. The
document is then read using a StreamReader object and loaded into an XmlDocument object. Each post
title and its description are separated by the ASCII character 3, and each posting is separated by the
ASCII character 12, like this:

Post_Title < 3 > Post_Description < 12 > Post_Title < 3 > Post_Description < 12 >
Post_Title < 3 > Post_Description < 12 > Post_Title < 3 > Post_Description < 12 >
Post_Title < 3 > Post_Description < 12 > ...

 Notice that after the XML feed for an URL is downloaded, it is saved onto storage. This ensures that the
application continues to work in offline mode (when user disconnects from the Internet). The URL of
the feed is used as the filename, minus all the special characters within the URL, with the .xml extension
appended. For example, if the feed URL is http://www.wrox.com/WileyCDA/feed/RSS_WROX_
ALLNEW.xml , then the filename would be httpwwwwroxcomWileyCDAfeedRSSWROXALLNEWxml.xml .
To strip off all the special characters in the URL, define the RemoveSpecialChars() function as follows:

 //---removes special chars from an URL string---
 private string RemoveSpecialChars(string str)
 {
 string NewString = String.Empty;
 Regex reg = new Regex(“[A-Z]|[a-z]”);

 MatchCollection coll = reg.Matches(str);
 for (int i = 0; i < = coll.Count - 1; i++)
 NewString = NewString + coll[i].Value;

 return NewString;
 }

 You use the Regex (regular expression) class to extract all the alphabets from the URL and append them
into a string, which will be returned to the calling function to use as a filename.

 Next, define the SubscribeFeed() function to subscribe to a feed, and then add each post
to the TreeView control (see Figure 18 - 13):

 //---returns true if subscription is successful---
 private bool SubscribeFeed(string URL)
 {
 bool succeed = false;
 try
 {
 //---display the wait message panel---
 if (displayPanel == null)
 {
 displayPanel = CreatePanel(“Downloading feed...Please wait.”);
 this.Controls.Add(displayPanel);
 }
 else
 {
 displayPanel.BringToFront();
 displayPanel.Visible = true;

(continued)

c18.indd 587c18.indd 587 10/1/08 12:00:01 PM10/1/08 12:00:01 PM

Part II: Application Development Using C#

588

 Cursor.Current = Cursors.WaitCursor;
 //---update the UI---
 Application.DoEvents();
 }

 //---download feed---
 string title = String.Empty;
 string[] posts = DownloadFeed(URL, ref title).Split((char)12);
 if (posts.Length > 0 & & posts[0] != String.Empty)
 {
 //---always add to the root node---
 TreeNode FeedTitleNode = new TreeNode()
 {
 Text = title,
 Tag = URL, //---stores the Feed URL---
 ImageIndex = ICO_CLOSE,
 SelectedImageIndex = ICO_OPEN
 };

 //---add the feed title---
 TreeView1.Nodes[0].Nodes.Add(FeedTitleNode);

 //---add individual elements (posts)---
 for (int i = 0; i < = posts.Length - 2; i++)
 {
 //---extract each post as “title:description”---
 string[] str = posts[i].Split((char)3);

 TreeNode PostNode = new TreeNode()
 {
 Text = str[0], //---title---
 Tag = str[1], //---description---
 ImageIndex = ICO_POST,
 SelectedImageIndex = ICO_POST
 };

 //---add the posts to the tree---
 TreeView1.Nodes[0].Nodes
 [TreeView1.Nodes[0].Nodes.Count - 1].
 Nodes.Add(PostNode);
 }
 //---subscription is successful---
 succeed = true;

 //---highlight the new feed and expand its post---
 TreeView1.SelectedNode = FeedTitleNode;
 }
 else
 succeed = false;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);

(continued)

c18.indd 588c18.indd 588 10/1/08 12:00:02 PM10/1/08 12:00:02 PM

Chapter 18: Developing Windows Mobile Applications

589

 //---subscription is not successful---
 succeed = false;
 }
 finally
 {
 //---clears the panel and cursor---
 Cursor.Current = Cursors.Default;
 displayPanel.Visible = false;

 //---update the UI---
 Application.DoEvents();
 }
 return succeed;
 }

Figure 18-13

 For each TreeView node representing a feed title (such as Wrox: All New Titles), the Text property is set
to the feed ’ s title and its URL is stored in the Tag property of the node. For each node representing a
posting (.NET Domain - Driven Design and so forth), the Text property is set to the posting ’ s title and its
description is stored in the Tag property.

 Wiring All the Event Handlers
 With the helper functions defined, let ’ s wire up all the event handlers for the various controls. First, code
the Form1_Load event handler as follows:

 private void Form1_Load(object sender, EventArgs e)
 {
 //---find out the app’s path---
 appPath = Path.GetDirectoryName(
 System.Reflection.Assembly.GetExecutingAssembly().
 GetName().CodeBase);

 //---set the feed list to be stored in the app’s folder---
 feedsList = appPath + feedsList;

 try
 {
 //---create the root node---

(continued)

c18.indd 589c18.indd 589 10/1/08 12:00:02 PM10/1/08 12:00:02 PM

Part II: Application Development Using C#

590

 TreeNode node = new TreeNode()
 {
 ImageIndex = ICO_CLOSE,
 SelectedImageIndex = ICO_OPEN,
 Text = “Subscribed Feeds”
 };

 //---add the node to the tree---
 TreeView1.Nodes.Add(node);
 TreeView1.SelectedNode = node;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 return;
 }

 try
 {
 //---load all subscribed feeds---
 if (File.Exists(feedsList))
 {
 TextReader textreader = File.OpenText(feedsList);

 //---read URLs of all the subscribed feeds---
 string[] feeds = textreader.ReadToEnd().Split(‘|’);
 textreader.Close();

 //---add all the feeds to the tree---
 for (int i = 0; i < = feeds.Length - 2; i++)
 SubscribeFeed(feeds[i]);
 }
 else
 {
 //---pre-subscribe to a few feed(s)---
 SubscribeFeed(
 “http://www.wrox.com/WileyCDA/feed/RSS_WROX_ALLNEW.xml”);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 When the form is first loaded, you have to create a root node for the TreeView control and load all the
existing feeds. All subscribed feeds are saved in a plain text file (Feeds.txt), in the following format:

Feed URL|Feed URL|Feed URL|

(continued)

c18.indd 590c18.indd 590 10/1/08 12:00:03 PM10/1/08 12:00:03 PM

Chapter 18: Developing Windows Mobile Applications

591

 An example is:

http://news.google.com/?output=rss|http://rss.cnn.com/rss/cnn_topstories.rss|

 If there are no existing feeds (that is, if Feeds.txt does not exist), subscribe to at least one feed.

 In the Click event handler of the Subscribe MenuItem control, prompt the user to input a feed ’ s URL,
and then subscribe to the feed. If the subscription is successful, save the feed URL to file:

 private void mnuSubscribe_Click(object sender, EventArgs e)
 {
 if (!IsConnected())
 {
 MessageBox.Show(“You are not connected to the Internet.”);
 return;
 }

 //---add a reference to Microsoft.VisualBasic.dll---
 string URL = Microsoft.VisualBasic.Interaction.InputBox(
 “Please enter the feed URL”, “Feed URL”, lastURLEntered, 0, 0);

 if (URL != String.Empty)
 {
 lastURLEntered = URL;

 //---if feed is subscribed successfully---
 if (SubscribeFeed(URL))
 {
 //---save in feed list---
 TextWriter textwriter = File.AppendText(feedsList);
 textwriter.Write(URL + “|”);
 textwriter.Close();
 }
 else
 {
 MessageBox.Show(“Feed not subscribed. “ +
 “Please check that you have entered “ +
 “the correct URL and that you have “ +
 “Internet access.”);
 }
 }
 }

 C# does not include the InputBox() function that is available in VB.NET to get user ’ s input (see
Figure 18 - 14). Hence, it is a good idea to add a reference to the Microsoft.VisualBasic.dll library
and use it as shown in the preceding code.

c18.indd 591c18.indd 591 10/1/08 12:00:03 PM10/1/08 12:00:03 PM

Part II: Application Development Using C#

592

 Whenever a node in the TreeView control is selected, you should perform a check to see if it is a posting
node and enable/disable the MenuItem controls appropriately (see Figure 18 - 15):

 //---fired after a node in the TreeView control is selected---
 private void TreeView1_AfterSelect(object sender, TreeViewEventArgs e)
 {
 //---if a feed node is selected---
 if (e.Node.ImageIndex != ICO_POST & & e.Node.Parent != null)
 {
 mnuUnsubscribe.Enabled = true;
 mnuRefreshFeed.Enabled = true;
 }
 else
 { //---if a post node is selected---
 mnuUnsubscribe.Enabled = false;
 mnuRefreshFeed.Enabled = false;
 }
 }

Figure 18-14

Figure 18-15

c18.indd 592c18.indd 592 10/1/08 12:00:03 PM10/1/08 12:00:03 PM

Chapter 18: Developing Windows Mobile Applications

593

 When the user selects a post using the Select button on the navigation pad, Form2 containing the
 WebBrowser control is loaded and its content set accordingly (see Figure 18 - 16). This is handled by the
 KeyDown event handler of the TreeView control:

 //---fired when a node in the TreeView is selected
 // and the Enter key pressed---
 private void TreeView1_KeyDown(object sender, KeyEventArgs e)
 {
 TreeNode node = TreeView1.SelectedNode;
 //---if the Enter key was pressed---
 if (e.KeyCode == System.Windows.Forms.Keys.Enter)
 {
 //---if this is a post node---
 if (node.ImageIndex == ICO_POST)
 {
 //---set the title of Form2 to title of post---
 frm2.Text = node.Text;

 //---modifier for webBrowser1 in Form2 must be set to
 // Internal---
 //---set the webbrowser control to display the post content---
 frm2.webBrowser1.DocumentText = node.Tag.ToString();

 //---show Form2---
 frm2.Show();
 }
 }
 }

Figure 18-16

c18.indd 593c18.indd 593 10/1/08 12:00:04 PM10/1/08 12:00:04 PM

Part II: Application Development Using C#

594

 To unsubscribe a feed, you remove the feed ’ s URL from the text file and then remove the feed node from
the TreeView control. This is handled by the Unsubscribe MenuItem control:

 //---Unsubscribe a feed---
 private void mnuUnsubscribe_Click(object sender, EventArgs e)
 {
 //---get the node to unsubscribe---
 TreeNode CurrentSelectedNode = TreeView1.SelectedNode;

 //---confirm the deletion with the user---
 DialogResult result =
 MessageBox.Show(“Remove “ + CurrentSelectedNode.Text + “?”,
 “Unsubscribe”, MessageBoxButtons.YesNo,
 MessageBoxIcon.Question,
 MessageBoxDefaultButton.Button1);

 try
 {
 if (result == DialogResult.Yes)
 {
 //---URL To unsubscribe---
 string urlToUnsubscribe = CurrentSelectedNode.Tag.ToString();

 //---load all the feeds from feeds list---
 TextReader textreader = File.OpenText(feedsList);
 string[] feeds = textreader.ReadToEnd().Split(‘|’);
 textreader.Close();

 //---rewrite the feeds list omitting the one to be
 // unsubscribed---
 TextWriter textwriter = File.CreateText(feedsList);
 for (int i = 0; i < = feeds.Length - 2; i++)
 {
 if (feeds[i] != urlToUnsubscribe)
 {
 textwriter.Write(feeds[i] + “|”);
 }
 }
 textwriter.Close();

 //---remove the node from the TreeView control---
 CurrentSelectedNode.Remove();
 MessageBox.Show(“Feed unsubscribed!”);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

c18.indd 594c18.indd 594 10/1/08 12:00:04 PM10/1/08 12:00:04 PM

Chapter 18: Developing Windows Mobile Applications

595

 When the user needs to refresh a feed, first make a backup copy of the feed XML document and proceed
to subscribe to the same feed again. If the subscription is successful, remove the node containing the old
feed. If the subscription is not successful (for example, when a device is disconnected from the Internet),
restore the backup feed XML document. This is handled by the Refresh Feed MenuItem control:

 //---refresh the current feed---
 private void mnuRefreshFeed_Click(object sender, EventArgs e)
 {
 //---if no Internet connectivity---
 if (!IsConnected())
 {
 MessageBox.Show(“You are not connected to the Internet.”);
 return;
 }

 //---get the node to be refreshed---
 TreeNode CurrentSelectedNode = TreeView1.SelectedNode;
 string url = CurrentSelectedNode.Tag.ToString();

 //---get the filename of the feed---
 string FileName =
 appPath + @”\” + RemoveSpecialChars(url) + “.xml”;

 try
 {
 //---make a backup copy of the current feed---
 File.Copy(FileName, FileName + “_Copy”, true);

 //---delete feed from local storage---
 File.Delete(FileName);

 //---load the same feed again---
 if (SubscribeFeed(url))
 {
 //---remove the node to be refreshed---
 CurrentSelectedNode.Remove();
 }
 else //---the subscription(refresh) failed---
 {
 //---restore the deleted feed file---
 File.Copy(FileName + “_Copy”, FileName, true);
 MessageBox.Show(“Refresh not successful. Please try again.”);
 }

 //---delete the backup file---
 File.Delete(FileName + “_Copy”);
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Refresh failed (“ + ex.Message + “)”);
 }
 }

c18.indd 595c18.indd 595 10/1/08 12:00:05 PM10/1/08 12:00:05 PM

Part II: Application Development Using C#

596

Figure 18-17

 In the Click event handler for the Collapse All Feeds MenuItem control, use the CollapseAll()
method from the TreeView control to collapse all the nodes:

 private void mnuCollapseAllFeeds_Click(object sender, EventArgs e)
 {
 TreeView1.CollapseAll();
 }

 Finally, code the Click event handler in the Back MenuItem control in Form2 as follows:

 private void mnuBack_Click(object sender, EventArgs e)
 {
 this.Hide();
 }

 That ’ s it! You are now ready to test the application.

 Testing Using Emulators
 The SDKs for the various platforms include various emulators for you to test your Windows Mobile
applications without needing to use a real device. For example, if your project is targeting the Windows
Mobile 6 platform, you would see a list of emulators available for your testing (see Figure 18 - 17).

 Once you have selected an emulator to use, click the Connect to Device button to launch it. To test your
application, cradle the emulator to ActiveSync first so that you have Internet connectivity on the
emulator. To cradle the emulator to ActiveSync, select Tools Device Emulator Manager in Visual
Studio 2008; right - click the emulator that has been launched (the one with the green arrow next to it);
and select Cradle (see Figure 18 - 18).

c18.indd 596c18.indd 596 10/1/08 12:00:05 PM10/1/08 12:00:05 PM

Chapter 18: Developing Windows Mobile Applications

597

Figure 18-18

Figure 18-19

 Now press F5 in Visual Studio 2008 to deploy the application onto the emulator for testing.

 Testing Using Real Devices
 While most of the testing can be performed on the emulators, it is always helpful to use a real device to
fully test your application. For example, you will find out the true usability of your application when
users have to type using the small keypad on the phone (versus typing using a keyboard when testing
on an emulator). For this purpose, you can test your application on some of the devices running the
Windows Mobile 6 Standard platform, such as the Samsung Black II (see Figure 18 - 19).

c18.indd 597c18.indd 597 10/1/08 12:00:05 PM10/1/08 12:00:05 PM

Part II: Application Development Using C#

598

 Testing your Windows Mobile application on real devices could not be easier. All you need is to:

 1. Connect your device to your development machine using ActiveSync.

 2. Select Windows Mobile 6 Standard Device (see Figure 18 - 20) in Visual
Studio 2008.

 3. Press F5.

 The application is now deployed onto the device.

 Deploying the Application
 Once the testing and debugging process is over, you need to package the application nicely so that you
have a way to get it installed on your users ’ devices.

 The following sections show how to create a CAB (cabinet) file — a library of compressed files stored as
a single file — so that you can easily distribute your application. Subsequent sections explain how to
create an MSI (Microsoft Installer) file to automate the installation process.

 Creating a CAB File
 An easy way to package your Windows Mobile application is to create a CAB file so that you can
transfer it onto the end user ’ s device (using emails, web browser, memory card, and so on).
The following steps show you how:

 1. Add a new project to the current solution in Visual Studio 2008 (see Figure 18 - 21).

Figure 18-20

c18.indd 598c18.indd 598 10/1/08 12:00:06 PM10/1/08 12:00:06 PM

Chapter 18: Developing Windows Mobile Applications

599

 2. Choose the Setup and Deployment project type, and select the Smart Device CAB Project
template (see Figure 18 - 22). Use the default name of SmartDeviceCab1, and click OK.

Figure 18-21

Figure 18-22

Figure 18-23

 3. In the File System tab, right - click on Application Folder, and select Add Project Output
 (see Figure 18 - 23).

c18.indd 599c18.indd 599 10/1/08 12:00:06 PM10/1/08 12:00:06 PM

Part II: Application Development Using C#

600

 5. Right - click on the output item shown on the right - side of the File System tab, and create a
shortcut to it (see Figure 18 - 25). Name the shortcut RSSReader .

Figure 18-24

Figure 18-25

 6. Right - click the File System on Target Machine item, and select Add Special Folder Start Menu
Folder (see Figure 18 - 26).

Figure 18-26

 4. Select the RSSReader project, and click Primary output (see Figure 18 - 24). Click OK. This adds
the output of the RSSReader project (which is your executable application) to the current project.

c18.indd 600c18.indd 600 10/1/08 12:00:07 PM10/1/08 12:00:07 PM

Chapter 18: Developing Windows Mobile Applications

601

 7. Drag and drop the RSSReader shortcut onto the newly added Start Menu Folder (see
Figure 18 - 27). This ensures that when the CAB file is installed on the device, a shortcut
named RSS Reader appears in the Start menu.

Figure 18-27

 8. Right - click on the SmartDeviceCab1 project name in Solution Explorer, and select Properties.
Change the Configuration from Debug to Release . Also, name the output file Release\
RSSReader.cab (see Figure 18 - 28).

Figure 18-28

 9. In Visual Studio 2008, change the configuration from Debug to Release (see Figure 18 - 29).

Figure 18-29

c18.indd 601c18.indd 601 10/1/08 12:00:07 PM10/1/08 12:00:07 PM

Part II: Application Development Using C#

602

 10. Finally, set the properties of the SmartDeviceCab 1 project as shown in the following table
(see Figure 18 - 30).

 Property Value

 Manufacturer Developer Learning Solutions

 ProductName RSS Reader v1.0

Figure 18-30

 That ’ s it! Right - click on the SmartDeviceCab1 project name in Solution Explorer and select Build. You
can find the CAB file located in the \Release folder of the SmartDeviceCab1 project (see Figure 18 - 31).

Figure 18-31

 Now you can distribute the CAB file to your customers using various media such as FTP, web hosting,
email, and so on. When the user clicks on the RSSReader CAB file in File Explorer (on the device; see
Figure 18 - 32), the application will ask if he wants to install it onto the device, or onto the storage card
(if available).

c18.indd 602c18.indd 602 10/1/08 12:00:08 PM10/1/08 12:00:08 PM

Chapter 18: Developing Windows Mobile Applications

603

 When the application is installed, the RSS Reader shortcut is in the Start menu (see Figure 18 - 33).

Figure 18-32

Figure 18-33

 Creating a Setup Application
 Although you can deploy CAB files directly to your users, you might want to use a more user - friendly
way using the traditional setup application that most Windows users are familiar with — users simply
connect their devices to their computers and then run a setup application, which then installs the
application automatically on their devices through ActiveSync.

 Creating a setup application for a Windows Mobile application is more involved than for a conventional
Windows application because you have to activate ActiveSync to install it. Figure 18 - 34 shows the steps
in the installation process.

c18.indd 603c18.indd 603 10/1/08 12:00:08 PM10/1/08 12:00:08 PM

Part II: Application Development Using C#

604

 First, the application containing the CAB files (and other relevant files) must be installed on the user ’ s
computer. Then ActiveSync needs to install the application onto the user ’ s device.

 The following sections detail how to create an MSI file to install the application onto the user ’ s computer
and then onto the device.

 Creating the Custom Installer
 The first component you will build is the custom installer that will invoke ActiveSync to install the
application onto the user ’ s device. For this, you will use a Class Library project.

 Add a new project to your current solution by going to File Add New Project. Select the Windows
project type and select the Class Library template. Name the project RSSReaderInstaller
(see Figure 18 - 35). Click OK.

Application
(CAB files, etc.)

User’s Computer

Active Sync

Windows Mobile
Device

Figure 18-34

Figure 18-35

c18.indd 604c18.indd 604 10/1/08 12:00:09 PM10/1/08 12:00:09 PM

Chapter 18: Developing Windows Mobile Applications

605

 Delete the default Class1.cs file and add a new item to the project. In the Add New Item dialog, select
the Installer Class template, and name the file RSSReaderInstaller.cs (see Figure 18 - 36).

Figure 18-36

 Add two references to the project: System.Configuration.Install and System.Windows.Forms
(see Figure 18 - 37).

Figure 18-37

c18.indd 605c18.indd 605 10/1/08 12:00:09 PM10/1/08 12:00:09 PM

Part II: Application Development Using C#

606

 Switch to the code view of the RSSReaderInstaller.cs file and import the following namespaces:

using Microsoft.Win32;
using System.IO;
using System.Diagnostics;
using System.Windows.Forms;

 Within the RSSReaderInstaller class, define the INI_FILE constant. This constant holds the name of
the .ini file that will be used by ActiveSync for installing the CAB file onto the target device.

namespace RSSReaderInstaller
{
 [RunInstaller(true)]
 public partial class RSSReaderInstaller : Installer
 {

 const string INI_FILE = @”setup.ini”;

 In the constructor of the RSSReaderInstaller class, wire the AfterInstall and Uninstall events to
their corresponding event handlers:

 public RSSReaderInstaller()
 {
 InitializeComponent();

 this.AfterInstall += new
 InstallEventHandler(RSSReaderInstaller_AfterInstall);
 this.AfterUninstall += new
 InstallEventHandler(RSSReaderInstaller_AfterUninstall);

 }

 void RSSReaderInstaller_AfterInstall(object sender, InstallEventArgs e)
 {
 }

 void RSSReaderInstaller_AfterUninstall(object sender, InstallEventArgs e)
 {
 }

 The AfterInstall event is fired when the application (CAB file) has been installed onto the user ’ s
computer. Similarly, the AfterUninstall event fires when the application has been uninstalled from
the user ’ s computer.

 When the application is installed on the user ’ s computer, you use Windows CE Application Manager
(CEAPPMGR.EXE) to install the application onto the user ’ s device.

 The Windows CE Application Manager is installed automatically when you install ActiveSync on your
computer.

c18.indd 606c18.indd 606 10/1/08 12:00:10 PM10/1/08 12:00:10 PM

Chapter 18: Developing Windows Mobile Applications

607

 To locate the Windows CE Application Manager, define the following function named
 GetWindowsCeApplicationManager() :

 private string GetWindowsCeApplicationManager()
 {
 //---check if the Windows CE Application Manager is installed---
 string ceAppPath = KeyExists();
 if (ceAppPath == String.Empty)
 {
 MessageBox.Show(“Windows CE App Manager not installed”,
 “Setup”, MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return String.Empty;
 }
 else
 return ceAppPath;
 }

 This function locates the Windows CE Application Manager by checking the registry of the computer
using the KeyExists() function, which is defined as follows:

 private string KeyExists()
 {
 //---get the path to the Windows CE App Manager from the registry---
 RegistryKey key =
 Registry.LocalMachine.OpenSubKey(
 @”SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\CEAPPMGR.EXE”);
 if (key == null)
 return String.Empty;
 else
 return key.GetValue(String.Empty, String.Empty).ToString();
 }

 The location of the Windows CE Application Manager can be obtained via the registry key: “SOFTWARE\
Microsoft\Windows\CurrentVersion\App Paths\CEAPPMGR.EXE” , so querying the value of this
key provides the location of this application.

 The next function to define is GetIniPath() , which returns the location of the .ini file that is needed
by the Windows CE Application Manager:

 private string GetIniPath()
 {
 //---get the path of the .ini file---
 return “\”” +
 Path.Combine(Path.GetDirectoryName(
 System.Reflection.Assembly.
 GetExecutingAssembly().Location), INI_FILE) + “\””;
 }

 By default, the .ini file is saved in the same location as the application (you will learn how to
accomplish this in the next section). The GetIniPath() function uses reflection to find the location of
the custom installer, and then return the path of the .ini file as a string, enclosed by a pair of double
quotation marks (the Windows CE Application requires the path of the .ini file to be enclosed by a pair
of double quotation marks).

c18.indd 607c18.indd 607 10/1/08 12:00:10 PM10/1/08 12:00:10 PM

Part II: Application Development Using C#

608

 Finally, you can now code the AfterInstall event handler, like this:

 void RSSReaderInstaller_AfterInstall(object sender, InstallEventArgs e)
 {
 //---to be executed when the application is installed---
 string ceAppPath = GetWindowsCeApplicationManager();
 if (ceAppPath == String.Empty)
 return;
 Process.Start(ceAppPath, GetIniPath());
 }

 Here, you get the location of the Windows CE Application Manager and then use the Process.Start()
method to invoke the Windows CE Application Manager, passing it the path of the .ini file.

 Likewise, when the application has been uninstalled, you simply invoke the Windows CE Application
Manager and let the user choose the application to remove from the device. This is done in the
 AfterUninstall event handler:

 void RSSReaderInstaller_AfterUninstall(object sender, InstallEventArgs e)
 {
 //---to be executed when the application is uninstalled---
 string ceAppPath = GetWindowsCeApplicationManager();
 if (ceAppPath == String.Empty)
 return;
 Process.Start(ceAppPath, String.Empty);
 }

 The last step in this section is to add the setup.ini file that the Windows CE Application Manager
needs to install the application onto the device. Add a text file to the project and name it setup.ini .
Populate the file with the following:

[CEAppManager]
Version = 1.0
Component = RSSReader

[RSSReader]
Description = RSSReader Application
Uninstall = RSSReader
CabFiles = RSSReader.cab

 For more information about the various components in an .ini file, refer to the documentation at
 http://msdn.microsoft.com/en - us/library/ms889558.aspx .

 To build the project, right - click on RSSReaderInstaller in Solution Explorer and select Build.

 Set the SmartDeviceCab1 project ’ s properties as shown in the following table.

 Property Value

 Manufacturer Developer Learning Solutions

 ProductName RSS Reader v1.0

c18.indd 608c18.indd 608 10/1/08 12:00:10 PM10/1/08 12:00:10 PM

Chapter 18: Developing Windows Mobile Applications

609

 Creating a MSI File
 You can now create the MSI installer to install the application onto the user ’ s computer and then invoke
the custom installer built in the previous section to instruct the Windows CE Application Manager to
install the application onto the device.

 Using the same solution, add a new Setup Project (see Figure 18 - 38). Name the project RSSReaderSetup .

Figure 18-38

 Using the newly created project, you can now add the various components and files that you have been
building in the past few sections. Right - click on the RSSReaderSetup project in Solution Explorer, and
select Add File (see Figure 18 - 39).

Figure 18-39

c18.indd 609c18.indd 609 10/1/08 12:00:11 PM10/1/08 12:00:11 PM

Part II: Application Development Using C#

610

Figure 18-40

Figure 18-41

 Add the following files (see Figure 18 - 40):

 SmartDeviceCab1\Release\RSSReader.CAB

 RSSReaderInstaller\bin\Release\RSSReaderInstaller.dll

 RSSReaderInstaller\setup.ini

❑

❑

❑

 These three files will be copied to the user ’ s computer during the installation.

 The next step is to configure the MSI installer to perform some custom actions during the installation
stage. Right - click the RSSReaderSetup project in Solution Explorer, and select View Custom Actions
(see Figure 18 - 41).

 The Custom Actions tab displays. Right - click on Custom Actions, and select Add Custom Action
(see Figure 18 - 42).

c18.indd 610c18.indd 610 10/1/08 12:00:11 PM10/1/08 12:00:11 PM

Chapter 18: Developing Windows Mobile Applications

611

 Select Application Folder, select the RSSReaderInstall.dll file (see Figure 18 - 43), and click OK.

Figure 18-42

Figure 18-43

Figure 18-44

 The Custom Actions tab should now look like Figure 18 - 44 .

 Set the various properties of the RSSReaderSetup project as shown in the following table
(see Figure 18 - 45).

 Property Value

 Author Wei - Meng Lee

 Manufacturer Developer Learning Solutions

 ProductName RSSReader

c18.indd 611c18.indd 611 10/1/08 12:00:12 PM10/1/08 12:00:12 PM

Part II: Application Development Using C#

612

 Testing the Setup
 To test the MSI installer, ensure that your emulator (or real device) is connected to ActiveSync. Double -
 click the RSSReaderSeup.msi application, and the installation process begins (see Figure 18 - 47).

Figure 18-45

Figure 18-46

 The last step is to build the project. Right - click on the RSSReaderSetup project in Solution Explorer, and
select Build.

 The MSI installer is now in the \Release subfolder of the folder containing the RSSReaderSetup
project (see Figure 18 - 46).

c18.indd 612c18.indd 612 10/1/08 12:00:12 PM10/1/08 12:00:12 PM

Chapter 18: Developing Windows Mobile Applications

613

Figure 18-47

Figure 18-48

 Follow the instructions on the dialog. At the end, an Application Downloading Complete message
displays (see Figure 18 - 48).

c18.indd 613c18.indd 613 10/1/08 12:00:12 PM10/1/08 12:00:12 PM

Part II: Application Development Using C#

614

 Check your emulator (or real device) to verify that the application is successfully installed
(see Figure 18 - 49).

Figure 18-49

Figure 18-50

 To uninstall the application, double - click the RSSReaderSeup.msi application again. This time, you see
the dialog shown in Figure 18 - 50 .

 If you choose to remove the application, the Windows CE Application Manager displays the list of
programs that you have installed through ActiveSync (see Figure 18 - 51). To uninstall the RSS Reader
application, uncheck the application and click OK. The application is removed.

c18.indd 614c18.indd 614 10/1/08 12:00:14 PM10/1/08 12:00:14 PM

Chapter 18: Developing Windows Mobile Applications

615

 Installing the Prerequisites — . NET Compact Framework 3.5
 One problem you will likely face when deploying your application to real devices is that the target
device does not have the required version of the .NET Compact Framework (version 3.5 is needed).
Hence, you need to ensure that the user has a means to install the right version of the .NET Compact
Framework. There are two ways of doing this:

 Distribute a copy of the .NET Compact Framework 3.5 Redistributable to your client. You can
download a copy from http://microsoft.com/downloads . Users can install the .NET
Compact Framework before or after installing your application. This is the easiest approach,
but requires the user to perform the extra step of installing the .NET Compact Framework.

 Programmatically install the .NET Compact Framework during installation, using the custom
installer. Earlier, you saw how you can invoke the Windows CE Application Manager from
within the custom installer class by using the .ini file. In this case, you simply need to create
another .ini file, this time to install the CAB file containing the .NET Compact Framework. The
various CAB files for the .NET Compact Framework 3.5 can be found on your local drive in the
following directory: C:\Program Files\Microsoft.NET\SDK\CompactFramework\v3.5\
WindowsCE . Figure 18 - 52 shows the various CAB files for each processor type (ARM, MIPS,
SH4, X86, and so on). To install the .NET Compact Framework 3.5 on Windows Mobile 6
Standard devices, you just need to add the NETCFv35.wm.armv4i.cab file to the
 RSSReaderInstaller project, together with its associated .ini file.

❑

❑

Figure 18-51

c18.indd 615c18.indd 615 10/1/08 12:00:15 PM10/1/08 12:00:15 PM

Part II: Application Development Using C#

616

 Summary
 This chapter explored developing applications for the Windows Mobile 6 platform, using the .NET
Compact Framework. Using that framework, you can leverage your familiarity with the .NET
Framework to develop compelling mobile applications. The RSS application is an example of a useful
application that you can use on a daily basis. The chapter also explained how to package an application
into a CAB file and then into a MSI package so that you can distribute it to your users easily.

Figure 18-52

c18.indd 616c18.indd 616 10/1/08 12:00:15 PM10/1/08 12:00:15 PM

 Developing Silverlight
Applications

 Over the years, we have all seen the proliferation of web applications. In the early days, web sites
consisted of sets of static HTML pages with nice graphics and lots of information. Then, server -
 side technologies like CGI, ASP, and JSP made web applications possible, and suddenly users
could do a lot of things on the web, including buying products and making reservations online.
Client - side innovations such as JavaScript helped improve the user experience of web applications,
making them feel much more responsive. Although AJAX ’ s underlying technologies had been
available for several years, it wasn ’ t really until the last couple of years that people really started
spending more time AJAX - enabling their web applications. All this boils down to one important
goal of web developers — making web applications much more interactive and responsive.

 Today, a new term has been coined: RIA — Rich Internet Application. To Microsoft, RIA really
stands for Rich Interactive Application. And it was with that in mind that Microsoft recently
launched a new technology/product called Silverlight. Previously known as Windows
Presentation Foundation/Everywhere (WPF/E), Microsoft Silverlight is a browser plug - in that
enables developers to host RIAs that feature animation and vector graphics, as well as video
playback.

 This chapter will help you get started with Silverlight and provides an opportunity for you to get a
feel for how Silverlight development works.

 The State of Silverlight
 At the time of writing, there are two versions of Silverlight — 1.0 and 2 (previously known
as version 1.1), the main difference being the support of .NET languages in version 2. For
Silverlight version 1.0, you have to use JavaScript for writing your application logic. In version 2,
in addition to JavaScript you can also use either C# or Visual Basic for your application logic,
which is then executed by a version of the CLR built within the runtime.

At the time of writing, Silverlight 2 is in Beta 1.

c19.indd 617c19.indd 617 10/1/08 12:00:56 PM10/1/08 12:00:56 PM

Part II: Application Development Using C#

618

 The Silverlight runtimes currently support the following browsers:

 Internet Explorer 6/7

 Firefox 1.5/2.0

 Safari 2.0

 The following table compares the feature set of Silverlight 1.0 and Silverlight 2 Beta 1.

 Features Silverlight 1.0 Silverlight 2 Beta 1

 2D Vector Animation/Graphics X X

 AJAX Support X X

 Cross - Browser (Firefox, IE, Safari) X X

 Cross - Platform (Windows, Mac) X X

 Framework Languages(Visual Basic,
Visual C#, IronRuby, Ironpython)

 X

 HTML DOM Integration X X

 HTTP Networking X X

 Isolated Storage X

 JavaScript Support X X

 JSON, REST, SOAP/WS - *, POX, and RSS
Web Services (as well as support for
Sockets)

 X

 Cross Domain Network Access X

 LINQ to Objects X

 Canvas Layout Support X X

 StackPanel, Grid and Panel Layout
Support

 X

 Managed Control Framework X

 Full suite of Controls (TextBox,
RadioButton, Slider, Calendar, DatePicker,
DataGrid, ListBox, and others)

 X

 Deep Zoom Technology X

 Managed HTML Bridge X

 Managed Exception Handling X

 Media — Content Protection X

 Media — 720P High Definition (HD) Video X X

❑

❑

❑

c19.indd 618c19.indd 618 10/1/08 12:00:57 PM10/1/08 12:00:57 PM

Chapter 19: Developing Silverlight Applications

619

 Features Silverlight 1.0 Silverlight 2 Beta 1

 Media — Audio/Video Support (VC - 1,
WMV, WMA, MP3)

 X X

 Media — Image Support (JPG, PNG) X X

 Media Markers X X

 Rich Core Framework (e.g. Generics,
collections)

 X

 Security Enforcement X

 Silverlight ASP.NET Controls (asp:media,
asp:xaml)

 X X

 Type Safety Verification X

 Windows Media Server Support X X

 XAML Parser (based on WPF) X X

 XMLReader/Writer X

 Obtaining the Tools
 To view Silverlight applications on your browser, you need to download one or all of the following
runtimes:

 Microsoft Silverlight 1.0 for Mac

 Microsoft Silverlight 1.0 for Windows

 Microsoft Silverlight 2 for Mac

 Microsoft Silverlight 2 for Windows

❑

❑

❑

❑

When your web browser encounters a Silverlight application and there is no
runtime installed, click on the Silverlight icon to download the required version of
the runtime.

 For developing Silverlight 1.0 applications, you need to download the Silverlight 1.0 SDK from
www.microsoft.com/downloads .

c19.indd 619c19.indd 619 10/1/08 12:00:57 PM10/1/08 12:00:57 PM

Part II: Application Development Using C#

620

 For Silverlight 2 applications, the easiest way to get started is to use Visual Studio 2008. In addition to
Visual Studio 2008, you also need to download Microsoft Silverlight Tools Beta 1 for Visual Studio 2008
(www.microsoft.com/downloads), which will install the following components:

 Silverlight 2 Beta 1 runtime

 Silverlight 2 SDK Beta 1

 KB949325 for Visual Studio 2008

 Silverlight Tools Beta 1 for Visual Studio 2008

 You can also purchase one or more of the following professional tools to help design your Silverlight
applications:

 Expression Blend 2 — A professional design tool to create Silverlight applications.

