Borland® Delphi” 2005
Reviewer's Guide

The Complete Windows® Development Solution

Produced for Borland by Cary Jensen, Jensen Data Systems, Inc.
October 2004

Borland

Delphi 2005

£00Z Hyd12g

i hi.)
|timate Delp! o

| iercl\znl::lc:ws‘ develcpmen: solu
The comple

Borland’

Borland Delphi 2005 — Reviewers Guide

Contents
(O Y =Y Y 7
Delphi: Advancing the Art of Software Development..........cccoceieveniiie e, 7
The Integrated Development Environmentcooiiiin.. 11
One IDE, Multiple Personalitiescccooeieiiiiiiieiiseseee e e 11
One IDE, MUItIple LANQUAGES ...c.vecveiiecieiiecieieseesie ettt e ettt sn et sre e 13
THE SITUCLUIE PANEccviiiiicie et sttt bbbttt 14
The VCL and VCL for .NET Floating DeSIgNEr.......ccccvcveiveierieriiie e sese e seeeeee e 15
THE TOOI PAIELE ..o bbb b 16
Enhanced Tool Palette BENAVIOKccviiiiiiiicicceses et 17
New VCL fOr .NET COMPONENTSc.eiieieiieieiiieiesiesieeee ettt ste st st eseesessesteseeseessesessesseseenes 19
LI LT O o) [=Tot A L4 1= od (o S 19
The Upgrade Project WIZard............ccoovvviiieiieieicne st eneenee s 21
Delphi 2005 WIZAIASocvvivieieeeeiesese sttt ne e snaeneeneenaennens 22
Find in Files ENNANCEMENTScviiiiiiiieirie e 24
Updated Support for International Characters...........cocooeririninineeeccseceees 25
Message List ENNANCEMENTScoiiiiriiiiirieiit ettt 25
IDE EFror REPOMING. .. c.eiveieteiieieie sttt sttt 25
Import/Export Project from/to Visual Studio .NET ... 27
The Next Generation Code Editort 30
REFACTOIINGttt bbbt b bbbt 30
SYMBOI RENAMING ...ttt ettt e et e st et e besbe st e e e e eneebeeaenneabesien 30
Variable and Field DeCIarationsccoioeiirieiiiieese et 31
RESOUICE REFACTOMING ...ttt ettt b ettt et se et et e beebe st nes 33
Extract Method RefACtOrINGccvoviieiiiieseeee e e 34
Import Namespace (C#) and Find Unit (DeIphi)ccccooveiiiiiiiiiiseecce e 35
RS 163 = 1) SRS 36
(o] g TS To] | OSSN 38
L (= [T 1] o | L S PSRSSN 40
The HiStOry IMANAGETc..ooeiiieeieiees st sttt e ae e resneene e e e nee e nes 41
THE CONLENE PANE ...ttt sttt seebesbesbe st e e neenesbesbenean 42
THE INTO PANE ...ttt e bttt e et e st e be s neenenbeebeean 43

®
Borland Page 2

Borland Delphi 2005 — Reviewers Guide

THE DIf PANE .. 44
Code Navigation ENNANCEMENT...........ooiiiiiiiiiieee et 45
Toggling Code to/from COMIMENTScccieiiiieieie et sre e 46
Persistent BOOKMAIKS.........ccoiuiiiiiiiiiiieisi ettt 46
J2EE and CORBA to .NET Integration With Janeva..........ccccceceveiiieiine s 47
User Selectable File ENCOUINGccviiieiicicice st 48

The VCL for NET .. e e e 50
Virtual Library INterfaCeSc.oiviiiiieiiice et benn 50
Support for Partially Trusted CallErS..........ooiiiiiiiiieieeeeee e 53

The Delphi Compilers. ..o et 55

Updates for Both Win32 and .NET Delphi Compilers.........cccocviviniiininnininineinenns 55

QLI Lo G 4 1 o o OSSR 55

Support for Unicode and UTF8 FOIMALSccveviiiiriieieieie ettt 56
The Delphi for .NET COMPIIErcooiiiiiciie e

Delphi Code and NAMESPACEScveuveriitirierieieieieieste st ste sttt esbe st sbeseeseerestesbeseeeeeeseereseesteseenes

Support for Weak Packaging in VCL for .NET Applications

Forward Declared RECOI TYPESviveiiieiiieiiesieeeet sttt e bbbt be e besa et saeresbe e e
The Delphi WIN32 COMPIIET.....c.oiiiieice e

FUNCEION TNHINING (oot b e bt e b e reebeebenre e

SUPPOTE FOF NESTEA TYPES ..uvitiierietieteete e ste ettt te sttt re b te s b et e b esseseebestesbeste b esseseesesresbens

Nested Type Constants in Class DeCIarationsccoeeiiininiiiins e

Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes and Data Types

XML DOCUMENT GENEIALION ...ttt ettt sttt sttt e s e bt stesbe e eneeseeneereseeneea

The Delphi DebUgQerS .o e 65
Multiple DebUGQEr SUPPOIToveiiie sttt st ne e e resresre 65
Exception Dialog ENhanNCEMENLScoveiiiriiiiiiiiieieesie s 66
The DiSasSEMDIEA VIBW........ciuiiiiiiiiie ettt 68
BIEAKPOINTS ...ttt bbbttt b bbb b e nn 70

The Log Call Stack Breakpoint OPtiONcoceeeiiieie e 70

Breakpoint Dialog BOX UPAALES..........ccueiieiriiiiiesieiieieis ettt st 71
Updated Attach to/Detach from PrOCESScvcoveivererieieseieseeieeiese e seens 72
Evaluator Frame Support for Win32 Local Variables............cccocviviviiiniviiecience e 74

Database Developmento e e e 76
RAD FOr ADOLNET ..ottt sb bbbttt nbe s 76

Providing and Resolving with DataSync and DataHUDccccvviiiiinniniecee e 77

®
Borland Page 3

Borland Delphi 2005 — Reviewers Guide

DALASYINC ...ttt bbbt R bbb bbb e re e ae b s
DABHUD. ...t
Data Remoting with RemoteServer and RemoteConnection
REMOTESEIVEL ...ttt b e b et be e b s bt et e be et e nbeeneennean
REMOTECONNECTION ...ttt ettt sb e e e e st a et e sbe b et e e eneeaesrenaen
Borland Data Provider for ADO.NETcocoiiiiiirniesreeesree s 82
The BDP Data EXPIOTENc.cciiiiiieiiee ettt 83
MaNAGING TADIES ...t ettt st bbb b e e s 83
Data IMIGIALION ..ottt sttt et st b et et ebeebeebe st et et entereereete e s 85
TEStING StOrEU PrOCEUUIESccviiiieiieiieiiee ettt ettt ettt be b et st e e neenestesbenean 85
Creating Reports in Delphi 2005.........c.ccoiviieiiie e 86
Added VCL for .NET Data AcCeSS COMPONENTS........ecvrveeeeerieiereeseseesresseseesaeseesseseeseens 86
ADO.NET Connection String EQITOrccccviiviierieiire et 87
Web and Internet Development 90
DeployMENt IMANAGETecieieiieie ettt sttt re e e ee st e besbestesreeneeseeeentenrens 90
HTML Editing in the Web FOrms DeSIgNer.......c.coivvivieriieeieieee e
TEMPIAE EAITING .evvenieriiieicie ettt b ettt st et e e ne st nbeeen
Updated Code Completion and Syntax Highlighting
Updated Tag EdItiNg ...cc.covoiiiiiiiiieicse st
Additional ASP.NET Project Manager SUPPOITcceiviieiiieiereieeesee e seesieeess e sve e ssesesaas
New and Enhanced DB Web CONtrolS...........ccciiiiniiiiicceees s 98
NEW DB WED CONLIOIS. ...t bbbt 98
Updated DB WeD CONMIOIS........couiiiiiiiiiierieeieees et 99
INEFAVVED SUPPOTT ... ettt ettt 99
Integrated Application Lifecycle Management..................... 103
Delphi 2005 and StArTEAM........cccvveieeieeeiere e se ettt e e eeseeseesresresneens 103
UNIE TESTING + vttt et b e et b e et b ettt sbe et e b nnere s 107
Enterprise Core Objects Il ... et 110
RAPIA MDA ..ottt b e bttt sb et st e et e et nreneas 110
ECO Space and Persistence MappPingccccovverereiieaireeeneseseesesesresreseeseesesssessessesseses 112
|10 = o 1 © 11 SRS 113
WHhat's NEW iNECO T ...coiiiiieiieeeeeese e ettt e 113
A Highly Scalable Enterprise ODject CaCheccoiiiiiiiiieii e 113
Extended Object Capabilitiesccoiiieieieiee et 114
ECO Il Support for Web Forms and Web ServiCes.........ccooviiiiiiieieinieie e 114
ECO 11 Support for EXiSting Databases..........ccuiviirirrierieiniesi st 115

®
Borland Page 4

Borland Delphi 2005 — Reviewers Guide

Integrated and Included Partner Tools ...t 117
Borland InterBase 7.5 Developer EQition ... 117
BOrIaNd JANEBVA.ciieiiiiie e 117
Borland Optimizeit™ Profiler for the Microsoft NET Framework.............ccoccovvvnennen. 118
Borland StarTeam 6.0 Standard EQitionccccccieieiiieneinensseeeese e 118
Component One Studio Enterprise for Borland Delphi 2005cccoooeinniienieicninns 118
Crystal Reports Borland EQItioNcccoviviiiiiiiicic e 118
glyFX Borland Special EQItioNc.cccoviiiiiiieiiceccse et 119
IBM DB2 Universal Developers EQitioncccooveieiirenievisiie e 119
InstallShield Express for Borland Delphi.........ccccooviieieiiiiince e 119
INternet DIrECE (INAY) .o.vovireiieeiieee bbb 119
INEFAVVED ...t 119
Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).........ccceovermeireneenienieennens 120
Microsoft SQL Server 2000 Developer Edition............cocoviiiiiiiniiieie e 120
Rave Reports Borland EITiONcccoiiiiiiiiieieie e e 120
Wise Owl Demeanor for .NET Borland Editionccoccovineiineiiieeecseeee, 120
OLNEI RESOUITES ...ttt bbbttt en et 120

ST 0 01 0 0 1=>'1 5 7/Z78 121

About Borland Software Corporation.............oiiiiiiiiiiiiiinn.. 121

About the AUthoOr 121

®
Borland Page 5

Overview

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Overview

Welcome to the Delphi 2005 Reviewer's Guide. This document will familiarize you with
Delphi 2005, the newest version of Borland's flagship development environment, culminating

more than twenty years of technological innovation.

The Delphi 2005 Reviewer's Guide is organized into two parts. In this first part, the

Overview, you will find a general introduction to Borland Delphi 2005.

The second part of this guide takes you on a tour of Delphi 2005. It is organized by the major
areas of software development and support in Delphi 2005, providing you with an overview
of each area, and is followed by a description of the many updates, enhancements, and
additions introduced in this release. If you are already a Borland enthusiast, you may want to
quickly scan the overview section, concentrating instead on the updates that make this the

most important upgrade to Delphi since it debuted in 1995.

Delphi: Advancing the Art of Software Development

Delphi's legacy began in 1983, when Turbo Pascal set a new standard for software
engineering. The evolution of Turbo Pascal reads like a history lesson in the advancement of
software development, including the introduction of such groundbreaking innovations as an
integrated development environment (IDE), integrated debugging, syntax-highlighting, a
powerful object-oriented programming (OOP) model, and OWL, the Object Windows
Library.

With the release of Delphi 1.0 in February of 1995, Borland proved that component-based
development could be applied in an object-oriented environment, permitting developers to
rapidly build applications while maximizing code reuse. In more ways than one, Delphi
blazed a trail that would eventually be followed by the framework class library (FCL) of the

Microsoft .NET Framework.

®
Borland Page 7

Borland Delphi 2005 — Reviewers Guide

Delphi 2005 represents another impressive advance in software development by Borland,
making it the ultimate and complete development solution for Windows. Delphi 2005
converges Delphi, C#, Microsoft® .NET Framework and Win32 support for graphical user
interface (GUI), Web, database, and model-driven application development, and is wrapped
with the essential application lifecycle management (ALM) tools into a unified, highly-
productive rapid application development (RAD) environment. With Delphi 2005, you have
everything you need to increase Windows developer productivity, personal developer

productivity, and team productivity.

e Windows developer productivity: The Delphi 2005 IDE makes Windows
development tasks faster, easier, and better by supporting the Win32 standard of
yesterday and today, with the Windows-based Microsoft .NET Framework
development standard of today and tomorrow. With world-class compilers and
debuggers, a rich legacy of standards-based tools, and a seamless migration path
between current and emerging platforms, there is no better Windows development

tool on the market today.

e Personal developer productivity: Delphi 2005 takes the power of Delphi to a new
level, with speed and productivity enhancements throughout. With a code editor that
simplifies every aspect of your programming experience, the largest collection of
reusable components, powerful code-generating wizards, and much more, Delphi
2005 is the most prolific development environment available.

e Team productivity: Delphi 2005 allows teams to take full control of the application
lifecycle. In addition to state-of-the-art tools for software development, certain
editions of Delphi 2005 also include StarTeam® for team source code control,
Borland Enterprise Core Objects 11 (ECO™ 1) for model-powered development in
the .NET framework, integrated Unit Testing Framework, and Borland Optimizeit™
Profiler for the Microsoft .NET Framework for performance-testing. In short, Delphi
2005 provides you with a complete, integrated solution for all your development and

project management needs.

®
Borland Page 8

Borland Delphi 2005 — Reviewers Guide

Borland Products = Technical Excellence

Throughout the years, Borland products have been recognized for excellence and innovation.
Here are a few of the honors received recently by the products that represent the heritage of
Delphi 2005:

° Borland Delphi 8 for the Microsoft .NET Framework won Best of Show in the
developer tool category at TechEd Europe, 02-July-04

° Borland C#Builder won the Visual Studio Magazine Reader Choice Award for
best developer tool 24-May-04

° Borland Delphi 7 Studio won the Web Services Journal Readers' Choice Award

for in the Best GUI for Web Services Product category, 25-February-04

Visual Studio

Magazine

2004

READERS’
Award CHOICE

Europe

The remaining sections of this guide are organized into related topics associated with software
development. Each section begins with a general overview, and then continues with a

description of the new and enhanced features introduced in Delphi 2005.

Disclaimer
This reviewer's guide is based on a pre-release version of Delphi 2005. Features in the shipping

product may vary slightly from the descriptions found here.

®
Borland Page 9

Integrated Development
Environment

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

The Integrated Development Environment

The Delphi 2005 IDE (integrated development environment) represents state-of-the-art in

software development tools. Growing out of Borland's Galileo IDE technology first release
with Borland C#Builder™ and Delphi 8 for .NET, Delphi 2005's IDE continues Borland's rich

heritage of enabling you to develop applications faster and better.

A fishfact - Borland Developer Studio for Windows - Ffactwin

File Edt Search View Refactor Project Run Component Tools Window Help || S8 || [Defaul Layour -l | & &)
PN Y-8 85 &&| k- L @
S Shructure F X = welcome Page | [X] Ffactwin [y FishFact.bdspro - Project . & X
) Elactivate - Bhew EERen
=TT Il = FisH FACTS £ 5
= [Panelt About the Clown Triggerfish | & ProjectGroupl
(5] pBimage1 =] fishfact.exe
=] DBLabelt Also known a5 the big spotted trigger L e =
Inhabits outer reef areas and feeds up) B References
&+ [Panelz ;:uslan:tel:\ans and’ r?luuutshks ?ﬂ Grushing & [@] Factwin.pas
e Panels em with powertul teeth, They are
= i woracious ealers. and divers repoit se - 2] Modelsupport
) [Panel the clawn triggefsh devaur beds of £
[=] BitBtn1 oysters
= DEGrid1
=) v Do ot eatthie fish. According to an
shige scoount, "the poisonaus flesh acts
#F Object Inspector X primarily upan the rervous tissus of
stomach, occasioning vidlent spasms
DBGrid1 - e v that organ, and shartly aftenwards all t
| [mnd e Triggerlish AR e e THA rama
Properties | Events
Bllaction ~ |Categary |Species Name [Length cm)_[Length In | &
Eganked e M Triaaerfish Balistoides consicilum 50 Togave B [RFves. [Aoat..
Helpcontext |0 < 5 = =%
Hirk Scroll up/dov L] L] i{ Taol Palette X
visble True
Categories ¥
H|Database 4
El|Drag, Drop and Dacking + Standard &
DragCursor crDrag + Additional
Dragkind dkDrag ¥ | = ? +win3z
lieh @ 1: 1 Readonly Code, Design | History + System ~

This section focuses on the features found in the various panels, designers, dialog boxes, and
views of the IDE. Features that are specific to the code editor are detailed separately in a later
section of this guide.

One IDE, Multiple Personalities

Whether you are coding in Delphi or C#, writing Win32 applications or .NET managed code,
building ASP.NET Web pages or traditional client applications, Delphi 2005's IDE provides
you with a consistent and powerful set of development tools designed to increase your
productivity.

With Delphi 2005, the IDE keeps track of what kind of application you are working with,

providing you with the designers, views, and features consistent with the task at hand. For

®
Borland Page "

Borland Delphi 2005 — Reviewers Guide

example, if you are building an ASP.NET Web application, the HTML designer allows you to
design your Web pages visually, permitting you to drag-and-drop the components that you
want to see on your Web page and configure them with little or no code. The following figure
shows Delphi 2005 with an open ASP.NET Web application and its visual HTML designer.

S=1E3

& WorldTravel - Borland Developer Studio for Windows - WebForm1.aspx

File Edit Search Yiew Refactor Format Table Insert Project Run Component Tools Window Help a Drefault Layout - §_} %

GEABUD - B8 68 -NE o] e
§K Skruckure 1 ¥ = welcome Page | (%] WebFormi.aspsx | (%] WorldTravel Pa ‘WorldTravel.bdsproj - Project Mandt 3¢
& =l [T J |2| 5 E]&ctivate - [guew

File:
- g§ ProjectGroupl
& worldTraveldil

+ G References
- i CONTINENT ﬁ @ Deployment

+ ﬁ Global.asax
& Web.config
+ @ WebFarm1.aspi

| | | O

’(g; Object Inspectar

DBWebNavigator2 j Z
< b
. E‘EWDrIdT... F\‘.'{;F'Mot:lel &%Data (=

Properties | Events <horl igator id=DBWebNavigator2 style="LEFT:...

Bl Appearance » [Tool Palette TR
BackZolor 1] 4,
porderColor ([l #400001 Categories v || [y 57
BaorderStyle MNotSet o 5 ;;w‘_; ~
= el
Borderwidth 3px v
. 4 + Borland Data Provider
fAincaares “| |- web Controls
CountryD g [atavfiew] Qfﬂ TravelPicturesD atatdapter ¥| [adrotator
1 ohject selected @ 11 Insert Design /, History[#[F] 3b| Button v

If you create a new Win32 client application, or open an existing one, the VCL (visual
component library) designer kicks in, again providing you with unmatched support for

designing your user interfaces.

®
Borland Page 12

Borland Delphi 2005 — Reviewers Guide

& gdsdemo - Borland Developer Studio for Windows - GridForm

File Edit Search Wew Refactor Project Run Component Tools Window Help a Default Layout - 5_} 59
HFn -89 88| k- 1|8 & &
.gk Structure 1 X [®welcome Page | [%] GridForm E;: gdsdemo. bdspr . X
] =] o Blactivate + =ney
=[] GridviewForm et LA R AT H E | Fila
+-[E] GDsstdPanel T . T2 projectGroupl
- Global Dive Supply | @ adsdemo.xe
+ DBGrid1 - . . |
) "Serving the Scuba Community Worldwide" #-[E GdsData.pas
= I)% Default {Session} ¥ dsstd pas
£ atidForm, pas
Filter Field Filter/Search Critera . + [E RecFarm.pas
~ Sale Date L [~ Filtered Records Only
| of " Amount Due Find Next Find Erior
/3 Object Inspector 8 X OrdeMa |EuslNo wEustName |SaIEDale IArr o
T L] L 1023 1221 Kauai Dive Shoppe T7M.1388 =
1] 1076 1221 Kauai Dive Shoppe 124161934
|| 1123 1221 Kauai Dive Shoppe 82441993
|| 1163 1221 Kauai Dive Shoppe 7/641994
1] 1176 1221 Kauai Dive Shoppe T/26/1994 Qﬂ & A
| 1269 1221 K.auai Dive Shoppe E:]:wsﬂ SE _ 2 W ToolPaktte B X
<0) 8 Categories v| ks S
+ Standard -~
+ Additional
+ Win32
+ System
+ Win 3.1
F + Dialogs
Mo objects selected @ 11 {Insert Cade | Diesign | History + Data Access 3

You can even create project groups that include two or more different kinds of projects. When
you do this, the type of application that is currently active in the project group determines
which designers are available, and which options you see in the supporting views. For
instance, if your project group includes both an ASP.NET Web Service application and a
Win32 VCL Form application, Delphi 2005 notes which of these projects is currently active,
providing you with the designer and editor appropriate for each as you switch between your
projects.

