MASTERING DELPHI 6

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

e w0
MASTERING " DELPHI™ 6

Marco Cantu

A

d

..
SYBEX

San Francisco ¢ Paris ¢ Diisseldorf ¢ Soest ® London

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Associate Publisher: Richard Mills

Contracts and Licensing Manager: Kristine O’Callaghan
Acquisitions Editor: Denise Santoro Lincoln

Developmental Editors: Diane Lowery and Denise Santoro Lincoln
Editor: Pete Gaughan

Production Editor: Leslie E. H. Light

Technical Editors: Danny Thorpe and Eddie Churchill

Book Designer: Robin Kibby

Graphic Illustrator: Tony Jonick

Electronic Publishing Specialist: Kris Warrenburg, Cyan Design
Proofreaders: Nanette Duffy, Amey Garber, Jennifer Greiman,
Emily Hsuan, Laurie O’Connell, Nancy Riddiough

Indexer: Ted Laux

CD Coordinator: Christine Harris

CD Technician: Kevin Ly

Cover Designer: Design Site

Cover Illustrator/Photographer: Sergie Loobkoff

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway,
Alameda, CA 94501. World rights reserved. The author created
reusable code in this publication expressly for reuse by readers.
Sybex grants readers limited permission to reuse the code found
in this publication or its accompanying CD-ROM so long as the
author is attributed in any application containing the reusable
code and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited as a
stand-alone product. Aside from this specific exception concern-
ing reusable code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including
but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of
the publisher.

Library of Congress Card Number: 2001088115
ISBN: 0-7821-2874-2

SYBEX and the SYBEX logo are either registered trademarks or
trademarks of SYBEX Inc. in the United States and/or other
countries.

Mastering is a trademark of SYBEX Inc.
Screen reproductions produced with Collage Complete.
Collage Complete is a trademark of Inner Media Inc.

The CD interface was created using Macromedia Director,
Copyright © 1994, 1997-1999 Macromedia Inc. For more infor-
mation on Macromedia and Macromedia Director, visit
http://www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare
this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon
pre-release versions supplied by software manufacturer(s). The

Copyright ©2001 SYBEX, Inc., Alameda, CA

author and the publisher make no representation or warranties of
any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not
limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to
be caused directly or indirectly from this book.

Manufactured in the United States of America

10987654321

www.sybex.com

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that
are available now or in the future contain programs and/or text files
(the “Software”) to be used in connection with the book. SYBEX
hereby grants to you a license to use the Software, subject to the
terms that follow. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless other-
wise indicated and is protected by copyright to SYBEX or other
copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software for
your personal, noncommercial use only. You may not reproduce,
sell, distribute, publish, circulate, or commercially exploit the Soft-
ware, or any portion thereof, without the written consent of SYBEX
and the specific copyright owner(s) of any component software
included on this media.

In the event that the Software or components include specific license
requirements or end-user agreements, statements of condition, dis-
claimers, limitations or warranties (“End-User License”), those
End-User Licenses supersede the terms and conditions herein as to
that particular Software component. Your purchase, acceptance, or
use of the Software will constitute your acceptance of such End-
User Licenses.

By purchase, use or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

Reusable Code in This Book

The author created reusable code in this publication expressly for
reuse for readers. Sybex grants readers permission to reuse for any
purpose the code found in this publication or its accompanying
CD-ROM so long as the author is attributed in any application con-
taining the reusable code, and the code itself is never sold or com-
mercially exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that mater-
ial but they are not supported by SYBEX. Information regarding any
available support may be obtained from the Owner(s) using the
information provided in the appropriate readme files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support
or decline to honor any offer, SYBEX bears no responsibility. This
notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup-
port provided, or not provided, by the Owner(s).

Copyright ©2001 SYBEX, Inc., Alameda, CA

Warranty

SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is not
available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a
defect in the media during this warranty period, you may obtain a
replacement of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.

Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501

(510) 523-8233

Fax: (510) 523-2373

e-mail: info@sybex.com

WEB: HT'TP:/WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of iden-
tical format by sending us the defective disk, proof of purchase, and
a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, perfor-
mance, merchantability, or fitness for a particular purpose. In no
event will SYBEX, its distributors, or dealers be liable to you or any
other party for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use the Soft-
ware or its contents even if advised of the possibility of such damage.
In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for
any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states.
Therefore, the above exclusion may not apply to you. This warranty
provides you with specific legal rights; there may be other rights that
you may have that vary from state to state. The pricing of the book
with the Software by SYBEX reflects the allocation of risk and limita-
tions on liability contained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as
shareware. Copyright laws apply to both shareware and ordinary
commercial software, and the copyright Owner(s) retains all rights.
If you try a shareware program and continue using it, you are
expected to register it. Individual programs differ on details of trial
periods, registration, and payment. Please observe the requirements
stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected
or encrypted. However, in all cases, reselling or redistributing these
files without authorization is expressly forbidden except as specifi-
cally provided for by the Owner(s) therein.

www.sybex.com

To Lella, the love of my life,
and Benedetta, our love come to life.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ACKNOWLEDGMENTS

This edition of Mastering Delphi marks the seventh year of the Delphi era, as it took Bor-
land two years to release the latest incarnation of Delphi (along with its Linux twin, Kylix).
As it has for many other programmers, Delphi has been my primary interest throughout
these years; and writing, consulting, teaching, and speaking at conferences about Delphi have
absorbed more and more of my time, leaving other languages and programming tools in the
dust of my office. Because my work and my life are quite intertwined, many people have been
involved in both, and I wish I had enough space and time to thank them all as they deserve.
Instead, I'll just mention a few particular people and say a warm “Thank You” to the entire
Delphi community (especially for the Spirit of Delphi 1999 Award I've been happy to share
with Bob Swart).

The first official thanks are for the Borland programmers and managers who made Delphi
possible and continue to improve it: Chuck Jazdzewski, Danny Thorpe, Eddie Churchill,
Allen Bauer, Steve Todd, Mark Edington, Jim Tierney, Ravi Kumar, Jorg Weingarten,
Anders Ohlsson, and all the others I have not had a chance to meet. I'd also like to give par-
ticular mention to my friends Ben Riga (the current Delphi product manager), John Kaster
and David Intersimone (at Borland’s Developer Relations), and others who have worked at
Borland, including Charlie Calvert, Zack Urlocker and Nan Borreson.

The next thanks are for the Sybex editorial and production crew, many of whom I don’t even
know. Special thanks go to Pete Gaughan, Leslie Light, Denise Santoro Lincoln, and Diane
Lowery; I'd also like to thank Richard Mills, Kristine O’Callaghan, and Kris Warrenburg.

This edition of Mastering Delphi has once again had an incredibly picky and detailed review
from Delphi R&D team member Danny Thorpe. His highlights and comments in this and
past editions have improved the book in all areas: technical content, accuracy, examples, and
even readability. Thanks a lot. Previous editions also had special contributions: Tim Gooch
worked on Part V for Mastering Delphi 4, and Giuseppe Madaffari contributed database mate-
rial for the Delphi 5 edition. For this edition, Guy Smith-Ferrier rewrote the chapter on
ADO, and Nando Dessena helped me with the InterBase chapter. Many improvements to the
text and sample programs were suggested by technical reviewers of past editions (Juancarlo
Afez, Ralph Friedman, Tim Gooch, and Alain Tadros) and in other reviews over the years by
Bob Swart, Giuseppe Madaffari, and Steve Tendon.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Special thanks go to my friends Bruce Eckel, Andrea Provaglio, Norm McIntosh, Johanna
and Phil of the BUG-UK, Ray Konopka, Mark Miller, Cary Jensen, Chris Frizelle of The
Delphi Magazine, Foo Say How, John Howe, Mike Orriss, Chad “Kudzu” Hower, Dan Miser,
Marco Miotti, and the entire D&D Team (Paolo, Andrea, Uberto, Nando, Giuseppe, and
Mr. Coke). Also, a very big “Thank You” to all the attendees of my Delphi programming
courses, seminars, and conferences in Italy, the United States, France, the United Kingdom,
Singapore, the Netherlands, Germany, Sweden...

My biggest thanks go to my wife Lella who had to endure yet another many-months-long
book-writing session and too many late nights (after spending the evenings with our daughter,
Benedetta—TI’ll thank her with a hug, as Daddy’s book looks quite boring to her). Many of our
friends (and their kids) provided healthy breaks in the work: Sandro and Monica with Luca,
Stefano and Elena, Marco and Laura with Matteo, Bianca, Luca and Elena with Tommaso,
Chiara and Daniele with Leonardo, Laura, Vito and Marika with Sofia. Our parents, brothers,
sisters, and their families were very supportive, too. It was nice to spend some of our free time
with them and our six nephews—Matteo, Andrea, Giacomo, Stefano, Andrea, and Pietro.

Finally, I would like to thank all of the people, many of them unknown, who enjoy life and
help to build a better world. If I never stop believing in the future and in peace, it is also
because of them.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

INTRODUCTION

The first time Zack Urlocker showed me a yet-to-be-released product code-named Delphi,
I realized that it would change my work—and the work of many other software developers. I
used to struggle with C++ libraries for Windows, and Delphi was and still is the best combi-
nation of object-oriented programming and visual programming for Windows.

Delphi 6 simply builds on this tradition and on the solid foundations of the VCL to deliver
another astonishing and all-encompassing software development tool. Looking for database,
client/server, multitier, intranet, or Internet solutions? Looking for control and power?
Looking for fast productivity? With Delphi 6 and the plethora of techniques and tips pre-
sented in this book, you’ll be able to accomplish all this.

Six Versions and Counting

Some of the original Delphi features that attracted me were its form-based and object-oriented
approach, its extremely fast compiler, its great database support, its close integration with
Windows programming, and its component technology. But the most important element was
the Object Pascal language, which is the foundation of everything else.

Delphi 2 was even better! Among its most important additions were these: the Multi-
Record Object and the improved database grid, OLE Automation support and the variant
data type, full Windows 95 support and integration, the long string data type, and Visual
Form Inheritance. Delphi 3 added to this the code insight technology, DLL debugging sup-
port, component templates, the TeeChart, the Decision Cube, the WebBroker technology,
component packages, ActiveForms, and an astonishing integration with COM, thanks to
interfaces.

Delphi 4 gave us the AppBrowser editor, new Windows 98 features, improved OLE and
COM support, extended database components, and many additions to the core VCL classes,
including support for docking, constraining, and anchoring controls. Delphi 5 added to the
picture many more improvements of the IDE (too many to list here), extended database sup-
port (with specific ADO and InterBase datasets), an improved version of MIDAS with Inter-
net support, the TeamSource version-control tool, translation capabilities, the concept of
frames, and new components.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

XXXVi Introduction

Now Delphi 6 adds to all these features support for cross-platform development with the
new Component Library for Cross-Platform (CLX), an extended run-time library, the new
dbExpress database engine, Web services and exceptional XML support, a powerful Web
development framework, more IDE enhancements, and a plethora of new components and
classes, as you’ll see in the following pages.

Delphi is a great tool, but it is also a complex programming environment that involves
many elements. This book will help you master Delphi programming, including the Object
Pascal language, Delphi components (both using the existing ones and developing your
own), database and client/server support, the key elements of Windows and COM program-
ming, and Internet and Web development.

You do not need in-depth knowledge of any of these topics to read this book, but you do
need to know the basics of Pascal programming. Having some familiarity with Delphi will
help you considerably, particularly after the introductory chapters. The book starts covering
its topics in depth immediately; much of the introductory material from previous editions has
been removed. Some of this material and an introduction to Pascal is available on the com-
panion CD-ROM and on my Web site and can be a starting point if you are not confident

with Delphi basics. Each new Delphi 6 feature is covered in the relevant chapters throughout
the book.

The Structure of the Book

The book is divided into four parts:

e Part], “Foundations,” introduces new features of the Delphi 6 Integrated Develop-
ment Environment (IDE) in Chapter 1, then moves to the Object Pascal language and
to the run-time library (RTL) and Visual Component Library (VCL), providing both
foundations and advanced tips.

e PartIl, “Visual Programming,” covers standard components, Windows common con-
trols, graphics, menus, dialogs, scrolling, docking, multipage controls, Multiple Docu-
ment Interface, the Action List and Action Manager architectures, and many other

topics. The focus is on both the VCL and CLX libraries. The final chapters discuss the
development of custom components and the use of libraries and packages.

e PartIII, “Database Programming,” covers plain database access, in-depth coverage of
the data-aware controls, client/server programming, dbExpress, InterBase, ADO and
dbGo, DataSnap (or MIDAS), and the development of custom data-aware controls and
data sets.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Introduction xxxvii

e PartIV, “Beyond Delphi: Connecting with the World,” first discusses COM, OLE
Automation, and COM+. Then it moves to Internet programming, covering TCP/IP

sockets, Internet protocols and Indy, Web server-side extensions (with WebBroker and
WebSnap), XML, and the development of Web services.

As this brief summary suggests, the book covers topics of interest to Delphi users at nearly
all levels of programming expertise, from “advanced beginners” to component developers.

In this book, I've tried to skip reference material almost completely and focus instead on
techniques for using Delphi effectively. Because Delphi provides extensive online documen-
tation, to include lists of methods and properties of components in the book would not only
be superfluous, it would also make it obsolete as soon as the software changes slightly. I sug-
gest that you read this book with the Delphi Help files at hand, to have reference material
readily available.

However, I've done my best to allow you to read the book away from a computer if you
prefer. Screen images and the key portions of the listings should help in this direction. The
book uses just a few conventions to make it more readable. All the source code elements,
such as keywords, properties, classes, and functions, appear in this font, and code excerpts
are formatted as they appear in the Delphi editor, with boldfaced keywords and italic com-
ments and strings.

Free Source Code on CD (and the Web)

"This book focuses on examples. After the presentation of each concept or Delphi compo-
nent, you’ll find a working program example (sometimes more than one) that demonstrates
how the feature can be used. All told, there are about 300 examples presented in the book.
These programs are directly available on the companion CD-ROM. The same material is
also available on my Web site (www.marcocantu.com), where you’ll also find updates and
examples from past editions. Inside the back cover of the book, you’ll find more information
about the CD. Most of the examples are quite simple and focus on a single feature. More
complex examples are often built step-by-step, with intermediate steps including partial solu-
tions and incremental improvements.

NotE

Some of the database examples also require you to have the Delphi sample database
DBDEMOS installed; it is part of the default Delphi installation. Others require the InterBase
EMPLOYEE sample database.

Beside the source code files, the CD hosts the ready-to-use compiled programs. There is
also an HTML version of the source code, with full syntax highlighting, along with a com-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

XXXViii

Introduction

plete cross-reference of keywords and identifiers (class, function, method, and property
names, among others). The cross-reference is an HT'ML file, so you’ll be able to use your
browser to easily find all the programs that use a Delphi keyword or identifier you’re looking
for (not a full search engine, but close enough).

The directory structure of the sample code is quite simple. Basically, each chapter of the
book has its own folder, with a subfolder for each example (e.g., 06\Borders). In the text, the
examples are simply referenced by name (e.g., Borders).

Tip

To change an example, first copy it (or the entire md6code folder) to your hard disk, but before
opening it remember to set the read-only flag to False (it is True by default on the read-only
media)

NotE

Be sure to read the source code archive’s Readme file, which contains important information
about using the software legally and effectively.

How to Reach the Author

If you find any problems in the text or examples in this book, both the publisher and I would
be happy to hear from you. Besides reporting errors and problems, please give us your unbi-
ased opinion of the book and tell us which examples you found most useful and which you
liked least. There are several ways you can provide this feedback:

e On the Sybex Web site (www. sybex. com), you’ll find updates to the text or code as nec-
essary. To comment on this book, click the Contact Sybex link and then choose Book
Content Issues. This link displays a form where you can enter your comments.

e My own Web site (www.marcocantu.com) hosts further information about the book and
about Delphi, where you might find answers to your questions. The site has news and
tips, technical articles, free online books, white papers, Delphi links, and my collection
of Delphi components and tools.

e I have also set up a newsgroup section specifically devoted to my books and to general
Delphi Q&A. Refer to my Web site for a list of the newsgroup areas and for the
instructions to subscribe to them. (In fact, these newsgroups are totally free but require
a login password.) The newsgroups can also be accessed via a Web interface you can
find on my site.

e Finally, you can reach me via e-mail at marco@marcocantu.com. For technical questions,
please try using the newsgroups first, as you might get answers earlier and from multiple
people. My mailbox is usually quite full and, regretfully, I cannot reply promptly to
every request. (Please write to me in English or Italian.)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Foundations

® Chapter 1: The Delphi 6 IDE

® Chapter 2: The Object Pascal Language: Classes and
Objects

® Chapter 3: The Object Pascal Language: Inheritance and
Polymorphism

® Chapter 4: The Run-Time Library

® Chapter 5: Core Library Classes

CHAPTER

The Delphi 6 IDE

e Object TreeView and Designer view
e The AppBrowser editor

e The code insight technology

e Designing forms

e The Project Manager

e Delphi files

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

4 Chapter 1 e The Delphi 6 IDE

In a visual programming tool such as Delphi, the role of the environment is at times even
more important than the programming language. Delphi 6 provides many new features in its
visual development environment, and this chapter covers them in detail. This chapter isn’t a
complete tutorial but mainly a collection of tips and suggestions aimed at the average Delphi
user. In other words, it’s not for newcomers. I'll be covering the new features of the Delphi 6
Integrated Development Environment (IDE) and some of the advanced and little-known
features of previous versions as well, but in this chapter I won’t provide a step-by-step intro-
duction. Throughout this book, I'll assume you already know how to carry out the basic
hands-on operations of the IDE, and all the chapters after this one focus on programming
issues and techniques.

If you are a beginning programmer, don’t be afraid. The Delphi Integrated Development
Environment is quite intuitive to use. Delphi itself includes a manual (available in Acrobat
format on the Delphi CD) with a tutorial that introduces the development of Delphi appli-
cations. You can also find a step-by-step introduction to the Delphi IDE on my Web site,
http://www.marcocantu.com. The short online book Essential Delphi is based on material
from the first chapters of earlier editions of Mastering Delphi.

Editions of Delphi 6

Before delving into the details of the Delphi programming environment, let’s take a side step
to underline two key ideas. First, there isn’t a single edition of Delphi; there are many of them.
Second, any Delphi environment can be customized. For these reasons, Delphi screens you
see illustrated in this chapter may differ from those on your own computer. Here are the cur-
rent editions of Delphi:

e The “Personal” edition is aimed at Delphi newcomers and casual programmers and has

support for neither database programming nor any of the other advanced features of
Delphi 6.

e The “Professional” edition is aimed at professional developers. It includes all the basic
features, plus database programming support (including ADO support), basic Web
server support (WebBroker), and some of the external tools. This book generally
assumes you are working with at least the Professional edition.

e The “Enterprise” edition is aimed at developers building enterprise applications. It
includes all the new XML and advanced Web services technologies, internationaliza-
tion, three-tier architecture, and many other tools. Some chapters of this book cover
features included only in Delphi Enterprise; these sections are specifically identified.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Delphi 6 IDE 5

NortE In the past, some of the features of Delphi Enterprise have been available as an “up-sell” to
owners of Delphi Professional. This might also happen for this version.

Besides the different editions available, there are ways to customize the Delphi environ-
ment. In the screen illustrations throughout the book, I've tried to use a standard user inter-
face (as it comes out of the box); however, I have my preferences, of course, and I generally
install many add-ons, which might be reflected in some of the screen shots.

The Delphi 6 IDE

The Delphi 6 IDE includes large and small changes that will really improve a programmer’s
productivity. Among the key features are the introduction of the Object TreeView for every
designer, an improved Object Inspector, extended code completion, and loadable views,

including diagrams and HTML.

Most of the features are quite easy to grasp, but it’s worth examining them with some care
so that you can start using Delphi 6 at its full potential right away. You can see an overall
image of Delphi 6 IDE, highlighting some of the new features, in Figure 1.1.

FIGURE 1.1: 1 Delphi 6 - Project]

. . File Edit Seach View Project Run Comporent Database Took ‘window Help H kMone: R @H LR =1
The Delphl 6 IDE: Notice DE-B @92 H & || Standard | Addional | Win32 | Sustem | Data Access | Data Contials | dbExoress | DataSnan | BDE | ADD | InterBase | WebServices | Intemet41*.
the Object TreeView and CEEnl= ey % AT R e ige=" 2

the Diagram view.

. =
= Button? E Buttonl
Panell

= unia |

- [TFom
(1 Varisbles/Constants | Uit =l e & ‘ N | £ ‘ W, B @

Hame
1 B Uit
Euttonz TEution -

Fropertes | Events |

Act

Description

[akLeftakTap]
bdLeftTofight
Cancel False

Caption Bifon2
(TSizeCanstraint
erDiefault
False

ciDrag
Drsgkind |dkDrag
DrsgMode |dmbanual
Enabled True

Euttonz

ol | ;Ij

T |Modiied nsert |"\Corte Dinararn 7

EFont [TFent]
Height b
HelpContest |0

Helpk epword
HelpType |hiContest
Hint
Left 56

ModalResut | mitlone -

All shown #

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

6

Chapter 1 e The Delphi 6 IDE

The Object TreeView

Delphi 5 introduced a TreeView for data modules, where you could see the relations among
nonvisual components, such as datasets, fields, actions, and so on. Delphi 6 extends the idea
by providing an Object TreeView for every designer, including plain forms. The Object
"TreeView is placed by default above the Object Inspector; use the View > Object TreeView
command in case it is hidden.

The Object TreeView shows all of the components and objects on the form in a tree, rep-
resenting their relations. The most obvious is the parent/child relation: Place a panel on a
form, a button inside it and one outside of the panel. The tree will show the two buttons, one
under the form and the other under the panel, as in Figure 1.1. Notice that the TreeView is
synchronized with the Object Inspector and Form Designer, so as you select an item and
change the focus in any one of these three tools, the focus changes in the other two tools.

Besides parent/child, the Object TreeView shows also other relations, such as owner/owned,
component/subobject, collection/item, plus various specific ones, including dataset/connection
and data source/dataset relations. Here, you can see an example of the structure of a menu in
the tree.

Object TresWiew x|
Qe Ly
] Form1

=% MainMenul

45 4File {Filel}

S
@, &Undo {Undol}
7 QN M4}
Cult {Cun}
. 4Copy {Copyt}
w7, WPaste {Paste}

At times, the TreeView also displays “dummy” nodes, which do not correspond to an
actual object but do correspond to a predefined one. As an example of this behavior, drop a
"Table component (from the BDE page) and you’ll see two grayed icons for the session and
the alias. Technically, the Object TreeView uses gray icons for components that do not have
design-time persistence. They are real components (at design time and at run time), but
because they are default objects that are constructed at run time and have no persistent data
that can be edited at design time, the Data Module Designer does not allow you to edit their
properties. If you drop a Table on the form, you’ll also see items with a red question mark
enclosed in a yellow circle next to them. This symbol indicates partially undefined items
(there used to be a red square around those items in Delphi 5).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Delphi 6 IDE 7

The Object TreeView supports multiple types of dragging:

¢ You can select a component from the palette (by clicking it, not actually dragging it),
move the mouse over the tree, and click a component to drop it there. This allows you
to drop a component in the proper container (form, panel, and others) regardless of the
fact that its surface might be totally covered by other components, something that pre-
vents you from dropping the component in the designer without first rearranging
those components.

¢ You can drag components within the TreeView—for example, moving a component
from one container to another—something that, with the Form Designer, you can do
only with cut and paste techniques. Moving instead of cutting provides the advantage
that if you have connections among components, these are not lost, as happens when
you delete the component during the cut operation.

¢ You can drag components from the TreeView to the Diagram view, as we’ll see later.

Right-clicking any element of the TreeView displays a shortcut menu similar to the com-
ponent menu you get when the component is in a form (and in both cases, the shortcut menu
may include items related to the custom component editors). You can even delete items from
the tree.

The TreeView doubles also as a collection editor, as you can see here for the Columns prop-
erty of a ListView control. In this case, you can not only rearrange and delete items, but also
add new items to the collection.

Ohject TreeWiew £l
B+ ¥

] Forrnl
== Listyiewl
= L Columns
¥% 0 - TListColumn
%81 - TLiztColumn
% 2 - TListColurn

A

Tip

You can print the contents of the Object TreeView for documentation purposes. Simply select the
window and use the File > Print command, as there is no Print command in the shortcut menu.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

8

Chapter 1 e The Delphi 6 IDE

Loadable Views

Another important change has taken place in the Code Editor window. For any single file
loaded in the IDE, the editor can now show multiple views, and these views can be defined
programmatically and added to the system, then loaded for given files—hence the name /oad-
able views.

The most frequently used view is the Diagram page, which was already available in Delphi 5
data modules, although it was less powerful. Another set of views is available in Web applica-
tions, including an HTML Script view, an HI'ML Result preview, and many others dis-
cussed in Chapter 22.

The Diagram View

Along with the TreeView, another feature originally introduced in Delphi 5 Data Modules and
now available for every designer is the Diagram view. This view shows dependencies among
components, including parent/child relations, ownership, linked properties, and generic rela-
tions. For dataset components, it also supports master/detail relations and lookup connections.
You can even add your comments in text blocks linked to specific components.

The Diagram is not built automatically. You must drag components from the TreeView to
the diagram, which will automatically display the existing relations among the components
you drop there. In Delphi 6, you can now select multiple items from the Object TreeView
and drag them all at once to the Diagram page.

What’s nice is that you can set properties by simply drawing arrows between the compo-
nents. For example, after moving an edit and a label to Diagram, you can select the Property
Connector icon, click the label, and drag the mouse cursor over the edit. When you release
the mouse button, the Diagram will set up a property relation based on the FocusContro]l
property, which is the only property of the label referring to an edit control. This situation is
depicted in Figure 1.2.

As you can see, setting properties is directional: If you drag the property relation line from
the edit to the label, you end up trying to use the label as the value of a property of the edit
box. Because this isn’t possible, you’ll see an error message indicating the problem and offer-
ing to connect the components in the opposite way.

In Delphi 6, the Diagram view allows you to create multiple diagrams for each Delphi
unit—that is, for each form or data module. Simply give a name to the diagram and possibly
add a description, click the New Diagram button, prepare another diagram, and you’ll be
able to switch back and forth between diagrams using the combo box available in the toolbar
of the Diagram view.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Delphi 6 IDE 9

FIGURE 1.2: E Unitl.pas =10l
The Diagram view allows T l
you to connect components - \U’a'iablesf&nstams Untitled ~| ¥ Do | B B, | B, B &
. +-[_] Uses

using the Property connector. ﬂ

Hame

[Untitle

Description

Edit]
FocusContral
=l

[+ | ;Ij

b BB Modified Inzert \,Code}\Diagram.’

Although you can use the Diagram view to set up relations, its main role is to document
your design. For this reason, it is important to be able to print the content of this view. Using
the standard File > Print command while the Diagram is active, Delphi prompts you for
options, as you can see in Figure 1.3, allowing you to customize the output in many ways.

F l G U R E 1 . 3 . Print Diagram ﬂ

The Print Options for the base Options
Diagram view | list [v iPrint header and page numbers [if needed)

[v Print page borders

[~ Print descriptions [lower right corner)

[v Print on a gingle page
[Print ta file

Setup... ‘ Check all | (1] | Cancel ‘ Help ‘

The information in the Data Diagram view is saved in a separate file, not as part of the
DFM file. Delphi 5 used design-time information (DTT) files, which had a structure similar
to INI files. Delphi 6 can still read the older .D'TT format, but uses the new Delphi Diagram
Portfolio format (.DDP). These files apparently use the DFM binary format (or a similar
one), so they are not editable as text. All of these files are obviously useless at run time (it
makes no sense to include them in the compilation of the executable file).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

10

Chapter 1 e The Delphi 6 IDE

An IDE for Two Libraries

Another very important change I just want to introduce here is the fact that Delphi 6, for the
first time, allows you to use to different component libraries, VCL (Visual Components
Library) and CLX (Component Library for Cross-Platform). When you create a new project,
you simply choose which of the two libraries you want to use, starting with the File > New >
Application command for a classic VCL-based Windows program and with the File >
New > CLX Application command for a new CLX-based portable application.

Creating a new project or opening an existing one, the Component Palette is rearranged to
show only the controls related to the current library (although most of them are actually
shared). This topic is fully covered in Chapter 6, so I don’t want to get into the details here;
I'll just underline that you can use Delphi 6 to build applications you can compile right away
for Linux using Kylix. The effect of this change on the IDE is really quite large, as many
things “under the hood” had to be reengineered. Only programmers using the ToolsAPI and
other advanced elements will notice all these internal differences, as they are mostly trans-
parent to most users.

Smaller Enhancements

Besides this important change and others I’ll discuss in later sections, such as the update of
the Object Inspector and of code completion, there are small (but still quite important)
changes in the Delphi 6 IDE. Here is a list of these changes:

e There is a new Window menu in the IDE. This menu lists the open windows, some-
thing you could obtain in the past using the Alt+0 keys. This is really very handy, as
windows often end up behind others and are hard to find. (Thanks, Borland, for listen-
ing to this and other simple but effective requests from users.)

Tip

Two entries of the Main Window registry section of Delphi (under \Software\Borland\
Delphi\6.0 for the current user) allow you to hide this menu and disable its alphabetic sort
order. This registry keys use strings (in place of Boolean values) where “-1" indicates true and
“0" false.

e The File menu doesn’t include specific items for creating new forms or applications.
These commands have been increased in number and grouped under the File > New
secondary menu. The Other command of this menu opens the New Item dialog box
(the Object Repository) as the File > New command did in the past.

e The Component Palette local menu has a submenu listing all of the palette pages in
alphabetic order. You can use it to change the active page, particularly when it is not
visible on the screen.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Delphi 6 IDE 1

Tip

The order of the entries in the Tabs submenu of the Component Palette local menu can be set
in the same order as the palette itself, and not sorted alphabetically. This is accomplished by
setting to 0" (false) the value of the Sort Palette Tabs Menu key of the Main Window registry

section of Delphi (under \Software\Borland\Delphi\6.0 for the current user).

There is a new toolbar, the Internet toolbar, which is initially disabled. This toolbar
supports WebSnap applications.

Updated Environment Options Dialog Box

Quite a few small changes relate to the commonly used Environment Options dialog box.
The pages of this dialog box have been rearranged, moving the Form Designer options from
the Preferences page to the new Designer page. There are also a few new options and pages:

"The Preferences page of the Environment Options dialog box has a new check box that
prevents Delphi windows from automatically docking with each other. This is a very
welcome addition!

A new page, Environment Variables, allows you to see system environment variables
(such as the standard path names and OS settings) and set user-defined variables. The
nice point is that you can use both system- and user-defined environment variables in
each of the dialog boxes of the IDE—for example, you can avoid hard-coding com-
monly used path names, replacing them with a variable. In other words, the environ-
ment variables work similarly to the $DELPHI variable, referring to Delphi’s base
directory, but can be defined by the user.

Another new page is called Internet. In this page, you can choose the default file exten-
sions used for HI'ML and XML files (mainly by the WebSnap framework) and also
associate an external editor with each extension.

Delphi Extreme Toys

At times, the Delphi team comes up with small enhancements of the IDE that aren’t included
in the product because they either aren’t of general use or will require time to be improved in
quality, user interface, or robustness. Some of these internal wizards and IDE extensions have
now been made available, with the collective name of Delphi Extreme Toys, to registered
Delphi 6 users. You should automatically get this add-on as you register your copy of the
product (online or through a Borland office).

There isn’t an official list of the content of the Extreme Toys, as Borland plans to keep
extending them. The initial release includes an IDE-based search engine for seeking answers
on Delphi across the Internet, a wizard for turning on and off specific compiler warnings,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

12 Chapter 1 e The Delphi 6 IDE

and an “invokamatic” wizard for accelerating the creation of Web services. The Extreme
Toys will, in essence, be unofficial wizards, code utilities, and components from the Delphi
team—or useful stuff from various people.

Recent IDE Additions

Delphi 5 provided a huge number of new features to the IDE. In case you’ve only used ver-
sions of Delphi prior to 5, or need to brush up on some useful added information, this is a
short summary of the most important of the features introduced in Delphi 5.

Saving the Desktop Settings

The Delphi IDE allows programmers to customize it in various ways—typically, opening
many windows, arranging them, and docking them to each other. However, programmers
often need to open one set of windows at design time and a different set at debug time. Simi-
larly, programmers might need one layout when working with forms and a completely differ-
ent layout when writing components or low-level code using only the editor. Rearranging
the IDE for each of these needs is a tedious task.

For this reason, Delphi allows you to save a given arrangement of IDE windows (called a
desktop) with a name and restore it easily. Also, you can make one of these groupings your
default debugging setting, so that it will be restored automatically when you start the debug-
ger. All these features are available in the Desktops toolbar. You can also work with desktop
settings using the View > Desktops menu.

Desktop setting information is saved in DST files, which are INI files in disguise. The
saved settings include the position of the main window, the Project Manager, the Alignment
Palette, the Object Inspector (including its new property category settings), the editor win-
dows (with the status of the Code Explorer and the Message View), and many others, plus
the docking status of the various windows.

Here is a small excerpt from a DST file, which should be easily readable:

[Main Window]
Create=1
Visible=1
State=0

Left=0

Top=0

Width=1024
Height=105
ClientWidth=1016
ClientHeight=78

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Recent IDE Additions 13

[ProjectManager]
Create=1
Visible=0
State=0

Dockable=1

[ATignmentPalette]
Create=1
Visible=0

Desktop settings override project settings. This helps eliminate the problem of moving a
project between machines (or between developers) and having to rearrange the windows to
your liking. Delphi 5 separates per-user and per-machine preferences from the project set-
tings, to better support team development.

Tip

If you open Delphi and cannot see the form or other windows, | suggest you try checking (or
deleting) the desktop settings. If the project desktop was last saved on a system running in a
high-resolution video mode (or a multimonitor configuration) and opened on a different sys-
tem with lower screen resolution or fewer monitors, some of the windows in the project might
be located off-screen on the lower-resolution system. The simplest ways to fix that are either
to load your own named desktop configuration after opening the project, thus overriding the
project desktop settings, or just delete the DST file that came with the project files.

The To-Do List

Another feature added in Delphi 5 was the to-do list. This is a list of tasks you still have to do
to complete a project, a collection of notes for the programmer (or programmers, as this tool
can be very handy in a team). While the idea is not new, the key concept of the to-do list in
Delphi is that it works as a two-way tool.

In fact, you can add or modify to-do items by adding special TODO comments to the source
code of any file of a project; you’ll then see the corresponding entries in the list. But you can
also visually edit the items in the list to modify the corresponding source code comment. For
example, here is how a to-do list item might look like in the source code:

procedure TForml.FormCreate(Sender: TObject);
begin

// TODO -oMarco: Add creation code
end;

The same item can be visually edited in the window shown in Figure 1.4.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

14 Chapter 1 e The Delphi 6 IDE

FIGURE 1.4:

The Edit To-Do Item
window can be used to
modify a to-do item, an
operation you can also do
directly in the source code.

To-Do List - P =

Action [tem

Module < Cateqgary
C:\AUnitl.pas Marco

Add creation code

A

1 items [0 hidden)

|1 items pending

Edit To-Do Item

A.dd creation code

Bricrity: Qwner: LCategory:

[0 =} racs =
[~ Done Ok I Cancel |

]
[
7
=

The exception to this two-way rule is the definition of project-wide to-do items. You must
add these items directly to the list. To do that, you can either use the Ctrl+A key combination
in the To-Do List window or right-click in the window and select Add from the shortcut
menu. These items are saved in a special file with the .TODO extension.

You can use multiple options with a TODO comment. You can use -o (as in the code excerpt
above) to indicate the owner, the programmer who entered the comment; the —c option to
indicate a category; or simply a number from 1 to 5 to indicate the priority (0, or no number,
indicates that no priority level is set). For example, using the Add To-Do Item command on
the editor’s shortcut menu (or the Ctrl+Shift+T shortcut) generated this comment:

{ TODO 2 -oMarco : Button pressed }

Delphi treats everything after the colon, up to the end of line or the closing brace, depending
on the type of comment, as the text of the to-do item. Finally, in the To-Do List window you
can check off an item to indicate that it has been done. The source code comment will
change from TODO to DONE. You can also change the comment in the source code manually to
see the check mark appear in the To-Do List window.

One of the most powerful elements of this architecture is the main To-Do List window,
which can automatically collect to-do information from the source code files as you type them,
sort and filter them, and export them to the Clipboard as plain text or an HTML table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The AppBrowser Editor 15

The AppBrowser Editor

The editor included with Delphi hasn’t changed recently, but it has many features that many
Delphi programmers don’t know and use. It’s worth briefly examining this tool. The Delphi
editor allows you to work on several files at once, using a “notebook with tabs” metaphor,
and you can also open multiple editor windows. You can jump from one page of the editor to
the next by pressing Ctrl+Tab (or Shift+Ctrl+Tab to move in the opposite direction).

Tip

In Delphi 6, you can drag-and-drop the tabs with the unit names in the upper portion of the
editor to change their order, so that you can use a single Ctrl+Tab to move between the units
you are mostly interested in. The local menu of the editor has also a Pages command, which
lists all of the available pages in a submenu, a handy feature when many units are loaded.