 Expression Media Encoder Preview Update — A feature that will be part of Microsoft
Expression Media, a commercial digital asset management (DAM) cataloging program.
It enables you to create and enhance video.

 Expression Design — A professional illustration and graphic design tool to create Silverlight
assets.

 Architecture of Silverlight
 Figure 19 - 1 shows the architecture for Silverlight 1.0 and 2.

❑

❑

❑

❑

❑

❑

❑

Figure 19-1
Used by permission of Microsoft Corporation

 The Presentation Core handles all the interactions with the user (through keyboard, mouse, and so on) as
well as the rendering of UI elements such as media and controls. The XAML (Extensible Application
Markup Language) component provides a parser for XAML markup (more about this in the next
section), which is used as the UI of a Silverlight application. For Silverlight 1.0 applications, the primary
means to program the application is JavaScript. In Silverlight 2, you can use either C# or VB.NET. During

c19.indd 620c19.indd 620 10/1/08 12:00:57 PM10/1/08 12:00:57 PM

Chapter 19: Developing Silverlight Applications

621

runtime, the application will be executed by the CLR Execution Engine. Notice that the various features
available in the desktop version of the .NET Framework is also available for Silverlight — LINQ, WPF,
WCF, BCL, and so forth.

 Building a Silverlight UI Using XAML
 A typical Silverlight project has four files:

 An HTML file that hosts the Silverlight plug - in instance

 A Silverlight.js file that contains all the necessary plumbing code required by Silverlight

 An XAML file that contains the UI elements that make up a Silverlight application

 A JavaScript file that contains the logic of your Silverlight application

 The following sections show how to build a Silverlight application while presenting the basics of
XAML, the UI language of Silverlight applications.

 Creating a Bare - Bones Silverlight Application
 Let ’ s create a bare - bones Silverlight application by referencing all the necessary files required in
a Silverlight application. First, remember to download the Silverlight 1.0 SDK from
http://www.microsoft.com/downloads .

 Once the SDK is downloaded, double - click on the Silverlightv1.0SDK.msi file to install the files onto
your local computer (use the default directory).

 Create a new folder in C:\ and name it Silverlight.

 Copy the Silverlight.js file located in the C:\Program Files\Microsoft Silverlight 1.0 SDK\Tools\
Silverlight.js\ folder into C:\Silverlight\.

 Using Notepad, create the following HTML file; name it Default.html , and save it in the C:\
Silverlight\ folder:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
 < head >
 < title > Our First Silverlight Application < /title >
 < script type=”text/javascript” src=”Silverlight.js” > < /script >
 < script type=”text/javascript” src=”MySilverlight.js” > < /script >
 < /head >
 < body >

 < !-- location for the Silverlight plug-in-- >
 < div id=”SilverlightPluginHost” >
 < /div >

 < script type=”text/javascript” >

❑

❑

❑

❑

(continued)

c19.indd 621c19.indd 621 10/1/08 12:00:58 PM10/1/08 12:00:58 PM

Part II: Application Development Using C#

622

 // Retrieve the div element you created in the previous step.
 var parentElement =
 document.getElementById(“SilverlightPluginHost”);

 // creates the Silverlight plug-in.
 createSilverlightPlugin();
 < /script >

 < /body >
 < /html >

 This HTML file is the page that will host the Silverlight plug - in. Notice that it references two
JavaScript files:

 Silverlight.js

 MySilverlight.js

 You ’ ve already added the first one. Now, using Notepad, create the following JavaScript file; name it
 MySilverlight.js , and save it in C:\Silverlight\.

function createSilverlightPlugin()
{
 Silverlight.createObject(
 “UI.xaml”, // Source property value.
 parentElement, // DOM reference to hosting DIV tag.
 “mySilverlightPlugin”, // Unique plug-in ID value.
 { // Per-instance properties.
 width:’300’, // Width of rectangular region of
 // plug-in area in pixels.
 height:’300’, // Height of rectangular region of
 // plug-in area in pixels.
 inplaceInstallPrompt:false, // Determines whether to display
 // in-place install prompt if
 // invalid version detected.
 background:’#D6D6D6’, // Background color of plug-in.
 isWindowless:’false’, // Determines whether to display
 // plug-in in Windowless mode.
 framerate:’24’, // MaxFrameRate property value.
 version:’1.0’ // Silverlight version to use.
 },
 {
 onError:null, // OnError property value --
 // event handler function name.
 onLoad:null // OnLoad property value --
 // event handler function name.
 },
 null); // Context value -- event handler
 // function name.
}

 This JavaScript file contains the logic behind your Silverlight application. It loads the Silverlight plug - in
as well as the XAML file (UI.xaml , which is defined in the next section).

❑

❑

(continued)

c19.indd 622c19.indd 622 10/1/08 12:00:58 PM10/1/08 12:00:58 PM

Chapter 19: Developing Silverlight Applications

623

 Double - click on Default.html now to load it in Internet Explorer. You will see the message shown in
Figure 19 - 2 if your web browser does not have the Silverlight plug - in installed.

Figure 19-2

Figure 19-3

 To install the Silverlight plug - in, click on the Get Microsoft Silverlight logo and follow the onscreen
instructions. Once the plug - in is installed, refresh the page and you should see a gray box (there is
nothing displayed yet, thus just a gray box). Right - click on the gray box and select Silverlight
Configuration to verify the version of the plug - in installed (see Figure 19 - 3).

 Understanding XAML
 In this section, you see how to create the user interface of a Silverlight application using the Extensible
Application Markup Language (XAML).

c19.indd 623c19.indd 623 10/1/08 12:00:58 PM10/1/08 12:00:58 PM

Part II: Application Development Using C#

624

 Using Notepad, create the following XAML file; name it UI.xaml and save it in C:\Silverlight\.

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Height=”200” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”Yellow” / >

 < Rectangle
 Canvas.Left=”80” Canvas.Top=”80”
 Height=”200” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”LightBlue”/ >

 < /Canvas >

 Double - click on Default.html now to load it in the web browser. Figure 19 - 4 shows the output.

Figure 19-4

 This XAML file contains two elements, < Ellipse > and < Rectangle > , which display an ellipse and a
rectangle, respectively, on the page. Both elements are embedded within a Canvas control.

 The Canvas Control
 The Canvas control (every Silverlight application has at least one Canvas control) is designed to contain
and position other controls and elements.

c19.indd 624c19.indd 624 10/1/08 12:00:59 PM10/1/08 12:00:59 PM

Chapter 19: Developing Silverlight Applications

625

 To define the positioning of controls within the Canvas control, you use the Canvas.Left and
Canvas.Top attributes. The z order of objects embedded within a Canvas object is determined by the
sequence in which they are declared. As the previous section shows, the < Rectangle > element is
defined after the < Ellipse > element, and hence it overlaps the < Ellipse > element. However, you can
override this default ordering by specifying the ZIndex attribute, as the following example shows.

 Edit the UI.xaml file created in the previous section, and add the Canvas.ZIndex attribute for both the
 < Ellipse > and < Rectangle > elements:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse

 Canvas.ZIndex=”2”

 Height=”200” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”Yellow” / >

 < Rectangle

 Canvas.ZIndex=”1”

 Canvas.Left=”80” Canvas.Top=”80”
 Height=”200” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”LightBlue”/ >

 < /Canvas >

 Reload the Default.html file in the web browser, and notice that the ellipse is now on top of the
rectangle (see Figure 19 - 5).

Figure 19-5

c19.indd 625c19.indd 625 10/1/08 12:01:00 PM10/1/08 12:01:00 PM

Part II: Application Development Using C#

626

 You can also nest Canvas controls within one another. Edit the UI.xaml file created earlier and replace
its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Canvas
 Canvas.Left=”80” Canvas.Top=”80”
 Height=”250” Width=”250”
 Background=”lightgreen” >

 < Ellipse
 Canvas.ZIndex=”2”
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”200” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”Yellow” / >

 < /Canvas >

 < /Canvas >

 Reload the Default.html file in the web browser, and observe the changes (see Figure 19 - 6).

Figure 19-6

The positions specified by the Canvas.Left and Canvas.Top attributes of each
element or control are relative to its parent control, and not the root control.

c19.indd 626c19.indd 626 10/1/08 12:01:00 PM10/1/08 12:01:00 PM

Chapter 19: Developing Silverlight Applications

627

 Drawing Shapes
 One of the key capabilities of Silverlight is the support for drawing objects of different shapes and sizes.
Silverlight provides the following basic shape elements:

 Rectangle

 Ellipse

 Line

 Polygon

 Polyline

 Rectangle
 A < Rectangle > element draws a rectangle (or square) with optional rounded corners. To specify
rounded corners, use the RadiusX and RadiusY attributes. Edit the UI.xaml file created in the previous
section and replace its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Rectangle
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”100” Width=”200”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”Yellow”
 RadiusX=”10” RadiusY=”10” / >

 < Rectangle
 Canvas.Left=”60” Canvas.Top=”60”
 Height=”200” Width=”180”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”LightBlue”
 RadiusX=”30” RadiusY=”30” / >

 < /Canvas >

 Reload Default.html in the web browser. Figure 19 - 7 shows the output.

❑

❑

❑

❑

❑

c19.indd 627c19.indd 627 10/1/08 12:01:00 PM10/1/08 12:01:00 PM

Part II: Application Development Using C#

628

 Line
 A < Line > element draws a line on the Canvas control. Edit the UI.xaml file created in the previous
section and replace its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Line X1=”10” Y1=”10” X2=”100” Y2=”180”
 Stroke=”black” StrokeThickness=”5”/ >

 < Line X1=”100” Y1=”10” X2=”10” Y2=”180”
 Stroke=”red” StrokeThickness=”10”/ >

 < /Canvas >

 Reload the Default.html file in the web browser, and observe the output (see Figure 19 - 8).

Figure 19-7

Figure 19-8

c19.indd 628c19.indd 628 10/1/08 12:01:01 PM10/1/08 12:01:01 PM

Chapter 19: Developing Silverlight Applications

629

Ellipse
 An < Ellipse > element draws a circle (or oval) on the Canvas control. Edit the UI.xaml file created in
the previous section, and replace its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Canvas.Left=”30” Canvas.Top=”30”
 Height=”60” Width=”60”
 Stroke=”Black” StrokeThickness=”10”
 Fill=”Pink”/ >

 < Ellipse
 Canvas.Left=”200” Canvas.Top=”30”
 Height=”60” Width=”60”
 Stroke=”Black” StrokeThickness=”10”
 Fill=”LightBlue”/ >

 < Ellipse
 Canvas.Left=”20” Canvas.Top=”100”
 Height=”70” Width=”250”
 Stroke=”Black” StrokeThickness=”10”
 Fill=”LightGreen”/ >

 < /Canvas >

 Reload Default.html in the web browser. Figure 19 - 9 shows the output.

Figure 19-9

Polygon
 A < Polygon > element draws a shape with arbitrary number of sides. Edit UI.xaml again, replacing its
content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Polygon Points=”100,10 10,160 190,160”
 Stroke=”Yellow” Strok eThickness=”5” Fill=”Red”/ >

 < /Canvas >

c19.indd 629c19.indd 629 10/1/08 12:01:01 PM10/1/08 12:01:01 PM

Part II: Application Development Using C#

630

 Reload Default.html in the web browser to see the result (see Figure 19 - 10).

Polyline
 A < Polyline > element draws a series of connected lines. Edit the UI.xaml file and replace its content
with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Polyline Points=”100,10 10,160 210,160 120,10”
 Stroke=”Black” StrokeThickness=”8”/ >

 < /Canvas >

 Reload Default.html in the web browser, and observe the output (see Figure 19 - 11).

Figure 19-11

Figure 19-10

 Painting Shapes
 The Fill attribute that you have seen in many of the previous examples fills (paints) a shape with a
solid color. However, the fill is not restricted to solid colors. Silverlight supports various ways to paint a
shape:

 SolidColorBrush

 LinearGradientBrush

 RadialGradientBrush

 ImageBrush

❑

❑

❑

❑

c19.indd 630c19.indd 630 10/1/08 12:01:01 PM10/1/08 12:01:01 PM

Chapter 19: Developing Silverlight Applications

631

 Using SolidColorBrush
 The < SolidColorBrush > element paints an area with a solid color. Edit the UI.xaml file created in the
previous section, and replace its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”Yellow” / >

 < Ellipse
 Canvas.Left=”120” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”#A3FC96” / > < !-- 6-digit hexadecimal -- >

 < Ellipse
 Canvas.Left=”10” Canvas.Top=”120”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10”
 Fill=”#A3FC96FF” / >
 < !-- 6-digit hexadecimal + 2-digit for alpha/opacity value -- >

 < Ellipse
 Canvas.Left=”120” Canvas.Top=”120”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < SolidColorBrush Color=”LightBlue”/ >
 < /Ellipse.Fill >
 < /Ellipse >

 < /Canvas >

 In this example, the Fill attribute specifies the solid color to use to fill up the particular element. Reload
the Default.html file in the web browser, and observe the output in your browser (see Figure 19 - 12).

Figure 19-12

c19.indd 631c19.indd 631 10/1/08 12:01:02 PM10/1/08 12:01:02 PM

Part II: Application Development Using C#

632

Using LinearGradientBrush
 The < LinearGradientBrush > element paints an area with a linear gradient. Edit the UI.xaml file
again, replacing its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < LinearGradientBrush > < !-- fill is diagonal by default -- >
 < GradientStop Color=”Yellow” Offset=”0.25” / >
 < GradientStop Color=”Red” Offset=”0.5” / >
 < GradientStop Color=”Blue” Offset=”0.75” / >
 < /LinearGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >

 < Ellipse
 Canvas.Left=”120” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < !-- fill is horizontal -- >
 < LinearGradientBrush StartPoint=”0,0” EndPoint=”1,0” >
 < GradientStop Color=”Yellow” Offset=”0.25” / >
 < GradientStop Color=”Red” Offset=”0.5” / >
 < GradientStop Color=”Blue” Offset=”0.75” / >
 < /LinearGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >

 < /Canvas >

 Here you used the < Ellipse.Fill > element to fill the each ellipse shapes with a
 < LinearGradientBrush > element. Reload the Default.html file in the web browser.
Figure 19 - 13 shows the output.

Figure 19-13

c19.indd 632c19.indd 632 10/1/08 12:01:02 PM10/1/08 12:01:02 PM

Chapter 19: Developing Silverlight Applications

633

Using RadialGradientBrush
 The < RadialGradientBrush > element paints an area with a radial gradient. Edit the UI.xaml file, and
replace its content with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < RadialGradientBrush >
 < GradientStop Color=”Yellow” Offset=”0.25” / >
 < GradientStop Color=”Red” Offset=”0.5” / >
 < GradientStop Color=”Blue” Offset=”0.75” / >
 < /RadialGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >

 < Ellipse
 Canvas.Left=”120” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < RadialGradientBrush GradientOrigin=”0.5,0” >
 < GradientStop Color=”Yellow” Offset=”0.25” / >
 < GradientStop Color=”Red” Offset=”0.5” / >
 < GradientStop Color=”Blue” Offset=”0.75” / >
 < /RadialGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >

 < /Canvas >

 Reload the Default.html file in the web browser, and observe the output (see Figure 19 - 14).

Figure 19-14

c19.indd 633c19.indd 633 10/1/08 12:01:03 PM10/1/08 12:01:03 PM

Part II: Application Development Using C#

634

Using ImageBrush
 The < ImageBrush > element paints an area with an image. Assuming that you have the image shown in
Figure 19 - 15 saved as C:\Silverlight\USFlag.jpg, edit the UI.xaml file created, and replace its content
with the following:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >

 < Ellipse
 Canvas.Left=”10” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < ImageBrush ImageSource=”USFlag.jpg”/ >
 < /Ellipse.Fill >
 < /Ellipse >

 < Ellipse
 Canvas.Left=”120” Canvas.Top=”10”
 Height=”100” Width=”100”
 Stroke=”Black”
 StrokeThickness=”10” >
 < Ellipse.Fill >
 < ImageBrush ImageSource=”USFlag.jpg” Stretch=”Uniform”/ >
 < /Ellipse.Fill >
 < /Ellipse >

 < /Canvas >

 Reload Default.html in the web browser to view the output (see Figure 19 - 16).

Figure 19-15

Figure 19-16

c19.indd 634c19.indd 634 10/1/08 12:01:03 PM10/1/08 12:01:03 PM

Chapter 19: Developing Silverlight Applications

635

 Crafting XAML Using Expression Blend 2
 While you can code the UI by hand, an easier way is to use a designer tool to design and create the UI
graphically.

 Microsoft Expression Blend 2 is the professional design tool to create engaging web - connected
experiences for Windows and Silverlight. Currently in version 2, you can download a 30 - day trial edition
of Expression Blend 2 from www.microsoft.com/downloads .

 This section explains how to use Expression Blend 2 to build a Silverlight application and
programmatically interact with the content of a Silverlight application using JavaScript.

 Using Expression Blend 2
 Launch Expression Blend 2 by selecting Start Programs Microsoft Expression Microsoft
Expression Blend 2. Create a new project by selecting the New Project item.

 In the New Project dialog, select the Silverlight 1 Site project type and name the project RoundButton
(see Figure 19 - 17). Click OK.

Figure 19-17

 In the design view, double - click on the Canvas control to insert one onto the page (see Figure 19 - 18).

c19.indd 635c19.indd 635 10/1/08 12:01:03 PM10/1/08 12:01:03 PM

Part II: Application Development Using C#

636

Figure 19-18

 Right - click on the Rectangle control in the Toolbox, and select the Ellipse (see Figure 19 - 19).

Figure 19-19

 Double - click on the Ellipse element to add it to the page. Move the Ellipse object into the Canvas
control by dragging it onto the Canvas object in the Objects and Timeline window (see Figure 19 - 20).

c19.indd 636c19.indd 636 10/1/08 12:01:04 PM10/1/08 12:01:04 PM

Chapter 19: Developing Silverlight Applications

637

Figure 19-20

Figure 19-21

 The page now looks like Figure 19 - 21 .

 With the Ellipse object selected, select the Properties inspector, and click (see Figure 19 - 22):

 Stroke

 Solid Color Brush

 Specify 5 for StrokeThickness

❑

❑

❑

c19.indd 637c19.indd 637 10/1/08 12:01:04 PM10/1/08 12:01:04 PM

Part II: Application Development Using C#

638

Figure 19-22

 Next, click the following (see Figure 19 - 23):

 Fill

 Gradient Brush

 Specify 180 for B, 248 for G, 8 for B, and 100% for A

❑

❑

❑

c19.indd 638c19.indd 638 10/1/08 12:01:05 PM10/1/08 12:01:05 PM

Chapter 19: Developing Silverlight Applications

639

Figure 19-23

 Click on the Brush Transform tool, and observe the arrow on the Ellipse element (see Figure 19 - 24).

Figure 19-24

c19.indd 639c19.indd 639 10/1/08 12:01:05 PM10/1/08 12:01:05 PM

Part II: Application Development Using C#

640

 Move the arrow 135 degrees counterclockwise, as shown in Figure 19 - 25 .

Figure 19-25

Figure 19-26

 Make a copy of the Ellipse element (right - click on the Ellipse element in the Objects and Timeline
window and select Copy, then paste it onto the page and move it into the Canvas control again).

 For the new Ellipse control, gradient - fill it in the opposite direction by reversing the direction of the
arrow (see Figure 19 - 26).

 Select the Properties inspector, and set its properties as follows (see Figure 19 - 27):

 Property Value

 Name EllipsePressed

 Opacity 0%

c19.indd 640c19.indd 640 10/1/08 12:01:06 PM10/1/08 12:01:06 PM

Chapter 19: Developing Silverlight Applications

641

Figure 19-28

Figure 19-27

 Double - click on the TextBlock element to add it to the page. As usual, move it into the Canvas control
and type OK into the TextBlock element (see Figure 19 - 28).

 With the TextBlock object selected, select the Properties inspector, and click (see Figure 19 - 29):

 Foreground

 Solid Color Brush

 Specify 251 for B, 219 for G, 8 for B, and 100% for A

❑

❑

❑

c19.indd 641c19.indd 641 10/1/08 12:01:06 PM10/1/08 12:01:06 PM

Part II: Application Development Using C#

642

Figure 19-29

Figure 19-30

 Set the TextBlock ’ s font size to 18 and Bold (see Figure 19 - 30) .

 Control - click the following controls in the Objects and Timeline window and right - click on them and
then select Group Into Canvas (see Figure 19 - 31):

 Ellipse

 EllipsePressed

 TextBlock

❑

❑

❑

c19.indd 642c19.indd 642 10/1/08 12:01:07 PM10/1/08 12:01:07 PM

Chapter 19: Developing Silverlight Applications

643

Figure 19-31

 All the selected controls are now grouped into one. Name the new composite control RoundButton
(see Figure 19 - 32).

Figure 19-32

 Switch to the XAML view of the project (see Figure 19 - 33).

c19.indd 643c19.indd 643 10/1/08 12:01:08 PM10/1/08 12:01:08 PM

Part II: Application Development Using C#

644

Figure 19-33

 Scripting the UI Using JavaScript
 Insert the following highlighted code into the RoundButton Canvas control:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >
 < Canvas Width=”100” Height=”100” Canvas.Top=”8” Canvas.Left=”8” >
 < Canvas Width=”100” Height=”100” x:Name=”RoundButton”

 MouseLeftButtonDown=”ButtonClicked”
 MouseLeftButtonUp=”ButtonReleased”
 MouseLeave=”ButtonReleased” >

 In the Project window, double - click the Page.xaml.js file. Append the following block of code to the
end of the file:

function ButtonClicked(sender, eventArgs)
{
 if(sender.name == “RoundButton”)
 {
 //---Get a reference to the ellipse---
 var pressedEllipse = sender.findName(“EllipsePressed”);
 pressedEllipse.opacity = 1;
 }
}

function ButtonReleased(sender, eventArgs)
{
 if(sender.name == “RoundButton”)
 {
 //---Get a reference to the ellipse---
 var pressedEllipse = sender.findName(“EllipsePressed”);
 pressedEllipse.opacity = 0;
 }
}

c19.indd 644c19.indd 644 10/1/08 12:01:08 PM10/1/08 12:01:08 PM

Chapter 19: Developing Silverlight Applications

645

Figure 19-34

Figure 19-35

 Finally, press F5 to test the application. Click the button and observe the effect (see Figure 19 - 34).

 Silverlight 1.0
 Animation is one of the core capabilities of Silverlight. The following sections describe how to perform
simple animations in Silverlight 1.0.

 Animation — Part 1
 You can use the Timeline object to perform some simple animation. Figure 19 - 35 shows the page
displaying an image. When the mouse hovers over the image, the image will expand. When you move
the mouse away, the image returns to its original size.

c19.indd 645c19.indd 645 10/1/08 12:01:08 PM10/1/08 12:01:08 PM

Part II: Application Development Using C#

646

 Using Expression Blend 2, create a new Silverlight project and name it Animations . Add an Image
element to the page (see Figure 19 - 36).

Figure 19-36

Figure 19-37

 The XAML source of the page looks like this:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >

 < Image Width=”165” Height=”220” Canvas.Top=”70” Canvas.Left=”71”/ >

 < /Canvas >

 Set the Source property of the Image control to reference an image (see Figure 19 - 37).

c19.indd 646c19.indd 646 10/1/08 12:01:09 PM10/1/08 12:01:09 PM

Chapter 19: Developing Silverlight Applications

647

Figure 19-38

Figure 19-39

 In the Objects and Timeline window, click the + button (see Figure 19 - 38), use the default name of
 StoryBoard1 , and click OK.

 Click the Record Keyframe button (see Figure 19 - 39).

c19.indd 647c19.indd 647 10/1/08 12:01:09 PM10/1/08 12:01:09 PM

Part II: Application Development Using C#

648

 Move the yellow timeline (see Figure 19 - 40) to the 0:00.200 position and click the Record Keyframe
button again.

 If you like, you can magnify the timeline by setting the Timeline zoom to 500%.

 With the Image element selected, select the Properties Inspector and expand the Transform section. Click
on the Scale tab. Set both X and Y to 1.5 (see Figure 19 - 41).

Figure 19-40

Figure 19-41

c19.indd 648c19.indd 648 10/1/08 12:01:10 PM10/1/08 12:01:10 PM

Chapter 19: Developing Silverlight Applications

649

 Add a second timeline to the project, and use its default name of StoryBoard2 .

 Click the Record Keyframe button, and then in the Properties Inspector ’ s Transform section, click on the
Scale tab again. Set both X and Y to 1.5 .

 Move the yellow timeline to the 0:00.200 position and click the Record Keyframe button again.

 In the Properties Inspector ’ s Transform section, click the Scale tab. This time set both X and Y to 1.

 Switch the project to XAML view, and add the following highlighted code:

 < Image Width=”165” Height=”220” RenderTransformOrigin=”1,1”
 Source=”turbinetechnology_1.jpg” x:Name=”image”

 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave” >

 < Image.RenderTransform >
 < TransformGroup >
 < ScaleTransform ScaleX=”1” ScaleY=”1”/ >
 < SkewTransform AngleX=”0” AngleY=”0”/ >
 < RotateTransform Angle=”0”/ >
 < TranslateTransform X=”0” Y=”0”/ >
 < /TransformGroup >
 < /Image.RenderTransform >
 < /Image >

 Append the following block of code to Page.xaml.js :

function MouseEnter (sender, eventArgs)
{
 var obj = sender.findName(“Storyboard1”);
 obj.Duration=”00:00:00.2000000”;
 obj.begin();
}

function MouseLeave (sender, eventArgs)
{
 var obj = sender.findName(“Storyboard2”);
 obj.Duration=”00:00:00.2000000”;
 obj.begin();
}

 Press F5 to test the application. When the mouse now hovers over the image, the MouseEnter event is
fired, and the Storyboard1 timeline object is executed for a duration of 0.2 second. The Storyboard1
timeline object basically scales the image horizontally and vertically by 1.5 times. When the mouse leaves
the image, the MouseLeave event is fired, and the Storyboard2 timeline object is executed. It scales the
image from 1.5 times down to its original size (within 0.2 second; see Figure 19 - 42).

c19.indd 649c19.indd 649 10/1/08 12:01:10 PM10/1/08 12:01:10 PM

Part II: Application Development Using C#

650

Figure 19-42

Figure 19-43

 Animations — Part 2
 Of course, you can perform more complex animation. This section shows you how to make the
animation real - life using a KeySpline.

 Using Expression Blend 2, create a new Silverlight project and name it Animations2 .

 Add an Image element to the page, and set it to display an image (see Figure 19 - 43).

c19.indd 650c19.indd 650 10/1/08 12:01:10 PM10/1/08 12:01:10 PM

Chapter 19: Developing Silverlight Applications

651

Figure 19-44

Figure 19-45

 Add a Timeline object to the project and use its default name of Storyboard1 .

 Add two keyframes to time 0:00.000 and 0:01.000 , respectively.

 At time 0:01.000, click the Translate tab in the Transform section of the Properties Inspector. Set X to 0
and set Y to 250 (see Figure 19 - 44).

 This will move the image vertically from the top to the bottom.

 In the Rotate tab, set the Angle to 360 (see Figure 19 - 45).

c19.indd 651c19.indd 651 10/1/08 12:01:11 PM10/1/08 12:01:11 PM

Part II: Application Development Using C#

652

Figure 19-46

 This will cause the image to rotate 360 degrees clockwise.

 In the XAML view, add the Loaded attribute to the < Canvas > element:

 < Canvas Loaded=”onLoad”

 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >

 Append the following block of code to Page.xaml.js :

function onLoad (sender, eventArgs)
{
 var obj = sender.findName(“Storyboard1”);
 obj.begin();
}

 Press F5 to test the application. Notice that when the page is loaded, the image drops to the bottom of
the page, while rotating clockwise (see Figure 19 - 46).

c19.indd 652c19.indd 652 10/1/08 12:01:11 PM10/1/08 12:01:11 PM

Chapter 19: Developing Silverlight Applications

653

Figure 19-47

 Slowing the Rate of Fall
 To slow down the rate of all, you can increase the duration of the timeline object. In Storyboard1 , move
the second keyframe from time 0:01.000 to 0:02.500 (see Figure 19 - 47).

 Press F5 to test again. Notice that this time the image falls is longer compared to the previous instance.

Varying the Rate of Fall
 In the previous section, the image drops at a uniform speed. That isn ’ t very realistic, because in real life
an object accelerates as it falls. You need to tweak the properties a little to make it more lifelike.

 Select the second keyframe (at time 0:02.500) and select the Properties Inspector.

 In the Easing section, modify the KeySpline by dragging the yellow dot from the top to the bottom
(see Figure 19 - 48).

Figure 19-48

c19.indd 653c19.indd 653 10/1/08 12:01:12 PM10/1/08 12:01:12 PM

Part II: Application Development Using C#

654

Figure 19-49

 A KeySpline is used to define the progress of an animation. The x - axis of the KeySpline represents time
and the y - axis represents value. The KeySpline should now look like Figure 19 - 49 .

 The modified KeySpline means “ as time progresses, increase the rate of change. ” In this example, it
means that as the falling image approaches the bottom, it will drop faster.

 Press F5 to test again, and you ’ ll see that the image accelerates as it nears the bottom. The animation is
now more realistic, simulating free - fall.

 Playing Media
 One of Silverlight ’ s key capabilities is a rich media experience. This section examines how to embed a
Windows media file in your Silverlight application and how to control its playback. In addition, it also
explains how to create simple effects on the video.

 Creating the Silverlight Project
 Using Expression Blend 2, create a Silverlight project and name it Media .

c19.indd 654c19.indd 654 10/1/08 12:01:12 PM10/1/08 12:01:12 PM

Chapter 19: Developing Silverlight Applications

655

Figure 19-50

 The WindowsMedia.wmv file in now contained within a MediaElement control (see also Figure 19 - 51):

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >

 < MediaElement x:Name=”WindowsMedia_wmv”
 Width=”320” Height=”240”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill”
 Canvas.Top=”8” Canvas.Left=”8”
 AutoPlay=”True”v
 / >

 < /Canvas >

You need Windows Media Player 10 or later for this project to work.

 In the Project window, right - click on the project name (Media) and select Add Existing Item. Select a
Windows Media file (WindowsMedia.wmv , for this example; it ’ s included in the book ’ s code download).
After this, the WindowsMedi a.wmv file will be added to the project.

 Double - click WindowsMedia.wmv in the Project window to add it to the page (see Figure 19 - 50).

c19.indd 655c19.indd 655 10/1/08 12:01:12 PM10/1/08 12:01:12 PM

Part II: Application Development Using C#

656

 Press F5 to test the page. The video automatically starts to play when the page has finished loading
(see Figure 19 - 52).

Figure 19-51

Figure 19-52

c19.indd 656c19.indd 656 10/1/08 12:01:13 PM10/1/08 12:01:13 PM

Chapter 19: Developing Silverlight Applications

657

 Disabling Auto - Play
 While automatically playing a video is a useful feature, sometimes you might want to disable this. For
example, if you have multiple videos embedded in a page, this feature is actually more nuisance than
helpful. To disable the auto - play feature, just set the AutoPlay attribute in the < MediaElement > element
to False , like this:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >
 < MediaElement x:Name=”WindowsMedia_wmv”
 Width=”320” Height=”240”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill”
 Canvas.Top=”8” Canvas.Left=”8”

 AutoPlay=”False”

 / >
 < /Canvas >

 So how and when do you get it to play? You can programmatically play the video when the user ’ s
mouse enters the video and pause it when the mouse leaves the video. Also, if the user clicks on the
video, the video can stop and return to the beginning. To do so, set the following highlighted attributes:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >
 < MediaElement x:Name=”WindowsMedia_wmv”
 Width=”320” Height=”240”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill”
 Canvas.Top=”8” Canvas.Left=”8”
 AutoPlay=”False”

 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave”
 MouseLeftButtonDown=”MouseClick”

 / >
 < /Canvas >

 Basically, you are setting the event handlers for the various events handled by the < MediaElement >
element. To write the event handler, go to the Project window and double - click on the
Page.xaml.js file.

c19.indd 657c19.indd 657 10/1/08 12:01:14 PM10/1/08 12:01:14 PM

Part II: Application Development Using C#

658

 Append the Page.xaml.js file with the following code:

function MouseEnter (sender, eventArgs)
{
 var obj = sender.findName(“WindowsMedia_wmv”);
 obj.play();
}

function MouseLeave (sender, eventArgs)
{
 var obj = sender.findName(“WindowsMedia_wmv”);
 obj.pause();
}

function MouseClick (sender, eventArgs)
{
 var obj = sender.findName(“WindowsMedia_wmv”);
 obj.stop();
}

 The findName() method allows you to programmatically get a reference to the specified element (via its
 x:Name attribute) on the Silverlight page. In this case, you are referencing an instance of the
 MediaElement element. This object supports the play , pause , and stop methods.

 Press F5 to test the application again. This time, the video will start to play when the mouse hovers over
it and pauses when the mouse leaves it. To restart the video to the beginning, simply click on the video.

 Creating the Mirror Effect
 One interesting thing you can do with a video is to create a mirror effect. For example, Figure 19 - 53
shows a video playing with a mirror image at the bottom of it.

Figure 19-53

c19.indd 658c19.indd 658 10/1/08 12:01:14 PM10/1/08 12:01:14 PM

Chapter 19: Developing Silverlight Applications

659

 Modify the original Canvas control by switching the page to XAML view and adding the following
highlighted code:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >
 < MediaElement x:Name=”WindowsMedia_wmv”

 Width=”238” Height=”156”

 Source=”WindowsMedia.wmv”
 Stretch=”Fill”
 Canvas.Top=”124” Canvas.Left=”8”
 AutoPlay=”False”
 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave”
 MouseLeftButtonDown=”MouseClick” >

 < MediaElement.RenderTransform >
 < TransformGroup >
 < ScaleTransform ScaleX=”1” ScaleY=”1”/ >
 < SkewTransform AngleX=”0” AngleY=”-25”/ >
 < RotateTransform Angle=”0”/ >
 < TranslateTransform X=”0” Y=”0”/ >
 < /TransformGroup >
 < /MediaElement.RenderTransform >

 < /MediaElement >
 < /Canvas >

 This transforms the video into the shape shown in Figure 19 - 54 .

Figure 19-54

c19.indd 659c19.indd 659 10/1/08 12:01:14 PM10/1/08 12:01:14 PM

Part II: Application Development Using C#

660

 Add another < MediaElement > element (highlighted code) to simulate the mirror effect:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”640” Height=”480”
 Background=”White”
 x:Name=”Page” >
 < MediaElement x:Name=”WindowsMedia_wmv”
 Width=”238” Height=”156”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill”
 Canvas.Top=”124” Canvas.Left=”8”
 AutoPlay=”False”
 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave”
 MouseLeftButtonDown=”MouseClick” >
 < MediaElement.RenderTransform >
 < TransformGroup >
 < ScaleTransform ScaleX=”1” ScaleY=”1”/ >
 < SkewTransform AngleX=”0” AngleY=”-25”/ >
 < RotateTransform Angle=”0”/ >
 < TranslateTransform X=”0” Y=”0”/ >
 < /TransformGroup >
 < /MediaElement.RenderTransform >
 < /MediaElement >

 < MediaElement x:Name=”WindowsMedia_wmv1”
 AutoPlay=”False”
 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave”
 MouseLeftButtonDown=”MouseClick”
 Width=”238.955” Height=”99.454”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill” Canvas.Left=”149.319” Canvas.Top=”379.884” >
 < MediaElement.RenderTransform >
 < TransformGroup >
 < ScaleTransform ScaleX=”1” ScaleY=”-1”/ >
 < SkewTransform AngleX=”55” AngleY=”-25”/ >
 < TranslateTransform X=”0” Y=”0”/ >
 < /TransformGroup >
 < /MediaElement.RenderTransform >
 < /MediaElement >

 < /Canvas >

c19.indd 660c19.indd 660 10/1/08 12:01:15 PM10/1/08 12:01:15 PM

Chapter 19: Developing Silverlight Applications

661

 To create the translucent effect for the mirror image, set the Opacity attribute to a value between 0 and 1
(in this case it ’ s set to 0.3):

 < MediaElement x:Name=”WindowsMedia_wmv1”
 AutoPlay=”False”
 MouseEnter=”MouseEnter”
 MouseLeave=”MouseLeave”
 MouseLeftButtonDown=”MouseClick”
 Width=”238.955” Height=”99.454”
 Source=”WindowsMedia.wmv”
 Stretch=”Fill” Canvas.Left=”149.319” Canvas.Top=”379.884”

 Opacity=”0.3” >

Figure 19-55

 You now have two videos with the second video mirroring the first (see Figure 19 - 55).

c19.indd 661c19.indd 661 10/1/08 12:01:15 PM10/1/08 12:01:15 PM

Part II: Application Development Using C#

662

 Modify the following block of code in Page.xaml.js highlighted here:

//---make these variables global---
var obj, obj1;

if (!window.Media)
 Media = {};

Media.Page = function()
{
}

Media.Page.prototype =
{
 handleLoad: function(control, userContext, rootElement)
 {
 this.control = control;

 // Sample event hookup:
 rootElement.addEventListener(“MouseLeftButtonDown”, Silverlight.
createDelegate(this, this.handleMouseDown));

 //---the original video---
 obj = this.control.content.findName(“WindowsMedia_wmv”);

 //---the reflected video---
 obj1 = this.control.content.findName(“WindowsMedia_wmv1”);

 },

 // Sample event handler
 handleMouseDown: function(sender, eventArgs)
 {
 // The following line of code shows how to find an element by name and
call a method on it.
 // this.control.content.findName(“Storyboard1”).Begin();
 }
}

function MouseEnter (sender, eventArgs)
{
 //---mute the reflected video---
 obj1.volume=0;

 //---play the 2 videos---
 obj.play();
 obj1.play();
}

function MouseLeave (sender, eventArgs)
{
 //---pause the 2 videos---

c19.indd 662c19.indd 662 10/1/08 12:01:17 PM10/1/08 12:01:17 PM

Chapter 19: Developing Silverlight Applications

663

 obj.pause();
 obj1.pause();
}

function MouseClick (sender, eventArgs)
{
 //---stop the 2 videos---
 obj.stop();
 obj1.stop();
}

 Notice that instead of programmatically finding the media object — using the findName() method — in
each event handler, you can also locate it via the handleLoad() function. Also, because there are two
identical videos in the page, you do not need the audio playback in the mirroring video. Hence, you turn
off its volume by setting its volume property to 0 (valid values are from 0 to 1).