One IDE, Multiple Languages

Delphi 2005 is more than just context-sensitive designers — it is a full multiple-language
development environment. The native languages and debuggers that are included in Delphi
2005 are Delphi for Win32 development, Delphi for the Microsoft .NET Framework, and C#
for the Microsoft .NET Framework.

While other IDEs support multiple languages, Delphi 2005 is unique in that it supports both

multiple platforms and multiple languages transparently. For example, you can create a

13

Borland®

Page

Borland Delphi 2005 — Reviewers Guide

project group that includes a C# ASP.NET Web application, a Delphi for .NET Web Control
class library, and a traditional Windows DLL (dynamic link library) written in Delphi Win32.
Not only will the appropriate compiler and debugger be used for each project, based on its
underlying language, but also the code editor features and Tool Palette snippets will expose

the appropriate features as you navigate between the various projects.

Delphi 2005 can also support additional compilers, if you wish. For example, so long as you
have the VB for .NET compiler installed on your workstation, you can create, open, edit,

compile, and debug VB for .NET applications without ever leaving the Delphi 2005 IDE.

The Structure Pane

The Structure pane is a context-sensitive view that provides you with detailed information
about what ever is displayed in your main view. When you are using the code editor, the
Structure pane displays the classes, types, interfaces, and other symbols in the current file, as

shown in the following figure. (In Delphi 7, this view was called the Code Explorer.)

ﬂ EExternalException ~
+- g EOSError
+ ia ExceptionHelper
[+ TFormatSettings
+ ﬂ TLangRec
+ # TLanguages
- ia TMultif eadExclusiveitribeSyvnchronizer
+- (] Private
+-[_] Public
+-[_] Intetfaces
¥ iﬂ TSearchRec
[+ ﬂ TSysLocale
+-w TTimeStamp
+- (] Interfaces
+- [Procedures
[+ [;] Types
+1- (] Variables/Constants
+ |:| Uses -

By comparison, when you are designing a VCL Form, the Structure pane displays the
components that appear on your form, with the various nodes representing the containership

of your controls. (In Delphi 7, this view was referred to as the Object Tree View.)

®
Borland Page 14

Borland Delphi 2005 — Reviewers Guide

structwre)|
io|x5| #|¥|
= Ij Farmi
=[] Panell
- Panelz
Buktona
[B] RadioGroup1
-] Panels
Buttoni
[E] Button2
ﬂ SaveDialogl
= ﬂ MainMenul
1Fil=1}
- @ Help {Help1}
e, About {Aboutl}

Not only does the Structure pane provide you with valuable insight into your projects, it also
serves as a convenient tool for navigating the symbols and objects that you are using. When
you are editing your code, double-clicking a symbol in the Structure pane takes you to the
associated line of code in the editor. When you are designing a VCL Form, clicking an object
selects it in the designer, permitting you to quickly change its properties or assign event
handlers.

The Structure pane is also invaluable when there are errors in your code. When Delphi 2005's
new Error Insight feature identifies problems in your source files, these appear automatically,
as you type, in the Structure pane, permitting you to quickly navigate to the position in the
code editor where problems exist. Error Insight is described in more detail in the "The Next

Generation Code Editor" section of this guide.

The VCL and VCL for .NET Floating Designer

Some developers who used Delphi 8 for the Microsoft .NET Framework wished for a
"floating” VCL designer, like the one available in Delphi 7. Borland listened. For Delphi
development of VCL and VCL for .NET applications, Delphi 2005 provides you with a

choice between using the .NET-style embedded designer or the classic floating designer.

®
Borland Page 15

Borland Delphi 2005 — Reviewers Guide

To enable the floating designer in Delphi 2005, select Tools | Options. Navigate to the VCL

Designer node under Delphi Options, and uncheck the Embedded designer check box.

Options El

= Enwron.ment 2paons A Grid options Opkions
Object Inspector S ’ ;
2 Tool Palette ¥ Display grid I show campaonent captions
Calars Iv Snap ko grid Iv* Show designer hints
Environment Yariables Grid size
Explarer

x[s [&4

windows Forms Designe
—|- Delphi Options

Library - MET Module creation options

Library - \Win32 [v Mew Forms as bext

LD [¥ Auta create Forms & data modules
Tvpe Library

—|- Editar Options
Source Opkions
Colat
Display
key Mappings
Caode Insight
—|- HTML/&5P. NET Options
ASPMET &

QK | Cancel Help

The Tool Palette

When you work in a component-based environment like Delphi 2005, you typically make
extensive use of design-time components, which are placed into the designer and configured
using the Object Inspector. These components are available from the Delphi 2005 Tool
Palette.

The Tool Palette is organized by component category. Which categories are displayed, and
which components appear within them, is context sensitive, based on the type of project on
which you are working. Furthermore, the Tool Palette permits you to controls its organization.
You can change the position of a component within a Tool Palette category, as well as move a
component to a different category, simply by dragging the component within the Tool Palette.

You can even define your own custom categories into which you can drag your components.

®
Borland Page 16

Borland Delphi 2005 — Reviewers Guide

Delphi 2005 includes a number of enhancements to the Tool Palette. These are discussed in

the following sections.

Enhanced Tool Palette Behavior

Delphi 2005's Tool Palette is better than ever. In addition to providing access to design-time
components and code snippets, depending on whether you are working with a designer or
code editor, the updated Tool Palette can also be used to create new projects, files, and
objects. When you do not currently have a project open, the Tool Palette provides access to all
of the wizards and templates of the Object Repository. Some of these are shown in the

following figure.

Tool Palette [
Categories v | [7

- Delphi Projects ~
[Application

il Package

W DL wizard

Console Application

3 Win2000 Logo Application

G5 Win95(95 Logn Application

[3} sDI Application

S ML Application

- Delphi for .NET Projects

&5 peweh Cantrol Library

&) weh Control Library

(.E‘? B5P MET Web Service Application

?{? ECO ASP.MNET Web Service Application

When you are using the code editor, the Tool Palette now includes these same options in

addition to code snippets, and reusable pieces of code that you can drag into the code editor.

Selecting objects from the Tool Palette has also been enhanced, greatly improving the speed
with which you can build forms and applications. Simply click the Filter Current Items button
in the Tool Palette toolbar, or press Ctrl-Alt-P, and start typing the name of the object you

want to select. As you type, the characters you've entered so far appear in the Tool Palette title

®
Borland Page 17

Borland Delphi 2005 — Reviewers Guide

bar, and a filtered list of matching objects appears below, as shown in the following figure.

Press Enter when the item you want is selected.

data - Tool Palette

Cakegories l:% ?

-| Data Controls

| 3] patagrid |
-/ data Components

Dataliew

[z5] Dataset

-I General

@ DataHub

@ DataSvnc

% DataligrateControl

%)

You also have additional options for controlling the Tool Palette display. To see these

options, select Tools | Options from the main menu. Tool Palette configuration options are

available under the Tool Palette node of the Options dialog box.

Options
—|- Environment Options ~ Options
Ohject Inspactar
=8 Tool Palette Button Size: & Smal
olors [~ fuko Collapse Cateqories
Environment Yariables [~ yertical Cat Canti
Eiplatar Yertical Category Captions

windows Forms Designe |” Lock Palette Reordering
—I- Delphi Options
Library - MET
Library - Win32
WCL Designer
Twpe Library
-1 Editor Options
Source Options
Colar
Display
Key Mappings
Code Insight
= HTML{ASP.MNET Options
ASPNET &

Features
¥ Show Palette Wizards
v show Code Snippets

" Mediurm

" Large

¥ Shaw Butkan Captions
v Wertical Flow Layout

[~ Ahways Show Designer Trems

Cancel

o]

Help

3

Borland®

Page

18

Borland Delphi 2005 — Reviewers Guide

Finally, the Tool Palette in Delphi 2005 now supports true drag-and-drop placement of
components into the designer you are working with. Previously, component placement with
VCL Forms could be better described as click-and-click, though that technique also works in
Delphi 2005.

New VCL for .NET Components

For Delphi VCL-based development, the Tool Palette now includes a number of new controls
for creating better using interfaces. These include a TButtonGroup, TCategoryButtons, and
TDockTabSet. These components, which you can use in your Win32 and VCL for .NET
applications, permit you to easily create interfaces similar to those used in Delphi 2005’s Tool
Palette and the Structure pane. As you have probably already guessed, these new components

are the same ones that Borland engineers developed to build the Delphi 2005 IDE.

In addition, VCL for .NET has been expanded to include even more Delphi VCL-compatible
classes. These additional classes make it even easier than before to migrate your existing

Win32 projects to the .NET framework.

For a complete list of the new components in Delphi 2005, see "What's New in Delphi 2005"
in the Delphi 2005 help.

The Object Inspector

The Delphi 2005 Object Inspector, which you use to configure objects placed on your form at
design time, has also been updated. Not only does the Object Inspector permit you to
configure properties and events for the objects that you have placed into the designer, but you
can also use it to control file names and get information about objects that you select in the

Project Manager.

For example, select a file in the Project Manager, such as an .aspx file in an ASP.NET Web
application, and the file path and file name will appear in the Object Inspector, as shown in

the following figure.

®
Borland Page 19

Borland Delphi 2005 — Reviewers Guide

Object Inspector [

File Mame WwebForml, aspx

Miscellaneous

The File Name property in the preceding figure is shown in an enabled font, indicating that
you can edit the name of this file using the Object Inspector. Changing the file name here not
only changes the name of the file displayed within the Project Manager, but since this file is a
Delphi unit, the unit name changes as well. Of course, you can still rename a file the old

fashioned way, by selecting File | Save As from the main menu.

Other objects selectable within the Project Manager can also be viewed in the Object
Inspector. For example, if you select one of the assemblies listed under the References node
of a .NET project in the Project Manager, the Object Inspector displays details about that

assembly, as shown in this next figure.

®
Borland ape 20

Borland Delphi 2005 — Reviewers Guide

Object Inspector [

Propetties
Ellassembly Properties
Copy Local False

EllAssembly Status

Assembly Properties

The Upgrade Project Wizard

Because Delphi 2005 includes both Win32 and .NET compilers for the Delphi language, it
can be used to create new Win32 applications as well as further the development of your
existing Win32 projects that you created in Delphi 7 and earlier. You can also use Delphi
2005 to migrate your existing Win32 applications to VCL for .NET, the 100% .NET
managed-code solution that maintains component and source code compatibility between
Win32 and .NET development.

The Upgrade Project Wizard is a special utility that runs the first time you open a Win32
application in Delphi 2005. Using this utility, you can choose to continue the current project

as a Win32 application, or you can convert it to a .NET application.

®
Borland oo 21

Borland Delphi 2005 — Reviewers Guide

Project Upgrade E|

Upgrading Project: DataViewer.dpr
This project must be upgraded before it can be opered. Please select which
project type you wish ko target,

(s" Delphi For Microsoft Win3z

" Delphi far \MET

Cancel Help

Once you made your choice using this wizard, Delphi 2005 will remember your selection. If
you tell the Project Upgrade Wizard that you want to continue working with a Delphi project
as a Win32 project, and at some later time decide to migrate it to VCL for .NET, simply
delete your project's *.bdsproj file. After that, open the .dpr file in Delphi 2005. Once again,
the Project Update Wizard will ask you to choose whether to continue working with the

project as a Win32 project or to migrate it to VCL for .NET.

Delphi 2005 Wizards

Wizards are small applets that help you to quickly create the projects, objects, and files that
you use in Delphi 2005. For example, the ASP.NET Web Application Wizard creates for you
the necessary web.config, global.asax, and initial .aspx file, and configures an 1S virtual
directory into which these are placed, among other tasks. In short, wizards increase your
productivity, getting you off to a fast start in the right direction. The following figure shows

the Delphi 2005 object repository, displaying just a few of the many available wizards.

®
Borland age 22

Borland Delphi 2005 — Reviewers Guide

Ikem Categories:

[=-{7| C# Projects o EIHEI ~
] ECOJC# Files I R
(] New ASP.HET Files ASPMET Web ASP.MET Web Comsols DBweh

Crystal Reports Application Service Ap... Application Control Library
elphi For JMWET Projects

[New ECO Files Eﬁa} W UHP
7] Mew Files & s

‘s@‘

[=1-{| Delphi Projects ECO ASP.MET ECO ASP.MET ECO 'WinForms Library

[Actives ‘Weh applic... wWeb Servic.., Application
£ DophiF G B m g
1~ | Delphi Files = |
7] IntraWeb b =]
P New Package Satelite WCL Farms Web Contral
= WebServices Assem, .. Application Library

; =] webSnap — o

771 Other Files IE -

; kst Windows WinForm

7] web Documents Forms 4. .. Contr... e

_

ok || cancel |[el

Delphi has always provided you with a rich collection of wizards that support almost every
aspect of Windows development. For Win32 development, these include the Windows 2000
Logo Wizard, the DLL Wizard, the Automation Object Wizard, the Web Service Wizard, the
IntraWeb Application Wizard, the Database Form Wizard, and the Thread Wizard. These are
just some of the dozens of powerful wizards that are available.

For Delphi for .NET and C#, you will find the ASP.NET Web Application Wizard, the
Windows Form Application Wizard, ASP.NET Web Service Application Wizard, the Web
Control Library Wizard, and many, many more.

Delphi 2005 includes Wizards that were previously available in Delphi 7, Delphi 8 for the
Microsoft .NET Framework, and C# for the Microsoft .NET Framework. In addition, Delphi
2005 includes a number of new and improved wizards — accelerating your development
efforts even more. These include the updated New Component Wizard, the new DB Web
Control Library Wizard, the ECO ASP.NET Application Wizard, the ECO Web Service
Application Wizard, and the Satellite Assembly Wizard, just to name a few.

®
Borland ape 28

Borland Delphi 2005 — Reviewers Guide

Find in Files Enhancements

Delphi 2005 makes it even easier for you to search your project files by allowing you to group
search results by file. Simply check the Group results by file check box in the Find Text

dialog box.

Find in Files 1

Text ko Find: | lJ

| Oplions
| Case sensitive I wehole words only
Ll Reqular expressions
I Where
f» Search all files in project ¢ Search all files in project group

" Search all apen files 7 Search in direckories

Search Direckary Options

File mask: | _]

-

Oukpuk
| Display results in separate tab

v Group results by File

a4 | Cancel Help

The following figure shows what a grouped search result looks like. As you can see, each file

in which the search string appears forms a base node in a tree view. Expanding the node for a

given file lists the lines on which the located search string was found. You can then double-

click a particular entry to go to that line of code in the code editor.

]

[=| C:pdxtools',delphi’,Data¥iewer'\mainu.pas
mainu.pas;107): ShowColorDefault = clFuchsia;
mainu,pasi116): ShowColor ; TColor = ShowColorDefault;

mainu.pasi190): ShowColor ;= ini.Readlnteger{'appSettings’, 'ShowColar', Sh...
+ Cpdxtools'delphit,DatavYiewer'propertiesu.pas

g;%’:E!uilu:l Search For 'System’ |Search For 'Shu:uwCu:qu:urDeFauIt'|

®
Borland e 24

Borland Delphi 2005 — Reviewers Guide

Updated Support for International Characters

The Delphi 2005 IDE has been upgraded across the board to support UTF-8 characters in all

of its wizards, windows, dialog boxes, and panes.

Message List Enhancements

Delphi 2005 uses the Message List pane to list compiler errors, warnings, and hints. You can
now save the contents of the Message List pane by right clicking in the Message List pane and
selecting either Copy, to copy selected messages to the Windows clipboard, or Save, to save

the Message List contents to a file.

IDE Error Reporting

Borland's commitment to creating better software has lead to the development of a number of
programs for reporting and fixing problems. One of the most recent of these is Quality

Central, a Web-based application for submitting bug reports located at http://qc.borland.com.

With Delphi 2005, Borland has embedded an error reporting system directly into the IDE.
This feature is called IDE Error Reporting. If an exception is raised within the IDE, Delphi
2005 displays the Error dialog box. If you click the Details button, you see a detailed trace of

the error.

®
Borland e 25

Borland Delphi 2005 — Reviewers Guide

Error El

@ Access vinlakion at address 0A70SC3T in module 'unittestide90.bpl', Read of address 00000000,

o |[BEEEE

[0ATORC37]{unittestides0, bplk Testprojectwizardform, TTestProjecthizard . BrowseForFolderBeforeExe A
[40005ESF]{rtl90.bpl } Swstem.@HandlesnvException (Line 9562, "system.pas” + 131 + $0
[FCo0378eintdl.dl + REConwvertUlongToLargelnteger + $41

[FCo0EAFS]{ntdll.dl } KiUserExceptionDispatcher + $9

(00531843]{wcl90.bpl } StdActns. TBrowseForFolder ExecuteTarget (Line 1326, "StdActns.pas” + 3) -
[400300A0H90. 6ol F Classes, TComponent, Executedction (Line 10606, "classes.pas” + 31 + $6
[0055E070]wcl20.bpl + Forms, TCustomForm, CMActionExecute (Line 5301, "Forms.pas” + 3) + §7
[O0S39EEE]{vcl90.bpl } Contrals, TConkral. WndPrac (Line 4892, "Contrals.pas” + 53) + $6 “

< >

Clicking the Send button displays the Send Report dialog box.

Send Report

|
Borland Send Incident Report

Excellence Endures

X

| In order to send this report to Borland, vou must be connected to the interngt, |
| ¥ou may report this incident anonymeously or use vour Borland Developer

| Metwork account, If vou do use your BDN account, you will be able to view

| and check the status of all vour reports using Quality Central, ‘four reports are

| also kept private so that only Borland and vourself may access them, You wil

| need to enter vour BOM user account name and password,

I Mexk = H Cancel l

Click the Next button to see the stack trace that will be submitted to Borland along with your
error report. Click Next again to enter a description of what you were doing when the error

occurred.

®
Borland ape 28

Borland Delphi 2005 — Reviewers Guide

Send Report

Borland Description and Steps

Excel e Endures

If possible, briefly describe the situation and conditions present that you Feel may
have led to this behaviour:

Additionally, please try and provide detailed steps that led to this incident:

< Previous Cancel

Click Next once more to optionally provide your Borland Developer Network (BDN) logon
email address and password. Submitting your report using your BDN account allows you to
easily follow up on your report using Borland's Quality Central. If you want to submit the

report anonymously, check the Anonymous Report check box.

Click Next one final time to submit the error report.

Import/Export Project from/to Visual Studio .NET

Do you currently have C# projects in Visual Studio .NET 2003, but need the advanced
features offered by Delphi 2005? Don't worry. Importing these projects into Delphi 2005 is

easy.

Simply select File | Open, and open the Visual Studio C# project file (*.csproj). The Delphi
2005 Import Visual Studio Project Wizard will ask you for the name you want to give to the
imported project. From that point forward, you can use the Delphi 2005 features to design,

develop, compile, test, and deploy the application.

®
Borland ae 27

Borland Delphi 2005 — Reviewers Guide

The following figure shows a C# project created in Visual Studio .NET 2003 being imported
into Delphi 2005.

Import Visual Studio Project El

Import a Yisual Studio Project
Select the target name For the converted project: file

K | Cancel Help

While the features of Delphi 2005 make it the preferred environment for .NET development,
C# projects built in Delphi 2005 can be exported to Visual Studio if you need to share the
results of your work with a VVS-based developer. To do this, select Tools | Export to Visual
Studio from Delphi 2005’s main menu. Note that this menu item is only available when the

current project in the Project Manager is a C# project.

®
Borland ape 28

The Next Generation
Code Editor

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

The Next Generation Code Editor

Delphi 2005 continues Borland's heritage of providing developers with a world-class
programming environment. To most developers, that also means a world-class code editor.

And that’s exactly what you get in Delphi 2005.

