
Borland® Delphi™ 2005
Reviewer's Guide

The Complete Windows® Development Solution

Produced for Borland by Cary Jensen, Jensen Data Systems, Inc.
October 2004

Borland Delphi 2005 – Reviewers Guide

Contents

Overview ... 7

Delphi: Advancing the Art of Software Development .. 7

The Integrated Development Environment .. 11

One IDE, Multiple Personalities ... 11
One IDE, Multiple Languages .. 13
The Structure Pane .. 14
The VCL and VCL for .NET Floating Designer... 15
The Tool Palette .. 16

Enhanced Tool Palette Behavior .. 17
New VCL for .NET Components ... 19

The Object Inspector... 19
The Upgrade Project Wizard... 21
Delphi 2005 Wizards .. 22
Find in Files Enhancements .. 24
Updated Support for International Characters... 25
Message List Enhancements ... 25
IDE Error Reporting.. 25
Import/Export Project from/to Visual Studio .NET .. 27

The Next Generation Code Editor . 30

Refactoring.. 30
Symbol Renaming .. 30
Variable and Field Declarations ... 31
Resource Refactoring ... 33
Extract Method Refactoring ... 34
Import Namespace (C#) and Find Unit (Delphi) .. 35

SyncEdit.. 36
Error Insight .. 38
Help Insight... 40
The History Manager .. 41

The Content Pane ... 42
The Info Pane ... 43

 P a ge 2

Borland Delphi 2005 – Reviewers Guide

The Diff Pane ... 44
Code Navigation Enhancement... 45
Toggling Code to/from Comments ... 46
Persistent Bookmarks.. 46
J2EE and CORBA to .NET Integration with Janeva... 47
User Selectable File Encoding .. 48

The VCL for .NET .. 50
Virtual Library Interfaces ... 50
Support for Partially Trusted Callers .. 53

The Delphi Compilers .. 55

Updates for Both Win32 and .NET Delphi Compilers.. 55
The For…In Loop .. 55
Support for Unicode and UTF8 Formats .. 56

The Delphi for .NET Compiler ... 56
Delphi Code and Namespaces .. 56
Support for Weak Packaging in VCL for .NET Applications... 57
Forward Declared Record Types .. 58

The Delphi Win32 Compiler... 59
Function Inlining .. 59
Support for Nested Types... 60
Nested Type Constants in Class Declarations .. 61
Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes and Data Types.............................. 62
XML Document Generation... 62

The Delphi Debuggers .. 65

Multiple Debugger Support .. 65
Exception Dialog Enhancements .. 66
The Disassembled View.. 68
Breakpoints ... 70

The Log Call Stack Breakpoint Option .. 70
Breakpoint Dialog Box Updates... 71

Updated Attach to/Detach from Process ... 72
Evaluator Frame Support for Win32 Local Variables... 74

Database Development .. 76

RAD for ADO.NET .. 76
Providing and Resolving with DataSync and DataHub .. 77

 P a ge 3

Borland Delphi 2005 – Reviewers Guide

DataSync.. 78
DataHub... 79

Data Remoting with RemoteServer and RemoteConnection.. 80
RemoteServer ... 81
RemoteConnection ... 81

Borland Data Provider for ADO.NET... 82
The BDP Data Explorer .. 83

Managing Tables .. 83
Data Migration ... 85
Testing Stored Procedures.. 85

Creating Reports in Delphi 2005... 86
Added VCL for .NET Data Access Components.. 86
ADO.NET Connection String Editor .. 87

Web and Internet Development .. 90

Deployment Manager.. 90
HTML Editing in the Web Forms Designer.. 93

Template Editing .. 95
Updated Code Completion and Syntax Highlighting ... 96
Updated Tag Editing .. 96
Additional ASP.NET Project Manager Support ... 97

New and Enhanced DB Web Controls.. 98
New DB Web Controls... 98
Updated DB Web Controls... 99

IntraWeb Support.. 99

Integrated Application Lifecycle Management .. 103

Delphi 2005 and StarTeam.. 103
Unit Testing .. 107

Enterprise Core Objects II . 110

Rapid MDA... 110
ECO Space and Persistence Mapping ... 112
ECO and OCL... 113
What's New in ECO II .. 113

A Highly Scalable Enterprise Object Cache... 113
Extended Object Capabilities ... 114
ECO II Support for Web Forms and Web Services .. 114
ECO II Support for Existing Databases.. 115

 P a ge 4

Borland Delphi 2005 – Reviewers Guide

Integrated and Included Partner Tools .. 117

Borland InterBase 7.5 Developer Edition ... 117
Borland Janeva.. 117
Borland Optimizeit™ Profiler for the Microsoft .NET Framework................................. 118
Borland StarTeam 6.0 Standard Edition ... 118
Component One Studio Enterprise for Borland Delphi 2005 .. 118
Crystal Reports Borland Edition ... 118
glyFX Borland Special Edition ... 119
IBM DB2 Universal Developers Edition .. 119
InstallShield Express for Borland Delphi.. 119
Internet Direct (Indy) .. 119
IntraWeb ... 119
Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).. 120
Microsoft SQL Server 2000 Developer Edition.. 120
Rave Reports Borland Edition .. 120
Wise Owl Demeanor for .NET Borland Edition ... 120
Other Resources .. 120

Summary.. 121

About Borland Software Corporation .. 121

About the Author .. 121

 P a ge 5

Borland Delphi 2005 – Reviewers Guide

Overview
Borland®
Delphi™ 2005
 P a ge 6

Borland Delphi 2005 – Reviewers Guide

Overview

Welcome to the Delphi 2005 Reviewer's Guide. This document will familiarize you with

Delphi 2005, the newest version of Borland's flagship development environment, culminating

more than twenty years of technological innovation.

The Delphi 2005 Reviewer's Guide is organized into two parts. In this first part, the

Overview, you will find a general introduction to Borland Delphi 2005.

The second part of this guide takes you on a tour of Delphi 2005. It is organized by the major

areas of software development and support in Delphi 2005, providing you with an overview

of each area, and is followed by a description of the many updates, enhancements, and

additions introduced in this release. If you are already a Borland enthusiast, you may want to

quickly scan the overview section, concentrating instead on the updates that make this the

most important upgrade to Delphi since it debuted in 1995.

Delphi: Advancing the Art of Software Development

Delphi's legacy began in 1983, when Turbo Pascal set a new standard for software

engineering. The evolution of Turbo Pascal reads like a history lesson in the advancement of

software development, including the introduction of such groundbreaking innovations as an

integrated development environment (IDE), integrated debugging, syntax-highlighting, a

powerful object-oriented programming (OOP) model, and OWL, the Object Windows

Library.

With the release of Delphi 1.0 in February of 1995, Borland proved that component-based

development could be applied in an object-oriented environment, permitting developers to

rapidly build applications while maximizing code reuse. In more ways than one, Delphi

blazed a trail that would eventually be followed by the framework class library (FCL) of the

Microsoft .NET Framework.

 P a ge 7

Borland Delphi 2005 – Reviewers Guide

Delphi 2005 represents another impressive advance in software development by Borland,

making it the ultimate and complete development solution for Windows. Delphi 2005

converges Delphi, C#, Microsoft® .NET Framework and Win32 support for graphical user

interface (GUI), Web, database, and model-driven application development, and is wrapped

with the essential application lifecycle management (ALM) tools into a unified, highly-

productive rapid application development (RAD) environment. With Delphi 2005, you have

everything you need to increase Windows developer productivity, personal developer

productivity, and team productivity.

• Windows developer productivity: The Delphi 2005 IDE makes Windows

development tasks faster, easier, and better by supporting the Win32 standard of

yesterday and today, with the Windows-based Microsoft .NET Framework

development standard of today and tomorrow. With world-class compilers and

debuggers, a rich legacy of standards-based tools, and a seamless migration path

between current and emerging platforms, there is no better Windows development

tool on the market today.

• Personal developer productivity: Delphi 2005 takes the power of Delphi to a new

level, with speed and productivity enhancements throughout. With a code editor that

simplifies every aspect of your programming experience, the largest collection of

reusable components, powerful code-generating wizards, and much more, Delphi

2005 is the most prolific development environment available.

• Team productivity: Delphi 2005 allows teams to take full control of the application

lifecycle. In addition to state-of-the-art tools for software development, certain

editions of Delphi 2005 also include StarTeam® for team source code control,

Borland Enterprise Core Objects II (ECO™ II) for model-powered development in

the .NET framework, integrated Unit Testing Framework, and Borland Optimizeit™

Profiler for the Microsoft .NET Framework for performance-testing. In short, Delphi

2005 provides you with a complete, integrated solution for all your development and

project management needs.

 P a ge 8

Borland Delphi 2005 – Reviewers Guide

Borland Products = Technical Excellence
Throughout the years, Borland products have been recognized for excellence and innovation.

Here are a few of the honors received recently by the products that represent the heritage of

Delphi 2005:

● Borland Delphi 8 for the Microsoft .NET Framework won Best of Show in the

developer tool category at TechEd Europe, 02-July-04

● Borland C#Builder won the Visual Studio Magazine Reader Choice Award for

best developer tool 24-May-04

● Borland Delphi 7 Studio won the Web Services Journal Readers' Choice Award

for in the Best GUI for Web Services Product category, 25-February-04

The remaining sections of this guide are organized into related topics associated with software

development. Each section begins with a general overview, and then continues with a

description of the new and enhanced features introduced in Delphi 2005.

Disclaimer
This reviewer's guide is based on a pre-release version of Delphi 2005. Features in the shipping

product may vary slightly from the descriptions found here.

 P a ge 9

Borland Delphi 2005 – Reviewers Guide

 P a ge 10

Borland®
Delphi™ 2005

Integrated Development
Environment

Borland Delphi 2005 – Reviewers Guide

The Integrated Development Environment

The Delphi 2005 IDE (integrated development environment) represents state-of-the-art in

software development tools. Growing out of Borland's Galileo IDE technology first release

with Borland C#Builder™ and Delphi 8 for .NET, Delphi 2005's IDE continues Borland's rich

heritage of enabling you to develop applications faster and better.

This section focuses on the features found in the various panels, designers, dialog boxes, and

views of the IDE. Features that are specific to the code editor are detailed separately in a later

section of this guide.

One IDE, Multiple Personalities

Whether you are coding in Delphi or C#, writing Win32 applications or .NET managed code,

building ASP.NET Web pages or traditional client applications, Delphi 2005's IDE provides

you with a consistent and powerful set of development tools designed to increase your

productivity.

With Delphi 2005, the IDE keeps track of what kind of application you are working with,

providing you with the designers, views, and features consistent with the task at hand. For

 P a ge 11

Borland Delphi 2005 – Reviewers Guide

example, if you are building an ASP.NET Web application, the HTML designer allows you to

design your Web pages visually, permitting you to drag-and-drop the components that you

want to see on your Web page and configure them with little or no code. The following figure

shows Delphi 2005 with an open ASP.NET Web application and its visual HTML designer.

If you create a new Win32 client application, or open an existing one, the VCL (visual

component library) designer kicks in, again providing you with unmatched support for

designing your user interfaces.

 P a ge 12

Borland Delphi 2005 – Reviewers Guide

You can even create project groups that include two or more different kinds of projects. When

you do this, the type of application that is currently active in the project group determines

which designers are available, and which options you see in the supporting views. For

instance, if your project group includes both an ASP.NET Web Service application and a

Win32 VCL Form application, Delphi 2005 notes which of these projects is currently active,

providing you with the designer and editor appropriate for each as you switch between your

projects.

One IDE, Multiple Languages

Delphi 2005 is more than just context-sensitive designers — it is a full multiple-language

development environment. The native languages and debuggers that are included in Delphi

2005 are Delphi for Win32 development, Delphi for the Microsoft .NET Framework, and C#

for the Microsoft .NET Framework.

While other IDEs support multiple languages, Delphi 2005 is unique in that it supports both

multiple platforms and multiple languages transparently. For example, you can create a

 P a ge 13

Borland Delphi 2005 – Reviewers Guide

project group that includes a C# ASP.NET Web application, a Delphi for .NET Web Control

class library, and a traditional Windows DLL (dynamic link library) written in Delphi Win32.

Not only will the appropriate compiler and debugger be used for each project, based on its

underlying language, but also the code editor features and Tool Palette snippets will expose

the appropriate features as you navigate between the various projects.

Delphi 2005 can also support additional compilers, if you wish. For example, so long as you

have the VB for .NET compiler installed on your workstation, you can create, open, edit,

compile, and debug VB for .NET applications without ever leaving the Delphi 2005 IDE.

The Structure Pane

The Structure pane is a context-sensitive view that provides you with detailed information

about what ever is displayed in your main view. When you are using the code editor, the

Structure pane displays the classes, types, interfaces, and other symbols in the current file, as

shown in the following figure. (In Delphi 7, this view was called the Code Explorer.)

By comparison, when you are designing a VCL Form, the Structure pane displays the

components that appear on your form, with the various nodes representing the containership

of your controls. (In Delphi 7, this view was referred to as the Object Tree View.)

 P a ge 14

Borland Delphi 2005 – Reviewers Guide

Not only does the Structure pane provide you with valuable insight into your projects, it also

serves as a convenient tool for navigating the symbols and objects that you are using. When

you are editing your code, double-clicking a symbol in the Structure pane takes you to the

associated line of code in the editor. When you are designing a VCL Form, clicking an object

selects it in the designer, permitting you to quickly change its properties or assign event

handlers.

The Structure pane is also invaluable when there are errors in your code. When Delphi 2005's

new Error Insight feature identifies problems in your source files, these appear automatically,

as you type, in the Structure pane, permitting you to quickly navigate to the position in the

code editor where problems exist. Error Insight is described in more detail in the "The Next

Generation Code Editor" section of this guide.