Several options affect the editor, located in the new Editor Properties dialog box. You have
to go to the Preferences page of the Environment Options dialog box, however, to set the
editor’s AutoSave feature, which saves the source code files each time you run the program
(preventing data loss in case the program crashes badly).

I won’t discuss the various settings of the editor, as they are quite intuitive and are described
in the online Help. A tip to remember is that using the Cut and Paste commands is not the
only way to move source code. You can also select and drag words, expressions, or entire lines
of code. You can also copy text instead of moving it, by pressing the Ctrl key while dragging.

The Code Explorer

The Code Explorer window, which is generally docked on the side of the editor, simply lists
all of the types, variables, and routines defined in a unit, plus other units appearing in uses
statements. For complex types, such as classes, the Code Explorer can list detailed informa-
tion, including a list of fields, properties, and methods. All the information is updated as soon
as you start typing in the editor. You can use the Code Explorer to navigate in the editor. If
you double-click one of the entries in the Code Explorer, the editor jumps to the corre-
sponding declaration.

Tip

In Delphi 6 you can modify variables, properties, and method names directly in the Code
Explorer.

While all that is quite obvious after you’ve used Delphi for a few minutes, some features
of the Code Explorer are not so intuitive. One important point is that you have full control of
the layout of the information, and you can reduce the depth of the tree usually displayed in
this window by customizing the Code Explorer. Collapsing the tree can help you make your

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

16 Chapter 1 e The Delphi 6 IDE

selections more quickly. You can configure the Code Explorer by using the corresponding
page of the Environment Options, as shown in Figure 1.5.

FIGURE 1.5: Environment Dptions |
You can conflgure the Type Libramy] Enwironment ¥ ariables] Delphi Direct] Internet]
Code Explorer in the Preferences] Desigher] Object Inzpectar] Palette] Libramy Explarer
Environment Options :)
. Explorer options Explorer categonies:
dlalog box. v Autornatically show Esxplarer v/ 1 Private
v Highlight incomplete class items v/i Protected
[Show declaration syntas Cig P""hlfc
v i Publizhed
Ewplarer zorting v i Field ;
fv Alphabetical v 1 Properties
" Source v i Methods
i Claszes
Clazz completion option v i Interfaces
v Firish incomplete properties v| i Procedures
— . v 1 Types
Iikial broveser view v 1 Vanablez/Constants
(¢ Clagzez ¢ Units " Globalz w1 Uses
t1 Virtuals
Broweser zoope %3 Statics
fe’ Project symbols only ¥ 1 Inherited
" Al symbals 4 Introduced

Cancel ‘ Help ‘

Notice that when you deselect one of the Explorer Categories items on the right side of
this page of the dialog box, the Explorer doesn’t remove the corresponding elements from
view—it simply adds the node in the tree. For example, if you deselect the Uses check box,
Delphi doesn’t hide the list of the used units from the Code Explorer. On the contrary, the
used units are listed as main nodes instead of being kept in the Uses folder. I generally disable
the Types, Classes, and Variables selections.

Because each item of the Code Explorer tree has an icon marking its type, arranging by
field and method seems less important than arranging by access specifier. My preference is to
show all items in a single group, as this requires the fewest mouse clicks to reach each item.
Selecting items in the Code Explorer, in fact, provides a very handy way of navigating the
source code of a large unit. When you double-click a method in the Code Explorer, the focus
moves to the definition in the class declaration (in the interface portion of the unit). You can
use the Ctrl+Shift combination with the Up or Down arrow keys to jump from the definition
of a method or procedure in the interface portion of a unit to its complete definition in the
implementation portion (or back again).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The AppBrowser Editor 17

NortE Some of the Explorer Categories shown in Figure 1.5 are used by the Project Explorer, rather
than by the Code Explorer. These include, among others, the Virtuals, Statics, Inherited, and
Introduced grouping options.

Browsing in the Editor

Another feature of the AppBrowser editor is Tooltip symbol insight. Move the mouse over a
symbol in the editor, and a Tooltip will show you where the identifier is declared. This fea-
ture can be particularly important for tracking identifiers, classes, and functions within an
application you are writing, and also for referring to the source code of the Visual Compo-

nent Library (VCL).

WARNING Although it may seem a good idea at first, you cannot use Tooltip symbol insight to find out
which unit declares an identifier you want to use. If the corresponding unit is not already
included, in fact, the Tooltip won't appear.

The real bonus of this feature, however, is that you can turn it into a navigational aid. When
you hold down the Ctrl key and move the mouse over the identifier, Delphi creates an active
link to the definition instead of showing the Tooltip. These links are displayed with the blue
color and underline style that are typical of Web browsers, and the pointer changes to a hand
whenever it’s positioned on the link.

For example, you can Ctrl+click the TLabel identifier to open its definition in the VCL
source code. As you select references, the editor keeps track of the various positions you’ve
jumped to, and you can move backward and forward among them—again as in a Web
browser. You can also click the drop-down arrows near the Back and Forward buttons to view
a detailed list of the lines of the source code files you’ve already jumped to, for more control
over the backward and forward movement.

How can you jump directly to the VCL source code if it is not part of your project? The
AppBrowser editor can find not only the units in the Search path (which are compiled as part
of the project), but also those in Delphi’s Debug Source, Browsing, and Library paths. These
directories are searched in the order I've just listed, and you can set them in the Directories/
Conditionals page of the Project Options dialog box and in the Library page of the Environ-
ment Options dialog box. By default, Delphi adds the VCL source code directories in the
Browsing path of the environment.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

18

Chapter 1 e The Delphi 6 IDE

Class Completion

The third important feature of Delphi’s AppBrowser editor is cass completion, activated by
pressing the Ctrl+Shift+C key combination. Adding an event handler to an application is a
fast operation, as Delphi automatically adds the declaration of a new method to handle the
event in the class and provides you with the skeleton of the method in the implementation
portion of the unit. This is part of Delphi’s support for visual programming.

Newer versions of Delphi also simplify life in a similar way for programmers who write a
little extra code behind event handlers. The new code-generation feature, in fact, applies to
general methods, message-handling methods, and properties. For example, if you type the
following code in the class declaration:

public

procedure Hello (MessageText: string);

and then press Ctrl+Shift+C, Delphi will provide you with the definition of the method in
the implementation section of the unit, generating the following lines of code:

{ TForml }

procedure TForml.Hello(MessageText: string);

begin

end;

This is really handy, compared with the traditional approach of many Delphi program-
mers, which is to copy and paste one or more declarations, add the class names, and finally
duplicate the begin. . .end code for every method copied.

Class completion can also work the other way around. You can write the implementation
of the method with its code directly, and then press Ctrl+Shift+C to generate the required
entry in the class declaration.

Code Insight

Besides the Code Explorer, class completion, and the navigational features, the Delphi editor
supports the code insight technology. Collectively, the code insight techniques are based on a
constant background parsing, both of the source code you write and of the source code of the
system units your source code refers to.

Code insight comprises five capabilities: code completion, code templates, code parameters,
"Tooltip expression evaluation, and Tooltip symbol insight. This last feature was already cov-
ered in the section “Browsing in the Editor”; the other four will be discussed in the following
subsections. You can enable, disable, and configure each of these features in the Code Insight
page of the Editor Options dialog box.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The AppBrowser Editor 19

Code Completion

Code completion allows you to choose the property or method of an object simply by look-
ing it up on a list or by typing its initial letters. To activate this list, you just type the name of
an object, such as Buttonl, then add the dot, and wait. To force the display of the list, press
Ctrl+spacebar; to remove it when you don’t want it, press Esc. Code completion also lets you
look for a proper value in an assignment statement.

In Delphi 6, as you start typing, the list filters its content according to the initial portion of
the element you’ve inserted. The code completion list uses colors and shows more details to
help you distinguish different items. Another new feature is that in the case of functions with
parameters, parentheses are included in the generated code, and the parameters list hint is
displayed immediately.

As you type := after a variable or property, Delphi will list all the other variables or objects
of the same type, plus the objects having properties of that type. While the list is visible, you

can right-click it to change the order of the items, sorting either by scope or by name, and
you can also resize the window.

In Delphi 6, code completion also works in the interface section of a unit. If you press
Ctrl+spacebar while the cursor is inside the class definition, you’ll get a list of: virtual meth-
ods you can override (including abstract methods), the methods of implemented interfaces,
the base class properties, and eventually system messages you can handle. Simply selecting
one of them will add the proper method to the class declaration. In this particular case, the
code completion list allows multiple selection.

Tip

When the code you've written is incorrect, code insight won't work, and you may see just a
generic error message indicating the situation. It is possible to display specific code insight
errors in the Message pane (which must already be open; it doesn’t open automatically to dis-
play compilation errors). To activate this feature, you need to set an undocumented registry
entry, setting the string key \Delphi\6.0\Compi1ing\ShowCodeInsiteErrors to the value '1".

There are advanced features of Delphi 6 code completion that aren’t easy to spot. One
that I found particularly useful relates to the discovery of symbols in units not used by your
project. As you invoke it (with Ctrl+spacebar) over a blank line, the list also includes sym-
bols from common units (such as Math, StrUtils, and DateUtils) not already included in
the uses statement of the current one. By selecting one of these external symbols, Delphi
adds the unit to the uses statement for you. This feature (which doesn’t work inside expres-
sions) is driven by a customizable list of extra units, stored in the registry key \DeTphi\6.0\
CodeCompletion\Extralnits.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

20

Chapter 1 e The Delphi 6 IDE

Code Templates

Code templates allow you to insert one of the predefined code templates, such as a complex
statement with an inner begin. . .end block. Code templates must be activated manually, by
typing Ctrl+] to show a list of all of the templates. If you type a few letters (such as a key-
word) before pressing Ctrl+], Delphi will list only the templates starting with those letters.

You can add your own custom code templates, so that you can build your own shortcuts for
commonly used blocks of code. For example, if you use the MessageD1g function often, you
might want to add a template for it. In the Code Insight page of the Environment Options
dialog box, click the Add button in the Code Template area, type in a new template name (for
example, mess), type a description, and then add the following text to the template body in
the Code memo control:

MessageDlg ('/', mtInformation, [mbOK], 0);

Now every time you need to create a message dialog box, you simply type mess and then
press Ctrl+], and you get the full text. The vertical line (or pipe) character indicates the posi-
tion within the source code where the cursor will be in the editor after expanding the tem-
plate. You should choose the position where you want to start typing to complete the code
generated by the template.

Although code templates might seem at first sight to correspond to language keywords,
they are in fact a more general mechanism. They are saved in the DELPHI32.DCI file, so it
should be possible to copy this file to make your templates available on different machines.
Merging two code template files is not documented, though.

Code Parameters

Code parameters display, in a hint or Tooltip window, the data type of a function’s or method’s
parameters while you are typing it. Simply type the function or method name and the open
(left) parenthesis, and the parameter names and types appear immediately in a pop-up hint
window. 'To force the display of code parameters, you can press Ctrl+Shift+spacebar. As a fur-
ther help, the current parameter appears in bold type.

Tooltip Expression Evaluation
"Tooltip expression evaluation is a debug-time feature. It shows you the value of the identifier,
property, or expression that is under the mouse cursor.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Form Designer 21

More Editor Shortcut Keys

The editor has many more shortcut keys that depend on the editor style you’ve selected.
Here are a few of the less-known shortcuts, most of which are useful:

Ctrl+Shift plus a number key from 0 to 9 activates a bookmark, indicated in a “gutter”
margin on the side of the editor. To jump back to the bookmark, press the Ctrl key plus
the number key. The usefulness of bookmarks in the editor is limited by the facts that a
new bookmark can override an existing one and that bookmarks are not persistent;
they are lost when you close the file.

Ctrl+E activates the incremental search. You can press Ctrl+E and then directly type
the word you want to search for, without the need to go through a special dialog box
and click the Enter key to do the actual search.

Ctrl+Shift+] indents multiple lines of code at once. The number of spaces used is the
one set by the Block Indent option in the Editor page of the Environment Options dia-
log box. Ctrl+Shift+U is the corresponding key for unindenting the code.

Ctrl+O+U toggles the case of the selected code; you can also use Ctrl+K+E to switch to
lowercase and Ctrl+K+F to switch to uppercase.

Ctrl+Shift+R starts recording a macro, which you can later play by using the Ctrl+Shift+P
shortcut. The macro records all the typing, moving, and deleting operations done in the
source code file. Playing the macro simply repeats the sequence—an operation that might
have little meaning once you’ve moved on to a different source code file. Editor macros
are quite useful for performing multistep operations over and over again, such as refor-
matting source code or arranging data more legibly in source code.

Holding down the Alt key, you can drag the mouse to select rectangular areas of the
editor, not just consecutive lines and words.

The Form Designer

Another Delphi window you’ll interact with very often is the Form Designer, a visual tool for
placing components on forms. In the Form Designer, you can select a component directly
with the mouse or through the Object Inspector, a handy feature when a control is behind
another one or is very small. If one control covers another completely, you can use the Esc
key to select the parent control of the current one. You can press Esc one or more times to
select the form, or press and hold Shift while you click the selected component. This will
deselect the current component and select the form by default.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

22

Chapter 1 e The Delphi 6 IDE

There are two alternatives to using the mouse to set the position of a component. You can
either set values for the Left and Top properties, or you can use the arrow keys while holding
down Ctrl. Using arrow keys is particularly useful for fine-tuning an element’s position. (The
Snap To Grid option works only for mouse operations.) Similarly, by pressing the arrow keys
while you hold down Shift, you can fine-tune the size of a component. (If you press Shift+Ctrl
along with an arrow key, the component will be moved only at grid intervals.) Unfortunately,
during these fine-tuning operations, the component hints with the position and size are not
displayed.

To align multiple components or make them the same size, you can select several compo-
nents and set the Top, Left, Width, or Height property for all of them at the same time. To
select several components, you can click them with the mouse while holding down the Shift
key, or, if all the components fall into a rectangular area, you can drag the mouse to “draw” a
rectangle surrounding them. When you’ve selected multiple components, you can also set
their relative position using the Alignment dialog box (with the Align command of the form’s
shortcut menu) or the Alignment Palette (accessible through the View > Alignment Palette
menu command).

When you’ve finished designing a form, you can use the Lock Controls command of the
Edit menu to avoid accidentally changing the position of a component in a form. This is par-
ticularly helpful, as Undo operations on forms are limited (only an Undelete one), but the
setting is not persistent.

Among its other features, the Form Designer offers several Tooltip hints:

e Asyou move the pointer over a component, the hint shows you the name and type of
the component. Delphi 6 offers extended hints, with details on the control position,
size, tab order, and more. This is an addition to the Show Component Captions envi-
ronment setting, which I keep active.

e Asyouresize a control, the hint shows the current size (the Width and Height proper-
ties). Of course, this feature is available only for controls, not for nonvisual compo-
nents (which are indicated in the Form Designer by icons).

e Asyou move a component, the hint indicates the current position (the Left and Top

properties).

Finally, you can save DFM (Delphi Form Module) files in plain text instead of the tradi-
tional binary resource format. You can toggle this option for an individual form with the
Form Designer’s shortcut menu, or you can set a default value for newly created forms in the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Form Designer 23

Designer page of the Environment Options dialog box. In the same page, you can also spec-
ify whether the secondary forms of a program will be automatically created at startup, a deci-
sion you can always reverse for each individual form (using the Forms page of the Project

Options dialog box).

Having DFM files stored as text was a welcome addition in Delphi 5; it lets you operate
more effectively with version-control systems. Programmers won’t get a real advantage from
this feature, as you could already open the binary DFM files in the Delphi editor with a spe-
cific command of the shortcut menu of the designer. Version-control systems, on the other
hand, need to store the textual version of the DFM files to be able to compare them and cap-
ture the differences between two versions of the same file.

In any case, note that if you use DFM files as text, Delphi will still convert them into a binary
resource format before including them in the executable file of your programs. DFMs are
linked into your executable in binary format to reduce the executable size (although they are
not really compressed) and to improve run-time performance (they can be loaded faster).

NotE

Text DFM files are more portable between versions of Delphi than their binary version. While
an older version of Delphi might not accept a new property of a control in a DFM created by a
newer version of Delphi, the older Delphis will still be able to read the rest of the text DFM file.
If the newer version of Delphi adds a new data type, though, older Delphis will be unable to
read the newer Delphi’s binary DFMs at all. Even if this doesn’t sound likely, remember that 64-bit
operating systems are just around the corner. When in doubt, save in text DFM format. Also
note that all versions of Delphi support text DFMs, using the command-line tool Convert in the
bin directory.

The Object Inspector in Delphi 6

Delphi 5 provided new features to the Object Inspector, and Delphi 6 includes even more
additions to it. As this is a tool programmers use all the time, along with the editor and the
Form Designer, its improvements are really significant.

The most important change in Delphi 6 is the ability of the Object Inspector to expand
component references in-place. Properties referring to other components are now displayed
in a different color and can be expanded by selecting the + symbol on the left, as it happens
with internal subcomponents. You can then modify the properties of that other component
without having to select it. See Figure 1.6 for an example.

NoTE

This interface-expansion feature also supports subcomponents, as demonstrated by the new
LabeledEdit control.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

24 Chapter 1 e The Delphi 6 IDE

FIGURE 1.6:

A connected component

(a pop-up menu) expanded
in the Object Inspector
while working on another
component (a list box)

Object Inspectar
LiztBox -

Froperties] Events]

ParentColor | Falze
ParentCH3D | True
ParentF ot True
ParentShowHin True

-l

EHFopupkdenu | Popupkdenul
Alignment | paleft
AutoHotkeps| madutomatic
AutoLineRed madutamatic
AutoPopup | True
BiDitdode | bdLeftToRight
HelpContext |0
Images
Itermz [k erLi]

| K enudmirnati[f
OwnerDraw |False
ParentBiliMg True ﬂ

All shown

Tip

A related feature of the Object Inspector is the ability to select the component referenced by a
property. To do this, double-click the property value with the left mouse button while keeping
the Ctrl key pressed. For example, if you have a MainMenu component in a form and you are
looking at the properties of the form in the Object Inspector, you can select the MainMenu
component by moving to the MainMenu property of the form and Ctrl+double-clicking the
value of this property. This selects the main menu indicated as the value of the property in
the Object Inspector.

Here are some other relevant changes of the Object Inspector:

e The list at the top of the Object Inspector shows the type of the object and can be

removed to save some space (and considering the presence of the Object TreeView).

The properties that reference an object are now a different color and may be expanded
without changing the selection.

You can optionally also view read-only properties in the Object Inspector. Of course,
they are grayed out.

e The Object Inspector has a new Properties dialog box (see Figure 1.7), which allows

you to customize the colors of the various types of properties and the overall behavior
of this window.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Form Designer 25

Properties dialog box

FIGURE 1.7: Object Inspector Properties ﬂ
The new Object Inspector Dbject Inspector

SpeedSettings: Optiohs

|Default colors and setings 7 | IV Show instanee list

v Show classname in instance list

Colors Iv Show statuz bar

. Categories Iv Render backaground grid

|:| E dit Background v Integral height [when not docked)

Il Editvalue [Show read only properties

] Instance List Classname
W Instance List Name

. Mame
W Feadonly
. Feferences

; Referances
B SubProperties e
W value v Expand inline

[« Show on events page

||:| clBtrFace j

Cancel ‘ Help ‘

is used for properties such as Color and Cursor, and is particularly useful for the
ImageIndex property of components connected with an ImageList.

NoTE

Interface properties can now be configured at design time using the Object Inspector. This
makes use of the Interfaced Component Reference model introduced in Kylix/Delphi 6, where
components may implement and hold references to interfaces as long as the interfaces are
implemented by components. Interfaced Component References work like plain old compo-
nent references, except that interface properties can be bound to any component that imple-
ments the necessary interface. Unlike component properties, interface properties are not
limited to a specific component type (a class or its derived classes). When you click the drop-
down list in the Object Inspector editor for an interface property, all components on the cur-
rent form (and linked forms) that implement the interface are shown.

Drop-Down Fonts in the Object Inspector

The Delphi Object Inspector has graphical drop-down lists for several properties. You might
want to add one showing the actual image of the font you are selecting, corresponding to the
Name subproperty of the Font property. This capability is actually built into Delphi, but it has
been disabled because most computers have a large number of fonts installed and rendering

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Since Delphi 5, the drop-down list for a property can include graphical elements. This

26

Chapter 1 e The Delphi 6 IDE

them can really slow down the computer. If you want to enable this feature, you have to install
in Delphi a package that enables the FontNamePropertyDisplayFontNames global variable
of the new VCLEditors unit. I've done this in the OiFontPk package, which you can find among
the program examples for this chapter on the companion CD-ROM.

Once this package is installed, you can move to the Font property of any component and use
the graphical Name drop-down menu, as displayed here:

Object Inspector
Farml: TFormi j
Froperties l Events]
Enabled True d
= Faont [TFont)
Charzet DEFAULT_CHARSET
Calar W chindow T et
Height -11
| I arne: IS Sans Serif bid
Pitch Lucida Console Pai
Sz Luelda Handwriiting
Shyle Lucida Sans
FormStyle [Lucida Sans Unicode
Height orXOr e~ _
HelpCantext MAISE WL
g S OOY (O HLTY b
HelpFile g o
Hint fhre eoe il
HorzScrollBar | [TControlScrollB ar)
lcon [Maone]
KeyPreview | Falze
Left 192 hd|
2 hidden

There is a second, more complex customization of the Object Inspector that | like and use
frequently: a custom font for the entire Object Inspector, to make its text more visible. This
feature is particularly useful for public presentations. You can find the package to install cus-
tom fonts in the Object Inspector on my Web site, www.marcocantu.com.

Property Categories

Delphi 5 also introduced the idea of property categories, activated by the Arrange option of
the local menu of the Object Inspector. If you set it, properties won’t be listed alphabetically
but arranged by group, with each property possibly appearing in multiple groups.

Categories have the benefit of reducing the complexity of the Object Inspector. You can
use the View submenu from the shortcut menu to hide properties of given categories, regard-
less of the way they are displayed (that is, even if you prefer the traditional arrangement by
name, you can still hide the properties of some categories).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Secrets of the Component Palette 27

Secrets of the Component Palette

The Component Palette is very simple to use, but there are a few things you might not know.
There are four simple ways to place a component on a form:

e After selecting a control in the palette, click within the form to set the position for the
control, and press-and-drag the mouse to size it.

e After selecting any component, simply click within the form to place it with the default

height and width.

e Double-click the icon in the palette to add a component of that type in the center of
the form.

e Shift-click the component icon to place several components of the same kind in the
form. To stop this operation, simply click the standard selector (the arrow icon) on the
left side of the Component Palette.

You can select the Properties command on the shortcut menu of the palette to completely
rearrange the components in the various pages, possibly adding new elements or just moving
them from page to page. In the resulting Properties page, you can simply drag a component
from the Components list box to the Pages list box to move that component to a different page.

Tip

When you have too many pages in the Component Palette, you'll need to scroll them to reach
a component. There is a simple trick you can use in this case: Rename the pages with shorter
names, so that all the pages will fit on the screen. Obvious—once you've thought about it.

The real undocumented feature of the Component Palette is the “hot-track” activation. By
setting special keys of the Registry, you can simply select a page of the palette by moving over
the tab, without any mouse click. The same feature can be applied to the component scrollers
on both sides of the palette, which show up when a page has too many components. To acti-
vate this hidden feature, you must add an Extras key under HKEY_CURRENT_USER\Software\
Borland\Delphi\6.0. Under this key enter two string values, AutoPaletteSelect and
AutoPaletteScrol1, and set each value to the string ‘1’.

Defining Event Handlers

There are several techniques you can use to define a handler for an event of a component:

e Select the component, move to the Events page, and either double-click in the white
area on the right side of the event or type a name in that area and press the Enter key.

e For many controls, you can double-click them to perform the default action, which is
to add a handler for the OnC11ick, OnChange, or OnCreate events.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

28

Chapter 1 e The Delphi 6 IDE

When you want to remove an event handler you have written from the source code of a
Delphi application, you could delete all of the references to it. However, a better way is to
delete all of the code from the corresponding procedure, leaving only the declaration and the
begin and end keywords. The text should be the same as what Delphi automatically gener-
ated when you first decided to handle the event. When you save or compile a project, Delphi
removes any empty methods from the source code and from the form description (including
the reference to them in the Events page of the Object Inspector). Conversely, to keep an
event handler that is still empty, consider adding a comment to it (even just the // charac-
ters), so that it will not be removed.

Copying and Pasting Components

An interesting feature of the Form Designer is the ability to copy and paste components
from one form to another or to duplicate the component in the form. During this operation,
Delphi duplicates all the properties, keeps the connected event handlers, and, if necessary,
changes the name of the control (which must be unique in each form).

It is also possible to copy components from the Form Designer to the editor and vice
versa. When you copy a component to the Clipboard, Delphi also places the textual descrip-
tion there. You can even edit the text version of a component, copy the text to the Clipboard,
and then paste it back into the form as a new component. For example, if you place a button
on a form, copy it, and then paste it into an editor (which can be Delphi’s own source-code
editor or any word processor), you’ll get the following description:

object Buttonl: TButton
Left = 152
Top = 104
Width = 75
Height = 25
Caption = 'Buttonl'’

TabOrder = 0
end

Now, if you change the name of the object, its caption, or its position, for example, or add
a new property, these changes can be copied and pasted back to a form. Here are some sample
changes:

object Buttonl: TButton
Left = 152
Top = 104
Width = 75
Height = 25
Caption = 'My Button'
TabOrder = 0
Font.Name = 'Arial’
end

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Secrets of the Component Palette 29

Copying this description and pasting it into the form will create a button in the specified
position with the caption My Button in an Arial font.

"To make use of this technique, you need to know how to edit the textual representation of
a component, what properties are valid for that particular component, and how to write the
values for string properties, set properties, and other special properties. When Delphi inter-
prets the textual description of a component or form, it might also change the values of other
properties related to those you’ve changed, and it might change the position of the compo-
nent so that it doesn’t overlap a previous copy. Of course, if you write something completely
wrong and try to paste it into a form, Delphi will display an error message indicating what
has gone wrong.

You can also select several components and copy them all at once, either to another form
or to a text editor. This might be useful when you need to work on a series of similar compo-
nents. You can copy one to the editor, replicate it a number of times, make the proper changes,
and then paste the whole group into the form again.

From Component Templates to Frames

When you copy one or more components from one form to another, you simply copy all of
their properties. A more powerful approach is to create a component template, which makes a
copy of both the properties and the source code of the event handlers. As you paste the tem-
plate into a new form, by selecting the pseudo-component from the palette, Delphi will
replicate the source code of the event handlers in the new form.

To create a component template, select one or more components and issue the Component >
Create Component Template menu command. This opens the Component Template Informa-
tion dialog box, where you enter the name of the template, the page of the Component
Palette where it should appear, and an icon.

Component Template Information

LComponent name: |EFERETTaEE

Palette page: |Tem|3|ales j

Palette lcan: | Change...
0K | Cancel ‘ Help |

By default, the template name is the name of the first component you’ve selected followed
by the word Template. The default template icon is the icon of the first component you've
selected, but you can replace it with an icon file. The name you give to the component template
will be used to describe it in the Component Palette (when Delphi displays the pop-up hint).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

30

Chapter 1 e The Delphi 6 IDE

All the information about component templates is stored in a single file, DELPHI32.DCT, but
there is apparently no way to retrieve this information and edit a template. What you can do,
however, is place the component template in a brand-new form, edit it, and install it again as
a component template using the same name. This way you can overwrite the previous definition.

Tip

A group of Delphi programmers can share component templates by storing them in a common
directory, adding to the Registry the entry CCLibDir under the key \Software\Borland\
Delphi\6.0\Component Templates.

Component templates are handy when different forms need the same group of components
and associated event handlers. The problem is that once you place an instance of the template
in a form, Delphi makes a copy of the components and their code, which is no longer related
to the template. There is no way to modify the template definition itself, and it is certainly not
possible to make the same change effective in all the forms that use the template. Am I asking
too much? Not at all. This is what the frames technology in Delphi does.

A frame is a sort of panel you can work with at design time in a way similar to a form. You
simply create a new frame, place some controls in it, and add code to the event handlers. After
the frame is ready, you can open a form, select the Frame pseudo-component from the Stan-
dard page of the Component Palette, and choose one of the available frames (of the current
project). After placing the frame in a form, you’ll see it as if the components were copied to it.
If you modify the original frame (in its own designer), the changes will be reflected in each of
the instances of the frame.

You can see a simple example, called Framesl, in Figure 1.8 (its code is available on the
companion CD). A screen snapshot doesn’t really mean much; you should open the program
or rebuild a similar one if you want to start playing with frames. Like forms, frames define
classes, so they fit within the VCL object-oriented model much more easily than component
templates. Chapter 4 provides an in-depth look at VCL and includes a more detailed descrip-
tion of frames. As you might imagine from this short introduction, frames are a powerful new
technique.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Managing Projects 31

FIGURE 1.8: .|l Frames1 M=l E3

The Frames1 example 0o M|
demonstrates the use of - s =<
frames. The frame (on the
left) and its instance inside
a form (on the right) are
kept in synch.

Delete o> o

Delete

=

=1

o
[

=

=1

o

(] o
Managing Projects
Delphi’s multitarget Project Manager (View > Project Manager) works on a project group,

which can have one or more projects under it. For example, a project group can include a
DLL and an executable file, or multiple executable files.

Tip In Delphi 6, all open packages will show up as projects in the Project Manager view, even if
they haven’t been added to the project group.

In Figure 1.9, you can see the Project Manager with the project group for the current
chapter. As you can see, the Project Manager is based on a tree view, which shows the hierar-
chical structure of the project group, the projects, and all of the forms and units that make up
each project. You can use the simple toolbar and the more complex shortcut menus of the
Project Manager to operate on it. The shortcut menu is context-sensitive; its options depend
on the selected item. There are menu items to add a new or existing project to a project
group, to compile or build a specific project, or to open a unit.

Of all the projects in the group, only one is active, and this is the project you operate upon
when you select a command such as Project > Compile. The Project pull-down of the main
menu has two commands you can use to compile or build all the projects of the group. (Strangely
enough, these commands are not available in the shortcut menu of the Project Manager for the
project group.) When you have multiple projects to build, you can set a relative order by using the
Build Sooner and Build Later commands. These two commands basically rearrange the projects

in the list.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

32 Chapter 1 e The Delphi 6 IDE

FIGURE 1.9: Project Manager

Delphi’s multitarget Project [Framest ene =] = > &l
Manager ‘ e Remove Activate
Filez Path
I@ o C:hndBoodetPart1s01
=15 ToD = ChmdScodetPart14 0148 ToDaT est % &dd...
—|- =] TaDoFarmm CAmdScodePart14014TaDaT est Remove File...
2] ToDoFomp... CimdScodetPart14014 TaDaT est Save
= Foml C:AmdScodesPart14014ToDoT est Optiors...
= @ Frames1.exe C:hvmdScodesPartTs014Frames1
=5 Fom C:vmdSeadetPart 1401 4FramesT Activate
2] Farm.pas C:hmd5SeodesPart1014Frames1 .
Compile
= Formi C:hndBoodetPart1W01 W Frames1 BLild
=] E‘ﬂ Frame C:hndBoodetPart1s01 4 Frames1 =
E] Framepas CAmdScode’Part14014Frames1 Wiew Source
= Framel C:AmdScodetPart1%014Franes1
Close
Remove Project
Build Sooher
Build Later
v Toolbar
Statuz Bar
v Dockable

Among its advanced features, you can drag source code files from Windows folders or Win-
dows Explorer onto a project in the Project Manager window to add them to that project.

The Project Manager automatically selects as the current project the one you are working
with—for example, opening a file. You can easily see which project is selected and change it
by using the combo box on the top of the form.

Tip Besides adding Pascal files and projects, you can add Windows resource files to the Project
Manager; they are compiled along with the project. Simply move to a project, select the Add
shortcut menu, and choose Resource File (*.rc) as the file type. This resource file will be auto-
matically bound to the project, even without a corresponding $R directive.

Delphi saves the project groups with the new .BPG extension, which stands for Borland
Project Group. This feature comes from C++Builder and from past Borland C++ compilers,
a history that is clearly visible as you open the source code of a project group, which is basi-
cally that of a makefile in a C/C++ development environment. Here is a simple example:

VERSION = BWS.01

H#

T

Iifndef ROOT
ROOT = $(MAKEDIR)\..

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Managing Projects 33

lendif

#

MAKE = $(ROOT)\bin\make.exe -$(MAKEFLAGS) -f$**
DCC = $(ROOT)\bin\dcc32.exe §$**

BRCC = $(ROOT)\bin\brcc32.exe $**

#

PROJECTS = Projectl.exe

#

default: $(PROJECTS)

#

Projectl.exe: Projectl.dpr
$(DCO)

Project Options

The Project Manager doesn’t provide a way to set the options of two different projects at one
time. What you can do instead is invoke the Project Options dialog from the Project Manager
for each project. The first page of Project Options (Forms) lists the forms that should be cre-
ated automatically at program startup and the forms that are created manually by the pro-
gram. The next page (Application) is used to set the name of the application and the name of
its Help file, and to choose its icon. Other Project Options choices relate to the Delphi com-
piler and linker, version information, and the use of run-time packages.

There are two ways to set compiler options. One is to use the Compiler page of the Project
Options dialog. The other is to set or remove individual options in the source code with the
{$X+} or {$X-} commands, where you’d replace X with the option you want to set. This sec-
ond approach is more flexible, since it allows you to change an option only for a specific
source-code file, or even for just a few lines of code. The source-level options override the
compile-level options.

All project options are saved automatically with the project, but in a separate file with a
.DOF extension. This is a text file you can easily edit. You should not delete this file if you
have changed any of the default options. Delphi also saves the compiler options in another
format in a CFG file, for command-line compilation. The two files have similar content but
a different format: The decc command-line compiler, in fact, cannot use .DOF files, but needs
the .CFG format.

Another alternative for saving compiler options is to press Ctrl+O+O (press the O key
twice while keeping Ctrl pressed). This inserts, at the top of the current unit, compiler direc-
tives that correspond to the current project options, as in the following listing:

{$A+!B_)C+’D+!E_IF_IG+YH+!I+’J+!K_IL+IM_YN+10+’P+’Q_IR_IS_YT_IU_’V+’
W-,X+,Y+,71)

{ SMINSTACKSIZE $00004000}

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

34 Chapter 1 e The Delphi 6 IDE

{ SMAXSTACKSIZE $00100000}
{ $IMAGEBASE $00400000}

{SAPPTYPE GUI}

Compiling and Building Projects
There are several ways to compile a project. If you run it (by pressing F9 or clicking the Run
toolbar icon), Delphi will compile it first. When Delphi compiles a project, it compiles only
the files that have changed.

If you select Compile > Build All instead, every file is compiled, even if it has not changed.
You should only need this second command infrequently, since Delphi can usually determine
which files have changed and compile them as required. The only exception is when you
change some project options, in which case you have to use the Build All command to put
the new options into effect.

"To build a project, Delphi first compiles each source code file, generating a Delphi com-
piled unit (DCU). (This step is performed only if the DCU file is not already up-to-date.)
The second step, performed by the linker, is to merge all the DCU files into the executable
file, optionally with compiled code from the VCL library (if you haven’t decided to use pack-
ages at run time). The third step is binding into the executable file any optional resource
files, such as the RES file of the project, which hosts its main icon, and the DFM files of the
forms. You can better understand the compilation steps and follow what happens during this
operation if you enable the Show Compiler Progress option (in the Preferences page of the
Environment Options dialog box).

WARNING peiphi doesn't always properly keep track of when to rebuild units based on other units you've
modified. This is particularly true for the cases (and there are many) in which user intervention
confuses the compiler logic. For example, renaming files, modifying source files outside the
IDE, copying older source files or DCU files to disk, or having multiple copies of a unit source
file in your search path can break the compilation. Every time the compiler shows some
strange error message, the first thing you should try is the Build All command to resynchronize
the make feature with the current files on disk.

The Compile command can be used only when you have loaded a project in the editor. If
no project is active and you load a Pascal source file, you cannot compile it. However, if you
load the source file as if it were a project, that will do the trick and you’ll be able to compile the
file. "To do this, simply select the Open Project toolbar button and load a PAS file. Now you
can check its syntax or compile it, building a DCU.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Managing Projects 35

I’'ve mentioned before that Delphi allows you to use run-time packages, which affect the
distribution of the program more than the compilation process. Delphi packages are dynamic
link libraries (DLLs) containing Delphi components. By using packages, you can make an
executable file much smaller. However, the program won’t run unless the proper dynamic
link libraries (such as vc150.bp1, which is quite large) are available on the computer where
you want to run the program.

If you add the size of this dynamic library to that of the small executable file, the total
amount of disk space required by the apparently smaller program built with run-time pack-
ages is much larger than the space required by the apparently bigger stand-alone executable
file. Of course, if you have multiple applications on a single system, you’ll end up saving a lot,
both in disk space and memory consumption at run time. The use of packages is often but
not always recommended. I'll discuss all the implications of packages in detail in Chapter 12.