 Press F5 to test the page. Both videos start to play when the mouse hovers over either of the two videos
(see Figure 19 - 56).

Figure 19-56

 Creating Your Own Media Player
 The MediaElement element is a bare - bones control that simply plays back a media file — it does not
have visual controls for you to pause or advance the media (although you can programmatically do
that). In this section, you build a Silverlight application that resembles the YouTube player, allowing
you to visually control the playback of the media as well as customize its look and feel. Figure 19 - 57
shows the end product.

c19.indd 663c19.indd 663 10/1/08 12:01:17 PM10/1/08 12:01:17 PM

Part II: Application Development Using C#

664

Figure 19-57

Figure 19-58

 Creating the Project
 Using Expression Blend 2, create a new Silverlight project and name it MediaPlayer .

 Add a Windows Media file (.wmv) file to the project by right - clicking on the project name and
selecting Add Existing Item. For this project, use the same file as in the previous example,
 WindowsMedia.wmv .

 Designing the User Interface
 The first step is to design the user interface of the media player. Figure 19 - 58 shows the various controls
that you will add to the page. The outline is used to identify the major parts of the player.

c19.indd 664c19.indd 664 10/1/08 12:01:18 PM10/1/08 12:01:18 PM

Chapter 19: Developing Silverlight Applications

665

Figure 19-59

 Figure 19 - 59 shows the organization and hierarchy of the various controls. Those controls correspond to
the controls listed in Figure 19 - 58 .

 The most delicate part of the media player is the slider used to indicate the progress of the media
playback. As shown in Figure 19 - 60 , the slider (canvasProgress) consists of two Rectangle elements
and an Ellipse element. The first Rectangle element (rectProgressWell) represents the entire
duration of the movie. This control also forms the path that the marker (ellMarker , an Ellipse
element) slides on. The second Rectangle control (rectDownloadProgress) is used to indicate the
percentage of the media downloaded from the remote server. The lower part of Figure 19 - 60 shows this
control in action (partially filled).

Figure 19-60

c19.indd 665c19.indd 665 10/1/08 12:01:19 PM10/1/08 12:01:19 PM

Part II: Application Development Using C#

666

 Here ’ s the complete XAML code for the media player:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”472” Height=”376”
 Background=”#FFD6D4C8”
 x:Name=”Page” >

 < MediaElement x:Name=”MediaElement1” Width=”466” Height=”340”
 Stretch=”Fill” Canvas.Left=”3” Canvas.Top=”3”
 AutoPlay=”false”
 Source=”WindowsMedia.wmv” / >

 < Canvas Width=”24” Height=”24” Canvas.Left=”5” Canvas.Top=”348”
 x:Name=”btnPlayPause” >
 < Canvas Width=”24” Height=”24” x:Name=”canvasPlay” >
 < Rectangle Width=”24” Height=”24” Fill=”#FFFFFFFF”
 Stroke=”#FF000000” RadiusX=”3” RadiusY=”3” x:Name=”RectPlay”
 StrokeThickness=”2”/ >
 < Polygon Points=”8,5 8,19 18,13” StrokeThickness=”5” Fill=”Red”
 Width=”24” Height=”24”/ >
 < /Canvas >

 < Canvas Width=”24” Height=”24” x:Name=”canvasPause”
 MouseEnter=”PauseButtonMouseEnter”
 MouseLeave=”PauseButtonMouseLeave” Opacity=”0” >
 < Rectangle Width=”24” Height=”24” Fill=”#FFFFFFFF”
 Stroke=”#FF000000” RadiusX=”3” RadiusY=”3” x:Name=”RectPause”
 StrokeThickness=”2”/ >
 < Rectangle Width=”6” Height=”14” Fill=”#FF141414” Stroke=”#FF000000”
 Canvas.Left=”13” Canvas.Top=”5” x:Name=”rectPauseBar1”/ >
 < Rectangle Width=”6” Height=”14” Fill=”#FF141414” Stroke=”#FF000000”
 Canvas.Left=”5” Canvas.Top=”5” x:Name=”rectPauseBar2”/ >
 < /Canvas >
 < /Canvas >

 < Canvas Width=”255” Height=”27” Canvas.Left=”36” Canvas.Top=”346”
 x:Name=”canvasProgress” >
 < Rectangle Width=”244” Height=”8” Fill=”#FF414141” Stroke=”#FF000000”
 Canvas.Top=”10”
 x:Name=”rectProgressWell”
 Canvas.Left=”8.5” / >

 < Rectangle Width=”3” Height=”8” Fill=”#FF9D0808” Stroke=”#FF000000”
 Canvas.Top=”10” x:Name=”rectDownloadProgress” StrokeThickness=”0”
 Canvas.Left=”8.5”/ >

 < Ellipse Width=”16” Height=”16” Stroke=”#FF000000” Canvas.Top=”6”
 Canvas.Left=”0”
 x:Name=”ellMarker” >
 < Ellipse.Fill >
 < RadialGradientBrush >
 < GradientStop Color=”#FF000000” Offset=”0”/ >
 < GradientStop Color=”#FFF6F6EC” Offset=”1”/ >
 < /RadialGradientBrush >

c19.indd 666c19.indd 666 10/1/08 12:01:20 PM10/1/08 12:01:20 PM

Chapter 19: Developing Silverlight Applications

667

 < /Ellipse.Fill >
 < /Ellipse >
 < /Canvas >

 < TextBlock Width=”148” Height=”21” Text=”TextBlock” TextWrapping=”Wrap”
 Canvas.Left=”321” Canvas.Top=”348” x:Name=”TextBlock”/ >

 < /Canvas >

 Wiring All the Controls
 With the UI created and ready for coding, you ’ re ready to wire up all the controls so that they will
function as one. You ’ ll define the event handlers in the following table.

 Event Handler Description

 DownloadProgressChanged() Continuously invoked when the MediaElement control
downloads the media from the remote server. It is used to
update the red progress bar indicating the progress of the
download.

 EllMarkerMouseDown() Invoked when the user clicks on the marker using the left
mouse button.

 EllMarkerMouseUp() Invoked when the user releases the left mouse button.

 MediaPlayerMouseMove() Invoked when the mouse moves across the Silverlight page.

 MediaPlayerMouseLeave() Invoked when the mouse leaves the Silverlight page.

 MediaEnded() Invoked when the media has finished playing. The media will
be reset to its starting position (so is the marker).

 PlayPauseButtonUp() Invoked when the user clicks on the Play/Pause button.

 First, assign the various event handlers to the elements as shown in the following highlighted code:

 < Canvas
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”472” Height=”376”
 Background=”#FFD6D4C8”
 x:Name=”Page”

 MouseMove=”MediaPlayerMouseMove”
 MouseLeave=”MediaPlayerMouseLeave”
 MouseLeftButtonUp=”EllMarkerMouseUp” >

 < MediaElement x:Name=”MediaElement1” Width=”466” Height=”340”
 Stretch=”Fill” Canvas.Left=”3” Canvas.Top=”3”
 AutoPlay=”false”
 Source=”WindowsMedia.wmv”

 MediaEnded=”MediaEnded”
 DownloadProgressChanged=”DownloadProgressChanged” / >

 < Canvas Width=”24” Height=”24” Canvas.Left=”5” Canvas.Top=”348”

(continued)

c19.indd 667c19.indd 667 10/1/08 12:01:20 PM10/1/08 12:01:20 PM

Part II: Application Development Using C#

668

 x:Name=”btnPlayPause”

 MouseLeftButtonUp=”PlayPauseButtonUp” >

 < Canvas Width=”24” Height=”24” x:Name=”canvasPlay” >
 < Rectangle Width=”24” Height=”24” Fill=”#FFFFFFFF”
 Stroke=”#FF000000” RadiusX=”3” RadiusY=”3” x:Name=”RectPlay”
 StrokeThickness=”2”/ >
 < Polygon Points=”8,5 8,19 18,13” StrokeThickness=”5” Fill=”Red”
 Width=”24” Height=”24”/ >
 < /Canvas >

 < Canvas Width=”24” Height=”24” x:Name=”canvasPause”
 MouseEnter=”PauseButtonMouseEnter”
 MouseLeave=”PauseButtonMouseLeave” Opacity=”0” >
 < Rectangle Width=”24” Height=”24” Fill=”#FFFFFFFF”
 Stroke=”#FF000000” RadiusX=”3” RadiusY=”3” x:Name=”RectPause”
 StrokeThickness=”2”/ >
 < Rectangle Width=”6” Height=”14” Fill=”#FF141414” Stroke=”#FF000000”
 Canvas.Left=”13” Canvas.Top=”5” x:Name=”rectPauseBar1”/ >
 < Rectangle Width=”6” Height=”14” Fill=”#FF141414” Stroke=”#FF000000”
 Canvas.Left=”5” Canvas.Top=”5” x:Name=”rectPauseBar2”/ >
 < /Canvas >
 < /Canvas >

 < Canvas Width=”255” Height=”27” Canvas.Left=”36” Canvas.Top=”346”
 x:Name=”canvasProgress” >
 < Rectangle Width=”244” Height=”8” Fill=”#FF414141” Stroke=”#FF000000”
 Canvas.Top=”10”
 x:Name=”rectProgressWell”
 Canvas.Left=”8.5” / >

 < Rectangle Width=”3” Height=”8” Fill=”#FF9D0808” Stroke=”#FF000000”
 Canvas.Top=”10” x:Name=”rectDownloadProgress” StrokeThickness=”0”
 Canvas.Left=”8.5”/ >

 < Ellipse Width=”16” Height=”16” Stroke=”#FF000000” Canvas.Top=”6”
 Canvas.Left=”0”
 x:Name=”ellMarker”

 MouseLeftButtonDown=”EllMarkerMouseDown”
 MouseLeftButtonUp=”EllMarkerMouseUp” >

 < Ellipse.Fill >
 < RadialGradientBrush >
 < GradientStop Color=”#FF000000” Offset=”0”/ >
 < GradientStop Color=”#FFF6F6EC” Offset=”1”/ >
 < /RadialGradientBrush >
 < /Ellipse.Fill >
 < /Ellipse >
 < /Canvas >

 < TextBlock Width=”148” Height=”21” Text=”TextBlock” TextWrapping=”Wrap”
 Canvas.Left=”321” Canvas.Top=”348” x:Name=”TextBlock”/ >

 < /Canvas >

(continued)

c19.indd 668c19.indd 668 10/1/08 12:01:20 PM10/1/08 12:01:20 PM

Chapter 19: Developing Silverlight Applications

669

 Now double - click on the Page.xaml.js file in the Project window to open it. Declare the following
global variables at the top of the file:

//---global variables---
var playing = false;
var markerClicked = false;
var duration=0;
var intervalID;

//---all the major elements on the page---
var ellMarker;
var MediaElement1;
var textblock;
var rectProgressWell;
var rectDownloadProgress;
//----------------------------------

 When the page is loaded, get a reference to all the major controls on the page:

MediaPlayer.Page.prototype =
{
 handleLoad: function(control, userContext, rootElement)
 {
 this.control = control;

 //---get a reference to all the major controls on the page---
 MediaElement1 = rootElement.findName(“MediaElement1”);
 ellMarker = rootElement.findName(“ellMarker”);
 textblock = rootElement.findName(“TextBlock”);
 rectProgressWell = rootElement.findName(“rectProgressWell”);
 rectDownloadProgress =
 rootElement.findName(“rectDownloadProgress”);
 textblock = rootElement.findName(“TextBlock”);
 //---

 // Sample event hookup:
 rootElement.addEventListener(“MouseLeftButtonDown”,
 Silverlight.createDelegate(this, this.handleMouseDown));
 },

 // Sample event handler
 handleMouseDown: function(sender, eventArgs)
 {
 // The following line of code shows how to find an element by
 // name and call a method on it.
 // this.control.content.findName(“Timeline1”).Begin();
 }
}

 Creating the Helper Functions
 Two helper functions — ConvertToTimeSpan() and DisplayCurrentPlayBack() — need to be
defined.

c19.indd 669c19.indd 669 10/1/08 12:01:21 PM10/1/08 12:01:21 PM

Part II: Application Development Using C#

670

 The ConvertToTimeSpan() function converts value in seconds to the TimeSpan format of hh:mm:ss .
For example, 61 seconds converts to 00:01:01 . You need this function because the Position property
of the MediaElement control accepts only values of the TimeSpan type. The ConvertToTimeSpan()
function is defined as follows:

//---convert time in seconds to “hh:mm:ss”---
function ConvertToTimeSpan(timeinseconds)
{
 if (timeinseconds < 0) {
 return (“00:00:00”);
 }
 else
 if (timeinseconds < 60) {
 return (“00:00:” + Math.floor(timeinseconds));
 }
 else
 if (timeinseconds < 3600)
 {
 var mins = Math.floor(timeinseconds / 60);
 var seconds = Math.floor(timeinseconds - (mins * 60));
 return (“00:” + mins + “:” + seconds);
 }
 else
 {
 var hrs = Math.floor(timeinseconds / 3600);
 var mins = timeinseconds - (hrs * 3600)
 var seconds = Math.floor(timeinseconds - (hrs * 3600) - (mins * 60));
 return (hrs + mins + “:” + seconds);
 }
}

 The DisplayCurrentPlayBack() function is used to display the current status of the media
playback. It displays the elapsed time versus the total time of the media. For example, if the media
(total duration two minutes) is into its 30th second, the DisplayCurrentPlayBack() function
displays 00:00:30 / 00:02:00 . In addition, the function is also responsible for synchronizing the
marker as the media is played. To ensure that the status of the playback is updated constantly, you call
 DisplayCurrentPlayBack() repeatedly, using the setInterval() JavaScript function (more on this
later). The DisplayCurrentPlayBack() function is defined as follows:

//---shows the current playback -- marker and position---
function DisplayCurrentPlayBack()
{
 //---find duration of movie---
 if (duration==0)
 duration = Math.round(MediaElement1.NaturalDuration.Seconds * 100) /
 100;

 //---find current position---
 var position = MediaElement1.Position.Seconds;

 //---move the marker---

c19.indd 670c19.indd 670 10/1/08 12:01:21 PM10/1/08 12:01:21 PM

Chapter 19: Developing Silverlight Applications

671

 ellMarker[“Canvas.Left”] = Math.round((position / duration) *
 rectProgressWell.width);

 //---format - elapsed time/total time---
 var str = ConvertToTimeSpan(position) + “/” +
 ConvertToTimeSpan(duration);

 textblock.Text = str;
}

 Defining the Event Handlers
 Finally you define the various event handlers.

 The DownloadProgressChanged event handler is continuously fired when the MediaElement control
is downloading the media from the remote server. In this event handler, you first obtain the progress
value (from 0 to 1) and then display the downloaded percentage on the TextBlock control. In addition,
you adjust the width of the rectProgressWell control so that as the media is downloaded, its width
expands (see Figure 19 - 61). Here ’ s the code:

//---fired while the movie is being downloaded---
function DownloadProgressChanged(sender, eventArgs)
{
 //---get the progress value from 0 to 1---
 var progress = MediaElement1.DownloadProgress;

 //---display the download in percentage---
 textblock.Text = Math.round(progress*100).toString() + “%”;

 //---adjust the width of the progress bar---
 var progressWidth = progress * rectProgressWell.width;
 rectDownloadProgress.width = Math.round(progressWidth);
}

Figure 19-61

 The EllMarkerDown event handler is fired when the user clicks on the marker (the Ellipse element).
Here, you set the markerClicked variable to true to indicate that the marker has been clicked:

//---marker is clicked---
function EllMarkerMouseDown(sender, eventArgs)
{
 markerClicked = true;
}

 When the user releases the mouse button, the EllMarkerMouseUp event handler is fired. You first need
to check if the user releases the button on the main canvas itself or on the marker. If the marker was
previously clicked, you need to move the marker to the current location of the mouse and set the media

c19.indd 671c19.indd 671 10/1/08 12:01:21 PM10/1/08 12:01:21 PM

Part II: Application Development Using C#

672

to the new position. The new position of the movie is determined by multiplying the duration of the
media and the ratio of the position of the marker with respect to the width of the progress well. Here ’ s
the code:

//---marker is released---
function EllMarkerMouseUp(sender, eventArgs)
{
 //---only execute this function if the user is moving the marker---
 if (markerClicked) {
 markerClicked=false;

 //---find duration of movie---
 duration = Math.round(MediaElement1.NaturalDuration.Seconds *
 100)/100;

 //---get the position of the marker w.r.t. to the Well---
 position = ((ellMarker[“Canvas.Left”]) / rectProgressWell.width) *
 duration;

 //---get integer part---
 position = Math.floor(position);

 //---end of the media---
 if (ellMarker[“Canvas.Left”]==rectProgressWell.width) {
 //---move the movie to the last frame---
 MediaElement1.Position = ConvertToTimeSpan(duration);
 }
 else
 {
 //---move the movie to the new position---
 MediaElement1.Position = ConvertToTimeSpan(position);
 }
 }
}

 The MediaPlayerMouseMove event handler is continuously fired when the mouse moves over the page.
You need to determine if the marker is clicked when the mouse is moving. If it is, that means that the
user is moving the marker, and you need to reposition the marker. Here ’ s the code:

//---mouse moves inside the Silverlight media player control---
function MediaPlayerMouseMove(sender, eventArgs)
{
 //---user clicks marker and drags it---
 if (markerClicked)
 {
 //---find duration of movie---
 if (duration==0)
 duration = Math.round(MediaElement1.NaturalDuration.Seconds * 100)
 / 100;

 clearInterval(intervalID);

 //---get the position of the mouse with respect to the progress Well---

c19.indd 672c19.indd 672 10/1/08 12:01:22 PM10/1/08 12:01:22 PM

Chapter 19: Developing Silverlight Applications

673

 var pt = eventArgs.getPosition(rectProgressWell);

 //---marker not allowed to stray outside the well---
 if (pt.x > 0 & & pt.x < rectProgressWell.width)
 {
 //---moves the marker---
 ellMarker[“Canvas.Left”] = pt.x;

 //---display the new time---
 textblock.Text = ConvertToTimeSpan((pt.x / rectProgressWell.width)
 * duration).toString();
 }
 else
 if (pt.x < = 0) //---move to the beginning---
 {
 //---moves the marker---
 ellMarker[“Canvas.Left”] = 0;

 //---display the new time---
 textblock.Text = “00:00:00”;
 }
 else
 if (pt.x > = rectProgressWell.width) //---move to the end---
 {
 //---moves the marker---
 ellMarker[“Canvas.Left”] = rectProgressWell.width;

 //---display the new time---
 textblock.Text = ConvertToTimeSpan(duration);
 }

 if (playing)
 intervalID = window.setInterval(“DisplayCurrentPlayBack()”, 500);
 }
}

 The MediaPlayerMouseLeave event handler is fired when the mouse leaves the Silverlight page. In this
case, you set the markerClicked variable to false :

//---mouse leaves the entire Silverlight media player control
function MediaPlayerMouseLeave(sender, eventArgs)
{
 markerClicked=false;
}

c19.indd 673c19.indd 673 10/1/08 12:01:22 PM10/1/08 12:01:22 PM

Part II: Application Development Using C#

674

 The MediaEnded event handler is fired when the media has finished playing. You have to make the Play
button visible again and hide the Pause button. In addition, you have to move the marker to the
beginning and reset the media to the beginning. Here ’ s the code:

//---movie has finished playing---
function MediaEnded(sender, eventArgs)
{
 var btnPlay = sender.findName(“canvasPlay”);
 var btnPause = sender.findName(“canvasPause”);

 playing = false;
 clearInterval(intervalID); //---clear the progress updating---
 btnPlay.opacity = 1; //---show the Play button---
 btnPause.opacity = 0; //---hide the Pause button---

 //---move the marker to the beginning---
 ellMarker[“Canvas.Left”] = -2;
 MediaElement1.Position=”00:00:00”; //---reset the movie position---
}

 The PlayPauseButtonUp button is fired when the user clicks on the Play/Pause button and releases the
mouse. When the media has started playing, you use the setInterval() JavaScript function to display
the media progress every half second:

function PlayPauseButtonUp(sender, eventArgs)
{
 var btnPlay = sender.findName(“canvasPlay”);
 var btnPause = sender.findName(“canvasPause”);

 //---if currently playing and now going to pause---
 if (playing==true) {
 MediaElement1.pause(); //---pause the movie---
 clearInterval(intervalID); //---stop updating the marker---
 playing = false;
 btnPlay.opacity = 1; //---show the Play button---
 btnPause.opacity = 0; //---hide the Pause button---
 }
 else
 {
 MediaElement1.play(); //---play the movie---
 playing = true;
 btnPlay.opacity = 0; //---hide the Play button---
 btnPause.opacity = 1; //---show the Pause button---

 //---update the progress of the movie---
 intervalID = window.setInterval(“DisplayCurrentPlayBack()”, 500);
 }
}

 That ’ s it! Press F5 in Expression Blend 2, and you should be able to use the new media player
(see Figure 19 - 62)!

c19.indd 674c19.indd 674 10/1/08 12:01:22 PM10/1/08 12:01:22 PM

Chapter 19: Developing Silverlight Applications

675

 Silverlight 2.0
 One of the key strengths of Silverlight is its rich interactive capabilities. Apart from performing cool
animations and transformations on graphics and videos, one good use of Silverlight is to develop
applications that could not easily be achieved using conventional web applications (even when using
ASP.NET and AJAX). A good example is capturing signatures. Often, when you sign for an online service
(such as applying for a Google AdSense account) you need to sign a contractual agreement. In place of
the traditional signature, you are often requested to provide some sort of personal information (such as
your birth date or mother ’ s maiden name) to prove that you are who are say you are. That ’ s because
there is no way you could sign (literally) on the web page, unless you print out the form, sign it, and fax
it back to the service provider.

 With Silverlight, you can develop an application that allows users to sign on the page itself. And with
more and more people using Tablet PCs (or having access to a pen tablet such as the Wacom Intuos Pen
Tablet), pen input is no longer a dream. This section shows you how to create a Silverlight 2 application
that captures the user ’ s signature. In addition, you ’ ll see how the signature can be sent back to a Web
Service for archival.

Figure 19-62

Remember to download the Microsoft Silverlight Tools Beta 1 for Visual Studio 2008
tool from www.microsoft.com/downloads before you start the project.

c19.indd 675c19.indd 675 10/1/08 12:01:23 PM10/1/08 12:01:23 PM

Part II: Application Development Using C#

676

 Creating the Project Using Visual Studio 2008
 Using Visual Studio 2008, create a new Silverlight project using C# and name it Signature
 (see Figure 19 - 63).

Figure 19-63

Figure 19-64

 You will be asked how you want to host your application. Select the second option (Generate an HTML
test page to host Silverlight within this project), and click OK (see Figure 19 - 64).

If you have installed the Microsoft Silverlight Tools Beta 1 for Visual Studio 2008
tool, you should see Silverlight in the Project Types list in the New Project dialog.

c19.indd 676c19.indd 676 10/1/08 12:01:23 PM10/1/08 12:01:23 PM

Chapter 19: Developing Silverlight Applications

677

 Populate Page.xaml as follows:

 < UserControl x:Class=”Signature.Page”
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300” >

 < Canvas >
 < Canvas x:Name=”SigPad” Width=”404” Height=”152”
 Canvas.Left=”8” Canvas.Top=”9” Background=”#FFF4F60C” >
 < Rectangle Width=”404” Height=”152” Fill=”#FFF1F8DB”
 Stroke=”#FF000000” StrokeThickness=”3”/ >
 < /Canvas >
 < /Canvas >

 < /UserControl >

 The page should now look like Figure 19 - 65 .

Figure 19-65

 Capturing the Signature
 As the user uses the mouse (or stylus if he/she is using a tablet PC) to write on the control, the series of
points it makes on the control will be saved. There will be three events of concern to you:

 MouseLeftButtonDown — Fired when the left mouse button is clicked

 MouseMove — Fired when the mouse moves

 MouseLeftButtonUp — Fired when the left mouse button is released

 Figure 19 - 66 shows what happens when you write the character “ C ” . When the left mouse button is
clicked, the MouseLeftButtonDown event is fired, followed by a series of MouseMove events as
the mouse moves counterclockwise, and then finally the MouseLeftButtonUp event is fired when the
mouse ’ s left button is released. As the mouse moves, the series of points made by it are joined together.

❑

❑

❑

c19.indd 677c19.indd 677 10/1/08 12:01:24 PM10/1/08 12:01:24 PM

Part II: Application Development Using C#

678

 The points touched by the mouse between the MouseLeftButtonDown and MouseLeftButtonUp events
are saved as a series of continuous points (called a line). For example, the character “ C ” is made up of
one line (assuming that you did not release the left mouse button while drawing it), while the character
 “ t ” is made up of two lines — one horizontal and one vertical (see Figure 19 - 67).

Figure 19-66

Figure 19-67

Figure 19-68

Figure 19-69

 The points making up an individual line are saved in a generic List object. The individual lines in each
character are also saved in a generic List object, as Figure 19 - 68 shows.

 Coding the Application
 In Page.xaml.cs (see Figure 19 - 69), declare the following member variables:

c19.indd 678c19.indd 678 10/1/08 12:01:24 PM10/1/08 12:01:24 PM

Chapter 19: Developing Silverlight Applications

679

 public partial class Page : UserControl
 {

 private bool MouseDown = false;
 private Point _previouspoint;
 private List < Point > _points;
 private List < List < Point > > _lines = new List < List < Point > > ();

 Add the following highlighted lines to the Page() constructor:

 public Page()
 {
 InitializeComponent();

 //---wire up the event handlers---
 SigPad.MouseLeftButtonDown += new
 MouseButtonEventHandler(SigPad_MouseLeftButtonDown);
 SigPad.MouseLeftButtonUp += new
 MouseButtonEventHandler(SigPad_MouseLeftButtonUp);
 SigPad.MouseMove += new
 MouseEventHandler(SigPad_MouseMove);

 }

 The MouseLeftButtonDown event is fired when the user clicks on the left mouse button. Here you
interpret it as the beginning of the signature signing process. Code the MouseLeftButtonDown event
handler of SigPad as follows:

 //---fired when the user clicks on the Signature pad---
 void SigPad_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {
 //---record that the mouse left button is pressed---
 MouseDown = true;

 //---create a new instance of _ points and _lines to
 // record all the points drawn---
 _ points = new List < Point > ();

 //---save the current point for later use---
 _ previouspoint = e.GetPosition(SigPad);

 //---add the point---
 _ points.Add(_previouspoint);
 }

c19.indd 679c19.indd 679 10/1/08 12:01:25 PM10/1/08 12:01:25 PM

Part II: Application Development Using C#

680

 The MouseLeftButtonUp event is fired when the user releases the left mouse button. You interpret that
as the end of the signature signing process. Code the MouseLeftButtonUp event handler of SigPad as
follows:

 //---fired when the user let go of the left mouse button---
 void SigPad_MouseLeftButtonUp(
 object sender, MouseButtonEventArgs e)
 {
 //---user has let go of the left mouse button---
 MouseDown = false;

 //---add the list of points to the current line---
 _lines.Add(_points);
 }

 The MouseMove event is fired continuously when the user moves the mouse. Here, you draw a line
connecting the previous point with the current point. Code the MouseMove event handler of SigPad as
follows:

 //---fired when the left mouse button is moved---
 void SigPad_MouseMove(object sender, MouseEventArgs e)
 {
 //---if left mouse button is pressed...---
 if (MouseDown)
 {
 //---add the current point---
 var currentPoint = e.GetPosition(SigPad);
 _points.Add(currentPoint);

 //---draws a line connecting the previous
 // point and the current point---
 Line line = new Line()
 {
 X1 = _previouspoint.X,
 Y1 = _previouspoint.Y,
 X2 = currentPoint.X,
 Y2 = currentPoint.Y,
 StrokeThickness = 2,
 Stroke = new SolidColorBrush(Colors.Black)
 };

 //---add the line to the signature pad---
 SigPad.Children.Add(line);

 //---saves the current point for later use---
 _previouspoint = currentPoint;
 }
 }

 Press F5 to test the application. Use your mouse to draw on the web page (see Figure 19 - 70).

c19.indd 680c19.indd 680 10/1/08 12:01:25 PM10/1/08 12:01:25 PM

Chapter 19: Developing Silverlight Applications

681

 Saving the Signature to Isolated Storage
 This section explains how to store the coordinates of the signature using isolated storage. This technique
is useful if you need to persist information on the client side, such as backing up the signature that the
user has signed.

 Using the same project created in the previous section, add the following highlighted code to
Page.xaml :

 < UserControl x:Class=”Signature.Page”
 xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Width=”400” Height=”300” >
 < Canvas >

 < Canvas x:Name=”SigPad” Width=”404” Height=”152”
 Canvas.Left=”8” Canvas.Top=”9” Background=”#FFF4F60C” >
 < Rectangle Width=”404” Height=”152” Fill=”#FFF1F8DB”
 Stroke=”#FF000000” StrokeThickness=”3”/ >
 < /Canvas >

 < Canvas >
 < Canvas x:Name=”btnSave” Width=”97” Height=”26”
 Canvas.Left=”315” Canvas.Top=”168” >
 < Rectangle Width=”96” Height=”25” Stroke=”#FF000000”
 Fill=”#FFE6EBFF” RadiusX=”3” RadiusY=”3”
 StrokeThickness=”3”/ >
 < TextBlock Width=”34” Height=”20” TextWrapping=”Wrap”
 Canvas.Left=”32” Canvas.Top=”1” Text =”Save” / >
 < /Canvas >

 < Canvas x:Name=”btnLoad” Width=”97” Height=”26”
 Canvas.Left=”214” Canvas.Top=”168” >
 < Rectangle Width=”96” Height=”25” Stroke=”#FF000000”
 Fill=”#FFE6EBFF” RadiusX=”3” RadiusY=”3”
 StrokeThickness=”3”/ >

Figure 19-70

(continued)

c19.indd 681c19.indd 681 10/1/08 12:01:25 PM10/1/08 12:01:25 PM

Part II: Application Development Using C#

682

 < TextBlock Width=”37” Height=”20” TextWrapping=”Wrap”
 Canvas.Left=”30” Canvas.Top=”1” Text=”Load”/ >
 < /Canvas >

 < Canvas x:Name=”btnClear” Width=”97” Height=”26”
 Canvas.Left=”113” Canvas.Top=”168” >
 < Rectangle Width=”96” Height=”25” Stroke=”#FF000000”
 Fill=”#FFE6EBFF” RadiusX=”3” RadiusY=”3”
 StrokeThickness=”3”/ >
 < TextBlock Width=”37” Height=”20” TextWrapping=”Wrap”
 Canvas.Left=”30” Canvas.Top=”1” Text=”Clear” / >
 < /Canvas >

 < TextBlock Width=”404” Height=”20” Text=”[Status]”
 TextWrapping=”Wrap” Canvas.Left=”8” Canvas.Top=”198”
 OpacityMask=”#FF000000” x:Name=”txtStatus”/ >

 < /Canvas >

 < /Canvas >

 < /UserControl >

 Page.xaml should now look like Figure 19 - 71 .

(continued)

Figure 19-71

c19.indd 682c19.indd 682 10/1/08 12:01:26 PM10/1/08 12:01:26 PM

Chapter 19: Developing Silverlight Applications

683

 In Page.xaml.cs , import the following namespaces:

using System.IO.IsolatedStorage;
using System.IO;

 Add the following lines to the Page() constructor:

 public Page()
 {
 InitializeComponent();

 //---wire up the event handlers---
 SigPad.MouseLeftButtonDown += new
 MouseButtonEventHandler(SigPad_MouseLeftButtonDown);
 SigPad.MouseLeftButtonUp += new
 MouseButtonEventHandler(SigPad_MouseLeftButtonUp);
 SigPad.MouseMove += new
 MouseEventHandler(SigPad_MouseMove);

 //---wire up the event handlers---
 btnSave.MouseLeftButtonDown += new
 MouseButtonEventHandler(btnSave_MouseLeftButtonDown);
 btnLoad.MouseLeftButtonDown += new
 MouseButtonEventHandler(btnLoad_MouseLeftButtonDown);
 btnClear.MouseLeftButtonDown += new
 MouseButtonEventHandler(btnClear_MouseLeftButtonDown);

 }

 Define the GetSignatureLines() function so that the coordinates of the signature can be converted
from a List object to a string:

 //---returns the signature as a series of lines---
 private string GetSignatureLines()
 {
 System.Text.StringBuilder sb = new
 System.Text.StringBuilder();
 //---for each line---
 for (int i = 0; i < = _lines.Count - 1; i++)
 {
 //---for each point---
 foreach (Point pt in _lines[i])
 {
 sb.Append(pt.X + “,” + pt.Y + “|”);
 }
 sb.Append(“\n”);
 }
 return sb.ToString();
 }

c19.indd 683c19.indd 683 10/1/08 12:01:26 PM10/1/08 12:01:26 PM

Part II: Application Development Using C#

684

 Code the MouseLeftButtonDown event handler for the Save button so that the signature can be saved to
isolated storage:

 //---Save button---
 void btnSave_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {
 //---save into isolated storage---
 IsolatedStorageFile isoStore =
 IsolatedStorageFile.GetUserStoreForApplication();

 IsolatedStorageFileStream isoStream =
 new IsolatedStorageFileStream(“IsoStoreFile.txt”,
 FileMode.Create, isoStore);

 StreamWriter writer = new StreamWriter(isoStream);
 //---writes the lines to file---
 writer.Write(GetSignatureLines());
 txtStatus.Text = “Signature saved!”;

 writer.Close();
 isoStream.Close();
 }

 Define the DrawSignature() subroutine so that the signature can be reproduced from a string
representing a collection of lines:

 //---draws the signature---
 private void DrawSignature(string value)
 {
 _lines = new List < List < Point > > ();

 //---split into individual lines---
 string[] lines = value.Split(‘\n’);

 //---for each individual line---
 for (int i = 0; i < = lines.Length - 2; i++)
 {
 //---split into individual points---
 string[] ps = lines[i].Split(‘|’);
 _points = new List < Point > ();

 //---for each point---
 for (int j = 0; j < = ps.Length - 2; j++)
 {
 string[] xy = ps[j].Split(‘,’);
 _points.Add(new Point(
 (Convert.ToDouble(xy[0])),
 Convert.ToDouble(xy[1])));
 }

c19.indd 684c19.indd 684 10/1/08 12:01:27 PM10/1/08 12:01:27 PM

Chapter 19: Developing Silverlight Applications

685

 _lines.Add(_points);
 }

 //---draws the signature---
 for (int line = 0; line < = _lines.Count - 1; line++)
 {
 _points = (List < Point >)_lines[line];
 for (int i = 1; i < = _points.Count - 1; i++)
 {
 Line sline = new Line()
 {
 X1 = _points[i - 1].X,
 Y1 = _points[i - 1].Y,
 X2 = _points[i].X,
 Y2 = _points[i].Y,
 StrokeThickness = 2,
 Stroke = new SolidColorBrush(Colors.Black)
 };
 SigPad.Children.Add(sline);
 }
 }
 }

 Code the MouseLeftButtonDown event handler for the Load button so that the series of signature lines
can be loaded from isolated storage:

 //---Load button---
 void btnLoad_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {
 IsolatedStorageFile isoStore =
 IsolatedStorageFile.GetUserStoreForApplication();

 IsolatedStorageFileStream isoStream =
 new IsolatedStorageFileStream(“IsoStoreFile.txt”,
 FileMode.Open, isoStore);

 StreamReader reader = new StreamReader(isoStream);
 //---read all lines from the file---
 string lines = reader.ReadToEnd();

 //---draws the signature---
 DrawSignature(lines);
 txtStatus.Text = “Signature loaded!”;

 reader.Close();
 isoStream.Close();
 }

c19.indd 685c19.indd 685 10/1/08 12:01:27 PM10/1/08 12:01:27 PM

Part II: Application Development Using C#

686

 Code the MouseLeftButtonDown event handler for the Clear button so that the signature can be
cleared from the drawing pad:

 //---Clear button---
 void btnClear_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {
 _lines = new List < List < Point > > ();
 _points = new List < Point > ();

 //---iteratively clear all the signature lines---
 int totalChild = SigPad.Children.Count - 2;
 for (int i = 0; i < = totalChild; i++)
 {
 SigPad.Children.RemoveAt(1);
 }

 txtStatus.Text = “Signature cleared!”;
 }

 Press F5 to test the application. You can now sign and then save the signature. You can also load the
saved signature (see Figure 19 - 72).