The VCL and VCL for .NET Floating Designer

Some developers who used Delphi 8 for the Microsoft .NET Framework wished for a

"floating" VCL designer, like the one available in Delphi 7. Borland listened. For Delphi

development of VCL and VCL for .NET applications, Delphi 2005 provides you with a

choice between using the .NET-style embedded designer or the classic floating designer.

 P a ge 15

Borland Delphi 2005 – Reviewers Guide

To enable the floating designer in Delphi 2005, select Tools | Options. Navigate to the VCL

Designer node under Delphi Options, and uncheck the Embedded designer check box.

The Tool Palette

When you work in a component-based environment like Delphi 2005, you typically make

extensive use of design-time components, which are placed into the designer and configured

using the Object Inspector. These components are available from the Delphi 2005 Tool

Palette.

The Tool Palette is organized by component category. Which categories are displayed, and

which components appear within them, is context sensitive, based on the type of project on

which you are working. Furthermore, the Tool Palette permits you to controls its organization.

You can change the position of a component within a Tool Palette category, as well as move a

component to a different category, simply by dragging the component within the Tool Palette.

You can even define your own custom categories into which you can drag your components.

 P a ge 16

Borland Delphi 2005 – Reviewers Guide

Delphi 2005 includes a number of enhancements to the Tool Palette. These are discussed in

the following sections.

Enhanced Tool Palette Behavior
Delphi 2005's Tool Palette is better than ever. In addition to providing access to design-time

components and code snippets, depending on whether you are working with a designer or

code editor, the updated Tool Palette can also be used to create new projects, files, and

objects. When you do not currently have a project open, the Tool Palette provides access to all

of the wizards and templates of the Object Repository. Some of these are shown in the

following figure.

When you are using the code editor, the Tool Palette now includes these same options in

addition to code snippets, and reusable pieces of code that you can drag into the code editor.

Selecting objects from the Tool Palette has also been enhanced, greatly improving the speed

with which you can build forms and applications. Simply click the Filter Current Items button

in the Tool Palette toolbar, or press Ctrl-Alt-P, and start typing the name of the object you

want to select. As you type, the characters you've entered so far appear in the Tool Palette title

 P a ge 17

Borland Delphi 2005 – Reviewers Guide

bar, and a filtered list of matching objects appears below, as shown in the following figure.

Press Enter when the item you want is selected.

You also have additional options for controlling the Tool Palette display. To see these

options, select Tools | Options from the main menu. Tool Palette configuration options are

available under the Tool Palette node of the Options dialog box.

 P a ge 18

Borland Delphi 2005 – Reviewers Guide

Finally, the Tool Palette in Delphi 2005 now supports true drag-and-drop placement of

components into the designer you are working with. Previously, component placement with

VCL Forms could be better described as click-and-click, though that technique also works in

Delphi 2005.

New VCL for .NET Components
For Delphi VCL-based development, the Tool Palette now includes a number of new controls

for creating better using interfaces. These include a TButtonGroup, TCategoryButtons, and

TDockTabSet. These components, which you can use in your Win32 and VCL for .NET

applications, permit you to easily create interfaces similar to those used in Delphi 2005’s Tool

Palette and the Structure pane. As you have probably already guessed, these new components

are the same ones that Borland engineers developed to build the Delphi 2005 IDE.

In addition, VCL for .NET has been expanded to include even more Delphi VCL-compatible

classes. These additional classes make it even easier than before to migrate your existing

Win32 projects to the .NET framework.

For a complete list of the new components in Delphi 2005, see "What's New in Delphi 2005"

in the Delphi 2005 help.

The Object Inspector

The Delphi 2005 Object Inspector, which you use to configure objects placed on your form at

design time, has also been updated. Not only does the Object Inspector permit you to

configure properties and events for the objects that you have placed into the designer, but you

can also use it to control file names and get information about objects that you select in the

Project Manager.

For example, select a file in the Project Manager, such as an .aspx file in an ASP.NET Web

application, and the file path and file name will appear in the Object Inspector, as shown in

the following figure.

 P a ge 19

Borland Delphi 2005 – Reviewers Guide

The File Name property in the preceding figure is shown in an enabled font, indicating that

you can edit the name of this file using the Object Inspector. Changing the file name here not

only changes the name of the file displayed within the Project Manager, but since this file is a

Delphi unit, the unit name changes as well. Of course, you can still rename a file the old

fashioned way, by selecting File | Save As from the main menu.

Other objects selectable within the Project Manager can also be viewed in the Object

Inspector. For example, if you select one of the assemblies listed under the References node

of a .NET project in the Project Manager, the Object Inspector displays details about that

assembly, as shown in this next figure.

 P a ge 20

Borland Delphi 2005 – Reviewers Guide

The Upgrade Project Wizard

Because Delphi 2005 includes both Win32 and .NET compilers for the Delphi language, it

can be used to create new Win32 applications as well as further the development of your

existing Win32 projects that you created in Delphi 7 and earlier. You can also use Delphi

2005 to migrate your existing Win32 applications to VCL for .NET, the 100% .NET

managed-code solution that maintains component and source code compatibility between

Win32 and .NET development.

The Upgrade Project Wizard is a special utility that runs the first time you open a Win32

application in Delphi 2005. Using this utility, you can choose to continue the current project

as a Win32 application, or you can convert it to a .NET application.

 P a ge 21

Borland Delphi 2005 – Reviewers Guide

Once you made your choice using this wizard, Delphi 2005 will remember your selection. If

you tell the Project Upgrade Wizard that you want to continue working with a Delphi project

as a Win32 project, and at some later time decide to migrate it to VCL for .NET, simply

delete your project's *.bdsproj file. After that, open the .dpr file in Delphi 2005. Once again,

the Project Update Wizard will ask you to choose whether to continue working with the

project as a Win32 project or to migrate it to VCL for .NET.

Delphi 2005 Wizards

Wizards are small applets that help you to quickly create the projects, objects, and files that

you use in Delphi 2005. For example, the ASP.NET Web Application Wizard creates for you

the necessary web.config, global.asax, and initial .aspx file, and configures an IIS virtual

directory into which these are placed, among other tasks. In short, wizards increase your

productivity, getting you off to a fast start in the right direction. The following figure shows

the Delphi 2005 object repository, displaying just a few of the many available wizards.

 P a ge 22

Borland Delphi 2005 – Reviewers Guide

Delphi has always provided you with a rich collection of wizards that support almost every

aspect of Windows development. For Win32 development, these include the Windows 2000

Logo Wizard, the DLL Wizard, the Automation Object Wizard, the Web Service Wizard, the

IntraWeb Application Wizard, the Database Form Wizard, and the Thread Wizard. These are

just some of the dozens of powerful wizards that are available.

For Delphi for .NET and C#, you will find the ASP.NET Web Application Wizard, the

Windows Form Application Wizard, ASP.NET Web Service Application Wizard, the Web

Control Library Wizard, and many, many more.

Delphi 2005 includes Wizards that were previously available in Delphi 7, Delphi 8 for the

Microsoft .NET Framework, and C# for the Microsoft .NET Framework. In addition, Delphi

2005 includes a number of new and improved wizards ⎯ accelerating your development

efforts even more. These include the updated New Component Wizard, the new DB Web

Control Library Wizard, the ECO ASP.NET Application Wizard, the ECO Web Service

Application Wizard, and the Satellite Assembly Wizard, just to name a few.

 P a ge 23

Borland Delphi 2005 – Reviewers Guide

Find in Files Enhancements

Delphi 2005 makes it even easier for you to search your project files by allowing you to group

search results by file. Simply check the Group results by file check box in the Find Text

dialog box.

The following figure shows what a grouped search result looks like. As you can see, each file

in which the search string appears forms a base node in a tree view. Expanding the node for a

given file lists the lines on which the located search string was found. You can then double-

click a particular entry to go to that line of code in the code editor.

 P a ge 24

Borland Delphi 2005 – Reviewers Guide

Updated Support for International Characters

The Delphi 2005 IDE has been upgraded across the board to support UTF-8 characters in all

of its wizards, windows, dialog boxes, and panes.

Message List Enhancements

Delphi 2005 uses the Message List pane to list compiler errors, warnings, and hints. You can

now save the contents of the Message List pane by right clicking in the Message List pane and

selecting either Copy, to copy selected messages to the Windows clipboard, or Save, to save

the Message List contents to a file.

IDE Error Reporting

Borland's commitment to creating better software has lead to the development of a number of

programs for reporting and fixing problems. One of the most recent of these is Quality

Central, a Web-based application for submitting bug reports located at http://qc.borland.com.

With Delphi 2005, Borland has embedded an error reporting system directly into the IDE.

This feature is called IDE Error Reporting. If an exception is raised within the IDE, Delphi

2005 displays the Error dialog box. If you click the Details button, you see a detailed trace of

the error.

 P a ge 25

Borland Delphi 2005 – Reviewers Guide

Clicking the Send button displays the Send Report dialog box.

Click the Next button to see the stack trace that will be submitted to Borland along with your

error report. Click Next again to enter a description of what you were doing when the error

occurred.

 P a ge 26

Borland Delphi 2005 – Reviewers Guide

Click Next once more to optionally provide your Borland Developer Network (BDN) logon

email address and password. Submitting your report using your BDN account allows you to

easily follow up on your report using Borland's Quality Central. If you want to submit the

report anonymously, check the Anonymous Report check box.

Click Next one final time to submit the error report.

Import/Export Project from/to Visual Studio .NET

Do you currently have C# projects in Visual Studio .NET 2003, but need the advanced

features offered by Delphi 2005? Don't worry. Importing these projects into Delphi 2005 is

easy.

Simply select File | Open, and open the Visual Studio C# project file (*.csproj). The Delphi

2005 Import Visual Studio Project Wizard will ask you for the name you want to give to the

imported project. From that point forward, you can use the Delphi 2005 features to design,

develop, compile, test, and deploy the application.

 P a ge 27

Borland Delphi 2005 – Reviewers Guide

The following figure shows a C# project created in Visual Studio .NET 2003 being imported

into Delphi 2005.

While the features of Delphi 2005 make it the preferred environment for .NET development,

C# projects built in Delphi 2005 can be exported to Visual Studio if you need to share the

results of your work with a VS-based developer. To do this, select Tools | Export to Visual

Studio from Delphi 2005’s main menu. Note that this menu item is only available when the

current project in the Project Manager is a C# project.

 P a ge 28

Borland Delphi 2005 – Reviewers Guide

 P a ge 29

Borland®
Delphi™ 2005

The Next Generation
Code Editor

Borland Delphi 2005 – Reviewers Guide

The Next Generation Code Editor

Delphi 2005 continues Borland's heritage of providing developers with a world-class

programming environment. To most developers, that also means a world-class code editor.

And that’s exactly what you get in Delphi 2005.

In fact, for most developers, the updates that Borland has introduced to the code editor in

Delphi 2005 will provide ample justification to upgrade from a previous version of Delphi or

C#Builder. These features include refactoring support, SyncEdit, Error Insight, Help Insight,

the History Manager, and much, much more. These new features are described in the

following sections.

Refactoring

Refactoring is the process of updating existing code to improve its readability,

maintainability, and efficiency, without changing the essential behavior of the software.

Common refactorings include providing more expressive names for variables, replacing

duplicate code segments with a call to a common function that performs the same task, and

replacing literal values with constants or resource references.

Delphi 2005 includes a number of impressive refactorings. These include symbol renaming,

method extraction, variable and field declarations, and resource refactorings.

Symbol Renaming
Symbol renaming allows you to change all instances of a symbol's name throughout your

project. Unlike a search-and-replace feature, symbol renaming respects the context in which

the symbol name appears. Symbols that can be renamed using this refactoring include class

and interface names, properties, methods, functions and procedures, as well as variables and

constants.

 P a ge 30

Borland Delphi 2005 – Reviewers Guide

To perform a symbol renaming refactoring, select the symbol whose name you want to

change in the code editor, and select Refactoring | Rename. Use the Rename dialog box to

define a new name for your symbol.

If you leave the View references before refactoring option checked, Delphi 2005 displays the

Refactorings pane, which lists all of the instances within your code where the change will be

applied.

Click the Refactor button on the Refactoring pane toolbar to apply the changes. Alternatively,

you can choose to remove one or more of the refactorings before applying them, or even

cancel the refactoring altogether.

Variable and Field Declarations
The Declare Variable and Declare Field options on the Refactor menu permit you to quickly

create a local variable or member field declaration. This option is available with Delphi code,

 P a ge 31

Borland Delphi 2005 – Reviewers Guide

but not with C# projects. (This feature is not needed in C# since fields can appear almost

anywhere within a C# class. By comparison, in Delphi, variables must appear in a var block,

and member fields must appear in a type block.)

To insert a local variable or member field, select the symbol name that you created in the code

editor, and select Refactor | Declare Variable or Refactor | Declare Field (or press Ctrl-Shift-V

or Ctrl-Shift-D, respectively). If you select Declare Variable, the Declare Variable dialog box

is shown.

You use the Declare Variable dialog box to change the variable name, set its data type, make

the variable an array type with a specific dimension, or to initialize the newly created variable

to a specific value. Click OK to create the local variable, and initialize its value (if you chose

that option).

If you select Declare Field, the Declare New Field dialog box is displayed. You use this

dialog box to set the name and data type of the new field, to declare it as an array of a given

dimension, and to define its visibility within the associated class. When you click OK, the

newly named field is created in the selected section of the class within whose method the

symbol is located.

 P a ge 32

Borland Delphi 2005 – Reviewers Guide

Resource Refactoring
Resource refactorings are used in Delphi code to convert string literals into resourcestring

block entries, replacing the original literal with the resource string symbol. (There is no

resourcestring block in the C# language.) Using resource strings instead of string literals is

particularly valuable when a specific string literal is used repeatedly, as well as when you

need to create localized (language and/or culture specific) versions of your application.