In both cases, Delphi executables are extremely fast to compile, and the speed of the result-
ing application is comparable to that of a C or C++ program. Delphi compiled code runs at
least five times faster than the equivalent code in interpreted or “semicompiled” tools.

Exploring a Project

Past versions of Delphi included an Object Browser, which you could use when a project was
compiled to see a hierarchical structure of its classes and to look for its symbols and the
source-code lines where they are referenced. Delphi now includes a similar but enhanced
tool, called Project Explorer. Like the Code Explorer, it is updated automatically as you type,
without recompiling the project.

The Project Explorer allows you to list Classes, Units, and Globals, and lets you choose
whether to look only for symbols defined within your project or for those from both your
project and VCL. You can see an example with only project symbols in Figure 1.10.

FIGURE 1.10: Exploring Classes . =
Globals ||Elasses | Urits |
The Project Explorer =X Tobie Ao
oA .
SR TaF'erslstent Scope ||nheritance| Heferencesl
E-wg TComponent
E--b’g TControl 2 Buttoni
= TwinCantal & ButtoniTClick
EII-% TSecroling'winCantrol tﬁ' FormCreate
E--I% TCustomF o we) Label
E|--ri_'; TForm
% 1o

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

36 Chapter 1 e The Delphi 6 IDE

You can change the settings of this Explorer and those of the Code Explorer in the
Explorer page of the Environment Options or by selecting the Properties command in the
shortcut menu of the Project Explorer. Some of the Explorer categories you see in this win-
dow are specific to the Project Explorer; others relate to both tools.

Additional and External Delphi Tools

Besides the IDE, when you install Delphi you get other, external tools. Some of them, such
as the Database Desktop, the Package Collection Editor (PCE.exe), and the Image Editor
(ImagEdit.exe), are available from Tools menu of the IDE. In addition, the Enterprise edi-
tion has a link to the SQL Monitor (Sq1Mon. exe).

Other tools that are not directly accessible from the IDE include many command-line
tools you can find in the bin directory of Delphi. For example, there is a command-line
Delphi compiler (DCC. exe), a Borland resource compiler (BRC32.exe and BRCC32.exe), and an
executable viewer (TDump. exe).

Finally, some of the sample programs that ship with Delphi are actually useful tools that
you can compile and keep at hand. I’ll discuss some of these tools in the book, as needed.
Here are a few of the useful and higher-level tools, mostly available in the \DeTphi6\bin
folder and in the Tools menu:

Web App Debugger (WebAppDbg.exe) is the debugging Web server introduced in Delphi 6.
It is used to keep track of the requests send to your applications and debug them. I'll dis-
cuss this tool in Chapter 21.

XML Mapper (XmIMapper.exe), again new in Delphi 6, is a tool for creating XML trans-
formations to be applied to the format produced by the ClientDataSet component. More
on this topic in Chapter 22.

External Translation Manager (etm60.exe) is the stand-alone version of the Integrated
Translation Manager. This external tool can be given to external translators and is available
for the first time in Delphi 6.

Borland Registry Cleanup Utility (D6RegClean.exe) helps you remove all of the Registry
entries added by Delphi 6 to a computer.

TeamSource is an advanced version-control system provided with Delphi, starting with
version 5. The tool is very similar to its past incarnation and is installed separately from

Delphi.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Files Produced by the System 37

WinSight (Ws.exe) is a Windows “message spy” program available in the bin directory.

Database Explorer can be activated from the Delphi IDE or as a stand-alone tool, using
the DBExplor.exe program of the bin directory.

OpenHelp (oh.exe) is the tool you can use to manage the structure of Delphi’s own Help
files, integrating third-party files into the help system.

Convert (Convert.exe) is a command-line tool you can use to convert DFM files into the
equivalent textual description and vice versa.

Turbo Grep (Grep.exe) is a command-line search utility, much faster than the embedded
Find In Files mechanism but not so easy to use.

Turbo Register Server (TRegSvr.exe) is a tool you can use to register ActiveX libraries
and COM servers. The source code of this tool is available under \Demos\ActiveX\
TRegSvr.

Resource Explorer is a powerful resource viewer (but not a full-blown resource editor)
you can find under \Demos\ResXpTor.

Resource Workshop 'The Delphi 5 CD also includes a separate installation for Resource
Workshop. This is an old 16-bit resource editor that can also manage Win32 resource files.
It was formerly included in Borland C++ and Pascal compilers for Windows and was much
better than the standard Microsoft resource editors then available. Although its user inter-
face hasn’t been updated and it doesn’t handle long filenames, this tool can still be very
useful for building custom or special resources. It also lets you explore the resources of
existing executable files.

The Files Produced by the System

Delphi produces various files for each project, and you should know what they are and how
they are named. Basically, two elements have an impact on how files are named: the names

you give to a project and its units, and the predefined file extensions used by Delphi.

Table 1.1 lists the extensions of the files you’ll find in the directory where a Delphi project

resides. The table also shows when or under what circumstances these files are created and

their importance for future compilations.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

38

Chapter 1 e The Delphi 6 IDE

TABLE 1.1: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

.BMP, .ICO, .CUR Bitmap, icon, and cursor files: Development: Image Editor Usually not, but they might
standard Windows files used to be needed at run time and
store bitmapped images. for further editing.

.BPG Borland Project Group: the files Development Required to recompile all
used by the new multiple-target the projects of the group at
Project Manager. It is a sort of once.
makefile.

.BPL Borland Package Library: a DLL Compilation: Linking You'll distribute packages
including VCL components to be to other Delphi developers
used by the Delphi environment and, optionally, to end-
at design time or by applications users.
at run time. (These files used a
.DPL extension in Delphi 3.)

.CAB The Microsoft Cabinet com- Compilation Distributed to users.
pressed-file format used for Web
deployment by Delphi. A CAB
file can store multiple com-
pressed files.

.CFG Configuration file with project Development Required only if special
options. Similar to the DOF files. compiler options have

been set.

.DCP Delphi Component Package: a Compilation Required when you use
file with symbol information for packages. You'll distribute
the code that was compiled it only to other developers
into the package. It doesn’t along with DPL files.
include compiled code, which
is stored in DCU files.

.DCU Delphi Compiled Unit: the result ~ Compilation Only if the source code is
of the compilation of a Pascal file. not available. DCU files for

the units you write are an
intermediate step, so they
make compilation faster.

.DDP The new Delphi Diagram Portfo- ~ Development No. This file stores “design-

lio, used by the Diagram view of
the editor (was .DTl in Delphi 5)

Copyright ©2001 SYBEX, Inc., Alameda, CA

time only” information, not
required by the resulting
program but very impor-
tant for the programmer.

www.sybex.com

The Files Produced by the System 39

TABLE 1.1 continued: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?
.DFM Delphi Form File: a binary file Development Yes. Every form is stored in
with the description of the prop- both a PAS and a DFM file.
erties of a form (or a data mod-
ule) and of the components it
contains.

.~DF Backup of Delphi Form File Development No. This file is produced

(DFM). when you save a new ver-
sion of the unit related to
the form and the form file
along with it.

.DFN Support file for the Integrated Development (ITE) Yes (for ITE). These files
Translation Environment (there is contain the translated
one DFN file for each form and strings that you edit in the
each target language). Translation Manager.

.DLL Dynamic Link Library: another Compilation: Linking See .EXE.
version of an executable file.

.DOF Delphi Option File: a text file with Development Required only if special
the current settings for the pro- compiler options have been
ject options. set.

.DPK Delphi Package: the project Development Yes.
source code file of a package.

.DPR Delphi Project file. (This file actu- Development Yes.
ally contains Pascal source code.)

.~DP Backup of the Delphi Project file Development No. This file is generated
(.DPR). automatically when you

save a new version of a
project file.

.DSK Desktop file: contains informa- Development No. You should actually

tion about the position of the
Delphi windows, the files open in
the editor, and other Desktop
settings.

Copyright ©2001 SYBEX, Inc., Alameda, CA

delete it if you copy the
project to a new directory.

www.sybex.com

40

Chapter 1 e The Delphi 6 IDE

TABLE 1.1 continued: Delphi Project File Extensions

Extension File Type and Description Creation Time Required to Compile?

.DSM Delphi Symbol Module: stores all ~ Compilation (but only if the No. Object Browser uses
the browser symbol information. Save Symbols option is set) this file, instead of the data

in memory, when you can-
not recompile a project.

.EXE Executable file: the Windows Compilation: Linking No. This is the file you'll
application you've produced. distribute. It includes all of

the compiled units, forms,
and resources.

HTM Or .HTML, for Hypertext Markup ~ Web deployment of an No. This is not involved in
Language: the file format used ActiveForm the project compilation.
for Internet Web pages.

LIC The license files related to an ActiveX Wizard and other ~ No. It is required to use the
OCX file. tools control in another develop-

ment environment.

.OBJ Object (compiled) file, typical of Intermediate compilation [t might be required to
the C/C++ world. step, generally not used in - merge Delphi with C++

Delphi compiled code in a single
project.

OCX OLE Control Extension: a special Compilation: Linking See .EXE.
version of a DLL, containing
ActiveX controls or forms.

.PAS Pascal file: the source code of a Development Yes.

Pascal unit, either a unit related
to a form or a stand-alone unit.

~PA Backup of the Pascal file (.PAS). Development No. This file is generated

automatically by Delphi
when you save a new ver-
sion of the source code.

.RES, .RC Resource file: the binary file asso- Development Options dia- Yes. The main RES file of an

ciated with the project and usu-
ally containing its icon. You can
add other files of this type to a
project. When you create custom
resource files you might use also
the textual format, .RC.

Copyright ©2001 SYBEX, Inc., Alameda, CA

log box. The ITE (Integrated
Translation Environment)
generates resource files
with special comments.

application is rebuilt by Del-
phi according to the infor-
mation in the Application
page of the Project Options
dialog box.

www.sybex.com

The Files Produced by the System 41

TABLE 1.1 continued: Delphi Project File Extensions

Extension

File Type and Description

Creation Time

Required to Compile?

.RPS

.TLB

TODO

.UDL

Translation Repository (part of
the Integrated Translation Envi-

ronment).

Type Library: a file built automati-
cally or by the Type Library Editor

for OLE server applications.

To-do list file, holding the items

related to the entire project.

Microsoft Data Link.

Development (ITE)

Development

Development

Development

No. Required to manage
the translations.

This is a file other OLE pro-
grams might need.

No. This file hosts notes for
the programmers.

Used by ADO to refer to a
data provider. Similar to an
alias in the BDE world (see
Chapter 12).

Besides the files generated during the development of a project in Delphi, there are many
others generated and used by the IDE itself. In Table 1.2, I've provided a short list of exten-
sions worth knowing about. Most of these files are in proprietary and undocumented for-

mats, so there is little you can do with them.

TABLE 1.2: Selected Delphi IDE Customization File Extensions

Extension File Type

.DCl Delphi code templates

.DRO Delphi‘s Object Repository (The repository should be modified with the Tools > Repository
command.)

.DMT Delphi menu templates

.DBI Database Explorer information

.DEM Delphi edit mask (files with country-specific formats for edit masks)

.DCT Delphi component templates

.DST Desktop settings file (one for each desktop setting you've defined)

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

42

Chapter 1 e The Delphi 6 IDE

Looking at Source Code Files

I've just listed some files related to the development of a Delphi application, but I want to spend
a little time covering their actual format. The fundamental Delphi files are Pascal source code
files, which are plain ASCII text files. The bold, italic, and colored text you see in the editor
depends on syntax highlighting, but it isn’t saved with the file. It is worth noting that there is one
single file for the whole code of the form, not just small code fragments.

Tip

In the listings in this book, I've matched the bold syntax highlighting of the editor for key-
words and the italic for strings and comments.

For a form, the Pascal file contains the form class declaration and the source code of the
event handlers. The values of the properties you set in the Object Inspector are stored in a
separate form description file (with a .DFM extension). The only exception is the Name prop-
erty, which is used in the form declaration to refer to the components of the form.

The DFM file is a binary and, in Delphi, can be saved either as a plain-text file or in the tradi-
tional Windows Resource format. You can set the default format you want to use for new pro-
jects in the Preferences page of the Environment Options dialog box, and you can toggle the
format of individual forms with the Text DFM command of a form’s shortcut menu. A plain-text
editor can read only the text version. However, you can load DFM files of both types in the
Delphi editor, which will, if necessary, first convert them into a textual description. The simplest
way to open the textual description of a form (whatever the format) is to select the View As Text
command on the shortcut menu in the Form Designer. This closes the form, saving it if neces-
sary, and opens the DFM file in the editor. You can later go back to the form using the View As
Form command on the shortcut menu in the editor window.

You can actually edit the textual description of a form, although this should be done with
extreme care. As soon as you save the file, it will be turned back into a binary file. If you've
made incorrect changes, compilation will stop with an error message and you’ll need to cor-
rect the contents of your DFM file before you can reopen the form. For this reason, you
shouldn’t try to change the textual description of a form manually until you have good
knowledge of Delphi programming.

Tip

In the book, | often show you excerpts of DFM files. In most of these excerpts, | only show the
most relevant components or properties; generally, | have removed the positional properties,
the binary values, and other lines providing little useful information.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Files Produced by the System 43

In addition to the two files describing the form (PAS and DFM)), a third file is vital for
rebuilding the application. This is the Delphi project file (DPR), which is another Pascal
source code file. This file is built automatically, and you seldom need to change it manually.
You can see this file with the View > Project Source menu command.

Some of the other, less relevant files produced by the IDE use the structure of Windows
INT files, in which each section is indicated by a name enclosed in square brackets. For exam-
ple, this is a fragment of an option file (DOF):

[CompiTer]

A=1

B=0
ShowHints=1
ShowWarnings=1

[Linker]
MinStackSize=16384
MaxStackSize=1048576
ImageBase=4194304

[Parameters]
RunParams=
HostApplication=

The same structure is used by the Desktop files (DSK), which store the status of the Delphi
IDE for the specific project, listing the position of each window. Here is a small excerpt:

[MainWindow]
Create=1
Visible=1
State=0
Left=2
Top=0
Width=800
Height=97

Norte A lot of information related to the status of the Delphi environment is saved in the Windows
Registry, as well as in DSK and other files. I've already indicated a few special undocumented
entries of the Registry you can use to activate specific features. You should explore the
HKEY_CURRENT_USER\Software\Borland\Delphi\6.0 section of the Registry to examine
all the settings of the Delphi IDE (including all those you can modify with the Project Options
and the Environment Options dialog boxes, as well as many others).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

44 Chapter 1 e The Delphi 6 IDE

The Object Repository

Delphi has menu commands you can use to create a new form, a new application, a new data
module, a new component, and so on. These commands are located in the File > New menu
and in other pull-down menus. What happens if you simply select File > New > Other?

Delphi opens the Object Repository, which is used to create new elements of any kind:

forms, applications, data modules, thread objects, libraries, components, automation objects,

and more.

The New dialog box (shown in Figure 1.11) has several pages, hosting all the new elements
you can create, existing forms and projects stored in the Repository, Delphi wizards, and the
forms of the current project (for visual form inheritance). The pages and the entries in this

tabbed dialog box depend on the specific version of Delphi, so I won’t list them here.

FIGURE 1.11: P e i &
The first page of the New [ata Modules] Buziness] WebSnap] ‘WebServices]
dialog box, generally Mew l ActiveX | Muliier | Proieot! | Fomns | Dislbgs | Projects |
known as the " Object —
Repository” .
Application Batch File [Component Conzole Control Panel
Application Application Application
B W O &
Control Panel Data Module DLL “Wizard Form Frame Package
b cdule
= - Ly,
= § 2 Ej
Froject Group Report Resource DLL Service Service Teut
YWizard Application
@ F
ML
Thread Object rit “Web Server XML Data
Application Binding
i i i
(u] | Cancel Help
Tip The Object Repository has a shortcut menu that allows you to sort its items in different ways

(by name, by author, by date, or by description) and to show different views (large icons, small
icons, lists, and details). The Details view gives you the description, the author, and the date of
the tool, information that is particularly important when looking at wizards, projects, or forms

that you've added to the Repository.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Object Repository 45

The simplest way to customize the Object Repository is to add new projects, forms, and data
modules as templates. You can also add new pages and arrange the items on some of them (not
including the New and “current project” pages). Adding a new template to Delphi’s Object
Repository is as simple as using an existing template to build an application. When you have
a working application you want to use as a starting point for further development of similar
programs, you can save the current status to a template, ready to use later on. Simply use the
Project > Add To Repository command, and fill in its dialog box.

Just as you can add new project templates to the Object Repository, you can also add new
form templates. Simply move to the form that you want to add and select the Add To Reposi-
tory command of its shortcut menu. Then indicate the title, description, author, page, and
icon in its dialog box.

You might want to keep in mind that as you copy a project or form template to the reposi-
tory and then copy it back to another directory, you are simply doing a copy and paste opera-
tion. This isn’t much different than copying the files manually.

The Empty Project Template

When you start a new project, it automatically opens a blank form, too. If you want to base a
new project on one of the form objects or Wizards, this is not what you want, however. To
solve this problem, you can add an Empty Project template to the Gallery.

The steps required to accomplish this are simple:

1. Create a new project as usual.
2. Remove its only form from the project.

3. Add this project to the templates, naming it Empty Project.

When you select this project from the Object Repository, you gain two advantages: You have
your project without a form, and you can pick a directory where the project template’s files will
be copied. There is also a disadvantage—you have to remember to use the File > Save Project
As command to give a new name to the project, because saving the project any other way
automatically uses the default name in the template.

To further customize the Repository, you can use the Tools > Repository command. This
opens the Object Repository dialog box, which you can use to move items to different pages,
to add new elements, or to delete existing ones. You can even add new pages, rename or

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

46

Chapter 1 e The Delphi 6 IDE

delete them, and change their order. An important element of the Object Repository setup is
the use of defaults:

e Use the New Form check box below the list of objects to designate a form as the one to
be used when a new form is created (File > New Form).

e The Main Form check box indicates which type of form to use when creating the main
form of a new application (File > New Application) when no special New Project is
selected.

e The New Project check box, available when you select a project, marks the default pro-
ject that Delphi will use when you issue the File > New Application command.

Only one form and only one project in the Object Repository can have each of these three
settings marked with a special symbol placed over its icon. If no project is selected as New
Project, Delphi creates a default project based on the form marked as Main Form. If no form
is marked as the main form, Delphi creates a default project with an empty form.

When you work on the Object Repository, you work with forms and modules saved in the
OBJREPOS subdirectory of the Delphi main directory. At the same time, if you use a form or
any other object directly without copying it, then you end up having some files of your pro-
ject in this directory. It is important to realize how the Repository works, because if you want
to modify a project or an object saved in the Repository, the best approach is to operate on
the original files, without copying data back and forth to the Repository.

Installing New DLL Wizards

Technically, new wizards come in two different forms: They may be part of components or pack-
ages, or they may be distributed as stand-alone DLLs. In the first case, they would be installed
the same way you install a component or a package. When you‘ve received a stand-alone DLL,
you should add the name of the DLL in the Windows Registry under the key \Software\Borland\
Delphi\6.0\Experts. Simply add a new string key under this key, choose a name you like (it
doesn’t really matter what it is), and use as text the path and filename of the wizard DLL. You
can look at the entries already present under the Experts key to see how the path should be
entered.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

What’s Next? 47

What’s Next?

This chapter has presented an overview of the new and more advanced features of the Delphi 6
programming environment, including tips and suggestions about some lesser-known features
that were already available in previous Delphi versions. I didn’t provide a step-by-step
description of the IDE, partly because it is generally simpler to start u#sing Delphi than it is to
read about how to use it. Moreover, there is a detailed Help file describing the environment
and the development of a new simple project; and you might already have some exposure to
one of the past versions of Delphi or a similar development environment.

Now we are ready to spend the next two chapters looking into the Object Pascal language
and then proceed by studying the RTL and the class library included in Delphi 6.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

The Object Pascal
Language: Classes and
Objects

e The Pascal language

e New conditional compilation and hint directives
e Classes and objects

e The Self keyword

e Class methods and overloading

e Encapsulation: private and public

e Using properties

e Constructors

e Objects and memory

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

50 Chapter 2 e The Object Pascal Language: Classes and Objects

Most modern programming languages support object-oriented programming (OOP). OOP
languages are based on three fundamental concepts: encapsulation (usually implemented
with classes), inheritance, and polymorphism (or late binding).

You can write Delphi applications even without knowing the details of Object Pascal. As
you create a new form, add new components, and handle events, Delphi prepares most of the
related code for you automatically. But knowing the details of the language and its implemen-
tation will help you to understand precisely what Delphi is doing and to master the language
completely.

A single chapter doesn’t allow space for a full introduction to the principles of object-oriented
programming and the Object Pascal language. Instead, I will outline the key OOP features of
the language and show how they relate to everyday Delphi programming. Even if you don’t have
a precise knowledge of OOP, the chapter will introduce each of the key concepts so that you
won’t need to refer to other sources.

The Pascal Language

The Object Pascal language used by Delphi is an OOP extension of the classic Pascal language,
which Borland pushed forward for many years with its Turbo Pascal compilers. The syntax of
the Pascal language is known to be quite verbose and more readable than, for example, the C
language. Its OOP extension follows the same approach, delivering the same power of the
recent breed of OOP languages, from Java to C#.

In this chapter, I'll discuss only the object-oriented extensions of the Pascal language avail-
able in Delphi. However, I'll highlight recent additions Borland has done to the core lan-
guage. These features have been introduced in Delphi 6 and are, at least partially, related to
the Linux version of Delphi.

New Pascal features include the $IF and $ELSEIF directives for conditional compilation,
the $WARN and $MESSAGE directives, and the platform, 1ibrary, and deprecated hint direc-
tives. These topics are discussed in the following sections. Changes to the assembler (with
new directives, support for MMX and Pentium Pro instructions, and many more features)
are really beyond the scope of this book.

Other relatively minor changes in the language include a change in the default value for
the $SWRITEABLECONST compiler switch, which is now disabled. This option allows programs
to modify the value of typed constants and should generally be left disabled, using variables
instead of constants for modifyable values. Another change is the support for the Int64 data
type in variants. Finally, you can assign specific values to the elements of an enumeration (as
in the C/C++ language), instead of using the default sequence of values.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Pascal Language 51

The New $IF Compiler Directive

Delphi has always had a $IFDEF directive you could use to test whether a specific symbol was
defined. (Delphi also has a $IFNDEF directive, with the opposite test.) This is used to obtain
conditional compilation, as in
{$IFDEF DEBUG}
// executes only if the DEBUG directive is set
ShowMessage ('Executing critical code');
{ $SENDIF]
By setting or not setting the DEBUG directive and recompiling, the extra line of code will be
included or skipped by the compiler.

This code directive is powerful, but checking for multiple versions of Delphi and operating
systems can force you to use multiple-nested $IFDEF directives, making the code totally unread-
able. For this reason, Borland has introduced a new and more powerful directive for condi-
tional compilation, $IF. Inside the directive you can use the Defined function to check whether
a conditional symbol is defined, or use the Declared function to see whether a language con-
stant is defined and use these constants within a constant Boolean expression. Here is some
code that shows how to use a constant within the $IF directive (you can find this and other code
excerpts of this and the next section in the IfDirective example on the companion CD):

const
DebugControl = 2;

{$IF Defined(DEBUG) and (DebugControl > 3)}
ShowMessage ('Executing critical code');
{$IFEND})

Notice that the statement is closed by a $IFEND and that you can also have an optional $ELSE
branch. You can also concatenate conditions with the $ELSEIF directive, followed by another
condition and evaluated only as an alternative to the $IF directive it refers to:

{$IF one}
{$ELSEIF two}
{$ELSE}
[$IFEND}
Within the expressions of the $IF directive, you can use only untyped constants, which are
really and invariably treated as constants by the compiler. You can follow the general rules of
Pascal constant expressions. You can use all the language operators, the and, or, xor, and not

Boolean operators, and mathematical ones including div, mod, +, -, *, /, > and <, to mention
just a few common ones. You can also use predefined functions such as SizeOf, High, Low,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

52 Chapter 2 e The Object Pascal Language: Classes and Objects

Prev, Succ, and others listed in the Delphi Help page “Constant expressions.” The expression
can use constant symbols of any type, including floats and strings, so long as the expression
itself ultimately evaluates to a True or False value.

WARNING |y these constant expressions, it is not possible to use type constants, which can be optionally
modified in the code depending on the status of the writeable-typed constants directive ($J or
$WRITEABLECONST). In any case, using constants you can modify is quite a bad idea in the
first place.

Delphi provides a few predefined conditional symbols, including compiler version, the
operating system, the GUI environment, and so on. I've listed the most important ones in
"Table 2.1. You can also use the RTLVersion constant defined in the System unit to test which
version of Delphi (and its run-time library) you are compiling on. The predefined symbol
ConditionalExpressions can be used to shield the new directives from older versions of
Delphi:

{$IFDEF ConditionalExpressions}
{$IF System.RTLVersion > 14.0}
// do something

{$IFEND}
{$ENDIF}

TABLE 2.1: Commonly Used Predefined Conditional Symbols

Symbol Description

VER140 Compiling with Delphi 6, which is the 14.0 version of the Borland Pascal com-
piler; Delphi 5 used VER130, with lower numbers for past versions.

MSWINDOWS Compiling on the Windows platform (new in Delphi 6).

LINUX Compiling on the Linux platform. On Kylix, there are also the LINUX32,
POSIX, and ELF predefined symbols.

WIN32 Compiling only on the 32-bit Windows platform. This symbol was introduced

in Delphi 2 to distinguish from 16-bit Windows compilations (Delphi 1 defined
the WINDOWS symbol). You should use WIN32 only to mark code specifically
for Win32, not Win16 or future Win64 platforms (for which the WIN64 symbol
has been reserved). Use MSWINDOWS, instead, to distinguish between Win-
dows and other operating systems.

CONSOLE Compiling a console application, and not a GUI one. This symbol is meaningful
only under Windows, as all Linux applications are console applications.

BCB Defined when the C++Builder IDE invokes the Pascal compiler.

ConditionalExpressions Indicates that the $IF directive is available. It is defined in Kylix and Delphi 6,
but not in earlier versions.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Pascal Language 53

Tip

| recommend using conditional compilation sparingly and only when it is really required. It is
generally better, whenever possible, to write code that can adapt to different situations—for
example, adding different versions of the same class (or different inherited classes) to the same
program. Excessive use of conditional compilation makes a program hard to read and to
debug.

WARNING Remember to issue a Build All command when you change a conditional symbol or a constant,

which can affect a conditional compilation; otherwise the affected units won't be recompiled
unless their source code changes.

New Hint Directives

Supporting multiple operating systems within the same source code base implies a number of
compatibility issues. Besides a modified run-time library and a wholly new component library
(discussed in Chapter 4, “The Run-Time Library,” and Chapter 5, “Core Library Classes”),
Delphi 6 includes special directives Borland uses to mark special portions of the code. As they
introduced the idea of custom warnings and messages (described in the previous section),
they’ve added a few special predefined ones.

The platform Directive

"The first directive of this group is the platform directive, used to mark nonportable code. This
directive can be used to mark procedures, variables, types, and almost any defined symbol.
Borland uses platform in its libraries, so that when you use a platform-specific capability
(for example, calling the IncludeTrailingBackslash function of the SysUtils unit), you'll
receive a warning message, such as:

Symbol 'IncludeTrailingBackslash' is specific to a platform.

This warning is a hint for developers who plan to port their code between the Linux and
Windows platforms, even in the future. In many cases, you’ll be able to find an alternative
approach that is fully platform independent. Check the help file (or eventually the library
source code) for hints in this direction. In the case of the IncTudeTrailingBackslash func-
tion, there is now a new version, called IncludeTrailingDelimiter, that is also portable to a
Unix-based file system.

Of course you can use the platform directive to mark your code, for example, if you write a
component or library that has platform-specific features. Here are a few examples:

var
windowsversion: Integer = 2000 platform;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

54

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

procedure Test; platform;
begin

Beep;
end;

type
TWinClass = class
x: Integer;
end platform;

The code fragments of this section are available, for your experiments, in the IfDirective
example on the companion CD.

NotE

The position of semicolons for hint directives can be quite confusing at first. The rule is that a
hint directive must appear before the semicolon following the symbol it modifies. But a proce-
dure, function, or unit header declaration can be followed only by reserved words, so its hint
directive can appear following the semicolon. A type, variable, or constant declaration can be
followed by another identifier, so the hint directive must come before the semicolon closing its
declaration. Part of the rationale behind this is that the hint directives are not reserved words,
so they can be used as the name of an identifier.

The deprecated Directive

The deprecated directive works in a similar way to the platform directive; the only real dif-
ferences are that it is used in a different context and produces a different compiler warning.
The role of deprecated is to mark identifiers that are still part of the system for compatibility
reasons, but either are going to be removed in the future or expose you to risks of incompati-

bility. This symbol is used sparingly in the Delphi library.

The library Directive

"The 1ibrary directive works in a similar way to deprecated and platform; its role is to mark
out code or components that are specific to a library (either VCL or CLX) and are not portable
among them. However, apparently this symbol is never used within the Delphi library.

The $WARN Directive

The $WARNINGS directive (and the corresponding compiler option) allows you to turn off all
the warning messages. Most programmers like to keep the messages on and tend to work
with programs that compile with no hints and warnings. With the advent of the three hint
directives discussed in the last section, however, there are programs specifically aimed for a
platform, which cannot compile without compatibility warnings.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Introducing Classes and Objects 55

"To overcome this situation, Delphi 6 introduces the $WARN directive, specifically aimed at
disabling hint directives. As an example, you’ll disable platform hints by writing this code:

{ SWARN SYMBOL_PLATFORM OFF}

The $WARN directive has five different parameters, related to the three hint directives, and
can use the ON and OFF values for each:

e SYMBOL_PLATFORM and UNIT_PLATFORM can be used to disable the platform directive in
the current unit or in the unit where the directive is specified. The warning, in fact, is
issued while compiling the code that uses the symbol, not while compiling the code
with the definition.

e SYMBOL_LIBRARY and UNIT_LIBRARY work on the Tibrary directive in the same manner
as the platform-related parameters above.

e SYMBOL_DEPRECATED can be used to disable the deprecated directive.

The $MESSAGE Directive

The compiler has now the ability to generate warnings in many different situations, so that the
developer of a library or a portion of a program can let other programmers know of a given
problem or risk in using a given feature, when the program can still legally compile. An exten-
sion to this idea is to let programmers insert custom warning messages in the code, with this
syntax:

{$MESSAGE '01d version of the unit: consider using the updated version'}

Compiling this code will issue a hint message with the text provided. This feature can be
used to indicate possible problems, suggest alternative approaches, mark unfinished code,
and more. This is probably more reliable than using a TODO item (discussed in the preceding
chapter), because a programmer might not open the To-Do List window but the compiler
will remind him of the pending problem. However, it is the compiler that issues the message,
so you’ll see it even if the given portion of the code is not really used by the program because
the linker will remove it from the executable file.

These type of free messages, like the hint directives, become very useful to let the developer
of a component communicate with the programmers using it, warning of potential pitfalls.

Introducing Classes and Objects

The cornerstone of the OOP extensions available in Object Pascal is represented by the
class keyword, which is used inside type declarations. Classes define the blueprint of the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

56 Chapter 2 e The Object Pascal Language: Classes and Objects

objects you create in Delphi. As the terms class and object are commonly used and often mis-
used, let’s be sure we agree on their definitions.

A class is a user-defined data type, which has a state (its representation) and some opera-
tions (its behavior). A class has some internal data and some methods, in the form of proce-
dures or functions, and usually describes the generic characteristics and behavior of some
similar objects.

An object is an instance of a class, or a variable of the data type defined by the class. Objects
are actual entities. When the program runs, objects take up some memory for their internal
representation. The relationship between object and class is the same as the one between

variable and type.

To declare a new class data type in Object Pascal, with some local data fields and some
methods, use the following syntax:

type
TDate = class
Month, Day, Year: Integer;
procedure SetValue (m, d, y: Integer);
function LeapYear: Boolean;
end;

NortE The convention in Delphi is to use the letter T as a prefix for the name of every class you write
and every other type (T stands for Type). This is just a convention—to the compiler, T is just a
letter like any other—but it is so common that following it will make your code easier to
understand.

The following is a complete class definition, with two methods declared and not yet fully
defined. The definition of these two methods (the LeapYear function and the SetValue pro-
cedure) must be present in the same unit of the class declaration and are written with this
syntax:

procedure TDate.SetValue (m, d, y: Integer);
begin

Month := m;

Day := d;

Year :=vy;
end;

function TDate.LeapYear: Boolean;
begin
// call IsLeapYear in SysUtils.pas
Result := IsLeapYear (Year);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Introducing Classes and Objects 57

The method names are prefixed with the class name (using the dot-notation), because a unit
can hold multiple classes, possibly with methods having the same names. You can actually
avoid retyping the method names and parameter list by using the class completion feature of
the editor. Simply type or modify the class definition and press Ctrl+Shift+C while the cursor
is within the class definition itself; this will allow Delphi to generate a skeleton of the defini-
tion of the methods, including the begin and end statements.

Once the class has been defined, we can create an object and use it as follows:

var
ADay: TDate;

begin
// create an object
ADay := TDate.Create;
// use the object
ADay.SetValue (1, 1, 2000);
if ADay.lLeapYear then

ShowMessage ('Leap year: ' + IntToStr (ADay.Year));

// destroy the object
ADay.Free;

end;

Notice that ADay . LeapYear is an expression similar to ADay . Year, although the firstis a
function call and the second a direct data access. You can optionally add parentheses after the
call of a function with no parameters. You can find the code snippets above in the source

code of the Datel example; the only difference is that the program creates a date based on
the year provided in an edit box.

Classes, Objects, and Visual Programming

When I teach classes about OOP in Delphi, I always tell my students that regardless of how
much OOP you know and how much you use it, Delphi forces you in the OOP direction.
Even if you simply create a new application with a form and place a button over it to execute
some code when the button is pressed, you are building an object-oriented application. In
fact, the form is an object of a new class (by default TForm1, which inherits from the base
TForm class provided by Borland), and the button is an instance of the TButton class, provided
by Borland, as you can see in the following code snippet:

type

TForml = class(TForm)

Buttonl: TButton;
end;

Given these premises, it would be very hard to build a Delphi application without using
classes and objects. Yes, I know it is technically possible, but I doubt it would make a lot of

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

58

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

sense. Not using objects and classes with Delphi would probably be more difficult than using
them, as you have to give up all of the design-time tools for visual programming.

In any case, the real challenge is using OOP properly, something I'll try to teach you in
this chapter (and in the rest of the book), along with an introduction to the key elements of
the Object Pascal language.

The Self Keyword

Methods are very similar to procedures and functions. The real difference is that methods
have an implicit parameter, which is a reference to the current object. Within a method you
can refer to this parameter—the current object—using the Sel1f keyword. This extra hidden
parameter is needed when you create several objects of the same class, so that each time you
apply a method to one of the objects, the method will operate only on its own data and not
affect sibling objects.

For example, in the SetValue method of the TDate class, listed earlier, we simply use Month,

Year, and Day to refer to the fields of the current object, something you might express as
Self.Month := m;
Self.Day := d;

This is actually how the Delphi compiler translates the code, 7ot how you are supposed to
write it. The Sel1f keyword is a fundamental language construct used by the compiler, but at
times it is used by programmers to resolve name conflicts and to make tricky code more
readable.

NotE

The C++ and Java languages have a similar feature based on the keyword this.

All you really need to know about Self is that the technical implementation of a call to a
method differs from that of a call to a generic subroutine. Methods have an extra hidden
parameter, Se1f. Because all this happens behind the scenes, you do not need to know how
Se1f works at this time.

If you look at the definition of the TMethod data type in the System unit, you'll see that it is
a record with a Code field and a Data field. The first is a pointer to the function’s address in
memory; the second the value of the Se1f parameter to use when calling that function address.
We’ll discuss method pointers in Chapter 5.

Overloaded Methods

Object Pascal supports overloaded functions and methods: you can have multiple methods
with the same name, provided that the parameters are different. By checking the parameters,
the compiler can determine which of the versions of the routine you want to call.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Introducing Classes and Objects 59

There are two basic rules:
e Each version of the method must be followed by the overload keyword.

e The differences must be in the number or type of the parameters or both. The return
type cannot be used to distinguish between two methods.

Overloading can be applied to global functions and procedures and to methods of a class.
As an example of overloading, I've added to the TDate class two different versions of the

SetValue method:
type
TDate = class
public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
...//the rest of the class declaration

procedure TDate.SetValue (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin

fDate := NewDate;
end;

NotE

In Delphi 6, the compiler has been enhanced to improve the resolution of overloaded meth-
ods, allowing the compilation of calls that were considered ambiguous. In particular, the com-
piler handles the difference between AnsiString and WideString types. The overload
resolution also has better support for variant-type parameters (which will provide matches in
case there is no exact match for another overloaded version) and interfaces (which are given
precedence to object types). Finally, the compiler allows the ni1 value to match an interface-
type parameter. Some of these improvements were already introduced in the Kylix compiler.