In fact, for most developers, the updates that Borland has introduced to the code editor in
Delphi 2005 will provide ample justification to upgrade from a previous version of Delphi or
C#Builder. These features include refactoring support, SyncEdit, Error Insight, Help Insight,
the History Manager, and much, much more. These new features are described in the

following sections.

Refactoring

Refactoring is the process of updating existing code to improve its readability,
maintainability, and efficiency, without changing the essential behavior of the software.
Common refactorings include providing more expressive names for variables, replacing
duplicate code segments with a call to a common function that performs the same task, and

replacing literal values with constants or resource references.

Delphi 2005 includes a number of impressive refactorings. These include symbol renaming,

method extraction, variable and field declarations, and resource refactorings.

Symbol Renaming

Symbol renaming allows you to change all instances of a symbol's name throughout your
project. Unlike a search-and-replace feature, symbol renaming respects the context in which
the symbol name appears. Symbols that can be renamed using this refactoring include class
and interface names, properties, methods, functions and procedures, as well as variables and

constants.

®
Borland e 20

Borland Delphi 2005 — Reviewers Guide

To perform a symbol renaming refactoring, select the symbol whose name you want to
change in the code editor, and select Refactoring | Rename. Use the Rename dialog box to

define a new name for your symbol.

Rename Type "WinForm"...

Marmespace: |F‘rl:|]'ect2?

ld name: |'-.-'-.-'inF|:|rm

Mew name: |Main'-.-'-.-'inFc:rm

W Wiew references before refactaring

o4 | Zancel Help

If you leave the View references before refactoring option checked, Delphi 2005 displays the

Refactorings pane, which lists all of the instances within your code where the change will be

applied.
Refactorings %)
® o xH
e @ Rename WinFarm WinFarm o MainWinFarm in Project27, Wi
= @g WinFarm,cs

= public class WinForm : System.\Windows,Forms, Forr
= public WinForm()
= Application. Run{new WinFormi);

£ [4

Q Refactarings I@Find References

Click the Refactor button on the Refactoring pane toolbar to apply the changes. Alternatively,
you can choose to remove one or more of the refactorings before applying them, or even

cancel the refactoring altogether.

Variable and Field Declarations
The Declare Variable and Declare Field options on the Refactor menu permit you to quickly

create a local variable or member field declaration. This option is available with Delphi code,

®
Borland age B

Borland Delphi 2005 — Reviewers Guide

but not with C# projects. (This feature is not needed in C# since fields can appear almost
anywhere within a C# class. By comparison, in Delphi, variables must appear in a var block,

and member fields must appear in a type block.)

To insert a local variable or member field, select the symbol name that you created in the code
editor, and select Refactor | Declare Variable or Refactor | Declare Field (or press Ctrl-Shift-V
or Ctrl-Shift-D, respectively). If you select Declare Variable, the Declare Variable dialog box

is shown.

4 Declare Variable

Mame: EanM
Type: |B|:u:ulean LJ

[Aray Dimensions: 3:

I~ SetValue: |

(] | Cancel | Help ‘

You use the Declare Variable dialog box to change the variable name, set its data type, make
the variable an array type with a specific dimension, or to initialize the newly created variable
to a specific value. Click OK to create the local variable, and initialize its value (if you chose
that option).

If you select Declare Field, the Declare New Field dialog box is displayed. You use this
dialog box to set the name and data type of the new field, to declare it as an array of a given
dimension, and to define its visibility within the associated class. When you click OK, the
newly named field is created in the selected section of the class within whose method the

symbol is located.

®
Borland e 22

Borland Delphi 2005 — Reviewers Guide

E5 Declare New Field

Current Class: |main.TFu:|rm'|

Field Mame: ([Tl

Type: IBDDIean LJ
I Aray Dirnenzsions: 3:
Yizibility: I private LJ

0k | Cancel I Help ‘

Resource Refactoring

Resource refactorings are used in Delphi code to convert string literals into resourcestring
block entries, replacing the original literal with the resource string symbol. (There is no
resourcestring block in the C# language.) Using resource strings instead of string literals is
particularly valuable when a specific string literal is used repeatedly, as well as when you

need to create localized (language and/or culture specific) versions of your application.

After placing your cursor within a string literal in the Delphi code editor, select Refactor |
Extract Resource String. Use the Extract Resource String dialog box to modify the string and
to change the default name for the resource symbol. When you click OK, the string literal is
replaced with the resource symbol, and the named symbol is inserted into a resourcestring

block in the associated unit's interface section.

§d Extract Resource String

String: |Terminate directary enumeration befiar

M arne: |S trT erminateDirectormE num

0k | Cancel Help

®
Borland ape 38

Borland Delphi 2005 — Reviewers Guide

Extract Method Refactoring
Most developers think of method extraction when they think of refactoring. Method extraction
involves converting one or more lines of code into an independent method call, replacing

those lines with an invocation of the extracted method.
In Delphi 2005, method extraction refactoring is only available for the Delphi language.

Method extraction is particularly useful when the same or similar lines of code appear
repeatedly in your project. By extracting those lines to a separate method, replacing each of
the repeated instances with an invocation of the method, you greatly enhance your code's
maintainability by creating a single location where changes to those lines of code, if desired,

need to be implemented.

To perform a method extraction refactoring, select the lines of code that you want to extract to
a method, and then select Refactor | Extract Method. Use the Extract Method dialog box to
define a name for the new method, as well as to examine the code that will be placed inside of

this new method.

™ Extract Method EI

Curent methad: [WinForm. TwinForm Disposs

Mew method name: | SRR e Lo

Sample extracted code:

procedure TWinForw.ExtractedMethod(Disposing: Boolean):; A
bhegin
if Disposing then
bhegin
if Components <> nil then
Components.Dispose:;
end;

end;
w

< ¥

akK | Cancel I Help

Delphi 2005's extract method refactoring is intelligent, with respect to variables, properties,
and objects referenced within the code being extracted. For example, since the code in the

preceding figure includes a reference to the Disposing property of the method's class, the

®
Borland e 4

Borland Delphi 2005 — Reviewers Guide

value of this property is passed by value to the refactored code. By comparison, if the code
actually made a change to the value of a variable that needs to be passed into the refactored

method, the associated parameter would be passed by reference (using the var keyword).

Import Namespace (C#) and Find Unit (Delphi)

Although not exactly a refactoring, the Import Namespace and Find Unit options under the
Refactor menu permit you to quickly locate and import the namespace associated with a
particular symbol. If you are coding in C#, you select Refactor | Import Namespace. Delphi

developers select Refactor | Find Unit.

After selecting this option from the Refactor menu, the displayed dialog box lists all of the
classes in all of the namespaces available to the environment you are working in. For
example, if you are creating a Delphi .NET Windows Forms application, the namespaces of
the FCL and RTL for .NET (the .NET version of the Delphi runtime library) are available.
Delphi VCL for .NET developers will find the VCL for .NET namespaces as well.

dd to Uses Clause X]

Search: |5tring

Matching Results:

System. Drawing Stang T nrmming ~
Syztern. Drawing. 5 tangUmit

Syztern. Globalization. Stinglnfo
Swztern |0, StringF eader

Syztenn 0. Stringhriter

Suztern. Feflection. Emit. StringT oken
Sugtem,String

Systemn. T ext StringBuilder

Addtothe: ™ |nterfface O Implementation

] | Cancel

A

By comparison, if you are creating a Delphi Win32 application, the various units of the VCL
and RTL are listed. Type the name of the class that you want to be able to access in the Search
field. As you type, the Matching Results list is filtered to include only those classes, and their

associated namespaces, whose names match what you've typed so far.

®
Borland e 35

Borland Delphi 2005 — Reviewers Guide

Select the name of the class whose namespace you want and click OK. If you are working in
Delphi, you can also specify whether the namespace will be added to your interface or

implementation section uses clause.

ndd to Uses Clause

®

Search: |Daps

tatching Results:
D ateltilz. D ays aturda

[ratelltilz. D ayzB ehween
Drateltilz. D ayzlndbd onth
Drateltils. D ayslnd''ear
Drateltilz. D ayzlnkd onth
Drateltils. D ayslny'ear
Drateldtile. DaySpan
Datelltilz. D aysPersfesk
Drateltilz. D aysPerrear
Dateldtilz. D aySunday

Addtathe: % |ntefface © Implementation

OF | Cahcel
2]

SyncEdit

SyncEdit is a new feature in Delphi 2005 that provides support similar to symbol renaming
refactoring. Unlike symbol renaming, however, SyncEdit performs localized renaming of
symbols for a selected code block only. This is a powerful capability and one of the most

popular new features with developers.

SyncEdit becomes available anytime you select a code block that includes at least two
instances of the same symbol name. For example, consider the following figure, which
depicts a selected code block that includes more than one reference to a local variable named
DataTablel (as well as DataSet1, DataAdapterl, Connectionl, and the Create method).

®
Borland i

Borland Delphi 2005 — Reviewers Guide

EElgsIprocedure TWinForm.Initializelat iponent;
SE
208
ik
=]
501
502
503 i : At ahs (= [r, Connectionl):
504
505 :
506 yataViewl = DataTablel.DefaultVie
{ || #/Bind the Datatirid

50 Narafridl SarDataBinding (DataViewl, ''):
- - Sync Edit Mode {Shift+Clrl+-2)

=1 tBoxes

The SyncEdit icon appears in the left gutter of the editor window, indicating that
synchronized changes to the selected code block are available. To enter the SyncEdit mode,
you either click this icon or press Shift-Ctrl-J.

Once you enter the SyncEdit mode, the duplicate symbols are identified, and the symbol
selected for synchronized editing appears highlighted (with the duplicates being displayed
enclosed in boxes). If you want to edit a symbol other than the one selected by default, press

the Tab key until the symbol you want to SyncEdit is selected.

DataTakhle:

begin

Connectionl := 3glConnection.Creste (conl3tr);
Connectionl.Openi);

Dataldapterl := SglDataldapter.Create(select3tr, Connectionl):
Dataldapterl1.Fill (DataS3etl, 'customers'):

DataTablel] := DataSecl.Tables['customers'];

DataWiewl := EEEETEEIEﬂ.DEfaultUiEW:

B9 S/ Bind the DatabGrid
E08 DataGridl.3etDataBinding (DataViewl, ''):
509 FS¥/Bind the TextBoxes

After selecting the symbol to edit, begin typing. The name of the selected symbol, and its

duplicates, are updated as you type. The following figure shows the name of the DataTable

®
Borland age o7

Borland Delphi 2005 — Reviewers Guide

being changed to CustTable. (The edit is being performed on the first instance of DataTablel,

which appeared in the var declaration of this method.)

@2 procedure TWinForm.IhitializeDataComponent;
rar
iz Inbeget:
CustTable: DataTable;

begin
Connectionl := SglConnection.Create (con3tr))
Connectionl.Openi):
Dataldapterl := Sgllhataldapter.Create(selecti3tr, Connectionl):

Dataldapterl.Fill (DataSetl, 'customers'):
DE FustTahle := Databetl.Tabhles['customers']:;

DataViewl := [fustTable|.DefaultView;
F/Bind the DataGrid
Datacridl.ZetDataBinding (DataViewl, ''):

A /Bind the TextBoxes

SyncEdit is a great productivity tool when you are writing functions, procedures, and
methods, in that this feature is so easy to use. There are, however, important differences
between SyncEdit and symbol renaming refactorings. SyncEdit is lexical, so it works with
comment lines as well as compilable code, unlike symbol renaming refactorings, which work
only on actual symbol references. Likewise, symbol renaming refactoring extends its reach
into descendant classes, as well as to resource files (such as VCL and VCL for .NET form

files). SyncEdit only applies to the currently selected code block.

Error Insight

Error Insight, which makes its debut in Delphi 2005, provides you with a service that can be
roughly described as spell checking and grammar checking for programmers. As you write
your Delphi or C# code, the IDE actively evaluates your work, identifying the symbols,
keywords, and directives that you use, looking for syntax and semantic errors that the
compiler cannot resolve. When Error Insight locates an error, it identifies the problem by
underscoring the offending text with red squiggly lines, similar to how Microsoft Word

identifies words not in its dictionary.

®
Borland ape 38

Borland Delphi 2005 — Reviewers Guide

procedure TWinForm.Buttonl Click(sender: 3System.Cbject:
e: bAystem.Eventlrgs):

rar
RegVar: THegistry:

begin
RegWVar := TRegistrv.Create:
RegWar.RootKewy := HEEY LOCAL, MACHINE:

if Regvar.OgenKEE('HKEY_CURRENT_USERHSuftwareﬁ' +
'Bor landy BD34Y3 .0 Form Design', False) then

bhegin
if not RegWar.VglueExists (' Embedded Designer') then

BegVar.CreateKey (' Enbedded Designer']:

FegWar.WriteBool('Embedded Dezigner', False):

end;

end;

When you pause your mouse pointer briefly over a symbol that Error Insight does not

recognize, Error Insight displays a hint window with information about the identified error.

In addition to the Error Insight features available in the code editor, the problems located by
Error Insight also dynamically appear in the Structure pane, under the Errors node, and
disappear as they are corrected. The following figure shows the Structure pane with a number

of identified errors.

= Errars ~
D Undeclared identifier 'TRegistry' at line 96 (98:11)
B Undeclared identifisr 'TRegistry' at line 98 (95:13)
O 'TReqistry' does not contain a member named 'Create’ at line 98 (98:23)
O 'TReqistry' does not contain a member named 'Rootkey! at line 99 (99:10)
B Undeclared identifier 'HEEY_LOCAL_MACHIME' at line 99 (99:21)
D 'TRegistry' does not contain a member named 'Openkey’ at line 100 {100:13)
© 'TReqistry' does not contain a member named "YalugExists' at line 103 (103:19)
O 'TReqistry' does not contain a member named 'Createkey' at line 104 (104:14)
D TRegistry' does not contain a member named "WriteBool' at line 105 (105:12)
+- g, TWinFaorm
= |:| Uses
& System. Collections
& System, ComponentMadel
,? Shrckarn Maka

In the example shown in the preceding figures, adding the Borland.Vcl.Registry unit (for the
TRegistry class) and Borland.Vcl.Windows (for the HKEY_LOCAL_MACHINE constant) to

®
Borland ape 38

Borland Delphi 2005 — Reviewers Guide

this unit's uses clause allows Error Insight to see the various symbols that it identified as
problems. Once these two units are added to the uses clause, both the Structure pane and the

code editor are updated, indicating that no problems are detected in this code.

You can configure Error Insight from the Code Insight node of the Options dialog box.

Display this dialog box by selecting Tools | Options from the main menu.

Help Insight

Another new Code Insight feature appearing in Delphi 2005 is Help Insight. Help Insight
provides you with information about the classes, interfaces, methods, properties, and fields

that appear in your code, without you ever having to leave the code editor.

To access Help Insight, briefly pause your mouse pointer over a symbol in the code editor.

After a moment, a hint window appears, displaying information about the symbol.

procedure TForml.LoadBitmaplClick(Sender: Tobhject)

rar
NewlImage: TEitmap:
hegin
if OpenPictureDiangl.Ex%cute then
hegin TOpenPictureDialog.Execute(Integer) Method

= ke SERE This member overrides TOpenDialog.Execute

if Messagellgl'Rep I
(Integer)
mtlonfirmation,m

Exit: Parameters
if not (Tablel.State Parentlnd
Teblel.Edit; System. Integer
TabhlelGraphic. LoadFr Returns
endy System. Boolean

end;

In many instances, Help Insight includes one or more links within the hint window. Clicking
one of these links may drill down into the help, displaying an additional hint window with
information about the link you clicked. Alternatively, clicking a link may take you to the line

of code where the clicked symbol is defined.

Help Insight is also available from the windows displayed by Code Insight, including the

Class Completion and Argument Value List windows. When a Code Insight window is active,

®
Borland Page 40

Borland Delphi 2005 — Reviewers Guide

select an item in the Code Insight window to show the Help Insight for that item. For
example, in the following figure Help Insight is displaying information about the
BeginTransaction method of a SglConnection object. This help became available after

BeginTransaction was selected in the Code Completion window.

//Start a transaction

SqlConnectiDnl]

#gllatakdapterl constructor Create; 4| SgIConnection.BeginTransaction Method
construckor Create(cannectionString: skring);

FiCreate the up procedure Open;

UpdateCustConmmwa procedure Close;

Jipie AP R ety eg=y Unction BeginTransaction: SglTransackion; &n object representing the new transaction,

UpdateCustComma function BeginTransacdioniiso: IsolationLevel; tran: %

Begins a database transaction.
Returns

Exceptions

System. InvalidOperationException
Parallel transactions are not supported,

DpdateCustComrand. Executelcalar;
UpdateCustCormmand := nil:

A/8elect the newly updated record into a DataTable
GetCustCommand := SglCommand.Create;

You can configure Help Insight from the Code Insight node of the Options dialog box.

The History Manager

One of the more exciting additions to the Delphi 2005 code editor is the History Manager.
The History Manager, which you display by clicking the History tab when a source file is
active in the code editor, allows you to view changes to your source files over time, view
comments about specific versions of your source code, view the differences between the

various saved versions of your files, and easily revert to any backup state or checkin.

By default, the History Manager transparently maintains local copies of your source files in a
folder named __history under your project directory each time you save your changes. This
feature is called local file backup, and you use the Options dialog box to configure how many
versions of your local backup to keep. Delphi 2005 maintains the last 10 saved versions of
each source file, by default. Depending on your available hard disk space, you may want to

increase the number of backups.

If you are using Borland’s StarTeam version control server, the History Manager maintains
StarTeam checkins as well. Using this feature, you can not only view changes that you have
made to the source files, but also compare your changes with those implemented by other

developers working on the StarTeam-managed project. StarTeam also permits you to track

®
Borland Page 41

Borland Delphi 2005 — Reviewers Guide

changes even after you have changed a file's name. In short, the History Manager provides
you with a convenient and powerful interface to the robust StarTeam project asset

management system.

It's worth noting that the History Manager also works with the DFM files of VCL and VCL
for .NET applications. DFM files are used in those applications to persist information about
the properties of the objects that appear on your forms, data modules, and frames. As a result,
the History Manager permits you to view, manage, and restore changes made to your form

designs using the same tools as those used on Delphi code files.

There are three panes available within the History Manager. These panes are named Content,

Info, and Diff. Each of these panes is described in the following sections.

The Content Pane

You use the Content pane to review the contents of your saved source files, and optionally
revert to a previously saved version. When you select a specific backup or the current saved
version of the file, the contents of that file are displayed in the code area. In addition, the file

name and the date last saved appear in the History Manager's status bar.

®
Borland Page 42

Borland Delphi 2005 — Reviewers Guide

[z] WinFarm

=
Revision conkent

Rev, Lahel Date T Authar
File Local file 9/21/20... cjensen
[el Local backup, RenameRefactaring2 9/21/20... cjensen
m Local backup 8/15/20... | cjensen

bhegin ~
Connectionl := S3glConnection.Create|'FPersist Security Info=Fal .
'Integrated Jecurity=33PI:database=northwind:' +
'server=training5;Connect Titeout=30');
Connectionl.Openi) :
Dataldapterl := 3gllataldapter.Create('select ¥ from customers
Connectionl)
DataSetl := DatalSet.Createl):
Dataldapterl.Fill (DataSetl, 'tablel'):
Datatridl.Datalource := DataSetl.Takles[0]:
DataSetl.EnforceConstraints := False; b
£ 0 >
Sunday, August 15, 2004 4:39:52 PM \WinForm. pas

Contents | Info | Diff

Use the code area to view the contents of the selected file. If you want, you can use the code

area to select and copy (Ctrl-C) lines of code that you want to paste elsewhere within your

project (or even into other projects).

If you want to revert your code to one of the previous saved versions, select the saved backup

that you want to revert to and click the Revert to previous version button in the History

Manager toolbar.

The Info Pane

You use the Info pane to view comments and notes associated with a particular version of

your source file. If you are using StarTeam to manage your History Manager contents, these

comments are linked to your StarTeam backups. If you are using local backups, these

Borland®

Page

43

Borland Delphi 2005 — Reviewers Guide

comments are generated by Delphi 2005 and cannot be modified. Some operations, such as

refactorings, write information into the Info pane of the History Manager.

[zz] WinFarm

"
Rervision info
Rew, Label Date T Author Comment
Filz Local file af21/2004 5:21:00 AM cjensen Local saved file
Local backup, R... a: jensel Local backup File
& ~le Local backup 8/15/2004 4:39:52 PM cjensen Local backup File
Label | Coments |
Local backup Local backup file
RenameR.efactoring2

Tuesday, September 21, 2004 8:19:22 AM WinForm,pas

Contents |Info | Dff

The Diff Pane
For most developers, the Diff pane offers the most valuable feature of the History Manger.
The Diff pane provides insight into the differences between the multiple versions of your

source code, including comparisons between the current edit buffer and saved source files.