After placing your cursor within a string literal in the Delphi code editor, select Refactor |

Extract Resource String. Use the Extract Resource String dialog box to modify the string and

to change the default name for the resource symbol. When you click OK, the string literal is

replaced with the resource symbol, and the named symbol is inserted into a resourcestring

block in the associated unit's interface section.

 P a ge 33

Borland Delphi 2005 – Reviewers Guide

Extract Method Refactoring
Most developers think of method extraction when they think of refactoring. Method extraction

involves converting one or more lines of code into an independent method call, replacing

those lines with an invocation of the extracted method.

In Delphi 2005, method extraction refactoring is only available for the Delphi language.

Method extraction is particularly useful when the same or similar lines of code appear

repeatedly in your project. By extracting those lines to a separate method, replacing each of

the repeated instances with an invocation of the method, you greatly enhance your code's

maintainability by creating a single location where changes to those lines of code, if desired,

need to be implemented.

To perform a method extraction refactoring, select the lines of code that you want to extract to

a method, and then select Refactor | Extract Method. Use the Extract Method dialog box to

define a name for the new method, as well as to examine the code that will be placed inside of

this new method.

Delphi 2005's extract method refactoring is intelligent, with respect to variables, properties,

and objects referenced within the code being extracted. For example, since the code in the

preceding figure includes a reference to the Disposing property of the method's class, the

 P a ge 34

Borland Delphi 2005 – Reviewers Guide

value of this property is passed by value to the refactored code. By comparison, if the code

actually made a change to the value of a variable that needs to be passed into the refactored

method, the associated parameter would be passed by reference (using the var keyword).

Import Namespace (C#) and Find Unit (Delphi)
Although not exactly a refactoring, the Import Namespace and Find Unit options under the

Refactor menu permit you to quickly locate and import the namespace associated with a

particular symbol. If you are coding in C#, you select Refactor | Import Namespace. Delphi

developers select Refactor | Find Unit.

After selecting this option from the Refactor menu, the displayed dialog box lists all of the

classes in all of the namespaces available to the environment you are working in. For

example, if you are creating a Delphi .NET Windows Forms application, the namespaces of

the FCL and RTL for .NET (the .NET version of the Delphi runtime library) are available.

Delphi VCL for .NET developers will find the VCL for .NET namespaces as well.

By comparison, if you are creating a Delphi Win32 application, the various units of the VCL

and RTL are listed. Type the name of the class that you want to be able to access in the Search

field. As you type, the Matching Results list is filtered to include only those classes, and their

associated namespaces, whose names match what you've typed so far.

 P a ge 35

Borland Delphi 2005 – Reviewers Guide

Select the name of the class whose namespace you want and click OK. If you are working in

Delphi, you can also specify whether the namespace will be added to your interface or

implementation section uses clause.

SyncEdit

SyncEdit is a new feature in Delphi 2005 that provides support similar to symbol renaming

refactoring. Unlike symbol renaming, however, SyncEdit performs localized renaming of

symbols for a selected code block only. This is a powerful capability and one of the most

popular new features with developers.

SyncEdit becomes available anytime you select a code block that includes at least two

instances of the same symbol name. For example, consider the following figure, which

depicts a selected code block that includes more than one reference to a local variable named

DataTable1 (as well as DataSet1, DataAdapter1, Connection1, and the Create method).

 P a ge 36

Borland Delphi 2005 – Reviewers Guide

The SyncEdit icon appears in the left gutter of the editor window, indicating that

synchronized changes to the selected code block are available. To enter the SyncEdit mode,

you either click this icon or press Shift-Ctrl-J.

Once you enter the SyncEdit mode, the duplicate symbols are identified, and the symbol

selected for synchronized editing appears highlighted (with the duplicates being displayed

enclosed in boxes). If you want to edit a symbol other than the one selected by default, press

the Tab key until the symbol you want to SyncEdit is selected.

After selecting the symbol to edit, begin typing. The name of the selected symbol, and its

duplicates, are updated as you type. The following figure shows the name of the DataTable

 P a ge 37

Borland Delphi 2005 – Reviewers Guide

being changed to CustTable. (The edit is being performed on the first instance of DataTable1,

which appeared in the var declaration of this method.)

SyncEdit is a great productivity tool when you are writing functions, procedures, and

methods, in that this feature is so easy to use. There are, however, important differences

between SyncEdit and symbol renaming refactorings. SyncEdit is lexical, so it works with

comment lines as well as compilable code, unlike symbol renaming refactorings, which work

only on actual symbol references. Likewise, symbol renaming refactoring extends its reach

into descendant classes, as well as to resource files (such as VCL and VCL for .NET form

files). SyncEdit only applies to the currently selected code block.

Error Insight

Error Insight, which makes its debut in Delphi 2005, provides you with a service that can be

roughly described as spell checking and grammar checking for programmers. As you write

your Delphi or C# code, the IDE actively evaluates your work, identifying the symbols,

keywords, and directives that you use, looking for syntax and semantic errors that the

compiler cannot resolve. When Error Insight locates an error, it identifies the problem by

underscoring the offending text with red squiggly lines, similar to how Microsoft Word

identifies words not in its dictionary.

 P a ge 38

Borland Delphi 2005 – Reviewers Guide

When you pause your mouse pointer briefly over a symbol that Error Insight does not

recognize, Error Insight displays a hint window with information about the identified error.

In addition to the Error Insight features available in the code editor, the problems located by

Error Insight also dynamically appear in the Structure pane, under the Errors node, and

disappear as they are corrected. The following figure shows the Structure pane with a number

of identified errors.

In the example shown in the preceding figures, adding the Borland.Vcl.Registry unit (for the

TRegistry class) and Borland.Vcl.Windows (for the HKEY_LOCAL_MACHINE constant) to

 P a ge 39

Borland Delphi 2005 – Reviewers Guide

this unit's uses clause allows Error Insight to see the various symbols that it identified as

problems. Once these two units are added to the uses clause, both the Structure pane and the

code editor are updated, indicating that no problems are detected in this code.

You can configure Error Insight from the Code Insight node of the Options dialog box.

Display this dialog box by selecting Tools | Options from the main menu.

Help Insight

Another new Code Insight feature appearing in Delphi 2005 is Help Insight. Help Insight

provides you with information about the classes, interfaces, methods, properties, and fields

that appear in your code, without you ever having to leave the code editor.

To access Help Insight, briefly pause your mouse pointer over a symbol in the code editor.

After a moment, a hint window appears, displaying information about the symbol.

In many instances, Help Insight includes one or more links within the hint window. Clicking

one of these links may drill down into the help, displaying an additional hint window with

information about the link you clicked. Alternatively, clicking a link may take you to the line

of code where the clicked symbol is defined.

Help Insight is also available from the windows displayed by Code Insight, including the

Class Completion and Argument Value List windows. When a Code Insight window is active,

 P a ge 40

Borland Delphi 2005 – Reviewers Guide

select an item in the Code Insight window to show the Help Insight for that item. For

example, in the following figure Help Insight is displaying information about the

BeginTransaction method of a SqlConnection object. This help became available after

BeginTransaction was selected in the Code Completion window.

You can configure Help Insight from the Code Insight node of the Options dialog box.

The History Manager

One of the more exciting additions to the Delphi 2005 code editor is the History Manager.

The History Manager, which you display by clicking the History tab when a source file is

active in the code editor, allows you to view changes to your source files over time, view

comments about specific versions of your source code, view the differences between the

various saved versions of your files, and easily revert to any backup state or checkin.

By default, the History Manager transparently maintains local copies of your source files in a

folder named __history under your project directory each time you save your changes. This

feature is called local file backup, and you use the Options dialog box to configure how many

versions of your local backup to keep. Delphi 2005 maintains the last 10 saved versions of

each source file, by default. Depending on your available hard disk space, you may want to

increase the number of backups.

If you are using Borland’s StarTeam version control server, the History Manager maintains

StarTeam checkins as well. Using this feature, you can not only view changes that you have

made to the source files, but also compare your changes with those implemented by other

developers working on the StarTeam-managed project. StarTeam also permits you to track

 P a ge 41

Borland Delphi 2005 – Reviewers Guide

changes even after you have changed a file's name. In short, the History Manager provides

you with a convenient and powerful interface to the robust StarTeam project asset

management system.

It's worth noting that the History Manager also works with the DFM files of VCL and VCL

for .NET applications. DFM files are used in those applications to persist information about

the properties of the objects that appear on your forms, data modules, and frames. As a result,

the History Manager permits you to view, manage, and restore changes made to your form

designs using the same tools as those used on Delphi code files.

There are three panes available within the History Manager. These panes are named Content,

Info, and Diff. Each of these panes is described in the following sections.

The Content Pane
You use the Content pane to review the contents of your saved source files, and optionally

revert to a previously saved version. When you select a specific backup or the current saved

version of the file, the contents of that file are displayed in the code area. In addition, the file

name and the date last saved appear in the History Manager's status bar.

 P a ge 42

Borland Delphi 2005 – Reviewers Guide

Use the code area to view the contents of the selected file. If you want, you can use the code

area to select and copy (Ctrl-C) lines of code that you want to paste elsewhere within your

project (or even into other projects).

If you want to revert your code to one of the previous saved versions, select the saved backup

that you want to revert to and click the Revert to previous version button in the History

Manager toolbar.

The Info Pane
You use the Info pane to view comments and notes associated with a particular version of

your source file. If you are using StarTeam to manage your History Manager contents, these

comments are linked to your StarTeam backups. If you are using local backups, these

 P a ge 43

Borland Delphi 2005 – Reviewers Guide

comments are generated by Delphi 2005 and cannot be modified. Some operations, such as

refactorings, write information into the Info pane of the History Manager.

The Diff Pane
For most developers, the Diff pane offers the most valuable feature of the History Manger.

The Diff pane provides insight into the differences between the multiple versions of your

source code, including comparisons between the current edit buffer and saved source files.

 Select one of the saved versions of your source file from the Differences From: list on the left

side of the Diff pane, and either the contents of the current edit buffer or one of the other

saved versions from the To: list on the right side. The difference view is displayed in the code

area, with the newer code versions identified with a plus sign (+) in the left gutter, and the

older versions identified with a minus (-) sign.

 P a ge 44

Borland Delphi 2005 – Reviewers Guide

The following figure depicts changes between the current version of the file in the edit buffer

and one of the saved local backups.

Code Navigation Enhancement

Code navigation is a feature of Delphi 2005 that permits you to easily move between sections

of your code. For example, by pressing Ctrl-Shift-UpArrow (or Control-Shift-DownArrow),

you can move effortlessly between a method name in a Delphi class declaration to the

associated implementation of that method.

Delphi 2005 introduces a small but valuable enhancement to code navigation in Delphi code,

allowing you to move between your interface and implementation section uses clauses, as

well as between your unit's initialization and finalization sections, using Ctrl-Shift-UpArrow.

Code navigation is not necessary in C# projects, as the associated modules in C# do not have

a two-part structure, as is the case with Delphi units.

 P a ge 45

Borland Delphi 2005 – Reviewers Guide

Toggling Code to/from Comments

Delphi 2005 introduces a new feature that permits you to quickly comment and uncomment a

selected code block. To comment one or more consecutive lines of code, select the code in the

code editor, right-click, and then select Toggle Comment from the displayed context menu (or

press Ctrl-/). When you do this, Delphi 2005 places the single line comment characters (//) at

the start of each of the lines in the selected block.

To uncomment one or more consecutive lines, select those lines and press Ctrl-/, or right-click

and select Toggle Comment. Delphi 2005 will respond by removing the single-line comment

characters from each selected line in the block. The single-line comment characters do not

have to be in the first column of the code editor for Delphi 2005 to remove them.

Persistent Bookmarks

Bookmarks are special tags that you place within a source file to enhance your navigation

within that file. You place a bookmark by pressing Ctrl-Shift, followed by a single digit, from

0 to 9. Once placed, the bookmark appears in the left gutter of the code editor using a glyph

that represents the digit.

Once a bookmark has been placed, you can quickly navigate to that bookmark within the code

editor by pressing the Ctrl key followed by the digit used to place the bookmark. For example,

if you have previously placed a bookmark using Ctrl-Shift-1, and subsequently navigate to a

different area of your code file, you can instantly return to the bookmarked line in your source

code by pressing Ctrl-1.

Delphi 2005 now supports persistent bookmarks. If persistent bookmarks are enabled, a

placed bookmark will remain in the source code until you specifically remove it. This means

that you can place a bookmark in one editing session, and that bookmark will still be there the

next time you open that source code file in Delphi 2005.

In order to enable persistent bookmarks, check the Project desktop check box under the

Autosave options group on the Environment Options page of the Options dialog box. You

display the Options dialog box by selecting Tools | Options from the main menu.

 P a ge 46

Borland Delphi 2005 – Reviewers Guide

J2EE and CORBA to .NET Integration with Janeva

Janeva is Borland's middleware solution for using J2EE (Java 2 Enterprise Edition) Enterprise

JavaBeans and CORBA (common object request broker architecture) objects from your

Delphi 2005 applications. With Janeva, you can leverage your existing enterprise-level

objects, calling them from your Web-enabled or workstation client .NET applications.

To enable access to a J2EE or CORBA object from your Delphi 2005 application, select the

Project menu on Delphi 2005's main menu, or right-click the current project in the Project

Manager, and select either Add J2EE Reference or Add CORBA Reference.

Use the displayed dialog box to select the Java .jar or .ear file, or the CORBA IDL (interface

definition language) file. If you select a Java archive, for example, Delphi 2005 then permits

you to choose which of the contained Enterprise JavaBeans you want to use, as shown in the

following figure.

 P a ge 47

Borland Delphi 2005 – Reviewers Guide

Selecting OK generates a proxy class that you use to make calls to the Java server at runtime.