Figure 19-72

c19.indd 686c19.indd 686 10/1/08 12:01:27 PM10/1/08 12:01:27 PM

Chapter 19: Developing Silverlight Applications

687

 Saving the Signature to Web Services
 One of these signatures isn ’ t a lot of good unless you can send it to a Web Service. This section shows
you how to do that.

 Using the same project created in the previous section, add a new Web Site project to the current solution
(see Figure 19 - 73).

Figure 19-73

Figure 19-74

 Select ASP.NET Web Site, and name the project SignatureWebSite .

 Add a new Web Service item to the Web Site project, and use its default name of WebService.asmx
(see Figure 19 - 74).

c19.indd 687c19.indd 687 10/1/08 12:01:28 PM10/1/08 12:01:28 PM

Part II: Application Development Using C#

688

 In the WebService.cs file, add the following lines:

using System;
using System.Collections;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;

using System.IO;
using System.Web.Script.Services;

/// < summary >
/// Summary description for WebService
/// < /summary >
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

[System.Web.Script.Services.ScriptService]

public class WebService : System.Web.Services.WebService
{
 ...
 ...
}

 Define the following two web methods:

 [WebMethod]
 public bool SaveSignature(string value)
 {
 try
 {
 File.WriteAllText(Server.MapPath(“.”) +
 @”\Signature.txt”, value);
 return true;
 }
 catch (Exception ex)
 {
 return false;
 }
 }

 [WebMethod]
 public string GetSignature()
 {
 string fileContents;
 fileContents = File.ReadAllText(
 Server.MapPath(“.”) + @”\Signature.txt”);
 return fileContents;
 }

 The SaveSignature() function saves the values of the signature into a text file. The GetSignature()
function reads the content of the text file and returns the content to the caller.

c19.indd 688c19.indd 688 10/1/08 12:01:28 PM10/1/08 12:01:28 PM

Chapter 19: Developing Silverlight Applications

689

 In the Signature project, add a service reference (see Figure 19 - 75).

 Click the Discover button and then OK (see Figure 19 - 76).

Figure 19-75

Figure 19-76

c19.indd 689c19.indd 689 10/1/08 12:01:28 PM10/1/08 12:01:28 PM

Part II: Application Development Using C#

690

 In Page.xaml.cs , modify the Save button as follows:

 //---Save button---
 void btnSave_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {

 try
 {
 ServiceReference1.WebServiceSoapClient ws = new
 Signature.ServiceReference1.WebServiceSoapClient();

 //---wire up the event handler when the web service returns---
 ws.SaveSignatureCompleted += new
 EventHandler < Signature.ServiceReference1.
 SaveSignatureCompletedEventArgs > (ws_SaveSignatureCompleted);

 //---calls the web service method---
 ws.SaveSignatureAsync(GetSignatureLines());
 }

 catch (Exception ex)
 {
 txtStatus.Text = ex.ToString();
 }

 }

 Here, you send the signature to the Web service asynchronously. When the Web Service call returns, the
 ws_SaveSignatureCompleted event handler will be called.

 Code the ws_SaveSignatureCompleted event handler as follows:

 void ws_SaveSignatureCompleted(
 object sender,
 Signature.ServiceReference1.SaveSignatureCompletedEventArgs e)
 {
 txtStatus.Text = “Signature sent to WS!”;
 }

 In Page.xaml.cs , code the Load button as follows:

 //---Load button---
 void btnLoad_MouseLeftButtonDown(
 object sender, MouseButtonEventArgs e)
 {

 try
 {
 ServiceReference1.WebServiceSoapClient ws = new
 Signature.ServiceReference1.WebServiceSoapClient();

 //---wire up the event handler when the web service
 // returns---

c19.indd 690c19.indd 690 10/1/08 12:01:29 PM10/1/08 12:01:29 PM

Chapter 19: Developing Silverlight Applications

691

 ws.GetSignatureCompleted +=
 new EventHandler < Signature.ServiceReference1.
 GetSignatureCompletedEventArgs > (ws_GetSignatureCompleted);

 //---calls the web service method---
 ws.GetSignatureAsync();
 }
 catch (Exception ex)
 {
 txtStatus.Text = ex.ToString();
 }

 }

 Here, you call the Web service to retrieve the saved signature. When the Web Service call returns, the
ws_ GetSignatureCompleted event handler will be called.

 Code the ws_GetSignatureCompleted event handler as follows:

 void ws_GetSignatureCompleted(
 object sender,
 Signature.ServiceReference1.GetSignatureCompletedEventArgs e)
 {
 txtStatus.Text = “Signature loaded from WS!”;
 DrawSignature(e.Result);
 }

 Save the Signature project. In Solution Explorer, right - click on the SignatureWebSite project and
select Add Silverlight Link (see Figure 19 - 77).

Figure 19-77

c19.indd 691c19.indd 691 10/1/08 12:01:29 PM10/1/08 12:01:29 PM

Part II: Application Development Using C#

692

Figure 19-79

 This causes Visual Studio 2008 to copy the relevant files from the Silverlight project onto the current
project. Use the default values populated and click Add (see Figure 19 - 78).

 Notice that a new folder named ClientBin, containing the Signature.xap file, is added to the project
(see Figure 19 - 79).

Figure 19-78

c19.indd 692c19.indd 692 10/1/08 12:01:29 PM10/1/08 12:01:29 PM

Chapter 19: Developing Silverlight Applications

693

 In Solution Explorer, right - click the SignatureWebSite project and select Set as Startup Project
(see Figure 19 - 80).

Figure 19-80

Figure 19-81

 Select SignatureTestPage.aspx , and press F5 to test the project. You can now save the signature to the
Web Service as well as load the saved signature from the Web Service (see Figure 19 - 81).

c19.indd 693c19.indd 693 10/1/08 12:01:30 PM10/1/08 12:01:30 PM

Part II: Application Development Using C#

694

 Summary
 This chapter has demonstrated how you can use Silverlight to build Rich Interactive Applications (RIAs).
At the time of writing, there are two versions of Silverlight — 1.0 and 2 — the key difference being the
integration of the .NET Framework in Silverlight 2. To build the user interface of a Silverlight
application, you can use the Microsoft Expression suite of applications, while the coding can be done
using Visual Studio 2008.

c19.indd 694c19.indd 694 10/1/08 12:01:30 PM10/1/08 12:01:30 PM

 Windows Communication
Foundation

 Windows Communication Foundation (WCF) is Microsoft ’ s unified programming model for
building service oriented applications (SOA). Parts of a service - oriented application can be
exposed as a service that other applications can access.

 WCF is a big topic, and it cannot be fully covered in a single chapter. However, this chapter
provides a quick introduction to this new technology and shows how it addresses some of the
limitations of today ’ s technology. While most books and conference focused heavily on the theory
behind WCF, this chapter shows you how to build WCF services and then explains the
theory behind them.

 In short, this chapter explores:

 How traditional ASMX Web Services differ from WCF

 The ABCs of WCF

 Building different types of WCF services

 What Is WCF ?
 To understand the rationale behind WCF, it is important to understand the offerings that are
available today. In previous versions of Visual Studio (Visual Studio 2005 and Visual Studio .NET
2003), you use the ASP.NET application model to you create ASMX XML Web Services that expose
functionalities to clients who want to use them.

 ASMX Web Services are still supported in Visual Studio 2008 for backward compatibility, but
going forward Microsoft recommends that developers use WCF when building services.

 To compare WCF and ASMX Web Services, let ’ s first use Visual Studio 2008 to create a new
ASP.NET Web Service Application project. Name the project StocksWS .

❑

❑

❑

c20.indd 695c20.indd 695 10/1/08 12:02:06 PM10/1/08 12:02:06 PM

Part II: Application Development Using C#

696

 Populate the default Service1.asmx.cs file as follows:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;

namespace StocksWS
{
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [ToolboxItem(false)]
 public class Service1 : System.Web.Services.WebService
 {

 [WebMethod]
 public float GetStockPrice(string symbol)
 {
 switch (symbol)
 {
 case “MSFT”: return 29.91f;
 case “AAPL”: return 180.21f;
 case “YHOO”: return 23.93f;
 default: return 0;
 }
 }

 }
}

 This Web Service contains a web method to let users query the price of a stock. For simplicity, you will
hardcode the stock prices of a few stocks.

 To host this Web Service, you need to publish this project to a web server (IIS, for instance), or use the
ASP.NET Web Development server that ships with Visual Studio. Figure 20 - 1 shows the ASP.NET Web
Development Server hosting the service after you press F5.

c20.indd 696c20.indd 696 10/1/08 12:02:07 PM10/1/08 12:02:07 PM

Chapter 20: Windows Communication Foundation

697

 For a client to use this Web Service, you need to add a web reference. So add a Windows Forms
Application project to the current solution to consume this service. Name the project
 StockPriceChecker .

 Populate the default Form1 with the controls shown in Figure 20 - 2 .

Figure 20-1

Figure 20-2

 To add a reference to the Web Service, right - click the project name in Solution Explorer and select Add
Service Reference (see Figure 20 - 3).

c20.indd 697c20.indd 697 10/1/08 12:02:08 PM10/1/08 12:02:08 PM

Part II: Application Development Using C#

698

 In the Add Service Reference dialog, enter the URL for the Web Service that you created earlier (see
Figure 20 - 4). Because the Web Service is in the current solution, you can also click the Discover button to
locate the Web Service.

Figure 20-3

Figure 20-4

In Visual Studio 2008, the Add Service Reference option replaces the Add Web
Reference option. That’s because WCF is the preferred way to write your services in
Visual Studio 2008. The exception to this is when developing Windows Mobile
applications — for those, the Add Web Reference option is available, but the Add
Service Reference item is not.

c20.indd 698c20.indd 698 10/1/08 12:02:08 PM10/1/08 12:02:08 PM

Chapter 20: Windows Communication Foundation

699

 Give a name to the Web Service (say, StocksWebService), and click OK. A reference to the Web Service
is added to the project (see Figure 20 - 5).

Figure 20-6

Figure 20-5

 The StocksWebService is a proxy class generated by Visual Studio 2008 to handle all the work of
mapping parameters to XML elements and then sending the SOAP messages over the network to the
Web Service. Behind the scenes, Visual Studio has actually downloaded the WSDL (Web Services
Description Language) document from the Web Service so that it knows exactly what the service offers
and requires. You can view the WSDL document of the document by appending ?WSDL to the end of the
Web Services URL, like this:

http://localhost:1044/Service1.asmx?WSDL

 To access the services provided by the Web Service, you programmatically create an instance of the
proxy class and then call the appropriate methods. Here ’ s the code for the Check Price button:

 private void btnCheckPrice_Click(object sender, EventArgs e)
 {
 StocksWebService.Service1SoapClient ws =
 new StocksPriceChecker.StocksWebService.Service1SoapClient();
 MessageBox.Show(“Price for “ + txtSymbol.Text +
 “ is “ + ws.GetStockPrice(txtSymbol.Text));
 }

 Set the StocksPriceChecker project as the startup project in Visual Studio 2008, and press F5 to debug
the application. When you enter a stock symbol and click Check Price, the Web Service returns the price
of the specified stock (see Figure 20 - 6).

c20.indd 699c20.indd 699 10/1/08 12:02:08 PM10/1/08 12:02:08 PM

Part II: Application Development Using C#

700

 From this very simple example, you want to note the following:

 You need to host even a simple ASMX Web Service on a web server such as IIS.

 To access the Web Service, clients use HTTP, a stateless protocol, which means that every request
is treated like a new one. If you want to write an application that requires the Web Service to
remember its previous state, you need to implement your own “ stateful ” mechanism.

 The ASMX Web Service uses a request/response communication model. The Web Service only
responds when requested by the client. In this example, if you need to monitor the price of a
stock and want to be notified whenever a stock falls below a certain price, you must constantly
poll the Web Service to retrieve the latest price. A better way would be to have a service that can
automatically invoke the client when specific events happen on the service ’ s end. You ’ ll see how
this can be done with WCF later in this chapter.

 Comparing WCF with ASMX Web Services
 Now that you ’ ve created a traditional ASMX Web Service, let ’ s compare ASMX and WCF and see how
they differ:

 ASMX Web Services use web methods that are exposed to the world. Web methods use the
request/response communication models. In WCF, these web methods are known as operations ,
and you can use any one of the three different types of communication models: one - way
transaction, request/response, and full - duplex.

 Web services use the Simple Object Access Protocol (SOAP) messaging transported over
HTTP. WCF can utilize different protocols for messaging — SOAP, Plain Old XML (POX), and so
on — transported over a wide variety of communication protocols, including TCP and HTTP.

 Web services listen at a particular port number (such as port 80); WCF can have multiple
endpoints listening at different port numbers.

 Web services are hosted by web servers (such as IIS); WCF can be hosted in different forms, such
as Windows services, Windows applications, or just processes.

 Your First WCF Service
 Developing a WCF service using Visual Studio 2008 will be helpful in comparing it with the traditional
ASMX Web Services.

 Using Visual Studio 2008, create a new WCF Service Library application, and name it
 WcfServiceLibraryTest (see Figure 20 - 7).

❑

❑

❑

❑

❑

❑

❑

c20.indd 700c20.indd 700 10/1/08 12:02:09 PM10/1/08 12:02:09 PM

Chapter 20: Windows Communication Foundation

701

 Notice the two files created in the project (see Figure 20 - 8):

 IService1.cs contains the service contract as well as the data contract.

 Service1.cs contains the implementation of the contract defined in the IService1.cs file.

❑

❑

Figure 20-8

Figure 20-7

c20.indd 701c20.indd 701 10/1/08 12:02:09 PM10/1/08 12:02:09 PM

Part II: Application Development Using C#

702

 Here ’ s the content of the IService1.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace WcfServiceLibraryTest
{
 // NOTE: If you change the interface name “IService1” here, you must also
 // update the reference to “IService1” in App.config.
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 string GetData(int value);

 [OperationContract]
 CompositeType GetDataUsingDataContract(CompositeType composite);

 // TODO: Add your service operations here
 }

 // Use a data contract as illustrated in the sample below to add composite
 // types to service operations
 [DataContract]
 public class CompositeType
 {
 bool boolValue = true;
 string stringValue = “Hello “;

 [DataMember]
 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }

 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
 }
}

c20.indd 702c20.indd 702 10/1/08 12:02:09 PM10/1/08 12:02:09 PM

Chapter 20: Windows Communication Foundation

703

 Here, there is an interface (IService1) and a class (CompositeType) defined. The IService1 interface
is set with the [ServiceContract] attribute to indicate that this is a service contract and contains
signatures of operations exposed by the service. Within this interface are signatures of methods that you
will implement in the Service1.cs file. Each method is set with the [OperationContract] attribute
to indicate that it is an operation. If you have additional operations to add, you can add them here.

 The CompositeType class is prefixed with the [DataContract] attribute. This class defines the various
composite data types required by your service.

 The Service1.cs file contains the implementation for the operations defined in the IService1
interface in the IService1.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace WcfServiceLibraryTest
{
 // NOTE: If you change the class name “Service1” here, you must also update the
 // reference to “Service1” in App.config.
 public class Service1 : IService1
 {
 public string GetData(int value)
 {
 return string.Format(“You entered: {0}”, value);
 }

 public CompositeType GetDataUsingDataContract(CompositeType composite)
 {
 if (composite.BoolValue)
 {
 composite.StringValue += “Suffix”;
 }
 return composite;
 }
 }
}

 For now, use the default implementation provided by Visual Studio 2008 and examine how the
service works.

 Press F5 to debug the service. A WCF Test Client window will be displayed (see Figure 20 - 9). This is a
test client shipped with Visual Studio 2008 to help you test your WCF service.

c20.indd 703c20.indd 703 10/1/08 12:02:10 PM10/1/08 12:02:10 PM

Part II: Application Development Using C#

704

Figure 20-9

 Expand the IService1 item, and select the GetData() method. In the right of the window, enter 5 for
the value and click the Invoke button (see Figure 20 - 10).

Figure 20-10

c20.indd 704c20.indd 704 10/1/08 12:02:10 PM10/1/08 12:02:10 PM

Chapter 20: Windows Communication Foundation

705

Figure 20-11

Figure 20-12

 When you see a security warning dialog, click OK. The service returns its result in the Response pane
(see Figure 20 - 11).

 Also, try the GetDataUsingDataContract() operation and enter some values as shown in
Figure 20 - 12 . Click Invoke, and observe the results returned.

c20.indd 705c20.indd 705 10/1/08 12:02:10 PM10/1/08 12:02:10 PM

Part II: Application Development Using C#

706

 You can also see the SOAP messages exchanged between the test client and the service by clicking on the
XML tab (see Figure 20 - 13).

Figure 20-13

 Notice that the SOAP messages contain a lot more information than a traditional ASMX Web Service
SOAP packet. This is because WCF services, by default, use wsHttpBinding , which ensures that
information exchanged between the client and the service is encrypted automatically.

 You ’ ll see more about wsHttpBinding later in this chapter.

 Close the WCF Test Client window. Back in Visual Studio 2008, edit the IService1.cs file, adding the
 getAge() function signature to the IService1 interface:

[ServiceContract]
public interface IService1
{
 [OperationContract]
 string GetData(int value);

 [OperationContract]

c20.indd 706c20.indd 706 10/1/08 12:02:11 PM10/1/08 12:02:11 PM

Chapter 20: Windows Communication Foundation

707

 CompositeType GetDataUsingDataContract(CompositeType composite);

 [OperationContract]
 int getAge(Contact c);

}

 By default, the [OperationContract] attribute specifies a request/response messaging pattern for
the operation.

 After the class definition for CompositeType , define the following data contract called Contact :

 [DataContract]
 public class CompositeType
 {
 //...
 }

 [DataContract]
 public class Contact
 {
 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public int YearofBirth { get; set; }
 }

 In Service1.cs , define the getAge() function as follows:

 public class Service1 : IService1
 {
 //...
 //...

 public int getAge(Contact c)
 {
 return (DateTime.Now.Year - c.YearofBirth);
 }

 }

 Press F5 to test the application again. This time, select the getAge() method, enter your name and year
of birth, and then click Invoke (see Figure 20 - 14). Observe the result returned by the service.

c20.indd 707c20.indd 707 10/1/08 12:02:11 PM10/1/08 12:02:11 PM

Part II: Application Development Using C#

708

Figure 20-14

 Consuming the WCF Service
 The example you just created is a WCF Service Library. The useful aspect of the project is that it
includes the WCF Test Client, which enables you to test your WCF easily without needing to build
your own client. In this section, you build a Windows application to consume the service.

 Add a Windows Forms Application project to the current solution, and name it ConsumeWCFService .

 Add a service reference to the WCF service created in the previous section. Because the WCF Service is in
the same solution as the Windows Forms application, you can simply click the Discover button in the
Add Service Reference dialog to locate the service (see Figure 20 - 15).

Figure 20-15

c20.indd 708c20.indd 708 10/1/08 12:02:11 PM10/1/08 12:02:11 PM

Chapter 20: Windows Communication Foundation

709

 Use the default ServiceReference1 name, and click OK. Visual Studio 2008 automatically adds the
two libraries — System.Runtime.Serialization.dll and System.ServiceModel.dll — to your
project (see Figure 20 - 16). The proxy class ServiceReference1 is the reference to the WCF service.

Figure 20-16

 Double - click on Form1 , and in the Form1_Load event handler, code the following:

 private void Form1_Load(object sender, EventArgs e)
 {

 //---create an instance of the service---
 ServiceReference1.Service1Client client =
 new ConsumeWCFService.ServiceReference1.Service1Client();

 //---create an instance of the Contact class---
 ServiceReference1.Contact c =
 new ConsumeWCFService.ServiceReference1.Contact()
 {
 Name = “Wei-Meng Lee”,
 YearofBirth = 1990
 };

 //---calls the service and display the result---
 MessageBox.Show(client.getAge(c).ToString());

 //---close the client---
 client.Close();

 }

c20.indd 709c20.indd 709 10/1/08 12:02:12 PM10/1/08 12:02:12 PM

Part II: Application Development Using C#

710

 Calling the WCF service is very similar to consuming an ASMX Web Service — create an instance of the
proxy class, call the service ’ s operation, pass in the required parameters, and wait for the result from
the service.

 Set the Windows Forms application as the startup project, and press F5. A message box appears,
displaying 18.

 Understanding How WCF Works
 Now that you have built your first WCF service, let ’ s take a more detailed look at the innards of WCF.

 WCF Communication Protocols
 As mentioned earlier, WCF can use a wide variety of transport protocols to transport its messages. Here
are just some of the common ones that you can use:

 HTTP — Much like the traditional ASMX Web Services

 TCP — Much more flexible and efficient than HTTP; more complex to configure (you ’ ll see an
example of this later in this chapter)

 Named Pipe — Used to communicate with WCF services on the same machine but residing in
different processes

 MSMQ — Uses queuing technology; inherently asynchronous

 The ABC s of WCF
 Figure 20 - 17 shows the ABCs of WCF — address, binding, and contract.

❑

❑

❑

❑

Address (WHERE)

• http://localhost/Service/

• net.tcp://localhost/Service/

Binding (HOW)

• basicHttpBinding

• netTcpBinding

Contract (WHAT)

• IServiceContract

• WSDL

Figure 20-17

c20.indd 710c20.indd 710 10/1/08 12:02:12 PM10/1/08 12:02:12 PM

Chapter 20: Windows Communication Foundation

711

ServiceClient

Message EndpointEndpoint

Endpoint

Figure 20-18

 Address — The address that the service is listening at. This indicates where the service can be
located and used. The address for a WCF service is dependent on the communication protocol
used.

 Binding — The type of binding that you will use to communicate with the service. The binding
used determines the security requirements for the communication and how clients will connect
to the service.

 Contract — The contract defines what the service offers.

 The following sections discuss each of these points in detail.

 Addresses and Endpoints
 Every WCF service has an address and endpoints in which it listens for incoming connections.
Figure 20 - 18 shows a WCF service with two endpoints exposed. A client wanting to use the service just
needs to send messages to the appropriate endpoint.

❑

❑

❑

 The address of a WCF service depends on the protocols used for the service. For example, if a WCF
service uses the HTTP protocol, then its address may be:

 http:// < server > : < port > / < service >

 https:// < server > : < port > / < service >

 https:// < server > : < port > / < service > .svc

 If a WCF service uses TCP as the protocol, its address is in this format:
 net.tcp:// < server > : < port > / < service > .

 For Named Pipes, the address is net.pipe:// < server > / < service > .

 A service may have an operation that uses any of the protocols (or all). For example, a service may listen
at port 80 (endpoint number 1) using HTTP as well as listen at port 5000 (endpoint number 2) using TCP.

❑

❑

❑

c20.indd 711c20.indd 711 10/1/08 12:02:13 PM10/1/08 12:02:13 PM

Part II: Application Development Using C#

712

 Bindings
 The bindings of a WCF not only specify the protocols used but also the security requirements for
communication. The following table describes the available bindings:

 Binding Description

 BasicHttpBinding Most basic; limited security and no transactional support.
Compatible with traditional ASMX Web Services.

 WSHttpBinding More advanced HTTP with WSE security.

 WSDualHttpBinding Extends WSHttpBinding and includes duplex communications.

 WSFederationHttpBinding Extends WSHttpBinding and includes federation capabilities.

 NetTcpBinding Used for TCP communication; supports security, transaction,
and so on.

 NetNamedPipeBinding Used for named pipe communication; supports security,
transaction, and so on.

 NetPeerTcpBinding Supports broadcast communication.

 MexHttpBinding Publishes the metadata for the WCF service.

 NetMsmqBinding Used for MSMQ.

 MsmqIntegrationBinding Used for MSMQ.

 The bindings of a WCF determine how a client can communicate with the service.

 How to use BasicHttpBinding , WSHttpBinding , and NetTcpBinding bindings is shown later in this
chapter.

 Contracts
 Contracts define what a WCF service offers. The types of available contracts are explained in the
following table.

 Contract Defines

 Service All the operations contained in a service.

 Operation All the methods, parameters, return types, and so on.

 Message How messages are formatted. For instance, data should be included in SOAP
header or SOAP message body, and so on.

 Fault Faults an operation may return.

 Data The type of data used and required by the service.

c20.indd 712c20.indd 712 10/1/08 12:02:13 PM10/1/08 12:02:13 PM

Chapter 20: Windows Communication Foundation

713

Figure 20-19

 Messaging Patterns
 Traditional ASMX Web Services use the request/response communication model. This model has some
disadvantages. In some cases, the client might want to call the service without waiting for a response
from the service. For example, you might want to call a service rapidly to turn on and off a switch and
you do not need a response from the service. Using the request/response model, all requests made by
the client have to wait for a reply from the service (even if the request does not return a result). The
result is unnecessary blocking on the client side, especially if there are many queued requests on the
service ’ s end.

 WCF supports three communication models (also known as messaging patterns):

 Request/response

 One - way (simplex)

 Two - way (duplex)

 The one - way messaging pattern allows clients to fire off a request and forget about it; no response is
needed from the service. The two - way messaging pattern allows both the service and the client to send
and receive messages.

 Hosting Web Services
 As mentioned earlier, WCF services can be hosted using different forms:

 Web Servers — IIS; similar to Web Services

 Executable — Console application, Windows Forms, WPF, and so on

 Windows Service — Runs in the background

 Windows Activation Service (WAS) — Simpler version of IIS

 In the earlier example, the WCF service is hosted by the WCF Service Host (see Figure 20 - 19), a utility
provided by Visual Studio 2008.

❑

❑

❑

❑

❑

❑

❑

 If you host a WCF service using an executable or Windows service, that WCF service is said to be
self - hosted.

c20.indd 713c20.indd 713 10/1/08 12:02:14 PM10/1/08 12:02:14 PM

Part II: Application Development Using C#

714

 Building WCF Services
 This section explores more sophisticated WCF services that illustrate the various theories presented
earlier. Let ’ s start off with creating a WCF that exposes multiple endpoints.

 Exposing Multiple Endpoints
 A WCF service can expose multiple endpoints. Follow along to build a WCF service that exposes
endpoints using two different bindings: WSHttpBinding and BasicHttpBinding .

 Creating the WCF Service
 Using Visual Studio 2008, create a new WCF Service Application and name it
 MultipleEndpointsService (see Figure 20 - 20).

Figure 20-20

 In this example, the WCF service is hosted by the ASP.NET Development Server, a web server shipped
with Visual Studio 2008. Because the service is hosted by a web server, the NetTcpBinding binding is
not supported.

 Edit the Web.config file by right - clicking it in Solution Explorer and selecting Edit WCF Configuration.
(You can also launch the WCF Service Configuration Editor by selecting Tools WCF Service
Configuration Editor.)

 Expand the Endpoints node, and select the first endpoint. Name it WS (see Figure 20 - 21).

c20.indd 714c20.indd 714 10/1/08 12:02:14 PM10/1/08 12:02:14 PM

Chapter 20: Windows Communication Foundation

715

Figure 20-22

Figure 20-21

 Right - click on the Endpoints node, and select New Service Endpoint to add a new endpoint to the
service (see Figure 20 - 22).

 Name the new endpoint BASIC, and set its various properties as indicated (see Figure 20 - 23).

c20.indd 715c20.indd 715 10/1/08 12:02:14 PM10/1/08 12:02:14 PM

Part II: Application Development Using C#

716

 Property Value

 Address asmx

 Binding basicHttpBinding

 Contract MultipleEndpointsService.IService1

 Save and close the Web.config file. Build the MultipleEndpointsService project.

 The WCF service now has three endpoints as shown in the following table.

 Name Binding Description

 WS wsHttpBinding The wsHttpBinding :

 Uses the WS - * protocols.

 Security is at the message level.

 Uses additional handshake messaging.

 Supports reliable session.

 Messages exchanged between the client and the
server are encrypted.

Figure 20-23

c20.indd 716c20.indd 716 10/1/08 12:02:15 PM10/1/08 12:02:15 PM

Chapter 20: Windows Communication Foundation

717

Figure 20-24

 Name Binding Description

 [Empty
Name]

 mexHttpBinding Publishes the metadata for the WCF service, allowing
clients to retrieve the metadata using a WS - Transfer
GET request or an HTTP/GET request using the ?wsdl
query string. By default, every WCF service created
using Visual Studio 2008 has this endpoint to allow
clients to request the service ’ s metadata.

 BASIC basicHttpBinding The basicHttpBinding :

 Supports old ASMX - style (based on
 WS - BasicProfile1.1) Web Services call.

 Does not support secure messaging (no WS
enhancements).

 Does not support reliability and ordered delivery.
Calls may be lost and the client simply time out.

 Calls may not be ordered correctly.

 Security is at the transport layer (SSL, for instance).

 Allows compatibility with ASMX Web Services and
clients.

 Creating the Client
 Now add a new project to the current solution so that you can consume the WCF service created. Add a
new Windows Forms Application project to the current solution and use its default name,
 WindowsFormsApplication1 .

 Populate the default Form1 with the two Button controls shown in Figure 20 - 24 .

 Add a Service reference to the WindowsFormApplication1 project, and click the Discover button to
locate the WCF service in your solution. When the service is found, click OK (see Figure 20 - 25).

c20.indd 717c20.indd 717 10/1/08 12:02:15 PM10/1/08 12:02:15 PM

Part II: Application Development Using C#

718

Figure 20-25

Figure 20-26

 To inform clients of your service, you simply need to inform them of this URL: http://
localhost:1039/Service1.svc . Because the WCF service is hosted by the ASP.NET Development
server, the port number is dynamically chosen. The port number you will see is likely to be different
from that shown.

 Add another service reference to the WindowsFormApplication1 project. This time, click the
Advanced button at the bottom left of the Add Service Reference dialog, and then click the Add Web
Reference button at the bottom left of the Service Reference Settings dialog (see Figure 20 - 26).

c20.indd 718c20.indd 718 10/1/08 12:02:16 PM10/1/08 12:02:16 PM

Chapter 20: Windows Communication Foundation

719

 In the Add Web Reference dialog, click the Web services In the This Solution link and click Service1.
Use the default name of localhost , and click the Add Reference button to add a web reference to the
project (see Figure 20 - 27).

Figure 20-27

 Double - click the Use wsHttpBinding button in Form1, and code it as follows:

 private void btnwsHttpBinding_Click(object sender, EventArgs e)
 {

 ServiceReference1.Service1Client client =
 new ServiceReference1.Service1Client(“WS”);
 MessageBox.Show(“Using wsHttpBinding: “ +
 client.GetData(5));
 client.Close();

 }

 Double - click the Use basicHttpBinding button, and code it as follows:

 private void btnBasicHttpBinding_Click(object sender, EventArgs e)
 {

 localhost.Service1 ws = new localhost.Service1();
 MessageBox.Show(“Using basicHttpBinding: “ +
 ws.GetData(6, true));

 }

c20.indd 719c20.indd 719 10/1/08 12:02:16 PM10/1/08 12:02:16 PM

Part II: Application Development Using C#

720

Figure 20-29

Figure 20-28

 Set the WindowsFormApplication1 project as the startup project, and press F5 to test it. Click both
buttons (see Figure 20 - 28) to access the WCF service using WSHttpBinding and BasicHTTPBinding .

 This example shows that you can have one WCF service exposed via different endpoints — traditional
ASMX Web Service clients can connect to the service using the basicHttpBinding binding, while the
rest can connect using the wsHttpBinding binding.

 Creating Self - Hosted WCF Service
 So far, all the WCF services you have seen are hosted using either a web server or the WCF Service
Host. This section shows how you can host a WCF service right from within a Windows Forms
application. This example can also be used with the netTCPBinding binding.

 The example application is a simple message server that allows clients to send messages to it. Messages
received by the service are displayed in a Windows Form.

 Creating the WCF Service
 Launch Visual Studio 2008 and create a new Windows Forms Application project. Name the project
 MessageServer .

 Populate the default Form1 with a TextBox control, and set its MultiLine property to true (see
Figure 20 - 29).

c20.indd 720c20.indd 720 10/1/08 12:02:16 PM10/1/08 12:02:16 PM

Chapter 20: Windows Communication Foundation

721

Figure 20-30

 Add a new item to the project. Select the WCF Service template, and name it MessageService.cs (see
Figure 20 - 30).

 In the code - behind of Form1 , import the following namespace:

using System.ServiceModel;

 Declare the following objects:

 public partial class Form1 : Form
 {

 private MessageService service;
 private ServiceHost host;

 The ServiceHost class is used to host a WCF service. In the Form1_Load event handler, code the
following:

 private void Form1_Load(object sender, EventArgs e)
 {

 //---host the service---
 service = new MessageService(this);
 host = new ServiceHost(service);
 host.Open();

 }

c20.indd 721c20.indd 721 10/1/08 12:02:17 PM10/1/08 12:02:17 PM

Part II: Application Development Using C#

722

Figure 20-31

 In the design view of Form1 , create an event handler for the FormClosing event of Form1 by using the
Properties window (see Figure 20 - 31).

 Code the Form1_FormClosing event handler as follows:

 private void Form1_FormClosing(
 object sender, FormClosingEventArgs e)
 {
 //---end the hosting of the service---
 host.Close();
 }

 This code simply ends the hosting of the WCF service when the window is closed.

 Define the DisplayMessage() function within the Form1 class as follows:

 //---display a message on the TextBox control---
 internal void DisplayMessage(string msg)
 {
 textBox1.Text += msg + Environment.NewLine;
 }

 In the IMessageService.cs file, define the operation contract SetMessage , highlighted here:

namespace MessageServer
{
 [ServiceContract]
 public interface IMessageService
 {
 [OperationContract]
 void DoWork();

 [OperationContract(IsOneWay = true)]
 void SetMessage(string msg);

 }
}

c20.indd 722c20.indd 722 10/1/08 12:02:17 PM10/1/08 12:02:17 PM

Chapter 20: Windows Communication Foundation

723

 The SetMessage() operation uses the one - way messaging pattern because clients simply send
messages to the sender and do not need to wait for a response from the server.

 This operation allows clients to send a message to the WCF service.

 In the MessageService.cs file, add the following highlighted code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace MessageServer
{

 [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

 public class MessageService : IMessageService
 {

 private Form1 hostApp;

 public void DoWork()
 {
 }

 //---constructor---
 public MessageService(Form1 hostApp)
 {
 //---set which host is hosting this service---
 this.hostApp = hostApp;
 }

 //---called by clients sending a message to the service---
 public void SetMessage(string msg)
 {
 //---display the message in Form1---
 hostApp.DisplayMessage(msg);
 }

 }
}

 Notice that the MessageService class is prefixed with the [ServiceBehavior] attribute. It contains
the InstanceContextMode property, which is set to Single .

c20.indd 723c20.indd 723 10/1/08 12:02:17 PM10/1/08 12:02:17 PM

Part II: Application Development Using C#

724

Service Behaviors: InstanceContextMode
When a WCF Service receives a message, the message is dispatched to an object’s
instance methods:

❑ A single instance of the receiver may be created for all clients, or

❑ A single instance of the receiver may be created for each client.

The InstanceContextMode property specifies the number of service instances
available for handling calls that are contained in incoming messages. It can be one of
the following:

❑ Single — Every received message is dispatched to the same object (a
singleton).

❑ Percall — Every received message is dispatched to a newly created object.
This is the default.

❑ PerSession — Messages received within a session (usually a single sender)
are dispatched to the same object.

❑ Shareable — Messages received within a session (can be one or more
senders) are dispatched to the same object.

 Edit the App.config file, using the WCF Service Configuration Editor (you can also select it from
Tools WCF Service Configuration Editor).

 Set the following details for the first endpoint (see Figure 20 - 32).

 Property Value

 Address net.tcp://localhost:1234/MessageService

 Binding netTcpBinding

c20.indd 724c20.indd 724 10/1/08 12:02:18 PM10/1/08 12:02:18 PM

Chapter 20: Windows Communication Foundation

725

 Save the file and close the editor.

 Basically, you set the endpoint to use the netTcpbinding binding. Examine the App.config file now,
and you ’ ll see that the following highlighted code has been added:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < configuration >
 ...
 < services >
 < service behaviorConfiguration=”MessageServer.MessageServiceBehavior”
 name=”MessageServer.MessageService” >

 < endpoint address=”net.tcp://localhost:1234/MessageService”
 binding=”netTcpBinding”
 bindingConfiguration=””
 contract=”MessageServer.IMessageService” >
 < identity >
 < dns value=”localhost” / >
 < /identity >
 < /endpoint >

 < endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” / >
 < host >
 < baseAddresses >
 < add baseAddress=”http://localhost:8731/Design_Time_
Addresses/MessageServer/MessageService/” / >
 < /baseAddresses >

Figure 20-32

(continued)

c20.indd 725c20.indd 725 10/1/08 12:02:18 PM10/1/08 12:02:18 PM

Part II: Application Development Using C#

726

 < /host >
 < /service >
 < /services >
 < /system.serviceModel >
 < /configuration >

 Notice the base address contained in the app.config file:

http://localhost:8731/Design_Time_Addresses/MessageServer/MessageService/

 This is the address that clients can use to add a service reference to your WCF service.