Creating Components Dynamically

In Delphi, the Sel1f keyword is often used when you need to refer to the current form explic-
itly in one of its methods. The typical example is the creation of a component at run time,
where you must pass the owner of the component to its Create constructor and assign the same
value to its Parent property. (The difference between Owner and Parent properties is discussed
in the next chapter.) In both cases, you have to supply the current form as parameter or value,
and the best way to do this is to use the Sel1f keyword.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

60 Chapter 2 e The Object Pascal Language: Classes and Objects

"To demonstrate this kind of code, I've written the CreateC example (the name stands for
Create Component) included on the companion CD. This program has a simple form with no
components and a handler for its OnMouseDown event. I've used OnMouseDown because it
receives as its parameter the position of the mouse click (unlike the OnCl1ick event). I need
this information to create a button component in that position. Here is the code of the
method:

procedure TForml.FormMouseDown (Sender: TObject;

Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var

Btn: TButton;
begin

Btn := TButton.Create (Self);

Btn.Parent := Self;

Btn.Left := X;

Btn.Top :=Y;

Btn.Width := Btn.Width + 50;

Btn.Caption := Format ('Button at %d, %d', [X, Y]);
end;

The effect of this code is to create buttons at mouse-click positions, with a caption indicat-
ing the exact location, as you can see in Figure 2.1. In the code above, notice in particular the
use of the Se1f keyword, as the parameter of the Create method and as the value of the Parent
property. I'll discuss these two elements (ownership and the Parent property) in Chapter 5.

FIGURE 2.1: -l

The output of the CreateC
example, which creates
Button components at

run time

Button at 194, 107
Button at 92,174

It is very common to write code like the above method using a with statement, as in the
following listing:

procedure TForml.FormMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Introducing Classes and Objects 61

begin
with TButton.Create (Self) do
begin
Parent :=
Left := X;
Top :=Y;
Width :=
Caption :
end;
end;

Self;

Width + 50;
= Format ('Button in %d, %d', [X, Y]);

Tip

When writing a procedure like the code you've just seen, you might be tempted to use the
Forml variable instead of Self. In this specific example, that change wouldn’t make any prac-
tical difference, but if there are multiple instances of a form, using Forml would be an error. In
fact, if the Forml variable refers to the first form of that type being created, by clicking in
another form of the same type, the new button will always be displayed in the first form. Its
Owner and Parent will be Forml and not the form the user has clicked. In general, referring to
a particular instance of a class when the current object is required is bad OOP practice.

Class Methods and Class Data

When you define a field in a class, you actually specify that the field should be added to each
object of that class. Each instance has its own independent representation (referred to by the
Self pointer). In some cases, however, it might be useful to have a field that is shared by all
the objects of a class.

Other object-oriented programming languages have formal constructs to express this,
while in Object Pascal we can simulate this feature using the encapsulation provided at the
unit level. You can simply add a variable in the impTlementation portion of a unit, to obtain a
class variable—a single memory location shared by all of the objects of a class.

If you need to access this value from outside the unit, you might use a method of the class.
However, this forces you to apply this method to one of the instances of the class. An alterna-
tive solution is to declare a class method. A class method cannot access the data of any single
object but can be applied to a class as a whole rather than to a particular instance.

"To declare a class method in Object Pascal, you simply add the class keyword in front of it:

type
MyClass = class
class function ClassMeanValue: Integer;
The use of class methods is not very common in Object Pascal, because you can obtain the
same effect by adding a procedure or function to a unit declaring a class. Object-oriented
purists, however, will definitely prefer the use of a class method over a routine unrelated to a

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

62

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

class. For example, an OOP purist would add a class method for getting the current date to a
TDate class instead of using a global function (also because some OOP languages, including
Java, don’t have the notion of global functions).

We'll see several class methods in the next chapter, when we’ll examine the structure of the
TObject class.

Tip

Contrary to other OOP languages, Delphi class methods can also be virtual, so they can be
overridden and used to obtain polymorphism (a technique discussed later in this chapter).

Encapsulation

A class can have any amount of data and any number of methods. However, for a good object-
oriented approach, data should be hidden, or encapsulated, inside the class using it. When you
access a date, for example, it makes no sense to change the value of the day by itself. In fact,
changing the value of the day might result in an invalid date, such as February 30. Using
methods to access the internal representation of an object limits the risk of generating erro-
neous situations, as the methods can check whether the date is valid and refuse to modify the
new value if it is not. Encapsulation is important because it allows the class writer to modify
the internal representation in a future version.

The concept of encapsulation is often indicated by the idea of a “black box,” where you
don’t know about the internals: You only know how to interface with it or how to use it
regardless of its internal structure. The “how to use” portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when you use
the objects, most of their code is hidden. You seldom know what internal data the object has,
and you usually have no way to access the data directly. Of course, you are supposed to use
methods to access the data, which is shielded from unauthorized access. This is the object-
oriented approach to a classical programming concept known as information hiding.

Delphi implements this class-based encapsulation but still supports the classic module-
based encapsulation using the structure of units. Because the two are strictly related, let me
recap the traditional approach first.

Encapsulation and Units

A unit in Object Pascal is a secondary source-code file, with the main source-code file being
represented by the project source code. Every unit has two main sections, called interface
and implementation, as well as two optional ones for initialization and finalization
code. I want to focus here on the information hiding implemented by units.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Encapsulation 63

In short, every identifier (type, routine, variable, and so on) that you declare in the interface
portion of a unit becomes visible to any other unit of the program, provided there is a uses
statement referring back to the unit that defines the identifier. All the routines and methods
you declare in the interface portion of the unit must later be fully defined in the implemented
portion of the same unit. In the interface section of a unit, however, you cannot write any
actual statements to execute.

On the other hand, any identifier you declare in the implementation portion of the unit is
local to the unit and is not visible outside it. A unit can have local data, local support func-
tions, and even local types that the rest of the program is not allowed to access. This provides
a direct way to hide the implementation details of an abstraction from its users, so you can
later change your code without affecting other units of the program (and without even hav-
ing to notify the changes to other programmers writing those units).

When you write classes in a unit, you’ll generally define them in the interface portion of a
unit, but some special keywords allow you to hide portions of this class interface.

Private, Protected, and Public

For class-based encapsulation, the Object Pascal language has three access specifiers: private,
protected, and public. A fourth, published, controls RT'TT and design time information and
will be discussed in more detail in Chapter 5. Here are the three c/assic access specifiers:

e The private directive denotes fields and methods of a class that are not accessible out-
side the unit (the source code file) that declares the class.

e The protected directive is used to indicate methods and fields with limited visibility.
Only the current class and its subclasses can access protected elements. We'll discuss
this keyword again in the “Protected Fields and Encapsulation” section.

e The public directive denotes fields and methods that are freely accessible from any
other portion of a program as well as in the unit in which they are defined.

Generally, the fields of a class should be private; the methods are usually public. How-
ever, this is not always the case. Methods can be private or protected if they are needed
only internally to perform some partial computation. Fields can be protected so that you can
manipulate them in subclasses, but only if you are fairly sure that their type definition is not
going to change. Access specifiers only restrict code outside your unit from accessing certain
members of classes declared in the interface section of your unit. This means that if two classes
are in the same unit, there is no protection for their private fields. Only by placing a class in the
interface portion of a unit will you limit the visibility from classes and functions in other units

to the public method and fields of the class.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

64 Chapter 2 e The Object Pascal Language: Classes and Objects

As an example, consider this new version of the TDate class:

type
TDate = class
private
Month, Day, Year: Integer;
public

procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;

end;

In this version, the fields are now declared to be private, and there are some new methods.
The first, GetText, is a function that returns a string with the date. You might think of adding
other functions, such as GetDay, GetMonth, and GetYear, which simply return the correspond-
ing private data, but similar direct data-access functions are not always needed. Providing
access functions for each and every field might reduce the encapsulation and make it harder to
modify the internal implementation of a class. Access functions should be provided only if
they are part of the logical interface of the class you are implementing.

Another new method is the Increase procedure, which increases the date by one day. This
is far from simple, because you need to consider the different lengths of the various months
as well as leap and non-leap years. What I'll do to make it easier to write the code is change
the internal implementation of the class to Delphi’s TDateTime type for the internal imple-
mentation. The class definition will change to (the complete code will be in the next example,

DateProp):
type
TDate = class
private
fDate: TDateTime;
public

procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;

end;

Notice that because the only change is in the private portion of the class, you won’t have
to modify any of your existing programs that use it. This is the advantage of encapsulation!

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Encapsulation 65

NotE

The TDateTime type is actually a floating-point number. The integral portion of the number indi-
cates the date since 12/30/1899, the same base date used by OLE Automation and Microsoft
applications. (Use negative values to express previous years.) The decimal portion indicates the
time as a fraction. For example, a value of 3.75 stands for the second of January 1900, at
6:00 A.M. (three-quarters of a day). To add or subtract dates, you can add or subtract the number
of days, which is much simpler than adding days with a day/month/year representation.

Encapsulating with Properties

Properties are a very sound OOP mechanism, or a very well thought out application of the
idea of encapsulation. Essentially, you have a name that completely hides its implementation
details. This allows you to modify the class extensively without affecting the code using it. A
good definition of properties is that of virtual fields. From the perspective of the user of the
class that defines them, properties look exactly like fields, as you can generally read or write
their value. For example, you can read the value of the Caption property of a button and
assign it to the Text property of an edit box with the following code:

Editl.Text := Buttonl.Caption;

This looks like we are reading and writing fields. However, properties can be directly
mapped to data, as well as to access methods, for reading and writing the value. When prop-
erties are mapped to methods, the data they access can be part of the object or outside of it,
and they can produce side effects, such as repainting a control after you change one of its val-
ues. Technically, a property is an identifier that is mapped to data or methods using a read
and a write clause. For example, here is the definition of a Month property for a date class:

property Month: Integer read FMonth write SetMonth;

To access the value of the Month property, the program reads the value of the private field
FMonth, while to change the property value it calls the method SetMonth (which must be
defined inside the class, of course). Different combinations are possible (for example, we
could also use a method to read the value or directly change a field in the write directive),
but the use of a method to change the value of a property is very common. Here are two
alternative definitions for the property, mapped to two access methods or mapped directly to
data in both directions:

property Month: Integer read GetMonth write SetMonth;
property Month: Integer read FMonth write FMonth;

Tip

When you write code that accesses a property, it is important to realize that a method might
be called. The issue is that some of these methods take some time to execute; they can also
produce side effects, often including a (slow) repainting of the component on the screen.
Although side effects of properties are seldom documented, you should be aware that they
exist, particularly when you are trying to optimize your code.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

66

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

Often, the actual data and access methods are private (or protected) while the property is
public. This means you must use the property to have access to those methods or data, a
technique that provides both an extended and a simplified version of encapsulation. It is an
extended encapsulation because not only can you change the representation of the data and its
access functions, but you can also add or remove access functions without changing the call-
ing code at all. A user only needs to recompile the program using the property.

Class Completion for Properties
Properties provide a simplified encapsulation because when extra code is not required, you map
the properties directly to fields, without writing tedious and useless access methods. And even
when you want to write those methods, the IDE can use class completion (the Ctrl+Shift+C
key combination) to generate the skeleton of the access methods of the properties for you. If
you simply type in a class (say TMyClass),

property X: Integer;

and activate class completion, Delphi generates a SetX method for the property and adds the
FX field to the class. The resulting code looks like this:
type
TMyClass = class(TForm)
private
FX: Integer;
procedure SetX(const Value: Integer);
public
property X: Integer read FX write SetX;
end;

implementation

procedure TMyClass.SetX(const Value: Integer);
begin
FX := Value;
end;
This really saves a lot of typing. You can even partially control how class completion gen-
erates Set and Get methods for the property. In fact, if you first type the property declaration
including the read and write directives, as in

property X: Integer read GetX write SetX;

Class completion will generate the requested methods or add the field definition. If you want
both the field and the methods, type in only the property name and its data type (as in the
first example above), and let Delphi expand the declaration. At this point, fix the expanded
declaration by replacing the FX field with a GetX method in the read portion, and invoke class
completion a second time.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Encapsulation 67

Properties for the TDate Class

As an example, I've added properties for accessing the year, the month, and the day to an
object of the TDate class discussed earlier. These properties are not mapped to specific fields,
but they all map to the single fDate field storing the entire date information. This is the new
definition of the class:

type

TDate = class

private
fDate: TDateTime;
procedure SetDay(const Value: Integer);
procedure SetMonth(const Value: Integer);
procedure SetYear(const Value: Integer);
function GetDay: Integer;
function GetMonth: Integer;
function GetYear: Integer;

public
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
function GetText: string;
procedure Increase;
property Year: Integer read GetYear write SetYear;
property Month: Integer read GetMonth write SetMonth;
property Day: Integer read GetDay write SetDay;

end;

Each of the Get and Set methods is easily implemented using functions available in the
new DateUtils unit (discuss in more detail in Chapter 4). Here is the code for two of them
(the others are very similar):

function TDate.GetYear: Integer;
begin

Result := YearOf (fDate);
end;

procedure TDate.SetYear(const Value: Integer);
begin

fDate := RecodeYear (fDate, Value);
end;

The code for this class is available in the DateProp example. The program uses a secondary
unit for the definition of the TDate class to enforce encapsulation and creates a single-date
object stored in a form variable and kept in memory for the entire execution of the program.
Using a standard approach, the object is created in the form OnCreate event handler and
destroyed in the form OnDestroy event handler.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

68 Chapter 2 e The Object Pascal Language: Classes and Objects

The form of the program (see Figure 2.2) has three edit boxes and buttons to copy the
values of these edit boxes to and from the properties of the date object:

FIGURE 2.2:

o [=]
The form of the DateProp
example Year (1993 Increase

Manth |8 Read

Day |28

procedure TDateForm.BtnReadClick(Sender: TObject);

begin
EditYear.Text := IntToStr (TheDay.Year);
EditMonth.Text := IntToStr (TheDay.Month);
EditDay.Text := IntToStr (TheDay.Day);

end;

WARNING \\hen writing the values, the program uses the SetValue method instead of setting each of
the properties. In fact, assigning the month and the day separately can cause you trouble
when the month is not valid for the current day. For example, the day is currently January 31,
and you want to assign to it February 20. If you assign the month first, this part of the assign-
ment will fail, as February 31 does not exist. If you assign the day first, the problem will arise
when doing the reverse assignment. Due to the validity rules for dates, it is better to assign
everything at once.

Advanced Features of Properties

Properties have several advanced features I'll focus on in future chapters, specifically the
introduction to the base classes of the library in Chapter 5 and writing custom Delphi com-
ponents in Chapter 11, “Creating Components.” This is a short summary of these more
advanced features:

e Thewrite directive of a property can be omitted, making it a read-only property. The
compiler will issue an error if you try to change it. You can also omit the read directive and
define a write-only property, but that doesn’t make much sense and is used infrequently.

e The Delphi IDE gives special treatment to design-time properties, declared with the
published access specifier and generally displayed in the Object Inspector for the
selected component. More on the pubTished keyword and its effect is in Chapter 5.

o The other properties, often called run-time only properties, are those declared with the
public access specifier. These properties can be used in the program code.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Encapsulation 69

e You can define array-based properties, which use the typical notation with square brack-
ets to access an element of a list. The string list—based properties, such as the Lines of a
list box, are a typical example of this group.

e Properties have special directives, including stored and default, which control the
component streaming system, introduced in Chapter 5 and detailed in Chapter 11.

NoTE

You can usually assign a value to a property or read it, and you can even use properties in
expressions, but you cannot always pass a property as a parameter to a procedure or method.
This is because a property is not a memory location, so it cannot be used as a var parameter;
it cannot be passed by reference.

Encapsulation and Forms

One of the key ideas of encapsulation is to reduce the number of global variables used by a
program. A global variable can be accessed from every portion of a program. For this reason,
a change in a global variable affects the whole program. On the other hand, when you change
the representation of a class’s field, you only need to change the code of some methods of
that class and nothing else. Therefore, we can say that information hiding refers to encapsu-
lating changes.

Let me clarify this idea with an example. When you have a program with multiple forms,
you can make some data available to every form by declaring it as a global variable in the
interface portion of the unit of one of the forms:

var
Forml: TForml;
nClicks: Integer;

"This works but has two problems. First, the data is not connected to a specific instance of
the form, but to the entire program. If you create two forms of the same type, they’ll share
the data. If you want every form of the same type to have its own copy of the data, the only
solution is to add it to the form class:

type
TForml = class(TForm)
public
nClicks: Integer;
end;

The second problem is that if you define the data as a global variable or as a public field of
a form, you won’t be able to modify its implementation in the future without affecting the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

70 Chapter 2 e The Object Pascal Language: Classes and Objects

code that uses the data. For example, if you only have to read the current value from other
forms, you can declare the data as private and provide a method to read the value:

type
TForml = class(TForm)
public
function GetClicks: Integer;
private
nClicks: Integer;
end;

function TForml.GetClicks: Integer;
begin

Result := nClicks;
end;

Adding Properties to Forms

An even better solution is to add a property to the form. Every time you want to make some
information of a form available to other forms, you should really use a property, for all the
reasons discussed in the previous section. Simply change the field declaration of the form,
shown in the preceding listing, by adding the keyword property in front of it and then press
Ctrl+Shift+C to activate code completion. Delphi will automatically generate all of the extra
code you need. In the form, you also need to handle the OnCT1ick event, increasing the value
of the property (and showing it in the form caption):

procedure TForml.FormClick(Sender: TObject);

begin

Inc (FClicks);

Caption := 'Clicks: ' + IntToStr (FClicks);
end;

The complete code for this form class is available in the FormProp example and illustrated
in Figure 2.3. The program can create multi-instances of the form (that is, multiple objects
based on the same form class), each with its own click count. Clicking the Create Form but-
ton creates the secondary forms, using the following code:

procedure TForml.btnCreateFormClick(Sender: TObject);
begin
with TForml.Create (Self) do
Show;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Encapsulation 1

FIGURE 2.3:
Two forms of the FormProp +[Clicks: 5

example at run time
Create Form

4l Clicks: 8

Norte Notice that adding a property to a form doesn’t add to the list of the form properties in the
Obiject Inspector.

In my opinion, properties should also be used in the form classes to encapsulate the access
to the components of a form. For example, if you have a main form with a status bar used to
display some information (and with the SimplePanel property set to True) and you want to
modify the text from a secondary form, you might be tempted to write:

Forml.StatusBarl.SimpleText := 'new text';

This is a standard practice in Delphi, but it’s not a good one, because it doesn’t provide any
encapsulation of the form structure or components. If you have similar code in many places
throughout an application, and you later decide to modify the user interface of the form (replac-
ing StatusBar with another control or activating multiple panels), you’ll have to fix the code in
many places. The alternative is to use a method or, even better, a property to hide the specific
control. Simply type

property StatusText: string read GetText write SetText;

and press the Ctrl+Shift+C combination again, to let Delphi add the definition of both meth-
ods for reading and writing the property:

function TForml.GetText: string;
begin

Result := StatusBarl.SimpleText;
end;

procedure TForml.SetText(const Value: string);
begin

StatusBarl.SimpleText := Value;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

72 Chapter 2 ¢ The Object Pascal Language: Classes and Objects

In the other forms of the program, you can simply refer to the StatusText property of the
form, and if the user interface changes, only the Set and Get methods of the property are
affected.

NortEe See Chapter 5 for a detailed discussion of how you can avoid having published form fields for
components, which will improve encapsulation. But don’t rush there: the description requires
a good knowledge of Delphi, and the technique discussed has a few drawbacks!

Constructors

As I’'ve mentioned, to allocate the memory for the object, we call the Create method. This is

a constructor; a special method that you can apply to a class to allocate memory for an instance
of that class. The instance is returned by the constructor and can be assigned to a variable for
storing the object and using it later on. The default TObject.Create constructor initializes all
the data of the new instance to zero.

If you want your instance data to start out with a nonzero value, then you need to write a
custom constructor to do that. The new constructor can be called Create, or it can have any
other name; use the constructor keyword in front of it. Notice that you don’t need to call
TObject.Create: it is Delphi that allocates the memory for the new object, not the class con-
structor. All you have to do is to initialize the class base.

If you create objects without initializing them, calling methods later may result in odd
behavior or even a run-time error. A consistent use of constructors to initialize objects’ data
is an important preventive technique to avoid these errors in the first place. For example, we
must call the SetValue procedure of the TDate class after we’ve created the object. As an
alternative, we can provide a customized constructor, which creates the object and gives it
an initial value.

Although you can use any name for a constructor, you should stick to the standard name,
Create. If you use a name other than Create, the Create constructor of the base TObject
class will still be available, but a programmer calling this default constructor might bypass
the initialization code you’ve provided because they don’t recognize the name.

By defining a Create constructor with some parameters, you replace the default definition
with a new one and make its use compulsory. For example, after you define
type
TDate = class
public
constructor Create (y, m, d: Integer);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Constructors 73

constructor TDate.Create (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);
end;

you’ll be able to call this constructor and not the standard Create:

var
ADay: TDate;
begin
// Error, does not compile:
ADay := TDate.Create;
// OK:
ADay := TDate.Create (1, 1, 2000);

The rules for writing constructors for custom components are different, as we’ll see in
Chapter 11. In short, when you inherit from TComponent, you should override the default
Create constructor with one parameter and avoid disabling it.

Overloaded Constructors

Overloading is particularly relevant for constructors, because we can add to a class multiple
constructors and call them all Create, which makes them easy to remember.

NotE

Historically, overloading was added to C++ to allow the use of multiple constructors that have
the same name (the name of the class). In Object Pascal, this feature was considered unneces-
sary because multiple constructors can have different specific names. The increased integra-
tion of Delphi with C++Builder has motivated Borland to make this feature available in both
languages, starting with Delphi 4. Technically, when C++Builder constructs an instance of a
Delphi VCL class, it looks for a Delphi constructor named Create and nothing but Create. If
the Delphi class has constructors by other names, they cannot be used from C++Builder code.
Therefore, when creating classes and components you intend to share with C++Builder pro-
grammers, you should be careful to name all your constructors Create and distinguish
between them by their parameter lists (using overload). Delphi does not require this, but it is
required for C++Builder to use your Delphi classes.

As an example, I've added to the class two separate Create constructors: one with no para-
meters, which hides the default constructor, and one with the initialization values. The con-
structor with no parameter uses as the default value today’s date:

type
TDate = class
public
constructor Create; overload;
constructor Create (y, m, d: Integer); overload;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

74

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

constructor TDate.Create (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);
end;

constructor TDate.Create;
begin

fDate := Date;
end;

Having these two constructors makes it possible to define a new TDate object in two differ-
ent ways:

var
Dayl, Day2: TDate;

begin
Dayl := TDate.Create (2001, 12, 25);
Day2 := TDate.Create; // today

See the section “The Complete TDate Class” later in this chapter for the DateView exam-
ple, which includes the code of these constructors.

Destructors

In the same way that a class can have a custom constructor, it can have a custom destructor, a
method declared with the destructor keyword and called Destroy, which can perform some

resource cleanup before an object is destroyed. Just as a constructor call allocates memory for
the object, a destructor call frees the memory.

We can write code for a destructor, generally overriding the default Destroy destructor, to
let the object execute some code before it is destroyed. Destructors are needed only for objects
that acquire resources in their constructors or during their lifetime. In your code, of course,
you don’t have to handle memory de-allocation—this is something Delphi does for you.

Destroy is a virtual destructor of the TObject class. Most of the classes that require custom
clean-up code when the objects are destroyed override this virtual method. The reason you
should never define a new destructor is that objects are usually destroyed by calling the Free
method, and this method calls the Destroy virtual destructor of the specific class (virtual meth-
ods will be discussed later in this chapter).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Constructors 75

Free (and nil)

Free is a method of the TObject class, inherited by all other classes. The Free method basi-
cally checks whether the current object (Se1f) is not ni1 before calling the Destroy virtual
destructor. Here is its pseudocode (the actual Delphi code is written in assembler):

procedure TObject.Free;
begin
if Self <> nil then
Destroy;
end;

By looking at this code, you can see that calling Free doesn’t set the object to ni1 automati-
cally; this is something you should do yourself! The reason is that the object doesn’t know
which variables may be referring to it, so it has no way to set them all to ni1.

Note Automatically setting an object to ni1 is not possible. You might have several references to
the same object, and Delphi doesn’t track them. At the same time, within a method (such as
Free) we can operate on the object, but we know nothing about the object reference—the
memory address of the variable we've used to call the method. In other words, inside the Free
method or any other method of a class, we know the memory address of the object (Se1f),
but we don’t know the memory location of the variable referring to the object.

Delphi 5 introduced a FreeAndNi1 procedure you can use to free an object and set its refer-
ence to nil at the same time. Simply call
FreeAndNi1 (Obj1)
instead of writing
Objl.Free;
Objl := nil;
The FreeAndNi1 procedure knows about the object reference, passed as a parameter, and
can act on it. Here is Delphi code for FreeAndNi1:
procedure FreeAndNil(var Obj);
var
P: TObject;
begin
P := TObject(0bj);
// clear the reference before destroying the object
TObject(Obj) := nil;
P.Free;
end;
Note

There's more on this topic in the section “Destroying Objects Only Once” later in this chapter.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

76 Chapter 2 e The Object Pascal Language: Classes and Objects

The Complete TDate Class

In the initial portion of this chapter, I've shown you bits and pieces of the source code for dif-
ferent versions of a TDate class. In Listing 2.1 is the complete interface portion of the unit
that defines the TDate class.

Listing 2.1: The TDate class, from the ViewDate example

unit Dates;

interface

type

TDate = class

private
fDate: TDateTime;
procedure SetDay(const Value: Integer);
procedure SetMonth(const Value: Integer);
procedure SetYear(const Value: Integer);
function GetDay: Integer;
function GetMonth: Integer;
function GetYear: Integer;

public
constructor Create; overload;
constructor Create (y, m, d: Integer); overload;
procedure SetValue (y, m, d: Integer); overload;
procedure SetValue (NewDate: TDateTime); overload;
function LeapYear: Boolean;
procedure Increase (NumberOfDays: Integer = 1);
procedure Decrease (NumberOfDays: Integer 1;
function GetText: string;
property Year: Integer read GetYear write SetYear;
property Month: Integer read GetMonth write SetMonth;
property Day: Integer read GetDay write SetDay;

end;

implementation

uses
SysUtils, DateUtils;

procedure TDate.SetValue (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);
end;

function TDate.LeapYear: Boolean;
begin

Result := IsInLeapYear(fDate);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Complete TDate Class

77

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin

fDate := fDate + NumberOfDays;
end;

function TDate.GetText: string;
begin

GetText := DateToStr (fDate);
end;

procedure TDate.Decrease (NumberOfDays: Integer = 1);
begin

fDate := fDate - NumberOfDays;
end;

constructor TDate.Create (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);
end;

constructor TDate.Create;
begin

fDate := Date;
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin

fDate := NewDate;
end;

procedure TDate.SetDay(const Value: Integer);
begin

fDate := RecodeDay (fDate, Value);
end;

procedure TDate.SetMonth(const Value: Integer);
begin

fDate := RecodeMonth (fDate, Value);
end;

procedure TDate.SetYear(const Value: Integer);
begin

fDate := RecodeYear (fDate, Value);
end;

function TDate.GetDay: Integer;
begin

Result := DayOf (fDate);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

78 Chapter 2 e The Object Pascal Language: Classes and Objects

function TDate.GetMonth: Integer;
begin

Result := MonthOf (fDate);
end;

function TDate.GetYear: Integer;
begin

Result := YearOf (fDate);
end;

end.

The aim of the Increase and Decrease methods, which have a default value for their
parameter, is quite easy to understand. If called with no parameter, they change the value of
the date to the next or previous day. If a NumberOfDays parameter is part of the call, they add
or subtract that number.

GetText returns a string with the formatted date, using the DateToStr function.

The form of the example I've built to show you how to use the TDate class, as illustrated in
Figure 2.4, has a caption to display a date and six buttons, which can be used to modify the
date. To make the label component look nice, I've given it a big font, made it as wide as the
form, set its Alignment property to taCenter, and set its AutoSize property to False.

FIGURE 2.4: aniBWDalB !E
The output of the ViewDate

example at startup 1 2!25.’2001

Increase Decreaze
Add 10 Subtract 10
Leap Year? Today

The startup code of this program is in the OnCreate event handler. In the corresponding
method, we create an instance of the TDate class, initialize this object, and then show its tex-
tual description in the Caption of the label.

procedure TDateForm.FormCreate(Sender: TObject);
begin
TheDay := TDate.Create (2001, 12, 25);
LabelDate.Caption := TheDay.GetText;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Delphi’s Object Reference Model 79

TheDay is a private field of the class of the form, TDateForm. (By the way, the name for the
form class is automatically chosen by Delphi when we change the Name property of the form
to DateForm.) The object is then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin

TheDay.Free;
end;

When the user clicks one of the six buttons, we need to apply the corresponding method to
the TheDay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin

TheDay.SetValue (Date);

LabelDate.Caption := TheDay.GetText;
end;

Notice that in this code we reuse an existing object, assigning a new date to it. We could
also create a new object and assign it to the existing TheDate variable, but this can lead to
confusing situations, as explained in the next section.

Delphi’s Object Reference Model

In some OOP languages, declaring a variable of a class type creates an instance of that class.
Object Pascal, instead, is based on an object reference model. The idea is that a variable of a
class type, such as the TheDay variable in the preceding ViewDate example, does not hold the
value of the object. Rather, it contains a reference, or a pointer; to indicate the memory loca-
tion where the object has been stored. You can see this structure depicted in Figure 2.5.

FIGURE 2.5: TheDay TDate object

A representation of the

structure of an object in memory - - internal info

memory, with a variable reference

referring to it fDats
field

The only problem with this approach is that when you declare a variable, you don’t create
an object in memory; you only reserve the memory location for a reference to an object.
Object instances must be created manually, at least for the objects of the classes you define.
Instances of the components you place on a form are built automatically by Delphi.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

80

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

You’ve seen how to create an instance of an object by applying a constructor to its class.
Once you have created an object and you've finished using it, you need to dispose of it (to
avoid filling up memory you don’t need any more, which causes what is known as a memory
leak). This can be accomplished by calling the Free method. As long as you create objects
when you need them and free them when you’re finished with them, the object reference
model works without a glitch. The object reference model has many consequences on assign-
ing object and on managing memory, as we’ll see in the next two sections.

Assigning Objects
If a variable holding an object only contains a reference to the object in memory, what happens
if you copy the value of that variable? Suppose we write the BtnTodayC11ick method of the
ViewDate example in the following way:

procedure TDateForm.BtnTodayClick(Sender: TObject);

var
NewDay: TDate;
begin
NewDay := TDate.Create;
TheDay := NewDay;
LabelDate.Caption := TheDay.GetText;
end;

This code copies the memory address of the NewDay object to the TheDay variable (as shown
in Figure 2.6); it doesn’t copy the data of an object into the other. In this particular circum-
stance, this is not a very good approach, as we keep allocating memory for a new object every
time the button is pressed, but we never release the memory of the object the TheDay variable
was previously pointing to. This specific issue can be solved by freeing the old object, as in
the following code (which is also simplified, without the use of an explicit variable for the
newly created object):

FIGURE 2.6:

A representation of the
operation of assigning an
object reference to another
one. This is different from
copying the actual content
of an object to another.

NewDay TDate object
memory internal info
reference
fDate
assignment l field
memory
reference
TheDay

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

Delphi’s Object Reference Model 81

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin

TheDay.Free;

TheDay := TDate.Create;

The important thing to keep in mind is that, when you assign an object to another object,
Delphi copies the reference to the object in memory to the new object/reference. You should
not consider this a negative: In many cases, being able to define a variable referring to an exist-
ing object can be a plus. For example, you can store the object returned by calling a function or
accessing a property and use it in subsequent statements, as this code snippet indicates:

var
ADay: TDate;

begin
ADay: UserInformation.GetBirthDate;
// use a ADay

The same happens if you pass an object as a parameter to a function: You don’t create a
new object, but you refer to the same one in two different places of the code. For example, by
writing this procedure and calling it as follows, you’ll modify the Caption property of the
Buttonl object, not of a copy of its data in memory (which would be totally useless):

procedure CaptionPlus (Button: TButton);
begin

Button.Caption := Button.Caption + '+';
end;

// call...
CaptionPlus (Buttonl)

What if you really want to change the data inside an existing object, so that it matches the
data of another object? You have to copy each field of the object, which is possible only if
they are all public, or provide a specific method to copy the internal data. Some classes of the
VCL have an Assign method, which does this copy operation. To be more precise, most of
the VCL classes inheriting from TPersistent, but not inheriting from TComponent, have the
Assign method. Other TComponent-derived classes have this method but raise an exception
when it is called.

In the DateCopy example, slightly modified from the ViewDate program, I've added an
Assign method to the TDate class, and I've called it from the Today button, with the follow-
ing code:

procedure TDate.Assign (Source: TDate);
begin

fDate := Source.fDate;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

82 Chapter 2 e The Object Pascal Language: Classes and Objects

procedure TDateForm.BtnTodayClick(Sender: TObject);
var
NewDay: TDate;
begin
NewDay := TDate.Create;
TheDay.Assign(NewDay);
LabelDate.Caption := TheDay.GetText;
NewDay.Free;
end;

Objects and Memory

Memory management in Delphi is subject to three rules: Every object must be created before
it can be used; every object must be destroyed after it has been used; and every object must
be destroyed only once. Whether you have to do these operations in your code, or you can
let Delphi handle memory management for you, depends on the model you choose among

the different approaches provided by Delphi.

Delphi supports three types of memory management for dynamic elements (that is, elements
not in the stack and the global memory area):

e Every time you create an object explicitly, in the code of your application, you should
also free it. If you fail to do so, the memory used by that object won’t be released for
other objects until the program terminates.

e When you create a component, you can specify an owner component, passing the
owner to the component constructor. The owner component (often a form) becomes
responsible for destroying all the objects it owns. In other words, when you free the
form, it frees all the components it owns. So, if you create a component and give it an
owner, you don’t have to remember to destroy it. This is the standard behavior of the
components you create at design time by placing them on a form or data module.

e When you allocate memory for strings, dynamic arrays, and objects referenced by
interface variables (discussed in Chapter 3), Delphi automatically frees the memory
when the reference goes out of scope. You don’t need to free a string: when it becomes
unreachable, its memory is released.

Destroying Objects Only Once
Another problem is that if you call the Destroy destructor of an object twice, you get an
error. If you remember to set the object to ni1, you can call Free twice with no problem.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

What’s Next? 83

Norte You might wonder why you can safely call Free if the object reference is ni1, but you can’t
call Destroy. The reason is that Free is a known method at a given memory location, whereas
the virtual function Destroy is determined at run time by looking at the type of the object, a

very dangerous operation if the object doesn’t exist any more.

"To sum things up, here are a couple of guidelines:
e Always call Free to destroy objects, instead of calling the Destroy destructor.

e Use FreeAndNiT, or set object references to ni1 after calling Free, unless the reference
is going out of scope immediately afterward.

In general, you can also check whether an object is ni1 by using the Assigned function. So

the following two statements are equivalent, at least in most cases:

if Assigned (ADate) then ...
if ADate <> nil then ...

Notice that these statements test only whether the pointer is not ni1; they do not check
whether it is a valid pointer. If you write the following code, the test will be satisfied, and
you’ll get an error on the line with the call to the method of the object:

ToDestroy.Free;
if ToDestroy <> nil then
ToDestroy.DoSomething;

It is important to realize that calling Free doesn’t set the object to ni1l.

What’s Next?

In this chapter, we have discussed the foundations of object-oriented programming (OOP) in
Object Pascal. We have considered the definition of classes, the use of methods, encapsula-
tion, and memory management, but also some more advanced concepts such as properties

and the dynamic creation of components.

This is certainly a lot of information if you are a newcomer, but if you are fluent in another
OOQOP language or if you’ve already used past versions of Delphi, you should be able to apply
the topics covered in this chapter to your programming.

The next chapter continues on the same line, highlighting inheritance in particular, along
with virtual functions and interfaces. It also includes a discussion on exception handling and

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

84

Chapter 2 ¢ The Object Pascal Language: Classes and Objects

class references, so that at the end you’ll have a complete overview of the language. At that
point, you’ll be ready to start focusing on the libraries the compiler relies on, and we’ll get
back to see how properties are used by Delphi and its IDE (in Chapter 5). Other chapters
will provide further information on applying the OOP concepts to Delphi programming.
You’ll find OOP tips throughout the entire book, but particularly in Chapter 11, devoted to
writing custom Delphi components.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

The Object Pascal Language:
Inheritance and
Polymorphism

e Inheritance

e Virtual methods

e Polymorphism

e Type-safe down-casting (run-time type information)
e Interfaces

e Working with exceptions

e Class references

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

86 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

After the introduction to classes and objects we’ve seen over the last chapter, let’s move on
to another key element of the language, inberitance. Deriving a class from an existing one is the
real revolutionary idea of object-oriented programming, and it goes along with polymorphism,
virtual functions, abstract functions, and many other topics discussed in this chapter.

We'll focus also on interfaces, another intriguing idea of the most recent OOP languages,
and we’ll cover a few more elements of Object Pascal, such as exception handling and class
references. Together with the previous chapter, this will provide an almost complete roundup
of the language.