Select one of the saved versions of your source file from the Differences From: list on the left
side of the Diff pane, and either the contents of the current edit buffer or one of the other
saved versions from the To: list on the right side. The difference view is displayed in the code
area, with the newer code versions identified with a plus sign (+) in the left gutter, and the

older versions identified with a minus (-) sign.

®
Borland Page 44

Borland Delphi 2005 — Reviewers Guide

The following figure depicts changes between the current version of the file in the edit buffer

and one of the saved local backups.

[z2] WinFarm
°g go
Cifferences From:
| R, | Date ©
File 9/71/2004 §:21:00 AM
@ -~ 9212004 5:19:22 AM
e i 8/15/2004 4:39:52 PM

Buffer 9 :05:00 PM
File: 9f21/2004 5:21:00 AM
regne 9/21/2004 8:19:22 AM
woles 8/15/2004 4:39:52 PM

o
&
]

£ LA >
DataSetl := Datalet.Createl]: ~
Dataldapterl.Fill (DatasSetl, 'tablel'):

DataGridl.DatalSource := Datafetl.Tables[0]:
DataSetl.EnforceConstraints := False:

Docl := ZmlDatalocument.Create (DataSetl) :

= Customerbataiet := Datalet.Createl(]:

=2 Dataldapterl.Fill (CustomerDatalet, 'customer'):

=4 DataGridl.DataSource := CustomerDataSet.Tables([0];

== CustomerDatalet.EnforceConstraints := False:

= CcustomerXML = ZmlDatalocument.Create (Customerbataiet) !

Sy

TTL T,

< >

& differences found DifF From ~1~ bo Buffer WinForm.pas

Contents | Info | Diff

Code Navigation Enhancement

Code navigation is a feature of Delphi 2005 that permits you to easily move between sections
of your code. For example, by pressing Ctrl-Shift-UpArrow (or Control-Shift-DownArrow),
you can move effortlessly between a method name in a Delphi class declaration to the

associated implementation of that method.

Delphi 2005 introduces a small but valuable enhancement to code navigation in Delphi code,
allowing you to move between your interface and implementation section uses clauses, as

well as between your unit's initialization and finalization sections, using Ctrl-Shift-UpArrow.

Code navigation is not necessary in C# projects, as the associated modules in C# do not have

a two-part structure, as is the case with Delphi units.

®
Borland Page 45

Borland Delphi 2005 — Reviewers Guide

Toggling Code to/from Comments

Delphi 2005 introduces a new feature that permits you to quickly comment and uncomment a
selected code block. To comment one or more consecutive lines of code, select the code in the
code editor, right-click, and then select Toggle Comment from the displayed context menu (or
press Ctrl-/). When you do this, Delphi 2005 places the single line comment characters (//) at

the start of each of the lines in the selected block.

To uncomment one or more consecutive lines, select those lines and press Ctrl-/, or right-click
and select Toggle Comment. Delphi 2005 will respond by removing the single-line comment
characters from each selected line in the block. The single-line comment characters do not
have to be in the first column of the code editor for Delphi 2005 to remove them.

Persistent Bookmarks

Bookmarks are special tags that you place within a source file to enhance your navigation
within that file. You place a bookmark by pressing Ctrl-Shift, followed by a single digit, from
0to 9. Once placed, the bookmark appears in the left gutter of the code editor using a glyph
that represents the digit.

Once a bookmark has been placed, you can quickly navigate to that bookmark within the code
editor by pressing the Ctrl key followed by the digit used to place the bookmark. For example,
if you have previously placed a bookmark using Ctrl-Shift-1, and subsequently navigate to a
different area of your code file, you can instantly return to the bookmarked line in your source
code by pressing Ctrl-1.

Delphi 2005 now supports persistent bookmarks. If persistent bookmarks are enabled, a
placed bookmark will remain in the source code until you specifically remove it. This means
that you can place a bookmark in one editing session, and that bookmark will still be there the

next time you open that source code file in Delphi 2005.

In order to enable persistent bookmarks, check the Project desktop check box under the
Autosave options group on the Environment Options page of the Options dialog box. You

display the Options dialog box by selecting Tools | Options from the main menu.

®
Borland Page 46

Borland Delphi 2005 — Reviewers Guide

J2EE and CORBA to .NET Integration with Janeva

Janeva is Borland's middleware solution for using J2EE (Java 2 Enterprise Edition) Enterprise
JavaBeans and CORBA (common object request broker architecture) objects from your
Delphi 2005 applications. With Janeva, you can leverage your existing enterprise-level

objects, calling them from your Web-enabled or workstation client .NET applications.

To enable access to a J2EE or CORBA object from your Delphi 2005 application, select the
Project menu on Delphi 2005's main menu, or right-click the current project in the Project
Manager, and select either Add J2EE Reference or Add CORBA Reference.

S8 ProjectGroupl
B- I NewPetStore.d
-G References add...
% Deployment Mew g
i bin Show All Files
ModelSupport Add Reference. ..
% S,:'Dbballas:x Add Web Reference...
-- =] \“a’:b:oor:ﬂ Eas Remove Fie...

Save
Save As...
Rename
View Source Cirl+v
Options...
Dependencies. ..
Activate

E}mNewPetStore.bdspro Compie

M Tool Palette Build :

Categories vl ’E ? Mew ASP.NET Deployment

| Components | Add J2EE Reference...

@ I Add CORBA Reference...

Use the displayed dialog box to select the Java .jar or .ear file, or the CORBA IDL (interface
definition language) file. If you select a Java archive, for example, Delphi 2005 then permits
you to choose which of the contained Enterprise JavaBeans you want to use, as shown in the
following figure.

®
Borland Page 47

Borland Delphi 2005 — Reviewers Guide

ﬂ

¥ Generate assembly with all EJBs in the J2EE Archive or
" Select the EJBs you want to generate the assembly for: —

bl Catalog
[w] ShoppingSession

Al | None

0K I Cancel

Selecting OK generates a proxy class that you use to make calls to the Java server at runtime.

User Selectable File Encoding

You can now choose how Delphi 2005 will encode your source files. Your options include
ANSI, Binary, UTF8, and so on.

To set the file encoding for the current source file in the editor, right-click in the editor and
select File Format from the context menu. Select the encoding you want to use from the

displayed menu.

Being able to select the source file encoding is particularly valuable when you are writing
source files using non-US locales. For example, source files encoded using UTF-8 will
correctly maintain the identity of the individual characters even when opened in a different
locale. By comparison, special characters in a source file may change if the source file is
encoded in ANSI and then opened with a different ANSI codepage.

®
Borland Page

48

The VCL for .NET

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

The VCL for .NET

The Delphi visual component library for .NET (which for the purpose of this discussion,
includes the runtime library for .NET, or RTL for .NET), is a 100% .NET managed code
equivalent of the Delphi VCL for Win32. Several features of the VCL for .NET are notable.
For one thing, VCL for .NET is the largest, 100% managed collection of classes, types, and
functions for the .NET framework outside the .NET framework class library itself. And is
only available in Delphi 2005 (or its immediate predecessor, Delphi 8 for the Microsoft. NET

Framework).

The second characteristic of the VCL for .NET is its remarkable compatibility with the Win32
versions of the VCL. In fact, you use this compatibility to migrate your Win32 Delphi code to
.NET with little or no effort.

There are several updates to the VCL for .NET added to Delphi 2005. These are described in

the following sections.

Virtual Library Interfaces

Delphi provides extensive support for interoperability between Win32 and .NET applications,
including COM interop through runtime callable wrappers (RCWSs) and platform invoke
(PInvoke). With Delphi 2005, this support has been advanced through the support for virtual
library interfaces (VLI). Virtual library interfaces permit you to call routines in Win32 DLLs
from your .NET applications much more easily than the mechanism provided by .NET's
PInvoke.

Normally, managed code in the .NET framework can call routines in unmanaged libraries
through the .NET platform invoke service, or PInvoke. With PInvoke, you import the
exported routines of an unmanaged DLL by using the [DLLImport] attribute to identify the

DLL in which the function is located, as well as other characteristics of the exported function.

®
Borland e 50

Borland Delphi 2005 — Reviewers Guide

There are several drawbacks to using PInvoke. First, using the [DLLImport] attribute you
cannot resolve the DLL name or location (path) at runtime. Second, if the specified routine in

the DLL cannot be loaded, for whatever reason, a runtime exception is raised.

Third, the [DLLImport] attribute is somewhat verbose and repetitive, especially when you

have many routines that you are importing from a single DLL.

Consider the following two functions, which are implemented and exported from a Win32
DLL created using Win32 Delphi:

function ConvertCtoF(CentValue: Integer): Integer; stdcall;
function ConvertFtoC(FahrValue: Integer): Integer; stdcall;

A unit that imports these routines using PInvoke has, at a minimum, an implementation block
that looks something like the following (assuming that these routines were exported from a
DLL named Win32DLL.dll):

function ConvertCtoF; external;
[DIlImport("Win32DLL.dIl", CharSet = CharSet.Auto,
EntryPoint = "ConvertCtoF")]
function ConvertFtoC; external;
[DIlImport("Win32DLL.dII", CharSet
EntryPoint = "ConvertFtoC")]

CharSet.Auto,

With virtual library interfaces, importing routines from an unmanaged DLL is easier, is less
prone to raising exceptions, and permits your code to resolve the name and/or location of the
DLL at runtime. There are three steps to importing one or more routines from an unmanaged

DLL using virtual library interfaces. These are:

e Adding the Borland.Vcl.Win32 namespace to your uses clause

e Creating an interface declaration where each method in the interface maps to one of the
routines exported from the DLL

e Calling the Supports function from the Borland.Vcl.Win32 unit, passing to it the name of
the DLL (including an optional path if the DLL is not located in a location where
Windows will find it), the Interface you created in the preceding step, and a variable of
that interface type

®
Borland s 51

Borland Delphi 2005 — Reviewers Guide

If the Supports function determines that the methods of your interface map to functions
exported from the named DLL, the variable you pass in the third parameter of the call to
Supports will point to an object that implements the interface you passed in the second
parameter. You can then use this object reference to execute the unmanaged routines of the
DLL.

If one or more of the methods of the interface are not exported by the named DLL, or the
named DLL does not exist or is somehow compromised, Supports returns a Boolean false

without raising an exception.

Here is a sample interface that declares the two exported functions of the unmanaged DLL

example used earlier in this section:

type
IWin32DLLInt = interface
function ConvertCtoF(CentValue: Integer): Integer;
function ConvertFtoC(FahrValue: Integer): Integer;
end;

If Win32DLL.dll is located in the mylib subdirectory of the application's executable, the
following code returns an implementation of IMyWin32DLL, after which one of the methods

(ConvertCtoF) of the returned object is executed:

var
MyDLL: String;
MyWin32DLL: IWin32DLLINt;
begin
MyDLL := ExtractFilePath(Application.ExeName) +
“\mylib\Win32DLL.dII" ;
if not Supports(MyDLL, IWin32DLLInt, MyWin32DLL) then
MessageBox.Show(self, "Could not load Win32DLL.dII™)
else
Newlnt := MyWin32DLL.ConvertCtoF(100);

®
Borland e 52

Borland Delphi 2005 — Reviewers Guide

Support for Partially Trusted Callers
The VCL for .NET assemblies now support partially trusted callers. A partially trusted caller
is an application that does not reside on the same workstation as a managed assembly that it

calls.

For example, an .exe being executed from a network share or from a URL is a partially trusted
caller. By default, the .NET security model prevents a partially trusted caller from invoking
unmanaged code, such as that in the Windows API, unless that caller includes the appropriate

declarations and checks.

The Delphi 2005 assemblies of the VCL for .NET now include the additional security
declarations and checks that permit the VCL for .NET to be called from a partially trusted

caller without violating .NET security.

®
Borland e 52

The Delphi Compilers

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

The Delphi Compilers

Borland compilers are legendary for their speed and compatibility, and this legacy continues
with Delphi 2005. Actually, Delphi 2005 ships with three compilers. One of these compilers,
the C# compiler, is licensed from Microsoft. Consequently, C# applications you build in
Delphi 2005 generate the same intermediate language (IL) code as those built with Visual
Studio.

The other two compilers are Delphi compilers, one for compiling traditional 32-bit Windows
executables and the other for generating IL for the .NET Framework. Both of these compilers

have received significant updates in the Delphi 2005 release.

This section begins with a discussion of features added to both the Win32 and the .NET
versions of the Delphi compilers. Later in this section, you will learn about the new features

that are specific to one or the other of these compilers.

Updates for Both Win32 and .NET Delphi Compilers

Several new features have been added to both of Delphi 2005’s Delphi compilers. Thes most
significant of these include the new for...in loop and Unicode support. These new compiler

features are described in the following sections.

The For...In Loop

The Delphi language has been updated to include a new looping control structure similar to
the C# foreach keyword. In Delphi, this new loop is referred to as a for...in loop. Unlike
traditional for loops in Delphi, the for...in loop does not require an ordinal control variable.
Instead, the for...in loop systematically retrieves a reference to the next object in a collection

of like objects.

For example, the following code segment can be used to iterate through the DataRows of a

DataTable's Rows property (this property is of the type DataRowCollection):

®
Borland e 55

Borland Delphi 2005 — Reviewers Guide

var
Row: DataRow;

begin

/7.

for Row in MyDataTable.Rows do
ListBox1l.ltems.Add(Row[0]-ToString);

For the .NET Delphi compiler, for...in can be used with any object that satisfies at least one
of the following conditions: it implements the IEnumerable interface, has a public
GetEnuermerator function, or is an array, set, or string. For the Win32 compiler, for...in can
be used with any class that has a public GetEnumerator function, or is an array, a set, or a
string. Classes that implement a GetEnumerator function include TList, TCollection,

TStrings, TMenultem, TFields, to name a few.

Support for Unicode and UTF8 Formats

Both of Delphi’s compilers can now compile UTF8 and Unicode source files. Previously,
only ANSI source files were supported. For the Delphi for .NET compiler, this feature
supports CLS (common language specification) standard Unicode identifiers in both metadata
and in source code.

The Delphi for .NET Compiler

Borland's Delphi for .NET compiler made its first debut with the release of Delphi 8 for the
Microsoft .NET Framework. In addition to the updates listed in the preceding section, this
compiler has received a number of updates that apply specifically to .NET applications. These
include a revision to how namespaces are created and managed, forward-declared record
types, and support for weak packaging in VCL for .NET applications. The updates to the

Delphi for .NET compiler are described in the following sections.

Delphi Code and Namespaces
The biggest change to the .NET compiler is in how it generates namespaces for the symbols
defined in your units. Under the previous version of the compiler, the unit name was the

namespace.

®
Borland e

Borland Delphi 2005 — Reviewers Guide

For some developers, particularly those accustomed to using classes defined in C#, the
namespaces created by Delphi appeared awkward. Specifically, these namespaces revealed
the physical structure of the underlying code, which is irrelevant from the perspective of the

person using your classes, and can be distracting.

The Delphi 2005 compiler takes a new approach to namespace generation, allowing multiple
units, and even multiple applications, to contribute to a common namespace, if desired. At the

same time, it is just as easy to make each unit contribute to a separate namespace.

Here is how it works. If your unit names do not use dot notation, the unit name is the

namespace. This is how it worked before.

If a unit includes a multipart name, using dot notation, the namespace is defined by dropping
the last part of the unit name. For example, if a unit has the name YourCompany.Data.Unit1,
the classes within that unit will reside in the YourCompany.Data namespace. Classes that
appear in the YourCompany.Data.Unit2 and YourCompany.Data.Unit3 units will be in the

YourCompany.Data namespace as well.

Global variables, constants, functions, and procedures declared in Delphi code represent
something of a challenge, in that .NET requires all declarations to be associated with a class.
Therefore, the global symbols of a Delphi unit named YourCompany.Data.Unitl are
implemented in .NET metadata as members of a class named Unitl within the namespace

YourCompany.Data.Units.

How Delphi symbols appear in .NET metadata has no effect on your Delphi source code. You
only need to consider how your Delphi code will appear in the .NET metadata for the portion
of your code that you want developers using other .NET languages to use. In general, you
should avoid using global variables, global constants, or global procedures and functions

when writing Delphi code that you intend to be used by other .NET languages.

Support for Weak Packaging in VCL for .NET Applications
A runtime package in the VCL for .NET is a managed .NET assembly — it contains

declarations that the application can load and use at runtime. Under normal circumstances, if

®
Borland e 57

Borland Delphi 2005 — Reviewers Guide

you compile a VCL for .NET application to use a runtime package, you are required to deploy
that package, just as you are required to ensure the deployment of all assemblies (DLLs) that

are referenced in your application.

Weak packaging of a unit addresses a problem that arises when a runtime package contains
one or more units that statically link to an external DLL, in particular, a DLL that is not
commonly available. Under normal conditions, this situation requires that you deploy both the

runtime package and the DLL.

Consider the Microsoft DLL PenWin.dll for pen device input, which is not distributed with
Microsoft operating systems. The PenWin unit in Delphi statically links to the DLL
PenWin.dll. If your unit uses PenWin, and includes calls to one or more functions in the
statically linked PenWin.dll, adding your unit to a runtime package without weak packaging
would require that the PenWin.dll be available from any application that loaded that runtime
package. By making this unit weakly packaged, only applications that actually call

PenWin.dll functions will require PenWin.dll.

Weak packing permits an application to link a non-packaged version of the unit into the
executable instead of using the runtime package that contains this unit. As a result,
applications that need the features of the weakly packaged unit will link the non-packaged
version of the unit (that stored in the compiler-generated DCPIL file), and as a result, require
the DLL. Applications that do not use the unit will not require the DLL, even if they are
compiled to use the package that contains the weakly packaged unit.

Weak packaging has been available for some time in the Delphi Win32 compiler. Weakly

packaged unit semantics are now supported by the Delphi for .NET compiler.

Forward Declared Record Types
Record types can now be forward declared in Delphi VCL for .NET and FCL applications. A
forward declared record instructs the compiler to recognize the record as a valid type, even

though its formal declaration appears later in the same type block.

®
Borland a5

Borland Delphi 2005 — Reviewers Guide

Forward declared record types permit two type declarations, specifically records, classes, and
interfaces, appearing in the same type block to reference one another in their member fields,
properties, or methods. You create a forward declared record type by declaring the record

type symbol but omitting the record's field lists.

The Delphi Win32 Compiler

The degree of compatibility between the Delphi Win32 and .NET compilers is one of the truly
remarkable Delphi 2005 features. This compatibility permits single projects to be compiled as
true Win32 applications and then effortlessly migrated to 100% .NET managed code
applications. In many cases, a single set of source files can be compiled by both the Win32
and the .NET versions of the Delphi compiler. No other development environment lets you do

this as easily.

Equally compelling for developers is Borland's continued support for the Win32 platform
with the most modern IDE on the market. While Borland is committed to the .NET platform
as the future of Windows development, Borland also knows that the majority of desktop
developers maintain applications on the Win32 platform, and Borland is just as committed to

providing those developers with the advanced features that they need.

Although the bulk of the enhancements to the Win32 compiler have already been described
earlier in this guide (in the section "Updates for Both Win32 and .NET Compilers™), the
following sections discuss some of the unique features added to the Delphi Win32 compiler in
Delphi 2005.

Function Inlining

Function inlining is an operation performed by the Win32 compiler at compile time. When a
function is inlined, the compiler replaces a call to the subroutine (a method, function, or
procedure) with the compiled instructions defined within the subroutine. Function inlining can
increase application performance by eliminating the overhead associated with function,

procedure, and method calls.

®
Borland ape 69

Borland Delphi 2005 — Reviewers Guide

There are two ways to influence whether the compiler will inline a function or not. One way
is to include the inline directive in the function, procedure, or method declaration. This
directive is a request to the compiler to consider whether or not to inline the function. If
inlining has not been disabled, and the compiler determines that the function can be safely

inlined, the inlining will be performed.

The second way is to use the {SINLINE} compiler directive. This directive can be passed
with one of three parameters, ON, OFF, and AUTO. With the ON parameter, the default, the
compiler will inline functions declared using the inline directive, whenever the compiler

determines that inlining is safe. No inlining takes place when you specify the OFF parameter.