 Press F5 to test the application now. When prompted with the Windows Security Alert dialog, click
Unblock (see Figure 20 - 33).

Figure 20-33

Figure 20-34

(continued)

 In this example, the WCF service is hosted by the Windows Form application, at port 1234, using the
TCP protocol.

 Creating the Client
 Launch another instance of Visual Studio 2008, and create a new Windows Forms Application project.
Name it MessageClient .

 Populate the default Form1 with the controls shown in Figure 20 - 34 .

c20.indd 726c20.indd 726 10/1/08 12:02:18 PM10/1/08 12:02:18 PM

Chapter 20: Windows Communication Foundation

727

 Add a service reference to the WCF service created earlier (see Figure 20 - 35). Enter the base address URL
(http://localhost:8731/Design_Time_Addresses/MessageServer/MessageService) that you
have observed in the app.config file.

Figure 20-35

 Switch to the code - behind of Form1 , and import the following namespace:

using System.ServiceModel;

 Declare the following member variable:

 public partial class Form1 : Form
 {

 ServiceReference1.MessageServiceClient client;

 Double - click the Send button, and code the button1_Click event handler as follows:

 private void btnSend_Click(object sender, EventArgs e)
 {

 client = new
 MessageClient.ServiceReference1.MessageServiceClient();
 client.SetMessage(textBox1.Text);
 client.Close();

 }

 That ’ s it! Press F5 and you can now send a message to the server using the WCF service (see
Figure 20 - 36).

c20.indd 727c20.indd 727 10/1/08 12:02:19 PM10/1/08 12:02:19 PM

Part II: Application Development Using C#

728

 Implementing WCF Callbacks
 One of the limitations of a traditional ASMX Web Service call lies in its request/response communication
model. ASMX Web Services calls are passive and return results only when called upon. For instance, say
that a particular cinema operator deploys a Web Service to allow online purchasing of tickets. The
cinema ’ s branches have systems that are connected to the Web Service to obtain the latest status of seat
allocation and that sell tickets to cinema goers. In this case, the systems have to keep polling the Web
Service at regular intervals to obtain the latest seats status. Moreover, it is very likely that a few branches
may be booking the same seat(s) at the same time.

 A better approach would be for the Web Service to notify all the branches about the changes in seat
status as and when a seat has been reserved. This way, all branches have the latest seat information, and
there is no need to poll the Web Service at regular intervals, thereby relieving the Web Service of the
additional load. To accomplish this, you need a communication model in which the client is always
connected to the service and is notified when an event occurs. Using WCF, this communication model
can be implemented by using callbacks . A callback allows a service to call back its clients. The roles of the
service and the client are now duplicated — the client is also the service, and the service is also the client.

 This section of the chapter leads you through building a WCF ticketing service that allows clients to
book tickets. When multiple clients are connected to the service, a seat booked by one client is broadcast
to all the connected clients. Figure 20 - 37 illustrates the flow of the system. It shows four cinema branches
using the client to connect to the WCF ticketing service. Once seats are selected (represented by the
yellow buttons), a client will click on the Book Seats button to send the reservation to the WCF service.
The WCF service will then broadcast the booked seats to all connected clients, which will then set the
booked seats in red.

Figure 20-36

c20.indd 728c20.indd 728 10/1/08 12:02:19 PM10/1/08 12:02:19 PM

Chapter 20: Windows Communication Foundation

729

Figure 20-37

c20.indd 729c20.indd 729 10/1/08 12:02:19 PM10/1/08 12:02:19 PM

Part II: Application Development Using C#

730

 Building the Service
 The WCF service that allows clients to book cinema tickets needs to come first. Launch Visual Studio
2008 and create a new WCF Service Library project. Name the project WcfTicketingService (see
Figure 20 - 38).

Figure 20-38

 In this example, the WCF service will be hosted by the WCF Service Host, a utility provided by Visual
Studio 2008.

 In the IService1.cs file, define the following service and data contracts:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace WcfTicketingService
{

 [ServiceContract(
 Name = “TicketingService”,
 Namespace = “http://www.learn2develop.net/”,
 CallbackContract = typeof(ITicketCallBack),
 SessionMode = SessionMode.Required)]
 public interface ITicketService
 {
 [OperationContract(IsOneWay = true)]
 void SetSeatStatus(string strSeats);

c20.indd 730c20.indd 730 10/1/08 12:02:20 PM10/1/08 12:02:20 PM

Chapter 20: Windows Communication Foundation

731

 [OperationContract(IsOneWay = true)]
 void RegisterClient(Guid id);

 [OperationContract(IsOneWay = true)]
 void UnRegisterClient(Guid id);
 }

 public interface ITicketCallBack
 {
 [OperationContract(IsOneWay = true)]
 void SeatStatus(string message);
 }

 //---each client connected to the service has a GUID---
 [DataContract]
 public class Client
 {
 [DataMember]
 public Guid id { get; set; }
 }

}

 The ITicketService interface defines three operations, which are described in the following table.

 Operation Description

 SetSeatStatus Allows clients to book seats. Takes in a string containing the seats to be
booked.

 RegisterClient Registers a client when it connects to the service. Takes in a GUID so that
the service can uniquely identify a client.

 UnRegisterClient Unregisters a client when it disconnects from the service. Takes in the
client ’ s GUID.

 The ITicketService interface is also prefixed with the [ServiceContract] attribute. Specifically,
note the CallbackContract property, which specifies the interface that defines the callback operation.
The SessionMode property is set to Required , indicating that state must be maintained between the
service and client.

 The ITicketCallBack interface contains one operation — SeatStatus , which allows the service to
initiate a callback to the client, thereby updating the client about the latest seat status (that is, which seats
have been booked by other clients).

 The Client class defines the data contract. It contains the GUID of a client connecting to the service.

 All the operations in these two interfaces are defined as one - way operations. To understand why this is
so, assume that all the operations use the default request/response model. When the SetSeatStatus()
method is called to book seats, it waits for a response from the service. However, the service now
invokes the SeatStatus callback on the client (the service informs all clients about the seats booked)

c20.indd 731c20.indd 731 10/1/08 12:02:20 PM10/1/08 12:02:20 PM

Part II: Application Development Using C#

732

and waits for a reply from the client. A deadlock occurs because the client is waiting for a response from
the service while the service is waiting for a response from the client after invoking the callback. By
defining the operations as one - way, the service can invoke the callback on the client without waiting for
a reply from the client, preventing a deadlock from happening.

 In the Service1.cs file, define the SeatStatus class:

using System;
...
using System.Text;
using System.Timers;

namespace WcfTicketingService
{
 //...
}

public class SeatStatus
{
 //---a string representing the seats booked by a client---
 public string Seats { get; set; }
}

 The SeatStatus class contains Seats , a property for storing the seats booked by a client.

 In the Service1.cs file, define the Ticketing class that implements the ITicketingService service
contract:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

using System.Collections;

namespace WcfTicketingService
{

 [ServiceBehavior(InstanceContextMode =
 InstanceContextMode.Single,
 ConcurrencyMode = ConcurrencyMode.Multiple)]
 public class Ticketing : ITicketService
 {
 //---used for locking---
 private object locker = new object();

 private SeatStatus _seatStatus = null;

 //---for storing all the clients connected to the service---
 private Dictionary < Client, ITicketCallBack > clients =
 new Dictionary < Client, ITicketCallBack > ();

 public Ticketing() { }

c20.indd 732c20.indd 732 10/1/08 12:02:20 PM10/1/08 12:02:20 PM

Chapter 20: Windows Communication Foundation

733

 //---add a newly connected client to the dictionary---
 public void RegisterClient(Guid guid)
 {
 ITicketCallBack callback =
 OperationContext.Current.GetCallbackChannel
 < ITicketCallBack > ();

 //---prevent multiple clients adding at the same time---
 lock (locker)
 {
 clients.Add(new Client { id = guid }, callback);
 }
 }

 //---unregister a client by removing its GUID from
 // dictionary---
 public void UnRegisterClient(Guid guid)
 {
 var query = from c in clients.Keys
 where c.id == guid
 select c;
 clients.Remove(query.First());
 }

 //---called by clients when they want to book seats---
 public void SetSeatStatus(string strSeats)
 {
 _seatStatus = new SeatStatus
 {
 //---stores the seats to be booked by a client---
 Seats = strSeats
 };

 //---get all the clients in dictionary---
 var query = (from c in clients
 select c.Value).ToList();

 //---create the callback action delegate---
 Action < ITicketCallBack > action =
 delegate(ITicketCallBack callback)
 {
 //---callback to pass the seats booked
 // by a client to all other clients---
 callback.SeatStatus(_seatStatus.Seats);
 };

 //---for each connected client, invoke the callback---
 query.ForEach(action);
 }
 }
}

c20.indd 733c20.indd 733 10/1/08 12:02:21 PM10/1/08 12:02:21 PM

Part II: Application Development Using C#

734

 Within the Ticketing class are the implementations for the three operations defined in the
 ITicketService interface:

 RegisterClient() — Called when clients are connected to the service for the first time.
Clients are stored in a generic Dictionary < K,V > object. The key used for storing a client is its
GUID, and its callback handler is stored as the value.

 UnRegisterClient() — Called when a client is disconnected from the service; its entry in the
 Dictionary object is removed.

 SetSeatStatus() — Called when clients want to book seats. The seats to be booked are stored
in a SeatStatus object and then you create an Action delegate to invoke the callback of a
client to pass the seats that have been booked by a client. Because all connected clients need to
be notified, you invoke the callback for each client.

 The [ServiceBehavior] attribute specifies the InstanceContextMode to be Single and the
 ConcurrencyMode property to be Multiple .

❑

❑

❑

Service Behaviors — ConcurrencyMode
When messages are received by a WCF service, you can set how threads are used to
manage all received messages:

❑ One thread can be used to access the receiver object(s) at a time, or

❑ Multiple threads can be used to access the receiver object(s) concurrently.

How you handle all incoming messages is specified using the ConcurrencyMode
property of the [ServiceBehavior] attribute, which can assume one of the following
values:

❑ Single (default) — Only one thread can access the receiver object at a time.

❑ Multiple — Multiple threads can access the receiver object(s) concurrently.

❑ Reentrant — Only one thread can access the receiver object at a time, but
callbacks can reenter that object on another thread.

When you use the Multiple mode on the service, take special care to make sure that
threads are synchronized properly and that critical regions are locked when a threading
is accessing it.

 For simplicity of demonstration, the following shortcuts are made:

 The seats booked by a client are simply broadcast to all connected clients. In real life, they would
also be saved in database or array.

 When new clients connect to the server, the current seat allocation status (which seats are
booked and which are not) is not sent to them.

❑

❑

c20.indd 734c20.indd 734 10/1/08 12:02:21 PM10/1/08 12:02:21 PM

Chapter 20: Windows Communication Foundation

735

 Next, double - click on the App.config file in Solution Explorer. Change the following highlighted
attributes values:

 < system.serviceModel >
 < services >

 < service name=”WcfTicketingService.Ticketing”

 behaviorConfiguration=
 “WcfTicketingService.Service1Behavior” >
 < host >
 < baseAddresses >
 < add baseAddress =
“http://localhost:8731/Design_Time_Addresses/WcfTicketingService/Service1/” / >
 < /baseAddresses >
 < /host >
 < !-- Service Endpoints -- >
 < !-- Unless fully qualified, address is relative to base address
 supplied above -- >
 < endpoint address =”” binding=”wsHttpBinding”

 contract=”WcfTicketingService.ITicketService” >

 ...

 Right - click on the App.config file, and select Edit WCF Configuration. Expand the EndPoints node
(see Figure 20 - 39), and select the first [Empty Name] node. Set its properties as follows:

 Property Value

 Address net.tcp://localhost:5000/TicketingService

 Binding NetTcpBinding

Figure 20-39

c20.indd 735c20.indd 735 10/1/08 12:02:21 PM10/1/08 12:02:21 PM

Part II: Application Development Using C#

736

 TCP is the transport protocol.

 Save the app.config file and close the configuration window. Press F5 to debug the service. In the WCF
Test Client, you will see something like Figure 20 - 40 . The error icons (represented by the exclamation
symbols) are normal.

Figure 20-40

 Building the Client
 The WCF service is complete, so it ’ s time to build the client to consume the service. Add a new Windows
Forms Application project to the current solution. Name the project Client .

 Add a service reference to the ticketing WCF service. In the Add Service Reference dialog, click the
Discover button and locate the Ticketing WCF service (see Figure 20 - 41). Click OK.

c20.indd 736c20.indd 736 10/1/08 12:02:22 PM10/1/08 12:02:22 PM

Chapter 20: Windows Communication Foundation

737

 Populate Form1 with the controls shown in Figure 20 - 42 . Set the Size property of Form1 to 477, 387 .

Figure 20-41

Figure 20-42

 In the code - behind of Form1 , import the following namespace:

using System.ServiceModel;

c20.indd 737c20.indd 737 10/1/08 12:02:22 PM10/1/08 12:02:22 PM

Part II: Application Development Using C#

738

 Declare the following constants and objects:

namespace Client
{

 public partial class Form1 : Form
 {
 int ROWS = 10;
 int COLUMNS = 10;
 const int SEAT_WIDTH = 45;
 const int SEAT_HEIGHT = 25;
 const int START_X = 10;
 const int START_Y = 40;

 static Button[,] seatsArray;

 private ServiceReference1.TicketingServiceClient _client;
 private Guid _guid = Guid.NewGuid();

 Define the SeatsOccupied() static function within the Form1 class as follows:

 public partial class Form1 : Form
 {
 ...
 ...
 ...

 //---set all occupied seats in red---
 public static void SeatsOccupied(string strSeatsOccupied)
 {
 string[] seats = strSeatsOccupied.Split(‘,’);
 for (int i = 0; i < seats.Length - 1; i++)
 {
 string[] xy = seats[i].Split(‘-’);
 Button btn = seatsArray[int.Parse(xy[0]) - 1,
 int.Parse(xy[1]) - 1];
 btn.BackColor = Color.Red;
 }
 }

 }

 This function accepts a string containing the seats that are occupied. The format of the string is:

 < column > - < row > , < column > - < row > ,...

 For each seat (represented by the Button control) that is booked, the background color is changed to red.

 Define the SeatStatusCallback class and implement the SeatStatus() method as defined in the
 TicketingServiceCallback interface (defined in the service):

namespace Client
{
 public partial class Form1 : Form
 {
 //...

c20.indd 738c20.indd 738 10/1/08 12:02:22 PM10/1/08 12:02:22 PM

Chapter 20: Windows Communication Foundation

739

 }

 public class SeatStatusCallback :
 ServiceReference1.TicketingServiceCallback
 {
 public void SeatStatus(string message)
 {
 Form1.SeatsOccupied(message);
 }
 }
}

 The SeatStatus() method is invoked when the service calls the client ’ s callback. Here, you call the
static SeatsOccupied() function to update the seats status.

 Code the Form1_Load event handler as follows:

 private void Form1_Load(object sender, EventArgs e)
 {

 InstanceContext context =
 new InstanceContext(new SeatStatusCallback());
 _client = new
 ServiceReference1.TicketingServiceClient(context);
 _client.RegisterClient(_guid);

 //---display the seats---
 seatsArray = new Button[COLUMNS, ROWS];
 for (int r = 0; r < ROWS; r++)
 {
 for (int c = 0; c < ROWS; c++)
 {
 Button btn = new Button();
 btn.Location = new Point(
 START_X + (SEAT_WIDTH * c),
 START_Y + (SEAT_HEIGHT * r));

 btn.Size = new Size(SEAT_WIDTH, SEAT_HEIGHT);
 btn.Text = (c + 1).ToString() + “-” + (r +
 1).ToString();
 btn.BackColor = Color.White;
 seatsArray[c, r] = btn;
 btn.Click += new EventHandler(btn_Click);
 this.Controls.Add(btn);
 }
 }

 }

 These statements basically create an instance of the InstanceContext class by passing it an instance of
the SeatStatusCallback class. Then an instance of the WCF client is created using the constructor that
requires an InstanceContext object. In addition, the form is dynamically populated with Button
controls representing the seats in a cinema. Each Button control ’ s Click event is wired to the btn_Click
event handler.

c20.indd 739c20.indd 739 10/1/08 12:02:23 PM10/1/08 12:02:23 PM

Part II: Application Development Using C#

740

 Define the btn_Click event handler as follows:

 void btn_Click(object sender, EventArgs e)
 {
 if (((Button)sender).BackColor == Color.White)
 {
 ((Button)sender).BackColor = Color.Yellow;
 }
 else if (((Button)sender).BackColor == Color.Yellow)
 {
 ((Button)sender).BackColor = Color.White;
 }
 }

 This event handler toggles the color of the seats as users click on the Button controls. White indicates
that the seat is available; yellow indicates that the seat has been selected for booking.

 Code the Book Seats button as follows:

 private void btnBookSeats_Click(object sender, EventArgs e)
 {

 string seatsToBook = string.Empty;
 for (int r = 0; r < ROWS; r++)
 {
 for (int c = 0; c < ROWS; c++)
 {
 if (seatsArray[c, r].BackColor == Color.Yellow)
 {
 seatsToBook += seatsArray[c, r].Text + “,”;
 }
 }
 }
 //---send to WCF service---
 _client.SetSeatStatus(seatsToBook);

 }

 To specify the seats that are selected for booking, a string is created to containing the seats to be booked
in the following format:

 < column > - < row > , < column > - < row > ,...

 Finally, code the Form1_FormClosing event as follows:

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)
 {
 _client.UnRegisterClient(_guid);
 }

 Testing the Application
 To test the application, press F5 to debug and launch the service. Once this is done, you can debug
the client. Right - click the Client project in Solution Explorer, and select Debug Start New Instance
(see Figure 20 - 43).

c20.indd 740c20.indd 740 10/1/08 12:02:23 PM10/1/08 12:02:23 PM

Chapter 20: Windows Communication Foundation

741

Figure 20-43

Figure 20-44

 Run a few instances of the client and you can start to book cinema tickets. As one client books the seats,
the other clients are automatically updated.

 Calling WCF Services from an AJAX Page
 Visual Studio 2008 includes the new AJAX - enabled WCF Service template that enables you to consume
WCF services, using AJAX. To try it out, use Visual Studio 2008 to create a new ASP.NET Web
Application project. Name the project AJAXWCF (see Figure 20 - 44).

c20.indd 741c20.indd 741 10/1/08 12:02:23 PM10/1/08 12:02:23 PM

Part II: Application Development Using C#

742

 Right - click the project name in Solution Explorer, and select Add New Item (see Figure 20 - 45).

 Select the AJAX - enabled WCF Service template (see Figure 20 - 46), name it Service.svc , and click Add.

Figure 20-45

Figure 20-46

c20.indd 742c20.indd 742 10/1/08 12:02:24 PM10/1/08 12:02:24 PM

Chapter 20: Windows Communication Foundation

743

 Notice that Visual Studio 2008 automatically inserts the < system.serviceModel > element into the
 Web.config file:

...

 < system.serviceModel >
 < behaviors >
 < endpointBehaviors >
 < behavior name=”ServiceAspNetAjaxBehavior” >
 < enableWebScript / >
 < /behavior >
 < /endpointBehaviors >
 < /behaviors >
 < serviceHostingEnvironment
 aspNetCompatibilityEnabled=”true” / >
 < services >
 < service name=”Service” >
 < endpoint address=””
 behaviorConfiguration=”ServiceAspNetAjaxBehavior”
 binding=”webHttpBinding” contract=”Service” / >
 < /service >
 < /services >
 < /system.serviceModel >

 < /configuration >

 In the Service.cs file located in the App_Code folder, give the service a namespace of ” WCFService ” ,
and code the following GetServerTime() method:

using System;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.ServiceModel.Web;

[ServiceContract(Namespace = “WCFService”)]

[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class Service
{
 // Add [WebGet] attribute to use HTTP GET
 [OperationContract]
 public void DoWork()
 {
 // Add your operation implementation here
 return;
 }

 [OperationContract]
 public DateTime GetServerTime()
 {
 return DateTime.Now;
 }

}

c20.indd 743c20.indd 743 10/1/08 12:02:25 PM10/1/08 12:02:25 PM

Part II: Application Development Using C#

744

 In the Source view of Default.aspx , add the following highlighted code:

 < form id=”form1” runat=”server” >
 < div >

 < asp:ScriptManager ID=”ScriptManager1” runat=”server” >
 < Services >
 < asp:ServiceReference Path=”~/Service.svc” / >
 < /Services >
 < /asp:ScriptManager >

 < /div >

 < input id=”Button1” type=”button” value=”Get Server Time”
 onclick=”return Button1_onclick()” / >
 < div id=”result” / >

 < /form >

 This adds an instance of the < ScriptManager > control to the page and references the WCF service
(Service.svc). It also adds a Button control to the page.

 Insert the following JavaScript code into Default.aspx :

 < body >

 < script language=”javascript” type=”text/javascript” >

 function Button1_onclick()
 {
 WCFService.Service.GetServerTime(CallBackFunction);
 }

 function CallBackFunction(result)
 {
 $get(“result”).innerHTML= result;
 }

 < /script >

 < form id=”form1” runat=”server” >

 The Button1_onclick () JavaScript function is invoked when the button on the page is clicked.
It calls the WCF service and the returning result is retrieved via the CallBackFunction() function.

 Press F5 to debug the application. You can now click the Get Server Time button to obtain the server time
without causing a refresh on the web page (see Figure 20 - 47).

c20.indd 744c20.indd 744 10/1/08 12:02:25 PM10/1/08 12:02:25 PM

Chapter 20: Windows Communication Foundation

745

 Summary
 This chapter provided an overview of WCF and explained how it differs from traditional ASMX Web
Services. It explored the limitations of Web Services today and examined how WCF aims to provide a
better way of writing and hosting your services. The various examples shown throughout this chapter
afford concrete illustrations of what WCF offers and hopefully provide enough motivations for you to
explore this important technology further.

Figure 20-47

c20.indd 745c20.indd 745 10/1/08 12:02:25 PM10/1/08 12:02:25 PM

c20.indd 746c20.indd 746 10/1/08 12:02:26 PM10/1/08 12:02:26 PM

Part III

Appendixes

Appendix A: C# Keywords

Appendix B: Examining the .NET Class Libraries Using the Object
Browser

Appendix C: Generating Documentation for Your C# Applications

bapp01.indd 747bapp01.indd 747 10/1/08 12:05:51 PM10/1/08 12:05:51 PM

bapp01.indd 748bapp01.indd 748 10/1/08 12:05:52 PM10/1/08 12:05:52 PM

 C# Keywords
 This appendix lists the various keywords in C# that are predefined and have special meanings for
the compiler. It is important to familiarize yourself with these keywords because they cannot be
used as identifiers in your program. For example, this is a keyword in C# that is used to refer to
the current instance of a class. Hence, this cannot be used as an identifier:

 string this = “Hello, World”; //---error---

 To use a keyword as an identifier, you need to prefix the keyword with the @ character. The follow-
ing statement is valid:

 string @this = “Hello, World”; //---ok---

 In C# 3.0, Microsoft introduces the concept of context keywords. Contextual keywords have special
meaning in a particular context and can be used as an identifier outside the context. For example,
the set and get contextual keywords are used as accessors in a property definition, together
with the value keyword, like this:

 public class Point
 {
 Single _x;
 public Single x {
 get {
 return _x;
 }
 set {
 _x = value;
 }
 }
 }

bapp01.indd 749bapp01.indd 749 10/1/08 12:05:52 PM10/1/08 12:05:52 PM

Part III: Appendixes

750

 In this example, the get , set , and value contextual keywords have special meanings in a property
 definition (x). Using these contextual keywords within the property definition as identifiers is not valid.
However, outside the property definition, you can use them as identifiers:

 static void Main(string[] args)
 {
 string get = “some string here...”;
 int set = 5;
 double value = 5.6;
 }

 The beauty of contextual keywords is that as the C# language evolves, new keywords can be added
to the language without breaking programs written using the earlier version of the language.

 C# Reserved Keywords
 The following table describes the reserved keywords used in C#.

 Keyword Description

 abstract A modifier that can be used with classes, methods, properties, indexers, and
events. Use it to indicate that a class is intended to be used as a base class of
other classes, and abstract methods must be implemented by classes that
derive from the abstract class.

 as An operator that performs conversion between compatible reference types.

 base Used to access members of a base class from a derived class.

 bool A C# alias of the System.Boolean .NET Framework type. Its value can
either true, false, or null.

 break Used to transfer control out of a loop or switch statement.

 byte Specifies a data type that can stores unsigned 8 - bit integer values from
0 to 255.

 case Used together with the switch statement. It specifies the value to be
matched so that control can be transferred to the case statement.

 catch Used with a try block to handle one or more exceptions.

 char Specifies a data type that can store a 16 - bit Unicode character from U+0000
to U+ffff.

 checked Used to explicitly enable overflow - checking integer operations.

 class Used to declare classes.

 const Used to specify a field or variable whose value cannot be modified.

 continue Used within a loop such that control is transferred to the next iteration.

bapp01.indd 750bapp01.indd 750 10/1/08 12:05:52 PM10/1/08 12:05:52 PM

Appendix A: C# Keywords

751

 Keyword Description

 decimal Specifies a data type representing a 128 - bit data. It can approximately
represent a number from ± 1.0 � 10 – 28 to ± 7.9 � 1028.

 default Used within a switch statement to indicate the default match if none of the
other case statements is matched. Can also be used in generics to specify
the default value of the type parameter.

 delegate Used to declare a reference type variable that references a method name/
anonymous method.

 do Executes a block of code repeatedly until a specified expression returns false.
Used together with the while keyword to form a do - while statement.

 double Specifies a data type that represents a 64 - bit floating point number. It can
approximately represent a number from ± 5.0 � 10 – 324 to ± 1.7 � 10308.

 else Used with the if keyword to form an if - else statement. else defines the
block that will be executed if the expression specified in the if statement is
evaluated to false.

 enum Used to define an enumeration.

 event Used to define an event within a class.

 explicit Defines a cast operation that requires the programmer to explicitly select the
cast to be performed.

 extern Declares a method that is implemented externally.

 false Used as either an operator or as a literal. One of the possible values in a bool
variable.

 finally Used in a try - catch block to contain code that cleans up the code even if an
exception occurs. Statements contained within a finally block are always
executed.

 fixed Prevents the garbage collector from relocating a movable variable.

 float Specifies a data type that represents a 32 - bit floating point number. It can
approximately represent a number from ± 1.5 � 10 – 45 to ± 3.4 � 1038.

 for Encloses a block of statements that will be executed repeatedly until a
specified expression returns false.

 foreach Used to iterate through a collection of items.

 goto Used to transfer control of a program to a labeled statement.

 if Determines if a statement (or block of statements) is to be executed based on
the result of a Boolean expression.

 implicit Used to declare an implicit cast operation.

(continued)

bapp01.indd 751bapp01.indd 751 10/1/08 12:05:53 PM10/1/08 12:05:53 PM

Part III: Appendixes

752

 Keyword Description

 in Used in a foreach statement to specify the collection you want to iterate
through.

 int Specifies a data type that represents a signed 32 - bit integer number. It can
represent a number from – 2,147,483,648 to 2,147,483,647.

 interface Used to define an interface, which is a definition that contains the signatures
of methods, delegates, and events. An interface does not contain any
implementation.

 internal An access modifier to indicate a member that can only be accessed within
files in the same assembly.

 is Used to check if an object is compatible with a given type.

 lock Marks a statement block as a critical section so that other threads cannot
execute the block while the statements within the block are being executed.

 long Specifies a data type that represents a signed 64 - bit integer number. It can
represent a number from – 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

 namespace Used to organize your code so that it belongs to a globally unique type.

 new Used to create objects and invoke a class ’ s constructor. Also can be used to
explicitly hide a base class ’ s member in a derived class. When used in a
generic declaration, it restricts types that might be used as arguments for a
type declaration.

 null Represents a null reference that does not refer to any object.

 object A C# alias of the System.Object .NET Framework type.

 operator Used to overload a built - in operator or provide a conversion operator.

 out Indicates arguments that are to be passed by reference. It is similar to ref ,
except that ref requires the variable to be initialized before it is passed.

 override Extends or modifies the abstract or virtual implementation of an inherited
method, property, indexer, or event.

 params Specifies a parameter array where the number of arguments is variable.

 private An access modifier used to indicate a member that can only be accessed
within the body of the class or struct in which it ’ s declared.

 protected An access modifier used to indicate a member that can only be accessed
within its class and derived classes.

 public An access modifier used to indicate a member that can be accessed by all
code.

bapp01.indd 752bapp01.indd 752 10/1/08 12:05:53 PM10/1/08 12:05:53 PM

Appendix A: C# Keywords

753

 Keyword Description

 readonly A modifier that indicates fields that can only be initialized at declaration or in
a constructor.

 ref Indicates arguments that are to be passed by reference.

 return Terminates execution of a method and returns control to the calling method.

 sbyte Specifies a data type that represents a signed 8 - bit integer number. It can
represent a number from – 128 to 127.

 sealed Specifies a class that does not allow other classes to derive from it.

 short Specifies a data type that represents a signed 16 - bit integer number. It can
represent a number from – 32,768 to 32767.

 sizeof Used to obtain the size in bytes for a value type.

 stackalloc Used in an unsafe code context to allocate a block of memory on the stack.

 static A modifier to indicate that a member belongs to the type itself, and not to a
specific object.

 string Specifies a data type that represents a sequence of zero or more Unicode
characters. Also an alias for the System.String .NET Framework type.

 struct Denotes a value type that encapsulates a group of related variables.

 switch A control statement that handles multiple selections by matching the value of
the switch with a series of case statements.

 this Refers to the current instance of the class. Also used as a modifier of the first
parameter of an extension method.

 throw Used to invoke an exception during runtime.

 true Used either as an operator or as a literal. One of the possible values in a bool
variable.

 try Indicates a block of code that may cause exceptions. Used with one or more
 catch blocks to handle the exceptions raised.

 typeof Used to obtain the System.Type object for a type.

 uint Specifies a data type that represents an unsigned 32 - bit integer number. It can
represent a number from 0 to 4,294,967,295.

 ulong Specifies a data type that represents an unsigned 64 - bit integer number. It can
represent a number from 0 to 18,446,744,073,709,551,615.

 unchecked Used to suppress overflow - checking for integral - type arithmetic operations
and conversions.

(continued)

bapp01.indd 753bapp01.indd 753 10/1/08 12:05:54 PM10/1/08 12:05:54 PM

Part III: Appendixes

754

 Keyword Description

 unsafe Denotes an unsafe context, which is required for any operation involving
pointers.

 ushort Specifies a data type that represents an unsigned 16 - bit integer number. It can
represent a number from 0 to 65,535.

 using A directive for creating a namespace alias or importing namespace references.
It is also used for defining a scope at the end of which an object will be
disposed.

 virtual An access modifier to indicate a method, property, indexer, or event
declaration and allow for it to be overridden in a derived class.

 volatile Indicates that a field might be modified by multiple threads that are
executing at the same time.

 void Specifies that a method does not return any value.

 while Executes a statement or a block of statements until a specified expression
evaluates to false.

 Contextual Keywords
 The following table describes the context keywords used in C#.

 Keyword Description

 from Used in a LINQ query. A query expression must begin with a from clause.

 get Defines an accessor method in a property or indexer. It retrieves the value of
the property or indexer element.

 group Used in a LINQ query and returns a sequence of IGrouping < (Of < (TKey,
TElement >) >) objects that contain zero or more items that match the key
value for the group.

 into Used in a LINQ query and can be used to create a temporary identifier to store
the results of a group , join , or select clause into a new identifier.

 join Used in a LINQ query for associating elements from different sources.

 let Used in a LINQ query to store the result of a subexpression to be used in a
subsequent clause.

 orderby Used in a LINQ query to sort the result of a query in either ascending or
descending order.

bapp01.indd 754bapp01.indd 754 10/1/08 12:05:54 PM10/1/08 12:05:54 PM

Appendix A: C# Keywords

755

 Keyword Description

 partial Denotes that the definition of a class, struct, or interface is split into multiple
files. Also denotes that a method ’ s signature is defined in one partial type and
its definition is defined in another partial type.

 select Used in a LINQ query to specify the type of values that will be produced
when the query is executed.

 set Defines an accessor method in a property or indexer. It assigns a value to the
property or indexer element.

 value An implicit parameter in a set accessor. It is also used to add or remove event
handlers.

 where Used in a LINQ query to specify which elements from the data source will be
returned in the query expression.

 yield Used in an iterator block to provide a value to the enumerator object or to
signal the end of iteration.

bapp01.indd 755bapp01.indd 755 10/1/08 12:05:55 PM10/1/08 12:05:55 PM

bapp01.indd 756bapp01.indd 756 10/1/08 12:05:55 PM10/1/08 12:05:55 PM

 Examining the .Net Class
Libraries Using the

Object Browser
 To be successful in .NET programming requires not only that you know the language you are using
(C# in this case) but that you be familiar with the classes in the .NET Framework class library.
Navigating the huge number of classes in the class library is a daunting task, and it takes a developer
many months to get acquainted with the different classes. This appendix summarizes the features of
the various versions of the .NET Framework and explains how to use the Object Browser feature in
Visual Studio 2008 to browse the available namespaces and classes in the .NET Framework.

 Versions of the .NET Framework
 The .NET Framework 3.5 builds upon the previous versions of the .NET Framework, namely,
version 2.0, 2.0SP1, 3.0, and 3.0SP1. This is evidenced by the set of assembly references available in
the Add Reference dialog (see Figure B - 1).

Figure B-1

bapp02.indd 757bapp02.indd 757 10/1/08 12:03:37 PM10/1/08 12:03:37 PM

758

Part III: Appendixes

 The assemblies have different version numbers — some are version 2.0, while some are 3.0 and the rest
3.5. That is to say, when you develop a .NET 3.5 application, your application is actually using a
combinations of .NET 2.0, 3.0, and 3.5 class libraries.

 The assemblies for the different versions of the .NET Framework are located in the following directories
on your development machine:

❑ Version 2.0 — C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

❑ Version 3.0 — C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0

❑ Version 3.5 — C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5

 When you install Visual Studio 2008 on a computer without the previous versions of the .NET
Framework, all of these assemblies are installed automatically. The following sections discuss the key
components contained in each version of the .NET Framework.

 . NET Framework 2.0
 The .NET Framework 2.0 is a major upgrade of the .NET Framework and is shipped with Visual Studio
2005. The previous versions of the .NET Framework — 1.0 and 1.1 — are completely separate from each
other; each has its own set of assemblies and Common Language Runtime (CLR). In fact, a computer can
have three different versions of the .NET Framework installed — 1.0, 1.1, and 2.0. Each of these
frameworks can exist on its own and does not rely on previous versions.

 The main features in .NET Framework 2.0 are:

❑ Common Language Runtime (CLR)

❑ Support for generics

❑ Compilers for the .NET languages — C#, VB, C++, and J#

❑ Base Class Library

❑ ASP.NET

❑ ADO.NET

❑ Windows Forms

❑ Web Services

 The .NET Framework 2.0 SP1 updates the CLR and several assemblies.

 . NET Framework 3.0
 The .NET Framework 3.0 ships with Windows Vista and is built on top of the .NET Framework 2.0.
Hence, installing .NET Framework 3.0 also requires .NET Framework 2.0 to be installed. .NET
Framework 3.0 ships with three new technologies:

❑ Windows Presentation Foundation (WPF)

❑ Windows Communication Foundation (WCF)

❑ Windows Workflow (WF)

bapp02.indd 758bapp02.indd 758 10/1/08 12:03:38 PM10/1/08 12:03:38 PM

Appendix B: Examining the .Net Class Libraries Using the Object

759

 The .NET Framework 3.0 SP1 updates the CLR and several assemblies shipped with the Framework.

 . NET Framework 3.5
 The .NET Framework 3.5 includes several new technologies and is shipped with Visual Studio 2008. The
main features in .NET Framework 3.5 are:

❑ Language Integrated Query (LINQ)

❑ New compilers for C#, VB, and C++

❑ ASP.NET AJAX

❑ New types in the Base Class Library

 Using the Object Browser
 Because of the sheer size of the .NET Framework class libraries, it is always a daunting task for beginners
using this framework to navigate through the large number of classes available. Fortunately, Visual
Studio 2008 ships with the Object Browser, a utility that enables you to quickly search through the list of
class libraries available in the .NET Framework.

 To use the Object Browser (see Figure B - 2), launch Visual Studio 2008 and choose View Object Browser.