Inheriting from Existing Types

We often need to use a slightly different version of an existing class that we have written or
that someone has given to us. For example, you might need to add a new method or slightly
change an existing one. You can do this easily by modifying the original code, unless you
want to be able to use the two different versions of the class in different circumstances. Also,
if the class was originally written by someone else (including Borland), you might want to
keep your changes separate.

A typical alternative is to make a copy of the original type definition, change its code to
support the new features, and give a new name to the resulting class. This might work, but it
also might create problems: In duplicating the code you also duplicate the bugs; and if you
want to add a new feature, you’ll need to add it two or more times, depending on the number
of copies of the original code you’ve made. This approach results in two completely different
data types, so the compiler cannot help you take advantage of the similarities between the
two types.

To solve these kinds of problems in expressing similarities between classes, Object Pascal
allows you to define a new class directly from an existing one. This technique is known as
inberitance (or subclassing) and is one of the fundamental elements of object-oriented program-
ming languages. 'To inherit from an existing class, you only need to indicate that class at the
beginning of the declaration of the subclass. For example, Delphi does this automatically
each time you create a new form:

type
TForml = class(TForm)
end;

"This simple definition indicates that the TForml class inherits all the methods, fields, proper-
ties, and events of the TForm class. You can apply any public method of the TForm class to an
object of the TForml type. TForm, in turn, inherits some of its methods from another class,
and so on, up to the TObject base class.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Inheriting from Existing Types 87

As an example of inheritance, we can change the ViewDate program, deriving a new class
from TDate and modifying its GetText function. You can find this code in the DATES. PAS file
of the NewDate example on the companion CD.

type
TNewDate = class (TDate)
public
function GetText: string;
end;

In this example, the TNewDate class is derived from TDate. It is common to say that TDate is
an ancestor class or parent class of TNewDate and that TNewDate is a subclass, descendant class, or

child class of TDate.

"To implement the new version of the GetText function, I used the FormatDateTime function,
which uses (among other features) the predefined month names available in Windows; these
names depend on the user’s regional and language settings. Many of these regional settings
are actually copied by Delphi into constants defined in the library, such as LongMonthNames,
ShortMonthNames, and many others you can find under the “Currency and date/time formatting
variables” topic in the Delphi Help file. Here is the GetText method, where ‘dddddd’ stands for

the long date format:

function TNewDate.GetText: string;
begin

GetText := FormatDateTime ('dddddd', fDate);
end;

Tip

Using regional information, the NewDate program automatically adapts itself to different
Windows user settings. If you run this same program on a computer with regional settings
referring to a language other than English, it will automatically show month names in that
language. To test this behavior, you just need to change the regional settings; you don’t need
a new version of Windows. Notice that regional-setting changes immediately affect the run-

ning programs.

Once we have defined the new class, we need to use this new data type in the code of the
form of the NewDate example. Simply define the TheDay object of type TNewDate, and call its
constructor in the FormCreate method:

type
TDateForm = class(TForm)
private
TheDay: TNewDate; // updated declaration
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

88 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

procedure TDateForm.FormCreate(Sender: TObject);

begin
TheDay := TNewDate.Create (2001, 12, 25); // updated
DatelLabel.Caption := TheDay.GetText;

end;

Without any other changes, the new NewDate example will work properly. The TNewDate
class inherits the methods to increase the date, add a number of days, and so on. In addition,
the older code calling these methods still works. Actually, to call the new version of the GetText
method, we don’t need to change the source code! The Delphi compiler will automatically
bind that call to a new method. The source code of all the other event handlers remains
exactly the same, although its meaning changes considerably, as the new output demonstrates
(see Figure 3.1).

FIGURE 3.1: A HewDate -0l =|
The output of the NewDate
program, with the name of Tuesday, December 25, 2001
the month and of the day
depending on Windows F
regional settings 5 Increase ; Decrease
Add 10 Subtract 10
Leap Year? Today

Protected Fields and Encapsulation

The code of the GetText method of the TNewDate class compiles only if it is written in the
same unit as the TDate class. In fact, it accesses the fDate private field of the ancestor class.
If we want to place the descendant class in a new unit, we must either declare the fDate field
as protected or add a protected access method in the ancestor class to read the value of the
private field.

Many developers believe that the first solution is always the best, because declaring most of
the fields as protected will make a class more extensible and will make it easier to write sub-
classes. However, this violates the idea of encapsulation. In a large hierarchy of classes, chang-
ing the definition of some protected fields of the base classes becomes as difficult as changing
some global data structures. If ten derived classes are accessing this data, changing its defini-
tion means potentially modifying the code in each of the ten classes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Inheriting from Existing Types 89

In other words, flexibility, extension, and encapsulation often become conflicting objec-
tives. When this happens, you should try to favor encapsulation. If you can do so without
sacrificing flexibility, that will be even better. Often this intermediate solution can be
obtained by using a virtual method, a topic I'll discuss in detail later in the section “Late
Binding and Polymorphism.” If you choose not to use encapsulation in order to obtain faster
coding of the subclasses, then your design might not follow the object-oriented principles.

Accessing Protected Data of Other Classes

We've seen that in Delphi, the private and protected data of a class is accessible to any
functions or methods that appear in the same unit as the class. For example, consider this class
(part of the Protection example on the companion CD):

type
TTest = class
protected
ProtectedData: Integer;
public
PublicData: Integer;
function GetValue: string;
end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;
begin
Result := Format ('Public: %d, Protected: %d',
[PublicData, ProtectedData]);
end;

Once you place this class in its own unit, you won't be able to access its protected portion from
other units directly. Accordingly, if you write the following code,

procedure TForml.ButtonlClick(Sender: TObject);
var
Obj: TTest;
begin
Obj := TTest.Create;
Obj.PublicData := 10;
Obj.ProtectedData := 20; // won't compile
ShowMessage (Obj.GetValue);
Obj.Free;
end;

the compiler will issue an error message, “Undeclared identifier: ‘ProtectedData."”

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

90

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

At this point, you might think there is no way to access the protected data of a class defined in a
different unit. (This is what Delphi manuals and most Delphi books say.) However, there is a way
around it. Consider what happens if you create an apparently useless derived class, such as

type
TFake = class (TTest);
Now, if you make a direct cast of the object to the new class and access the protected data
through it, this is how the code will look:

procedure TForml.Button2Click(Sender: TObject);
var
Obj: TTest;
begin
Obj := TTest.Create;
Obj.PublicData := 10;
TFake (Obj).ProtectedData := 20; // compiles!
ShowMessage (Obj.GetValue);
Obj.Free;
end;

This code compiles and works properly, as you can see by running the Protection program.
How is it possible for this approach to work? Well, if you think about it, the TFake class auto-
matically inherits the protected fields of the TTest base class, and because the TFake class is in
the same unit as the code that tries to access the data in the inherited fields, the protected
data is accessible. As you would expect, if you move the declaration of the TFake class to a
secondary unit, the program won't compile any more.

Now that I've shown you how to do this, | must warn you that violating the class-protection
mechanism this way is likely to cause errors in your program (from accessing data that you
really shouldn't), and it runs counter to good OOP technique. However, there are times when
using this technique is the best solution, as you’ll see by looking at the VCL source code and
the code of many Delphi components. Two examples that come to mind are accessing the
Text property of the TControl class and the Row and Co1 positions of the DBGrid control.
These two ideas are demonstrated by the TextProp and DBGridCol examples, respectively.
(These examples are quite advanced, so | suggest that only programmers with a good back-
ground of Delphi programming read them at this point in the text—other readers might come
back later.) Although the first example shows a reasonable example of using the typecast
cracker, the DBGrid example of Row and Co1 is actually a counterexample, one that illustrates
the risks of accessing bits that the class writer chose not to expose. The row and column of a
DBGrid do not mean the same thing as they do in a DrawGrid or StringGrid (the base
classes). First, DBGrid does not count the fixed cells as actual cells (it distinguishes data cells

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Inheriting from Existing Types 91

from decoration), so your row and column indexes will have to be adjusted by whatever deco-
rations are currently in effect on the grid (and those can change on the fly). Second, the
DBGrid is a virtual view of the data. When you scroll up in a DBGrid, the data may move
underneath it, but the currently selected row might not change.

This technique— declaring a local type only so that you can access protected data members of
a class—is often described as a hack, and it should be avoided whenever possible. The prob-
lem is not accessing protected data of a class in the same unit but declaring a class for the sole
purpose of accessing protected data of an existing object of a different class! The danger of
this technique is in the hard-coded typecast of an object from a class to a different one.

Inheritance and Type Compatibility

Pascal is a strictly typed language. This means that you cannot, for example, assign an integer
value to a Boolean variable, unless you use an explicit typecast. The rule is that two values are
type-compatible only if they are of the same data type, or (to be more precise) if their data type

refers to a single type definition.

WARNING i you redefine the same data type in two different units, they won’t be compatible, even if
their name is identical. A program using two equally named types of two different units will be
a nightmare to compile and debug.

There is an important exception to this rule in the case of class types. If you declare a class,
such as TAnimal, and derive from it a new class, say TDog, you can then assign an object of
type TDog to a variable of type TAnimal. That is because a dog is an animal! So, although this
might surprise you, the following constructor calls are both legal:

var
MyAnimall, MyAnimal2: TAnimal;
begin
MyAnimall := TAnimal.Create;
MyAnimal2 := TDog.Create;

As a general rule, you can use an object of a descendant class any time an object of an
ancestor class is expected. However, the reverse is not legal; you cannot use an object of an
ancestor class when an object of a descendant class is expected. To simplify the explanation,
here it is again in code terms:

type
TDog = class (TAnimal)

end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

92 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

var
MyAnimal: TAnimal;
MyDog: TDog;

begin

MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

Before we look at the implications of this important feature of the language, you can try
out the Animals1 example from the companion CD, which defines the two TAnimal and TDog
classes:

type

TAnimal = class

public
constructor Create;
function GetKind: string;

private
Kind: string;

end;

TDog = class (TAnimal)
public

constructor Create;
end;

The two Create methods set the value of Kind, which is returned by the GetKind function.
The form displayed by this example, shown in Figure 3.2, has a private field MyAnima1 of type
TAnimal. An instance of this class is created and initialized when the form is created and each
time one of the radio buttons is selected:

procedure TFormAnimals.FormCreate(Sender: TObject);
begin

MyAnimal := TAnimal.Create;
end;

procedure TFormAnimals.RadioDogClick(Sender: TObject);
begin

MyAnimal.Free;

MyAnimal := TDog.Create;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Late Binding and Polymorphism 93

FIGURE 3.2: SF Animals M=] 3
The form of the Animals1

example

i Animal

¥ Dog

A dog %

Finally, the Kind button calls the GetKind method for the current animal and displays the
result in the label:

procedure TFormAnimals.BtnKindCTick(Sender: TObject);
begin

KindLabel.Caption := MyAnimal.GetKind;
end;

Late Binding and Polymorphism

Pascal functions and procedures are usually based on static or early binding. This means that a
method call is resolved by the compiler and linker, which replace the request with a call to
the specific memory location where the function or procedure resides. (This is known as the
address of the function.) OOP languages allow the use of another form of binding, known as
dynamic or late binding. In this case, the actual address of the method to be called is deter-
mined at run time based on the type of the instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means you can
write a call to a method, applying it to a variable, but which method Delphi actually calls
depends on the type of the object the variable relates to. Delphi cannot determine until run
time the actual class of the object the variable refers to, because of the type-compatibility
rule discussed in the previous section.

NotE

The term polymorphism is quite a mouthful. A glance at the dictionary tells us that in a general
sense, it refers to something having more than one form. In the OOP sense, then, it refers to
the facts that there may be several versions of a given method across several related classes
and that a single method call on an object instance of a particular class type can refer to one
of these versions. Which version of the method gets called depends on the type of the object
instance used to make the call at run time.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

94

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

For example, suppose that a class and its subclass (let’s say TAnimal and TDog) both define a
method, and this method has late binding. Now you can apply this method to a generic vari-
able, such as MyAnimal, which at run time can refer either to an object of class TAnimal or to
an object of class TDog. The actual method to call is determined at run time, depending on
the class of the current object.

The Animals2 example extends the Animalsl program to demonstrate this technique. In
the new version, the TAnimal and the TDog classes have a new method: Voice, which means to
output the sound made by the selected animal, both as text and as sound. This method is
defined as virtual in the TAnimal class and is later overridden when we define the TDog class,
by the use of the virtual and override keywords:

type
TAnimal = class
public
function Voice: string; virtual;

TDog = class (TAnimal)
public
function Voice: string; override;
Of course, the two methods also need to be implemented. Here is a simple approach:

uses
MMSystem;

function TAnimal.Voice: string;

begin
Voice := 'Voice of the animal';
PlaySound ('Anim.wav', 0, snd_Async);
end;

function TDog.Voice: string;
begin

Voice := 'Arf Arf';

PlaySound ('dog.wav', 0, snd_Async);
end;

Tip

This example uses a call to the PTaySound API function, defined in the MMSystem unit. The
first parameter of this function is the name of the WAV sound file or the system sound you
want to execute. The second parameter indicates an optional resource file containing the
sound. The third parameter indicates (among other options) whether the call should be
synchronous or asynchronous; that is, whether the program should wait for the sound to
finish before continuing with the following statements.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Late Binding and Polymorphism 95

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal variable
currently refers to an object of the TAnimal class, it will call the method TAnimal.Voice. Ifit
refers to an object of the TDog class, it will call the method TDog.Voice instead. This happens
only because the function is virtual (as you can experiment by removing this keyword and
recompiling).

The call to MyAnimal.Voice will work for an object that is an instance of any descendant of
the TAnimal class, even classes that are defined in other units—or that haven’t been written yet!
"The compiler doesn’t need to know about all the descendants in order to make the call compat-
ible with them; only the ancestor class is needed. In other words, this call to MyAnimal.Voice is
compatible with all future TAnimal subclasses.

Norte This is the key technical reason why object-oriented programming languages favor reusability.
You can write code that uses classes within a hierarchy without any knowledge of the specific
classes that are part of that hierarchy. In other words, the hierarchy—and the program—is still
extensible, even when you've written thousands of lines of code using it. Of course, there is
one condition: the ancestor classes of the hierarchy need to be designed very carefully.

The Animals2 program demonstrates the use of these new classes and has a form similar to
that of the previous example. This code is executed by clicking the button:
procedure TFormAnimals.BtnVerseClick(Sender: TObject);
begin
LabelVoice.Caption := MyAnimal.Voice;
end;

In Figure 3.3, you can see an example of the output of this program. By running it, you’ll
also hear the corresponding sounds produced by the P1aySound API call.

FIGURE 3.3: S Animals (=] E3
The output of the Animals2
example " fnimal
i Woice
+ Dog l l:@
Arf Arf

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

96

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Overriding and Redefining Methods

As we have just seen, to override a late-bound method in a descendant class, you need to use the
override keyword. Note that this can take place only if the method was defined as virtual in
the ancestor class. Otherwise, if it was a static method, there is no way to activate late binding,
other than by changing the code of the ancestor class.

The rules are simple: A method defined as static remains static in every subclass, unless you
hide it with a new virtual method having the same name. A method defined as virtual remains
late-bound in every subclass. There is no way to change this, because of the way the compiler
generates different code for late-bound methods.

NotE

The new C# programming language proposed by Microsoft (which is in essence a clone of
Java) has the same notion as the Object Pascal language of marking the overridden version of
a method with a specific keyword.

To redefine a static method, you add a method to a subclass having the same parameters or
different parameters than the original one, without any further specifications. To override a
virtual method, you must specify the same parameters and use the override keyword:

type
MyClass = class
procedure One; virtual;

procedure Two; {static method}
end;

MySubClass = class (MyClass)
procedure One; override;
procedure Two;

end;

There are typically two ways to override a method. One is to replace the method of the
ancestor class with a new version. The other is to add some more code to the existing method.
"This can be accomplished by using the inherited keyword to call the same method of the
ancestor class. For example, you can write

procedure MySubClass.One;
begin
// new code

// call inherited procedure MyClass.One
inherited One;
end;

You might wonder why you need to use the override keyword. In other languages, when
you redefine a method in a subclass, you automatically override the original one. However,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Late Binding and Polymorphism 97

having a specific keyword allows the compiler to check the correspondence between the names
of the methods of the ancestor class and the subclass (misspelling a redefined function is a com-
mon error in other OOP languages), check that the method was virtual in the ancestor class,
and so on.

When you override an existing virtual method of a base class, you must use the same
parameters. When you introduce a new version of a method in a descendent class, you can
declare it with the parameters you want. In fact, this will be a new method unrelated to the
ancestor method of the same name. They only happen to use the same name. Here is an
example:

type
TMyClass = class

procedure One;
end;

TMySubClass = class (TMyClass)
procedure One (S: string);
end;

NoTE

Using the class definitions above, when you create an object of the TMySubClass class, you
can apply to it the One method with the string parameter, but not the parameter-less version
defined in the base class. If this is what you need, it can be accomplished by marking the
re-declared method (the one in the derived class) with the overload keyword. If the method
has different parameters than the version in the base class, it becomes effectively an over-
loaded method; otherwise it replaces the base class method. Notice that the method doesn’t
need to be marked as overload in the base class. However, if the method in the base class is
virtual, the compiler issues the warning “Method ‘One’ hides virtual method of base type
‘TMyClass.”” To avoid this message and to instruct the compiler more precisely on your inten-
tions, you can use the reintroduce directive. If you are interested in this advanced topic, you
can find this code in the Reintr example on the companion CD and experiment with it further.

Virtual versus Dynamic Methods

In Delphi, there are two different ways to activate late binding. You can declare the method
as virtual, as we have seen before, or declare it as dynamic. The syntax of these two key-
words is exactly the same, and the result of their use is also the same. What is different is the
internal mechanism used by the compiler to implement late binding.

virtual methods are based on a virtual method table (VM'T, also known as a vtable), which is
an array of method addresses. For a call to a virtual method, the compiler generates code to
jump to an address stored in the zth slot in the object’s virtual method table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

98 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Virtual method tables allow fast execution of the method calls. Their main drawback is that
they require an entry for each virtual method for each descendant class, even if the method
is not overridden in the subclass. At times, this has the effect of propagating VM'T entries
throughout a class hierarchy (even for methods that aren’t redefined). This might require a
lot of memory just to store the same method address multiple times.

Dynamic method calls, on the other hand, are dispatched using a unique number indicating
the method. The search for the corresponding function is generally slower than the one-step
table lookup for virtual methods. The advantage is that dynamic method entries only prop-
agate in descendants when the descendants override the method. For large or deep object
hierarchies, using dynamic methods instead of virtual methods can result in significant
memory savings with only a minimal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies only in
a different internal representation and slightly different speed or memory usage. Apart from
this, virtual and dynamic methods are the same.

Message Handlers

A late-bound method can be used to handle a Windows message, too, although the technique
is somewhat different. For this purpose Delphi provides yet another directive, message, to
define message-handling methods, which must be procedures with a single var parameter.
"The message directive is followed by the number of the Windows message the method wants
to handle.

WARNING T message directive is also available in Delphi for Linux and is fully supported by the lan-
guage and the RTL. However, the visual portion of the CLX application framework does not
use message methods to dispatch notifications to controls. For this reason, whenever possible,
you should use a virtual method provided by the library rather than handle a Windows mes-
sage directly. Of course, this matters only if you want your code to be more portable.

For example, the following code allows you to handle a user-defined message, with the
numeric value indicated by the wm_User Windows constant:
type
TForml = class(TForm)

procedure WmUser (var Msg: TMessage);
message wm_User;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Late Binding and Polymorphism 99

The name of the procedure and the actual type of the parameters are up to you, although
there are several predefined record types for the various Windows messages. You could later
send this message, invoking the corresponding method, by writing:

PostMessage (Forml.Handle, wm_User, 0, 0);

This technique can be extremely useful for veteran Windows programmers, who know all
about Windows messages and API functions. You can also dispatch a message to an object by
calling the TObject.Dispatch method on the object. This will be a synchronous message call,
not asynchronous like PostMessage. TObject.Dispatch is fully platform independent.

The ability to handle Windows messages and call API functions as you do when you are
programming Windows with the C language may horrify some programmers and delight
others. But in Delphi, when writing Windows applications, you will seldom need to use
message methods or call Windows APIs directly. Obviously, these techniques will also affect
the portability of your code to other platforms.

Abstract Methods

The abstract keyword is used to declare methods that will be defined only in subclasses of
the current class. The abstract directive fully defines the method; it is not a forward declara-
tion. If you try to provide a definition for the method, the compiler will complain. In Object
Pascal, you can create instances of classes that have abstract methods. However, when you
try to do so, Delphi’s 32-bit compiler issues the warning message “Constructing instance of
<class name> containing abstract methods.” If you happen to call an abstract method at run
time, Delphi will raise an exception, as demonstrated by the following Animals3 example.

NoTE

C++ and Java use a more strict approach: in these languages, you cannot create instances of
classes containing abstract methods.

You might wonder why you would want to use abstract methods. The reason lies in the
use of polymorphism. If class TAnimal has the abstract method Voice, every subclass can
redefine it. The advantage is that you can now use the generic MyAnimal object to refer to
each animal defined by a subclass and invoke this method. If this method was not present in
the interface of the TAnimal class, the call would not have been allowed by the compiler,
which performs static type checking. Using a generic MyAnimal object, you can call only the
method defined by its own class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least the dec-
laration of this method—in the form of an abstract method. The next example, Animals3,
demonstrates the use of abstract methods and the abstract call error. In Listing 3.1, you can
see the interfaces of the classes of this new example. (Here TAnimal is an abstract class.)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

100

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Listing 3.1: Declaration of the three classes of the Animals3 example
type
TAnimal = class
public

constructor Create;

function GetKind: string;

function Voice: string; virtual; abstract;
private

Kind: string;
end;

TDog = class (TAnimal)
public
constructor Create;
function Voice: string; override;
function Eat: string; virtual;
end;

TCat = class (TAnimal)
public
constructor Create;
function Voice: string; override;
function Eat: string; virtual;
end;

The most interesting portion of Listing 3.1 is the definition of the class TAnimal, which
includes a virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the implications
of these two different approaches? To call the Voice function, we can write the same code as
in the previous version of the program:

LabelVoice.Caption := MyAnimal.Voice;
How can we call the Eat method? We cannot apply it to an object of the TAnimal class. The
statement

LabelVoice.Caption := MyAnimal.Eat;
generates the compiler error “Field identifier expected.”

"To solve this problem, you can use run-time type information (RTTI) to cast the TAnimal
object to a TCat or TDog object; but without the proper cast, the program will raise an exception.
You will see an example of this approach in the next section. Adding the method definition to the
TAnimal class is a typical solution to the problem, and the presence of the abstract keyword
favors this choice.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Type-Safe Down-Casting 101

Norte What happens if a method overriding an abstract method calls inherited? In past versions of
Delphi, this resulted in an abstract method call. In Delphi 6, the compiler has been enhanced
to notice the presence of the abstract method and simply skip the inherited call. This means
you can safely always use inherited in every overridden method, unless you specifically want
to disable executing some code of the base class.

Type-Safe Down-Casting

The Object Pascal type-compatibility rule for descendant classes allows you to use a descendant
class where an ancestor class is expected. As I mentioned earlier, the reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the TAnimal
class. If the variable MyAnimal refers to a dog, it should be possible to call the function. But if
you try, and the variable is referring to another class, the result is an error. By making an
explicit typecast, we could cause a nasty run-time error (or worse, a subtle memory overwrite
problem), because the compiler cannot determine whether the type of the object is correct
and the methods we are calling actually exist.

To solve the problem, we can use techniques based on run-time type information (RTTT, for
short). Essentially, because each object “knows” its type and its parent class, and we can ask
for this information with the is operator or using the InheritsFrom method of the TObject
class. The parameters of the is operator are an object and a class type, and the return value is
a Boolean:

if MyAnimal is TDog then ...

The is expression evaluates as True only if the MyAnimal object is currently referring to an
object of class TDog or a type descendant from TDog. This means that if you test whether a
TDog object is of type TAnimal, the test will succeed. In other words, this expression evaluates
as True if you can safely assign the object (MyAnimal) to a variable of the data type (TDog).

Now that you know for sure that the animal is a dog, you can make a safe typecast (or type
conversion). You can accomplish this direct cast by writing the following code:

var
MyDog: TDog;

begin
if MyAnimal is TDog then
begin

MyDog := TDog (MyAnimal);
Text := MyDog.Eat;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

102

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

This same operation can be accomplished directly by the second RTTT operator, as, which
converts the object only if the requested class is compatible with the actual one. The parameters
of the as operator are an object and a class type, and the result is an object converted to the
new class type. We can write the following snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:

(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply to it
any method of that class. The difference between the traditional cast and the use of the as
cast is that the second raises an exception if the type of the object is incompatible with the
type you are trying to cast it to. The exception raised is EInvalidCast (exceptions are
described at the end of this chapter).

To avoid this exception, use the is operator and, if it succeeds, make a plain typecast (in
fact, there is no reason to use is and as in sequence, doing the type check twice):

if MyAnimal is TDog then
TDog(MyAnimal).Eat;

Both RTTT operators are very useful in Delphi because you often want to write generic
code that can be used with several components of the same type or even of different types.
When a component is passed as a parameter to an event-response method, a generic data
type is used (TObject), so you often need to cast it back to the original component type:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if Sender is TButton then

end;

This is a common technique in Delphi, and I'll use it in examples throughout the book. The
two RTTT operators, is and as, are extremely powerful, and you might be tempted to consider
them as standard programming constructs. Although they are indeed powerful, you should
probably limit their use to special cases. When you need to solve a complex problem involving
several classes, try using polymorphism first. Only in special cases, where polymorphism alone
cannot be applied, should you try using the RTTT operators to complement it. Do not use RTTIT
instead of polymorphism. This is bad programming practice, and it results in slower programs.
RTTIL, in fact, has a negative impact on performance, because it must walk the hierarchy of
classes to see whether the typecast is correct. As we have seen, virtual method calls require just
a memory lookup, which is much faster.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Using Interfaces 103

NotE

There is actually more to run-time type information (RTTI) than the is and as operators. You
can access to detailed class and type information at run time, particularly for published prop-
erties, events, and methods. More on this topic in Chapter 5.

Using Interfaces

When you define an abstract class to represent the base class of a hierarchy, you can come to
a point in which the abstract class is so abstract that it only lists a series of virtual functions
without providing any actual implementation. This kind of purely abstract class can also be
defined using a specific technique, an interface. For this reason, we refer to these classes as
interfaces.

Technically, an interface is not a class, although it may resemble one. Interfaces are not
classes, because they are considered a totally separate element with distinctive features:

e Interface type objects are reference-counted and automatically destroyed when there
are no more references to the object. This mechanism is similar to how Delphi man-
ages long strings and makes memory management almost automatic.

e A class can inherit from a single base class, but it can implement multiple interfaces.

e Asall classes descend from TObject, all interfaces descend from IInterface, forming a
totally separate hierarchy.

The base interface class used to be IUnknown until Delphi 5, but Delphi 6 introduces a new
name for it, IInterface, to mark even more clearly the fact that this language feature is sepa-
rate from Microsoft’s COM. In fact, Delphi interfaces are available also in the Linux version

of the product.

You can use this rule: Interface types describing things that relate to COM and the related
operating-system services should inherit from IUnknown. Interface types that describe things
that do not necessarily require COM (for example, interfaces used for the internal applica-
tion structure) should inherit from IInterface. Doing this consistently in your applications
will make it easier to identify which portions of your application probably assume or require
the Windows operating system and which portions are probably OS-independent.

NotE

Borland introduced interfaces in Delphi 3 along with the support COM programming. Though
the interface language syntax may have been created to support COM, interfaces do not
require COM. You can use interfaces to implement abstraction layers within your applications,
without building COM server objects. For example, the Delphi IDE uses interfaces extensively
in its internal architecture. COM is discussed in Chapter 19.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

104

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

From a more general point of view, interfaces support a slightly different object-oriented
programming model than classes. Objects implementing interfaces are subject to polymorphism
for each of the interfaces they support. Indeed, the interface-based model is powerful. But
having said that, I'm not interested in trying to assess which approach is better in each case.
Certainly, interfaces favor encapsulation and provide a looser connection between classes
than inheritance. Notice that the most recent OOP languages, from Java to C#, have the
notion of interfaces.

Here is the syntax of the declaration of an interface (which, by convention, starts with the
letter I):
type
ICanFly = dinterface
[' {EAD9C4B4-E1C5-4CF4-9FA0-3B812C880A21} ']
function Fly: string;
end;

The above interface has a GUID, a numeric ID following its declaration and based on

Windows conventions. You can generate these identifiers (called GUIDs in jargon) by
pressing Ctrl+Shift+G in the Delphi editor.

Although you can compile and use interfaces even without specifying a GUID (as in the code
above) for them, you’ll generally want to do it, as this is required to perform QueryInterface or
dynamic as typecasts using that interface type. Since the whole point of interfaces is (usually) to
take advantage of greatly extended type flexibility at run time, if compared with class types,
interfaces without GUIDs are not very useful.

Once you’ve declared an interface, you can define a class to implement it as in:

type
TAirplane = class (TInterfacedObject, ICanFly)
function Fly: string;
end;

The RTL already provides a few base classes to implement the basic behavior required by the
IInterface interface. The simplest one is the TInterfacedObject class I've used in this code.

You can implement interface methods with static methods (as in the code above) or with
virtual methods. You can override virtual methods in subclasses by using the override direc-
tive. If you don’t use virtual methods, you can still provide a new implementation in a sub-
class by redeclaring the interface type in the subclass, rebinding the interface methods to new
versions of the static methods. At first sight, using virtual methods to implement interfaces
seems to allow for smoother coding in subclasses, but both approaches are equally powerful
and flexible. However, the use of virtual methods affects code size and memory.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Using Interfaces 105

NortE The compiler has to generate stub routines to fix up the interface call entry points to the
matching method of the implementing class, and adjust the se1f pointer. The interface
method stubs for static methods are very simple: adjust se1f and jump to the real method in
the class. The interface method stubs for virtual methods are much more complicated, requir-
ing about four times more code (20 to 30 bytes) in each stub than the static case. Also, adding
more virtual methods to the implementing class just bloats the virtual method table (VMT) that
much more in the implementing class and all its descendents. Interfaces already have their
own VMT, and redeclaring interfaces in descendents to rebind the interface to new methods in
the descendent is just as polymorphic as using virtual methods, but much smaller in code size.
Now that we have defined an implementation of the interface, we can write some code to

use an object of this class, as usual:
var
Airplanel: TAirplane;
begin
Airplanel := TAirplane.Create;
Airplanel.Fly;
Airplanel.Free;
end;
But we can also use an interface-type variable:
var
Flyerl: ICanFly;
begin
Flyerl := TAirplane.Create;
Flyerl.Fly;
end;

As soon as you assign an object to an interface-type variable, Delphi automatically checks
to see whether the object implements that interface, using the as operator. You can explicitly
express this operation as follows:

Flyerl := TAirplane.Create as ICanFly;

NortE

The compiler generates different code for the as operator when used with interfaces or with
classes. With classes, the compiler introduces run-time checks to verify that the object is effec-
tively “type-compatible” with the given. With interfaces, the compiler sees at compile time
that it can extract the necessary interface from the available class type, so it does. This opera-
tion is like a “compile-time as,” not something that exists at run time.

Whether we use the direct assignment or the as statement, Delphi does one extra thing:
it calls the _AddRef method of the object (defined by IInterface and implemented by
TInterfacedObject), increasing its reference count. At the same time, as soon as the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

106 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Flyerl variable goes out of scope, Delphi calls the _Release method (again part of IInterface),
which decreases the reference count, checks whether the reference count is zero, and if
necessary, destroys the object. For this reason in the listing above, there is no code to free the
object we've created.

In other words, in Delphi, objects referenced by interface variables are reference-counted,
and they are automatically de-allocated when no interface variable refers to them any more.

WARNING \\hen using interface-based objects, you should generally access them only with object vari-
ables or only with interface variables. Mixing the two approaches breaks the reference count-
ing scheme provided by Delphi and can cause memory errors that are extremely difficult to
track. In practice, if you've decided to use interfaces, you should probably use exclusively inter-
face-based variables.

Interface Properties, Delegation, Redefinitions,
Aggregation, and Reference Counting Blues

To demonstrate a few technical elements related to interfaces, I’ve written the IntfDemo
example. This example is based on two different interfaces, IWalker and IJumper, defined as
follows:

IWalker = interface
['{0876F200-AAD3-11D2-8551-CCA30C584521} ']
function Walk: string;
function Run: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Position: Integer read GetPos write SetPos;

end;

IJumper = dinterface
['{0876F201-AAD3-11D2-8551-CCA30C584521} ']
function Jump: string;
function Walk: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Position: Integer read GetPos write SetPos;

end;

Notice that the first interface also defines a property. An interface property is just a name
mapped to a read and a write method. You cannot map an interface property to a field, simply
because an interface cannot have a data field.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Using Interfaces 107

Here comes a sample implementation of the IWaTker interface. Notice that you don’t have
to define the property, only its access methods:
TRunner = class (TInterfacedObject, IWalker)
private
Pos: Integer;
public
function Walk: string;
function Run: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;
end;

"The code is trivial, so I'm going to skip it (you can find it in the IntfDemo example, where
there is also a destructor showing a message, used to verify that reference counting works
properly). I've implemented the same interface also in another class, TAthlete, that I'll dis-
cuss in a second.

As I want to implement also the IJumper interface in two different classes, I've followed a
different approach. Delphi allows you to delegate the implementation of an interface inside a
class to an object exposed with a property. In other words, I want to share the actual imple-
mentation code for an interface implemented by several unrelated classes.

"To support this technique, Delphi has a special keyword, impTements. For example, you
can write:

TMyJumper = class (TInterfacedObject, IJumper)
private
fJumpImpl: IJumper;
public
constructor Create;
property Jumper: IJumper read fJumpImpl implements IJumper;
end;

In this case the property refers to an interface variable, but you can also use a plain object
variable (my preferred approach). The constructor is required for initializing the internal
implementation object:

constructor TMyJumper.Create;
begin

fJumpImpl := TJumperImpl.Create;
end;

As a first attempt (and in the last edition of the book), I defined the implementation class as
follows:

TJumperImpl = class (TInterfacedObject, IJumper)
private

Pos: Integer;
public

function Jump: string;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

108 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

function Walk: string;
procedure SetPos (Value: Integer);
function GetPos: Integer;

end;

If you try this code, the program will compile and everything will run smoothly, until you
try to check out what happens with reference counting. It won’t work, period. The problem
lies in the fact that when the program extracts the IJumper interface from the TMyJumper object,
it actually increases and decreases the reference counting of the inner object, instead of the
external one. In other words, you have a single compound object and two separate reference
counts going on. This can lead to objects being both kept in memory and released too soon.

The solution to this problem is to have a single reference count, by redirecting the _AddRef
and _ReTease calls of the internal object to the external one (actually we need to do the same
also for QueryInterface). In the example, I've used the TAggregatedObject provided in
Delphi 6 by the system unit; refer to the sidebar “Implementing Aggregates” for more details.

As a result of this approach, the implementation class is now defined as follows:

TJumperImpl = class (TAggregatedObject, IJumper)
private

Pos: Integer;
public

function Jump: string;

function Walk: string;

procedure SetPos (Value: Integer);

function GetPos: Integer;

property Position: Integer read GetPos write SetPos;
end;

An object using this class for implementing the IJumper interface must have a Create con-
structor, to create the internal object, and a destructor, to destroy it. The constructor of the
aggregate object requires the container object as parameter, so that it can redirect back the
IInterface calls. The key element, of course, is the property mapped to the interface with
the implements keyword:

TMyJumper = class (TInterfacedObject, IJumper)
private
fJumpImpl: TJumperImpT;
public
constructor Create;
property Jumper: TJumperImpl read fJumpImpl implements IJumper;
destructor Destroy; override;
end;

constructor TMyJumper.Create;
begin

fIlumpImpl := TJumperImpl.Create (self);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Using Interfaces 109

This example is simple, but in general, things get more complex as you start to modify
some of the methods or add other methods that still operate on the data of the internal
fIumpImpl object. This final step is demonstrated, along with other features, by the TAthlete
class, which implements both the Iwalker and IJumper interfaces:

TAthlete = class (TInterfacedObject, IWalker, IJumper)
private
fJumpImpl: TJumperImpl;
public
constructor Create;
destructor Destroy; override;
function Run: string; virtual;
function Walkl: string; virtual;
function IWalker.Walk = Walkl;
procedure SetPos (Value: Integer);
function GetPos: Integer;

property Jumper: TJumperImpl read fJumpImpl implements IJumper;
end;

One of the interfaces is implemented directly, whereas the other is delegated to the inter-
nal flumpImpl object. Notice also that by implementing two interfaces that have a method in
common, we end up with a name clash. The solution is to rename one of the methods, with
the statement

function IWalker.Walk = Walkl;

"This declaration indicates that the class implements the Walk method of the IWaTker inter-
face with a method called Walk1 (instead of with a method having the same name). Finally, in
the implementation of all of the methods of this class, we need to refer to the Position prop-
erty of the fJumpImp1 internal object. By declaring a new implementation for the Position
property, we’ll end up with two positions for a single athlete, a rather odd situation. Here are
a couple of examples:

function TAthlete.GetPos: Integer;
begin

Result := fJumpImpl.Position;
end;

function TAthlete.Run: string;
begin
fJumpImpl.Position := fJumpImpl.Position + 2;
Result := IntToStr (flumpImpl.Position) + ': Run';
end;

You can further experiment with the IntfDemo example, which has a simple form with
buttons to create and call methods of the various objects. Nothing fancy, though, as you can
see in Figure 3.4. Simply keep in mind that each call returns the position after the requested

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

110 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

movement and a description of the movement itself. Also, each object notifies with a message
when it is destroyed.