When you use the {$INLINE} compiler directive with the AUTO parameter, the compiler
attempts to inline, if possible, any small function — one whose code size is roughly 32 bytes

or less.

While function inlining can produce performance improvements, Borland is quick to note that
it should be applied judiciously, and does not recommend using the AUTO parameter with the
{$INLINE} compiler directive. Inlining can produce larger executables, even some that are
dramatically larger. Also, inlined functions do not always produce performance benefits. In

some cases, inlining can actually reduce performance.

There are a number of conditions that prevent a subroutine from being inlined. For example,
subroutines that include inlined assembly instructions cannot be inlined. Similarly, methods of
a class that access one or more of that class's private members cannot be inlined into a method

in another class.

Borland has applied the inline directive to some of the smaller routines in the VCL and RTL,
where deemed appropriate. As a result, code that uses these routines will execute faster than

before, but with slightly larger executables.

Support for Nested Types
A nested type is a type declaration inside another type declaration. The Delphi for .NET

compiler already supports nested types. Delphi's Win32 compiler does now, too.

®
Borland ae 08

Borland Delphi 2005 — Reviewers Guide

The following is an example of a class that contains a nested type. This example is taken from
the Delphi 2005 Help, and can be found under the heading Nested Type Declarations.

type
TOuterClass = class
strict private
myField: Integer;
public
type
TInnerClass = class
public
myInnerField: Integer;
procedure innerProc;
end;
procedure outerProc;

end;

Nested Type Constants in Class Declarations

Nested type constants are constant class member declarations inside of a class type
declaration. Nested type constants are somewhat similar to class functions, in that they can be
referenced using a class reference without an instance of the class. Unlike class functions,

however, nested type constants always return a constant value.

Nested type constants are already available for your .NET projects. Now you can use them in
your Win32 applications as well. Nested type constants can be of any simple type, such as
ordinal, real, and String. You cannot declare a nested constant to be a value type, such as
TDateTime.

The following is an example of a class that includes a nested type constant declaration:

type
TTemperatureConverter = class(TObject)
public
const AbsoluteZero = -273;

®
Borland i

Borland Delphi 2005 — Reviewers Guide

procedure ConvertFtoC(Temp: Integer): Integer;
//..

Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes and Data Types
If you need to get close to the silicon, Delphi's Win32 compiler now permits you to include

Pentium 4 SSE3 and SSE?2 op codes and data types in your inline assembly routines.

XML Document Generation
XML document generation was introduced in the Delphi 8 for .NET and C#Builder

compilers. You can now generate XML documentation files for your Win32 source code.

To enable XML Doc generation, enable the Generate XML Documentation check box on the
Compiler page of the Project Options dialog box. You display the Project Options dialog box
by selecting Project | Options from the Delphi 2005 main menu.

Project Options for Videolibrary.exe

Farms

o Code generation Runtime errors
Shtieain imizati I Range checkin
Compiler | Cptimization Rang . e}
Compiler Messages [Stack frames v 10 checking :
Linker [~ Pertium-safe FOIY I Overflow checking
Directories/Conditional -

Ipectories/Eotditional: 8 | Record field alignment Debuaging
Wersion Info - :
|v Debug information
Packages ;
Syntax options v Local symbals
-| Debugger ¥ Strict i :
Environment Elock ARl 2 I Reference info
[Compleke boolean eval v Defiritions only
|v Extended syntax W Assertions
[~ Typed @ operator [” Use debug DCUs
v Open ga.rameters Docurmentation
v Huge strings [w 15enerate ¥ML documentation:
|~ Assignable typed constants %

I Defaul ak | Cancel | Help

When Generate XML Documentation is enabled, the compiler produces one XML file for
each of your source files. This file has the same name as the source file, but with the .xml
extension. If you have included custom XML Documentation comments in your source files,

these will be inserted into the generated XML file.

®
Borland age 02

Borland Delphi 2005 — Reviewers Guide

The XML files generated when you compile with Generate XML documentation enabled can
be used with widely available documentation generating tools. Alternatively, you can write

your own XML parser to use this information any way you see fit.

®
Borland e 03

The Delphi Debuggers

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

The Delphi Debuggers

A good debugger is one of the essential tools for successful software engineering. Whether it
is used to help you learn the values of your various variables and objects as your code
executes, or to inspect the contents of your application's stack, a debugger lets you do the

nearly impossible — peer into the black box and make sense of what's going on.

This section provides you with insight into Delphi 2005's support for debugging your Win32
and .NET applications.

Multiple Debugger Support

Delphi 2005 doesn't just have a world-class debugger — it has two. One of these is for your
.NET applications that you have compiled to IL, and the other is for your Win32 applications

that you've compiled to machine language.

Delphi 2005 selects which of these debuggers to use based on the type of compiler that
created your executable. For example, if you are debugging an ASP.NET Web application, a
Windows Forms application, or a VCL for .NET application, Delphi 2005 uses the Borland
.NET Debugger. By comparison, if you are debugging a VCL client/server application, a
COM (component object model) server, or a traditional Win32 DLL, Delphi 2005 uses the
Borland Win32 Debugger.

Just as Borland provides you with a consistent set of features when it comes to compiling,
Borland's debuggers do a remarkable job of giving you a rich, dependable, and consistent set
of tools for debugging your applications, whether you are compiling for .NET, Win32, or
both. For example, each of Delphi 2005's debuggers permits you to set breakpoints, view the
call stack, change the values of variables and objects, access local variable values, switch
between your application's current threads, view CPU (central processor unit) data, examine
the event log, as well as access the list of loaded modules. You can even use these debuggers

to attach to existing processes, giving you insight into how they are functioning.

®
Borland e 65

Borland Delphi 2005 — Reviewers Guide

While the features offered by these two debuggers are consistent, they are not identical.
Specifically, each debugger provides you with options appropriate for the associated

executable.

For example, with Win32 applications you can create Data breakpoints, breakpoints that
trigger when the data stored in a particular memory address changes. Data breakpoints don't
make sense in the .NET world, since the physical address in which data is stored cannot be
predicted.

On the other hand, the CPU window displayed by the .NET debugger can include the 1L
(intermediate language) the .NET compiler emitted. Win32 compilers don't generate IL, so

this feature does not apply to Win32 executables.

The following sections provide you with information about new features that appear in the
debuggers for Delphi 2005.

Exception Dialog Enhancements

An exception is an error generated at runtime by your application. Unless you have
specifically configured your debugger to ignore the exception (or have disabled the
debugger), several things happen when an exception occurs when you are running an
application from within the Delphi 2005 IDE: your program stops executing, the appropriate
debugger is loaded, and the Debugger Exception Notification dialog box is shown. An

example of the exception dialog box is shown in the following figure.

Debugger Exception Notification El

Project DataView, exe encountered unhandled exception class System. Data. SqlClient. SqlException with message
'System error.”,

| Ignore this exception byvpe
| Inspect exception ohject

[Show CPU view Caontinue Help

The Debugger Exception Notification dialog box in Delphi 2005 includes a number of new

features. You can choose whether to stop your program's execution temporarily or close the

®
Borland e 08

Borland Delphi 2005 — Reviewers Guide

debugger and continue executing the program using the Break and Continue buttons,

respectively, located in the lower-right corner of this dialog box.

In addition to these options, you may also see one or more of the check boxes that appear on
the left side of the dialog box in the preceding figure. If you click the Ignore this exception
type check box, the class of exception that occurred is added to the Exception types to ignore
list on the Language Exception tab of the Options dialog box. From that point on, this
particular exception class, as well as any class that descends from it, will no longer load the

integrated debugger.

If you later want to restore the default behavior of having this exception load the integrated
debugger, either uncheck the check box next to the corresponding exception in the Exception
types to ignore list, or select the exception and click the Remove button. (You display the

Options dialog box by selecting Tools | Options from the main menu.)

Options E|

ECC aeneral Options ~ : :
3 : Exception bypes to ignore
=|- Translation Tools Options
Repositary v YL EAbort Exceptions

- | Indy EIDConnClosedGracefully Exception
Eorf Designer | Microsoft DAC Exceptions
Fort | Syskem, Threading, SynchronizationLockE xception
Color | Syskem, Threading, ThreadabortException
Source Control Options w| CLR Exceptions (System.Exception)
|| Borland. Data, Common, bdpException

—|- Deb Opki
CEHaner Pt | Swstem.Data,Sqllient. SqlException

—|- Borland Debuggers
Language iory
Mative O5 Exceptior
Event Log
—|- Together
General
Diagram add...
ML Specific —
Views Management
Saurce Code [Motify on language exceptions
Maodel Yiew
Print -

o4 | Cancel ‘ Help

If you check the Inspect exception object check box on the Debugger Exception Notification
dialog box, and then click the Break button, the Debug Inspector becomes available, as shown

in the following figure. The Debug Inspector allows you to view, and drill down into the

®
Borland e ©7

Borland Delphi 2005 — Reviewers Guide

instance of the raised exception. In this case, detailed information about the exception can be
discovered by double-clicking the _errors property of the SqlException object, and then
inspecting the SqlErrorCollection& which contains the detailed information about the

problem that was encountered.

Debug Inspector - Thread 2904 [x]
l:urrent unhandled exception: SglException LJ
................. : l Methods] Properties]
bl errors SqlErrarCalleckiong:

_COMPlusExceptionCo|-532459639

_classMame [

_exceptionMethod null reference

_exceptionMethodStrin™

_message |"System error.”

_innerException null reference

_helplRL

_skackTrace object reference

_stackTracestring [

_remoteStackTracestri™

_remokestackIndex |0

_HResulk -2146232060

_source

_xptrs 1]

_xcode -532459609
SqlErrorCollection

If the raised exception does not correspond to a source location, the Show CPU view check
box is available on the Debugger Exception Notification dialog box. Checking this check box,
then clicking Break, loads the CPU window, displaying the disassembled view of the
executing code, the CPU registers, and possibly other information, depending on the

debugger.

The Disassembled View

Speaking of the disassembled view, Borland has introduced updates to both the Win32 and
.NET versions of this part of the CPU window. For a .NET executable, you now have the

option of viewing the generated IL, the source code that compiled to the IL, or both.

®
Borland ape B8

Borland Delphi 2005 — Reviewers Guide

An example of the CPU view displayed by the Borland .NET Debugger is shown in the
following figure. This particular CPU view is associated with a source breakpoint. The
highlighted statement in the disassembled pane (the left pane) is the Delphi source on which
the breakpoint was placed. Beneath this code, you can see both the IL instructions that were
emitted by the Delphi for .NET compiler, as well as the resulting assembly language

instructions that the JIT compiler produced.

[=] Welcome Page | [X] WinForm | (=] CPU
[$001Z2ED14]=800000017 Thread #2652

goooooo9 §955F8 mov [ebp-0x08] ,edx A | |EBX D4ASAAZC

goooooos SEFS mow edi,ecx ECE 04A91793

0O00000E C745F400000000 mow [ebp-0x0c] 0x0Q000000 EDE O4A91BES

ooooogl1s 33F6 ¥Or esi,esi ESI 00000000
At | 0 to Pred{S5elf.Controls. EDI O4ASLAZC

mow [ebhp-0x14], EEF 00000000

0000001E SEBECF mow ecx,edil ESF 00000000

00000020 FF155CCE3AGTE call dword ptr [Ox7haccd EIF 00000000

oooooo0zZ & SEDS mow ebx,eax

IL 0007: callwirt

gooooozZa SBCE mow ecx, ehx

oooooo0zZa 3909 cmp [ecx] ,ecx

O000002C ESZ7ADLETS call Ox74a6ads5s

oooooo31l SEDS mow ebhX, eax

IL 000c: 1dc.id.1
IL 0o00d: sub
IL 000e: stloc.
IL 000£: stloc.
IL 0010: 1dloc.
IL 0011: 1dloc.
IL 0012: blt.s
IL 0014: 1dloc.0

IL 0015: 1dc.id.1

IL 0016: add

IL 0017: stloc.D

00000033 4B dec ebx i

= Qo = QO

CPU

You control whether IL and/or source code appears in the disassembled pane of the CPU view
using the disassembled pane's context menu. When Mixed Source is checked, source code is
displayed. When Mixed IL Code is checked, IL is displayed. Turn both of these options off to

view only the code generated by the JIT compiler.

®
Borland I

Borland Delphi 2005 — Reviewers Guide

Bun to Current ChrHR
Toggle Breakpoint Ctrl+E
Goto Address,,, Chrl+G
izoto Current EIR Chrl+0

Fallow Chrl+F
Previous Ctrl+P
Search... Chrl+3
Yigw Source Chrl+

Mixed Source el

MixedIL Code Chri+I

Breakpoints

Breakpoints are event-driven markers that can be configured to cause the integrated debugger

to perform a task. In most cases, this task is to temporarily stop executing your code and load

the integrated debugger, permitting you to examine features of the execution environment. On

the other hand, the task might not include stopping your code's execution, but instead perform

some action, such as writing a message to the event log.

Delphi 2005 introduces two new features that specifically apply to breakpoints. These are

described in the following sections.

The Log Call Stack Breakpoint Option

Source, address, and data breakpoints can now be configured to write the call stack to the
event log. The call stack stores the current methods, functions, and procedures in the call
chain, in the order in which they were entered. Breakpoints that write the call stack to the

event log permit you to more easily track and document the events that lead to your code's

execution.

Borland®

70

Borland Delphi 2005 — Reviewers Guide

To write call stack information to the event log, enable the Log Call Stack check box. Use the
available radio buttons to configure the breakpoint to either write the entire call stack to the

event log, or only a specific number of frames.

Source Breakpoint Properties EJ
Filename: | _J
Line numbet: | _J
Candition: | LJ
Pass counk: |U LJ
Group: | LJ

B

Advanced =<

I Break
| Ignore subsequent exceptions

|~ Handle subsequent exceptions

Log message: | l]
Ewval expression: | L]
-
Enable group: | L]
Disable group: | l]
v Log Call Stack
(« Entire Stack
" Partial Stack

(04 | Cancel ‘ Help ‘

Typically, when you write the call stack to the event log, you do not need the breakpoint to
load the integrated debugger. If that is the case, make sure that the Break check box is left

unchecked for this breakpoint.

Breakpoint Dialog Box Updates
The Breakpoint dialog box has received several updates in this release. First, a new toolbar is

available, allowing you to more easily enable, disable, remove, and configure your

®
Borland age 71

Borland Delphi 2005 — Reviewers Guide

breakpoints.
Breakpoint List i 3]

@9 Add Breakpoint = @ Delete ‘%ﬂgelete All ‘%’ Enable Al % Disable Al %Pmperties

F-ilename,l'.ﬁ.ddress . Line,l'Length | Condition | action | pass Count | Group
= s WinFor... Log all stack i

O%

8, winFor... &4 Break o

7 ¥, WirFor., 69 Break of 2

&, WirFor., 72 Break]

£ | b

&?Breakpoint List 9Thread Skatus Event Log | ¥ Call Stack ?Watch List ‘@Local ‘atiables

The Breakpoint dialog box has also been upgraded to permit in-place editing of a number of
breakpoint properties, without having to view a particular breakpoint's Breakpoint Properties
dialog box. Using the Breakpoint dialog box, you can directly edit the Enabled, Condition,

Pass Count, and Group properties of individual breakpoints.

The following figure shows the Condition property of a breakpoint being edited using the
Breakpoint dialog box.

Breakpoint List (]
@ Add Breakpoint ~ @ Delete @y Delete Al %’ Enable All % Disable &l ﬁ\ngperties
| Filename,l’nddress Line,l’Length Condi.tion | A.cti-on :.F‘;ass Count Group
W & WinFor,,, &9 |messageC0unt =z | Laog all stack frames i}
0%
7 8 winFor,.. 64 Break o
7 9, WinFor... 69 Break 1of 2
7 %, winFor... 72 Break]
€2 |
’,@Breakpoint List | %] Call Stack %Watch List jQThread Status Event Lag | %4 Local variables

Updated Attach to/Detach from Process

Previous versions of Borland compilers have permitted you to attach to a running process.
Once attached to a process, you can use the debugger's features to inspect the process

execution environment.

Attaching to a running process is even more powerful in Delphi 2005. For starters, when you
select Run | Attach to Process, Delphi 2005 asks you to select which debugger to use to attach

®
Borland e 72

Borland Delphi 2005 — Reviewers Guide

to the process. If you select the Borland .NET Debugger, only processes hosted by the CLR
(common language runtime) are displayed for your selection.

& Attach to Process |XJ
Debugger:]Bnrland .MET Debugger LI
Running Processes:
Image Mame] PID 1 Path 1
bds.exe 3080 C:\Program Files\BorlandiBDS 3. 04BN,
Reflector exe 3160 Z1ydocs\Dot MethReflector) MET Framework, 1,14
|w Pause After Attach Refresh : Cancel . Hep i

If you select the Borland Win32 Debugger, traditional Win32 processes are shown.

& Attach to Process

Debugger:
Running Processes:
Image Mame] PID: 1 Path 2
Apnte:x. exe 2712 Z:\Program FilestApoint2i, =
Apaint.exe 1476 C1\Program Filesh Apoink2k),
AbiZenon, exe 1460 M IMDOM S Svskem32Y,
atiptamx:, exe &0n A WINDOMW S swskem 32,
bds.exe 3080 Z:\Program Files'BorlandiB03Y 3, 04BN,
BtrHRd. exe 1360 ZHiProgram Files'Fujitsul BeinHRd?,
caliber_srv.EXE 1768 i\ Starbase\ CaliberRMServeriBin', it
Ll | =
[show Swstem Processes
v Pause After Attach Refresh I : | Cancel J Help

Also new is the option to detach from a process. If you have previously used one of the
Borland debuggers to attach to a process, select Run | Detach from Process from Delphi
2005's main menu to detach from the process.

®
Borland Page

Borland Delphi 2005 — Reviewers Guide

Evaluator Frame Support for Win32 Local Variables

A popular debugging feature in Delphi 8 and C#Builder is the capability to select a particular
frame from the call stack using the Local Variables dialog box. This feature is now available
for the Borland Win32 Debugger.

With the Borland Win32 Debugger loaded, view the Local Variables dialog box. (If this
dialog box is not already visible, select View | Debug Windows | Local Variables, or press
Ctrl-Alt-L, to display it.) Initially, the values of variables local to the current function that the
debugger is in are shown. To view local variables in one of the methods earlier in the call

chain, select the method name from the drop-down menu.

:00445bSd TMenultem. Cllck 75 $.ﬁ.D k

:004379F2 TWinControl WndProc + $209

:0043744F TWinContral MainwndProc + $2F

00410542 StdWndProc + $16

17748709 user32. GetDC + Ox 72

(FrddaTeb ; CHWINDOW S syskem3Ziuser 32, dll

FTd4E9a5 CHAMTNDOW S syskem3Ziuser 32, dll b

®
Borland e 74

Database Development

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Database Development

Delphi has long been considered the leading environment for database development.
Currently, Delphi 2005 provides you with more data access options than any other

environment.

For Win32 development, in addition to a number of industry standard data access
mechanisms, such as ODBC (open database connectivity) and Ole Db Providers, developers
have a wide range of Borland technologies that they can employ, including the BDE (Borland
Database Engine), dbExpress, IBExpress (InterBase® Express), dbGo™ for ADO, MyBase

(ClientDataSet), and DataSnap; Borland's multi-tier, distributed database environment.

Delphi for .NET developers can use the same technologies as Delphi Win32 developers. The
.NET implementation of the Win32 data access mechanisms uses what Borland calls its

compatibility data access technologies. These are all found in VCL for .NET

In addition, both Delphi for .NET and C# developers can access their data through
ADO.NET, the data access framework of the FCL. Borland also provides an advanced custom
data provider for ADO.NET for both Delphi for .NET and C# developers. This technology,
which is called Borland Data Providers, or BDP for ADO.NET, offers many enhancements
and extensions to ADO.NET, including live data views at design time, useful component

designers, greater portability between underlying databases, and more.

What’s especially impressive about Delphi 2005 is that Borland has added significant new
database functionality in addition to the extensive features available in Delphi 8 for .NET and

C#Builder. These additions and enhancements are described in the following sections.

RAD for ADO.NET

ADO.NET is the portion of the .NET framework associated with database development.
While ADO.NET is very powerful, it fails to provide the design time ease-of-use Delphi

®
Borland i

Borland Delphi 2005 — Reviewers Guide

developers expect. RAD for .NET is Borland's answer, bringing the convenience and speed of
Delphi database development to the world of ADO.NET.