Figure B-2

bapp02.indd 759bapp02.indd 759 10/1/08 12:03:38 PM10/1/08 12:03:38 PM

760

Part III: Appendixes

 The left panel lists the assemblies (.dll files) available. You can expand on each assembly to view the
namespaces contained within it.

 Figure B - 3 shows some of the information displayed by the Object Browser.

Figure B-3

bapp02.indd 760bapp02.indd 760 10/1/08 12:03:39 PM10/1/08 12:03:39 PM

Appendix B: Examining the .Net Class Libraries Using the Object

761

Figure B-4

 You can expand a namespace to reveal the classes, delegates, and enumerations contained within it.
Select a class and its associated members (methods, properties, events, and so on) are displayed in the
top - right panel. Selecting a member of the class provides a detailed description of the member, such as
its summary, parameters, and exceptions.

 At the top of the Object Browser, you can select the list of components that you want to view
(see Figure B - 4).

 If the component you want to view is not listed in the Object Browser, select Edit Custom
Component Set and choose the component you want to view in the Edit Custom Component Set
dialog (see Figure B - 5) .

Figure B-5

bapp02.indd 761bapp02.indd 761 10/1/08 12:03:39 PM10/1/08 12:03:39 PM

762

Part III: Appendixes

 The most useful feature of the Object Browser is its search capability. Say that you want to perform
compression for your application and you are not sure which class to use for this purpose. Simply type a
keyword (compression , for example) into the search box (see Figure B - 6) and press Enter.

Figure B-6

 The Object Browser lists all the namespaces, classes, and so on that are related to the keyword you
entered. In this example, you can find the System.IO.Compression namespace that contains the classes
you need to use (see Figure B - 7) — DeflateStream and GZipStream .

 Clicking on a namespace shows you which assembly contains that namespace. System.IO.Compression ,
for example, is contained within the System.dll assembly.

bapp02.indd 762bapp02.indd 762 10/1/08 12:03:40 PM10/1/08 12:03:40 PM

Appendix B: Examining the .Net Class Libraries Using the Object

763

Figure B-7

 Clicking an assembly link takes you to the assembly where you can examine all the namespaces
contained with it (see Figure B - 8). In this example, you can see that the System assembly is a member of
the three versions of the .NET Framework — 2.0, 3.0, and 3.5. That ’ s a useful feature because if you use
an assembly that belongs only to .NET Framework 3.5, for instance, then you need to ensure that the
computer running your application has the latest version of the Framework.

Figure B-8

bapp02.indd 763bapp02.indd 763 10/1/08 12:03:40 PM10/1/08 12:03:40 PM

764

Part III: Appendixes

 Once you have selected an assembly, you can also click the Add to Reference button (see Figure B - 9) in
the Object Browser to add a reference to the assembly.

Figure B-9

bapp02.indd 764bapp02.indd 764 10/1/08 12:03:40 PM10/1/08 12:03:40 PM

 Generating Documentation
for Your C# Applications

 Documenting your code is probably the last thing you would do in your typical project cycle.
While the importance of writing documentation has been stressed umpteen times, developers
usually devote the best part of the project cycle to building new features, and then finally do a
mediocre job at the end writing the dreaded documentation. Borrowing the popular “ clean as you
go ” phrase found in a lot of kitchens, the best way to churn out top - quality documentation for
your project is to document as you go.

 In Visual Studio 2008, you can document your code using the XML code documentation feature.
This appendix shows you how to generate MSDN - style documentation for your project using
Visual Studio 2008 and a third - party documentation generation tool — Sandcastle.

 Inline Documentation using XML
 To see how XML documentation works, create a new class library project in Visual Studio 2008 as
shown in Figure C - 1 . Name the project PointClass .

bapp03.indd 765bapp03.indd 765 10/1/08 12:04:07 PM10/1/08 12:04:07 PM

766

Part III: Appendixes

 Populate the default Class1.cs with the following class definition:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace PointClass
{
 public class Point
 {
 //---static variable---
 private static int count;

 //---properties---
 public int x { get; set; }
 public int y { get; set; }

 //---constructors---
 public Point()
 {
 count++;
 }
 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 count++;
 }

Figure C-1

bapp03.indd 766bapp03.indd 766 10/1/08 12:04:07 PM10/1/08 12:04:07 PM

Appendix C: Generating Documentation for Your C# Applications

767

 //---overloaded methods---
 public double Length()
 {
 return Math.Sqrt(
 Math.Pow(this.x, 2) +
 Math.Pow(this.y, 2));
 }
 public double Length(Point pt)
 {
 return Math.Sqrt(
 Math.Pow(this.x - pt.x, 2) +
 Math.Pow(this.y - pt.y, 2));
 }
 }
}

 The definition for the Point class contains the following members:

❑ A static private member named count

❑ Two properties — x and y

❑ Two overloaded constructors

❑ Two overloaded Length() methods

 To add XML comments to the class, type three slash (/) character in succession: /// . Figure C - 2 shows
that when you type /// before the Point class definition, an XML comments template is automatically
inserted for you.

 The < summary > tag is inserted by default, but you can insert additional XML comment tags within the
XML comments template, as shown in Figure C - 3 .

Figure C-2

bapp03.indd 767bapp03.indd 767 10/1/08 12:04:08 PM10/1/08 12:04:08 PM

768

Part III: Appendixes

 Following is a list of XML documentation tags. You can find a similar list with a link to each tag ’ s
description (its uses) at http://msdn.microsoft.com/en - us/library/5ast78ax.aspx .

 <c> <para> <see>
<code> <param> <seealso>
<example> <paramref> <summary>
<exception> <permission> <typeparam>
<typeparamrefs> <value> <include>
<remarks> <list> <returns>

 Using the Point class definition, insert the XML comments highlighted in the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace PointClass
{

 /// < summary >
 /// The Point class contains 2 properties, 1 overloaded
 /// constructor, and 1 overloaded method
 /// < /summary >
 /// < remarks >
 /// If you need to use the Point class in the System.Drawing
 /// namespace, be sure to reference it using the fully
 /// qualified name, i.e. System.Drawing.Point
 /// < /remarks >

Figure C-3

bapp03.indd 768bapp03.indd 768 10/1/08 12:04:08 PM10/1/08 12:04:08 PM

Appendix C: Generating Documentation for Your C# Applications

769

 /// < history >
 /// [Wei-Meng Lee] 5/12/2008 Created
 /// < /history >

 public class Point
 {
 //---static variable---
 private static int count;

 //---properties---
 /// < summary >
 /// Property for x-coordinate
 /// < /summary >
 /// < returns >
 /// The x-coordinate
 /// < /returns >

 public int x { get; set; }

 /// < summary >
 /// Property for y-coordinate
 /// < /summary >
 /// < returns >
 /// The y-coordinate
 /// < /returns >

 public int y { get; set; }

 //---constructors---
 /// < summary >
 /// Default constructor
 /// < /summary >
 /// < remarks >
 /// Creates a new instance of the Point class
 /// < /remarks >

 public Point()
 {
 count++;
 }

 /// < overloads >
 /// Constructor
 /// < /overloads >
 /// < summary >
 /// Constructor with two parameters
 /// < /summary >
 /// < param name=”x” > Parameter x is assigned to the x-coordinate < /param >
 /// < param name=”y” > Parameter y is assigned to the y-coordinate < /param >
 /// < remarks >
 /// Creates a new instance of the Point class
 /// < /remarks >

(continued)

bapp03.indd 769bapp03.indd 769 10/1/08 12:04:08 PM10/1/08 12:04:08 PM

770

Part III: Appendixes

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 count++;
 }

 //---overloaded methods---
 /// < overloads >
 /// Calculates the distance between two points
 /// < /overloads >
 /// < summary >
 /// Calculates the distance of a point from the origin
 /// < /summary >
 /// < returns > The distance between the current point and the origin
 /// < /returns >
 /// < example > This sample shows how to call the < c > length() < /c >
 /// method
 /// < code >
 /// Point ptA = new Point(3, 4);
 /// double distance = ptA.Length();
 /// < /code >
 /// < /example >

 public double Length()
 {
 return Math.Sqrt(
 Math.Pow(this.x, 2) +
 Math.Pow(this.y, 2));
 }

 /// < summary >
 /// Calculates the distance of a point from another point
 /// < /summary >
 /// < param name=”pt” > A Point object < /param >
 /// < returns > The distance between the current point and the
 /// specified point
 /// < /returns >
 /// < example > This sample shows how to call the < c > length() < /c > method
 /// with a point specified
 /// < code >
 /// Point ptA = new Point(3, 4);
 /// Point ptB = new Point(7, 8);
 /// double distance = ptA.Length(ptB);
 /// < /code >
 /// < /example >

 public double Length(Point pt)
 {
 return Math.Sqrt(
 Math.Pow(this.x - pt.x, 2) +
 Math.Pow(this.y - pt.y, 2));
 }
 }
}

(continued)

bapp03.indd 770bapp03.indd 770 10/1/08 12:04:09 PM10/1/08 12:04:09 PM

Appendix C: Generating Documentation for Your C# Applications

771

 Take a look at the documentation you have done for one of the overloaded Length() methods:

 //---overloaded methods---
 /// < overloads >
 /// Calculates the distance between two points
 /// < /overloads >
 /// < summary >
 /// Calculates the distance of a point from the origin
 /// < /summary >
 /// < returns > The distance between the current point and the origin
 /// < /returns >
 /// < example > This sample shows how to call the < c > length() < /c >
 /// method
 /// < code >
 /// Point ptA = new Point(3, 4);
 /// double distance = ptA.Length();
 /// < /code >
 /// < /example >

 You will notice that there is a new element — < overloads > — that is not in the list specified in the
MSDN documentation. The < overloads > element is used to give a general description for methods that
are overloaded. You will see the effect of this element later when you generate the documentation using
the third - party tool. You only need to specify the < overloads > element on one (any one will do) of the
overloaded methods.

 You can also include code samples in your documentation using the < example > tag. To format a word
(or sentence) as code, use the < c > tag. For multiple lines of code, use the < code > tag.

 Because the XML comments that you add to your code may make reading difficult, you can hide the
comments by clicking the minus sign (–) on the left of the code window. To reveal the XML
documentation, click the plus sign (+) as shown in Figure C - 4 .

Figure C-4

 Once you have inserted the XML comments in your code, right - click the project name in Solution
Explorer and select Properties. Select the Build tab and check the XML Documentation File checkbox
(see Figure C - 5). This indicates to the compiler that after the project is compiled, it should consolidate
all the XML comments into an XML documentation file. By default, the XML document will be saved to
the bin/Debug folder of your project.

bapp03.indd 771bapp03.indd 771 10/1/08 12:04:09 PM10/1/08 12:04:09 PM

772

Part III: Appendixes

 Build the project by right - clicking the project name in Solution Explorer and then selecting Build.
The XML documentation file is now located in the bin/Debug folder of your project, together with the
 PointClass.dll library. Figure C - 6 shows what the XML file looks like.

Figure C-5

bapp03.indd 772bapp03.indd 772 10/1/08 12:04:09 PM10/1/08 12:04:09 PM

Appendix C: Generating Documentation for Your C# Applications

773

 Generating the Documentation
 With the XML documentation file generated, you have two options in terms of using the documentation:

❑ Write your own XSLT transformation style sheets to transform the XML document into a
readable format such as HTML, PDF, and so on.

❑ Use a third - party tool to automatically parse the XML documentation into the various
documentation formats it supports.

 The second option is the easier. For this purpose, you can use the free Sandcastle tool that generates
documentation in several different formats, including the MSDN - style HTML Help format (.chm), the
Visual Studio .NET Help format (HTML Help 2), and MSDN - Online style Web pages.

Figure C-6

bapp03.indd 773bapp03.indd 773 10/1/08 12:04:10 PM10/1/08 12:04:10 PM

774

Part III: Appendixes

 Downloading and Installing Sandcastle
 To use Sandcastle to generate your documentation, first ensure that you have HTML Help Workshop by
checking for the existence of the following folder: C:\Program Files\HTML Help Workshop .

 If the folder is not there or does not contain hhc.exe , you can search for it and download it from
Microsoft ’ s web site.

 Next, download Sandcastle from http://codeplex.com/Sandcastle .

 By itself, Sandcastle is a command - line tool and all interaction with it is via the command line. To make
your life easier, you can download the Sandcastle Help File Builder, a graphical user interface (GUI) tool
that makes Sandcastle easy to use.

 Once Sandcastle is downloaded and installed, download the Sandcastle Help File Builder from
 http://codeplex.com/SHFB .

 Download the Presentation File Patches from the Sandcastle Styles Project site (http://codeplex.com/
SandcastleStyles). Extract the Presentation folder and overwrite the Presentation folder in the
 Sandcastle folder with it (in C:\Program Files\Sandcastle ; see Figure C - 7).

Figure C-7

 Due to the continual development of the Sandcastle project, these screen shots may differ from what you
actually see on your screen.

 Finally, you should run the BuildReflectionData.bat batch file (located in C:\Program Files\
EWSoftware\Sandcastle Help File Builder) to build the reflection data for the version of the .NET
runtime you are using.

 If the C:\Program Files\Sandcastle\Data folder already contains a folder called Reflection, you need to
delete that folder before running this batch file.

bapp03.indd 774bapp03.indd 774 10/1/08 12:04:10 PM10/1/08 12:04:10 PM

Appendix C: Generating Documentation for Your C# Applications

775

 Launching Sandcastle
 Once Sandcastle and the Sandcastle Help File Builder are downloaded and installed, launch the
Sandcastle Help File Builder by selecting Start Programs Sandcastle Help File Builder Sandcastle
Help File Builder GUI.

 You should see the window shown in Figure C - 8 when the Sandcastle Help File Builder is launched.

Figure C-8

 You can choose the type of documentation you want to generate from the HelpFileFormat drop - down
listbox (see Figure C - 9).

Figure C-9

bapp03.indd 775bapp03.indd 775 10/1/08 12:04:10 PM10/1/08 12:04:10 PM

776

Part III: Appendixes

 Figure C - 12 shows the generated documentation (the tree view on the left is shown with all
the nodes expanded to reveal the full documentation).

 Click the Add button to add the assembly filename that you want to generate the documentation for
(see Figure C - 8). Once the assembly is selected (PointClass.dll in the bin/Debug folder, in this case),
the XML document filename field is automatically selected (the same name as the assembly, but with
an .xml extension).

 You can add multiple projects into the same documentation by adding each assembly into the Sandcastle
project.

 Finally, set the ShowMissingNamespaces property to false .

 Building and Viewing the Documentation
 Once you are ready to build the documentation, click the Build the Help File button in the toolbar (see
Figure C - 10).

Figure C-10

 You will be asked to save the project. Name it Documentation . Sandcastle will then generate the
documentation. Afterward, you can view it by clicking the View Help File From Last Build button in the
toolbar (see Figure C - 11).

Figure C-11

 Ensure that your Sandcastle project is saved in a folder whose name does not contain
any special characters (such as #, ?, & , and +). If not, you won ’ t be able to view the
documentation properly.

bapp03.indd 776bapp03.indd 776 10/1/08 12:04:11 PM10/1/08 12:04:11 PM

Appendix C: Generating Documentation for Your C# Applications

777

Figure C-12

 Let ’ s just take a look at the documentation for the overloaded Length() method as illustrated in
Figure C - 13 .

Figure C-13

bapp03.indd 777bapp03.indd 777 10/1/08 12:04:11 PM10/1/08 12:04:11 PM

778

Part III: Appendixes

 If you had earlier checked the WebSite item in the HelpFileFormat property of the project, the
documentation would look like Figure C - 15 .

 As you can see, the text in the < overloads > element is used to provide a general description for the
overloaded method, while the actual description for each overloaded method is detailed in the
 < summary > element.

 Click on the first overloaded method of the Length() method to see the relationship between the
documentation tag and the actual documentation, as shown in Figure C - 14 .

Figure C-14

bapp03.indd 778bapp03.indd 778 10/1/08 12:04:12 PM10/1/08 12:04:12 PM

Appendix C: Generating Documentation for Your C# Applications

779

 Distributing the Documentation
 You specify the location of the generated documentation by setting the OutputPath property in the
properties section in Sandcastle. By default, the documentation is always saved in the Help folder of the
project ’ s folder (see Figure C - 16).

Figure C-15

bapp03.indd 779bapp03.indd 779 10/1/08 12:04:12 PM10/1/08 12:04:12 PM

780

Part III: Appendixes

 The Help folder contains a single .chm file (Documentation) and a log file (LastBuild ; assuming you
only checked the HelpFile1x item in the HelpFileFormat property; see Figure C - 17).

Figure C-16

Figure C-17

 To distribute the documentation with your class, you simply need to provide the file with the .chm
extension.

 If you checked the WebSite item in the HelpFileFormat property of the project, the Help folder
will contain a list of files and folders. Simply load the Index.html file to view the documentation.
To distribute your documentation, you need to distribute all the files and folders within the Help folder.

bapp03.indd 780bapp03.indd 780 10/1/08 12:04:12 PM10/1/08 12:04:12 PM

In
de

x

Symbols
\‹, 261
\›, 261
\b, 261
\B, 261
\d, 261
\w, 261
\s, 261
\n, 246
\r, 246
\r\n, 246
\ “, 246
\\, 246
\ t, 246
{n}, 261
{n, }, 261
{n, N }, 261
* /, 74
/ *, 74
/ /, 74
‹ ›, 82
&& (AND), 106, 107
+ (addition operator), 108, 279

overloading, 196
string concatenation with, 250, 257

= (assignment operator), 103, 106
delegates and, 220, 235, 240

/ (division operator), 108
== (equal), 105, 248
› (greater than), 105
›= (greater than or equal to), 105
‹ (less than), 105
‹= (less than or equal to), 105
% (modulus operator), 108, 109
* (multiplication operator), 108
! (NOT), 106, 107
!= (not equal), 105
?? (null coalescing operator), 83
$ (regex operator), 261
* (regex operator), 261
+ (regex operator), 261
. (regex operator), 261
? (regex operator), 261
ˆ (regex operator), 261
– (subtraction operator), 108

_ (underscore), 133
? : (conditional operator), 93, 109
| | (OR), 106, 107
[] (regex operator), 261
[ˆ] (regex operator), 261
+ = operator, 220, 235, 237
– = operator, 220
@ character, 70, 246, 247, 749
(), forcing precedence with, 110
: (colon) operator, 185
, (comma) separator, 400

A
ABCs of WCF, 710–711. See also WCF
Abort () method, 297, 298
aborting threads, 297–301
abstract base classes, 171, 186

interfaces v., 171, 211
abstract keyword, 69, 186, 195, 750
abstract methods, 186–189
access modifiers, 133, 200–201

internal, 133, 200–201
private, 133, 142, 146
protected, 133, 200–201
public, 133

accessors
get, 140, 141, 142, 146, 749
set, 140, 141, 142, 146, 749

Active Server Pages .NET. See ASP.NET
ActiveSync, 596, 598, 603, 604, 606,

612, 614
Add () method, 214, 215, 405, 420
Add New Item dialog, 605, 742
Add New Smart Device Project dialog, 579
Add Reference dialog, 470, 757
Add Service Reference dialog, 689, 697, 698, 708,

718, 727
Add Silverlight Link, 691, 692
Add to Reference button, 764
Add Watch feature, 52
Add Web Reference dialog, 698, 719
AddContact () method, 138
addition operator (+), 108, 279

overloading, 196
string concatenation with, 250, 257

Index

bindex.indd 781bindex.indd 781 10/1/08 12:04:42 PM10/1/08 12:04:42 PM

782

AddNumbers () method, 135, 136
addresses (WCF service), 710, 711
AddTwoNumbers () function, 221, 222, 224
Administrator (Vista), 493, 495
ADO.NET, 425, 438, 758. See also pubs sample

database
LINQ to DataSet and, 438
pubs database and, 438

AfterInstall event, 606
AfterInstall event handler, 608
Age () method, 180, 181
Aggregate () function, 443
aggregate functions, 435, 442–443
Aggregation operators, 432
AJAX, 560, 617, 759

Control Toolkit, 561–562
definition of, 560
Extender controls, 561, 562
Extensions, 560
ModalPopupExtender control, 566–572
ScriptManager control, 563
Silverlight v., 675
UpdatePanel control, 563–564
UpdateProgress control, 565–566
WCF services and, 741–745

AjaxControlToolkit–Framework3.5–NoSource.zip,
561, 562

AjaxControlToolkit–Framework3.5.zip, 561
AJAX–enabled WCF Service template, 741, 743
AJAX–enabling an ASP.NET web page, 563
AlarmClock class, 232, 233, 234, 235, 240
AlarmClockEventHandler, 238
AlarmTime property, 233, 235
algorithms. See hashing algorithms
alias, namespace, 485
AllNumbersZeroException class, 393,

394, 395
Allow Anonymous Connections checkbox, 505
Alphabetical view, 28
anchor points, 24
AND operator (&&), 106, 107
Animations project, 645–650
Animations2 project, 650–654
anonymous methods, 225–226
anonymous types, 78, 128–130

immutable, 129
LINQ and, 436–437
LINQ to DataSet and, 441–442
literals and, 130

app.config file, 512
Append () method, 258, 259
AppendAllText () method, 327
AppendFormat () method, 259
AppendLine () method, 259

application development
ASP.NET web applications, 545–572
Silverlight applications, 617–694
WCF and, 695–745
Windows applications, 503–543
Windows Mobile applications, 573–616

Application Downloading Complete message, 613
Application Files folder, 541, 542
Application Install dialog–Security Warning, 536
application manifest (PhotoViewer), 541–542
application settings (PhotoViewer), 508–513

default values for, 510
definitions for, 510–512
FTP_SERVER, 509
Password, 509
purpose of, 509
scope for, 510
types for, 510
UserName, 509

application testing. See unit tests
ApplicationDeployment static class, 540
applications, service oriented, 695. See also WCF
architecture

LINQ, 425–426
Silverlight, 620–621

Area () method, 187, 189, 192, 207
AreEqual () method, 56, 58, 59
args parameter, 68
ArgumentException error, 420
arguments

parameters v., 135
passing, into methods, 135–137

ArithmeticException exception, 383,
384, 385

Array base class, 399
array initializer, 402
ArrayList class, 405–407
arrays, 87–88, 397–404

arrays of, 402–403
copying, 404
defined, 397
dynamic, 405–407
elements, accessing, 400
initialization of, 398–399
of integer values, 429
jagged, 402–403
lines, 402
multidimensional, 400–401
num, 398, 399, 404
parameter, 403–404
Point, 402
rank specifier in, 398
sorting, 399–400
string, 68, 427, 428, 429, 430

AddNumbers () method

bindex.indd 782bindex.indd 782 10/1/08 12:04:42 PM10/1/08 12:04:42 PM

783

In
de

x

as keyword, 69, 161, 750
as operator, 178–179
AsDataView () method, 441
ASMX Web Services. See Web Services
ASP, classic, 546
.asp extension, 546
ASP.NET, 758

AJAX. See AJAX
.aspx extension and, 546
data binding, 547–548

GridView control and, 549–554
history, 545–546
IIS and. See IIS
LinqDataSource control, 547, 550, 555, 556, 558, 572
requirements for, 546–547
Silverlight v., 675
web applications, 545–572
Web Development Server, 696–697, 714
web page, AJAX–enabling, 563

.aspx extension, 546. See also Default.aspx
assemblies (.NET), 6–8, 467–499

contents of, 468–469
defined, 467
directory locations of, 758
in GAC, 486, 492–494
library, 467
manifest of, 469
metadata, 467, 468
modules and, 468, 474–480
MSIL and, 6–8, 468
multi–file, 469–480
namespaces and, 480–486
Object Browser and, 763–764
parts, 467
private, 486
process, 467
resources, 467
shared, 486–492
single–file, 469
type metadata, 467, 468
versioning, 490–491, 492, 494

Assembly Cache Viewer, 493
AssemblyFileVersion attribute, 491, 494
AssemblyInfo.cs file, 490, 491, 493
AssemblyVersion attribute, 491, 493, 494
assignment operators, 103–105, 109
asymmetric encryption, 350–353, 487
AsymmetricDecryption () function, 352
AsymmetricEncryption () function, 351
AsyncCallback delegate, 224
asynchronous callbacks, 222–225

threading and, 225
Asynchronous JavaScript, 560. See also AJAX
at (@) character, 70, 246, 247, 749

atomic increment/decrement operations, 304
attributes, 162–165. See also specific attributes

applied to classes, 164
CLR, 163–164
custom, 164–165

AttributeUsage attribute, 165
authors table, 438, 439, 440, 458, 459
Auto Hide button, 24, 25
automatic properties feature, 145–146, 173
automobile computing devices, 574
auto–play (Media project), 657–658
Autos window, 53
Average () function, 443

B
BackgroundCssClass attribute, 571
BackgroundWorker control, 293, 315–319
bare–bones application. See Silverlight
base class, 184. See also abstract base classes;

specific base classes
base class constructors, calling, 203–204
Base Class Library (BCL), 5, 758, 759
base keyword, 69, 187, 188, 203, 750
Base64 encoding, 488
Base64Codec, 488, 491, 495, 496
Base64Codec.dll assembly, 494
BASIC endpoint, 715, 716, 717
BasicHttpBinding, 712, 714, 716, 717, 719, 720
BCL. See Base Class Library
BeginInvoke () method, 224, 312
BeginPrint event, 527, 529
BeginRead () method, 335
binary serialization, 359–365
BinaryReader class, 329
BinaryWriter class, 329
bindings (WCF), 710, 711, 712

BasicHttpBinding, 712, 714, 716, 717, 719, 720
MexHttpBinding, 712, 717
MsmqIntegrationBinding, 712
NetMsmqBinding, 712
NetNamedPipeBinding, 712
NetPeerTcpBinding, 712
NetTcpBinding, 712, 714, 724, 725, 735
WSDualHttpBinding, 712
WSFederationHttpBinding, 712
WSHttpBinding, 706, 712, 714, 716, 719, 720

booking tickets. See WCF ticketing service
Bookmark class, 359, 360, 362, 363
bool (keyword), 69, 750
bool (value type), 80
Branch class, 289, 290, 291
BranchNamesCollection class, 291
break keyword, 69, 94, 95, 99–100, 750

break keyword

bindex.indd 783bindex.indd 783 10/1/08 12:04:43 PM10/1/08 12:04:43 PM

784

breakpoints, 49–50
browsers

Firefox, 560, 618
Internet Explorer, 536, 554, 560, 618, 623
Safari, 618
Silverlight and, 618

Brush Transform tool, 639
btnCreateFolder, 506
btnDeletePhoto, 506
btnPreview control, 527
btnPrint control, 527
btnRemoveFolder, 506
btnUploadPhotos, 506
BufferedStream class, 331, 333–334
Build the Help File button, 776
BuildDirectory () function, 516, 519
BuildReflectionData.bat batch file, 774
buttons. See specific buttons
byte (keyword), 69, 750
byte (value type), 80

conversion, 89
range, 80

byteArrayToString () function, 357

C
C# compiler (csc.exe), 64–66
C# language

application development with. See application
development

foundations, 61–123
object–oriented programming. See object–oriented

programming
strongly typed, 78, 89, 280, 281, 447
syntax, 68–123

‹c› tag, 768, 771
CAB (cabinet) file, 598–603
cabinet (CAB) file, 598–603
Calculation class, 209, 210
callback delegate, 221, 222
CallbackContract property, 731
CallBackFunction () function, 744
callbacks, 728

asynchronous, 222–225
defined, 220, 728
implementing

delegates and, 220–222
WCF, 728–741

synchronous, 222
calling base class constructors, 203–204
calling WCF services, 710
calling Web Services, 293, 710
CallMathUtil () function, 478, 479
CallMathUtil () method, 472, 473

CallStringUtil () function, 478, 479
CancelAsync () method, 319
CancelControlID attribute, 571
CanSeek (), 338
Canvas control, 624–626, 628, 635, 636, 640, 641,

644, 659
capture of signature, 677–678
cascade–delete operations, 464
case keyword, 69, 750
case, string, 254
casting

to interfaces, 177–178
type, 90
type conversion, 89–92

catch keyword, 69, 750
CEAPPMGR.EXE, 606
cgacutil.exe utility, 577
chaining

constructor, 149–151
delegates, 217–220
exception, 387–389

char (keyword), 69, 750
char (value type), 80

conversion, 89
range, 80

checked keyword, 69, 90, 750
CheckForUpdate () method, 540
.chm (MSDN–style HTML Help format), 773, 780
Choose Toolbox Items dialog, 23
cinema ticketing service.

See WCF ticketing service
circle, circumference of, 189
Circle class, 189, 190, 204
circularly linked lists, 284
circumference, of circle, 189
class keyword, 69, 126, 750
class libraries (.NET Framework), 4–5, 66

BCL, 5, 758, 759
FCL, 5
generics and, 280–284
Object Browser and, 759–764

Class Library template, 604
Class2.cs, 481
classes, 66, 125–126. See also specific classes

abstract. See abstract base classes
attributes applied to, 164
base, 184
Contact. See Contact class
contracts for, 171, 181. See also interfaces
defining, 126
derived, 184
generic, 268–269

LinkedList ‹T›, 284–287
implementing, 171, 173–175, 181
instance of, 127–128. See also instantiation

breakpoints

bindex.indd 784bindex.indd 784 10/1/08 12:04:43 PM10/1/08 12:04:43 PM

785

In
de

x

members. See members
sealed, 191–192
static, 156–157
structs v., 165–166, 169
in System.Collections.Generic namespace, 280–281
as templates, 125, 127

classic ASP, 546. See also ASP.NET
ClassLibrary1 project, 480
ClassLibrary1.dll, 481
ClassLibrary2 project, 481, 482
ClassLibrary3 project, 482, 483, 484
ClassLibrary3.dll, 484
clean as you go, 765. See also documentation
ClearItems () method, 290
Click event, 228
ClickOnce, 503, 534–536
ClientBin folder, 692
clients, 171

smart, 534
for WCF ticketing service, 736–740

client–server socket application, 338–340
CLR (Common Language Runtime), 3–4

attributes, 163–164
execution engine, 621
JIT compiler, 4, 9, 467, 499
object destroying and, 154

coalescing operator, null, 83
code

documenting, 74–78, 765–780
locked, 305
managed, 3
refactoring, 39–48
reuse, generics and, 271
stepping through, 51
unmanaged, 3, 4, 154, 155
view, 32–34

Code and Text Editor, 34–39
Code Editor, 35, 37, 49, 120, 121, 563
code generator, 144
Code Snippet feature, 35–37
‹code› tag, 768, 771
code–behind, 30, 31
Collapse All Feeds MenuItem control, 596
CollapseAll () method, 596
collection classes, 397
collections interfaces, 397, 404–405.

See also arrays
Collection‹T› class, 288, 289, 290, 291

List‹T› class v., 291
colon (:) operator, 185
COM objects, 23, 154, 155
comma separator (,), 400
comments, 74
Common Language Runtime. See CLR
Common Type System (CTS), 85

communication models. See also callbacks
one–way (simplex), 700, 713, 723, 731
request/response, 700, 713, 728
two–way (duplex), 700, 713

communication protocols
HTTP, 534, 546, 547, 560, 618, 700, 710, 711, 712
MSMQ, 710, 712
named pipes, 710, 711, 712
SOAP, 618, 699, 700, 706, 712
TCP, 331, 338, 339, 710, 711, 726
WCF, 710

Compare () method, 418
CompareTo () instance method, 249
CompareTo () method, 273, 415, 416, 417
comparing strings, 248–249
CompositeType class, 703, 707
Compress () function, 353, 354, 356
compressions, 353–354
concatenating strings, 250–251

StringBuilder class and, 257–259
ConcurrencyMode property, 734
conditional operator (? :), 93, 109
Configuration Editor, WCF Service, 714, 724
Configure Where Expression dialog, 557
conn object, 155
Console.WriteLine () method, 30, 254
const keyword, 69, 750
constants, 74
constraints, in generic types, 271–275
constructed types, 269
constructor chaining, 149–151
constructors, 146–165

base class, calling, 203–204
copy, 152–153
default, 147

structs and, 166
XML serialization and, 374–375

inheritance and, 202
object initializers v., 154
static, 151–152

ConsumeWCFService, 708
Contact class, 126

access modifiers in, 133
automatic properties, 145–146
CLR attributes and, 163–164
constructors and, 147, 148, 149
copy constructor in, 152–153
instance members, 131
instance of, 127–128
instances, testing for equality in, 158–159
LINQ and, 436–437
members, 126, 131
object initializers and, 153–154
Obsolete attribute applied to, 164
partial classes, 126–127

Contact class

bindex.indd 785bindex.indd 785 10/1/08 12:04:44 PM10/1/08 12:04:44 PM

786

Contact class (continued)
partial methods, 143–145
properties and, 139–140
static constructors and, 151–152
static member, 132
ToString () method and, 161–162

Contains () method, 406
ContainsKey () method, 420
contextual keywords, 749–750, 754–755
continue keyword, 69, 102, 750
contracts

for classes, 171, 181. See also interfaces
WCF, 710, 711, 712

data, 712
fault, 712
message, 712
operation, 712
service, 712

controls. See also specific controls
missing, 25
for PhotoViewer, 506–508
Toolbox and, 22–25

Conversion operators, 432
conversions. See casting
ConvertToTimeSpan () function, 669–670
CoolLabs.net namespace, 482, 485
Coordinate struct, 166, 167, 168, 276
copy constructor, 152–153
Copy () instance method, 251
Copy Local property, 471, 496
Copy () method, 327, 404
copying arrays, 404
CopyTo () method, 251, 259
CopyToDataTable () method, 449, 450
Count () function, 435, 442, 443
Count () method, 429
count static member, 132
counter, 258
Cradle, 596, 597
crashing, 377
Create Folder button, 522
Create () method, 322, 327, 518
Create Strong Name Key dialog, 490
Create Unit Tests, 54–56
CreateDirectory () method, 324
CreatePanel () function, 584
CreateSubdirectory () method, 322
CreationTime property, 322, 323
‹creator› element, 456
Credit () function, 305, 310
critical section, 305, 308, 320
cryptography, 487
cryptography services, 343

encryption/decryption, 347–353
hashing, 344–347

random–number generation, 285, 286, 287, 343,
346, 348, 349

CryptoStream class, 331, 348–349
csc.exe. See C# compiler
CSS, 560, 567, 571
CTS (Common Type System), 85
Current property, 412
current scope, 74
currentDeployment property, 540
Custom Actions tab, 610, 611
custom attributes, 164–165
custom exceptions, 393–395
custom installer (for RSS Reader), 604–608
custom stacks, 255–266
Customers table, 444, 445, 446, 449
Customize dialog

Menu bar, 18
Toolbar, 20–21

customizing XML serialization, 372–374

D
DAM (digital asset management) cataloging program, 620
data binding, 547–548

GridView control and, 549–554
data contract, 712
data members, 131
Data property, 379
data reshaping, 441–442
Data Source Configuration Wizard, 550
data types, 78–85. See also anonymous types; reference

types; typing; user–defined data types; value types
databases

modeling, 548–549
Northwind, 439, 443, 444, 447
pubs, 438, 439, 458, 548, 549, 572

DataClasses1DataContext class, 460
DataClasses1.dbml, 458, 459
DataClassesDataContext object, 549, 550, 554
DataClasses.dbml, 548, 549
DataContract attribute, 703
DataSets, 438
DataTables, 438

queries saved to, 449–450
dateCreated variable, 365
DateTime class, 457
Debit () function, 305
DEBUG symbol, 113, 117
debugging, 49

breakpoints and, 49–50
multiple projects, 27

decimal (keyword), 69, 751
decimal (value type), 80
Decode () method, 488
Decompress () function, 354, 355, 356

Contact class (continued)

bindex.indd 786bindex.indd 786 10/1/08 12:04:44 PM10/1/08 12:04:44 PM

787

In
de

x

decompressions, 354–358
Decrement () method, 304
decryption, 347–353
deep serialization, 364
default constructors, 147

structs and, 166
XML serialization and, 374–375

Default FTP Site item, 505
default keyword, 69, 82, 94, 398, 751

in generics, 270–271
default value, of value types, 81–82
Default.aspx, 549, 552, 555, 556, 559, 563, 565, 567,

568, 571, 744
deferred query execution, 432–434
#define, 111–115
/define compiler option, 114, 117
DeflateStream class, 353
delegate keyword, 69, 215, 751
delegates, 213–226

= operator and, 220, 235, 240
callbacks implemented with, 220–222
creating, 214–216
defined, 213
events v., 235–237, 240
generic, 280
multicast, 217–220
ParameterizedThreadStart, 301, 302, 303
ThreadStart, 295, 301, 302

delegates chaining, 217–220
Delete () method, 322, 324, 327
DeleteOnSubmit () method, 463
delete.png, 569
delta, 58, 59
deployment

PhotoViewer, 533–543
RSS Reader application, 598

CAB file, 598–603
target device prerequisites, 615–616

shared assemblies, 488
deployment manifest (PhotoViewer), 542–543
derived class, 184
DerivedClass, 194
DES algorithm, 347
deserialization, 370–371
DeSerialize () function, 362
Deserialize () method, 370
Designer window, 17, 30–31
destructors, 154–155
detecting null fields, 449
development settings, 12–14
Diagonal () method, 191, 198, 199
dialog