FIGURE 3.4: 4 Interface Demo M=
The IntfDemo example Ls

Fiuniter TMwumper. Create
1

_ e |
[bptors |

CWalk
4 Jump
MyJumper |5 sk

Tathlete. Create
2 Run

3wk

5 Run

& Jurp
9wl

Clear

Implementing Aggregates

As mentioned, when you want to use an internal object to implement an interface, you are
faced with reference counting problems. Of course, you can provide your own version of the
_AddRef and _Release methods of IInterface, but having a ready-to-use solution might
help. In fact, QueryInterface on the internal object must also be reflected to the outer
object. The user of the interface (whether it works on the outer object or the internal one)
should never be able to discern any difference in behavior between _AddRef, _Release, and
QueryInterface calls on the aggregated interface and any other interface obtained from the
implementing class.

Borland provides a solution to this problem with the TAggregatedObject class. In past version of
Delphi, this was defined in the ComObj unit, but now it has been moved into the System unit, to
make this feature also available to Linux and to separate it completely from COM support.

The TAggregatedObject class keeps a reference to the controller, the external object, passed as
parameter in the constructor. This weak reference is kept using a pointer type variable to avoid
artificially increasing the reference count of the controller from the aggregated object, something
that will prevent the object’s reference count from reaching zero. You create an object of this type
(used as internal object) passing the reference to the controller (the external object), and all of the
IInterface methods are passed back to the controller. A similar class, TContainedObject, lets
the controller resolve reference counting, but handles the QueryInterface call internally, limit-
ing the type resolution only to interfaces supported by the internal object.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Exceptions 111

Working with Exceptions

Another key feature of Object Pascal I'll cover in this chapter is the support for exceptions. The
idea of exceptions is to make programs more robust by adding the capability of handling soft-
ware or hardware errors in a uniform way. A program can survive such errors or terminate
gracefully, allowing the user to save data before exiting. Exceptions allow you to separate the
error-handling code from your normal code, instead of intertwining the two. You end up writ
ing code that is more compact and less cluttered by maintenance chores unrelated to the

actual programming objective.

Another benefit is that exceptions define a uniform and universal error-reporting mechanism,
which is also used by Delphi components. At run time, Delphi raises exceptions when some-
thing goes wrong (in the run-time code, in a component, in the operating system). From the
point of the code in which it is raised, the exception is passed to its calling code, and so on.
Ultimately, if no part of your code handles the exception, Delphi handles it, by displaying a
standard error message and trying to continue the program, by handing the next system mes-
sage or user request.

The whole mechanism is based on four keywords:
try delimits the beginning of a protected block of code.

except delimits the end of a protected block of code and introduces the exception-han-
dling statements, with this syntax form:

on exception-type do statement

finally is used to specify blocks of code that must always be executed, even when excep-
tions occur. This block is generally used to perform cleanup operations that should always
be executed, such as closing files or database tables, freeing objects, and releasing memory
and other resources acquired in the same program block.

raise is the statement used to generate an exception. Most exceptions you’ll encounter in
your Delphi programming will be generated by the system, but you can also raise excep-
tions in your own code when it discovers invalid or inconsistent data at run time. The
raise keyword can also be used inside a handler to re-raise an exception; that is, to propa-
gate it to the next handler.

The most important element to notice up front is that exception handling is no substitute
for if statements or for tests on input parameters of functions. So iz theory we could write
this code:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
try
// error if B equals 0
Result := A div B;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

112 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

// do something else... skip if exception is raised
Result := Result div B;
Result := Result + 1;

except
on EDivByZero do
Result := 0;
end;
end;

In practice, however, this is certainly not a good way of writing your programs. The except
block above, like most of the except blocks of the simple examples presented here, has almost
no sense at all. In the code above, you should probably not handle the exception but let the
program display the error message to the user. An algorithm calling this DivideTwicePTusOne
function should not continue (with a meaningless zero value) when this internal error is
encountered.

Program Flow and the finally Block

But how do we stop the algorithm? The power of exceptions in Delphi relates to the fact that
they are “passed” from a routine or method to the calling one, up to a global handler (if the
program provides one, as Delphi applications generally do). So the real problem you might
have is not how to stop an exception but how to execute some code when an exception is
raised.

Consider this method (part of the TryFinally example from the CD), which performs some
time-consuming operations and uses the hourglass cursor to show the user that it’s doing
something:

procedure TForml.BtnWrongClick(Sender: TObject);
var
I, J: Integer;
begin
Screen.Cursor := crHourglass;
J = 0;
// Tong (and wrong) computation...
for I := 1000 downto O do
J =71+] div I;
MessageDlg ('Total: ' + IntToStr (J), mtInformation, [mbOK], 0);
Screen.Cursor := crDefault;
end;

Because there is an error in the algorithm (as the variable I can reach a value of 0 and is
also used in a division), the program will break, but it won’t reset the default cursor. This is
what a try/finally block is for:

procedure TForml.BtnTryFinallyClick(Sender: TObject);
var

I, J: Integer;
begin

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Exceptions 113

Screen.Cursor := crHourglass;
J = 0;
try

// long (and wrong) computation...
for I := 1000 downto O do
J =1+] div I;
MessageDlg ('Total: ' + IntToStr (J), mtInformation, [mbOK], 0);
finally
Screen.Cursor := crDefault;
end;
end;
When the program executes this function, it always resets the cursor, whether an exception

(of any sort) occurs or not.

This code doesn’t handle the exception; it merely makes the program robust in case an
exception is raised. As a try block can be followed by either an except or a finally statement,
but not both of them at the same time, the typical solution if you want to also handle the
exception is to use two nested try blocks. In this case, you associate the internal one with a
finally statement and the external one with an except statement, or vice versa as the situa-
tion requires. Here is the code of this third button of the TryFinally example:

procedure TForml.BtnTryTryClick(Sender: TObject);

var
I, J: Integer;
begin
Screen.Cursor := crHourglass;
J = 0;
try try
// long (and wrong) computation...
for I := 1000 downto O do
J =1+] div I;
MessageDlg ('Total: ' + IntToStr (J), mtInformation, [mbOK], 0);
finally
Screen.Cursor := crDefault;
end;
except
on E: EDivByZero do
begin
// re-raise the exception with a new message
raise Exception.Create ('Error in Algorithm');
end;
end;
end;

Every time you have some finalization code at the end of a method, you should place this
code in a finally block. You should always, invariably, and continuously (how can I stress
this more?) protect your code with finally statements, to avoid resource or memory leaks in
case an exception is raised.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

114 Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Tip Handling the exception is generally much less important than using final1y blocks, since Del-
phi can survive most of them. And too many exception-handling blocks in your code probably
indicate errors in the program flow and possibly a misunderstanding of the role of exceptions
in the language. In the examples in the rest of the book you'll see many try/finally blocks,
a few raise statements, and almost no try/except blocks.

Exception Classes

In exception-handling statements shown earlier, we caught the EDivByZero exception, which
is defined by Delphi’s RTL. Other such exceptions refer to run-time problems (such as a
wrong dynamic cast), Windows resource problems (such as out-of-memory errors), or com-
ponent errors (such as a wrong index). Programmers can also define their own exceptions;
you can create a new subclass of the default exception class or one of its subclasses:

type

EArrayFull = class (Exception);

When you add a new element to an array that is already full (probably because of an error in
the logic of the program), you can raise the corresponding exception by creating an object of
this class:

if MyArray.Full then
raise EArrayFull.Create ('Array full');

This Create method (inherited from the Exception class) has a string parameter to describe the
exception to the user. You don’t need to worry about destroying the object you have created for
the exception, because it will be deleted automatically by the exception-handler mechanism.

The code presented in the previous excerpts is part of a sample program, called Exception].

Some of the routines have actually been slightly modified, as in the following DivideTwicePTusOne
function:

function DivideTwicePlusOne (A, B: Integer): Integer;
begin
try

// error if B equals 0

Result := A div B;

// do something else... skip if exception is raised

Result := Result div B;

Result := Result + 1;

except
on EDivByZero do
begin
Result := 0;
MessageDlg ('Divide by zero corrected.', mtError, [mbOK], 0);
end;
on E: Exception do
begin
Result := 0;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Exceptions 115

MessageDlg (E.Message, mtError, [mbOK], 0);
end;
end; // end except
end;

Debugging and Exceptions

When you start a program from the Delphi environment (for example, by pressing the F9 key),
you'll generally run it within the debugger. When an exception is encountered, the debugger
will stop the program by default. This is normally what you want, of course, because you'll
know where the exception took place and can see the call of the handler step-by-step. You can
also use the Stack Trace feature of Delphi to see the sequence of function and method calls,
which caused the program to raise an exception.

In the case of the Exception1 test program, however, this behavior will confuse the program’s
execution. In fact, even if the code is prepared to properly handle the exception, the debugger
will stop the program execution at the source code line closest to where the exception was
raised. Then, moving step-by-step through the code, you can see how it is handled.

If you just want to let the program run when the exception is properly handled, run the pro-
gram from Windows Explorer, or temporarily disable the Stop on Delphi Exceptions options in
the Language Exceptions page of the Debugger Options dialog box (activated by the Tools >
Debugger Options command), shown in the Language Exceptions page of the Debugger
Options dialog box shown here.

Debugger Dptions
05 Exceptions] Diztributed Debuagaing]
General] Event Log Larguage Exceptions

Exception Types to lgnore

w| Microzoft DAD Exceptions
YiziBroker Internal E xceptions
CORBA System Exceptions
COREA User Exceptions

v Stop on Delphi Exceptions

[v Integrated debugging DII\SS | Cancel ‘ Help ‘

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

116

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

In the Exception] code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence. For this reason, you
need to place the broader handlers (the handlers of the ancestor Exception classes) at the end.

In fact, using a hierarchy of exceptions, a handler is also called for the subclasses of the
type it refers to, as any procedure will do. This is polymorphism in action again. But keep in
mind that using a handler for every exception, such as the one above, is not usually a good
choice. It is better to leave unknown exceptions to Delphi. The default exception handler in
the VCL displays the error message of the exception class in a message box, and then resumes
normal operation of the program. You can actually modify the normal exception handler with
the Application.OnException event, as demonstrated in the ErrorLog example later in this
chapter.

Another important element of the code above is the use of the exception object in the
handler (see on E: Exception do). The object E of class Exception receives the value of the
exception object passed by the raise statement. When you work with exceptions, remember
this rule: You raise an exception by creating an object and handle it by indicating its type.
"This has an important benefit, because as we have seen, when you handle a type of exception,
you are really handling exceptions of the type you specify as well as any descendant type.

Delphi defines a hierarchy of exceptions, and you can choose to handle each specific type
of exception in a different way or handle groups of them together.

Logging Errors

Most of the time, you don’t know which operation is going to raise an exception, and you
cannot (and should not) wrap each and every piece of code in a try/except block. The gen-
eral approach is to let Delphi handle all the exceptions and eventually pass them all to you,
by handling the OnException event of the global AppTication object. This can be done rather
easily with the ApplicationEvents component.

In the ErrorLog example, I've added to the main form a copy of the ApplicationEvents
component and added a handler for its OnException event:

procedure TFormLog.LogException(Sender: TObject; E: Exception);
var

Filename: string;

LogFile: TextFile;

begin
// prepares log file
Filename := ChangeFileExt (Application.Exename, '.Tog');

AssignFile (LogFile, Filename);
if FileExists (FileName) then

Append (LogFile) // open existing file
else

Rewrite (LogFile); // create a new one
// write to the file and show error

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Exceptions 117

Writeln (LogFile, DateTimeToStr (Now) + ':' + E.Message);
if not CheckBoxSilent.Checked then
AppTication.ShowException (E);
// close the file
CloseFile (LogFile);
end;

Norte The ErrorLog example uses the text file support provided by the traditional Turbo Pascal
TextFile data type. You can assign a text file variable to an actual file and then read or write it.
You can find more on TextFile operations in Chapter 12 of Essential Pascal, available on the
companion CD.

In the global exceptions handler, you can write to the log, for example, the date and time
of the event, and also decide whether to show the exception as Delphi usually does (executing
the ShowException method of the TApplication class). In fact, Delphi by default executes
ShowException only if there is no OnException handler installed.

Finally, remember to close the file, flushing the buffers, every time the exception is handled
or when the program terminates. I've chosen the first approach to avoid keeping the log file
open for the lifetime of the application, potentially making it difficult to work on it. You can
accomplish this in the OnDestroy event handler of the form:

procedure TFormLog.FormDestroy(Sender: TObject);
begin

CloseFile (LogFile);
end;

The form of the program includes a check box to determine its behavior and two buttons
generating exceptions. In Figure 3.5, you can see the ErrorLog program running and a sample
exceptions log open in Notepad.

FIGURE 3.5:
The ErrorLog example and

the log it produces
raise |

[~ Silent

{ERRORLDG._log - Notepad
File Edit Fomat Help

11,/24,/2000 4:52:30 pm:pivision by zerco ﬂ
11,/24,/2000 4:52:34 pm:raise button pressed

11,/24/2000 4:52:39 PM:raise button pressed

11,/24,/2000 4:52:42 pm:Dpivision by zero

11,24,/2000 4:52:45 pm:Dpivision by zero

= [0] %]

+I" EmmorLog

4

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

118

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

Class References

The final language feature I want to discuss in this chapter is c/ass references, which implies the
idea of manipulating classes themselves (not just class instances) within your code. The first
point to keep in mind is that a class reference isn’t a class, it isn’t an object, and it isn’t a refer-
ence to an object; it is simply a reference to a class type.

A class reference type determines the type of a class reference variable. Sounds confusing?
A few lines of code might make this a little clearer. Suppose you have defined the class TMy-
Class. You can now define a new class reference type, related to that class:

type
TMyClassRef = class of TMyClass;
Now you can declare variables of both types. The first variable refers to an object, the second
to a class:
var
AClassRef: TMyClassRef;
AnObject: TMyClass;
begin
AClassRef := TMyClass;
AnObject := TMyClass.Create;

You may wonder what class references are used for. In general, class references allow you
to manipulate a class data type at run time. You can use a class reference in any expression
where the use of a data type is legal. Actually, there are not many such expressions, but the
few cases are interesting. The simplest case is the creation of an object. We can rewrite the
two lines above as follows:

AClassRef := TMyClass;

AnObject := AClassRef.Create;
"This time I've applied the Create constructor to the class reference instead of to an actual
class; I've used a class reference to create an object of that class.

NoTE

Class references remind us of the concept of metaclass available in other OOP languages. In
Object Pascal, however, a class reference is not itself a class but only a type pointer. Therefore,
the analogy with metaclasses (classes describing other classes) is a little misleading. Actually,
TMetaclass is also the term used in Borland C++Builder.

Class reference types wouldn’t be as useful if they didn’t support the same type-compatibility
rule that applies to class types. When you declare a class reference variable, such as MyClassRef
above, you can then assign to it that specific class and any subclass. So if MyNewClass is a sub-
class of my class, you can also write

AClassRef := MyNewClass;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Class References 119

Delphi declares a lot of class references in the run-time library and the VCL, including the
following:

TClass = class of TObject;

ExceptClass = class of Exception;

TComponentClass = class of TComponent;

TControlClass = class of TControl;

TFormClass = class of TForm;

In particular, the TClass class reference type can be used to store a reference to any class you
write in Delphi, because every class is ultimately derived from TObject. The TFormClass refer-
ence, instead, is used in the source code of most Delphi projects. The CreateForm method of
the Application object, in fact, requires as parameter the class of the form to create:

Application.CreateForm(TForml, Forml);

The first parameter is a class reference; the second is a variable that stores a reference to the
created object instance.

Finally, when you have a class reference you can apply to it the class methods of the related
class. Considering that each class inherits from TObject, you can apply to each class reference
some of the methods of TObject, as we’ll see in the next chapter.

Creating Components Using Class References

What is the practical use of class references in Delphi? Being able to manipulate a data type at
run time is a fundamental element of the Delphi environment. When you add a new compo-
nent to a form by selecting it from the Component Palette, you select a data type and create
an object of that data type. (Actually, that is what Delphi does for you behind the scenes.) In
other words, class references give you polymorphism for object construction.

"To give you a better idea of how class references work, I've built an example named ClassRef.
The form displayed by this example is quite simple. It has three radio buttons, placed inside a
panel in the upper portion of the form. When you select one of these radio buttons and click
the form, you’ll be able to create new components of the three types indicated by the button
labels: radio buttons, push buttons, and edit boxes.

"To make this program run properly, you need to change the names of the three compo-
nents. The form must also have a class reference field:
private

ClassRef: TControlClass;
Counter: Integer;

The first field stores a new data type every time the user clicks one of the three radio buttons.
Here is one of the three methods:
procedure TForml.RadioButtonRadioClick(Sender: TObject);
begin
ClassRef := TRadioButton;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

120

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

The other two radio buttons have OnC11ck event handlers similar to this one, assigning the
value TEdit or TButton to the ClassRef field. A similar assignment is also present in the han-
dler of the OnCreate event of the form, used as an initialization method.

The interesting part of the code is executed when the user clicks the form. Again, I've cho-
sen the OnMouseDown event of the form to hold the position of the mouse click:

procedure TForml.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
var
NewCtrl: TControl;
MyName: String;
begin
// create the control
NewCtrl := ClassRef.Create (Self);
// hide it temporarily, to avoid flickering
NewCtrl.Visible := False;
// set parent and position
NewCtrl.Parent := Self;
NewCtrl.Left := X;
NewCtrl.Top :=Y;
// compute the unique name (and caption)
Inc (Counter);
MyName := ClassRef.ClassName + IntToStr (Counter);
Delete (MyName, 1, 1);
NewCtrl.Name := MyName;
// now show it
NewCtrl.Visible := True;
end;

The first line of the code for this method is the key. It creates a new object of the class data
type stored in the ClassRef field. We accomplish this simply by applying the Create con-
structor to the class reference. Now you can set the value of the Parent property, set the
position of the new component, give it a name (which is automatically used also as Caption
or Text), and make it visible.

Notice in particular the code used to build the name; to mimic Delphi’s default naming con-
vention, 've taken the name of the class with the expression ClassRef.ClassName, using a class
method of the TObject class. Then I’ve added a number at the end of the name and removed
the initial letter of the string. For the first radio button, the basic string is TRadioButton,
plus the 7 at the end, and minus the 7 at the beginning of the class name—RadioButton]1.
Sound familiar?

You can see an example of the output of this program in Figure 3.6. Notice that the nam-
ing is not exactly the same as used by Delphi. Delphi uses a separate counter for each type of

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

What’s Next?

121

control; I've used a single counter for all of the components. If you place a radio button, a

push button, and an edit box in a form of the ClassRef example, their names will be
RadioButtonl, Button2, and Edit3.

NortE For polymorphic construction to work, the base class type of the class reference must have a vir-
tual constructor. If you use a virtual constructor (as in the example), the constructor call applied
to the class reference will call the constructor of the type that the class reference variable
currently refers to. But without a virtual constructor, your code will call the constructor of fixed
class type indicated in the class reference declaration. Virtual constructors are required for poly-

morphic construction in the same way that virtual methods are required for polymorphism.

FIGURE 3.6: 41 Component Builder _ (O] x|
An example of the output Fadio Button ~ Button
of the ClassRef example

(" RadioButtand

" RadicButton2

Button3 | Buttond ‘ Buttans ‘
EditE

What’s Next?

In this chapter, we have discussed the more advanced elements of object-oriented program-
ming in Object Pascal. We have considered inheritance, virtual and abstract methods, poly-

morphism, safe typecasting, interfaces, exceptions, and class references.

Understanding the secrets of Object Pascal and the structure of the Delphi library is vital
for becoming an expert Delphi programmer. These topics form the foundation of working
with the VCL and CLX class libraries; after exploring them in the next two chapters, we’ll
finally go on in Part II of the book to explore the development of real applications using all

the various components provided by Delphi.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

122

Chapter 3 e The Object Pascal Language: Inheritance and Polymorphism

In the meantime, the next chapter will give you an over view of the Delphi run-time library,
mainly a collection of functions with little OOP involved. The RTL is an assorted collection
of routines and tasks for performing basic tasks with Delphi, and it has been largely extended
in Delphi 6.

Chapter 5 will give you more information about the Object Pascal language, discussing
features related to the structure of the Delphi class library, such as the effect of the pub1ished
keyword and the role of events. The chapter, as a whole, will discuss the overall architecture
of the component library.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

The Run-Time Library

e Overview of the RTL

e New Delphi 6 RTL functions

e The conversion engine

e Dates, strings, and other new RTL units
e The TObject class

e Showing class information at run time

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

124 Chapter 4 e The Run-Time Library

Delphi uses Object Pascal as its programming language and favors an object-oriented
approach, tied with a visual development style. This is where Delphi shines, and we will
cover component-based and visual development in this book; however, I want to underline
the fact that a lot of ready-to-use features of Delphi come from its run-time library, or RTL
for short. This is a large collection of functions you can use to perform simple tasks, as well
as some complex ones, within your Pascal code. (I use “Pascal” here, because the run-time
library mainly contains procedures and functions and not classes and objects.)

There is actually a second reason to devote this chapter of the book to the run-time library:
Delphi 6 sees a large number of enhancements to this area. There are new groups of func-
tions, functions have been moved to new units, and other elements have changed, creating a
few incompatibilities with existing code. So even if you’ve used past versions of Delphi and
feel confident with the RTL, you should still read at least portions of this chapter.

The Units of the RTL

As I mentioned above, in Delphi 6 the RTL (run-time library) has a new structure and several
new units. The reason for adding new units is that many new functions were added. In most

cases, you’ll find the existing functions in the units where they used to be, but the new func-

tions will appear in specific units. For example, new functions related to dates are now in the
DateUtils unit, but existing date functions have not been moved away from SysUtils in order
to avoid incompatibilities with existing code.

The exception to this rule relates to some of the variant support functions, which were
moved out of the System unit to avoid unwanted linkage of specific Windows libraries, even
in programs that didn’t use those features. These variant functions are now part of the new
Variants unit, described later in the chapter.

WARNING 5ome of your existing Delphi code might need to use this new Variants unit to recompile. Del-
phi 6 is smart enough to acknowledge this and auto-include the Variants unit in projects that
use the Variant type, issuing only a warning.

A little bit of fine-tuning has also been applied to reduce the minimum size of an executable
file, at times enlarged by the unwanted inclusion of global variables or initialization code.

Executable Size under the Microscope

While touching up the RTL, Borland engineers have been able to trim a little “fat” out of each
and every Delphi application. Reducing the minimum program size of a few KB seems quite
odd, with all the bloated applications you find around these days, but it is a good service to
developers. There are cases in which even few KB (multiplied by many applications) can reduce

size and eventually download time.
Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 125

As a simple test, I've built the MiniSize program, which is not an attempt to build the smallest
possible program, but rather an attempt to build a very small program that does something
interesting: It reports the size of its own executable file. All of the code of this example is in the
source code on the companion CD:

program MiniSize;

uses
Windows;

{$R *.RES}

var
nSize: Integer;
hFile: THandle;
strSize: String;

begin
// open the current file and read the size
hFile := CreateFile (PChar (ParamStr (0)),
0, FILE_SHARE_READ, nil, OPEN_EXISTING, 0, 0);
nSize := GetFileSize (hFile, nil);
CloseHandle ChFile);

// copy the size to a string and show it

SetlLength (strSize, 20);

Str (nSize, strSize);

MessageBox (0, PChar (strSize),

'"Mini Program', MB_OK);
end.

The program opens its own executable file, after retrieving its name from the first command-
line parameter (ParamStr (0)), extracts the size, converts it into a string using the simple Str
function, and shows the result in a message. The program does not have top-level windows.
Moreover, | use the Str function for the integer-to-string conversion to avoid including SysU-
tils, which defines all the more complex formatting routines and would impose a little extra
overhead.

If you compile this program with Delphi 5, you obtain an executable size of 18,432 bytes. Del-
phi 6 reduces this size to only 15,360 bytes, trimming about 3 KB. Replacing the long string
with a short string, and modifying the code a little, you can trim down the program further, up
t0 9,216 bytes. This is because you'll end up removing the string support routines and also the
memory allocator, something possible only in programs using exclusively low-level calls. You
can find both versions in the source code of the example.

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

126

Chapter 4 e The Run-Time Library

Notice, anyway, that decisions of this type always imply a few trade-offs. In eliminating the
overhead of variants from Delphi applications that don‘t use them, for example, Borland added
a little extra burden to applications that do. The real advantage of this operation, though, is in
the reduced memory footprint of Delphi applications that do not use variants, as a result of not
having to bring in several megabytes of the Ole2 system libraries.

What is really important, in my opinion, is the size of full-blown Delphi applications based on
run-time packages. A simple test with a do-nothing program, the MimiPack example, shows
an executable size of 15,972 bytes.

In the following sections is a list of the RTL units in Delphi 6, including all the units available
(with the complete source code) in the Source\Rt1\Sys subfolder of the De1phi directory and
some of those available in the new subfolder Source\Rt1\Common. This new directory hosts the
source code of units that make up the new RTL package, which comprises both the function-
based library and the core classes, discussed in the next chapter.

NotE

The VCL50 package has now been split into the VCL and RTL packages, so that nonvisual
applications using run-time packages don’t have the overhead of also deploying visual por-
tions of the VCL. Also, this change helps with Linux compatibility, as the new package is
shared between the VCL and CLX libraries. Notice also that the package names in Delphi 6
don’t have the version number in their name anymore. When they are compiled, though, the
BPL does have the version in its file name, as discussed in more detail in Chapter 12.

I'll give a short overview of the role of each unit and an overview of the groups of functions
included. I’ll also devote more space to the new Delphi 6 units. I won’t provide a detailed list
of the functions included, because the online help includes similar reference material. How-
ever, I've tried to pick a few interesting or little-known functions, and I will discuss them
shortly.

The System and Syslnit Units

System is the core unit of the RTL and is automatically included in any compilation (consid-
ering an automatic and implicit uses statement referring to it). Actually, if you try adding the
unit to the uses statement of a program, you’ll get the compile-time error:

[Error] Identifier redeclared: System
The System unit includes, among other things:

e The TObject class, the base class of any class defined in the Object Pascal language,
including all the classes of the VCL. (This class is discussed later in this chapter.)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 127

e The IUnknown and IDispatch interfaces as well as the simple implementation class
TInterfacedObject. There are also the new IInterface and IInvokable interfaces.
IInterface was added to underscore the point that the interface type in Delphi’s
Object Pascal language definition is in no way dependent on the Windows operating
system (and never has been). IInvokable was added to support SOAP-based invoca-
tion. (Interfaces and related classes were introduced in the last chapter and will be dis-
cussed further in multiple sections of the book.)

e Some variant support code, including the variant type constants, the TVarData record
type and the new TVariantManager type, a large number of variant conversion routines,
and also variant records and dynamic arrays support. This area sees a lot of changes
compared to Delphi 5. The basic information on variants is provided in Chapter 10 of
Essential Pascal (available on the companion CD), while an introduction to custom vari-
ants is available later in this chapter.

e Many base data types, including pointer and array types and the TDateTime type I've
already described in the last chapter.

e Memory allocation routines, such as GetMem and FreeMem, and the actual memory man-
ager, defined by the TMemoryManager record and accessed by the GetMemoryManager and
SetMemoryManager functions. For information, the GetHeapStatus function returns a
THeapStatus data structure. Two new global variables (A11ocMemCount and AT1ocMemS1ize)
hold the number and total size of allocated memory blocks. There is more on memory
and the use of these functions in Chapter 10.

e Package and module support code, including the PackageInfo pointer type, the
GetPackageInfoTable global function, and the EnumModuTes procedure (packages inter-
nals are discussed in Chapter 12).

e A rather long list of global variables, including the Windows application instance Main-
Instance; IsLibrary, indicating whether the executable file is a library or a stand-alone
program; IsConsole, indicating console applications; IsMultiThread, indicating whether
there are secondary threads; and the command-line string CmdLine. (The unit includes
also the ParamCount and ParamStr for an easy access to command-line parameters.) Some
of these variables are specific to the Windows platform.

e Thread-support code, with the BeginThread and EndThread functions; file support
records and file-related routines; wide string and OLE string conversion routines; and
many other low-level and system routines (including a number of automatic conversion
functions).

The companion unit of System, called SysInit, includes the system initialization code, with
functions you’ll seldom use directly. This is another unit that is always implicitly included, as
it is used by the System unit.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

128

Chapter 4 e The Run-Time Library

New in System Unit

I've already described some interesting new features of the System unit in the list above, and
most of the changes relate to making the core Delphi RTL more cross-platform portable,
replacing Windows-specific features with generic implementations. Along this line, there are
new names for interface types, totally revised support for variants, new pointer types, dynamic
array support, and functions to customize the management of exception objects.

Another addition for compatibility with Linux relates to line breaks in text files. There is a
new DefaultTextLineBreakStyle variable, which can be set to either tlbsLF or tlbsCRLE, and
a new sLineBreak string constant, which has the value #13#10 in the Windows version of Delphi
and the value #10 in the Linux version. The line break style can also be set on a file-by-file basis
with SetTextLineBreakStyle function.

Finally, the System unit now includes the TFiTeRec and TTextRec structures, which were
defined in the SysUtils unit in earlier versions of Delphi.

The SysUtils and SysConst Units

The SysConst unit defines a few constant strings used by the other RTL units for displaying
messages. These strings are declared with the resourcestring keyword and saved in the pro-
gram resources. As other resources, they can be translated by means of the Integrated Trans-
lation Manager or the External Translation Manager.

The SysUtils unit is a collection of system utility functions of various types. Different from
other RTL units, it is in large part an operating system—dependent unit. The SysUrtils unit
has no specific focus, but it includes a bit of everything, from string management to locale
and multibyte-characters support, from the Exception class and several other derived excep-
tion classes to a plethora of string-formatting constants and routines.

Some of the features of SysUtils are used every day by every programmer as the IntToStr
or Format string-formatting functions; other features are lesser known, as they are the Windows
version information global variables. These indicate the Windows platform (Window 9x or
NT/2000), the operating system version and build number, and the eventual service pack
installed on N'T. They can be used as in the following code, extracted from the WinVersion
example on the companion CD:

case Win32PTatform of
VER_PLATFORM_WIN32_WINDOWS: ShowMessage ('Windows 9x');

VER_PLATFORM_WIN32 NT: ShowMessage ('Windows NT');
end;
ShowMessage ('Running on Windows: ' + IntToStr (Win32MajorVersion) + '.' +

IntToStr (Win32MinorVersion) + ' (Build ' + IntToStr (Win32BuildNumber) +
') '+ #10#13 + 'Update: ' + Win32CSDVersion);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 129

The second code fragment produces a message like the one in Figure 4.1, depending, of
course, on the operating-system version you have installed.

FIGURE 4.1:

The version information
displayed by the WinVer-

+f WinYersion

sion example | Wwindows version I

e

Fiuning on wWindows: 5.0 [Build 2195)
Update: Service Pack 1

Another little-known feature, but one with a rather long name, is a class that supports
multithreading: TMuTtiReadExclusiveWriteSynchronizer. This class allows you to work with
resources that can be used by multiple threads at the same time for reading (multiread) but
must be used by one single thread when writing (exclusive-write). This means that the writ-
ing cannot start until all the reading threads have terminated.

NotE

The multi-read synchronizer is unique in that it supports recursive locks and promotion of read
locks to write locks. The main purpose of the class is to allow multiple threads easy, fast access
to read from a shared resource, but still allow one thread to gain exclusive control of the
resource for relatively infrequent updates. There are other synchronization classes in Delphi,
declared in the SyncObjs unit and closely mapped to operating-system synchronization objects
(such as events and critical sections in Windows).

New SysUtils Functions

Delphi 6 has some new functions within the SysUti1s unit. One of the new areas relates to
Boolean to string conversion. The Boo1ToStr function generally returns ‘-1’ and ‘0’ for true
and false values. If the second optional parameter is specified, the function returns the first
string in the TrueBoo1Strs and FalseBool1Strs arrays (by default “TRUE’ and ‘FALSE’):

BoolToStr (True) // returns '-1'
BoolToStr (False, True) // returns 'FALSE' by default

The reverse function is StrToBool, which can convert a string containing either one of the
values of two Boolean arrays mentioned above or a numeric value. In the latter case, the result
will be true unless the numeric value is zero. You can see a simple demo of the use of the
Boolean conversion functions in the StrDemo example, later in this chapter.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

130

Chapter 4 e The Run-Time Library

Other new functions of SysU'tils relate to floating-point conversions to currency and date
time types: FloatToCurr and FloatToDateTime can be used to avoid an explicit type cast. The
TryStrToFloat and TryStrToCurr functions try to convert a string into a floating point or
currency value and will return False in case of error instead of generating an exception (as
the classic StrToFloat and StrToCurr functions do).

There is an AnsiDequotedStr function, which removes quotes from a string, matching the
AnsiQuoteStr function added in Delphi 5. Speaking of strings, Delphi 6 has much-improved
support for wide strings, with a series of new routines, including WideUpperCase, WideLowerCase,
WideCompareStr, WideSameStr, WideCompareText, WideSameText, and WideFormat. All of these
functions work like their AnsiString counterparts.

Three functions (TryStrToDate, TryEncodeDate, and TryEncodeTime) try to convert a
string to a date or to encode a date or time, without raising an exception, similarly to the Try
functions previously mentioned. In addition, the DecodeDateFully function returns more
detailed information, such as the day of the week, and the CurrentYear function returns the
year of today’s date.

There is a portable, friendly, overloaded version of the GetEnvironmentvariable function.
"This new version uses string parameters instead of PChar parameters and is definitely easier
to use:

function GetEnvironmentVariable(Name: string): string;

Other new functions relate to interface support. Two new overloaded versions of the little-
known Support function allow you to check whether an object or a class supports a given
interface. The function corresponds to the behavior of the is operator for classes and is
mapped to the QueryInterface method. Here’s an example in the code of the IntfDemo pro-
gram from Chapter 3:

var
W1l: IWalker;
J1: IJumper;
begin

W1l := TAthTlete.Create;
// more code...
if Supports (wl, IJumper) then
begin
J1 := W1 as IJumper;
Log (J1.walk);
end;

There are also an IsEqualGUID function and two functions for converting strings to
GUIDs and vice versa. The function CreateGUID has been moved to SysUtils, as well, to
make it also available on Linux (with a custom implementation, of course).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 131

Finally, Delphi 6 has some more Linux-compatibility functions. The AdjustLineBreaks
function can now do different types of adjustments to carriage-return and line-feed sequences,
along with the introduction of new global variables for text files in the System unit, as described
earlier. The FileCreate function has an overloaded version in which you can specity file-access
rights the Unix way. The ExpandFileName function can locate files (on case-sensitive file systems)
even when their cases don’t exactly correspond. The functions related to path delimiters (back-
slash or slash) have been made more generic and renamed accordingly. (For example, the
IncludeTralingBackslash function is now better known as IncludingTrailingPathDelimiter.)

The Math Unit

The Math unit hosts a collection of mathematical functions: about forty trigonometric func-
tions, logarithmic and exponential functions, rounding functions, polynomial evaluations,
almost thirty statistical functions, and a dozen financial functions.

Describing all of the functions of this unit would be rather tedious, although some readers
are probably very interested in the mathematical capabilities of Delphi. Here are some of the
newer math functions.

New Math Functions

Delphi 6 adds to the Math unit quite a number of new features. There is support for infinite
constants (Infinity and NegInfinity) and related comparison functions (IsInfinite and
IsNan). There are new trigonometric functions for cosecants and cotangents and new angle-
conversion functions.

A handy feature is the availability of an overloaded IfThen function, which returns one of
two possible values depending on a Boolean expression. (A similar function is now available
also for strings.) You can use it, for example, to compute the minimum of two values:

nMin := IfThen (nA < nB, na, nB);

NotE

The IfThen function is similar to the ?: operator of the C/C++ language, which | find very
handy because you can replace a complete 1if/then/else statement with a much shorter
expression, writing less code and often declaring fewer temporary variables.

The RandomRange and RandomFrom can be used instead of the traditional Random function to
have more control on the random values produced by the RTL. The first function returns a
number within two extremes you specify, while the second selects a random value from an
array of possible numbers you pass to it as a parameter.