User Selectable File Encoding

You can now choose how Delphi 2005 will encode your source files. Your options include

ANSI, Binary, UTF8, and so on.

To set the file encoding for the current source file in the editor, right-click in the editor and

select File Format from the context menu. Select the encoding you want to use from the

displayed menu.

Being able to select the source file encoding is particularly valuable when you are writing

source files using non-US locales. For example, source files encoded using UTF-8 will

correctly maintain the identity of the individual characters even when opened in a different

locale. By comparison, special characters in a source file may change if the source file is

encoded in ANSI and then opened with a different ANSI codepage.

 P a ge 48

Borland Delphi 2005 – Reviewers Guide

 P a ge 49

Borland®
Delphi™ 2005

The VCL for .NET

Borland Delphi 2005 – Reviewers Guide

The VCL for .NET

The Delphi visual component library for .NET (which for the purpose of this discussion,

includes the runtime library for .NET, or RTL for .NET), is a 100% .NET managed code

equivalent of the Delphi VCL for Win32. Several features of the VCL for .NET are notable.

For one thing, VCL for .NET is the largest, 100% managed collection of classes, types, and

functions for the .NET framework outside the .NET framework class library itself. And is

only available in Delphi 2005 (or its immediate predecessor, Delphi 8 for the Microsoft.NET

Framework).

The second characteristic of the VCL for .NET is its remarkable compatibility with the Win32

versions of the VCL. In fact, you use this compatibility to migrate your Win32 Delphi code to

.NET with little or no effort.

There are several updates to the VCL for .NET added to Delphi 2005. These are described in

the following sections.

Virtual Library Interfaces
Delphi provides extensive support for interoperability between Win32 and .NET applications,

including COM interop through runtime callable wrappers (RCWs) and platform invoke

(PInvoke). With Delphi 2005, this support has been advanced through the support for virtual

library interfaces (VLI). Virtual library interfaces permit you to call routines in Win32 DLLs

from your .NET applications much more easily than the mechanism provided by .NET's

PInvoke.

Normally, managed code in the .NET framework can call routines in unmanaged libraries

through the .NET platform invoke service, or PInvoke. With PInvoke, you import the

exported routines of an unmanaged DLL by using the [DLLImport] attribute to identify the

DLL in which the function is located, as well as other characteristics of the exported function.

 P a ge 50

Borland Delphi 2005 – Reviewers Guide

There are several drawbacks to using PInvoke. First, using the [DLLImport] attribute you

cannot resolve the DLL name or location (path) at runtime. Second, if the specified routine in

the DLL cannot be loaded, for whatever reason, a runtime exception is raised.

Third, the [DLLImport] attribute is somewhat verbose and repetitive, especially when you

have many routines that you are importing from a single DLL.

Consider the following two functions, which are implemented and exported from a Win32

DLL created using Win32 Delphi:

function ConvertCtoF(CentValue: Integer): Integer; stdcall;

function ConvertFtoC(FahrValue: Integer): Integer; stdcall;

A unit that imports these routines using PInvoke has, at a minimum, an implementation block

that looks something like the following (assuming that these routines were exported from a

DLL named Win32DLL.dll):

function ConvertCtoF; external;

[DllImport('Win32DLL.dll', CharSet = CharSet.Auto,

 EntryPoint = 'ConvertCtoF')]

function ConvertFtoC; external;

[DllImport('Win32DLL.dll', CharSet = CharSet.Auto,

 EntryPoint = 'ConvertFtoC')]

With virtual library interfaces, importing routines from an unmanaged DLL is easier, is less

prone to raising exceptions, and permits your code to resolve the name and/or location of the

DLL at runtime. There are three steps to importing one or more routines from an unmanaged

DLL using virtual library interfaces. These are:

• Adding the Borland.Vcl.Win32 namespace to your uses clause
• Creating an interface declaration where each method in the interface maps to one of the

routines exported from the DLL
• Calling the Supports function from the Borland.Vcl.Win32 unit, passing to it the name of

the DLL (including an optional path if the DLL is not located in a location where
Windows will find it), the Interface you created in the preceding step, and a variable of
that interface type

 P a ge 51

Borland Delphi 2005 – Reviewers Guide

If the Supports function determines that the methods of your interface map to functions

exported from the named DLL, the variable you pass in the third parameter of the call to

Supports will point to an object that implements the interface you passed in the second

parameter. You can then use this object reference to execute the unmanaged routines of the

DLL.

If one or more of the methods of the interface are not exported by the named DLL, or the

named DLL does not exist or is somehow compromised, Supports returns a Boolean false

without raising an exception.

Here is a sample interface that declares the two exported functions of the unmanaged DLL

example used earlier in this section:

type

IWin32DLLInt = interface

 function ConvertCtoF(CentValue: Integer): Integer;

 function ConvertFtoC(FahrValue: Integer): Integer;

end;

If Win32DLL.dll is located in the mylib subdirectory of the application's executable, the

following code returns an implementation of IMyWin32DLL, after which one of the methods

(ConvertCtoF) of the returned object is executed:

var

 MyDLL: String;

 MyWin32DLL: IWin32DLLInt;

begin

MyDLL := ExtractFilePath(Application.ExeName) +

 '\mylib\Win32DLL.dll' ;

if not Supports(MyDLL, IWin32DLLInt, MyWin32DLL) then

 MessageBox.Show(self, 'Could not load Win32DLL.dll')

else

 NewInt := MyWin32DLL.ConvertCtoF(100);

 P a ge 52

Borland Delphi 2005 – Reviewers Guide

Support for Partially Trusted Callers
The VCL for .NET assemblies now support partially trusted callers. A partially trusted caller

is an application that does not reside on the same workstation as a managed assembly that it

calls.

For example, an .exe being executed from a network share or from a URL is a partially trusted

caller. By default, the .NET security model prevents a partially trusted caller from invoking

unmanaged code, such as that in the Windows API, unless that caller includes the appropriate

declarations and checks.

The Delphi 2005 assemblies of the VCL for .NET now include the additional security

declarations and checks that permit the VCL for .NET to be called from a partially trusted

caller without violating .NET security.

 P a ge 53

Borland Delphi 2005 – Reviewers Guide

 P a ge 54

Borland®
Delphi™ 2005

The Delphi Compilers

Borland Delphi 2005 – Reviewers Guide

The Delphi Compilers

Borland compilers are legendary for their speed and compatibility, and this legacy continues

with Delphi 2005. Actually, Delphi 2005 ships with three compilers. One of these compilers,

the C# compiler, is licensed from Microsoft. Consequently, C# applications you build in

Delphi 2005 generate the same intermediate language (IL) code as those built with Visual

Studio.

The other two compilers are Delphi compilers, one for compiling traditional 32-bit Windows

executables and the other for generating IL for the .NET Framework. Both of these compilers

have received significant updates in the Delphi 2005 release.

This section begins with a discussion of features added to both the Win32 and the .NET

versions of the Delphi compilers. Later in this section, you will learn about the new features

that are specific to one or the other of these compilers.

Updates for Both Win32 and .NET Delphi Compilers

Several new features have been added to both of Delphi 2005’s Delphi compilers. Thes most

significant of these include the new for…in loop and Unicode support. These new compiler

features are described in the following sections.

The For…In Loop
The Delphi language has been updated to include a new looping control structure similar to

the C# foreach keyword. In Delphi, this new loop is referred to as a for…in loop. Unlike

traditional for loops in Delphi, the for…in loop does not require an ordinal control variable.

Instead, the for…in loop systematically retrieves a reference to the next object in a collection

of like objects.

For example, the following code segment can be used to iterate through the DataRows of a

DataTable's Rows property (this property is of the type DataRowCollection):

 P a ge 55

Borland Delphi 2005 – Reviewers Guide

var

 Row: DataRow;

begin

//…

for Row in MyDataTable.Rows do

 ListBox1.Items.Add(Row[0].ToString);

For the .NET Delphi compiler, for…in can be used with any object that satisfies at least one

of the following conditions: it implements the IEnumerable interface, has a public

GetEnuermerator function, or is an array, set, or string. For the Win32 compiler, for…in can

be used with any class that has a public GetEnumerator function, or is an array, a set, or a

string. Classes that implement a GetEnumerator function include TList, TCollection,

TStrings, TMenuItem, TFields, to name a few.

Support for Unicode and UTF8 Formats
Both of Delphi’s compilers can now compile UTF8 and Unicode source files. Previously,

only ANSI source files were supported. For the Delphi for .NET compiler, this feature

supports CLS (common language specification) standard Unicode identifiers in both metadata

and in source code.

The Delphi for .NET Compiler

Borland's Delphi for .NET compiler made its first debut with the release of Delphi 8 for the

Microsoft .NET Framework. In addition to the updates listed in the preceding section, this

compiler has received a number of updates that apply specifically to .NET applications. These

include a revision to how namespaces are created and managed, forward-declared record

types, and support for weak packaging in VCL for .NET applications. The updates to the

Delphi for .NET compiler are described in the following sections.

Delphi Code and Namespaces
The biggest change to the .NET compiler is in how it generates namespaces for the symbols

defined in your units. Under the previous version of the compiler, the unit name was the

namespace.

 P a ge 56

Borland Delphi 2005 – Reviewers Guide

For some developers, particularly those accustomed to using classes defined in C#, the

namespaces created by Delphi appeared awkward. Specifically, these namespaces revealed

the physical structure of the underlying code, which is irrelevant from the perspective of the

person using your classes, and can be distracting.

The Delphi 2005 compiler takes a new approach to namespace generation, allowing multiple

units, and even multiple applications, to contribute to a common namespace, if desired. At the

same time, it is just as easy to make each unit contribute to a separate namespace.

Here is how it works. If your unit names do not use dot notation, the unit name is the

namespace. This is how it worked before.

If a unit includes a multipart name, using dot notation, the namespace is defined by dropping

the last part of the unit name. For example, if a unit has the name YourCompany.Data.Unit1,

the classes within that unit will reside in the YourCompany.Data namespace. Classes that

appear in the YourCompany.Data.Unit2 and YourCompany.Data.Unit3 units will be in the

YourCompany.Data namespace as well.

Global variables, constants, functions, and procedures declared in Delphi code represent

something of a challenge, in that .NET requires all declarations to be associated with a class.

Therefore, the global symbols of a Delphi unit named YourCompany.Data.Unit1 are

implemented in .NET metadata as members of a class named Unit1 within the namespace

YourCompany.Data.Units.

How Delphi symbols appear in .NET metadata has no effect on your Delphi source code. You

only need to consider how your Delphi code will appear in the .NET metadata for the portion

of your code that you want developers using other .NET languages to use. In general, you

should avoid using global variables, global constants, or global procedures and functions

when writing Delphi code that you intend to be used by other .NET languages.

Support for Weak Packaging in VCL for .NET Applications

A runtime package in the VCL for .NET is a managed .NET assembly ⎯ it contains

declarations that the application can load and use at runtime. Under normal circumstances, if

 P a ge 57

Borland Delphi 2005 – Reviewers Guide

you compile a VCL for .NET application to use a runtime package, you are required to deploy

that package, just as you are required to ensure the deployment of all assemblies (DLLs) that

are referenced in your application.

Weak packaging of a unit addresses a problem that arises when a runtime package contains

one or more units that statically link to an external DLL, in particular, a DLL that is not

commonly available. Under normal conditions, this situation requires that you deploy both the

runtime package and the DLL.

Consider the Microsoft DLL PenWin.dll for pen device input, which is not distributed with

Microsoft operating systems. The PenWin unit in Delphi statically links to the DLL

PenWin.dll. If your unit uses PenWin, and includes calls to one or more functions in the

statically linked PenWin.dll, adding your unit to a runtime package without weak packaging

would require that the PenWin.dll be available from any application that loaded that runtime

package. By making this unit weakly packaged, only applications that actually call

PenWin.dll functions will require PenWin.dll.

Weak packing permits an application to link a non-packaged version of the unit into the

executable instead of using the runtime package that contains this unit. As a result,

applications that need the features of the weakly packaged unit will link the non-packaged

version of the unit (that stored in the compiler-generated DCPIL file), and as a result, require

the DLL. Applications that do not use the unit will not require the DLL, even if they are

compiled to use the package that contains the weakly packaged unit.

Weak packaging has been available for some time in the Delphi Win32 compiler. Weakly

packaged unit semantics are now supported by the Delphi for .NET compiler.

Forward Declared Record Types
Record types can now be forward declared in Delphi VCL for .NET and FCL applications. A

forward declared record instructs the compiler to recognize the record as a valid type, even

though its formal declaration appears later in the same type block.

 P a ge 58

Borland Delphi 2005 – Reviewers Guide

Forward declared record types permit two type declarations, specifically records, classes, and

interfaces, appearing in the same type block to reference one another in their member fields,

properties, or methods. You create a forward declared record type by declaring the record

type symbol but omitting the record's field lists.

The Delphi Win32 Compiler

The degree of compatibility between the Delphi Win32 and .NET compilers is one of the truly

remarkable Delphi 2005 features. This compatibility permits single projects to be compiled as

true Win32 applications and then effortlessly migrated to 100% .NET managed code

applications. In many cases, a single set of source files can be compiled by both the Win32

and the .NET versions of the Delphi compiler. No other development environment lets you do

this as easily.

Equally compelling for developers is Borland's continued support for the Win32 platform

with the most modern IDE on the market. While Borland is committed to the .NET platform

as the future of Windows development, Borland also knows that the majority of desktop

developers maintain applications on the Win32 platform, and Borland is just as committed to

providing those developers with the advanced features that they need.

Although the bulk of the enhancements to the Win32 compiler have already been described

earlier in this guide (in the section "Updates for Both Win32 and .NET Compilers"), the

following sections discuss some of the unique features added to the Delphi Win32 compiler in

Delphi 2005.