Add New Item, 605, 742
Add New Smart Device Project, 579
Add Reference, 470, 757

Add Service Reference, 689, 697, 698, 708, 718, 727
Add Web Reference, 698, 719
Application Install dialog–Security Warning, 536
Choose Toolbox Items, 23
Configure Where Expression, 557
Customize

Menu bar, 18
Toolbar, 20–21

Edit Custom Component Set, 761
File Download dialog–Security Warning, 536
Internet Explorer dialog–Security Warning, 536
New Project, 15, 16, 635, 676
Rearrange Commands

Menu bar, 18–19
Toolbar, 21

Service Reference Settings, 718
Windows Security Alert, 726

dictionary, 420
Dictionary ‹K, T› class, 283, 284, 420, 422, 734
Dictionary object, 420–422
digital asset management (DAM) cataloging program, 620
‹DIR›, 519
directories, 321–327

files and, 321–327
manipulating, 321–327

directory (PhotoViewer)
creating, 522
removing, 523
tree, 515–521

Directory class, 324–325
DirectoryInfo class v., 325
example, 324–325
methods, 324

DirectoryInfo class, 322–324
Directory class v., 325
example, 323–324
methods, 322
properties, 322

Disassembler, MSIL, 7, 468, 491
Discover button, 698, 708
disk I/O, 353, 375
DisplayCurrentPlayBack () function, 669–671
displaying publisher’s name, 554–555
DisplayMessage () function, 722
displayPopup () function, 568
Dispose () method, 154, 155
DistanceFromOrigin () method, 196
div element, 569, 570
DivideByZeroException, 381, 382, 384,

385, 386
division operator (/), 108
DLL Hell, 486
DLLs (library assemblies), 467
Dns class, 585
do keyword, 69, 751

do keyword

bindex.indd 787bindex.indd 787 10/1/08 12:04:45 PM10/1/08 12:04:45 PM

788

documentation (of code), 765–780
building/viewing, 776–779
distributing, 779–780
generating, 773
Sandcastle tool, 78, 765, 773

downloading, 774
installing, 774
launching, 775–776

XML, 74–78, 765–773
DoSomething () function, 294, 295, 296, 297, 299,

300, 301, 302, 303
double (keyword), 69, 751
double (value type), 80
doubly linked lists, 281, 284
do–while loop, 99
DownloadFeed () function, 585
DownloadImage () function, 520, 521
DownloadProgressChanged(), 667, 671
DoWork event handler, 317, 318
DoWorkEventArgs, 318
DrawSignature () subroutine, 684
DropDownList control, 556
DSA algorithm, 351
duplex communication model, 700, 713
dynamic arrays, 405–407

E
Edit Custom Component Set dialog, 761
Edit WCF Configuration, 714, 735
e.Graphics.DrawRectangle () method, 529
e.Graphics.DrawString () method, 529
Elapsed event, 229, 230, 233
Element operators, 432
elements. See specific elements
#elif, 115–117
‹Ellipse› element, 624, 625, 629
Ellipse object (RoundButton project), 636, 637, 638,

639, 640
EllMarkerMouseDown (), 667, 671
EllMarkerMouseUp (), 667, 671
#else, 115–117
else keyword, 69, 751
email validation, with regex, 263
Employee class, 174, 181, 183, 184, 274, 275, 414
emulators, Windows Mobile, 577, 596–597
Encapsulate Field, 44–46
encapsulation, 139
Encode () method, 488
encryption, 347–353

asymmetric, 350–353, 487
defined, 347
hashing v., 347
private key, 347, 487

public key, 350, 487
symmetric, 347–350, 487

#endif, 115–117
EndInvoke () method, 312
endpoints, 700, 711

BASIC, 715, 716, 717
multiple, WCF service and, 714–720
WS, 714, 716

Endpoints node, 714, 715
EndPrint event, 527, 529
EndRead () method, 335
#endregion, 120–122
EndsWith () instance method, 253
Enqueue () method, 424
Enter () method, 308
entry point, 67
enum keyword, 69, 85, 751
enumerations, 85–87
environment settings, 12–13
equality

reference, 157, 159
testing for, 158–159

strings, 248
value, 159

Equality operators (LINQ), 432
equals, implementing, 159–161
Equals () method, 157, 158, 159, 160,

161, 248
equals sign (=)

= (assignment operator), 103, 106
delegates and, 220, 235, 240

== (equal), 105, 248
›= (greater than or equal to), 105
‹= (less than or equal to), 105
!= (not equal), 105

#error, 117–118
Error List window, 17, 29–30
escape characters, 243–247

list, 246
Unicode and, 247

event handlers, 229–232. See also specific event
handlers

defined, 227
MediaPlayer project, 667, 671–675
RSS Reader application and, 589–596
state information passed to, 237–240

event keyword, 69, 751
EventArgs class, 228, 233
event–driven programming, 226
EventHandler, 233
events, 226–240. See also specific events

defined, 213, 227
delegates v., 235–237, 240
handling, 229–232
implementing, 232–235

documentation (of code)

bindex.indd 788bindex.indd 788 10/1/08 12:04:45 PM10/1/08 12:04:45 PM

789

In
de

x

Events icon, 29
‹example› tag, 768, 771
exception chaining, 387–389
Exception class, 379, 380

properties, 379
exception objects, 389–391
‹exception› tag, 768
exceptions

custom, 393–395
defined, 377
examples of, 377
handling, 377–395

try–catch statement and, 378–381
inner, 387
multiple, handling, 381–383
rethrowing, 386–387
ThreadAbortException, 298
throwing, 383–387

EXE, 467. See also assemblies
executables, 713
Exists () method, 324, 327
Exists property, 322, 323
Exit () method, 308
exiting from loops, 99–102
explicit interface members implementation, 208–211
explicit keyword, 69, 751
explicit type conversion, 90–92
explicit typing, 88
Expression Blend 2, 620, 635–644

RoundButton project and, 635–644
trial download, 635

Expression Design, 620
Expression Media Encoder Preview Update, 620
Extensible Application Markup Language (XAML).

See XAML
extension methods, 198–199

LINQ and, 430–436
extern keyword, 69, 195, 751
Extract Interface feature, 46–48
Extract Method feature, 40–42

F
fall, rate of, 653–654
fall–throughs, 95
false keyword, 69, 751
fault contract, 712
FCL. See Framework Class Library
Fibonacci () method, 470, 474
Field () extension method, 446, 447, 448, 449
FIFO (first in, first out) data structure, 423
files

defined, 321
directories and, 321–327

manipulating, 321–327
reading/writing to, 327–328
streams v., 321

File class, 326–327
File Download dialog–Security Warning, 536
File Explorer, 577, 602
file explorer, creating, 329–331
file I/O, 312, 337, 375
FileInfo class, 326–327
FileStream class, 331, 334–337
FilesUtil class, 156
FileSystemWatcher class, 230, 231
Fill attribute, 630, 631
finally keyword, 69, 751
finally statement, 298, 391–393
Find () method, 271, 272, 273
findName () method, 658, 663
Firefox browser, 560, 618
first in, first out (FIFO) data structure, 423
First () method, 463
fixed keyword, 69, 751
flattening data. See serialization
float (keyword), 69, 751
float (value type), 80

conversion, 89
range, 80

floating point numbers, 58–59
converting, 91–92

flow control, 92–95
for keyword, 69, 751
for loop, 96–98
forced immediate query execution, 434–436
forcing precedence, 110
foreach keyword, 69, 751
foreach loop, 98, 400, 433, 437, 441, 442
Form1_Load event handler, 313, 314, 709
Format () method, 250, 255
format specifier, 255
FormatException, 381, 382
formatting

numbers, 255, 256, 257
strings, 254–257

Forms. See Windows Forms
foundNames variable, 42
Framework Class Library (FCL), 5
from keyword, 69, 754
from–where–select format, 428
fs.Close () statement, 392
FTP Server

configuration of, 504–506
deleting photos, 525–526
information for access to, 508–509
uploading photos to, 524–525

FTP service, 504–506
FTP_SERVER, 509

FTP_SERVER

bindex.indd 789bindex.indd 789 10/1/08 12:04:45 PM10/1/08 12:04:45 PM

790

FtpWebRequest, 503, 518
FtpWebResponse, 503, 518, 521
FullName property, 322, 323
function members, 131, 134–155
functions, 67. See also specific functions

aggregate (LINQ), 435, 442–443
methods v., 134
pointers to. See delegates
subroutines v., 67

G
GAC. See Global Assembly Cache
gacuitl.exe utility, 493, 577
garbage collector, 154, 155, 751
General Packet Radio Service (GPRS)

connections, 353
generated code, 144
GenerateIV () method, 349
Generation operators, 432
generic classes, 268–269. See also specific generic

classes
LinkedList ‹T›, 284–287
LinkedListNode ‹T›, 285

generic delegates, 280
generic interfaces, 275–276
generic methods, 276–278
generic operators, 278–279
generic type interference, 277
generic types, 268

constraints in, 271–275
multiple type parameters in, 275

generics, 265–291, 405
advantages of, 271
code reuse and, 271
collections interfaces and, 405
default keyword in, 270–271
defined, 265
MSIL and, 265
.NET Framework class library and, 280–284
process of, 265–267
type safety and, 271, 410

get accessor, 140, 141, 142, 146, 749
get keyword, 69, 749, 750, 754
getAge () function, 706, 707
GetCurrentDirectory () method, 324
GetData () method, 704
GetDataUsingDataContract () operation, 705
GetDate () method, 137
GetDirectories () method, 322, 324
GetDirectoryListing () function, 516, 518
GetEnumerator () method, 409, 410, 411, 431
GetFiles () method, 322, 324
GetHashCode () method, 157

GetHostEntry () method, 585
GetHostName () method, 585
GetIniPath () function, 607
GetLowerBound () method, 401
GetParent () method, 325
GetResponse () method, 518
GetResponseStream () method, 518, 521
GetServerTime () method, 743
GetSignature () function, 688
GetSignatureLines () function, 683
GetType () method, 157
GetUpperBound () method, 401
GetWindowsCEApplicationManager () function, 607
GetWindowText () function, 257
Global Assembly Cache (GAC), 471, 492

cgacutil.exe utility and, 577
gacuitl.exe utility and, 493, 577
location of, 492
shared assemblies in, 486, 492–494

global variables, 72
Google Spreadsheets, 560
goto keyword, 69, 101–102, 751
GPRS (General Packet Radio Service)

connections, 353
greater than (›), 105
greater than or equal to (›=), 105
GridView control, 549–554
group keyword, 754
Grouping operators, 432
GUID, 731, 734
GZipStream class, 353

H
handling events, 229–232
handling exceptions, 377–395. See also exceptions
handling multiple exceptions, 381–383
hash value, 344
hashing, 344–347

encryption v., 347
salted, 346–347
for shared assembly, 488

hashing algorithms
DES, 347
DSA, 351
MD5 implementation, 344, 345, 346
RC2, 347
Rijndael, 347
RSA, 351, 352
SHA1 implementation, 344, 345, 346
TripleDES, 347

HasMorePages property, 530
heap, 85, 169
Hell, DLL, 486

FtpWebRequest

bindex.indd 790bindex.indd 790 10/1/08 12:04:46 PM10/1/08 12:04:46 PM

791

In
de

x

HelloWorld project
creation, 62–64
csc.exe and, 64–65
dissection, 66–67

Helper class, 498
helper functions, 121
helper methods, for RSS Reader application, 583–589
HelpFileFormat drop–down listbox, 775
HelpFileFormat property, 779, 780
HelpLink property, 379, 389
hosting WCF services, 700, 713
HResult property, 379
HTC Touch Cruise, 575
HTML Help 2 (Visual Studio .NET Help format), 773
HTML Help format, MSDN–style (.chm), 773, 780
HTML Help Workshop, 774
HTTP protocol, 534, 546, 547, 560, 618, 700, 710,

711, 712

I
IAddress interface, 174, 176, 177, 178
IAsyncResult, 224
ICircle interface, 205
ICollection‹T› interface, 405
IComparable‹Employee› interface, 274
IComparable‹T› interface, 272, 405, 413–420
IComparer‹T› interface, 405, 413–420
IConsoleLoggin interface, 209, 210
ID attribute, 570
IDE. See Visual Studio 2008
identifiers, keywords as, 749–750
IDictionary‹T› interface, 405
IDisposable interface, 154, 155
IEnumerable interface, 410, 430, 431
IEnumerable‹Contact›, 436
IEnumerable‹DataRow›, 426
IEnumerable‹string›, 428
IEnumerable‹T› collection, 426
IEnumerable‹T› interface, 405, 410–413
IEnumerable‹XElement›, 426
IEnumerator interface, 410
IEnumerator‹T› interface, 405, 410–413
#if, 115–117
if keyword, 69, 751
if–else statement, 92–93
IFileLogging interface, 209, 210
IIS (Internet Information Services), 504, 534, 545,

546, 547, 696, 700, 713
IL (Intermediate Language), 467. See also MSIL
ildasm Base64Codec.dll, 491
ildasm (MSIL Disassembler) tool, 7, 468, 491
IList‹T› interface, 405
Image element, 646, 648, 650

‹ImageBrush› element, 634
ImageList1, 508
IManager interface, 175, 176
IMessageService.cs, 722
Immediate window, 53
immutable

anonymous types, 129
strings, 250, 257

implementation inheritance, 184–204
implementing callbacks

delegates and, 220–222
WCF, 728–741

implementing classes, 171, 173–175, 181
implementing equals, 15–161
implementing events, 232–235
implicit keyword, 69, 197, 751
implicit type conversion, 89–90
implicit typing, 88–89, 428
IMyStack interface, 275
in keyword, 69, 752
‹include› tag, 768
Increment () method, 304
indexers, 407–410
IndexOf () instance method, 253
IndexOfAny () instance method, 253
inetmgr command, 504
inheritance, 157, 183–211

base class, 184
constructors and, 202
derived class, 184
implementation, 184–204
interface, 204–211
keywords for, 195
process of, 183–184
purpose of, 183
single–class, 185
types of, 184

.ini file, 606, 607, 608, 615
initialization

of arrays, 398–399
of objects, 153–154

Initialization Vector (IV), 348, 349, 350
InitializeComponent () function, 227
initializers, object, 153–154, 173
inline statements, 225
inner exception, 387
InnerException property, 379, 389
InputBox () function, 591
Insert () instance method, 250, 259
Insert () method, 406
inserting strings, into strings, 251
InsertItem () method, 290
InsertNumber () function, 285, 286
InsertOnSubmit () method, 461, 462
Installer Class template, 605

Installer Class template

bindex.indd 791bindex.indd 791 10/1/08 12:04:46 PM10/1/08 12:04:46 PM

792

installers (for RSS Reader)
custom, 604–608
MSI, 609–615

instance members, 131–132
instance methods. See specific instance methods
InstanceContextMode property, 723, 724
instantiation, 127–128
int (keyword), 69, 752
int (value type), 80

conversion, 89
range, 80

integer values, array of, 429
integrated development environment. See Visual

Studio 2008
IntelliSense, 37–39, 190, 199, 267, 384, 437, 441, 484
interface inheritance, 204–211
interface keyword, 69, 752
interface members implementation, explicit, 208–211
interfaces, 154, 171–181. See also specific interfaces

abstract classes v., 171, 211
casting to, 177–178
collections, 397, 404–405
as contracts, 171, 181
defining, 172
extending, 175–177
generic, 275–276
IEnumerable, 430, 431
IEnumerator, 410
implementations, 173–175

multiple, 174–175
overriding, 179–181

IMyStack, 275
naming convention, 172
in System.Collections.Generic namespace, 283

Interlocked class, 304
Intermediate Language (IL), 467. See also MSIL
internal access modifier, 133, 200–201
internal keyword, 69, 133, 200, 201, 752
Internet Explorer, 536, 554, 560, 618, 623
Internet Explorer dialog–Security Warning, 536
Internet Information Services (IIS), 504, 534, 545,

546, 547, 696, 700, 713
into keyword, 69, 754
Intuos Pen Tablet, 675
Invoke button, 704
Invoke () method, 312, 313, 314
InvokeRequired property, 312, 313
I/O operations, 5

disk, 353, 375
file, 312, 337, 375
memory, 375
network, 375

IPAddress.Loopback, 585
iPaq211 Pocket PC, 575
IPerson interface, 172, 173, 174, 177, 178, 181

IPHostEntry object, 585
IQueryable‹T› collection, 426
IRectangle interface, 206, 207
is keyword, 69, 752
is operator, 178–179
IsAlive property, 297
IsConnected () function, 585
IService1.cs, 701, 702, 703, 704, 706
IShape class, 206
IShape interface, 205
IsMatch () method, 260
IsNetworkDeployed property, 540
IsNull () method, 449
isolated storage, of signature, 681–686
ISquare interface, 206
iterators, 407–410
ITicketCallBack interface, 731
ITicketService interface, 731, 734
IV (Initialization Vector), 348, 349, 350

J
jagged arrays, 402–403
JavaScript

Asynchronous, 560. See also AJAX
MySilverlight.js file, 622
RoundButton and, 644–645
Silverlight and, 621, 622, 644–645
Silverlight.js file, 621, 622

JIT (just–in–time) compiler, 4, 9, 467, 499
join keyword, 69, 754
Join () method, 300
Joining operators (LINQ), 432
joining tables, 443–446
just–in–time (JIT) compiler, 4, 9, 467, 499

K
key token, public, 488, 491, 498
KeyCollection class, 421
KeyedCollection‹TItem› class, 288
KeyedCollection‹TKey› class, 288
KeyNotFoundException error, 421
keys. See also encryption

private, 347, 350, 351, 487, 488
public, 350, 351, 352, 487, 488, 491

KeySpline, 650, 653, 654
keywords, 68–69, 749–755. See also specific keywords

access modifiers. See access modifiers
contextual, 749–750, 754–755
evolution of, 750
as identifiers, 749–750
for inheritance, 195
list, 69, 749–755

installers (for RSS Reader)

bindex.indd 792bindex.indd 792 10/1/08 12:04:47 PM10/1/08 12:04:47 PM

793

In
de

x

for loop exiting, 99–102
reserved (list), 750–754
variables as, 70

L
Label control, 312, 313, 314, 320
lambda expressions, 226, 229, 430

anonymous methods and, 226, 229
method syntax and, 430

lambda operator, 430
Language Integrated Query. See LINQ
last in, first out (LIFO) data structure, 265, 281, 422
LastIndexOf () instance method, 253
Learn2develop.net namespace, 481, 482, 483
Length () method, overloaded, 777, 778
Length property, 399, 403
lengthTest () method, 56, 57
less than (‹), 105
less than or equal to (‹=), 105
let keyword, 69, 754
libraries. See class libraries
library assembly (DLL), 467
LIFO (last in, first out) data structure, 265, 281, 422
#line, 118–120
‹Line› element, 628
#line hidden, 120
‹LinearGradientBrush› element, 632
lines array, 402
linked lists, 284

circularly, 284
doubly, 281, 284
singly, 284, 285

LinkedList ‹T› generic class, 284–287
LinkedListNode ‹T› generic class, 285
LINQ (Language Integrated Query), 425–465

aggregate functions, 435, 442–443
anonymous types and, 436–437
architecture, 425–426
Contact class and, 436–437
extension methods and, 430–436
implicit typing and, 89
operators

Aggregation, 432
Conversion, 432
Element, 432
Equality, 432
Generation, 432
Grouping, 432
Joining, 432
Ordering, 432
Partitioning, 432
Quantifiers, 432
Restriction, 432
Selection, 432

Set, 432
SQL queries v., 428

LINQ to DataSet, 426, 438–450
ADO.NET and, 438
anonymous types and, 441–442
null fields, 449
reshaping data, 441–442
table joining in, 443–446
typed DataSet feature, 446–448

LINQ to Entities, 426
LINQ to Objects, 426–429
LINQ to SQL, 426, 458–465, 548–549

Classes template, 548
database modeling with, 548–549
O/R Designer and, 458–460

LINQ to XML, 426, 450–457
querying elements with, 452–453, 456–457
RSS document (example), 453–457
usefulness of, 453
XML trees, 450–452

LinqDataSource control, 547, 550, 555, 556, 558, 572
‹list› tag, 768
list traversal, 284, 287
lists, linked, 284
List‹T› class, 288, 407

Collection‹T› class v., 291
literals, anonymous types and, 130
Load () method, 452, 454
Loaded attribute, 652
local variables, 72
lock keyword, 69, 304–307, 752
lock, mutually exclusive, 305
locked code, 305
LogEmail () method, 143, 144
LogError () method, 208, 209, 210
logical operators, 106–108, 109

&& (AND), 106, 107
! (NOT), 106, 107
| | (OR), 106, 107
short–circuit evaluation, 107–108

long (keyword), 69, 752
long (value type), 80

conversion, 89
range, 80

LongCount () function, 443
loop variant, 258
loops, 96–99

for, 96–98
defined, 96
do–while, 99
exiting from, 99–102
foreach, 98, 400, 433, 437, 441, 442
iterations, skipping, 102
nesting, 97–98
while, 99

loops

bindex.indd 793bindex.indd 793 10/1/08 12:04:47 PM10/1/08 12:04:47 PM

794

M
Main () function, 300, 382
Main () method, 67, 68, 214
managed code, 3
Manager class, 184, 275
manifest

application(PhotoViewer), 541–542
of assembly, 469
deployment, PhotoViewer, 542–543
of WinBase64.exe assembly, 498

manipulating
files/directories, 321–327
strings, 247–254

Match () method, 260
Matches () method, 260
matching, on strings, 259–263. See also regular

expressions
mathematical operators, 108–109
MathUtil project, 470–474
MathUtil.dll, 470, 471, 473, 474
MathUtil.netmodule, 476, 479
Max () function, 443
MD5 implementation, 344, 345, 346
Media project (Silverlight 1.0), 654–663

auto–play, disabling, 657–658
creating, 654–656
mirror effect, 658–663

MediaElement element, 655, 658, 663
MediaEnded (), 667, 674
MediaPlayer project (Silverlight 1.0), 664–675

controls, wiring, 667–669
creating, 664
event handlers, 667, 671–675
helper functions, 669–671
slider, 665
user interface, designing, 664–667
XAML code, 666–667

MediaPlayerMouseLeave (), 667, 673
MediaPlayerMouseMove (), 667, 672–673
Member class, 367
MemberAddress class, 367
MemberName class, 367
members (class), 131–132

data, 131
function, 131, 134–155
instance, 131–132
signatures, 148, 205
static, 132

memory
allocation, 85, 169
I/O, 375

MemoryStream class, 331, 337–338
Menu bar, 17–19
MenuItem control, RSS Reader, 581, 582

message contract, 712
Message property, 379
MessageServer project, 720
MessageService.cs, 721, 723
messaging patterns, 713. See also communication

models
Method (), 201
method extraction feature, 40–42
Method () method, 193, 194
method syntax, 429–430
MethodDelegate, 215, 216
methods, 134–138. See also specific methods

abstract, 186–189
anonymous, 225–226
definition of, 134
extension, 198–199
functions v., 134
generic, 276–278
overloaded, 148, 163, 190, 192–195, 777, 778
partial, 143–145
passing arguments into, 68, 135–137
sealed, 191–192
virtual, 145, 189–190
web, 700

methods delegate, 218, 219
MexHttpBinding, 712, 717
Microsoft Intermediate Language. See MSIL
Microsoft Silverlight. See Silverlight
Microsoft Visual Studio 2008. See Visual Studio 2008
Microsoft.VisualBasic.dll library, 591
Min () function, 443
mirror effect, 658–663
missing controls, 25
mobile application platforms, 573. See also

Windows Mobile
ModalPopupExtender control, 566–572
modeling databases, 548–549
modules, assemblies and, 468, 474–480
modulus operator (%), 108, 109
Monitor class, 307–311
Mono (.NET Framework implementation), 4
Moto Q9h, 576
MouseLeftButtonDown event, 677, 678, 679
MouseLeftButtonDown event handler, 684, 685, 686
MouseLeftButtonUp event, 677, 678, 680
MouseMove event, 677, 678, 680
Move () method, 327
MoveNext () method, 410, 412
MSDN–Online style Web pages, 773
MSDN–style HTML Help format (.chm), 773, 780
MSI installer, 609–615
MSIL (Microsoft Intermediate Language), 4

assemblies and, 6–8, 468
Disassembler tool, 7, 468, 491
generics and, 265. See also generics

Main () function

bindex.indd 794bindex.indd 794 10/1/08 12:04:48 PM10/1/08 12:04:48 PM

795

In
de

x

MSMQ, 710, 712
MsmqIntegrationBinding, 712
multicast delegates, 217–220
multidimensional arrays, 400–401
multi–file assemblies, 469–480
multiple endpoints, 714–720. See also endpoints
multiple exceptions, handling, 381–383
Multiple Startup Projects option, 27
Multiple thread value, 734
MultipleEndpointsService, 714, 716, 717
multiplication operator (*), 108
multitasking, 293
multithreading, 293–294, 295, 303, 313. See also

threading
multi–user server application, 340–343
mutually exclusive lock, 305
myDelegate, 314
MyDictionary class, 275
MySilverlight.js file, 622
MyStack class, 266, 268, 269

N
named pipes, 710, 711, 712
namespace keyword, 66, 69, 752
namespaces, 5, 66. See also specific namespaces

aliases, 485
assemblies and, 480–486
Object Browser and, 761, 762

naming convention, interface, 172
narrowing, 90
nested for loop, 97–98
.NET CF. See .NET Compact Framework
.NET Compact Framework (.NET CF), 576–577

versions, 576–577
Windows Mobile 6 Standard application and, 581

.NET Framework
(1.0), 8, 758
(1.1), 8, 758
(2.0), 8, 758
(3.0), 8, 546, 758–759
introduction of, 546
printing in, 526–527
versions, 8–9, 757–759

.NET Framework (3.5), 3–9
ADO.NET. See ADO.NET
ASP .NET. See ASP.NET
assemblies. See assemblies
class libraries, 4–5, 66

BCL, 5, 758, 759
FCL, 5
generics and, 280–284
Object Browser and, 759–764

components, 5, 9

download, 547
features, 759
LINQ. See LINQ
Mono implementation, 4
value types, 80–81
VB.NET. See VB.NET
versions, earlier, 8–9, 757–759

.NET Help format (HTML Help 2), 773
NetMsmqBinding, 712
NetNamedPipeBinding, 712
NetPeerTcpBinding, 712
NetTcpBinding, 712, 714, 724, 725, 735
network I/O, 375
NetworkCredential class, 518
NetworkStream class, 331, 338–343

socket applications
client–server, 338–340
multi–user server, 340–343

new keyword, 69, 87, 127, 153, 169, 180, 190, 194,
398, 400, 401, 752

new project creation, 14–16
New Project dialog, 15, 16, 635, 676
New Service Endpoint, 715
NORMAL symbol, 116, 117, 118
Northwind database, 439, 443, 444, 447
not equal (!=), 105
NOT operator (!), 106, 107
Notepad, 64, 621, 622, 624
NotSupportedException, 338
null coalescing operator (??), 83
null fields, detecting, 449
null keyword, 69, 84, 752
nullable value type, 81–84
num array, 398, 399, 404
numbers

formatting, 255, 256, 257
random generator, 285, 286, 287, 343, 346,

348, 349
numeric data types. See value types

O
Object Browser, 759–764

Add to Reference button, 764
assemblies and, 763–764
Edit Custom Component Set dialog, 761
information in, 760
namespaces and, 761, 762
search capabilities, 762

objects, 125. See also specific objects
creating, from classes, 127–128
destroying, CLR and, 154
exception, 389–391
flattening. See serialization

objects

bindex.indd 795bindex.indd 795 10/1/08 12:04:48 PM10/1/08 12:04:48 PM

796

objects (continued)
initialization of, 153–154
sorting, 413–420

object initializers, 153–154, 173
object instantiation, 127–128
object keyword, 69, 752
Object Relational Designer (O/R Designer),

458–460, 549
object type, 85, 88, 89
ObjectDataSource, 550
object–oriented programming, 67

classes in, 125. See also classes
delegates in, 213. See also delegates
encapsulation in, 139
events in, 213. See also events
inheritance in, 183, 184. See also inheritance
interfaces in, 171. See also interfaces
objects in, 125. See also objects

Objects and Timeline window, 636, 640, 642, 647
ObservableCollection‹T› class, 288
Obsolete attribute, 163, 164
OkControlID attribute, 570
OnCancelScript attribute, 571
one–way communication model, 700, 713, 723, 731
OnOkScript attribute, 571
onTimeUp () method, 234
Opacity attribute, 661
OpenFileDialog class, 524
OpenNetCF’s Smart Device Extension, 577
OpenRead () method, 332
OpenWrite () method, 332
operation contract, 712
OperationContract attribute, 703, 707
operations (web methods), 700
operator keyword, 69, 197, 752
operators, 102–109. See also specific operators

assignment, 103–105, 109
colon (:), 185
conditional, 93, 109
generic, 278–279
lambda, 430
LINQ

Aggregation, 432
Conversion, 432
Element, 432
Equality, 432
Generation, 432
Grouping, 432
Joining, 432
Ordering, 432
Partitioning, 432
Quantifiers, 432
Restriction, 432
Selection, 432
Set, 432

LINQ (list), 432
logical, 106–108, 109
mathematical, 108–109
overloading, 195–198
postfix, 104–105
precedence of, 109–110
prefix, 104–105
primary, 109
regex (list), 261
relational, 105–106, 109
self–assignment, 103–104
unary, 109

O/R Designer (Object Relational Designer),
458–460, 549

OR operator (| |), 106, 107
Order Details table, 444, 445, 446
orderby keyword, 69, 754
Ordering operators, 432
Orders table, 444, 445, 446
Organize Usings, 38
otherContact parameter, 152
out keyword, 69, 137, 752
Output window, 30
OutputPath property, 779
overloaded methods, 148, 163, 190, 192–195

Length (), 777, 778
overloading operators, 195–198
‹overloads› element, 771, 778
override keyword, 69, 195, 752
overriding interface implementations, 179–181

P
PadLeft () instance method, 251
PadRight () instance method, 251
Page () constructor, 683
Page.xaml.js file, 644, 649, 652, 657, 658, 662, 669
painting shapes, 630–634

‹ImageBrush› element, 634
‹LinearGradientBrush› element, 632
‹RadialGradientBrush› element, 633
‹SolidColorBrush› element, 631

‹para› tag, 768
‹param› tag, 768
parameter arrays, 403–404
ParameterizedThreadStart delegate, 301, 302, 303
parameters. See also specific parameters

arguments v., 135
reordering/removing, 42–44
type, in generic type, 275
variable promotion to, 48

‹paramref› tag, 768
params keyword, 69, 403, 752
params parameter, 404

objects (continued)

bindex.indd 796bindex.indd 796 10/1/08 12:04:49 PM10/1/08 12:04:49 PM

797

In
de

x

parent class, 188
Parent property, 322
parent scope, 74
parentheses, forcing precedence with, 110
Parse () method, 92, 457
partial classes, 126–127
partial keyword, 69, 126, 145, 755
partial methods, 143–145

declaring, 144
rules for, 145

Partitioning operators, 432
passing arguments into methods, 135–137

Main () method, 68
by reference, 136
by value, 136

passing parameters to threads, 301–303
Password (application setting), 509
PCs

Pocket, 574–575. See also Smartphones
Pocket PC 2000, 574
Pocket PC 2002, 574
Windows Mobile 5.0 for, 574
Windows Mobile 6 Classic, 574, 575
Windows Mobile 6 Professional, 574, 575
Windows Mobile 2003 for, 574
Windows Mobile 2003 SE for, 574

tablet, 675, 677. See also Signature project
PE format. See Portable Executable format
Peek () method, 423
Pen Tablet, Wacom, 675
Percall service instance, 724
PerformDivision () function, 382, 383, 386
PerformMathOps () function, 216
PerformWebRequest () function, 517, 518, 521, 522,

523, 525
Perimeter () method, 189, 190, 207
Perl, 546
‹permission› tag, 768
PerSession service instance, 724
PhotoViewer (Windows application), 503–504

application manifest, 541–542
application settings and, 508–513
ClickOnce and, 503, 534–536
coding of, 513–514
completed project, 504, 526
controls for, 506–508
creation of, 506–508
deploying, 533–543
deployment location, 536
deployment manifest, 542–543
directory

creating, 522
removing, 523

directory tree for, 515–521
displaying images in, 515–521

FTP Server
configuration of, 504–506
deleting photos, 525–526
information for access, 508–509
uploading photos to, 524–525

print support for, 526–533
programmatically updating, 538–540
publishing, 534–536
rolling back, 541
source code for, 507
testing, 526
updating, 536–538
user.config file, 512, 513

PhotoViewer.exe.config, 512
PhotoViewer.exe.deploy file, 543
Phrases () method, 408
PictureBox control, 521
PictureBox1, 507, 508
P/Invoke (Platform Invoke), 577
pipes, named, 710, 711, 712
Plain Old XML (POX), 618, 700
Platform Invoke (P/Invoke), 577
PlayPauseButtonUp (), 667, 674
plug–in, Silverlight. See Silverlight
plus operator. See addition operator
Pocket PCs. See also Smartphones

Pocket PC 2000, 574
Pocket PC 2002, 574
Windows Mobile 5.0 for, 574
Windows Mobile 6 Classic, 574, 575
Windows Mobile 6 Professional, 574, 575
Windows Mobile 2003 for, 574
Windows Mobile 2003 SE for, 574

Point array, 402
Point class, 195, 196, 197, 402

definition
members, 767
XML comments added, 767–771

PointClass project, 765
pointers, to functions. See delegates
‹Polygon› element, 629–630
‹Polyline› element, 630
Pop () method, 263, 423
PopupControlID attribute, 570
Portable Executable (PE) format, 467
portable media centers, 574
postfix operators, 104–105
POX (Plain Old XML), 618, 700
#pragma warning, 122–123
precedence

forcing, 110
operator, 109–110

predefined value types (list),
80–81

prefix operators, 104–105

prefi x operators

bindex.indd 797bindex.indd 797 10/1/08 12:04:49 PM10/1/08 12:04:49 PM

798

preprocessor directives, 110–123. See also specific
preprocessor directives

defined, 110
list, 110

Presentation Core, 620
Presentation File Patches, 774
primary operators, 109
Print () method, 527
PrintDialog class, 532
PrintDocument class, 503, 526, 527, 529
PrintFoldersinCurrentDirectory () function, 330
printing, in .NET, 526–527
PrintMessage () function, 404
PrintName () method, 135, 163
PrintPage event, 527
PrintPageEventArgs class, 529, 530
PrintPreviewDialog () class, 531
PrintString () method, 189
PrintTime () function, 313, 314
private access modifier, 133, 142, 146
private assemblies, 486. See also assemblies
private key, 347, 350, 351, 487, 488
private key encryption, 347, 487. See also symmetric

encryption
private keyword, 69, 133, 142, 146, 200, 201, 752
process assemblies, 467
Process.Start () method, 608
Programmer attribute, 164, 165
ProgressChanged event, 318, 319
ProgressTemplate element, 566
projects

creation, 14–16
startup, 27

Promote Local Variable to Parameter, 48
properties, 139–146. See also specific properties

automatic, 145–146, 173
read–only, 142–143
write–only, 142–143

Properties Inspector, 637, 640, 648
Properties window, 17, 28–29
Properties.Settings.Default class, 514
protected access modifiers, 133, 200–201
protected internal keyword, 200, 201
protected keyword, 69, 133, 200, 201, 752
protocols. See communication protocols
‹pubDate› element, 457
public access modifier, 133
public key, 350, 351, 352, 487, 488, 491
public key encryption, 350, 487. See also asymmetric

encryption
public key token, 488, 491, 498
public keyword, 69, 133, 201, 752
Publish Wizard, 534, 537, 541
publisher, 226
publisher table, 549, 554

publishers
field, editable, 559–560
names, displaying, 554–555
titles from, displaying, 555–558

publishers table, 458, 459
Publish.htm page, 536
publishing PhotoViewer, 534–536
pubs sample database, 438, 439, 458, 548, 549, 572
Pulse () method, 310
Push () method, 423

Q
Quantifiers (LINQ operators), 432
queries. See also LINQ; SQL

deferred execution, 432–434
forced immediate execution, 434–436
LINQ to SQL, 460–461
saved, to DataTable, 449–450
SQL v. LINQ, 428
syntax, 429–430
for Wrox books, 452–453

querying elements, with LINQ to XML, 452–453,
456–457

Queue ‹T› class, 283, 284, 423, 424
queues, 423–424
QuickWatch feature, 52

R
‹RadialGradientBrush› element, 633
RadiusX attribute, 627
RadiusY attribute, 627
RaiseItemRemovedEvent () function, 291
random–number generation, 285, 286, 287, 343, 346,

348, 349
ranges, of value types, 80
Rank property, 399
rank specifier, 398
rate of fall, 653–654
RC2 algorithm, 347
Read () method, 328, 332, 339
ReadAllBytes () method, 328
ReadAllLines () method, 328
ReadAllText () method, 328
ReadBlock () method, 328
ReadByte () method, 332
ReadFile () method, 156
reading/writing to files, 327–328
ReadLine () method, 67, 328
readonly keyword, 69, 753
read–only properties, 142–143
ReadOnlyCollection‹T› class, 288
ReadOnlyObservableCollection‹T› class, 288

preprocessor directives

bindex.indd 798bindex.indd 798 10/1/08 12:04:49 PM10/1/08 12:04:49 PM

799

In
de

x

ReadToEnd () method, 328
Rearrange Commands dialog

Menu bar, 18–19
Toolbar, 21

Record Keyframe button, 647, 648
Rectangle class, 185, 186, 188, 192, 198, 204
‹Rectangle› element, 624, 625, 627–628
Reentrant thread value, 734
ref keyword, 69, 136, 137, 753
refactoring support, 39–48
reference equality, 157, 159
reference types, 84–85. See also arrays

predefined, 85
value types v., 85

ReferenceEquals () method, 158, 159
Reflection folder, 774
Refresh Feed MenuItem control, 595
RefreshCurrentFolder () function, 522
refreshing web pages, 560
regex. See regular expressions
RegEx class, 259, 260
#region, 120–122
RegisterClient operation, 731, 734
regular expressions (regex), 259–263

defined, 241
email validation with, 263
operators (list), 261
search patterns (list), 262

relational operators, 105–106, 109
‹remarks› tag, 768
Remove Folder button, 523
Remove () instance method, 254
Remove () method, 259, 406
RemoveAt () method, 406
RemoveItem () method, 290
RemoveSpecialChars () function, 587
removing parameters, 42–44
renaming variables, 39–40
reordering parameters, 42–44
repetitive code, 40. See also Extract Method
Replace () method, 259
replacing strings, 254
ReportProgress () method, 318
request/response communication model, 700,

713, 728
reserved keywords (list), 750–754
Reset () method, 410, 412
Reset Toolbox, 25
reshaping data, 441–442
resources, 467
Restart () method, 540
Restriction operators, 432
ResultCallback () function, 221, 222, 224
rethrowing exceptions, 386–387
RetrieveBytesFromStream () function, 355, 356

return keyword, 69, 100, 753
‹returns› tag, 768
RIAs (Rich Internet Applications), 617, 694
Rich Internet Applications (RIAs), 617, 694.