The InRange Boolean function can be used to check whether a number is within two other
values. The EnsureRange function, instead, forces the value to be within the specified range.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

132 Chapter 4 ¢ The Run-Time Library

"The return value is the number itself or the lower limit or upper limit, in the event the number
is out of range. Here is an example:

// do something only if value is within min and max
if InRange (value, min, max) then

// make sure the value is between min and max
value := EnsureRange (value, min, max);

Another set of very useful functions relates to comparisons. Floating-point numbers are
fundamentally inexact; a floating-point number is an approximation of a theoretical real value.
When you do mathematical operations on floating-point numbers, the inexactness of the
original values accumulates in the results. Multiplying and dividing by the same number
might not return exactly the original number but one that is very close to it. The Samevalue
function allows you to check whether two values are close enough in value to be considered
equal. You can specify how close the two numbers should be or let Delphi compute a reason-
able error range for the representation you are using. (This is why the function is overloaded.)
Similarly, the IsZero function compares a number to zero, with the same “fuzzy logic.”

The Comparevalue function uses the same rule for floating-point numbers but is available
also for integers; it returns one of the three constants LessThanValue, EqualsValue, and
GreaterThanValue (corresponding to —1, 0, and 1). Similarly, the new Sign function returns
-1, 0, and 1 to indicate a negative value, zero, or a positive value.

The DivMod function is equivalent to both div and mod operations, returning the result of
the integer division and the remainder (or modulus) at once. The RoundTo function allows
you to specify the rounding digit—allowing, for example, rounding to the nearest thousand
or to two decimals:

RoundTo (123827, 3); // result is 124,000
RoundTo (12.3827, -2); // result is 12.38

WARNING Notice that the RoundTo function uses a positive number to indicate the power of ten to
round to (for example, 2 for hundreds) or a negative number for the number of decimal
places. This is exactly the opposite of the Round function used by spreadsheets such as Excel.

There are also some changes to the standard rounding operations provided by the Round
function: You can now control how the FPU (the floating-point unit of the CPU) does the
rounding by calling the SetRoundMode function. There are also functions to control the FPU
precision mode and its exceptions.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 133

The New ConvUtils and StdConvs Units

The new ConvUtils unit contains the core of the conversion engine. It uses the conversion
constants defined by a second unit, StdConvs. I’ll cover these two units later in this chapter,
showing you also how to extend them with new measurement units.

The New DateUtils Unit

The DateUtils unit is a new collection of date and time-related functions. It includes new
functions for picking values from a TDateTime variable or counting values from a given
interval, such as

// pick value

function DayOf(const AValue: TDateTime): Word;

function HourOf(const AValue: TDateTime): Word;

// value in range

function WeekOfYear(const AValue: TDateTime): Integer;

function HourOfWeek(const AValue: TDateTime): Integer;

function SecondOfHour(const AValue: TDateTime): Integer;

Some of these functions are actually quite odd, such as Mi11iSecondOfMonth or SecondOfWeek,
but Borland developers have decided to provide a complete set of functions, no matter how
impractical they sound. I actually used some of these functions in Chapter 2, to build the
TDate class.

There are functions for computing the initial or final value of a given time interval (day,
week, month, year) including the current date, and for range checking and querying; for
example:

function DaysBetween(const ANow, AThen: TDateTime): Integer;

function WithinPastDays(const ANow, AThen: TDateTime;
const ADays: Integer): Boolean;

Other functions cover incrementing and decrementing by each of the possible time inter-
vals, encoding and “recoding” (replacing one element of the TDateTime value, such as the day,
with a new one), and doing “fuzzy” comparisons (approximate comparisons where a differ-

ence of a millisecond will still make two dates equal). Overall, DateUtils is quite interesting
and not terribly difficult to use.

The New StrUtils Unit

The StrUtils unit is a new unit with some new string-related functions. One of the key features
of this unit is the availability of many new string comparison functions. There are functions
based on a “soundex” algorithm (AnsiResembleText), some providing lookup in arrays of
strings (AnsiMatchText and AnsiIndexText), sub-string location, and replacement (including
AnsiContainsText and AnsiReplaceText).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

134

Chapter 4 e The Run-Time Library

NoTE

Soundex is an algorithm to compare names based on how they sound rather then how
they are spelled. The algorithm computes a number for each word sound, so that compar-
ing two such numbers you can determine whether two names sound similar. The system
was first applied 1880 by the U.S. Bureau of the Census, patented in 1918, and is now in
the public domain. The soundex code is an indexing system that translates names into a
four-character code consisting of one letter and three numbers. More information is at
www.nara.gov/genealogy/coding.html.

Beside comparisons, other functions provide a two-way test (the nice IfThen function,
similar to the one we’ve already seen for numbers), duplicate and reverse strings, and
replace sub-strings. Most of these string functions were added as a convenience to Visual
Basic programmers migrating to Delphi.

I’'ve used some of these functions in the StrDemo example on the companion CD, which
uses also some of the new Boolean-to-string conversions defined within the SysUtils unit.
The program is actually a little more than a test for a few of these functions. For example, it
uses the “soundex” comparison between the strings entered in two edit boxes, converting the
resulting Boolean into a string and showing it:

ShowMessage (BoolToStr (AnsiResemblesText
(EditResembTlel.Text, EditResemble2.Text), True));

The program also showcases the AnsiMatchText and AnsiIndexText functions, after filling
a dynamic array of strings (called strArray) with the values of the strings inside a list box. I
could have used the simpler Index0f method of the TStrings class, but this would have
defeated the purpose of the example. The two list comparisons are done as follows:

procedure TForml.ButtonMatchesClick(Sender: TObject);
begin

ShowMessage (BoolToStr (AnsiMatchText(EditMatch.Text, strArray), True));
end;

procedure TForml.ButtonIndexClick(Sender: TObject);
var
nMatch: Integer;
begin
nMatch := AnsiIndexText(EditMatch.Text, strArray);
ShowMessage (IfThen (nMatch >= 0, 'Matches the string number ' +
IntToStr (nMatch), 'No match'));
end;

Notice the use of the IfThen function in the last few lines of code, with two alternative out-
put strings, depending on the result of the initial test (nMatch <= 0).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Units of the RTL 135

Three more buttons do simple calls to three other new functions, with the following lines
of code (one for each):

// duplicate (3 times) a string

ShowMessage (DupeString (EditSample.Text, 3));

// reverse the string

ShowMessage (ReverseString (EditSample.Text));

// choose a random string

ShowMessage (RandomFrom (strArray));

The New Types Unit

"The Types unit is a new Pascal file holding data types common to multiple operating sys-
tems. In past versions of Delphi, the same types were defined by the Windows unit; now
they’ve been moved to this common unit, shared by Delphi and Kylix. The types defined
here are simple ones and include, among others, the TPoint, TRect, and TSmal1Point record
structures plus their related pointer types.

The New Variants and VarUtils Units

Variants and VarUtils are two new variant-related units. The Variants unit contains generic
code for variants. As mentioned earlier, some of the routines in this unit have been moved here
from the System unit. Functions include generic variant support, variant arrays, variant copy-
ing, and dynamic array to variant array conversions. There is also the TCustomvariantType
class, which defines customizable variant data types.

The Variants unit is totally platform independent and uses the VarUtils unit, which con-
tains OS-dependent code. In Delphi, this unit uses the system APIs to manipulate variant
data, while in Kylix it uses some custom code provided by the RTL library.

Custom Variants and Complex Numbers
The possibility to extend the type system with custom variants is brand new in Delphi 6. It

allows you to define a new data type that, contrary to a class, overloads standard arithmetic
operators.

In fact, a variant is a type holding both type specification and the actual value. A variant can
contain a string, another can contain a number. The system defines automatic conversions
among variant types, allowing you to mix them inside operations (including custom variants).
This flexibility comes at a high cost: operations on variants are much slower than on native
types, and variants use extra memory.

As an example of a custom variant type, Delphi 6 ships with an interesting definition for
complex numbers, found in the VarCmplx unit (available in source-code format in the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

136 Chapter 4 ¢ The Run-Time Library

Rt1\Common folder). You can create complex variants by using one of the overloaded VarComplex-
Create functions and use them in any expression, as the following code fragment demonstrates:

var
vl, v2: Variant;

begin
vl := VarComplexCreate (10, 12);
v2 := VarComplexCreate (10, 1);

ShowMessage (vl + v2 + 5);

The complex numbers are actually defined using classes, but they are surfaced as variants
by inheriting a new class from the TCustomVariantType class (defined in the Variants unit),
overriding a few virtual abstract functions, and creating a global object that takes care of the
registration within the system.

Beside these internal definitions, the unit includes a long list of routines for operating on
variant, including mathematical and trigonometric operations. I'll leave them to your study,
as not all readers may be interested in complex numbers for their programs.

WARNING gjiiding a custom variant is certainly not an easy task, and | can hardly find reasons for using
them instead of objects and classes. In fact, with a custom variant you gain the advantage of
using operator overloading on your own data structures, but you lose compile-time checking,
make the code much slower, miss several OOP features, and have to write a lot of rather com-
plex code.

The DelphiMM and ShareMem Units

The DelphiMM and ShareMem units relate to memory management. The actual Delphi
memory manager is declared in the System unit. The DelphiMM unit defines an alternative
memory manager library to be used when passing strings from an executable to a DLL (a
Windows dynamic linking library), both built with Delphi.

The interface to this memory manager is defined in the ShareMem unit. This is the unit
you must include (compulsory as first unit) in the projects of both your executable and library
(or libraries). Then, you’ll also need to distribute and install the BorTndmm.d11 library file
along with your program.

COM-Related Units

ComConts, ComObj, and ComServ provide low-level COM support. As these units are not
really part of the RTL, from my point of view, I won’t discuss them here in any detail. You
can refer to Chapter 20 for all the related information. In any case, these units have not
changed a lot since the last version of Delphi.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Converting Data 137

Converting Data

Delphi 6 includes a new conversion engine, defined in the ConvUtils unit. The engine by
itself doesn’t include any definition of actual measurement units; instead, it has a series of
core functions for end users.

The key function is the actual conversion call, the Convert function. You simply provide
the amount, the units it is expressed in, and the units you want it converted into. The follow-
ing would convert a temperature of 31 degrees Celsius to Fahrenheit:

Convert (31, tuCelsius, tuFahrenheit)

An overloaded version of the Convert function allows converting values that have two
units, such as speed (which has both a length and a time unit). For example, you can convert
miles per hours to meters per second with this call:

Convert (20, duMiles, tuHours, duMeters, tuSeconds)

Other functions in the unit allow you to convert the result of an addition or a difference,
check if conversions are applicable, and even list the available conversion families and units.

A predefined set of measurement units is provided in the StdConvs unit. This unit has con-
version families and an impressive number of actual values, as in the following reduced
excerpt:

// Distance Conversion Units
// basic unit of measurement is meters
cbDistance: TConvFamily;

duAngstroms: TConvType;
duMicrons: TConvType;
duMiTTlimeters: TConvType;
duMeters: TConvType;
duKilometers: TConvType;
duInches: TConvType;
duMiles: TConvType;
duLightYears: TConvType;
duFurlongs: TConvType;
duHands: TConvType;
duPicas: TConvType;

"This family and the various units are registered in the conversion engine in the initializa-
tion section of the unit, providing the conversion ratios (saved in a series of constants, as
MetersPerInch in the code below):

cbDistance := RegisterConversionFamily('Distance');
duAngstroms := RegisterConversionType(chDistance, 'Angstroms', 1E-10);

duMiTlimeters := RegisterConversionType(cbhDistance, 'Millimeters', 0.001);
duInches := RegisterConversionType(cbDistance, 'Inches', MetersPerInch);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

138

Chapter 4 e The Run-Time Library

To test the conversion engine, I built a generic example (ConvDemo on the companion
CD) that allows you to work with the entire set of available conversions. The program fills a
combo box with the available conversion families and a list box with the available units of the
active family. This is the code:

procedure TForml.FormCreate(Sender: TObject);
var
i: Integer;
begin
GetConvFamilies (aFamilies);
for i := Low(aFamilies) to High(aFamilies) do
ComboFamilies.Items.Add (ConvFamilyToDescription (aFamilies[i]));
// get the first and fire event

ComboFamilies.ItemIndex := 0;
ChangeFamily (self);
end;

procedure TForml.ChangeFamily(Sender: TObject);

var
aTypes: TConvTypeArray;
i: Integer;
begin
ListTypes.Clear;
CurrFamily := aFamilies [ComboFamilies.ItemIndex];

GetConvTypes (CurrFamily, aTypes);
for i := Low(aTypes) to High(aTypes) do
ListTypes.Items.Add (ConvTypeToDescription (aTypes[i]));
end;

The aFamilies and CurrFamily variables are declared in the private section of the form as

follows:
aFamilies: TConvFamilyArray;
CurrFamily: TConvFamily;

At this point, a user can enter two measurement units and an amount in the corresponding
edit boxes of the form, as you can see in Figure 4.2. To make the operation faster, it is actu-
ally possible to select a value in the list and drag it to one of the two Type edit boxes. The
dragging support is described in the sidebar “Simple Dragging in Delphi.”

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Converting Data

139

FIGURE 4.2:

4 ConyDemo [Conversion Demo)

The ConvDemo example

at run time

Eamilies
|Distance Erl Simple Test

enter arnout

Ingtructions drag types
from list bo edit boses,

Types Baze Tupe: Arnaurt:

Meters d |Meters |1DD

Dekameters

Hectometers

Kilometers

E’I_egameter& LDestination Type Caorverted Amount

igameters -

Inohes [Mile [0.0521 371192257334
Feet

Y ards

MaticalMiles
Astronarmicall nits ﬂ

Conwert

IM[=1 E3

Simple Dragging in Delphi

The ConvDemo example I've built to show how to use the new conversion engine of Delphi 6
uses an interesting technique: dragging. In fact, you can move the mouse over the list box,
select an item, and then keep the left mouse button pressed and drag the item over one of the

edit boxes in the center of the form.

To accomplish this, | had to set the DragMode property of the list box (the source component)
to dmAutomatic and implement the OnDragOver and OnDragDrop events of the target edit
boxes (the two edit boxes are connected to the same event handlers, sharing the same code).
In the first method, the program indicates that the edit boxes always accept the dragging oper-
ation, regardless of the source. In the second method, the program copies the text selected in
the list box (the Source control of the dragging operation) to the edit box that fired the event

(the Sender object). Here is the code for the two methods:

procedure TForml.EditTypeDragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);
begin
Accept := True;
end;

procedure TForml.EditTypeDragDrop(Sender, Source: TObject;
X, Y: Integer);
begin
(Sender as TEdit).Text := (Source as TListBox).Items
[(Source as TListBox).ItemIndex];
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

140

Chapter 4 e The Run-Time Library

The units must match those available in the current family. In case of error, the text of the
Type edit boxes is shown in red. This is the effect of the first part of the DoConvert method of
the form, which is activated as soon as the value of one of the edit boxes for the units or the
amount changes. After checking the types in the edit boxes, the DoConvert method does the
actual conversion, displaying the result in the fourth, grayed edit box. In case of errors, you’ll
get a proper message in the same box. Here is the code:

procedure TForml.DoConvert(Sender: TObject);
var
BaseType, DestType: TConvType;
begin
// get and check base type
if not DescriptionToConvType(CurrFamily, EditType.Text, BaseType) then
EditType.Font.Color := clRed
else
EditType.Font.Color := clBlack;

// get and check destination type
if not DescriptionToConvType(CurrFamily, EditDestination.Text,
DestType) then

EditDestination.Font.Color := clRed
else
EditDestination.Font.Color := clBlack;

if (DestType = 0) or (BaseType = 0) then
EditConverted.Text := 'Invalid type’
else
EditConverted.Text := FloatToStr (Convert (
StrToFloat (EditAmount.Text), BaseType, DestType));
end;

If all this is not interesting enough for you, consider that the conversion types provided

serve only as a demo: You can fully customize the engine, by providing the measurement
units you are interested in, as described in the next section.

What About Currency Conversions?

Converting currencies is not exactly the same as converting measurement units, as currency
rates change at very high speed. In theory, you can register a conversion rate with Delphi’s
conversion engine. From time to time, you check the new rate exchange, unregister the existing
conversion, and register a new one. However, keeping up with the actual rate means changing
the conversion so often that the operation might not make a lot of sense. Also, you’ll have to
triangulate conversions: you have to define a base unit (probably the U.S. dollar if you live in
America) and convert to and from this currency even for converting between two different ones.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Converting Data 141

What'’s more interesting is to use the engine for converting member currencies of the euro,
for two reasons. First, conversion rates are fixed (until the single euro currency actually takes
over). Second, the conversion among euro currencies is legally done by converting a currency
to euros first and then from the euro amount to the other currency, the exact behavior of
Delphi’s conversion engine. There is only a small problem, as you should apply a rounding
algorithm at every step of the conversion. I'll consider this problem after I've provided the
base code for integrating euro currencies with Delphi 6 conversion engine.

NortE The Convertlt demo of Delphi 6 provides support for euro conversions, using a slightly differ-
ent rounding approach (which might be more correct or not, I'm not really sure). I've decided
to keep this example anyway, as it is instructive in showing how to create a new measurement
system (and | lacked another example as good).

The example, called EuroCony, is actually meant to teach how to register any new mea-
surement unit with the engine. Following the template provided by the StdConvs unit, I've
created a new unit (called EuroConvConst) and in the interface portion I've declared vari-
ables for the family and the specific units, as follows:

interface

var
// Euro Currency Conversion Units
cbEuroCurrency: TConvFamily;

cuEUR: TConvType;

cuDEM: TConvType; // Germany
CUESP: TConvType; // Spain
cuFRF: TConvType; // France
CulkEP: TConvType; // Ireland
cuITL: TConvType; // Italy
// and so on...

In the implementation portion of the unit, I've defined constants for the various official
conversion rates:

implementation

const
DEMPerEuros = 1.95583;
ESPPerEuros = 166.386;
FRFPerEuros = 6.55957;
IEPPerEuros = 0.787564;
ITLPerEuros = 1936.27;
// and so on...

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

142 Chapter 4 e The Run-Time Library

Finally, in the unit initialization code I've registered the family and the various currencies,

each with its own conversion rate and a readable name:

initialization

// Euro Currency's family type

cbEuroCurrency := RegisterConversionFamily('EuroCurrency');

CUEUR := RegisterConversionType(
cbEuroCurrency, 'EUR', 1);

CcuDEM := RegisterConversionType(
cbEuroCurrency, 'DEM', 1 / DEMPerEuros);

CUESP := RegisterConversionType(
cbEuroCurrency, 'ESP', 1 / ESPPerEuros);

CUFRF := RegisterConversionType(
cbEuroCurrency, 'FRF', 1 / FRFPerEuros);

CulEP := RegisterConversionType(

cbEuroCurrency,
culTL
cbEuroCurrency,

"IEP', 1 / IEPPerEuros);
:= RegisterConversionType(
"ITL', 1 / ITLPerEuros);

Norte The engine uses as a conversion factor the amount of the base unit to obtain the secondary
ones, with a constant like MetersPerInch, for example. The standard rate of euro currencies
is defined in the opposite way. For this reason, I've decided to keep the conversion constants
with the official values (as DEMPerEuros above) and pass them to the engine as fractions
(1/DEMPerEuros).

Having registered this unit, we can now convert 120 German marks to Italian liras by writing:
Convert (120, cuDEM, cuITL)

The demo program actually does a little more, providing two list boxes with the available
currencies, extracted as in the previous example, and edit boxes for the input value and final
result. You can see the form at run time in Figure 4.3.

FIGURE 4.3:

The output of the EuroConv
unit, showing the use of
Delphi's conversion engine
with a custom measure-
ment unit

4" Euro Conversion -0 x|
EUR EUR
DEM
ESP ESP
FRF FRF
IEP IEF
L
EEF ¥ t BEF
i orer LG
ATE ATS
PTE PTE
Fi FIM
Walue: |120 Result: |118.733.8453

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

Converting Data 143

The program works nicely but is not perfect, as the proper rounding is not applied. In fact,
you should round not only the final result of the conversion but also the intermediate value.
Using the conversion engine to accomplish this directly is not easy. The engine allows you to
provide either a custom conversion function or a conversion rate. But writing identical con-
version functions for the all the various currencies seems a bad idea, so I've decided to go a
different path. (You can see examples of custom conversion functions in the StdConvs unit,
in the portion related to temperatures.)

In the EuroConv example, I've added to the unit with the conversion rates a custom func-
tion, called EuroConv, that does the proper conversion. Simply calling this function instead of
the standard Convert function does the trick (and I really see no drawback to this approach,
because in programs like this, you’ll hardly mix currencies with meters or temperatures). As
an alternative, I could inherit a new class from TConvTypeFactor, providing a new version of
the FromCommon and ToCommon methods, or I could have called the overloaded versions of the
RegisterConversionType that accepts these two functions as parameters. None of these tech-
niques, however, would have allowed me to handle special cases, such as the conversion of a
currency to itself.

This is the code of the EuroConv function, which uses the internal EuroRound function for
rounding to the number of digits specified in the Decimals parameter (which must be
between 3 and 6, according with the official rules):

type
TEuroDecimals = 3..6;

function EuroConvert (const AValue: Double;
const AFrom, ATo: TConvType;

const Decimals: TEuroDecimals = 3): Double;

function EuroRound (const AValue: Double): Double;

begin
Result := AValue * Power (10, Decimals);
Result := Round (Result);
Result := Result / Power (10, Decimals);
end;
begin

// check special case: no conversion
if AFrom = ATo then
Result := AvValue

else
begin
// convert to Euro, then round
Result := ConvertFrom (AFrom, AValue);

Result := EuroRound (Result);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

144 Chapter 4 e The Run-Time Library

// convert to currency then round again
Result := ConvertTo (Result, ATo);
Result := EuroRound (Result);
end;
end;

Of course, you might want to extend the example by providing conversion to other non-
euro currencies, eventually picking the values automatically from a Web site. I'll leave this as
a rather complex exercise.

The TObject Class

As mentioned earlier, a key element of the System unit is the definition of the TObject class,
the mother of all Delphi classes. Every class in the system is a subclass of the TObject class,
either directly (for example, if you indicate no base class) or indirectly. The whole hierarchy
of the classes of an Object Pascal program has a single root. This allows you to use the
TObject data type as a replacement for the data type of any class type in the system.

For example, event handlers of components usually have a Sender parameter of type TObject.
"This simply means that the Sender object can be of any class, since every class is ultimately
derived from TObject. The typical drawback of such an approach is that to work on the
object, you need to know its data type. In fact, when you have a variable or a parameter of the
TObject type, you can apply to it only the methods and properties defined by the TObject
class itself. If this variable or parameter happens to refer to an object of the TButton type, for
example, you cannot directly access its Caption property. The solution to this problem lies in
the use of the safe down-casting or run-time type information (RTTT) operators (is and as)
discussed in Chapter 3.

There is another approach. For any object, you can call the methods defined in the TObject
class itself. For example, the ClassName method returns a string with the name of the class.
Because it is a class method (see Chapter 2 for details), you can actually apply it both to an
object and to a class. Suppose you have defined a TButton class and a Buttonl object of that
class. Then the following statements have the same effect:

Text :
Text :

Buttonl.ClassName;
TButton.ClassName;

There are occasions when you need to use the name of a class, but it can also be useful to
retrieve a class reference to the class itself or to its base class. The class reference, in fact,
allows you to operate on the class at run time (as we’ve seen in the preceding chapter), while
the class name is just a string. We can get these class references with the ClassType and
ClassParent methods. The first returns a class reference to the class of the object, the second

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TObject Class 145

to its base class. Once you have a class reference, you can apply to it any class methods of
TObject—for example, to call the ClassName method.

Another method that might be useful is InstanceSize, which returns the run-time size of
an object. Although you might think that the SizeOf global function provides this information,
that function actually returns the size of an object reference—a pointer, which is invariably four
bytes—instead of the size of the object itself.

In Listing 4.1, you can find the complete definition of the TObject class, extracted from the
System unit. Beside the methods I've already mentioned, notice InheritsFrom, which provides
a test very similar to the is operator but that can be applied also to classes and class references
(while the first argument of is must be an object).

Listing 4.1: The definition of the TObject class (in the System RTL unit)

type
TObject = class
constructor Create;
procedure Free;
class function InitInstance(Instance: Pointer): TObject;
procedure CleanupInstance;
function ClassType: TClass;
class function ClassName: ShortString;
class function ClassNameIs(
const Name: string): Boolean;
class function ClassParent: TClass;
class function ClassInfo: Pointer;
class function InstanceSize: Longint;
class function InheritsFrom(AClass: TClass): Boolean;
class function MethodAddress(const Name: ShortString): Pointer;
class function MethodName(Address: Pointer): ShortString;
function FieldAddress(const Name: ShortString): Pointer;
function GetInterface(const IID: TGUID;out Obj): Boolean;
class function GetInterfaceEntry(
const IID: TGUID): PInterfaceEntry;
class function GetInterfaceTable: PInterfaceTable;
function SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult; virtual;
procedure AfterConstruction; virtual;
procedure BeforeDestruction; virtual;
procedure Dispatch(var Message); virtual;
procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;
procedure Freelnstance; virtual;
destructor Destroy; virtual;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

146 Chapter 4 ¢ The Run-Time Library

Norte The ClassInfo method returns a pointer to the internal run-time type information (RTTI) of
the class, introduced in the next chapter.

These methods of TObject are available for objects of every class, since TObject is the
common ancestor class of every class. Here is how we can use these methods to access class

information:
procedure TSenderForm.ShowSender(Sender: TObject);
begin
Memol.Lines.Add ('Class Name: ' + Sender.ClassName);

if Sender.ClassParent <> nil then
Memol.Lines.Add ('Parent Class: ' + Sender.ClassParent.ClassName);

Memol.Lines.Add ('Instance Size: ' + IntToStr (Sender.InstanceSize));
end;

The code checks to see whether the ClassParent is nil in case you are actually using an
instance of the TObject type, which has no base type. This ShowSender method is part of the
IfSender example on the companion CD. The method is connected with the OnClick event
of several controls: three buttons, a check box, and an edit box. When you click each control,
the ShowSender method is invoked with the corresponding control as sender (more on events
in the next chapter). One of the buttons is actually a Bitmap button, an object of a TButton
subclass. You can see an example of the output of this program at run time in Figure 4.4.

FIGURE 4.4: + SenderForm)]
The output of the IfSender
example Euttonl Class Mame: TButton

4 Parent Class: TEuttonControl
Instance Size: 528

Buttan2 TButton ClaszType
This i Buttonl
Sender inherits fram TEuttan
Sender iz a TButton

v CheckBoxl

Clazz Mame: TCheckBox

Editl Parent Clags: TCustomCheckBox

Instance Size: 528

Class Marme: TEdit
Parent Clags: TCustomEdit
Instance Size: 536

Class Mame: TBitEtn

Parent Class: TButhon
Instance Size: 552

Sender inherits from TEutton
Sender iz a TButton

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TObject Class 147

You can use other methods to perform tests. For example, you can check whether the
Sender object is of a specific type with the following code:

if Sender.ClassType = TButton then ...

You can also check whether the Sender parameter corresponds to a given object, with this
test:

if Sender = Buttonl then...

Instead of checking for a particular class or object, you’ll generally need to test the type
compatibility of an object with a given class; that is, you’ll need to check whether the class of
the object is a given class o7 one of its subclasses. This lets you know whether you can operate
on the object with the methods defined for the class. This test can be accomplished using the
InheritsFrom method, which is also called when you use the is operator. The following two
tests are equivalent:

if Sender.InheritsFrom (TButton) then ...
if Sender 1is TButton then ...

Showing Class Information

I’ve extended the IfSender example to show a complete list of base classes of a given object or
class. Once you have a class reference, in fact, you can add all of its base classes to the List-
Parent list box with the following code:
with ListParent.Items do
begin
Clear;
while MyClass.ClassParent <> nil do
begin
MyClass := MyClass.ClassParent;
Add (MyClass.ClassName);
end;
end;

You’ll notice that we use a class reference at the heart of the while loop, which tests for the
absence of a parent class (so that the current class is TObject). Alternatively, we could have
written the while statement in either of the following ways:

while not MyClass.ClassNameIs ('TObject') do...
while MyClass <> TObject do...

The code in the with statement referring to the ListParent list box is part of the ClassInfo
example (see the companion CD), which displays the list of parent classes and some other
information about a few components of the VCL, basically those on the Standard page of the
Component Palette. These components are manually added to a dynamic array holding
classes and declared as

private
ClassArray: array of TClass;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

148 Chapter 4 ¢ The Run-Time Library

When the program starts, the array is used to show all the class names in a list box. Select-
ing an item from the list box triggers the visual presentation of its details and its base classes,
as you can see in the output of the program, in Figure 4.5.

FIGURE 4.5:

A Class Info H=
The output of the ClassInfo Class Name . k
azs
example —
P TE!iLtJBtDr-.n = |Name: TRadioGroup - Size: 544 bytes
gt Baze Clazzes
TR]
THDaEIE‘opB u?tr;: T CugtomB adioGroup
TR adinlaroup T CustomG roupBox
TPanel T CustomCantral
TCheckBox TwinControl
TFarm TContral
TComboBox TCampanent
TGroupE ox — |TPersistent
TSpeedButton TObject
TLabel ﬂ

NortEe As a further extension to this example, it is possible to create a tree with all of the base classes

of the various components in a hierarchy. To do that, I've created the VclHierarchy program,
which you can find on my Web site, www.marcocantu.com, in the CanTools section.

What’s Next?

In this chapter I've focused my attention on new features of the Delphi 6 function-based run-
time library. I have provided only a summary of the entire RTL, not a complete overview, as
this would have taken too much space. You can find more examples of the basic RTL func-

tions of Delphi in my free electronic book Essential Pascal, which is featured on the compan-
ion CD.

In the next chapter, we’ll start moving from the function-based RTL to the class-based
RTL, which is the core of Delphi’s class library. I won’t debate whether the core classes com-
mon to the VCL and CLX, such as TObject, actually belong to the RTL or the class library.
I've covered everything defined in System, SysUtils, and other units hosting functions and

procedures in this chapter, while the next chapter focuses on the Classes unit and other core
units defining classes.

Along with the preceding two chapters on the Object Pascal language, this will provide a
foundation for discussing visual- and database-oriented classes, or components, if you prefer.
Looking to the various library units, we’ll find many more global functions, which don’t
belong to the core RTL but are still quite useful!

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

Core Library Classes

e The RTL package, CLX, and VCL

® TPersistent and published

e The TComponent base class and its properties
e Components and ownership

e Events

e Lists, container classes, and collections

e Streaming

e Summarizing the units of the RTL package

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

150 Chapter 5 e Core Library Classes

We saw in the preceding chapter that Delphi includes a large number of functions and
procedures, but the real power of Delphi’s visual programming lies in the huge class library it
comes with. Delphi’s standard class library contains hundreds of classes, with thousands of
methods, and it is so large that I certainly cannot provide a detailed reference in this book.
What I’ll do, instead, is explore various areas of this library starting with this chapter and
continuing through the following ones.

This first chapter is devoted to the core classes of the library as well as to some standard
programming techniques, such as the definition of events. We'll explore some commonly
used classes, such as lists, string lists, collections, and streams. We’ll devote most of our time
to exploring the content of the Classes unit, but we’ll devote time also to other core units of

the library.

Delphi classes can be used either entirely in code or within the visual form designer. Some
of them are component classes, which show up in the Component Palette, while others are
more general-purpose. The terms c/ass and component can be used almost as synonyms in
Delphi. Components are the central elements of Delphi applications. When you write a pro-
gram, you basically choose a number of components and define their interactions. That’s all
there is to Delphi visual programming.

Before reading this chapter, you need to have a good understanding of the Object Pascal
programming language, including inheritance, properties, virtual methods, class references,
and so on, as discussed in Chapters 2 and 3 of this book.

The RTL Package, VCL, and CLX

Until version 5, Delphi’s class library was known as VCL, which stands for Visual Components
Library. Kylix, the Delphi version for Linux, introduced a new component library, called CLX
(pronounced “clicks” and standing for Component Library for X-Platform or Cross Platform).
Delphi 6 includes both the VCL and CLX libraries. For visual components, the two class
libraries are alternative one to the other. However, the core classes and the database and Inter-
net portions of the two libraries are basically shared.

VCL was considered as a single large library, although programmers used to refer to differ-
ent parts of it (components, controls, nonvisual components, data sets, data-aware controls,
Internet components, and so on). CLX introduces a distinction in four parts: BaseCLX,
Visual CLX, DataCLX, and NetCLX. Only in Visual CLX does the library use a totally differ-
ent approach between the two platforms, with the rest of the code being inherently portable
to Linux. In the following section, I discuss the sections of these two libraries, while the rest of
the chapter focuses on the common core classes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The RTL Package, VCL, and CLX 151

In Delphi 6, this distinction is underlined by the fact that the core non-visual components
and classes of the library are part of the new RTL package, which is used by both VCL and
CLX. Moreover, using this package in non-visual applications (for example, Web server pro-
grams) allows you to reduce the size of the files to deploy and load in memory considerably.

Traditional Sections of VCL

Delphi programmers use to refer to different sections of VCL with names Borland originally
suggested in its documentation, and names that became common afterwards for different
groups of components. Technically, components are subclasses of the TComponent class, which
is one of the root classes of the hierarchy, as you can see in Figure 5.1. Actually the TComponent
class inherits from the TPersistent class; the role of these two classes will be explained in the
next section.

FIGURE 5.1:

Windowed
A graphical representation Controls
of the main groups of com- :
ponents of VCL Controls (TWinControl
(visual components) subclasses)
(TControl
Components subclasses) Nonwindowed
Controls
(TComponent)
(TGraphicControl
subclasses)

Nonvisual Components

(other TComponent
subclasses)

Besides components, the library includes classes that inherit directly from TObject and
from TPersistent. These classes are collectively known as Objects in portions of the documen-
tation, a rather confusing name for me. These noncomponent classes are often used for val-
ues of properties or as utility classes used in code; not inheriting from TComponent, these
classes cannot be used directly in visual programming.

NortEe To be more precise, noncomponent classes cannot be made available in the Component
Palette and cannot be dropped directly into a form, but they can be visually managed with the
Object Inspector, as subproperties of other properties or items of collections of various types.
So even noncomponent classes are often easily used when interacting with the Form Designer.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

152 Chapter 5 e Core Library Classes

The component classes can be further divided into two main groups: controls and nonvi-
sual components. Controls groups all the classes that descend from TControT.

Controls have a position and a size on the screen and show up in the form at design time
in the same position they’ll have at run time. Controls have two different subspecifications,
window-based or graphical, but I'll discuss them in more detail in the next chapter.

Nonvisual components are all the components that are not controls—all the classes that
descend from TComponent but not from TControl. At design time, a nonvisual component
appears on the form as an icon (optionally with a caption below it). At run time, some of

these components may be visible (for example, the standard dialog boxes), and others are
always invisible (for example, the database table component).

Tip You can simply move the mouse cursor over a control or component in the Form Designer to
see a Tooltip with its name and class type (and, in Delphi 6, some extended information). You
can also use an environment option, Show Component Captions, to see the name of a nonvi-
sual component right under its icon.

The Structure of CLX

"This is the traditional subdivision of VCL, which is very common for Delphi programmers.
Even with the introduction of CLX and some new naming schemes, the traditional names
will probably survive and merge into Delphi programmers’ jargon.

Borland now refers to different portions of the CLX library using one terminology under
Linux and a slightly different (and less clear) naming structure in Delphi. This is the subdivi-
sion of the Linux-compatible library:

BaseCLX forms the core of the class library, the topmost classes (such as TComponent), and
several general utility classes (including lists, containers, collections, and streams). Com-
pared to the corresponding classes of VCL, BaseCLX is largely unchanged and is highly
portable between the Windows and Linux platforms. This chapter is largely devoted to
exploring BaseCLX and the common VCL core classes.

VisualCLX is the collection of visual components, generally indicated as controls. This is
the portion of the library that is more tightly related to the operating system: Visual CLX is
implemented on top of the Qt library, available both on Windows and on Linux. Using
Visual CLX allows for full portability of the visual portion of your application between
Delphi on Windows and Kylix on Linux. However, most of the Visual CLX components
have corresponding VCL controls, so that you can also easily move your code from one
library to the other. I'll discuss Visual CLX and the controls of VCL in the next chapter.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TPersistent Class 153

DataCLX comprises all the database-related components of the library. Actually, DataCLX
is the front end of the new dbExpress database engine included in Delphi 6 and Kylix. Delphi
includes also the traditional BDE front end, dbGo, and InterBase Express (IBX). If we can
consider all these components as part of DataCLX, only the dbExpress front end and IBX
are portable between Windows and Linux. DataCLX includes also the ClientDataSet com-
ponent, now indicated as MyBase, and other related classes. Delphi’s data access components

are discussed in Part III of the book.

NetCLX includes the Internet-related components, from the WebBroker framework, to
the HTML producer components, from Indy (Internet Direct) to Internet Express, from
the new Site Express to XML support. This part of the library is, again, highly portable
between Windows and Linux. Internet support is discussed in the last part of the book.

VCL-Specific Sections of the Library

The preceding areas of the library are available, with the differences I've mentioned, on both
Delphi and Kylix. In Delphi 6, however, there are other sections of VCL, which for one reason
or another are specific to Windows only:

e The Delphi ActiveX (DAX) framework provides support for COM, OLE Automation,
ActiveX, and other COM-related technologies. See Chapter 16 for more information
on this area of Delphi.

e The Decision Cube components provide OLAP support but have ties with the BDE
and haven’t been updated recently. Decision Cube is not discussed in the book.