Function Inlining
Function inlining is an operation performed by the Win32 compiler at compile time. When a

function is inlined, the compiler replaces a call to the subroutine (a method, function, or

procedure) with the compiled instructions defined within the subroutine. Function inlining can

increase application performance by eliminating the overhead associated with function,

procedure, and method calls.

 P a ge 59

Borland Delphi 2005 – Reviewers Guide

There are two ways to influence whether the compiler will inline a function or not. One way

is to include the inline directive in the function, procedure, or method declaration. This

directive is a request to the compiler to consider whether or not to inline the function. If

inlining has not been disabled, and the compiler determines that the function can be safely

inlined, the inlining will be performed.

The second way is to use the {$INLINE} compiler directive. This directive can be passed

with one of three parameters, ON, OFF, and AUTO. With the ON parameter, the default, the

compiler will inline functions declared using the inline directive, whenever the compiler

determines that inlining is safe. No inlining takes place when you specify the OFF parameter.

When you use the {$INLINE} compiler directive with the AUTO parameter, the compiler

attempts to inline, if possible, any small function — one whose code size is roughly 32 bytes

or less.

While function inlining can produce performance improvements, Borland is quick to note that

it should be applied judiciously, and does not recommend using the AUTO parameter with the

{$INLINE} compiler directive. Inlining can produce larger executables, even some that are

dramatically larger. Also, inlined functions do not always produce performance benefits. In

some cases, inlining can actually reduce performance.

There are a number of conditions that prevent a subroutine from being inlined. For example,

subroutines that include inlined assembly instructions cannot be inlined. Similarly, methods of

a class that access one or more of that class's private members cannot be inlined into a method

in another class.

Borland has applied the inline directive to some of the smaller routines in the VCL and RTL,

where deemed appropriate. As a result, code that uses these routines will execute faster than

before, but with slightly larger executables.

Support for Nested Types
A nested type is a type declaration inside another type declaration. The Delphi for .NET

compiler already supports nested types. Delphi's Win32 compiler does now, too.

 P a ge 60

Borland Delphi 2005 – Reviewers Guide

The following is an example of a class that contains a nested type. This example is taken from

the Delphi 2005 Help, and can be found under the heading Nested Type Declarations.

type

 TOuterClass = class

 strict private

 myField: Integer;

 public

 type

 TInnerClass = class

 public

 myInnerField: Integer;

 procedure innerProc;

 end;

 procedure outerProc;

 end;

Nested Type Constants in Class Declarations
Nested type constants are constant class member declarations inside of a class type

declaration. Nested type constants are somewhat similar to class functions, in that they can be

referenced using a class reference without an instance of the class. Unlike class functions,

however, nested type constants always return a constant value.

Nested type constants are already available for your .NET projects. Now you can use them in

your Win32 applications as well. Nested type constants can be of any simple type, such as

ordinal, real, and String. You cannot declare a nested constant to be a value type, such as

TDateTime.

The following is an example of a class that includes a nested type constant declaration:

type

 TTemperatureConverter = class(TObject)

 public

 const AbsoluteZero = -273;

 P a ge 61

Borland Delphi 2005 – Reviewers Guide

 procedure ConvertFtoC(Temp: Integer): Integer;

//…

Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes and Data Types
If you need to get close to the silicon, Delphi's Win32 compiler now permits you to include

Pentium 4 SSE3 and SSE2 op codes and data types in your inline assembly routines.

XML Document Generation
XML document generation was introduced in the Delphi 8 for .NET and C#Builder

compilers. You can now generate XML documentation files for your Win32 source code.

To enable XML Doc generation, enable the Generate XML Documentation check box on the

Compiler page of the Project Options dialog box. You display the Project Options dialog box

by selecting Project | Options from the Delphi 2005 main menu.

When Generate XML Documentation is enabled, the compiler produces one XML file for

each of your source files. This file has the same name as the source file, but with the .xml

extension. If you have included custom XML Documentation comments in your source files,

these will be inserted into the generated XML file.

 P a ge 62

Borland Delphi 2005 – Reviewers Guide

The XML files generated when you compile with Generate XML documentation enabled can

be used with widely available documentation generating tools. Alternatively, you can write

your own XML parser to use this information any way you see fit.

 P a ge 63

Borland Delphi 2005 – Reviewers Guide

 P a ge 64

Borland®
Delphi™ 2005

The Delphi Debuggers

Borland Delphi 2005 – Reviewers Guide

The Delphi Debuggers

A good debugger is one of the essential tools for successful software engineering. Whether it

is used to help you learn the values of your various variables and objects as your code

executes, or to inspect the contents of your application's stack, a debugger lets you do the

nearly impossible ⎯ peer into the black box and make sense of what's going on.

This section provides you with insight into Delphi 2005's support for debugging your Win32

and .NET applications.

Multiple Debugger Support

Delphi 2005 doesn't just have a world-class debugger ⎯ it has two. One of these is for your

.NET applications that you have compiled to IL, and the other is for your Win32 applications

that you've compiled to machine language.

Delphi 2005 selects which of these debuggers to use based on the type of compiler that

created your executable. For example, if you are debugging an ASP.NET Web application, a

Windows Forms application, or a VCL for .NET application, Delphi 2005 uses the Borland

.NET Debugger. By comparison, if you are debugging a VCL client/server application, a

COM (component object model) server, or a traditional Win32 DLL, Delphi 2005 uses the

Borland Win32 Debugger.

Just as Borland provides you with a consistent set of features when it comes to compiling,

Borland's debuggers do a remarkable job of giving you a rich, dependable, and consistent set

of tools for debugging your applications, whether you are compiling for .NET, Win32, or

both. For example, each of Delphi 2005's debuggers permits you to set breakpoints, view the

call stack, change the values of variables and objects, access local variable values, switch

between your application's current threads, view CPU (central processor unit) data, examine

the event log, as well as access the list of loaded modules. You can even use these debuggers

to attach to existing processes, giving you insight into how they are functioning.

 P a ge 65

Borland Delphi 2005 – Reviewers Guide

While the features offered by these two debuggers are consistent, they are not identical.

Specifically, each debugger provides you with options appropriate for the associated

executable.

For example, with Win32 applications you can create Data breakpoints, breakpoints that

trigger when the data stored in a particular memory address changes. Data breakpoints don't

make sense in the .NET world, since the physical address in which data is stored cannot be

predicted.

On the other hand, the CPU window displayed by the .NET debugger can include the IL

(intermediate language) the .NET compiler emitted. Win32 compilers don't generate IL, so

this feature does not apply to Win32 executables.

The following sections provide you with information about new features that appear in the

debuggers for Delphi 2005.

Exception Dialog Enhancements

An exception is an error generated at runtime by your application. Unless you have

specifically configured your debugger to ignore the exception (or have disabled the

debugger), several things happen when an exception occurs when you are running an

application from within the Delphi 2005 IDE: your program stops executing, the appropriate

debugger is loaded, and the Debugger Exception Notification dialog box is shown. An

example of the exception dialog box is shown in the following figure.

The Debugger Exception Notification dialog box in Delphi 2005 includes a number of new

features. You can choose whether to stop your program's execution temporarily or close the

 P a ge 66

Borland Delphi 2005 – Reviewers Guide

debugger and continue executing the program using the Break and Continue buttons,

respectively, located in the lower-right corner of this dialog box.

In addition to these options, you may also see one or more of the check boxes that appear on

the left side of the dialog box in the preceding figure. If you click the Ignore this exception

type check box, the class of exception that occurred is added to the Exception types to ignore

list on the Language Exception tab of the Options dialog box. From that point on, this

particular exception class, as well as any class that descends from it, will no longer load the

integrated debugger.

If you later want to restore the default behavior of having this exception load the integrated

debugger, either uncheck the check box next to the corresponding exception in the Exception

types to ignore list, or select the exception and click the Remove button. (You display the

Options dialog box by selecting Tools | Options from the main menu.)

If you check the Inspect exception object check box on the Debugger Exception Notification

dialog box, and then click the Break button, the Debug Inspector becomes available, as shown

in the following figure. The Debug Inspector allows you to view, and drill down into the

 P a ge 67

Borland Delphi 2005 – Reviewers Guide

instance of the raised exception. In this case, detailed information about the exception can be

discovered by double-clicking the _errors property of the SqlException object, and then

inspecting the SqlErrorCollection& which contains the detailed information about the

problem that was encountered.

If the raised exception does not correspond to a source location, the Show CPU view check

box is available on the Debugger Exception Notification dialog box. Checking this check box,

then clicking Break, loads the CPU window, displaying the disassembled view of the

executing code, the CPU registers, and possibly other information, depending on the

debugger.

The Disassembled View

Speaking of the disassembled view, Borland has introduced updates to both the Win32 and

.NET versions of this part of the CPU window. For a .NET executable, you now have the

option of viewing the generated IL, the source code that compiled to the IL, or both.

 P a ge 68

Borland Delphi 2005 – Reviewers Guide

An example of the CPU view displayed by the Borland .NET Debugger is shown in the

following figure. This particular CPU view is associated with a source breakpoint. The

highlighted statement in the disassembled pane (the left pane) is the Delphi source on which

the breakpoint was placed. Beneath this code, you can see both the IL instructions that were

emitted by the Delphi for .NET compiler, as well as the resulting assembly language

instructions that the JIT compiler produced.

You control whether IL and/or source code appears in the disassembled pane of the CPU view

using the disassembled pane's context menu. When Mixed Source is checked, source code is

displayed. When Mixed IL Code is checked, IL is displayed. Turn both of these options off to

view only the code generated by the JIT compiler.

 P a ge 69

Borland Delphi 2005 – Reviewers Guide

Breakpoints

Breakpoints are event-driven markers that can be configured to cause the integrated debugger

to perform a task. In most cases, this task is to temporarily stop executing your code and load

the integrated debugger, permitting you to examine features of the execution environment. On

the other hand, the task might not include stopping your code's execution, but instead perform

some action, such as writing a message to the event log.

Delphi 2005 introduces two new features that specifically apply to breakpoints. These are

described in the following sections.

The Log Call Stack Breakpoint Option
Source, address, and data breakpoints can now be configured to write the call stack to the

event log. The call stack stores the current methods, functions, and procedures in the call

chain, in the order in which they were entered. Breakpoints that write the call stack to the

event log permit you to more easily track and document the events that lead to your code's

execution.

 P a ge 70

Borland Delphi 2005 – Reviewers Guide

To write call stack information to the event log, enable the Log Call Stack check box. Use the

available radio buttons to configure the breakpoint to either write the entire call stack to the

event log, or only a specific number of frames.

Typically, when you write the call stack to the event log, you do not need the breakpoint to

load the integrated debugger. If that is the case, make sure that the Break check box is left

unchecked for this breakpoint.

Breakpoint Dialog Box Updates
The Breakpoint dialog box has received several updates in this release. First, a new toolbar is

available, allowing you to more easily enable, disable, remove, and configure your

 P a ge 71

Borland Delphi 2005 – Reviewers Guide

breakpoints.

The Breakpoint dialog box has also been upgraded to permit in-place editing of a number of

breakpoint properties, without having to view a particular breakpoint's Breakpoint Properties

dialog box. Using the Breakpoint dialog box, you can directly edit the Enabled, Condition,

Pass Count, and Group properties of individual breakpoints.

The following figure shows the Condition property of a breakpoint being edited using the

Breakpoint dialog box.

Updated Attach to/Detach from Process

Previous versions of Borland compilers have permitted you to attach to a running process.

Once attached to a process, you can use the debugger's features to inspect the process

execution environment.

Attaching to a running process is even more powerful in Delphi 2005. For starters, when you

select Run | Attach to Process, Delphi 2005 asks you to select which debugger to use to attach

 P a ge 72

Borland Delphi 2005 – Reviewers Guide

to the process. If you select the Borland .NET Debugger, only processes hosted by the CLR

(common language runtime) are displayed for your selection.

If you select the Borland Win32 Debugger, traditional Win32 processes are shown.

Also new is the option to detach from a process. If you have previously used one of the

Borland debuggers to attach to a process, select Run | Detach from Process from Delphi

2005's main menu to detach from the process.

 P a ge 73

Borland Delphi 2005 – Reviewers Guide

Evaluator Frame Support for Win32 Local Variables

A popular debugging feature in Delphi 8 and C#Builder is the capability to select a particular

frame from the call stack using the Local Variables dialog box. This feature is now available

for the Borland Win32 Debugger.

With the Borland Win32 Debugger loaded, view the Local Variables dialog box. (If this

dialog box is not already visible, select View | Debug Windows | Local Variables, or press

Ctrl-Alt-L, to display it.) Initially, the values of variables local to the current function that the

debugger is in are shown. To view local variables in one of the methods earlier in the call

chain, select the method name from the drop-down menu.

 P a ge 74

Borland Delphi 2005 – Reviewers Guide

 P a ge 75

Borland®
Delphi™ 2005

Database Development

Borland Delphi 2005 – Reviewers Guide

Database Development

Delphi has long been considered the leading environment for database development.

Currently, Delphi 2005 provides you with more data access options than any other

environment.

For Win32 development, in addition to a number of industry standard data access

mechanisms, such as ODBC (open database connectivity) and Ole Db Providers, developers

have a wide range of Borland technologies that they can employ, including the BDE (Borland

Database Engine), dbExpress, IBExpress (InterBase® Express), dbGo™ for ADO, MyBase

(ClientDataSet), and DataSnap; Borland's multi-tier, distributed database environment.

Delphi for .NET developers can use the same technologies as Delphi Win32 developers. The

.NET implementation of the Win32 data access mechanisms uses what Borland calls its

compatibility data access technologies. These are all found in VCL for .NET

In addition, both Delphi for .NET and C# developers can access their data through

ADO.NET, the data access framework of the FCL. Borland also provides an advanced custom

data provider for ADO.NET for both Delphi for .NET and C# developers. This technology,

which is called Borland Data Providers, or BDP for ADO.NET, offers many enhancements

and extensions to ADO.NET, including live data views at design time, useful component

designers, greater portability between underlying databases, and more.