See also Silverlight
Rijndael algorithm, 347
RijndaelManaged class, 348, 349, 350
rolling back PhotoViewer, 541
Rotate tab, 651
RoundButton project (Silverlight 1.0), 635–645

Brush Transform tool, 639
Canvas control, 644
Ellipse object, 636, 637, 638, 639, 640
Expression Blend 2 and, 635–644
Page.xaml.js file, 644
TextBlock object, 641, 642
user interface, JavaScript and, 644–645

rows (LINQ to SQL)
deleting, 463–465
insertion of, 461–462
updating, 463

RSA, 351, 352
RSA algorithm, 351, 352
RSACryptoServiceProvider class, 352
RSS document (LINQ to XML), 453–457
‹rss› element, 456
RSS Reader application, 580–616

ActiveSync and, 596, 598, 603, 604, 606,
612, 614

capabilities of, 580
controls for, 581–582
deployment, 598

CAB file, 598–603
target device prerequisites, 615–616

event handlers, wiring, 589–596
helper methods for, 583–589
MenuItem control, 581, 582
setup application, 603–616

custom installer, 604–608
MSI installer, 609–615

testing
with devices, 597–598
with emulators, 596–597

TreeView control, 581, 582, 587, 589,
591, 592

URL of, 587
user interface, 581–583
WebBrowser control, 582

RSSReaderInstall.dll file, 611
RSSReaderInstaller project, 604–608
RSSReaderSetup project, 609, 610, 611, 612
RSSReaderSetup.msi application, 612, 614
Run All Tests in Solution button, 57
RunWorkerAsync () method, 317
RunWorkerCompleted event, 319

RunWorkerCompleted event

bindex.indd 799bindex.indd 799 10/1/08 12:04:50 PM10/1/08 12:04:50 PM

800

S
Safari browser, 618
safety

thread, 303, 312–314
type, 271, 410

SalarySorter property, 419
salted hash, 346–347
Salted_Hashing_SHA1 () function, 346–347
Samsung Black II, 597
Sandcastle Help File Builder, 774, 775
Sandcastle Styles Project site, 774
Sandcastle tool, 78, 765, 773

downloading, 774
installing, 774
launching, 775–776

Save () method, 337, 451
SaveSignature () function, 688
sbyte (keyword), 69, 753
sbyte (value type), 80

conversion, 89
range, 80

scope, 71
for application settings, 510
parent/current, 74
of variables, 71–74

scrambling, 347. See also encryption
scripting languages, 545, 546
ScriptManager control, 563
SDKs (Software Development Kits)

Silverlight 1.0, 619, 621
Silverlight 2.0 Beta 1, 620
Windows Mobile 5.0 for Pocket PC, 578
Windows Mobile 5.0 for Smartphone, 578
Windows Mobile 6 Professional, 578
Windows Mobile 6 Standard, 578, 581

sealed classes, 191–192
sealed keyword, 69, 191, 192, 195, 753
sealed methods, 191–192
searching

with Object Browser, 762
with regex, 259–263
for strings, 252–254

Security Accounts tab, 505
security services, 343. See also cryptography services
‹see› tag, 768
‹seealso› tag, 768
Seek () method, 332, 338
Select attribute, 556
select keyword, 69, 755
select–from–where format, 428
Selection operators, 432
self–assignment operators, 103–104
self–hosted WCF services, 713, 720–728

serialization, 359–375
binary, 359–365
deep, 364
defined, 359
deserialization and, 370–371
shallow, 364
XML, 359, 365–375

Serialize () function, 360, 361
service contract, 712
service oriented applications (SOA), 695.

See also WCF
Service Reference Settings dialog, 718
Service1.cs, 701, 703
ServiceBehavior attribute, 723, 734
ServiceContract attribute, 703, 731
ServiceHost class, 721
ServiceReference1, 709
Service.Runtime.Serialization.dll, 709
Service.ServiceModel.dll, 709
SessionMode property, 731
set accessor, 140, 141, 142, 146, 749
Set as Startup Project, 27
set keyword, 69, 749, 750, 755
Set operators, 432
SetCurrentDirectory () method, 324, 325
setInterval () function, 674
SetItem () method, 290
SetLength () method, 338
SetMessage () operation, 723
SetSeatStatus (), 731, 734, 738, 739
setting breakpoints, 49–50
Settings.Designer.cs file, 510
Settings.settings file, 510
setup application (for RSS Reader),

603–616
custom installer, 604–608
MSI installer, 609–615

setup.ini file, 608
SHA1 implementation, 344, 345, 346
Shadows keyword, 194
shallow serialization, 364
Shape class, 185, 186, 204
shape elements, painting, 630–634

‹ImageBrush›, 634
‹LinearGradientBrush›, 632
‹RadialGradientBrush›, 633
‹SolidColorBrush›, 631

shape elements (Silverlight),
627–630

‹Ellipse›, 624, 625, 629
‹Line›, 628
‹Polygon›, 629–630
‹Polyline›, 630
‹Rectangle›, 624, 625, 627–628

Safari browser

bindex.indd 800bindex.indd 800 10/1/08 12:04:50 PM10/1/08 12:04:50 PM

801

In
de

x

Shareable service instance, 724
shared assemblies, 486–492. See also Global

Assembly Cache
building, 491–492
creating, 488–492
deploying, 488
in GAC, 486, 492–494
hash for, 488
strong name for, 486, 489–490
visibility of, Visual Studio and, 495

short (keyword), 69, 753
short (value type), 80

conversion, 89
range, 80

short–circuiting, 107–108
Show All Files button, 510
ShowMissingNamespaces property, 776
Signature project (Silverlight 2.0), 675–693

ClientBin folder, 692
coding for, 678–681
creation, Visual Studio and, 676–693
hosting, 676
service reference, 689
signature

capture of, 677–678
isolated storage of, 681–686
sending to Web Services, 687–693

signatures, 148, 194, 205
SignatureWebSite project, 687, 691, 692, 693
Silverlight (1.0), 618–619, 645–675

Animations project, 645–650
Animations2 project, 650–654
architecture, 620–621
bare–bones application

Canvas control, 624–626
creating, 621–623
‹Ellipse›, 624, 625, 629
Expression Blend 2 and, 635–644
files in, 621
‹Line›, 628
‹Polygon›, 629–630
‹Polyline›, 630
‹Rectangle›, 624, 625, 627–628
shape elements, 627–634

features (list), 618–619
for Mac, 619
Media project, 654–663
MediaPlayer project, 664–675
SDK, 619, 621
user interface

JavaScript and, 621, 622, 644–645
XAML and, 621, 622, 623–624

version 2.0 v., 617–619, 694
for Windows, 619

Silverlight (2.0 Beta 1), 617–694
AJAX v., 675
architecture, 620–621
Beta 1 runtime, 620
browsers and, 618
Expression Blend 2 and, 620, 635–644
Expression Design and, 620
Expression Media Encoder Preview Update and, 620
features (list), 618–619
interactive capabilities of, 675
for Mac, 619
RIAs through, 617, 694
SDK Beta 1, 620
signature captures and, 675
Signature project, 675–693
Tools Beta 1 for Visual Studio 2008, 620, 675, 676
tools for, 619–620
version 1.0 v., 617–619, 694
for Windows, 619
WPF/E and, 617

Silverlight.js file, 621, 622
Simple Object Access Protocol (SOAP), 618, 699, 700,

706, 712
simplex communication model, 700, 713,

723, 731
Single () method, 463
Single service instance, 724
Single thread value, 734
single–class inheritance, 185
single–file assemblies, 469
singly linked lists, 284, 285
size of keyword, 69, 753
skipping an iteration, 102
Sleep () method, 224, 297, 337, 566
slider (MediaPlayer), 665
smart clients, 534
Smart Device CAB Project template, 599
Smart Device Extension, OpenNetCF’s, 577
Smart Device Project template, 578
SmartDeviceCab1 project, 599, 601, 602, 608, 610
Smartphones. See also Pocket PCs; RSS Reader

application
Smartphone 2002, 574
Windows Mobile 5.0 for Smartphone, 574
Windows Mobile 6 Standard, 574, 576
Windows Mobile 2003 for Smartphone, 574
Windows Mobile 2003 SE for Smartphone, 574

SmartTag, 549, 552, 553, 556
sn –k KeyFile.snk, 490
sn –T Base64codec.dll, 491
SNK file, 490
SOA (service oriented applications), 695. See also WCF
SOAP (Simple Object Access Protocol), 618, 699, 700,

706, 712

SOAP (Simple Object Access Protocol)

bindex.indd 801bindex.indd 801 10/1/08 12:04:51 PM10/1/08 12:04:51 PM

802

socket applications
client–server, 338–340
multi–user server, 340–343

Software Development Kits. See SDKs
‹SolidColorBrush› element, 631
Solution Explorer, 17, 26–28
solutions, 16, 26
Sort () method, 399, 413, 415
sorting

arrays, 399–400
objects, 413–420

Source property, 379
SpamPhraseList class, 407–408, 409, 410, 411, 412
Split () instance method, 252
splitting strings, 252
SQL (Structured Language Query), 425. See also LINQ

to SQL
LINQ queries v., 428

SQL Server 2005 Express, 439
SqlDataSource, 550
Square class, 191, 192, 204, 207
Stack ‹T› class, 283, 284, 422
stackalloc keyword, 69, 753
stacks, 422–423

custom, 265–266
defined, 422
heap and, 85, 169
as LIFO data structures, 265, 281, 422
memory and, 85, 169, 753

StackTrace property, 379
Start () method, 295
starting threads, 295–296
StartsWith () instance method, 253
startup projects, 27
state information, passed to event handler, 237–240
state management, 546
state, of object, 375
stateless nature, of HTTP protocol, 534, 546, 700
static classes, 156–157
static constructors, 151–152
static keyword, 67, 69, 131, 132, 195
static members, 132
Step Into, 51
Step Out, 51
Step Over, 51
StocksPriceChecker project, 697, 699, 700
StockWebService project, 695–697, 699, 700
_stopThread variable, 299, 300, 301
Stopwatch object, 258
StoryBoard1, 647, 649, 651, 653
StoryBoard2, 649
strArray, 252
Stream class, 351–353
StreamReader class, 328–329
StreamReader object, 587

streams, 331–358
BufferedStream class, 331, 333–334
compressions, 353–354
CryptoStream class, 331, 348–349
decompressions, 354–358
defined, 321, 331
files v., 321
FileStream class, 331, 334–337
MemoryStream class, 331, 337–338
NetworkStream class, 331, 338–343
types of, 321

StreamWriter class, 328–329
string arrays, 68, 427, 428, 429, 430
String class, 247

methods, 247
string keyword, 69, 753
StringBuilder class, 257–259
String.Compare () static method, 249
String.Join () static method, 251
strings, 85, 241–259

as C# type, 85
case changing of, 254
comparing, 248–249
concatenating, 250–251, 257
conversion of, to value type, 92
creating, 250–251
defined, 241
equality, testing for, 248
formatting, 254–257
immutable, 250, 257
inserting strings into, 251
manipulations, 247–254
matching on, 259–263
regex and, 259–263
replacing, 254
searching for, 252–254
splitting, 252
trimming, 251
as value types, 242

stringToByteArray () function, 357
StringUtil project, 475
StringUtil.netmodule file, 475, 479
strong name (shared assembly), 486, 489–490
strong typing, 78, 89, 280, 281, 447
struct keyword, 69, 753
structs (structures), 79, 165–169. See also specific

structs
classes v., 165–166, 169
Coordinate, 166, 167, 168, 276
default constructor and, 166
generic, 276
memory allocation and, 169
in System.Collections.Generic namespace, 282

Structured Language Query. See SQL
structures. See structs

socket applications

bindex.indd 802bindex.indd 802 10/1/08 12:04:51 PM10/1/08 12:04:51 PM

803

In
de

x

SubmitChanges () method, 462
subroutines, 67. See also functions
SubscribeFeed () function, 587
Subtract () method, 214, 216
subtraction operator (–), 108
Sum () function, 443
‹summary› tag, 767, 768
SumNumbers () function, 317, 319
Surround With code snippets feature, 36–37
switch keyword, 69, 94, 753
switch statement, 94–95
symmetric encryption, 347–350, 487
SymmetricDecryption () function, 350
SymmetricEncryption () function, 348, 349, 350
synchronization, thread, 303–312

Interlocked class and, 304
lock keyword and, 304–307
Monitor class and, 307–311

synchronous callbacks, 222
syntax

C# language, 68–123
method, 429–430
query, 429–430

System.Attribute, 164
System.Collections namespace, 404, 405, 424

System.Collections.Generic namespace v.,
283–284

System.Collections.Generic namespace
classes in, 280–281
interfaces in, 283
structs in, 282
System.Collection namespace v., 283–284

System.Collections.ObjectModel namespace, 288–291
System.Configuration.Install, 605
System.Convert class, 91
System.Core.dll, 431
System.Data.DataSetExtensions.dll, 440
System.Drawing.Printing namespace, 503, 528
System.IO namespace, 230, 331, 497
System.IO.Compression namespace, 353
System.Object class, 157–158

instance methods, 157
static methods, 158

System.Object type, 85
System.Runtime.Serialization.Formatters.Binary

namespace, 360, 361
System.String class, 241–243
System.Text.RegularExpressions namespace, 259
System.Threading namespace, 295
System.Timers namespace, 229
System.Windows.Forms, 605
System.Xml namespace, 370
System.Xml.Linq namespace, 450
System.Xml.Linq.dll, 450
System.Xml.Serialization namespace, 367

T
table(s)

authors, 438, 439, 440, 458, 459
Customers, 444, 445, 446, 449
joining, 443–446
Order Details, 444, 445, 446
Orders, 444, 445, 446
publishers, 458, 459
rows

deleting, 463–465
insertion of, 461–462
updating, 463

titleauthor, 458, 459
titles, 458, 461, 551, 553, 554, 555, 572

tablet PCs, 675, 677. See also Signature project
TargetControlID attribute, 570
TargetSite property, 379
TCHAR* parameter, 257
TCP protocol, 331, 338, 339, 710, 711, 726
TcpClient class, 339, 342
TcpListener class, 339, 342
templates, classes as, 125, 127
ternary operator, 93
Test button, 497, 498
test methods, 56
Test Tools toolbar, 57
TestDefine program, 113–114
testing. See also unit tests

for equality, 158–159
strings, 248

PhotoViewer, 526
RSS Reader application

with devices, 597–598
with emulators, 596–597

WCF ticketing service, 740–741
TextBlock object, 641, 642
TextWriter class, 329
this keyword, 69, 137–138, 150, 187, 199, 408,

749, 753
Thread class, 293, 295
thread safety, in Windows Forms, 303, 312–314
ThreadAbortException exception, 298
threading, 293–320

asynchronous callbacks and, 225
multi, 293–294, 295, 303, 313

threads
aborting, 297–301
defined, 293
passing parameters to, 301–303
starting, 295–296
synchronization, 303–312

Interlocked class and, 304
lock keyword and, 304–307
Monitor class and, 307–311

threads

bindex.indd 803bindex.indd 803 10/1/08 12:04:52 PM10/1/08 12:04:52 PM

804

ThreadStart delegate, 295, 301, 302
throw keyword, 69, 100–101, 753
throwing exceptions, 383–387
ticketing service. See WCF ticketing service
tilde, 154
Timeline object, 645, 648, 649, 651, 653
Timer class, 229, 230, 232
TimesUp event, 235, 238, 240
titleauthor, 458, 462, 572
titleauthor table, 458, 459
titles table, 458, 461, 551, 553, 554, 555, 572
ToArray () method, 406
token, public key, 488, 491, 498
ToLower () instance method, 254
Toolbar, 17, 19–22
Toolbox, 17, 22–25
tools

Brush Transform, 639
debugging. See Visual Studio 2008
ildasm (MSIL Disassembler), 7, 468, 491
Sandcastle, 78, 765, 773–776
for Silverlight, 619–620
Tools Beta 1 for Visual Studio 2008, 620, 675, 676

ToolStripStatusLabel1, 507
ToString () method, 157, 161–162, 259, 380, 387, 451
touch screens, 574, 575, 580
ToUpper () instance method, 254
ToXmlString () method, 352
Translate tab, 651
transport protocols. See communication protocols
TreeView control, RSS Reader, 581, 582, 587, 589,

591, 592
TreeView1, 507, 508
TreeView1_AfterSelect event, 520
TreeView1_BeforeExpand event, 516
triggers, 564–565
Trim () instance method, 251
TrimEnd () instance method, 251
trimming strings, 251
TrimStart () instance method, 251
TripleDES algorithm, 347
true keyword, 69, 753
truth tables, 106, 107
try keyword, 69, 753
try–catch block, 36, 100, 101, 219, 378–381, 383,

391, 751
TryGetValue () method, 421
TryParse () method, 92
two–way communication model, 700, 713
txtFrom control, 527
txtFTPServer, 507
txtFtpServer_Leave event handler, 514
txtNewFolderName, 507
txtPassword, 507, 508
txtTo control, 527

txtUserName, 507
types. See data types; specific types
type casting, 90. See also casting
type conversion, 89–92

explicit, 90–92
implicit, 89–90

type metadata, 467, 468
type parameters, in generic type, 275
type safety, generics and, 271, 410
typed DataSet feature, 446–448
TypedCustomersDataSet.xsd, 447, 448
typeof keyword, 69, 753
‹typeparam› tag, 768
‹typeparamrefs› tag, 768
typing

explicit, 88
implicit, 88–89, 428
strong, 78, 89, 280, 281, 447

U
UI controls, updating, 312, 314, 317, 318, 320
uint (keyword), 69, 753
uint (value type), 80

conversion, 89
range, 80

ulong (keyword), 69, 753
ulong (value type), 80

conversion, 89
range, 80

unary operators, 109
unchecked keyword, 69, 91, 753
#undef, 111–115
underscore (_), 133
unflattening data, 362
Unicode, 242, 247. See also strings
Uninstall event, 606
unit tests, 53–59

creating, 54–56
with floating point numbers, 58–59
running, 58

unmanaged code, 3, 4, 154, 155
UnRegisterClient operation, 731, 734
unsafe keyword, 69, 754
Unsubscribe MenuItem control, 594
Update () method, 540
updateLabel, 314
UpdatePanel control, 563–564
UpdateProgress control, 565–566
updating UI controls, 312, 314, 317, 318, 320
UploadFile () method, 524
UploadImage () function, 524
user interface

MediaPlayer project, 664–667
RoundButton project, 644–645

ThreadStart delegate

bindex.indd 804bindex.indd 804 10/1/08 12:04:52 PM10/1/08 12:04:52 PM

805

In
de

x

RSS Reader application, 581–583
Silverlight 1.0

JavaScript and, 621, 622, 644–645
XAML and, 621, 622, 623–624

user.config file (PhotoViewer), 512, 513
user–defined data types, 78
UserName, 509
ushort (keyword), 69, 754
ushort (value type), 80

conversion, 89
range, 80

using keyword, 66, 69, 155, 754
Utils.dll, 476, 478, 479, 480

V
ValidateEmail () method, 134
value equality, 159
value keyword, 69, 141, 749, 750, 755
‹value› tag, 768
value types, 79–84. See also specific value types

default value of, 81–82
fixed size of, 242
.NET, 80–81
nullable, 81–84
predefined (list), 80–81
ranges of, 80
reference types v., 85
strings as, 242

ValueCollection class, 422
var keyword, 69, 88, 128, 399, 437, 440
variables, 69–70. See also specific variables

global, 72
as keywords, 70
local, 72
promoting, to parameters, 48
renaming, 39–40
scope of, 71–74
watching, 52

VB.NET (Visual Basic .NET), 4, 6, 7, 8, 67, 194, 265,
545, 546, 577, 591, 620

VBScript, 545, 546
versions

.NET CF, 576–577

.NET Framework, 8–9, 757–759
of same assembly, 490–491, 492, 494
Visual Studio, 8, 695

video project. See Media project
View Help File From Last Build button, 776
virtual keyword, 69, 189, 195, 754
virtual methods, 145, 189–190
Vista (Windows), 546, 758

Administrator and, 493, 495
FTP service and, 504
.NET Framework and, 546

Visual Basic .NET (VB.NET), 4, 6, 7, 8, 67, 194, 265,
545, 546, 577, 591, 620

Visual C# Development Settings, 12–13
visual cues, 565
Visual Studio 2008, 11–59

AJAX–enabled WCF Service template, 741, 743
components, 17–48
debugging tools. See debugging
development settings, 12–14

resetting, 13–14
editions, 11–12, 62
new project creation, 14–16
Object Browser, 759–764
O/R Designer, 458, 549
PhotoViewer, creation of, 506–508. See also

PhotoViewer
shared assemblies in, visibility of, 495
Signature project and, 676–693
Silverlight Tools Beta 1 for, 620, 675, 676
versions, earlier, 8, 695
WCF Service Library application, 700–710
WCF ticketing service, 730–741
Windows Mobile applications and, 578
Windows Mobile Form in, 579, 580

Visual Studio .NET Help format (HTML Help 2), 773
void keyword, 67, 69, 754
volatile keyword, 69, 299, 754

W
Wacom Intuos Pen Tablet, 675
Wait () method, 309
#warning, 117–118
WAS (Windows Activation Service), 713
watching, 52
WCF (Windows Communication Foundation), 5, 621,

695–745, 758
ABCs of, 710–711
addresses, 710, 711
ASMX Web Services v., 695, 700
bindings, 710, 711, 712
communication protocols, 710
contracts, 710, 711, 712
messaging patterns, 713
rationale of, 695
services. See WCF services

WCF Service Configuration Editor, 714, 724
WCF Service Host, 713, 720, 730
WCF Service Library application

consuming, 708–710
creating, 700–708, 730

WCF services
AJAX and, 741–745
building

WCF services

bindex.indd 805bindex.indd 805 10/1/08 12:04:52 PM10/1/08 12:04:52 PM

806

WCF services (continued)
multiple endpoints, 714–720
self–hosted, 720–728

calling, 710
hosting, 700, 713
InstanceContextMode property and, 724
self–hosted, 713, 720–728

WCF Test Client, 703, 704, 705, 706
WCF ticketing service, 728–741

building, 730–736
client for, 736–740
flow chart, 729
testing, 740–741

WcfServiceLibraryTest, 700, 701
WcfTicketingService project, 730
web applications, ASP.NET. See ASP.NET
Web Development Server, ASP.NET, 696–697, 714
web methods, 700
web pages

MSDN–Online style, 773
refreshing, 560

Web Servers, 713
Web Services (ASMX), 5, 534, 545, 758.

See also WCF
Base64 encoding and, 488
calling, 293, 710
compression and, 353
creation of, 695–700
request/response communication model, 700,

713, 728
signature sent to, 687–693
WCF v., 695, 700

Web Services Description Language (WSDL), 699,
710, 727

WebBrowser control, RSS Reader, 582
WebClient class, 524
WebRequest class, 503, 518, 587
WebResponse class, 503, 587
WebService.asmx, 687
WF (Windows Workflow), 5, 758
where keyword, 69, 272, 275, 755
while keyword, 69, 754
while loop, 99
whitespace

characters, 262
regular expression /s, 261
trimming, from strings, 251

widening, 89
WinBase64 project, 496
WinBase64.exe assembly, 498
window

Autos, 53
Designer, 17, 30–31
Error List, 17, 29–30

Immediate, 53
Objects and Timeline, 636, 640, 642, 647
Output, 30
Properties, 17, 28–29

Windows Activation Service (WAS), 713
Windows application, development of, 503–543.

See also PhotoViewer
Windows CE Application Manager, 606, 607, 614
Windows Communication Foundation. See WCF
Windows Forms, 5, 28, 30, 125, 126, 758

BackgroundWorker control in, 315–319
thread safety in, 303, 312–314

Windows Live Local site, 560
Windows Media Player, 655. See also Media project
Windows Mobile. See also Pocket PCs; RSS Reader

application; Smartphones
application development, 573–616
emulators, 577, 596–597
Form, 579, 580
Mobile 6 Standard (Smartphone), 574, 576

.NET CF and, 581
RSS Reader application, 580–616
SDK, 578, 581

platform, 574–575
Add Web Reference Option and, 698
devices for, 574
languages for, 577
naming conventions, 574
.NET CF and, 576–577

Windows Presentation Foundation (WPF), 5, 23, 610,
621, 713

Windows Presentation Foundation/Everywhere
(WPF/E), 617. See also Silverlight

Windows Security Alert dialog, 726
Windows Service, 713
Windows Vista. See Vista
Windows Workflow (WF), 5, 758
WindowsApp–Util, 470, 472
WindowsApp–Utils, 477
WindowsMedia.wmv file, 655, 664
WPF (Windows Presentation Foundation), 5, 23, 610,

621, 713
WPF/E (Windows Presentation Foundation/

Everywhere), 617. See also Silverlight
Write checkbox, 505
Write () method, 332, 339
WriteAllBytes () method, 327
WriteAllLines () method, 327
WriteAllText () method, 327
WriteByte () method, 332
WriteFile () method, 156
WriteLine () method, 247, 403
write–only properties, 142–143
writing/reading to files, 327–328

WCF services (continued)

bindex.indd 806bindex.indd 806 10/1/08 12:04:53 PM10/1/08 12:04:53 PM

807

In
de

x

Wrox books (query), 452–453
WS endpoint, 714, 716
WSDL (Web Services Description Language), 699,

710, 727
WSDualHttpBinding, 712
WSFederationHttpBinding, 712
ws_GetSignatureCompleted event handler, 691
WSHttpBinding, 706, 712, 714, 716, 719, 720
ws_SaveSignatureCompleted event handler, 690

X
XAML (Extensible Application Markup Language), 620

Expression Blend 2 and, 635–644
MediaPlayer project and, 666–667
Silverlight user interface and, 621, 622, 623–624

XAttribute class, 450
XDocument object, 450, 452, 454
XElement class, 450
XML

code documentation feature. See documentation
comments

added to Point class definition, 767–771
template, 767, 768

documentation tags, 768
‹c›, 768, 771
‹code›, 768, 771
‹example›, 768, 771
‹exception›, 768
‹include›, 768
‹list›, 768
‹para›, 768
‹param›, 768
‹paramref›, 768
‹permission›, 768

‹remarks›, 768
‹returns›, 768
‹see›, 768
‹seealso›, 768
‹summary›, 767, 768
‹typeparam›, 768
‹typeparamrefs›, 768
‹value›, 768

LINQ to. See LINQ to XML
trees, creating, 450–452

XML serialization, 359, 365–375
customizing, 372–374
default constructor for, 374–375
sample class

defining, 365–367
deserializing, 370–371
serializing, 367–369

uses of, 375
XmlReader class, 370
XmlSerialize () function, 367, 368, 369
XMLSerializer class, 367, 370, 372
XNamespace element, 456
XPath, 425
XQuery, 425
XSLT, 425, 773

Y
yield keyword, 69, 409, 755
YouTube player, 663. See also MediaPlayer project

Z
ZIndex attribute, 625

ZIndex attribute

bindex.indd 807bindex.indd 807 10/1/08 12:04:53 PM10/1/08 12:04:53 PM

bindex.indd 808bindex.indd 808 10/1/08 12:04:53 PM10/1/08 12:04:53 PM

Get more
fromWrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

badvert.indd 809badvert.indd 809 10/1/08 12:05:20 PM10/1/08 12:05:20 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 810badvert.indd 810 10/1/08 12:05:20 PM10/1/08 12:05:20 PM

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Visual Studio®
Extensibility
Keyvan Nayyeri

Wrox Programmer to Programmer TM

 Enhance Your Knowledge
Advance Your Career

Professional Visual Studio 2008
978-0-470-22988-0
In these pages you’ll learn to harness every key feature of Visual Studio.
The opening section will familiarize you with the IDE structure and layout,
various options and settings, and other core aspects of Visual Studio
2008. Then you will examine each of the nine major categories composing
the functions of Visual Studio 2008. Every chapter is cross-referenced,
so you can achieve a complete understanding of each feature and how
all the elements work together to produce an effective programming
environment.

Professional Visual Studio Extensibility
978-0-470-23084-8
Whether you want to integrate optimized builds, enhanced programming
tools, or other rapid application development features, this unique
resource shows you how to develop customized addins using C#.

C# 2008 Programmer’s Reference
978-0-470-28581-7
C# 2008 Programmers Reference provides a concise and thorough
reference on all aspects of the language. Each chapter contains detailed
code samples that provide a quick and easy way to understand the key
concepts covered.

Professional C# 2008
978-0-470-19137-8
Updated for .NET 3.5 and Visual Studio® 2008, this book is the ultimate
guide to C# 2008 and its environment. The team of superlative authors
explain why the C# language cannot be viewed in isolation, but rather,
must be considered in parallel with the .NET Framework.

Beginning Microsoft Visual C# 2008
978-0-470-19135-4
Aimed at novice programmers who wish to learn programming with C# and
the .NET framework, this book starts with absolute programming basics,
then moves into Web and Windows programming, data access (databases
and XML), and more advanced technologies.

Beginning C# 3.0:
An Introduction to Object Oriented Programming
978-0-470-26129-3
This book is written for those readers with no prior programming
experience who want a thorough, yet easy to understand, introduction to
C# and Object Oriented Programming.

C# 2008
Programmer’s Reference

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.68"

www.wrox.com

$44.99 USA
$48.99 CAN

Wrox Programmer’s References are designed to give the experienced developer straight facts on a new technology, without
hype or unnecessary explanations. They deliver hard information with plenty of practical examples to help you apply new tools to
your development projects today.

Recommended
Computer Book

Categories

Programming/Development

C# and the .NET 3.5 framework

ISBN: 978-0-470-28581-7

Updates, source code, and Wrox technical support at www.wrox.com

Professional

Visual Studio®
Extensibility
Keyvan Nayyeri

Wrox Programmer to Programmer TM

The 2008 version of C# comes with the .NET Framework and boasts many new
features that make it even more intuitive and powerful than previous iterations.
Offering you a complete reference on the new 2008 release, this authoritative
book is essential reading—no matter your level of experience.

You’ll learn the C# language fundamentals and application development using
C# as you gradually master the complex array of new language options and
parameters that C# 2008 offers. Plus, you’ll discover how to find the right options
for best programming practices and results. Code examples help illustrate each
concept, while chapters independent of one another allow you to jump to specific
areas of interest. Valuable appendices cover the list of C# keywords, the .NET
class libraries, and document generation using the Sandcastle utility. With this
ideal resource and reference by your side, you’ll come to understand the features
that make C# 2008 a more powerful programming language than ever before.

What you will learn from this book
● The fundamentals of the C# language and object-oriented programming
● Different types of inheritance and how it enables code reuse
● How you can use generics to enhance efficiency and type-safety in your

applications
● Ways to use LINQ queries for data retrieval
● Techniques for writing multithreaded applications using the Thread class in the

.NET Framework
● Methods for using the C# language to build Windows, Web and Windows

Mobile applications
● How to build Windows Communication Foundation services and understand the

 Enhance Your Knowledge
Advance Your Career

C# 2008
Programmer’s Reference

theories behind them
● How to build RIA applications using Silverlight™ 1.0 and 2

Who this book is for
This book is for C# developers of all levels of experience who are looking for a comprehensive overview of the language.

C
#

 2008
Lee

subtitle

spine=1.68"

Updates, source code, and Wrox technical support at www.wrox.com

C# 2008

Wei-Meng Lee

Programmer’s ReferenceProgrammer’s
Reference

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

	C# 2008
	Cover

	About the Author
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p. wrox. com

	Part I: C# Fundamentals
	Chapter 1: The .NET Framework
	What’s the .NET Framework?
	Assemblies and the Microsoft Intermediate Language (MSIL)
	Versions of the .NET Framework and Visual Studio
	Summary

	Chapter 2: Getting Started with Visual Studio 2008
	Visual Studio 2008 Overview
	Code and Text Editor
	Debugging
	Unit Testing
	Summary

	Chapter 3: C# Language Foundations
	Using Visual Studio 2008
	Using the C# Compiler (csc. exe)
	Dissecting the Program
	Language Syntax
	Data Types
	Flow Control
	Looping
	Operators
	Preprocessor Directives
	Summary

	Chapter 4: Classes and Objects
	Classes
	System.Object Class
	Structures
	Summary

	Chapter 5: Interfaces
	Defining an Interface
	Implementing an Interface
	Implementing Multiple Interfaces
	Extending Interfaces
	Interface Casting
	The is and as Operators
	Overriding Interface Implementations
	Summary

	Chapter 6: Inheritance
	Understanding Inheritance in C#
	Implementation Inheritance
	Interface Inheritance
	Explicit Interface Members Implementation
	Summary

	Chapter 7: Delegates and Events
	Delegates
	Events
	Summary

	Chapter 8: Strings and Regular Expressions
	The System.String Class
	Regular Expressions
	Summary

	Chapter 9: Generics
	Understanding Generics
	Generics and the .NET Framework Class Library
	Using the LinkedList <T> Generic Class
	System.Collections.ObjectModel
	Summary

	Chapter 10: Threading
	The Need for Multithreading
	Thread Synchronization
	Thread Safety in Windows Forms
	Summary

	Chapter 11: Files and Streams
	Working with Files and Directories
	The Stream Class
	Cryptography
	Compressions for Stream Objects
	Serialization
	Summary

	Chapter 12: Exception Handling
	Handling Exceptions
	Creating Custom Exceptions
	Summary

	Chapter 13: Arrays and Collections
	Arrays
	Collections Interfaces
	Summary

	Chapter 14: Language Integrated Query (LINQ)
	LINQ Architecture
	LINQ to Objects
	LINQ to DataSet
	LINQ to XML
	LINQ to SQL
	Summary

	Chapter 15: Assemblies and Versioning
	Assemblies
	Private versus Shared Assemblies
	Summary

	Part II: Application Development Using C#
	Chapter 16: Developing Windows Applications
	The Project
	Adding Print Capability
	Deploying the Application
	Summary

	Chapter 17: Developing ASP.NET Web Applications
	About ASP.NET
	Data Binding
	Building Responsive Applications Using AJAX
	Summary

	Chapter 18: Developing Windows Mobile Applications
	The Windows Mobile Platform
	Developing Windows Mobile Applications Using the .NET Compact Framework
	Obtaining the Appropriate SDKs and Tools
	Building the RSS Reader Application
	Deploying the Application
	Summary

	Chapter 19: Developing Silverlight Applications
	The State of Silverlight
	Building a Silverlight UI Using XAML
	Silverlight 1.0
	Silverlight 2.0
	Summary

	Chapter 20: Windows Communication Foundation
	What Is WCF ?
	Understanding How WCF Works
	Building WCF Services
	Summary

	Part III: Appendixes
	Appendix A: C# Keywords
	C# Reserved Keywords
	Contextual Keywords

	Appendix B: Examining the .Net Class Libraries Using the Object Browser
	Versions of the .NET Framework
	Using the Object Browser

	Appendix C: Generating Documentation for Your C# Applications
	Inline Documentation using XML
	Generating the Documentation

	Index