RAD for ADO.NET simplifies the process of using ADO.NET from within your applications
in two distinct ways. First, the DataSync and DataHub components provide a flexible
provider/resolver mechanism that uses industry-standard ADO.NET data providers for data
access. Second, the RemoteServer and RemoteConnection components permit you to extend
these capabilities to a distributed environment. These technologies, and the components that

implement them, are described in the following sections.

Providing and Resolving with DataSync and DataHub

Delphi 2005 introduces two new provider/resolver components that simplify how you work
with your ADO.NET-related data access objects: DataSync and DataHub. You can use these
components with any ADO.NET data providers to provide design-time views of your data,

simplify data access, as well as apply updates back to your underlying database.

The relationship between the DataSync and DataHub components and the traditional classes
of ADO.NET development is shown in the following figure. Here the DataSync and DataHub
components mediate between the ADO.NET DataSet and IDbConnection classes to provide
services lacking in ADO.NET alone. These services include live, design time views of data,
the management of multiple database connections, as well as flexible and optimized data

resolution services.

®
Borland .

Borland Delphi 2005 — Reviewers Guide

| Cumtzmwr Zuta Ferm =Fokd

DataSync |«

s =
Oracle

In addition, when used with Borland's new data remoting components, DataSync and
DataHub simplify the process of creating distributed applications in the .NET framework. The

data remoting components are discussed later in this section.

DataSync

The DataSync component maintains a list of data providers, that is, classes that descend from
DbDataAdapter. For each data adapter, the DataSync keeps track of the provider name, the
name of the DataTable that the DataSync will create for the provider, as well as how changes
to the DataTable will be applied to the underlying database.

That the DataSync relies on descendants of DbDataAdapter means that it can work with any
data provider, not just the Borland Data Providers. As a result, you can use a DataSync with
classes such as SqlDataAdapter and OdbcDataAdapter, which are included in the FCL, as
well as data adapters from third-party vendors, such as IBM.Data.DB2 and

Oracle.Data.Provider.

®
Borland Page 78

Borland Delphi 2005 — Reviewers Guide

DataHub

You use the DataHub component in conjunction with a DataSync to feed data from the
DataSync's data adapters to a DataSet, as well as initiate the resolution of changes back to the
underlying database. Importantly, the DataHub can be activated at design time, which means
that the combination of a DataSync and DataHub provide you with live data views at design

time, a feature that is otherwise unavailable from non-BDP data adapters.

The following figure shows a C# project in which a DataSync and DataHub are used to
populate a DataSet at design time. The DataGrid on the form shown in the designer is

displaying the data obtained through the DataSync/DataHub combination.

& DataSyncDatablubDemo - Borland Developer Studio for Windows - WinForm.cs

File Edit Search view Refactor Project Run Component Tools Window Help | |Default Layout - 53 %
Ml DHE-8 88 &b - 57 @
ﬁ\ Structure B X =l welcome Page | G2 WinForm.cs o(a Data Explorer X
O i + @ DB2 ~
T e + @ Interbase
T & + @ MShcoess
~ |2 @ MssoL
T L =% MSS5Conni
= WinForm \._||EFE| A T ables
+ ¢ dbo.Categorie
CustomerdD | ComparyMa | ContactMame | ContactTile | Address + =+ dbo. Customer
3 ALFKI Alfreds Futter MariaAnders Sales Repres Obere Sir * dbo.Customerl
ANATR AraTilloE AnaTrujlo Dwner Avda del #-¢3 dboCustomer:
ANTON Antonio More Antonio More Diwner Mataderos = ::U'Emp:wee :
/2 Object Inspector 8 X AROUT Around the H - Thomas Hard Sales Repres 120 Hano: sl bl i
T T 5 + g dbo.Order Det
= BERGS Berglunds en Christina Ber Order Admini Berguwswi -
dataGrid1 - # dboOrders
BLALS Blauer See D HannaMoos Sales Repres Forsterst. 5
: R ; 3 + dho Products
Properties | Events BLOMP Blondesddsl Frédérique Ci Marketing Ma 24, place | 578 dboFegon R
; &
E|Configurations A BOLID Bdlido Comid ~ Martin Somm Owner C/ Araquil ¢ = 2
{CrynamicProp BONAP Bon app’ Laurence Leb Owner 12, e de T
El|Data 3 . Bopat... | B mod... |4dDat. .
(DataBindings a O
DataMember FasoleiHanges M Tool Palatte 2%
aoee e (Lt v Cotequries v ||y @
Auto F t
e = Windows Forms e
ﬂgbdDCDnmectiom @fﬂbanataAdaptaﬂ E}gdataSynd [dataHub1 A Label
Accessibility
LinkLabel
Eldalaﬁeﬂ A -
ab| Button
1 ahject selected [] a60: 40 Insert Code ;, Design /., History B TextBox .

Another important feature of a DataHub is that it provides a single point of control for
applying changes back to the underlying databases. Simply call the DataHub's ApplyChanges
method, and it communicates to the DataSync, which responds by generating and executing
the appropriate queries, based on the changes found in the associated DataTables. In the
project shown in the preceding figure, the single line of code that is associated with the Click

event of the button whose caption reads Resolve Changes is shown here:

®
Borland ae 79

Borland Delphi 2005 — Reviewers Guide

dataHubl.ApplyChanges();

Data Remoting with RemoteServer and RemoteConnection

The .NET framework provides extensive support for working with remote objects through its
.NET remoting services. One of the more practical applications of this technology is for
implementing distributed database applications where DataSets in one process are accessed
from applications in another, even when the applications are on separate computers on the
Internet. However, .NET remoting is a general service, which means that using it to work with

remote DataSets often requires a lot of custom code.

Delphi 2005 makes working with remote data easy with two new components that encapsulate
.NET remoting services, permitting you to effortlessly work with DataSync and DataHub
components in a distributed environment. These components, RemoteServer and
RemoteConnection, permit you to build applications where the DataSync and
DbDataAdapters reside on one machine, and the DataHub and its associated DataSet
component reside on another. How RemoteServer and RemoteConnection extend the

capabilities DataSync and DataHub is depicted in the following diagram.

| W Eumtomer Butin Form =oe

DataSet

j

DataHub

DataSync
K NET)«.
Remote Remote i
Connection [4""" Server

®
Borland e

Borland Delphi 2005 — Reviewers Guide

RemoteServer
The RemoteServer component permits you to publish DataSync objects in one process to
applications using a RemoteConnection component in another process. The RemoteServer

and RemoteConnection components can communicate using either HTTP or TCP.

When you place a RemoteServer component into a project, you set its DataSync property to
the DataSync instance containing the providers that you want to expose. You also set its
ChannelType (Http or Tcp), Port to listen on, and URI (the specific resource that a client

requests over the specified port).

RemoteConnection

You use the RemoteConnection component in an application to obtain data through a remote
DataSync. After placing a RemoteConnection, you specify the ChannelType, Port, URL, and
URI that identifies where your remote server resides. You then set the RemoteConnection's

ProviderType property to point to a particular provider on the remote server.

Once the RemoteConnection object is configured, you connect a DataHub in your client
application to the RemoteConnection. This provides the DataHub with access to the DataSync

on the server to which the RemoteConnection is attached.

From this point on, you configure and use the DataHub just as you would if the DataSync
were in the same process. The RemoteConnection and RemoteServer objects use .NET

remoting to transparently move the data between the remote DataSync and the local DataHub.

The following figure shows a DataGrid that displays data obtained through a remote
DataSync. It is interesting to note that this client application was built using Delphi, while the
server was built using C#. You could have just as easily done this the other way around. On

the other hand, both the client and the server could have been built using the same language.

®
Borland oo B

Borland Delphi 2005 — Reviewers Guide

E Accessing Remote Data |Q|E| El

CompanyMa | ContactMame | [=
Alfreds Futter Maria Anders 5
Ana Tgillo B Ana Trujilla

Cuztamer D

8]
Artonio More Antonio More O
Aroundthe H Thomas Hard 5
Berglundz sn - Christina Ber 0O
Blauer See ' Hanna Mooz 5
Blondesddsl Frédérique Ci b
Bélido Comid Martin Somm O
Boh app' Laurence Leb DL]

e _Pj

Resolve Changes |

Borland Data Provider for ADO.NET

The Borland Data Provider for ADO.NET is a set of concrete classes and associated types that
implement the data access interfaces of ADO.NET. These classes, which are part of what
Borland calls BDP for ADO.NET, provide you with a powerful and portable solution for
connecting to a wide variety of different databases at the same time extending the already
substantial capabilities of ADO.NET.

The Borland Data Provider for ADO.NET also includes powerful component editors that you
use to work with the BDP data access classes, as well as additional classes that specifically
bind to BDP, such as DataSync and DataHub, which provide data services that go well
beyond those found in ADO.NET alone.

Delphi 2005 includes a number of updates to BDP for ADO.NET. For example, BDP now

supports connections to Sybase databases, as well as support for Oracle packages.

There is also a new BDP for ADO.NET component — BdpCopyTable. This component
provides your applications with the ability to copy a table and its primary index from one
supported BDP for ADO.NET provider to another, giving you the runtime equivalent of the
new Copy Table feature in the BDP Data Explorer (which is described in the following

section).

®
Borland e

Borland Delphi 2005 — Reviewers Guide

There is another update to BDP for ADO.NET that is not so obvious. BDP for ADO.NET has
introduced additional interfaces for BDP providers that expose schema retrieval methods.
BDP uses these interface implementations to discover information about the structure of

database objects beyond what is currently supported in ADO.NET alone.

These behind-the-scene interfaces are responsible for BDP's ability to copy tables, discover
stored procedure parameters, and migrate data. These features are available to you at design

time through the newly enhanced Data Explorer.

The BDP Data Explorer

The Data Explorer allows you to work with ADO.NET at design time through BDP for
ADO.NET supported databases, such as Oracle®, DB2®, MS SQL™ Server, InterBase, and
MS Access. With the Data Explorer, you can inspect database objects, such as tables, views,
and stored procedures from within the Delphi 2005 IDE. The Data Explorer also lets you
easily create and configure BDP-related data access components, such as BdpConnections
and BdpDataAdapters.

The Data Explorer has received a significant upgrade in Delphi 2005. Features now available
from the Data Explorer permit you to create, alter, and drop database tables, test stored
procedures, and copy data between BDP for ADO.NET-supported databases. Each of these

features is discussed in the following sections.

Managing Tables

You can use the Data Explorer to create, modify, and delete database tables without having to
leave the Delphi 2005 IDE. These capabilities are made available through BDP for
ADO.NET's schema discovery services. These services, which debut in Delphi 2005, extend

the already powerful capabilities of ADO.NET.

For example, to create a new table, open a connection in the Data Explorer. Next, right-click

the Tables node and select New Table.

®
Borland "

Borland Delphi 2005 — Reviewers Guide

Data Explorer 5]

¥y Providers A
+- 7 DB2
=@ Interbase

=13 |BECannl

=

i Refresh

[m
DEPARTMENT

EMPLOYEE
EMPLOYEE_PROJECT
ITEMS

JOB

PROJECT
PROJ_DEPT_BUDGET
SalaRyY_HISTORY
CalFe

QﬂCSGUIdTrigg. i @E.E Model Yiew &%Data Explorer

W

]] o O O o o

You use the Table Designer in Delphi 2005 to define the structure of your new table. You use

this same designer when you want to modify an existing structure.

To modify a table's structure, right-click the table name under the Tables node in an open
connection, and select Alter. (To delete a table, you select Drop from this same context
menu.) The following figure shows a table named PROJECT being altered in the Table

Designer.

| 1 Table Design: PROJECT]

Colurn name | Data type Precizion | Scale Mullable | Primary
» PROJ_ID CHAR = lig 1] & d

|PROJ_MAME [ERE 0 = r

\PROJ_DESC o v =

{ SMALLINT

TEAM_LEADE |F|qaT a v [

| DOUBLE FREC =

-F'FEDDUET NUMERID 1] v 7]
* DECIMAL

You can see from the preceding figure that you can define or change the data type of a field in
a table using a drop-down list of the applicable data types. Once again, this information is

available through BDP for ADO.NET's schema discovery capabilities.

®
Borland e 94

Borland Delphi 2005 — Reviewers Guide

Data Migration
You can use the Data Explorer to migrate tables from one supported BDP for ADO.NET
database to another simply by copying and pasting. When you copy a table, you copy the

table’s structure, data, and primary indexes.

To copy a table, right-click the table in the Data Explorer and select Copy. Next, select the
connection into which you want to paste the table, right-click and select Paste. Delphi 2005

will respond with the New Table Name dialog box, as shown in the following figure.

Mew Table Mame £

Enter a name for the table :

k. | Cancel

Enter the name for the copied table and click OK.

Delphi 2005 also includes components you can use in your applications to provide these same

data migration capabilities to your users.

Testing Stored Procedures
Another important enhancement to the Data Explorer is its support for testing stored
procedures. To test a stored procedure, right-click the name of the stored procedure that you

want to test in the Data Explorer and select View Parameters.

Delphi 2005 examines the stored procedure's parameters, determining each parameter's data
type, direction, and name. You can then test the stored procedure by assigning a value to each
input parameter and clicking the Execute button, which appears in the top-left corner of the
stored procedure pane. After executing the stored procedure, Delphi 2005 displays the output
parameters in a data grid beneath the stored procedure pane (given that the stored procedure

has output parameters).

®
Borland e 85

Borland Delphi 2005 — Reviewers Guide

The following figure shows the stored procedure pane with a result set, which displays the

mailing label lines for customer number 1003.

[x] MAIL_LABEL

(T
Stored procedure parameters: [~ Stared procedure has one or more cursors
CUST MO =
LIMET BdpSubTppe Urnknown
HIMES BdpType Int32
LIME3 Lol
LIME4 Direction Input
LIMES I axPrecision 4
LINEE Scale a0

Size 4
SourceColumn
SourceVersion Current
alue 1003
=
FararneterM ame CUST_HNO
Stored procedure executed

Stored procedure results :

LIMNET LIMEZ LINE3 LINE4 LINER LINEE

L§ :Euttle, Griffitk Jamesz Buttle 2300 Mewbury Suite 101 Bozton, Ma,

Creating Reports in Delphi 2005

Reports are the tools that you use to turn data into information. Delphi 2005 includes two
powerful reporting tools for you to use. For your .NET applications written in either Delphi or
C#, Delphi 2005 includes Crystal Reports for Borland Delphi from Business Objects. For
your Delphi VCL applications, both VCL Forms (Win32) and VVCL for .NET, Delphi 2005
includes Rave Reports Borland Edition from Nevrona Designs.

Added VCL for .NET Data Access Components

Delphi 8 for the .NET Framework was notable for its extensive support for data access
mechanisms compatible with Win32 Delphi. With Delphi 2005, this support has been

extended further.

One of the biggest additions is the support for dbGo for ADO. dbGo for ADO is a set of

components that implement the standard VCL TDataSet interface through which you can

®
Borland e

Borland Delphi 2005 — Reviewers Guide

communicate to ActiveX Data Objects using installed Ole Db Providers. Delphi 2005 now
includes the full compliment of dbGo for ADO components in VCL for .NET.

Other compatibility components that have now been added to VCL for .NET include the
following: TStoredProc, TSimpleDataSet, TNestedDataSet, and TUpdateSql.

Additional compatibility components for DataSnap clients have also been added in Delphi
2005. DataSnap is Borland's multi-tier architecture for building thin clients and their
associated application servers. These new VCL for .NET components include

TConnectionBroker, TSharedConnection, and TLocalConnection.

ADO.NET Connection String Editor

Delphi 2005 now provides you with an ADO.NET connection string editor for
SqlConnection, OdbcConnection, and OleDbConnection components. (Previously, unless you
were using BDP for ADO.NET, constructing your connection string for an ADO.NET

connection generally involved referring to the documentation for your .NET data provider.)

When you need to configure one of these components in the Delphi 2005 IDE, select the
ConnectionString property in the Object Inspector and click the ellipsis button to display the
Connection String editor. The Connection String editor for a SqlConnection ConnectionString

property is shown in the following figure.

®
Borland e

Borland Delphi 2005 — Reviewers Guide

B3 Data Link Properties

Provider Connection]Advanced | All l

Specify the following to connect to SOL Server data:
1. Select or enter a zerver name:

2. Enter information to log on to the server:
" UszeWindows NT Integrated security
* Lse a specific uzer name and password:

ﬂ Refresh

Usger name:]

Pazsword: J

3.+ Select the database on the server:

I Blank password | Allow zaving pazeword

I

[Attach a databaze file 2z 3 database name:

= |

I

|

Test Connection

0K | Cancel ‘ Help

Borland®

Page

88

Web and Internet
Development

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Web and Internet Development

Delphi was one of the first IDESs to give you component-based, event driven tools for building
dynamic Web sites for the World Wide Web. In addition, Delphi was also one of the first
development tools to provide high-level wizards, tools, and services for creating Web Service

servers and clients.

In Delphi 2005, Borland continues its tradition of providing you with the best tools for
building standards-based applications for the Web. In fact, Delphi 2005 gives you more
options than ever before for creating and deploying Internet-based applications. Technologies
included in Delphi 2005 include ASP.NET Web Applications, ASP.NET Web Service
Applications, Win32 Web Service servers, Win32 Web Service clients, Web Broker Web
server extensions, WebSnap Web server extensions, and both Win32 and .NET IntraWeb
applications. No other environment even comes close to this much Internet development

support.

Borland updated and improved many of the tools that you use to build Web-based
applications. For example, the what-you-see-is-what-you-get (wysisyg) designer and the drag-
and-drop capabilities of the Web Forms designer have been updated. In addition, new features
and components have been enhanced. The following sections discuss some of the new and

enhanced Web and Internet-related features that you will find in Delphi 2005.

Deployment Manager

You can now deploy your ASP.NET Web applications, ASP.NET Web Service Applications,
and Intraweb (both Win32 and .NET) applications directly from Delphi 2005's Project
Manager. To do this, right-click the Deployment node in the Project Manager and select New

Deployment from the displayed context menu.

®
Borland e 50

Borland Delphi 2005 — Reviewers Guide

heDiamondStore.bdsproj - Project Manager [¥]
[&'_I Activate = @ﬂew

File:
EE' ProjectGroupl -
= TheDiamondStore. dll

- G References

! hin [ew ASF.MNET Deployment
""" | Mod foolbar

- Che_ Status Bar

e a clab Show Path
& & Logi Stay on Top
Lo Dockable
agi = -
| LoginPageu.resx

2] fﬂ SecurePayment. aspx

- 5 shinminaTnfr. asmee f:

QaTheDiamo... @aﬁModel Wigw &%Data Explo...

You can deploy your application's files using either XCOPY or FTP (file transfer protocol).
Use XCOPY when the directory to which you want to copy your files is visible from your
local machine. For example, you can use XCOPY if your Web server is on the same local area

network as your development machine.

FTP is useful when the location where you want to deploy your files is available somewhere
on the Internet, but is not on the local network. In order to deploy using FTP, the server to

which you want to deploy your files must be running an FTP server.

Once you select the directory or FTP server to deploy your files to, select which files you
want to deploy, right-click, and then select Copy Selected Files to Destination or Copy All
New and Modified Files to Destination.

®
Borland age 91

Borland Delphi 2005 — Reviewers Guide

[zz] ASPDeployl .bdsdeploy

[

Source Directory: cilinetpubiwsroot) TheDiamondStore),

B3

Destination: | C:YInetpubliwwwrootiDiamondStore

Source Files
ASPLNET Markup Files

Global, asax

LoginPage. aspx

LoginPageu. aspx

SecurePayment.aspx

ShippingInfo, aspx

ShoppingCart, aspx

ShoppingCartu, aspix
Executables

biny TheDiamaondStare. dll
Config Files

‘Wweb,config

Mame: Checkout,aspx
Date: 10/2/2004 5:58:40 PM
Size: 353

Destination Files

Checkal
Global, asax
LoginPage. aspx
LoginPageu. aspx
SecurePayment.aspx
ShippingInfo, aspi
ShoppingCart, aspx
ShoppingCartu, aspi

biny TheDiamaondStare. dll

‘web,config

Mame: Checkout,aspx

Date: 10{2/2004 5:58:40 PM

Size: 353

Skakus

Current
Current
Current
Current
Current
Current
Current
Current

Current

Current

vl -]

Once you have created a deployment, that deployment appears as a new node beneath the

Deployment node in the Project Manager. You can re-deploy some or all of your files using

the deployment configuration that you created earlier by selecting the associated node. If you

want, you can have multiple deployment configurations for any of your Web-related projects.