What’s especially impressive about Delphi 2005 is that Borland has added significant new

database functionality in addition to the extensive features available in Delphi 8 for .NET and

C#Builder. These additions and enhancements are described in the following sections.

RAD for ADO.NET

ADO.NET is the portion of the .NET framework associated with database development.

While ADO.NET is very powerful, it fails to provide the design time ease-of-use Delphi

 P a ge 76

Borland Delphi 2005 – Reviewers Guide

developers expect. RAD for .NET is Borland's answer, bringing the convenience and speed of

Delphi database development to the world of ADO.NET.

RAD for ADO.NET simplifies the process of using ADO.NET from within your applications

in two distinct ways. First, the DataSync and DataHub components provide a flexible

provider/resolver mechanism that uses industry-standard ADO.NET data providers for data

access. Second, the RemoteServer and RemoteConnection components permit you to extend

these capabilities to a distributed environment. These technologies, and the components that

implement them, are described in the following sections.

Providing and Resolving with DataSync and DataHub
Delphi 2005 introduces two new provider/resolver components that simplify how you work

with your ADO.NET-related data access objects: DataSync and DataHub. You can use these

components with any ADO.NET data providers to provide design-time views of your data,

simplify data access, as well as apply updates back to your underlying database.

The relationship between the DataSync and DataHub components and the traditional classes

of ADO.NET development is shown in the following figure. Here the DataSync and DataHub

components mediate between the ADO.NET DataSet and IDbConnection classes to provide

services lacking in ADO.NET alone. These services include live, design time views of data,

the management of multiple database connections, as well as flexible and optimized data

resolution services.

 P a ge 77

Borland Delphi 2005 – Reviewers Guide

In addition, when used with Borland's new data remoting components, DataSync and

DataHub simplify the process of creating distributed applications in the .NET framework. The

data remoting components are discussed later in this section.

DataSync

The DataSync component maintains a list of data providers, that is, classes that descend from

DbDataAdapter. For each data adapter, the DataSync keeps track of the provider name, the

name of the DataTable that the DataSync will create for the provider, as well as how changes

to the DataTable will be applied to the underlying database.

That the DataSync relies on descendants of DbDataAdapter means that it can work with any

data provider, not just the Borland Data Providers. As a result, you can use a DataSync with

classes such as SqlDataAdapter and OdbcDataAdapter, which are included in the FCL, as

well as data adapters from third-party vendors, such as IBM.Data.DB2 and

Oracle.Data.Provider.

 P a ge 78

Borland Delphi 2005 – Reviewers Guide

DataHub

You use the DataHub component in conjunction with a DataSync to feed data from the

DataSync's data adapters to a DataSet, as well as initiate the resolution of changes back to the

underlying database. Importantly, the DataHub can be activated at design time, which means

that the combination of a DataSync and DataHub provide you with live data views at design

time, a feature that is otherwise unavailable from non-BDP data adapters.

The following figure shows a C# project in which a DataSync and DataHub are used to

populate a DataSet at design time. The DataGrid on the form shown in the designer is

displaying the data obtained through the DataSync/DataHub combination.

Another important feature of a DataHub is that it provides a single point of control for

applying changes back to the underlying databases. Simply call the DataHub's ApplyChanges

method, and it communicates to the DataSync, which responds by generating and executing

the appropriate queries, based on the changes found in the associated DataTables. In the

project shown in the preceding figure, the single line of code that is associated with the Click

event of the button whose caption reads Resolve Changes is shown here:

 P a ge 79

Borland Delphi 2005 – Reviewers Guide

dataHub1.ApplyChanges();

Data Remoting with RemoteServer and RemoteConnection
The .NET framework provides extensive support for working with remote objects through its

.NET remoting services. One of the more practical applications of this technology is for

implementing distributed database applications where DataSets in one process are accessed

from applications in another, even when the applications are on separate computers on the

Internet. However, .NET remoting is a general service, which means that using it to work with

remote DataSets often requires a lot of custom code.

Delphi 2005 makes working with remote data easy with two new components that encapsulate

.NET remoting services, permitting you to effortlessly work with DataSync and DataHub

components in a distributed environment. These components, RemoteServer and

RemoteConnection, permit you to build applications where the DataSync and

DbDataAdapters reside on one machine, and the DataHub and its associated DataSet

component reside on another. How RemoteServer and RemoteConnection extend the

capabilities DataSync and DataHub is depicted in the following diagram.

 P a ge 80

Borland Delphi 2005 – Reviewers Guide

RemoteServer

The RemoteServer component permits you to publish DataSync objects in one process to

applications using a RemoteConnection component in another process. The RemoteServer

and RemoteConnection components can communicate using either HTTP or TCP.

When you place a RemoteServer component into a project, you set its DataSync property to

the DataSync instance containing the providers that you want to expose. You also set its

ChannelType (Http or Tcp), Port to listen on, and URI (the specific resource that a client

requests over the specified port).

RemoteConnection

You use the RemoteConnection component in an application to obtain data through a remote

DataSync. After placing a RemoteConnection, you specify the ChannelType, Port, URL, and

URI that identifies where your remote server resides. You then set the RemoteConnection's

ProviderType property to point to a particular provider on the remote server.

Once the RemoteConnection object is configured, you connect a DataHub in your client

application to the RemoteConnection. This provides the DataHub with access to the DataSync

on the server to which the RemoteConnection is attached.

From this point on, you configure and use the DataHub just as you would if the DataSync

were in the same process. The RemoteConnection and RemoteServer objects use .NET

remoting to transparently move the data between the remote DataSync and the local DataHub.

The following figure shows a DataGrid that displays data obtained through a remote

DataSync. It is interesting to note that this client application was built using Delphi, while the

server was built using C#. You could have just as easily done this the other way around. On

the other hand, both the client and the server could have been built using the same language.

 P a ge 81

Borland Delphi 2005 – Reviewers Guide

Borland Data Provider for ADO.NET

The Borland Data Provider for ADO.NET is a set of concrete classes and associated types that

implement the data access interfaces of ADO.NET. These classes, which are part of what

Borland calls BDP for ADO.NET, provide you with a powerful and portable solution for

connecting to a wide variety of different databases at the same time extending the already

substantial capabilities of ADO.NET.

The Borland Data Provider for ADO.NET also includes powerful component editors that you

use to work with the BDP data access classes, as well as additional classes that specifically

bind to BDP, such as DataSync and DataHub, which provide data services that go well

beyond those found in ADO.NET alone.

Delphi 2005 includes a number of updates to BDP for ADO.NET. For example, BDP now

supports connections to Sybase databases, as well as support for Oracle packages.

There is also a new BDP for ADO.NET component — BdpCopyTable. This component

provides your applications with the ability to copy a table and its primary index from one

supported BDP for ADO.NET provider to another, giving you the runtime equivalent of the

new Copy Table feature in the BDP Data Explorer (which is described in the following

section).

 P a ge 82

Borland Delphi 2005 – Reviewers Guide

There is another update to BDP for ADO.NET that is not so obvious. BDP for ADO.NET has

introduced additional interfaces for BDP providers that expose schema retrieval methods.

BDP uses these interface implementations to discover information about the structure of

database objects beyond what is currently supported in ADO.NET alone.

These behind-the-scene interfaces are responsible for BDP's ability to copy tables, discover

stored procedure parameters, and migrate data. These features are available to you at design

time through the newly enhanced Data Explorer.

The BDP Data Explorer

The Data Explorer allows you to work with ADO.NET at design time through BDP for

ADO.NET supported databases, such as Oracle®, DB2®, MS SQL™ Server, InterBase, and

MS Access. With the Data Explorer, you can inspect database objects, such as tables, views,

and stored procedures from within the Delphi 2005 IDE. The Data Explorer also lets you

easily create and configure BDP-related data access components, such as BdpConnections

and BdpDataAdapters.

The Data Explorer has received a significant upgrade in Delphi 2005. Features now available

from the Data Explorer permit you to create, alter, and drop database tables, test stored

procedures, and copy data between BDP for ADO.NET-supported databases. Each of these

features is discussed in the following sections.

Managing Tables
You can use the Data Explorer to create, modify, and delete database tables without having to

leave the Delphi 2005 IDE. These capabilities are made available through BDP for

ADO.NET's schema discovery services. These services, which debut in Delphi 2005, extend

the already powerful capabilities of ADO.NET.

For example, to create a new table, open a connection in the Data Explorer. Next, right-click

the Tables node and select New Table.

 P a ge 83

Borland Delphi 2005 – Reviewers Guide

You use the Table Designer in Delphi 2005 to define the structure of your new table. You use

this same designer when you want to modify an existing structure.

To modify a table's structure, right-click the table name under the Tables node in an open

connection, and select Alter. (To delete a table, you select Drop from this same context

menu.) The following figure shows a table named PROJECT being altered in the Table

Designer.

You can see from the preceding figure that you can define or change the data type of a field in

a table using a drop-down list of the applicable data types. Once again, this information is

available through BDP for ADO.NET's schema discovery capabilities.

 P a ge 84

Borland Delphi 2005 – Reviewers Guide

Data Migration
You can use the Data Explorer to migrate tables from one supported BDP for ADO.NET

database to another simply by copying and pasting. When you copy a table, you copy the

table’s structure, data, and primary indexes.

To copy a table, right-click the table in the Data Explorer and select Copy. Next, select the

connection into which you want to paste the table, right-click and select Paste. Delphi 2005

will respond with the New Table Name dialog box, as shown in the following figure.

Enter the name for the copied table and click OK.

Delphi 2005 also includes components you can use in your applications to provide these same

data migration capabilities to your users.

Testing Stored Procedures
Another important enhancement to the Data Explorer is its support for testing stored

procedures. To test a stored procedure, right-click the name of the stored procedure that you

want to test in the Data Explorer and select View Parameters.

Delphi 2005 examines the stored procedure's parameters, determining each parameter's data

type, direction, and name. You can then test the stored procedure by assigning a value to each

input parameter and clicking the Execute button, which appears in the top-left corner of the

stored procedure pane. After executing the stored procedure, Delphi 2005 displays the output

parameters in a data grid beneath the stored procedure pane (given that the stored procedure

has output parameters).

 P a ge 85

Borland Delphi 2005 – Reviewers Guide

The following figure shows the stored procedure pane with a result set, which displays the

mailing label lines for customer number 1003.

Creating Reports in Delphi 2005

Reports are the tools that you use to turn data into information. Delphi 2005 includes two

powerful reporting tools for you to use. For your .NET applications written in either Delphi or

C#, Delphi 2005 includes Crystal Reports for Borland Delphi from Business Objects. For

your Delphi VCL applications, both VCL Forms (Win32) and VCL for .NET, Delphi 2005

includes Rave Reports Borland Edition from Nevrona Designs.

Added VCL for .NET Data Access Components

Delphi 8 for the .NET Framework was notable for its extensive support for data access

mechanisms compatible with Win32 Delphi. With Delphi 2005, this support has been

extended further.

One of the biggest additions is the support for dbGo for ADO. dbGo for ADO is a set of

components that implement the standard VCL TDataSet interface through which you can

 P a ge 86

Borland Delphi 2005 – Reviewers Guide

communicate to ActiveX Data Objects using installed Ole Db Providers. Delphi 2005 now

includes the full compliment of dbGo for ADO components in VCL for .NET.

Other compatibility components that have now been added to VCL for .NET include the

following: TStoredProc, TSimpleDataSet, TNestedDataSet, and TUpdateSql.

Additional compatibility components for DataSnap clients have also been added in Delphi

2005. DataSnap is Borland's multi-tier architecture for building thin clients and their

associated application servers. These new VCL for .NET components include

TConnectionBroker, TSharedConnection, and TLocalConnection.

ADO.NET Connection String Editor

Delphi 2005 now provides you with an ADO.NET connection string editor for

SqlConnection, OdbcConnection, and OleDbConnection components. (Previously, unless you

were using BDP for ADO.NET, constructing your connection string for an ADO.NET

connection generally involved referring to the documentation for your .NET data provider.)

When you need to configure one of these components in the Delphi 2005 IDE, select the

ConnectionString property in the Object Inspector and click the ellipsis button to display the

Connection String editor. The Connection String editor for a SqlConnection ConnectionString

property is shown in the following figure.

 P a ge 87

Borland Delphi 2005 – Reviewers Guide

 P a ge 88

Borland Delphi 2005 – Reviewers Guide

 P a ge 89

Borland®
Delphi™ 2005

Web and Internet
Development

Borland Delphi 2005 – Reviewers Guide

Web and Internet Development

Delphi was one of the first IDEs to give you component-based, event driven tools for building

dynamic Web sites for the World Wide Web. In addition, Delphi was also one of the first

development tools to provide high-level wizards, tools, and services for creating Web Service

servers and clients.

In Delphi 2005, Borland continues its tradition of providing you with the best tools for

building standards-based applications for the Web. In fact, Delphi 2005 gives you more

options than ever before for creating and deploying Internet-based applications. Technologies

included in Delphi 2005 include ASP.NET Web Applications, ASP.NET Web Service

Applications, Win32 Web Service servers, Win32 Web Service clients, Web Broker Web

server extensions, WebSnap Web server extensions, and both Win32 and .NET IntraWeb

applications. No other environment even comes close to this much Internet development

support.

Borland updated and improved many of the tools that you use to build Web-based

applications. For example, the what-you-see-is-what-you-get (wysisyg) designer and the drag-

and-drop capabilities of the Web Forms designer have been updated. In addition, new features

and components have been enhanced. The following sections discuss some of the new and

enhanced Web and Internet-related features that you will find in Delphi 2005.