Borland®

Page

92

Borland Delphi 2005 — Reviewers Guide

heDiamondStore.bdsproj - Project Manager [¥]

@ Activate - @ W= E Remove

File
S8 ProjectGroupl 2
= TheDiamondStore.dll

- G References

| ModelSupport

£ images
- 5F Checkout, aspx
& @ Global, asax
- 5¥l LoginPage. aspx
| LoginPageu.pas

| LoginPageu.resx @

- [— P - . -
E}mTheDiamo. = @EF Model Wiew etaData Expl...

HTML Editing in the Web Forms Designer

You use HTML (hypertext markup language), either in code or wysiwyg, to describe the Web

pages that you create in your ASP.NET applications. Delphi 2005 provides you with a

number of options for creating and modifying the HTML that defines your various ASP.NET

pages. For example, the following figure shows a login page being designed using the

ASP.NET Web application designer.

Borland®

Page

93

Borland Delphi 2005 — Reviewers Guide

A TheDiamondStore - Borland Developer Studio for Windows - Login.aspx

File Edit Search bWiew Refactor Format Table Insert Project Run Compoment Tools StarTeam Window Help | S| [Dsfault Layout -] & &,
FEDN -85 | &&| k- ERC @
S Structure ® X [5] Welcome Page [Login.aspx | [Thebismondstore fi TheDiamendstare.belspro - Frojec . X
< | | o = O Blacdivate ~ Enew
ermal | [Times Mew Roman =k - E == E Ffie
A |8 ProjectGroupz ~
. =i [TheDiamondStore.dil
Welcome to the Diamond Store 8 Rofmones
+ [Deployment
ﬂ & _lbin
® [images
i | MadelSupport
Please log in + 57 Checkout.aspx
+ 4] clobal, asax
;User Name = 5 Login.aspx
| & & Login pas
4= object Inspertor 1 x + 5 SecurePayment, aspx
o # S shippingInfo, aspx s
Buttonl ~| Fassword ol A G
TheDia. . Model ... | #3DataE..
Propertics | Events | | B & G
BorderColar] B RE e H Tool Palette B
BorderStyle MokSet DD X
BorderWidth (B mrE Categoriss v h ?
CausesWalidation True - = ~
- d Forgot vowr password? SRS
ommandArgum =
Commandiame <asp:Button id=Button1 runat ="server" text="Login" > <‘F
Cssclass 3 8b] Button
Te;t it | P Calendar
The text ko be shown on the button, = ¥ & Checksox
B CheckBoxlist
1 object selected [11 Insert Login.aspx | Lgin. pas | Design [E#] ': &

EEX

When you drag HTML Controls, Web Controls, and DB Web Controls from the Tool Palette

onto the Web Forms designer, HTML is inserted into the associated .aspx file in your project.

You can edit this .aspx file directly, modifying what the Web Form designer generated, or you
can insert your own custom HTML. The following figure shows a portion of the editable

.aspx file that was created as the preceding login page was being designed visually.

Borland®

Page 94

Borland Delphi 2005 — Reviewers Guide

& TheDiamondStore - Borland Developer Studio for Windows - Login.aspx

Fle Edt Search View Refactor Project Run Compoment Tools StarTeam ‘indow Help o || [

<body bgcolor="#99ffce” ms_positioning="Flowlayout"s
<form runat="server's
<h2>
WUelcome to the Dismond Store
</h2>
<p>
<imy height="30" hspace="0" src="images/diamond.jpg" width="30" horder="0"
neme="diamond">
</p>
<p>
Please log in
</pr
<p>
<strong-User Name<brs
<asp:TextBox id="TextBox1" runat="server":</asp:TextBox:

HED | -8 08 @& k- 1| & & @
i8] [¥ welcome Page | [Login aspx | [Thebiamandstore
g <html> ~
& <head>
@ <titler</title>
=l <meta content="HSHTHL 6.00.2900.2150" name="GENERLTORM">
fut </head>
]
H
g

</strong:>
</p>
<pr
Fassword

<asp:TextBox id="TextBox2" runat="server"»</asp:TextBox>

éTuol Palette | TheDiamondStore bdsproj - Praject Manager, Model View, Data Explorer

</strong:
</
s v
< >
2 100 6 |Insert Modified Login.aspx | Login. pas /| Design / Histary

Template Editing

Delphi 2005's Web Form designer now permits template editing within the form designer.
Certain Web controls, such as a DataL.ist, support templates for the formatting of the header,
footer, and displayed items. To edit a template in Delphi 2005's Web Form designer, right-
click a template-supporting control and select the template that you want to edit. For example,

the following figure shows the context menu that is displayed when you select a DataL.ist.

------------- 1 e T s e e e
. Datalist - Datalisty o
B Right click and choose a set of templates to edit their content dh ot Chele
. The ItemTemplate is required, Ib Copy Chrl4+C
Paste Chrl4y
Delete Ckrl+Del
i Select Al Chrl+4
Toolbars 3

Header and Footer Templates

Item Templates .

Separator Templateh::'

®
Borland e 95

Borland Delphi 2005 — Reviewers Guide

After selecting which type of template you want to edit, the designer re-draws the control,
permitting you to enter the template text directly. For example, the following figure shows a

DataL ist with its Item templates available for editing.

€3

When you are through editing your control's templates, right-click the control again and select

End Template Editing.

Updated Code Completion and Syntax Highlighting

While Delphi has supported code completion and syntax highlighting of HTML in past
versions, Delphi 2005 has extended this support. Code completion and syntax highlighting are
now available for cascading style sheets (CSS) and XHTML.

Updated Tag Editing

The Tag editor has also been improved in Delphi 2005. The Tag editor is the small window
that appears below the Web Form Designer, and it provides you with a context sensitive,
editable view of the HTML that underlies your Web page. While earlier versions of the Tag

editor permitted you to edit the inner HTML, you can now edit the outer HTML as well.

The following figure shows attributes of a <td> tag being edited in the Tag edit. Note that
both Code Insight and syntax highlighting are visible in this figure.

®
Borland i

Borland Delphi 2005 — Reviewers Guide

A BuyBorland - Borland Developer Studio for Windows - WebForm1.aspx

Fle Edt Search View Refactor Fomat Teble Insert Project Run Component Took StarTesm window Help | SB[[Defautiavout v &3 &)
e NE-8 88 S| - LA @
S\ structure B X = welcome Page | [X] WebFarml.aspx g BuyEBiorland.bdsproj - Praject Manall, 3
4l = | T ud B
Mormal w3 v BZUO EEEE = E
pomal, File
SossessssssssmmssesenessesE e s s e e s s e e s e e o
: LI g et
'_Profassional Enterprize |Architect LEaaan e e - G5 References
! e 5 Deployment
TBuilder 2005 =
| ModelSupport
: & Global.asax
v
R P o . o . o . o . o . 3 @Web‘conhg
<TABLE cell5pacing=1 cellPadding=1 width=400 border=1> & - 3 WebForml aspx
<table cellspacing="1" cellpadding="1" widch="400" border="1"s -
/& Object Inspector 3 X jSERay
<tr>
TABLE <td style="UIDTH: 120px" bgcolor="$0080807 b Vo —
[Properties] Delphi 2005 Attrbute lang || MdpatzE...
~ </tdx> Altribute nowrap
onclick = L4
bl = b m
Rhon Professional Attribute ondbiclick
</td> Attrbute ankeydown
< Attribute onkeypress v [
Y 4151 | Insert Modified wiebForm1.aspx | WebForm1.pas | Design | History [=] HTML Horizontal Rule =

Additional ASP.NET Project Manager Support

ASP.NET Web applications, more so than other types of applications, often rely on external
files to operate. For example, while the HTML in your .aspx file may include an
(image) tag, the image itself is typically a .jpg or .gif resource whose location is referred to in
the src attribute of the element.

In addition to supporting application deployment, as discussed earlier in this section, the
Project Manager has also been updated to better manage the external resources used in your
ASP.NET applications. For example, you can right-click an ASP.NET project in the Project
Manager and select New | Folder. The newly added folder will be created as a subdirectory of
the ASP.NET application folder.

Once you've added a new folder, you can right-click it and select Add. This brings up a
browser dialog box that you can use to add support files, such as images, cascading style
sheets, JavaScript files, and so forth, to the folder. The resources that you add to this folder

can then be included in your configured deployments.

With these enhancements to the Project Manager for ASP.NET applications, you no longer

need to leave Delphi 2005 in order to manage your application's files.

®
Borland age ®7

Borland Delphi 2005 — Reviewers Guide

New and Enhanced DB Web Controls

DB Web controls are special data-aware Web controls that you can use in your ASP.NET
applications. Like the Web controls that ship with the .NET framework, you add DB Web
controls to your Web Forms, and they participate in the generation of the content that is

provided to the requesting browser at runtime.

Compared with the standard Web controls of the FCL, DB Web controls offer better support
for ASP.NET applications, making it even easier for you to build great Web sites faster. For
starters, DB Web controls are data-aware, and in many cases, provide you with automated
read/write access to the data to which they are bound. As a result, they greatly simplify the

process of creating sophisticated Web-based applications.

New DB Web Controls

With this release of Delphi 2005, Borland has added a number of new and enhanced DB Web
controls. The following are the DB Web controls introduced in Delphi 2005:
DBWebAggregateControl, DBWebNavigatorExtender, DBWebSound, and DBWebVideo.

The DBWebAggregateControl is similar to a DBWebTextBox, but automatically calculates

and displays an aggregate statistic, such as Sum, Min, and Count.

The DBWebSound and DBWebVideo controls allow you to easily add sound and video to
your ASP.NET applications. The sound or video resource can either be contained in a blob
field of a database, or the database field can contain a string that specifies the URL of the

external sound or video resource.

Finally, the DBWebNavigationExtender permits you to configure standard Web control
Buttons to perform navigation operations against BDP for ADO.NET data sources without
additional code. Simply place a DBWebNavigationExtender component on a Web Form, and
any Buttons that you place will display three additional properties: DBDataSource,
TableName, and DataSourceAction. The DataSourceAction property indicates what type of
navigation operation the button will perform on the table accessed through the
DBDataSource.

®
Borland ape 98

Borland Delphi 2005 — Reviewers Guide

Updated DB Web Controls

There are two updated DB Web controls in Delphi 2005. These are the DBWebImage and
DBWebDataSource. The DBWeblmage has been updated to include a feature of the newly
added DBWebSound and DBWebVideo controls described earlier in this section. The
DBWeblmage can be linked to either a blob field in an underlying database that contains the
image to display, or a string field containing the URL of the image resource. Previously, the

DBWeblmage control could only refer to a blob field containing the image to display.

The remaining updates to DB Web can be found in the DBWebDataSource.
DBWebDataSource can now be configured to support auto-updates, as well as cascading

updates and cascading deletes for master-detail relationships.

DBWebDataSource now also supports XML files for the storage of the data used by DB Web
controls. You can use this feature in a number of interesting ways. For example, an XML file
can be used instead of an underlying database during development, providing a convenient
substitute for a database connection. Alternatively, an XML file can be used as a local,
readonly data source for managing static information, such as images or other resources.
Alternatively, if user authentication is being used, a DBWebDataSource can be configured to
generate a unique XML file name for each user. That XML file can be used to persist data on

a per user basis between sessions.

IntraWeb Support

IntraWeb is a sophisticated, RAD component-based Web development tool that automatically
maintains server-side state between Web page requests. As a result, IntraWeb has advantages
over ASP.NET for creating Web sites that require the type of state persistence typically
associated with traditional client applications.

There are a number of features that make IntraWeb an attractive alternative to ASP.NET Web
site development. As mentioned previously, IntraWeb supports several convenient levels of
state maintenance between Web page requests. At the application level, you can use the

TIWServerController to share objects between sessions.

®
Borland ae 99

Borland Delphi 2005 — Reviewers Guide

At the session level, each IntraWeb session can have its own persistent data module that
remains in memory for the duration of the session. This data module can be used to store
objects and data that are used by two or more Web pages for a particular end user. Finally,
unlike ASP.NET, where ASP.NET Web forms are created and destroyed for each page
request, IntraWeb pages persist on the server between requests, until the page is no longer

needed.

The second aspect of IntraWeb that makes it attractive is its "Delphi* way of doing things.
You design your user interface using Delphi components from the Tool Palette, just as you
would design any VCL or VCL for .NET application. The difference is that these components
participate in the IntraWeb form rendering process to emit HTML, WAP (wireless access
protocol), or HTML 3.2.

Finally, you have a variety of choices for deploying IntraWeb applications. An IntraWeb
application can be deployed as an ISAPI (Internet Server application programming interface)
Web server extension, or it can be used as a self-contained HTTP server. In other words, if
you are already running IS (Internet Information Server), you can use your IntraWeb
application with it. On the other hand, if you do not already have a Web server, you can
design your IntraWeb application to be a Web server, providing all the features necessary to

serve Web pages to any Web browser or Web-enabled device using the HTTP protocol.

The following figure shows an IntraWeb Web page being designed in Delphi 2005. Unlike
ASP.NET applications, there is no code-behind .aspx file. Instead, the IntraWeb components
used to build the page render the appropriate HTML at runtime in response to an appropriate
HTTP Web page request.

®
Borland

Borland Delphi 2005 — Reviewers Guide

iamondStore - Borland Developer Studio for Windows - loginu

File Edit Search Wiew Refactor Project Run Component Tools StarTeam Window Help =
NN NE-8 08 8&| k- 1| 3 & @
BN structure # X = welcome Page | %] ServerController | 2 loginu i Dismondstore.basproj - Froft, X
o L= B Blativate - @2Hew FESRem
=1 [rwForm1 Fil
[E] 1wLabell T8 ProjectGroupz
+ [Z] tImagel =i |5 DiamondStore.exe
[E] 1wLabelz & References
=] wiLabel3 | Inginu. pas
[=] wLabeld + erverContraller. pas
+ [Z] TLinkt e UserSessionLnit pas
+[Z] IwEdit
+ [Z] IwEditz

+-[Z] IwButton1

9‘3; Object Inspector & X

IWForm1 -
Properties | Events
ActiveContro ~

I Tool Palette

Categories ¥ || [; g

Background |(TIWBacke
» |BaColor [fEEN R

BrowserSecul True

— Standard o
Connectioni cmAny -
Cursor | crDefault i L [T’ Frames
ExtraHeader (TStringlist)
HandlzTabs |False 3 | @ | % &, TPopupMenu
[an
Al @ 11 Insert Code | Design | Histary] Tactionlist

Delphi 2005 includes both Win32 Delphi and Delphi for .NET versions of IntraWeb.

Borland®

Page

101

Integrated Application
Lifecycle Management

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Integrated Application Lifecycle
Management

In today's world of software development, most developers are part of a larger process of
application definition, design, testing, deployment, and management. Consistent with
Borland's commitment to providing you with the solutions you need to ensure the success of

your projects, Delphi 2005 provides tight integration to essential support tools.

Depending on the version of Delphi 2005 that you have installed, the IDE provides you with
integrated access to StarTeam for superior, team-based asset management, Janeva for access
to Enterprise JavaBeans and CORBA servers, ECO for UML model driven development, and

Optimizeit for performance profiling.

Two of Delphi 2005's application lifecycle management (ALM) solutions deserve particular
attention. These are StarTeam and unit testing. These tools are described in the following

sections.

Delphi 2005 and StarTeam

StarTeam is Borland's comprehensive project asset management system. If you are part of a
development team, StarTeam provides a highly reliable, server-based system for source code
version control, requirements management, defect tracking, threaded discussion groups, and
distributed collaboration. Even if you are the sole developer on a project, StarTeam provides

you with an indispensable environment for managing every aspect of your applications.

Delphi 2005 provides you with seamless integration with StarTeam, enabling access to all of
StarTeam's capabilities without leaving the Delphi 2005 IDE. The Delphi 2005 main menu
includes a StarTeam main menu item, as well as a submenu on the Project Manager context

menu. This menu is shown in the following figure.

®
Borland

Borland Delphi 2005 — Reviewers Guide

SkarTeam | Window Help ﬁ

Pull... 1

ol &

Manage Associakions. ..

[Z" Update Projeck
Comrit Project

57

g CheckIn...
Check Out, .,
Revert... -
LockfUnlock, ...
Difference. ..
Find

Yiew Client

Launch Client. ..

PR 5L

Personal Options. ..

As you can see, the StarTeam menus permit you to place a project into a StarTeam repository,
check in and check out files, locate managed assets, launch the integrated StarTeam client,

and manage your personal StarTeam options. The following figure shows the StarTeam client
active in the Delphi IDE. You launch the StarTeam client by selecting StarTeam | View Client
from Delphi 2005's main menu or StarTeam | View Client from the Project Manager's context

menu.

®
Borland

Borland Delphi 2005 — Reviewers Guide

File Edit Search View Refactor Project Run Component Tools StarTeam ‘Window Help ﬂ
BN hR-8 S A r-IEH| 5 T . @
S\ structure ® X [=lwelcome Page | [x] MainCarForm | [(x] StarTeam | [x] MainwinForm |

QE CarControl.bdspraj - Project Mana . 3

= B [<AllFies By Statuss v |

Contents of CarCantraly

Mame Status Locked By Wault Branch.. &
CarContral.cfg Current 1 1
CarControl.dpr Current 2 :
CarControlidente.. Cument 1 {5
CarCantral res Cumrent 1 1
MainCarForm.ress Cument 1 ¥
M aint/inFarm. pas i
MairtwinFarm.ress Current 2 -

>

< |
File Change Request | Requirement | Task | Topic

Froperty Yalue
MainwinForm. pas

#= Ohiject Inspector 1 X
Status Curent
TWinForm ;] ‘L Led B
ocked By
CarCo... Model .., DataE...
Properties | Events Mault Branch_ 1 E}ﬁ e %ﬁ e ‘% A
AcceptButton |{none) 4| | |Content Rev.. 1 H)[Tool Palette 1 X
AccessibleDescrij — | |File Time St. 10/11/2004 120204 PM
Accessiblehlame | Sive 2711 Categories v || [y 7
heracciblaDola | MaFalk | i z
= = Windows Forms G
Text A =
[The text contained in the control, Lahel
Detail | History | Label | Link Hefsrence] A Likdabel
inkLabe
1 object selected =
: Sl sbl Fuion b

'@A_ctwate - |ﬁ_7°uew
File
| E& ProjectGroup?
= [E CarControl.exe
#- G References
+ MainCarForm.pas

With the StarTeam client active within Delphi 2005, you can work with every aspect of your

managed resources. For example, you can track defects, view and contribute to threaded

discussions, submit change requests, and more. The following figure shows a change request

that has been logged into the StarTeam server for this project.

Borland®

Page

105

Borland Delphi 2005 — Reviewers Guide

& CarControl - Borland Developer Studio for Windows

File Edit Search “iew Refactor Project Run Component Toaols StarTeam Window Help ﬁ
DE%S Nm-8(#2 &b 5 & @
ﬂs Structure B X [Elwelcome Page | (%] MainCarForm | [] StarTeam | [=] MainwinForm | {f CarControl.bdsproj - Project Mana X
LStarT eamtCarContolig = (3 <Show Al ¥ Contents of CaContrel. {5 activate = (=2Hew
] CarContol | :
CR Number Synopsis Type Status Severnty ! File
a2 Update logo 0. ¢ Suggestion Q) New mLDw £% ProjectGraupz
- CarControl.exe
[References
+ MainCarForm, pas
< | 3|
File Change Request Hequiramaml] Task | Topic
| Property Walue

’6; Object Inspector a

X
TWinForm j
Properties | Events

E’E CarCo. ..

.ActeptButtnn .(nnne) ~ HJE Tool Palette X
AccessibleDescri .
Accessiblehame | 2 Categories v || [y g
frracciblaDnla |Pafa ik J S indaneFaime
Text A =
The text contained in the control, Label
Dietail | Historw | Label | Link Reference A kbl
inkLabel
1 object selected =
Aol sbl Futton >

?{;FMndel a%Data Ea

When you are working with a StarTeam managed project, the Delphi 2005 History Manager
makes use of the StarTeam repository. For example, the following figure shows the Diff pane

of the History Manager. Here the Diff pane displays source code versions based on changes

that have been checked into the StarTeam repository. With the StarTeam enabled History

Manager, even changes to source code file names are tracked, as shown in the following

figure.

Borland®

Page

106

Borland Delphi 2005 — Reviewers Guide

& CarControl - Borland Developer, Studio for Windows

“Funit MainWinForm:

File Edit Search View Refactor Project Run Component Tools StarTeam Window Help a 5_": ﬂ
PP Ne-8 82 e b- i @
ﬂ\ Skructure T X [El welcome Page | (%] MainCarForm | [£] StarTeam | (%] MainwinFarm g CarControl bdspr, X
B§ EE E‘jg:tivate - @mew
Cifferences From: To: File
Rev. | pate | Rev, | Date © 28 ProjectGroupz
File 10/11/2004 1:32:., | €@ Buffer 10/11/2004 1:.,, - CarControl.exe
@ i~ 10/112004 12:12, File 10f11f2004 13, [+ References
& -~ 10j11/2004 12:03. | @ ~2~ 10f11/2004 12... + [MainCarForm...
izl (& ~1~ 10/11/2004 12...
& 1.2 10/11/2004 11...
o 11 10/11/2004 11...
& 10 1of11f2004 11...
< |
’6; Object Inspector Ay | = =

1 ~
I N¢nhorm j o ==unit MainCarForm: = o & D
18 M...| #30...
Properties | Events o
AcceptButton |{none) ¥ interface Hil Tool Palette B X
AccessibleDescri Z
Accessiblelame a3 HLES & s — m % %'
frracciblaDols | Nafalk 3) i . - windows Forms ~
Text 6 differences found |Diff From 1.2 to Buffer |MainCarForm.pas 3
The kext contained in the contral. A Label
Conterts | Info | Diff A LinkLabel
inkLabel
1 object selected - @ 21 Read only ' Code Design | History 2k Fitton b

Unit Testing

Unit testing is the process of writing code to test the methods, functions, and procedure of
your software. While unit testing is a corner stone of the approach to software development
called extreme programming, many developers find it useful to employ some form of unit
testing as part of their everyday software development.

Delphi 2005 includes unit testing support for all three of its personalities: Delphi Win32,
Delphi for the .NET Framework, and C# for .NET. You establish a unit testing by first
creating a test project. The Test Project Wizard asks you to select which of Delphi 2005's

Borland®

Page 107

Borland Delphi 2005 — Reviewers Guide

personalities was used to create the code you want to test.

& Test Project Wizard

Specify Test Project Details

Fill in the fields below to specify the test project name, the type of project to
create

‘ \ Project MName: |TestCIassLibrary
. '
(4 - Location: |C:'|.Documents and SettingsicjenseniiMy DocumentsiBc ...
-4
Personality: |DelphiD0tNet ﬂ

N Delphi

=)
CSharp
-
-

| Mext = | Finish Cancel ‘ Help |

After creating your test project, you add one or more test cases to your test project. Each test
case requires you to select the source file (.pas or .cs) that contains the methods or routines
you want to test. The Test Case Wizard then generates a simple framework for testing that
file. This framework includes a Setup and a Teardown procedure, as well as a method stub for

each of the subroutines in your selected source file.

You modify the code generated by the Test Case Wizard to implement the Setup and
Teardown procedures, as well as the individual tests. For example, you will typically call the
constructor of the class in which the methods you want to test are implemented from the
Setup procedure, as well as define any variables or objects that are needed for the parameters
of your test methods. Likewise, you will free the class created in the constructor, and release

any allocated resources, from the Teardown procedure.

The actual tests are performed within the stubbed out methods generated by the Test Case
Wizard. You implement each of these methods to invoke the method they are testing,
validating either the data resulting from the method execution, or the class of exception

thrown when your method detects a problem.

®
Borland

Enterprise Core Objects
(ECO) 11

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Enterprise Core Objects Il

Borland's Enterprise Core Objects, or ECO (pronounced ee'ko), is Borland's new model-
powered framework for .NET. ECO is an object-oriented framework from Borland for the
.NET framework that uses UML (universal modeling language) diagrams to drive application
development. This approach to building applications is often referred to as model driven

architecture, or MDA.

One of the more notable features of ECO concerns how the UML models are used. In many
development environments, UML models simply provide you with a road map, defining the
classes that you need to implement in your application. In other words, UML diagrams are

used as guidelines for software development.

With ECO, UML models are not just used to guide development; they are tightly integrated
into the development process. Models are used to generate classes and support code that
represents the core of your application logic. When changes need to be made to the
application, you return to the model, modifying its attributes, associations, and constraints,

after which your application's code is updated.

Rapid MDA

In this respect, ECO is really "Rapid MDA." ECO dramatically reduces the amount of code
that you need to write manually, reducing your time to deployment and improving the overall
maintainability of your applications. More importantly, the applications you build with ECO

are based on the enterprise-aware architecture of your UML designs.

The following figure shows the UML class diagram for a simple ECO application. As you can

see, there are three classes defined here: Building, ResidentialBuilding, and Person.

®
Borland

Borland Delphi 2005 — Reviewers Guide

[=] Welcome Page | [%] WinForm | 2] EcoBuilding | [32] CaretClasses [diagram]

Building ‘| ResidentialBuilding

+address: Systern. String q_ +otalRent: Do

uhle

+Haxationalue: Double

J+ownerShare: Double +ChargeRent()

............... : homefD. 1 - -

~ownedBuilding - >~ 0.7 Be A hell i :

o o e e e i F?e'sidn:an'tsi
BRI ==17s T T S
S Person

HastMame: System. String
fHullMame: System. String
+asszets: Double

HirstMame: System. String

+Hayrent()

This diagram is used to generate the business objects that this application will work with at

runtime. The Structure pane shown in the following figure shows you the classes and

associated interfaces that ECO generated from this model.

stuctare &
- Building
-1 CoreClasses
[+ ﬂ Person
[+ ﬂ ResidentialBuilding
=[] Interfaces
-3, IBuildingList
[+ Iﬂ IPersonList
-3, IResidentialuildinglist
=[] Uses
& Baorland.Eco. ObjectImplementation
& Borland.Eco. ObjectRepresentation
& Borland.Eco.Services
%% Borland. Eco.UmiCodenttributes
& Borland. Eco.UmiRk
& Swstem, Collections
& Swstem. Componentiodel

Borland®

Page

Borland Delphi 2005 — Reviewers Guide

Because the model is the central focus of your development efforts, there is an inherent
synchronization between your UML model and the application created with it. In other
environments where UML simply guides development, the model often quickly becomes out-
of-date.

In ECO, the UML model defines the core business objects that are the focus of your
development efforts. For example, if you build an ECO application to manage inventory, the
objects that you work with will represent the entities of your application, such as items,
employees, orders, storage facilities, and the like. In other words, your code operates in the
domain of the business objects that you are using. Compare this approach to the type of
development that you typically see in GUI applications, where code operates in the realm of

the user interface, with items such as buttons, text boxes, list boxes, and menus.

In most ECO applications, the business objects defined by your UML models map to an
underlying ADO.NET relational database structure. This database of your choosing is used to
persist and restore your business objects, as needed. You can even map your ECO objects to
XML files, though most developers prefer the security and transaction support provided by a

remote database server.

In traditional database development, you spend considerable time designing your database
and writing the code needed to store and retrieve your data. With ECO, the underlying
database schema can be created for you, based on your UML models. Alternatively, you can
map an existing database to your UML models, permitting you to use the power of ECO with

your current databases.

ECO Space and Persistence Mapping

The ease with which you work with objects using ECO is particularly noteworthy. Object
persistence is provided in ECO through an ECO space, a factory-like container that provides
both an object cache as well as a transparent interface to the underlying data store. The ECO
space creates your objects, as you need them, and persists changes that you make, if

persistence is required.

®
Borland

Borland Delphi 2005 — Reviewers Guide

For example, if you ask for an object that represents an existing employee, the ECO space
creates an employee object and populates its attributes with data from an underlying database.
Any changes made to the employee object can likewise be saved back to the database. This
capability is provided by an ECO persistence mapper, which performs the required data-

related tasks for you.

ECO and OCL

In addition to UML, ECO employs OCL, the object constraint language, an Object
Management Group (OMG) standard for defining expressions for UML models. You use
OCL to create declarative rules that calculate or control the values of attributes of your
objects. As is the case of UML, the OCL you employ in your ECO applications reduces the

amount of code that you have to write and maintain.

What's New in ECO Il

Delphi 2005 ships with ECO 11, a major update to Enterprise Core Objects. ECO Il improves
and extends your support for building enterprise-level model driven applications in the .NET

framework. The updates found in ECO |1 are described in the following sections.

A Highly Scalable Enterprise Object Cache

ECO Il includes two important enhancements to ECO spaces that improve how and where
your applications can be used, as well as their scalability. The first of these is that a single
process can now include two or more ECO spaces. This capability is particularly valuable for
ASP.NET applications where ECO spaces can be pooled and reused for increased application

performance.

The second improvement permits multiple ECO spaces to be synchronized, a capability
supplied by the ECO persistence mapper components. Synchronized ECO spaces permit
changes in one ECO space to be more easily resolved with changes that appear in another
ECO space.

®
Borland

Borland Delphi 2005 — Reviewers Guide

The ECO persistence mapper classes are thread-safe and remotable. In fact, two or more ECO
spaces on separate computers can use .NET remoting to share a common persistent mapper,
permitting those ECO spaces to be synchronized. This capability permits ECO applications to

be easily scaled up to a multi-tier architecture, as you application's needs change.

Extended Object Capabilities
ECO spaces provide more support for object persistence than ever. Added features include

undo/redo, versioning, and transactions.

ECO Il Support for Web Forms and Web Services

ECO Il provides extensive support for building Web-based applications using rapid MDA.
Delphi 2005 includes wizards for creating ECO ASP.NET Web Form applications and ECO
ASP.NET Web Service applications for both C# and Delphi for .NET.

Delphi 2005 also includes the ECODataSource component, which you can use to bind your
DB Web components to ECO-based business objects. This data source implements
DbDataSource, which means that you can assign it to the DataSource property of any DB

Web control.

Two new enhancements to ECO spaces are particularly valuable to ASP.NET developers. The
first is that an ECO space can be maintained on a per session basis, providing automatic state
maintenance between page requests. The second provides for a pool of ECO spaces. These
features can be used individually or in conjunction with one another to enhance the features

and performance of your ECO-based ASP.NET applications.

Each ASP.NET application contains an EcoSpaceProvider, which controls the caching of
ECO spaces creating within the application. You use this provider to control whether an ECO
space is maintained between page requests for a particular session or not. Options include
never maintaining state, always maintaining state, or only maintaining state when unresolved
changes appear in the ECO space. While maintaining state requires more server resources, it

simplifies how you work with your objects in an ASP.NET application.

®
Borland

Borland Delphi 2005 — Reviewers Guide

ECO space pooling permits ECO spaces to be easily reused in ASP.NET applications. For
those ASP.NET applications that do not persist ECO space between page requests, each time
an ASP.NET page is destroyed, its ECO space is returned to the ECO space pool.
Performance is enhanced since a new ECO space does not need to be created for each page
request. For those ASP.NET applications that maintain ECO space for each session, the ECO

space is returned to the ECO space pool when the session terminates.

ECO Il Support for Existing Databases

ECO Il can examine the schema of your existing database and use this information to generate
your initial UML diagrams. Alternatively, you can manually map your UML diagrams to an
existing database. Previously, you had to create your UML diagrams first, and generate your
database from these diagrams. With ECO 11, you can now bring the power of ECO to your

existing databases.

The following figure shows a UML diagram that ECO created from the sample SQL Server
database Northwind. In addition to the various classes and their attributes, ECO infers the

relationships between the classes based on field names and indexes.

Northwind - Borland Developer Studio for Windows - NorthwindClassesPackage, Ixvpck

Fle Bl Seorch View Rolator Project Fun Component Took RoarToem Windwy Help | || [Defadk Layout =) o
LFER NE-8 98 B2 b-1E| 3T - 2 i
(= Wekcome Page | =] Ecatpace.cs | (=] defoul [elagram] (BT ——— 3
g Order =
Empl Regl y
+3hipCauntry. siring iz g a5 E
JE +ShipPostaiCade: sting +FhotaPath: string Hd int i
2| 4ShipHegon stimg +Hotes; slang +RegienDesenplon. sinng >
+Shiptity: string +Phota: byte ——— ||}
= +Shiptdduess, wining +Extension; siring
¥ +3hipMane: string #HormeFhone: sting)
3 +Frenghl. decumal +Country: stnng r
+3hippedDate: Systerm DateTme s +FostalCode: string =
HequiredDate: System. DateTims | Ondiers Employe #Region; string ¥
+HordeDate: System DataTime 1 Erngloyes_Drlers_Qrdpe. By £
H: it +Address: sting 4
=+ #HinsDatec Systern. DateTima Tenitories A
sBithDate; System DateTime = _
0..1{0rd@edersd\U%, Orders +TitleOfCounasy: sting Tenritary
g \ » #Title: string T
Tetails " bt +Firsthlame: sing < | +TenitoryDescription:
o~ sLasName: string 0. Erplayes I (Tambogy_Employec Eﬂu
. s At wt Employers Temitanms
0 CridarDat s \ 0. .
R = 3 B Enfployaes ki
Dioacaan A & 0, |RepodERiployee Emplayaas: Emplayes_ReportsT :
ep_Emplayeas_ Employes_ReportsTo
iscounl fpal ©UE{ameC 0 “’\'{ : Quders : Srslusipeit ok =
‘Quantity: shoet 5% \ !
HnitFrice’ decimal A -,
\
\ \
AT \\
et : 0 Gt | = J
Shigvia 01 Customar | EL e
Shipper +CartaciMame strng
+CompanyMame: siring
Categary I +Fhane; string #d slnng =

&3]
Clagram

®
Borland

Integrated and
Included Partner Tools

Borland’
Delphi"2005

Borland Delphi 2005 — Reviewers Guide

Integrated and Included Partner Tools

All versions of Delphi 2005 include licenses for other valuable Borland products that support
software development and application lifecycle management, as well as products from
Borland partner companies. Which products are included with Delphi 2005 depend on the
version that you are using. All of the products listed in this section are included in Delphi
2005 Architect. Delphi 2005 Enterprise and Professional include some, but not all, of these

products.

The following sections provide you with a short description of the associated integrated or

included partner tool. For more information, please use the URL provided to learn more.

Borland InterBase 7.5 Developer Edition

InterBase 7.5 Developer Edition enables you to develop and test your applications running
against InterBase, an enterprise-quality remote database management system (RDBMS).
Borland InterBase is a small-footprint database server that minimizes maintenance while
providing support for mission-critical applications. For more information on InterBase 7.5,

please visit; http://www.borland.com/interbase/

Borland Janeva

Janeva provides you with a seamless and cost-effective solution for integrating your J2EE and
CORBA back-end systems with your client and Web applications. For more information
about Janeva, please visit: http://www.borland.com/janeva/

*NOTE Janeva requires a runtime license to deploy your application. This is available from a

Borland sales representative.

®
Borland

Borland Delphi 2005 — Reviewers Guide

Borland Optimizeit™ Profiler for the
Microsoft .NET Framework

Identify and remove performance bottlenecks in your .NET managed code through CPU and
memory usage analysis with Borland Optimizeit Profiler for the Microsoft .NET Framework.
For more information about Borland Optimizeit for the Microsoft NET Framework, please

visit: http://www.borland.com/opt_profiler/

Borland StarTeam 6.0 Standard Edition

StarTeam provides you with a rich and automated system for managing the assets and
application lifecycle tasks from within a single repository. For more information about

StarTeam 6.0 Standard Edition, please visit: http://www.borland.com/starteam/

Component One Studio Enterprise for
Borland Delphi 2005

Component One Studio Enterprise for Borland Delphi 2005 is a special edition of Studio
Enterprise that includes a development license for eleven .NET (Windows Forms) and six
ASP.NET (Web Forms) controls. For more information about Component One Enterprise

Studio, please visit: http://www.componentone.com/

Crystal Reports Borland Edition

Crystal Reports Borland Edition is a .NET version of the world's leading reporting tool for use
in your C# and Delphi for .NET applications. For more information about Crystal Reports
Borland Edition, please visit:

http://www.businessobjects.com/products/reporting/crystalreports/net/default.asp

®
Borland

Borland Delphi 2005 — Reviewers Guide

glyFX Borland Special Edition

glyFX Borland Special Edition is a collection of 95 high-quality images for use in toolbars,
buttons, or any control that supports bitmap files. For more information on glyFX Borland

Special Edition, please visit: http://www.glyfx.com

IBM DB2 Universal Developers Edition

IBM DB2 Universal Developers Edition provides you a DB2 database and associated tools for
designing, building, and prototyping applications for deployment on any DB2 client or server

platform.

InstallShield Express for Borland Delphi

InstallShield Express for Borland Delphi provides you with an easy-to-use graphical interface
for building custom installers for your Windows software. For more information on
InstallShield Express for Borland Delphi, please visit: http://www.installshield.com/Borland

Internet Direct (Indy)

Internet Direct (Indy) is an open-source Internet component suite comprised of popular
Internet protocols written in Delphi and based on blocking sockets. For more information

about Internet Direct, please visit: http://www.atozed.com/indy

IntraWeb

IntraWeb is a complete RAD solution for building Web applications, dynamic Web sites that
go well beyond the capabilities of regular ASP.NET Web applications and ISAPI Web server
extensions. For more information on IntraWeb, please visit:

http://www.atozed.com/intraWeb/

®
Borland

Borland Delphi 2005 — Reviewers Guide

Microsoft SQL Server 2000 Desktop Engine (MSDE 2000)

Microsoft SQL Server 2000 Desktop Engine provides your small workgroup and low-volume
Web applications with data storage capabilities that easily scale to Microsoft SQL Server

2000 as your needs grow.

Microsoft SQL Server 2000 Developer Edition

Microsoft SQL Server 2000 Developer Edition provides you with a developer license for
designing, building, and prototyping applications that you can deploy with Microsoft SQL
Server 2000.

Rave Reports Borland Edition

Rave Reports Borland Edition is a powerful and scalable suite of VCL and VCL for .NET
reporting components for creating sophisticated Delphi reports. For more information about

Rave Reports Borland Edition, please visit: http://www.nevrona.com/rave/

Wise Owl Demeanor for .NET Borland Edition

Wise Owl Demeanor for .NET Borland Edition is a .NET obfuscator, a tool that helps prevent
others from reverse-engineering your managed code applications and assemblies. For more
information about Wise Owl Demeanor for .NET Borland Edition, please visit:

http://www.wiseowl.com/

Other Resources

Please also visit the Borland Developer Network, where you will find timely articles as well
as links to a wide variety of resources that support your software development needs. The

Borland Developer Network is located at http://bdn.borland.com/.

You should also consider visiting Code Central, Borland's online repository for code samples,
demonstration applications, and other resources for developers using Borland products. Code

Central is located at http://cc.borland.com/ccweb.exe/.

®
Borland

Borland Delphi 2005 — Reviewers Guide

Summary

More than twenty years in the making, Delphi 2005 achieves what no other development
environment can, providing you with state-of-the-art tools that preserve your investment in
today's software as you migrate towards tomorrow's new standards. With integrated tools that
support every aspect of the application lifecycle, Delphi 2005 truly is the ultimate Windows

development solution.

About Borland Software Corporation

Founded in 1983, Borland Software Corporation (NASDAQ: BORL) is the global leader in
platform independent solutions for software delivery optimization. The company provides the
software and services that align the teams, technology and processes required to maximize the
business value of software. To learn more about delivering quality software, on time and

within budget, visit: http://www.borland.com.

About the Author

Cary Jensen is President of Jensen Data Systems, Inc., a software development, training, and
consulting company (http://www.jensendatasystems.com). He is an award-winning, best-
selling author of nineteen books, a featured columnist on the Borland Developer Network
(http://bdn.borland.com), and a popular speaker at conferences, workshops, and training
seminars around the world. Cary has a Ph.D. in Human Factors Psychology, specializing in
human-computer interaction, from Rice University in Houston, Texas. You can contact Cary

at cjensen@jensendatasystems.com.

Made in Borland® Copyright © 2004 Jensen Data Systems, Inc. All rights reserved. All Borland brand and product names are
trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. Microsoft,
Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and
other countries. All other marks are the property of their respective owners. Corporate Headquarters: 100 Enterprise Way, Scotts
Valley, CA 95066-3249 « 831-431-1000 » www.borland.com « Offices in: Australia, Brazil, Canada, China, Czech Republic,
Finland, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, Mexico, the Netherlands, New Zealand,
Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the United States. «

®
Borland