Deployment Manager

You can now deploy your ASP.NET Web applications, ASP.NET Web Service Applications,

and IntraWeb (both Win32 and .NET) applications directly from Delphi 2005's Project

Manager. To do this, right-click the Deployment node in the Project Manager and select New

Deployment from the displayed context menu.

 P a ge 90

Borland Delphi 2005 – Reviewers Guide

You can deploy your application's files using either XCOPY or FTP (file transfer protocol).

Use XCOPY when the directory to which you want to copy your files is visible from your

local machine. For example, you can use XCOPY if your Web server is on the same local area

network as your development machine.

FTP is useful when the location where you want to deploy your files is available somewhere

on the Internet, but is not on the local network. In order to deploy using FTP, the server to

which you want to deploy your files must be running an FTP server.

Once you select the directory or FTP server to deploy your files to, select which files you

want to deploy, right-click, and then select Copy Selected Files to Destination or Copy All

New and Modified Files to Destination.

 P a ge 91

Borland Delphi 2005 – Reviewers Guide

Once you have created a deployment, that deployment appears as a new node beneath the

Deployment node in the Project Manager. You can re-deploy some or all of your files using

the deployment configuration that you created earlier by selecting the associated node. If you

want, you can have multiple deployment configurations for any of your Web-related projects.

 P a ge 92

Borland Delphi 2005 – Reviewers Guide

HTML Editing in the Web Forms Designer

You use HTML (hypertext markup language), either in code or wysiwyg, to describe the Web

pages that you create in your ASP.NET applications. Delphi 2005 provides you with a

number of options for creating and modifying the HTML that defines your various ASP.NET

pages. For example, the following figure shows a login page being designed using the

ASP.NET Web application designer.

 P a ge 93

Borland Delphi 2005 – Reviewers Guide

When you drag HTML Controls, Web Controls, and DB Web Controls from the Tool Palette

onto the Web Forms designer, HTML is inserted into the associated .aspx file in your project.

You can edit this .aspx file directly, modifying what the Web Form designer generated, or you

can insert your own custom HTML. The following figure shows a portion of the editable

.aspx file that was created as the preceding login page was being designed visually.

 P a ge 94

Borland Delphi 2005 – Reviewers Guide

Template Editing
Delphi 2005's Web Form designer now permits template editing within the form designer.

Certain Web controls, such as a DataList, support templates for the formatting of the header,

footer, and displayed items. To edit a template in Delphi 2005's Web Form designer, right-

click a template-supporting control and select the template that you want to edit. For example,

the following figure shows the context menu that is displayed when you select a DataList.

 P a ge 95

Borland Delphi 2005 – Reviewers Guide

After selecting which type of template you want to edit, the designer re-draws the control,

permitting you to enter the template text directly. For example, the following figure shows a

DataList with its Item templates available for editing.

When you are through editing your control's templates, right-click the control again and select

End Template Editing.

Updated Code Completion and Syntax Highlighting
While Delphi has supported code completion and syntax highlighting of HTML in past

versions, Delphi 2005 has extended this support. Code completion and syntax highlighting are

now available for cascading style sheets (CSS) and XHTML.

Updated Tag Editing
The Tag editor has also been improved in Delphi 2005. The Tag editor is the small window

that appears below the Web Form Designer, and it provides you with a context sensitive,

editable view of the HTML that underlies your Web page. While earlier versions of the Tag

editor permitted you to edit the inner HTML, you can now edit the outer HTML as well.

The following figure shows attributes of a <td> tag being edited in the Tag edit. Note that

both Code Insight and syntax highlighting are visible in this figure.

 P a ge 96

Borland Delphi 2005 – Reviewers Guide

Additional ASP.NET Project Manager Support
ASP.NET Web applications, more so than other types of applications, often rely on external

files to operate. For example, while the HTML in your .aspx file may include an

(image) tag, the image itself is typically a .jpg or .gif resource whose location is referred to in

the src attribute of the element.

In addition to supporting application deployment, as discussed earlier in this section, the

Project Manager has also been updated to better manage the external resources used in your

ASP.NET applications. For example, you can right-click an ASP.NET project in the Project

Manager and select New | Folder. The newly added folder will be created as a subdirectory of

the ASP.NET application folder.

Once you've added a new folder, you can right-click it and select Add. This brings up a

browser dialog box that you can use to add support files, such as images, cascading style

sheets, JavaScript files, and so forth, to the folder. The resources that you add to this folder

can then be included in your configured deployments.

With these enhancements to the Project Manager for ASP.NET applications, you no longer

need to leave Delphi 2005 in order to manage your application's files.

 P a ge 97

Borland Delphi 2005 – Reviewers Guide

New and Enhanced DB Web Controls

DB Web controls are special data-aware Web controls that you can use in your ASP.NET

applications. Like the Web controls that ship with the .NET framework, you add DB Web

controls to your Web Forms, and they participate in the generation of the content that is

provided to the requesting browser at runtime.

Compared with the standard Web controls of the FCL, DB Web controls offer better support

for ASP.NET applications, making it even easier for you to build great Web sites faster. For

starters, DB Web controls are data-aware, and in many cases, provide you with automated

read/write access to the data to which they are bound. As a result, they greatly simplify the

process of creating sophisticated Web-based applications.

New DB Web Controls
With this release of Delphi 2005, Borland has added a number of new and enhanced DB Web

controls. The following are the DB Web controls introduced in Delphi 2005:

DBWebAggregateControl, DBWebNavigatorExtender, DBWebSound, and DBWebVideo.

The DBWebAggregateControl is similar to a DBWebTextBox, but automatically calculates

and displays an aggregate statistic, such as Sum, Min, and Count.

The DBWebSound and DBWebVideo controls allow you to easily add sound and video to

your ASP.NET applications. The sound or video resource can either be contained in a blob

field of a database, or the database field can contain a string that specifies the URL of the

external sound or video resource.

Finally, the DBWebNavigationExtender permits you to configure standard Web control

Buttons to perform navigation operations against BDP for ADO.NET data sources without

additional code. Simply place a DBWebNavigationExtender component on a Web Form, and

any Buttons that you place will display three additional properties: DBDataSource,

TableName, and DataSourceAction. The DataSourceAction property indicates what type of

navigation operation the button will perform on the table accessed through the

DBDataSource.

 P a ge 98

Borland Delphi 2005 – Reviewers Guide

Updated DB Web Controls
There are two updated DB Web controls in Delphi 2005. These are the DBWebImage and

DBWebDataSource. The DBWebImage has been updated to include a feature of the newly

added DBWebSound and DBWebVideo controls described earlier in this section. The

DBWebImage can be linked to either a blob field in an underlying database that contains the

image to display, or a string field containing the URL of the image resource. Previously, the

DBWebImage control could only refer to a blob field containing the image to display.

The remaining updates to DB Web can be found in the DBWebDataSource.

DBWebDataSource can now be configured to support auto-updates, as well as cascading

updates and cascading deletes for master-detail relationships.

DBWebDataSource now also supports XML files for the storage of the data used by DB Web

controls. You can use this feature in a number of interesting ways. For example, an XML file

can be used instead of an underlying database during development, providing a convenient

substitute for a database connection. Alternatively, an XML file can be used as a local,

readonly data source for managing static information, such as images or other resources.

Alternatively, if user authentication is being used, a DBWebDataSource can be configured to

generate a unique XML file name for each user. That XML file can be used to persist data on

a per user basis between sessions.

IntraWeb Support

IntraWeb is a sophisticated, RAD component-based Web development tool that automatically

maintains server-side state between Web page requests. As a result, IntraWeb has advantages

over ASP.NET for creating Web sites that require the type of state persistence typically

associated with traditional client applications.

There are a number of features that make IntraWeb an attractive alternative to ASP.NET Web

site development. As mentioned previously, IntraWeb supports several convenient levels of

state maintenance between Web page requests. At the application level, you can use the

TIWServerController to share objects between sessions.

 P a ge 99

Borland Delphi 2005 – Reviewers Guide

At the session level, each IntraWeb session can have its own persistent data module that

remains in memory for the duration of the session. This data module can be used to store

objects and data that are used by two or more Web pages for a particular end user. Finally,

unlike ASP.NET, where ASP.NET Web forms are created and destroyed for each page

request, IntraWeb pages persist on the server between requests, until the page is no longer

needed.

The second aspect of IntraWeb that makes it attractive is its "Delphi" way of doing things.

You design your user interface using Delphi components from the Tool Palette, just as you

would design any VCL or VCL for .NET application. The difference is that these components

participate in the IntraWeb form rendering process to emit HTML, WAP (wireless access

protocol), or HTML 3.2.

Finally, you have a variety of choices for deploying IntraWeb applications. An IntraWeb

application can be deployed as an ISAPI (Internet Server application programming interface)

Web server extension, or it can be used as a self-contained HTTP server. In other words, if

you are already running IIS (Internet Information Server), you can use your IntraWeb

application with it. On the other hand, if you do not already have a Web server, you can

design your IntraWeb application to be a Web server, providing all the features necessary to

serve Web pages to any Web browser or Web-enabled device using the HTTP protocol.

The following figure shows an IntraWeb Web page being designed in Delphi 2005. Unlike

ASP.NET applications, there is no code-behind .aspx file. Instead, the IntraWeb components

used to build the page render the appropriate HTML at runtime in response to an appropriate

HTTP Web page request.

 P a ge 10 0

Borland Delphi 2005 – Reviewers Guide

Delphi 2005 includes both Win32 Delphi and Delphi for .NET versions of IntraWeb.

 P a ge 10 1

Borland Delphi 2005 – Reviewers Guide

 P a ge 10 2

Borland®
Delphi™ 2005

Integrated Application
Lifecycle Management

Borland Delphi 2005 – Reviewers Guide

Integrated Application Lifecycle
Management

In today's world of software development, most developers are part of a larger process of

application definition, design, testing, deployment, and management. Consistent with

Borland's commitment to providing you with the solutions you need to ensure the success of

your projects, Delphi 2005 provides tight integration to essential support tools.

Depending on the version of Delphi 2005 that you have installed, the IDE provides you with

integrated access to StarTeam for superior, team-based asset management, Janeva for access

to Enterprise JavaBeans and CORBA servers, ECO for UML model driven development, and

Optimizeit for performance profiling.

Two of Delphi 2005's application lifecycle management (ALM) solutions deserve particular

attention. These are StarTeam and unit testing. These tools are described in the following

sections.

Delphi 2005 and StarTeam

StarTeam is Borland's comprehensive project asset management system. If you are part of a

development team, StarTeam provides a highly reliable, server-based system for source code

version control, requirements management, defect tracking, threaded discussion groups, and

distributed collaboration. Even if you are the sole developer on a project, StarTeam provides

you with an indispensable environment for managing every aspect of your applications.

Delphi 2005 provides you with seamless integration with StarTeam, enabling access to all of

StarTeam's capabilities without leaving the Delphi 2005 IDE. The Delphi 2005 main menu

includes a StarTeam main menu item, as well as a submenu on the Project Manager context

menu. This menu is shown in the following figure.

 P a ge 10 3

Borland Delphi 2005 – Reviewers Guide

As you can see, the StarTeam menus permit you to place a project into a StarTeam repository,

check in and check out files, locate managed assets, launch the integrated StarTeam client,

and manage your personal StarTeam options. The following figure shows the StarTeam client

active in the Delphi IDE. You launch the StarTeam client by selecting StarTeam | View Client

from Delphi 2005's main menu or StarTeam | View Client from the Project Manager's context

menu.

 P a ge 10 4

Borland Delphi 2005 – Reviewers Guide

With the StarTeam client active within Delphi 2005, you can work with every aspect of your

managed resources. For example, you can track defects, view and contribute to threaded

discussions, submit change requests, and more. The following figure shows a change request

that has been logged into the StarTeam server for this project.

 P a ge 10 5

Borland Delphi 2005 – Reviewers Guide

When you are working with a StarTeam managed project, the Delphi 2005 History Manager

makes use of the StarTeam repository. For example, the following figure shows the Diff pane

of the History Manager. Here the Diff pane displays source code versions based on changes

that have been checked into the StarTeam repository. With the StarTeam enabled History

Manager, even changes to source code file names are tracked, as shown in the following

figure.

 P a ge 10 6

Borland Delphi 2005 – Reviewers Guide

Unit Testing

Unit testing is the process of writing code to test the methods, functions, and procedure of

your software. While unit testing is a corner stone of the approach to software development

called extreme programming, many developers find it useful to employ some form of unit

testing as part of their everyday software development.

Delphi 2005 includes unit testing support for all three of its personalities: Delphi Win32,

Delphi for the .NET Framework, and C# for .NET. You establish a unit testing by first

creating a test project. The Test Project Wizard asks you to select which of Delphi 2005's

 P a ge 10 7

Borland Delphi 2005 – Reviewers Guide

personalities was used to create the code you want to test.

After creating your test project, you add one or more test cases to your test project. Each test

case requires you to select the source file (.pas or .cs) that contains the methods or routines

you want to test. The Test Case Wizard then generates a simple framework for testing that

file. This framework includes a Setup and a Teardown procedure, as well as a method stub for

each of the subroutines in your selected source file.

You modify the code generated by the Test Case Wizard to implement the Setup and

Teardown procedures, as well as the individual tests. For example, you will typically call the

constructor of the class in which the methods you want to test are implemented from the

Setup procedure, as well as define any variables or objects that are needed for the parameters

of your test methods. Likewise, you will free the class created in the constructor, and release

any allocated resources, from the Teardown procedure.

The actual tests are performed within the stubbed out methods generated by the Test Case

Wizard. You implement each of these methods to invoke the method they are testing,

validating either the data resulting from the method execution, or the class of exception

thrown when your method detects a problem.

 P a ge 10 8

Borland Delphi 2005 – Reviewers Guide

 P a ge 10 9

Borland®
Delphi™ 2005

Enterprise Core Objects
(ECO) II

Borland Delphi 2005 – Reviewers Guide

Enterprise Core Objects II

Borland's Enterprise Core Objects, or ECO (pronounced ee'ko), is Borland's new model-

powered framework for .NET. ECO is an object-oriented framework from Borland for the

.NET framework that uses UML (universal modeling language) diagrams to drive application

development. This approach to building applications is often referred to as model driven

architecture, or MDA.

One of the more notable features of ECO concerns how the UML models are used. In many

development environments, UML models simply provide you with a road map, defining the

classes that you need to implement in your application. In other words, UML diagrams are

used as guidelines for software development.

With ECO, UML models are not just used to guide development; they are tightly integrated

into the development process. Models are used to generate classes and support code that

represents the core of your application logic. When changes need to be made to the

application, you return to the model, modifying its attributes, associations, and constraints,

after which your application's code is updated.

Rapid MDA

In this respect, ECO is really "Rapid MDA." ECO dramatically reduces the amount of code

that you need to write manually, reducing your time to deployment and improving the overall

maintainability of your applications. More importantly, the applications you build with ECO

are based on the enterprise-aware architecture of your UML designs.

The following figure shows the UML class diagram for a simple ECO application. As you can

see, there are three classes defined here: Building, ResidentialBuilding, and Person.

 P a ge 11 0

Borland Delphi 2005 – Reviewers Guide

This diagram is used to generate the business objects that this application will work with at

runtime. The Structure pane shown in the following figure shows you the classes and

associated interfaces that ECO generated from this model.

 P a ge 11 1

Borland Delphi 2005 – Reviewers Guide

Because the model is the central focus of your development efforts, there is an inherent

synchronization between your UML model and the application created with it. In other

environments where UML simply guides development, the model often quickly becomes out-

of-date.

In ECO, the UML model defines the core business objects that are the focus of your

development efforts. For example, if you build an ECO application to manage inventory, the

objects that you work with will represent the entities of your application, such as items,

employees, orders, storage facilities, and the like. In other words, your code operates in the

domain of the business objects that you are using. Compare this approach to the type of

development that you typically see in GUI applications, where code operates in the realm of

the user interface, with items such as buttons, text boxes, list boxes, and menus.

In most ECO applications, the business objects defined by your UML models map to an

underlying ADO.NET relational database structure. This database of your choosing is used to

persist and restore your business objects, as needed. You can even map your ECO objects to

XML files, though most developers prefer the security and transaction support provided by a

remote database server.

In traditional database development, you spend considerable time designing your database

and writing the code needed to store and retrieve your data. With ECO, the underlying

database schema can be created for you, based on your UML models. Alternatively, you can

map an existing database to your UML models, permitting you to use the power of ECO with

your current databases.

ECO Space and Persistence Mapping

The ease with which you work with objects using ECO is particularly noteworthy. Object

persistence is provided in ECO through an ECO space, a factory-like container that provides

both an object cache as well as a transparent interface to the underlying data store. The ECO

space creates your objects, as you need them, and persists changes that you make, if

persistence is required.

 P a ge 11 2

Borland Delphi 2005 – Reviewers Guide

For example, if you ask for an object that represents an existing employee, the ECO space

creates an employee object and populates its attributes with data from an underlying database.

Any changes made to the employee object can likewise be saved back to the database. This

capability is provided by an ECO persistence mapper, which performs the required data-

related tasks for you.

ECO and OCL

In addition to UML, ECO employs OCL, the object constraint language, an Object

Management Group (OMG) standard for defining expressions for UML models. You use

OCL to create declarative rules that calculate or control the values of attributes of your

objects. As is the case of UML, the OCL you employ in your ECO applications reduces the

amount of code that you have to write and maintain.

What's New in ECO II

Delphi 2005 ships with ECO II, a major update to Enterprise Core Objects. ECO II improves

and extends your support for building enterprise-level model driven applications in the .NET

framework. The updates found in ECO II are described in the following sections.

A Highly Scalable Enterprise Object Cache
ECO II includes two important enhancements to ECO spaces that improve how and where

your applications can be used, as well as their scalability. The first of these is that a single

process can now include two or more ECO spaces. This capability is particularly valuable for

ASP.NET applications where ECO spaces can be pooled and reused for increased application

performance.

The second improvement permits multiple ECO spaces to be synchronized, a capability

supplied by the ECO persistence mapper components. Synchronized ECO spaces permit

changes in one ECO space to be more easily resolved with changes that appear in another

ECO space.

 P a ge 11 3

Borland Delphi 2005 – Reviewers Guide

The ECO persistence mapper classes are thread-safe and remotable. In fact, two or more ECO

spaces on separate computers can use .NET remoting to share a common persistent mapper,

permitting those ECO spaces to be synchronized. This capability permits ECO applications to

be easily scaled up to a multi-tier architecture, as you application's needs change.

Extended Object Capabilities
ECO spaces provide more support for object persistence than ever. Added features include

undo/redo, versioning, and transactions.

ECO II Support for Web Forms and Web Services
ECO II provides extensive support for building Web-based applications using rapid MDA.

Delphi 2005 includes wizards for creating ECO ASP.NET Web Form applications and ECO

ASP.NET Web Service applications for both C# and Delphi for .NET.

Delphi 2005 also includes the ECODataSource component, which you can use to bind your

DB Web components to ECO-based business objects. This data source implements

DbDataSource, which means that you can assign it to the DataSource property of any DB

Web control.

Two new enhancements to ECO spaces are particularly valuable to ASP.NET developers. The

first is that an ECO space can be maintained on a per session basis, providing automatic state

maintenance between page requests. The second provides for a pool of ECO spaces. These

features can be used individually or in conjunction with one another to enhance the features

and performance of your ECO-based ASP.NET applications.

Each ASP.NET application contains an EcoSpaceProvider, which controls the caching of

ECO spaces creating within the application. You use this provider to control whether an ECO

space is maintained between page requests for a particular session or not. Options include

never maintaining state, always maintaining state, or only maintaining state when unresolved

changes appear in the ECO space. While maintaining state requires more server resources, it

simplifies how you work with your objects in an ASP.NET application.

 P a ge 11 4

Borland Delphi 2005 – Reviewers Guide

ECO space pooling permits ECO spaces to be easily reused in ASP.NET applications. For

those ASP.NET applications that do not persist ECO space between page requests, each time

an ASP.NET page is destroyed, its ECO space is returned to the ECO space pool.

Performance is enhanced since a new ECO space does not need to be created for each page

request. For those ASP.NET applications that maintain ECO space for each session, the ECO

space is returned to the ECO space pool when the session terminates.

ECO II Support for Existing Databases
ECO II can examine the schema of your existing database and use this information to generate

your initial UML diagrams. Alternatively, you can manually map your UML diagrams to an

existing database. Previously, you had to create your UML diagrams first, and generate your

database from these diagrams. With ECO II, you can now bring the power of ECO to your

existing databases.

The following figure shows a UML diagram that ECO created from the sample SQL Server

database Northwind. In addition to the various classes and their attributes, ECO infers the

relationships between the classes based on field names and indexes.

 P a ge 11 5

Borland Delphi 2005 – Reviewers Guide

 P a ge 11 6

Borland®
Delphi™ 2005

Integrated and
Included Partner Tools

Borland Delphi 2005 – Reviewers Guide

Integrated and Included Partner Tools

All versions of Delphi 2005 include licenses for other valuable Borland products that support

software development and application lifecycle management, as well as products from

Borland partner companies. Which products are included with Delphi 2005 depend on the

version that you are using. All of the products listed in this section are included in Delphi

2005 Architect. Delphi 2005 Enterprise and Professional include some, but not all, of these

products.

The following sections provide you with a short description of the associated integrated or

included partner tool. For more information, please use the URL provided to learn more.

Borland InterBase 7.5 Developer Edition

InterBase 7.5 Developer Edition enables you to develop and test your applications running

against InterBase, an enterprise-quality remote database management system (RDBMS).

Borland InterBase is a small-footprint database server that minimizes maintenance while

providing support for mission-critical applications. For more information on InterBase 7.5,

please visit: http://www.borland.com/interbase/

Borland Janeva

Janeva provides you with a seamless and cost-effective solution for integrating your J2EE and

CORBA back-end systems with your client and Web applications. For more information

about Janeva, please visit: http://www.borland.com/janeva/

*NOTE Janeva requires a runtime license to deploy your application. This is available from a

Borland sales representative.

 P a ge 11 7

Borland Delphi 2005 – Reviewers Guide

Borland Optimizeit™ Profiler for the

Microsoft .NET Framework

Identify and remove performance bottlenecks in your .NET managed code through CPU and

memory usage analysis with Borland Optimizeit Profiler for the Microsoft .NET Framework.

For more information about Borland Optimizeit for the Microsoft .NET Framework, please

visit: http://www.borland.com/opt_profiler/

Borland StarTeam 6.0 Standard Edition

StarTeam provides you with a rich and automated system for managing the assets and

application lifecycle tasks from within a single repository. For more information about

StarTeam 6.0 Standard Edition, please visit: http://www.borland.com/starteam/

Component One Studio Enterprise for

Borland Delphi 2005

Component One Studio Enterprise for Borland Delphi 2005 is a special edition of Studio

Enterprise that includes a development license for eleven .NET (Windows Forms) and six

ASP.NET (Web Forms) controls. For more information about Component One Enterprise

Studio, please visit: http://www.componentone.com/

Crystal Reports Borland Edition

Crystal Reports Borland Edition is a .NET version of the world's leading reporting tool for use

in your C# and Delphi for .NET applications. For more information about Crystal Reports

Borland Edition, please visit:

http://www.businessobjects.com/products/reporting/crystalreports/net/default.asp

 P a ge 11 8

Borland Delphi 2005 – Reviewers Guide

glyFX Borland Special Edition

glyFX Borland Special Edition is a collection of 95 high-quality images for use in toolbars,

buttons, or any control that supports bitmap files. For more information on glyFX Borland

Special Edition, please visit: http://www.glyfx.com

IBM DB2 Universal Developers Edition

IBM DB2 Universal Developers Edition provides you a DB2 database and associated tools for

designing, building, and prototyping applications for deployment on any DB2 client or server

platform.

InstallShield Express for Borland Delphi

InstallShield Express for Borland Delphi provides you with an easy-to-use graphical interface

for building custom installers for your Windows software. For more information on

InstallShield Express for Borland Delphi, please visit: http://www.installshield.com/Borland

Internet Direct (Indy)

Internet Direct (Indy) is an open-source Internet component suite comprised of popular

Internet protocols written in Delphi and based on blocking sockets. For more information

about Internet Direct, please visit: http://www.atozed.com/indy

IntraWeb

IntraWeb is a complete RAD solution for building Web applications, dynamic Web sites that

go well beyond the capabilities of regular ASP.NET Web applications and ISAPI Web server

extensions. For more information on IntraWeb, please visit:

http://www.atozed.com/intraWeb/

 P a ge 11 9

Borland Delphi 2005 – Reviewers Guide

Microsoft SQL Server 2000 Desktop Engine (MSDE 2000)

Microsoft SQL Server 2000 Desktop Engine provides your small workgroup and low-volume

Web applications with data storage capabilities that easily scale to Microsoft SQL Server

2000 as your needs grow.

Microsoft SQL Server 2000 Developer Edition

Microsoft SQL Server 2000 Developer Edition provides you with a developer license for

designing, building, and prototyping applications that you can deploy with Microsoft SQL

Server 2000.

Rave Reports Borland Edition

Rave Reports Borland Edition is a powerful and scalable suite of VCL and VCL for .NET

reporting components for creating sophisticated Delphi reports. For more information about

Rave Reports Borland Edition, please visit: http://www.nevrona.com/rave/

Wise Owl Demeanor for .NET Borland Edition

Wise Owl Demeanor for .NET Borland Edition is a .NET obfuscator, a tool that helps prevent

others from reverse-engineering your managed code applications and assemblies. For more

information about Wise Owl Demeanor for .NET Borland Edition, please visit:

http://www.wiseowl.com/

Other Resources

Please also visit the Borland Developer Network, where you will find timely articles as well

as links to a wide variety of resources that support your software development needs. The

Borland Developer Network is located at http://bdn.borland.com/.

You should also consider visiting Code Central, Borland's online repository for code samples,

demonstration applications, and other resources for developers using Borland products. Code

Central is located at http://cc.borland.com/ccweb.exe/.

 P a ge 12 0

Borland Delphi 2005 – Reviewers Guide

Summary

More than twenty years in the making, Delphi 2005 achieves what no other development

environment can, providing you with state-of-the-art tools that preserve your investment in

today's software as you migrate towards tomorrow's new standards. With integrated tools that

support every aspect of the application lifecycle, Delphi 2005 truly is the ultimate Windows

development solution.

About Borland Software Corporation

Founded in 1983, Borland Software Corporation (NASDAQ: BORL) is the global leader in

platform independent solutions for software delivery optimization. The company provides the

software and services that align the teams, technology and processes required to maximize the

business value of software. To learn more about delivering quality software, on time and

within budget, visit: http://www.borland.com.

About the Author

Cary Jensen is President of Jensen Data Systems, Inc., a software development, training, and

consulting company (http://www.jensendatasystems.com). He is an award-winning, best-

selling author of nineteen books, a featured columnist on the Borland Developer Network

(http://bdn.borland.com), and a popular speaker at conferences, workshops, and training

seminars around the world. Cary has a Ph.D. in Human Factors Psychology, specializing in

human-computer interaction, from Rice University in Houston, Texas. You can contact Cary

at cjensen@jensendatasystems.com.

Made in Borland® Copyright © 2004 Jensen Data Systems, Inc. All rights reserved. All Borland brand and product names are
trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and
other countries. All other marks are the property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 • 831-431-1000 • www.borland.com • Offices in: Australia, Brazil, Canada, China, Czech Republic,
Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, New Zealand,
Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the United States. •

 P a ge 12 1