Finally, the default Delphi 6 installation includes some third-party components, such as
"TeeChart for business graphics and QuickReport for reporting. These components will be
mentioned in the book but are not discussed in detail.

The TPersistent Class

The first core class of the Delphi library we’ll look at is the TPersistent class, which is quite
a strange one: it has very little code and almost no direct use, but it provides a foundation for
the entire idea of visual programming. You can see the definition of the class in Listing 5.1.

Listing 5.1: The definition of the TPersistent class, from the Classes unit
{$M+}
TPersistent = class(TObject)
private

procedure AssignError(Source: TPersistent);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

154

Chapter 5 e Core Library Classes

protected
procedure AssignTo(Dest: TPersistent); virtual;
procedure DefineProperties(Filer: TFiler); virtual;
function GetOwner: TPersistent; dynamic;

public
destructor Destroy; override;
procedure Assign(Source: TPersistent); virtual;
function GetNamePath: string; dynamic;

end;

As the name implies, this class handles persistency—that is, saving the value of an object to
a file to be used later to re-create the object in the same state and with the same data. Persis-
tency is a key element of visual programming. In fact (as we saw in Chapter 1) at design time
in Delphi you manipulate actual objects, which are saved to DFM files and re-created at run
time when the specific component container—form or data module—is created.

The streaming support, though, is not embedded in the TPersistent class but is provided
by other classes, which target TPersistent and its descendants. In other words, you can “per-
sist” with Delphi default streaming-only objects of classes inheriting from TPersistent. One
of the reasons for this behavior lies in the fact that the class is compiled with a special option
turned on, {$M+}. This flag activates the generation of extended RT'TT information for the
published portion of the class.

Delphi’s streaming system, in fact, doesn’t try to save the in-memory data of an object,
which would be complex because of the many pointers to other memory locations, totally
meaningless when the object would be reloaded. Instead, Delphi saves objects by listing the
value of all of properties marked with a special keyword, pub1ished. When a property refers
to another object, Delphi saves the name of the object or the entire object (with the same
mechanism) depending on its type and relationship with the main object.

Of the methods of the TPersistent class, the only one you’ll generally use is the Assign
procedure, which can be used for copying the actual value of an object. In the library, this
method is implemented by many noncomponent classes but by very few components. Actu-
ally, most subclasses reimplement the virtual protected AssignTo method, called by the
default implementation of Assign.

NotE

Other methods include DefineProperties, used for customizing the streaming system and
adding extra information (pseudo-properties), and the GetOwner and GetNamePath methods
used by collections and other special classes to identify themselves to the Object Inspector.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TPersistent Class 155

The published Keyword

Along with the pubTic, protected, and private access directives, you can use a fourth one,
called published. For any published field, property, or method, the compiler generates
extended RTTT information, so that Delphi’s run time environment or a program can query a
class for its published interface. For example, every Delphi component has a published inter-
face that is used by the IDE, in particular the Object Inspector. A regular use of pub1ished
fields is important when you write components. Usually, the pubTished part of a component
contains no fields or methods but properties and events.

When Delphi generates a form or data module, it places the definitions of its components
and methods (the event handlers) in the first portion of its definition, before the pub1ic and
private keywords. These fields and methods of the initial portion of the class are pub11ished.
The default is pub1ished when no special keyword is added before an element of a compo-
nent class.

"To be more precise, published is the default keyword only if the class was compiled with
the $M+ compiler directive or is descended from a class compiled with $M+. As this directive is
used in the TPersistent class, most classes of VCL and all of the component classes default
to published. However, noncomponent classes in Delphi (such as TStream and TList) are
compiled with $M- and default to public visibility.

The methods assigned to any event should be pub1ished methods, and the fields corre-
sponding to your components in the form should be pubTished to be automatically con-
nected with the objects described in the DFM file and created along with the form. (We’ll
see later in this chapter the details of this situation and the problems it generates.)

Accessing Published Fields and Methods

As I've mentioned, there are three different declarations that make sense in the pub1ished
section of a class: fields, methods, and properties. I'll discuss properties in the section “Access-
ing Properties by Name,” while here I'll introduce possible ways of interacting with fields and
methods first. The TObject class, in fact, has three interesting methods for this area: Method-
Address, MethodName, and FieldAddress.

The first function, MethodAddress, returns the memory address of the compiled code (a sort
of function pointer) of the method passed as parameter in a string. By assigning this method
address to the Code field of a TMethod structure and assigning an object to the Data field, you
can obtain a complete method pointer. At this point, to call the method you'll need to cast it to

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

156 Chapter 5 e Core Library Classes

the proper method pointer type. This is a code fragment highlighting the key points of this
technique:

var
Method: TMethod;
Evt: TNotifyEvent;
begin
Method.Code := MethodAddress ('ButtonlClick');
Method.Data := Self;
Evt := TNotifyEvent(Method);
Evt (Sender); // call the method
end;
Delphi uses similar code to assign an event handler when it loads a DFM file, as these files store
the name of the methods used to handle the events, while the components actually store the
method pointer. The second method, MethodName, does the opposite transformation, return-
ing the name of the method at a given memory address. This can be used to obtain the name
of an event handler, given its value, something Delphi does when streaming a component into
a DFM file.

Finally, the FieldAddress method of TObject returns the memory location of a published
field, given its name. This is used by Delphi to connect components created from the DFM files
with the fields of their owner (for example, a form) having the same name.

Notice that these three methods are seldom used in “normal” programs but play a key role to
make Delphi work as it actually does and are strictly related to the streaming system. You'll
need to use these methods only when writing extremely dynamic programs or special-purpose
wizards or other Delphi extensions.

Accessing Properties by Name

"The Object Inspector displays a list of an object’s published properties, even for components
you’ve written. To do this, it relies on the RT'TT information generated for published proper-
ties. Using some advanced techniques, an application can retrieve a list of the published
properties of an object and use them.

Although this capability is not very well known, in Delphi it is possible to access properties
by name simply by using the string with the name of the property and then retrieving its
value. Access to the RT'TT information of properties is provided through a group of undocu-
mented subroutines, part of the TypInfo unit.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TPersistent Class 157

WARNING These subroutines have always been undocumented in past versions of Delphi, so that Borland
remained free to change them. However, from Delphi 1 to Delphi 5, changes were actually
very limited and related only to the data structures declared in TypInfo, not the functions pro-
vided by the unit. In Delphi 5 Borland actually added many more goodies, and a few “helper”
routines, that are officially promoted (even if still not fully documented in the help file but only
with comments provided in the unit).

Rather than explore the entire TypInfo unit here, we will look at only the minimal code
required to access properties by name. Prior to Delphi 5 it was necessary to use the GetPropInfo
function to retrieve a pointer to some internal property information and then apply one of the
access functions, such as GetStrProp, to this pointer. You also had to check for the existence and

the type of the property.

Delphi 5 introduced a new set of TypInfo routines, including the handy GetPropvalue,
which returns a variant with the value of the property or varNULL if the property doesn’t exist.
You simply pass to this function the object and a string with the property name. A further
optional parameter allows you to choose the format for returning values of properties of the

set type.
For example, we can call

ShowMessage (GetPropValue (Buttonl, 'Caption’'));

"This call has the same effect as calling ShowMessage, passing as parameter Buttonl.Caption.
"The only real difference is that this version of the code is much slower, since the compiler
generally resolves normal access to properties in a more efficient way. The advantage of the
run-time access is that you can make it very flexible, as in the following RunProp example
(also available on the companion CD).

This program displays in a list box the value of a property of any type for each component
of a form. The name of the property we are looking for is provided in an edit box. This makes
the program very flexible. Besides the edit box and the list box, the form has a button to gen-
erate the output and some other components added only to test their properties. When you
click the button, the following code is executed:

uses
TypInfo;

procedure TForml.ButtonlClick(Sender: TObject);

var
I: Integer;
Value: Variant;
begin

ListBox1l.Clear;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

158 Chapter 5 e Core Library Classes

for I := 0 to ComponentCount -1 do

begin
Value := GetPropValue (Components[I], Editl.Text);
if Value <> varNULL then

ListBox1l.Items.Add (Components[I].Name + '.’' + Editl.Text + ' = ' +
string (Value))
else
ListBoxl.Items.Add ('No ' + Components[I].Name + '.' +
Editl.Text);
end;
end;

You can see the effect of pressing the Fill List button while using the default Caption value
in the edit box in Figure 5.2. You can try with any other property name. Numbers will be con-
verted to strings by the variant conversion. Objects (such as the value of the Font property)
will be displayed as memory addresses.

FIGURE 5.2: ..|"Huan|:| M=] 3
The output of the RunProp

Buttonl.Caption = &Fil List

Mo ListBox1. Caption
RadioButton1.Caption = RadioB utton1
CheckBoxl.Caption = CheckBoxl

. Eroperty: Labell.Caption = &Property:
examplfe, which accesses ,Captim— Mo Bevell Caption
properties by name at run Mo E dit1.Caption

time

¢ BadioButton] Ma ScrollBar. Caption
AaeELan Mo SpinE dit] Caption

[~ CheckBoxl Mo ComboBox1.Caption

L |

a =

ComboBox hd

WARNING Do not use regularly the TypInfo unit instead of polymorphism and other property-access tech-
nigues. Use base-class property access first, or use the safe as typecast when required, and
reserve RTTI access to properties as a very last resort. Using TyplInfo techniques makes your
code slower, more complex, and more prone to human error; in fact, it skips the compile-time
type-checking.

The TComponent Class

If the TPersistent class is really more important than it seems at first sight, the key class at
the heart of Delphi’s component-based class library is TComponent, which inherits from

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TComponent Class 159

TPersistent (and from TObject). The TComponent class defines many core elements of com-
ponents, but it is not as complex as you might think, as the base classes and the language
already provide most of what’s actually needed.

I won’t explore all of the details of the TComponent class, some of which are more important
for component designers than they are for component users. I'll just discuss ownership (which
accounts for some public properties of the class) and the two published properties of the class,
Name and Tag.

Ownership

One of the core features of the TComponent class is the definition of ownership. When a com-
ponent is created, it can be assigned an owner component, which will be responsible for destroy-
ing it. So every component can have an owner and can also be the owner of other components.
Several public methods and properties of the class are actually devoted to handling the two sides
of ownership. Here is a list, extracted from the class declaration (in the Classes unit of VCL):
type
TComponent = class(TPersistent, IInterface, IInterfaceComponentReference)
public
constructor Create(AOwner: TComponent); virtual;
procedure DestroyComponents;
function FindComponent(const AName: string): TComponent;
procedure InsertComponent(AComponent: TComponent);
procedure RemoveComponent(AComponent: TComponent);

property Components[Index: Integer]: TComponent read GetComponent;
property ComponentCount: Integer read GetComponentCount;
property ComponentIndex: Integer
read GetComponentIndex write SetComponentIndex;
property Owner: TComponent read FOwner;

If you create a component giving it an owner, this will be added to the list of components
(InsertComponent), which is accessible using the Components array property. The specific
component has an Owner and knows its position in the owner components list, with the
ComponentIndex property. Finally, the destructor of the owner will take care of the destruc-
tion of the object it owns, calling DestroyComponents. There are a few more protected meth-
ods involved, but this should give you the overall picture.

What is important to emphasize is that component ownership can solve a large part of the
memory management problems of your applications, if used properly. If you always create
components with an owner—the default operation if you use the visual designers of the
IDE—you only need to remember to destroy these component containers when they are not
needed anymore, and you can forget about the components they contain. For example, you

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

160

Chapter 5 e Core Library Classes

delete a form to destroy all of the components it contains at once, which is a large simplifica-
tion compared to having to remember to free each and every object individually.

The Components Array
"The Components property can also be used to access one component owned by another—let’s
say, a form. This can be very handy (compared to using directly a specific component) for
writing generic code, acting on all or many components at a time. For example, you can use
the following code to add to a list box the names of all the components of a form (this code is
actually part of the ChangeOwner example, presented in the next section):
procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
ListBoxl.Items.Clear;
for I := 0 to ComponentCount - 1 do
ListBox1l.Items.Add (Components [I].Name);
end;

This code uses the ComponentCount property, which holds the total number of components
owned by the current form, and the Components property, which is actually the list of the owned
components. When you access a value from this list you get a value of the TComponent type. For
this reason you can directly use only the properties common to all components, such as the
Name property. To use properties specific to particular components, you have to use the proper
type-downcast (as).

NotE

In Delphi, some components are also component containers: the GroupBox, Panel, PageCon-
trol, and, of course, Form components. When you use these controls, you can add other com-
ponents inside them. In this case, the container is the parent of the components (as indicated
by the Parent property), while the form is their owner (as indicated by the Owner property).
You can use the Controls property of a form or group box to navigate the child controls, and you
can use the Components property of the form to navigate all the owned components, regardless
of their parent.

Using the Components property, we can always access each component of a form. If you
need access to a specific component, however, instead of comparing each name with the
name of the component you are looking for, you can let Delphi do this work, by using the
FindComponent method of the form. This method simply scans the Components array looking
for a name match. More information about the role of the Name property for a component is

in a later section.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TComponent Class 161

Changing the Owner

We have seen that almost every component has an owner. When a component is created at
design time (or from the resulting DFM file), its owner will invariably be its form. When you
create a component at run time, the owner is passed as a parameter to the Create constructor.

Owner is a read-only property, so you cannot change it. The owner is set at creation time
and should generally not change during the lifetime of a component. To understand why you
should not change the owner of a component at design time nor freely change its name, read
the following discussion. Be warned, that the topic covered is not simple, so if you’re only
starting with Delphi, you might want to come back to this section at a later time.

"To change the owner of a component, you can call the InsertComponent and RemoveComponent
methods of the owner itself, passing the current component as parameter. Using these meth-
ods you can change a component’s owner. However, you cannot apply them directly in an
event handler of a form, as we attempt to do here:

procedure TForml.ButtonlClick(Sender: TObject);
begin
RemoveComponent (Buttonl);
Form2.InsertComponent (Buttonl);
end;

"This code produces a memory access violation, because when you call RemoveComponent,
Delphi disconnects the component from the form field (Buttonl), setting it to ni1. The solu-
tion is to write a procedure like this:

procedure ChangeOwner (Component, NewOwner: TComponent);
begin
Component.Owner.RemoveComponent (Component);
NewOwner.InsertComponent (Component);
end;

This method (extracted from the ChangeOwner example) changes the owner of the com-
ponent. It is called along with the simpler code used to change the parent component; the
two commands combined move the button comzpletely to another form, changing its owner:

procedure TForml.ButtonChangeClick(Sender: TObject);
begin
if Assigned (Buttonl) then
begin
// change parent
Buttonl.Parent := Form2;
// change owner
ChangeOwner (Buttonl, Form2);
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

162

Chapter 5 e Core Library Classes

The method checks whether the Button1 field still refers to the control, because while
moving the component, Delphi will set Buttonl to nil. You can see the effect of this code in
Figure 5.3.

FIGURE 5.3: A Form1 _ (O] x|
In the ChangeOwner

example, clicking the List |

Change button moves the

Buttonl
Button1 component to the ButtonChange
ButtonList
second form. ListBox1
}-‘-' Form2 =]

Buttonlist
Button1 | ListBoxd

To demonstrate that the Owner of the Buttonl component actually changes, I've added
another feature to both forms. The List button fills the list box with the names of the com-
ponents each form owns, using the procedure shown in the previous section. Click the two
List buttons before and after moving the component, and you’ll see what happens behind the
scenes. As a final feature, the Buttonl component has a simple handler for its OnClick event,
to display the caption of the owner form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

ShowMessage ('My owner is ' + ((Sender as TButton).Owner as TForm).Caption);
end;

The Name Property

Every component in Delphi should have a name. The name must be unique within the
owner component, which is generally the form into which you place the component. This
means that an application can have two different forms, each with a component with the
same name, although you might want to avoid this practice to prevent confusion. It is gener-
ally better to keep component names unique throughout an application.

Setting a proper value for the Name property is very important: If it’s too long, you’ll need
to type a lot of code to use the object; if it’s too short, you may confuse different objects.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TComponent Class 163

Usually the name of a component has a prefix with the component type; this makes the
code more readable and allows Delphi to group components in the combo box of the
Object Inspector, where they are sorted by name. There are three important elements

related to the Name property of the components:

First, the value of the Name property is used to define the name of the object in the dec-
laration of the form class. This is the name you’re generally going to use in the code to
refer to the object. For this reason, the value of the name property must be a legal Pas-
cal identifier (it has to be without spaces and must start with a letter, not a number).

Second, if you set the Name property of a control before changing its Caption or Text
property, the new name is often copied to the caption. That is, if the name and the cap-
tion are identical, then changing the name will also change the caption.

Third, Delphi uses the name of the component to create the default name of the meth-
ods related to its events. If you have a Buttonl component, its default OnC11ck event
handler will be called Button1Click, unless you specify a different name. If you later
change the name of the component, Delphi will modify the names of the related meth-
ods accordingly. For example, if you change the name of the button to MyButton, the
Button1Click method automatically becomes MyButtonCTick.

As mentioned earlier, if you have a string with the name of a component, you can get its
instance by calling the FindComponent of its owner, which returns ni1 in case the component

is not found. For example, you can write

var

Comp: TComponent;

begin

Comp := FindComponent ('Buttonl');
if Assigned (Comp) then
with Comp as TButton do
// some code...

NotE

Delphi includes also a FindGlobalComponent function, which finds a top-level component, basi-

cally a form or data module, that has a given name. To be precise, the FindG1obalComponent
function calls one or more installed functions, so in theory you can modify the way the func-
tion works. However, as FindGlobalComponent is used by the streaming system, | strongly
recommend against installing your own replacement functions. If you want to have a cus-
tomized way to search for components on other containers, simply write a new function with
a custom name.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

164 Chapter 5 e Core Library Classes

Removing Form Fields

Every time you add a component to a form, Delphi adds an entry for it, along with some of
its properties, to the DFM file. To the Pascal file, Delphi adds the corresponding field in the
form class declaration. When the form is created, Delphi loads the DFM file and uses it to
re-create all the components and set their properties back. Then it hooks the new object with
the form field corresponding to its Name property.

For this reason, it is certainly possible to have a component without a name. If your appli-
cation will not manipulate the component or modify it at run time, you can remove the com-
ponent name from the Object Inspector. Examples are a static label with fixed text, or a menu
item, or even more obviously, menu item separators. By blanking out the name, you’ll
remove the corresponding element from the form class declaration. This reduces the size of
the form object (by only four bytes, the size of the object reference) and it reduces the DFM
file by not including a useless string (the component name). Reducing the DFM also implies
reducing the final EXE file size, even if only slightly.

WARNING ¢ you blank out component names, just make sure to leave at least one named component of
each class used on the form so that the smart linker will link in the required code for the class.
If, as an example, you remove from a form all the fields referring to TLabel components, the
Delphi linker will remove the implementation of the TLabeT class from the executable file.
The effect is that when the system loads the form at run time, it is unable to create an object
of an unknown class and issues an error indicating that the class is not available.

You can also keep the component name and manually remove the corresponding field of
the form class. Even if the component has no corresponding form field, it is created any-
way, although using it (through the FindComponent method, for example) will be a little
more difficult.

Hiding Form Fields

Many OOP purists complain that Delphi doesn’t really follow the encapsulation rules, because
all of the components of a form are mapped to public fields and can be accessed from other
forms and units. Fields for components, in fact, are listed in the first unnamed section of a
class declaration, which has a default visibility of published. However, Delphi does that only
as a default to help beginners learn to use the Delphi visual development environment quickly.
A programmer can follow a different approach and use properties and methods to operate on
forms. The risk, however, is that another programmer of the same team might inadvertently
bypass this approach, directly accessing the components if they are left in the published sec-
tion. The solution, which many programmers don’t know about, is to move the components
to the private portion of the class declaration.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TComponent Class 165

As an example, I've taken a very simple form with an edit box, a button, and a list box. When
the edit box contains text and the user presses the button, the text is added to the list box.
When the edit box is empty, the button is disabled. This is the simple code of the HideComp
example:

procedure TForml.ButtonlClick(Sender: TObject);
begin

ListBox1l.Items.Add (Editl.Text);
end;

procedure TForml.EditlChange(Sender: TObject);
begin

Buttonl.Enabled := Length (Editl.Text) <> 0;
end;

Pve listed these methods only to show you that in the code of a form we usually refer to the
available components, defining their interactions. For this reason it seems impossible to get rid
of the fields corresponding to the component. However, what we can do is hide them, moving
them from the default published section to the private section of the form class declaration:

TForml = class(TForm)
procedure ButtonlClick(Sender: TObject);
procedure EditlChange(Sender: TObject);
procedure FormCreate(Sender: TObject);
private
Buttonl: TButton;
Editl: TEdit;
ListBox1l: TListBox;
end;

Now if you run the program you’ll get in trouble: The form will load fine, but because the
private fields are not initialized, the events above will use ni1 object references. Delphi usu-
ally initializes the published fields of the form using the components created from the DFM
file. What if we do it ourselves, with the following code?

procedure TForml.FormCreate(Sender: TObject);
begin
Buttonl := FindComponent ('Buttonl') as TButton;
Editl := FindComponent ('Editl') as TEdit;
ListBox1l := FindComponent ('ListBox1') as TListBox;
end;

It will almost work, but it generates a system error, similar to the one we discussed in the
previous section. This time, the private declarations will cause the linker to link in the imple-
mentations of those classes, but the problem is that the streaming system needs to know the
names of the classes in order to locate the class reference needed to construct the compo-
nents while loading the DFM file.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

166 Chapter 5 e Core Library Classes

The final touch we need is some registration code to tell Delphi at run time about the exis-
tence of the component classes we want to use. We should do this before the form is created,
so I generally place this code in the initialization section of the unit:

initialization
RegisterClasses ([TButton, TEdit, TListBox]);

Now the question is, is this really worth the effort? What we obtain is a higher degree of
encapsulation, protecting the components of a form from other forms (and other program-
mers writing them). I have to say that replicating these steps for each and every form can be
tedious, so I ended up writing a wizard to generate this code for me on the fly. The wizard is
far from perfect, as it doesn’t handle changes automatically, but it is usable. You can find it on
my Web site, www.marcocantu. com, under the CanTools section. My simple wizard apart, for
a large project built according to the principles of object-oriented programming, I recom-
mend you consider this or a similar technique.

The Customizable Tag Property

The Tag property is a strange one, because it has no effect at all. It is merely an extra memory
location, present in each component class, where you can store custom values. The kind of
information stored and the way it is used are completely up to you.

It is often useful to have an extra memory location to attach information to a component
without needing to define your component class. Technically, the Tag property stores a long
integer so that, for example, you can store the entry number of an array or list that corre-
sponds to an object. Using typecasting, you can store in the Tag property a pointer, an object,
or anything else that is four bytes wide. This allows a programmer to associate virtually any-
thing with a component using its tag. We’ll see how to use this property in several examples
in future chapters, including the ODMenu examples in Chapter 5.

Events

Now that I've introduced the TComponent class, there is one more element of Delphi we have
to introduce. Delphi components, in fact, are programmed using “PME,” properties, meth-
ods, and events. If methods and properties should be clear by now, events have not been fully
introduced yet. The reason is that events don’t imply a new language feature but are simply a
standard coding technique. An event, in fact, is technically a property, with the only differ-
ence being that it refers to a method (a method pointer type, to be precise) instead of other

types of data.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Events 167

Events in Delphi

When a user does something with a component, such as clicking it, the component generates
an event. Other events are generated by the system, in response to a method call or a change
to one of that component’s properties (or even a different component’s). For example, if you
set the focus on a component, the component currently having the focus loses it, triggering
the corresponding event.

Technically, most Delphi events are triggered when a corresponding operating system
message is received, although the events do not match the messages on a one-to-one basis.
Delphi events tend to be higher-level than operating system messages, and Delphi provides
a number of extra inter-component messages.

From a theoretical point of view, an event is the result of a request sent to a component or
control, which can respond to the message. Following this approach, to handle the click
event of a button, we would need to subclass the TButton class and add the new event handler
code inside the new class.

In practice, creating a new class for every component you want to use is too complex to be
a reasonable solution. In Delphi, the event handler of a component usually is a method of the
form that holds the component, not of the component itself. In other words, the component
relies on its owner, the form, to handle its events. This technique is called delegation, and it is
fundamental to the Delphi component-based model. This way, you don’t have to modify the
TButton class, unless you want to define a new type of component, but simply customize its
owner to modify the behavior of the button.

Method Pointers

Events rely on a specific feature of the Object Pascal language: mzethod pointers. A method pointer
type is like a procedural type, but one that refers to a method. Technically, a method pointer type
is a procedural type that has an implicit Se1f parameter. In other words, a variable of a proce-
dural type stores the address of a function to call, provided it has a given set of parameters. A
method pointer variable stores two addresses: the address of the method code and the address
of an object instance (data). The address of the object instance will show up as Self inside the
method body when the method code is called using this method pointer.

NoTE

This explains the definition of Delphi’s generic TMethod type, a record with a Code field and a
Data field.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

168

Chapter 5 e Core Library Classes

The declaration of a method pointer type is similar to that of a procedural type, except that
it has the keywords of object at the end of the declaration:
type
IntProceduralType = procedure (Num: Integer);
IntMethodPointerType = procedure (Num: Integer) of object;

When you have declared a method pointer, such as the one above, you can declare a variable
of this type and assign to it a compatible method—a method that has the same parameters—
of another object.

When you add an OnCTick event handler for a button, Delphi does exactly that. The but-
ton has a method pointer type property, named 0OnC11ick, and you can directly or indirectly
assign to it a method of another object, such as a form. When a user clicks the button, this
method is executed, even if you have defined it inside another class.

What follows is a sketch of the code actually used by Delphi to define the event handler of
a button component and the related method of a form:

type
TNotifyEvent = procedure (Sender: TObject) of object;

MyButton = class
OnClick: TNotifyEvent;
end;

TForml = class (TForm)
procedure ButtonlClick (Sender: TObject);
Buttonl: MyButton;

end;

var
Forml: TForml;

Now inside a procedure, you can write
MyButton.OnClick := Forml.ButtonlClick;

The only real difference between this code fragment and the code of VCL is that OnC1ick
is a property name, and the actual data it refers to is called FOnCl1ick. An event that shows up
in the Events page of the Object Inspector, in fact, is nothing more than a property of a
method pointer type. This means, for example, that you can dynamically modify the event
handler attached to a component at design time or even build a new component at run time
and assign an event handler to it.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Events 169

Events Are Properties

Another important concept I've already mentioned is that events are properties. This means
that to handle an event of a component, you assign a method to the corresponding event
property. When you double-click an event in the Object Inspector, a new method is added
to the owner form and assigned to the proper event property of the component.

This is why it is possible for several events to share the same event handler or change an
event handler at run time. 'To use this feature, you don’t need much knowledge of the lan-
guage. In fact, when you select an event in the Object Inspector, you can press the arrow but-
ton on the right of the event name to see a drop-down list of “compatible” methods—a list of
methods having the same method pointer type. Using the Object Inspector, it is easy to select
the same method for the same event of different components or for different, compatible
events of the same component.

As we’ve added some properties to the TDate class in Chapter 3, we can add one event. The
event is going to be very simple. It will be called OnChange, and it can be used to warn the
user of the component that the value of the date has changed. To define an event, we simply
define a property corresponding to it, and we add some data to store the actual method
pointer the event refers to. These are the new definitions added to the class, available in the
DateEvt example:

type
TDate = class

private
FOnChange: TNotifyEvent;

protected
procedure DoChange; dynamic;
public
property OnChange: TNotifyEvent
read FonChange write FOnChange;

end;
The property definition is actually very simple. A user of this class can assign a new value
to the property and, hence, to the FOnChange private field. The class doesn’t assign a value to
this FOnChange field; it is the user of the component who does the assignment. The TDate

class simply calls the method stored in the FOnChange field when the value of the date changes.
Of course, the call takes place only if the event property has been assigned. The DoChange

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

170 Chapter 5 e Core Library Classes

method (declared as a dynamic method as it is traditional with event firing methods) makes
the test and the method call:
procedure TDate.DoChange;
begin
if Assigned (FOnChange) then
FOnChange (Self);
end;

The DoChange method in turn is called every time one of the values changes, as in the follow-
ing method:
procedure TDate.SetValue (y, m, d: Integer);
begin

fDate := EncodeDate (y, m, d);

// fire the event

DoChange;

Now if we look at the program that uses this class, we can simplify its code considerably.

First, we add a new custom method to the form class:

type
TDateForm = class(TForm)

procedure DateChange(Sender: TObject);

The code of this method simply updates the label with the current value of the Text property
of the TDate object:

procedure TDateForm.DateChange;
begin

LabelDate.Caption := TheDay.Text;
end;

This event handler is then installed in the FormCreate method:

procedure TDateForm.FormCreate(Sender: TObject);
begin
TheDay := TDate.Init (2001, 7, 4);
LabelDate.Caption := TheDay.Text;
// assign the event handler for future changes
TheDay.OnChange := DateChange;
end;

Well, this seems like a lot of work. Was I lying when I told you that the event handler
would save us some coding? No. Now, after we’ve added some code, we can completely for-
get about updating the label when we change some of the data of the object. Here, as an
example, is the handler of the OnCTick event of one of the buttons:

procedure TDateForm.BtnIncreaseClick(Sender: TObject);
begin

TheDay.Increase;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Lists and Container Classes 171

The same simplified code is present in many other event handlers. Once we have installed
the event handler, we don’t have to remember to update the label continually. That elimi-
nates a significant potential source of errors in the program. Also note that we had to write
some code at the beginning because this is not a component installed in Delphi but simply a
class. With a component, you simply select the event handler in the Object Inspector and
write a single line of code to update the label. That’s all.

NortEe This is meant to be just a short introduction to defining events. A basic understanding of these
features is important for every Delphi programmer. If your aim is to write new components,
with complex events, you'll find a lot more information on all these topics in Chapter 11.

Lists and Container Classes

It is often important to handle groups of components or objects. Besides using standard
arrays and dynamic arrays, there are a few classes of VCL that represent lists of other objects.
These classes can be divided into three groups: simple lists, collections, and containers. The
last group was introduced in Delphi 5 and has been further expanded in Delphi 6.

Lists and String Lists

Lists are represented by the generic list of objects, TList, and by the two lists of strings,
TStrings and TStringlList:

e TList defines a list of pointers, which can be used to store objects of any class. A TList
is more flexible than a dynamic array, because it is expanded automatically, simply by
adding new items to it. The advantage of dynamic arrays over a TList, instead, is that
dynamic arrays allow you to indicate a specific type for contained objects and perform
the proper compile-time type checking.

e TStrings is an abstract class to represent all forms of string lists, regardless of their
storage implementations. This class defines an abstract list of strings. For this reason,

TStrings objects are used only as properties of components capable of storing the
strings themselves, such as a list box.

e TStringlist, a subclass of TStrings, defines a list of strings with their own storage.
You can use this class to define a list of strings in a program.

TStringList and TStrings objects have both a list of strings and a list of objects associated
with the strings. This opens up a number of different uses for these classes. For example, you
can use them for dictionaries of associated objects or to store bitmaps or other elements to be
used in a list box.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

172

Chapter 5 e Core Library Classes

The two classes of lists of strings also have ready-to-use methods to store or load their
contents to or from a text file, SaveToFile and LoadFromFile. To loop through a list, you can
use a simple for statement based on its index, as if the list were an array. All these lists have a
number of methods and properties. You can operate on lists using the array notation (“[” and
“1”) both to read and to change elements. There is a Count property, as well as typical access
methods, such as Add, Insert, Delete, Remove, and search methods (for example, Index0f). In
Delphi 6, the TList class has an Assign method that, besides copying the source data, can
perform set operations on the two lists, including and, or, and xor.

To fill a string list with items and later check whether one is present, you can write code

like this:

var
s1: TStringlList;
idx: Integer;
begin
s1 := TStringList.Create;
try
s1.Add ('one');
s1.Add ('two');
s1.Add ('three');
// later
idx := s1.IndexOf ('two');
if idx >= 0 then
ShowMessage ('String found');
finally
s1.Free;
end;
end;

Using Lists of Objects

We can write an example focusing on the use of the generic TList class. When you need a list
of any kind of data, you can generally declare a TList object, fill it with the data, and then access
the data while casting it to the proper type. The ListDemo example demonstrates just this. It
also shows the pitfalls of this approach. Its form has a private variable, holding a list of dates:

private
ListDate: TList;

"This list object is created when the form itself is created:

procedure TForml.FormCreate(Sender: TObject);
begin

Randomize;

ListDate := TList.Create;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Lists and Container Classes 173

A button of the form adds a random date to the list (of course, I've included in the project
the unit containing the date component built in the previous chapter):
procedure TForml.ButtonAddClick(Sender: TObject);
begin

ListDate.Add (TDate.Create (1900 + Random (200), 1 + Random (12),
1 + Random (30)));
end;

When you extract the items from the list, you have to cast them back to the proper type,

as in the following method, which is connected to the List button (you can see its effect in
Figure 5.4):

procedure TForml.ButtonListDateClick(Sender: TObject);
var

I: Integer;
begin
ListBox1l.Clear;
for I := 0 to ListDate.Count - 1 do

Listbox1l.Items.Add ((TObject(ListDate [I]) as TDate).Text);
end;

FIGURE 5.4:

The list of dates shown by
the ListDemo example

j;-' Lizt Demo =]

0510426
03403761
2010/

fidd

List 0B/07/24
e
20/02/54

27/01/04
1112443

Listdemo

0 Ireealid class typecast,

Add wrong |

At the end of the code above, before we can do an as downcast, we first need to hard-cast
the pointer returned by the TList into a TObject reference. This kind of expression can result

in an invalid typecast exception, or it can generate a memory error when the pointer is not a
reference to an object.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

174

Chapter 5 e Core Library Classes

"To demonstrate that things can indeed go wrong, I've added one more button, which adds
a TButton object to the list:
procedure TForml.ButtonWrongClick(Sender: TObject);
begin
// add a button to the list
ListDate.Add (Sender);
end;

If you click this button and then update one of the lists, you’ll get an error. Finally, remem-
ber that when you destroy a list of objects, you should remember to destroy all of the objects
of the list first. The ListDemo program does this in the FormDestroy method of the form:

procedure TForml.FormDestroy(Sender: TObject);
var
I: Integer;
begin
for I := 0 to ListDate.Count - 1 do
TObject(ListDate [I]).Free;
ListDate.Free;
end;

Collections

The second group, collections, contains only two classes, TCollection and TCollectionItem.
TCollection defines a homogeneous list of objects, which are owned by the collection class.
"The objects in the collection must be descendants of the TCollectionItem class. If you need
a collection storing specific objects, you have to create both a subclass of TCoTlection and a
matching subclass of TCollectionItem.

Collections are used to specify values of properties of components. It is very unusual to
work with collections for storing your own objects, so I won’t discuss them here.

Container Classes

Delphi 5 introduced a new series of container classes, defined in the Contnrs unit. Delphi 6

extends these classes by adding hashed associative lists, as discussed in the following section.
The container classes extend the TList classes by adding the idea of ownership and by defin-
ing specific extraction rules (mimicking stacks and queues) or sorting capabilities.

The basic difference between TList and the new TObjectList class, for example, is that the
latter is defined as a list of TObject objects, not a list of pointers. Even more important, how-
ever, is the fact that if the object list has the OwnsObjects property set to True, it automati-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Lists and Container Classes 175

cally deletes an object when it is replaced by another one and deletes each object when the
list itself is destroyed. Here’s a list of all the new container classes:

The TObjectList class I've already described represents a list of objects, eventually
owned by the list itself.

The inherited class TComponentList represents a list of components, with full support
for destruction notification (an important safety feature when two components are
connected using their properties; that is, when a component is the value of a property
of another component).

The TClassList class is a list of class references. It inherits from TList and requires no
destruction.

The classes TStack and TObjectStack represent lists of pointers and objects, from which
you can only extract elements starting from the last one you’ve inserted. A stack follows
the LIFO order (Last In, First Out). The typical methods of a stack are Push for inser-
tion, Pop for extraction, and Peek to preview the first item without removing it. You can
still use all the methods of the base class, TList.

"The classes TQueue and TObjectQueue represent lists of pointers and objects, from which
you always remove the first item you’ve inserted (FIFO: first in, first out). The methods
of these classes are the same as those of the stack classes but behave differently.

WARNING

Unlike the TObjectList, the TObjectStack and the TObjectQueue do not own the inserted
objects and will not destroy those objects left in the data structure when it is destroyed. You
can simply Pop all the items, destroy them once you're finished using them, and then destroy
the container.

"To demonstrate the use of these classes, I've modified the earlier ListDate example into
the new Contain example on the CD. First, I changed the type of the ListDate variable to
TObjectList. In the FormCreate method, I've modified the list creation to the following
code, which activates the list ownership:

ListDate := TObjectList.Create (True);

At this point, we can simplify the destruction code, as applying Free to the list will automati-
cally free the dates it holds.

I've also added to the program a stack and a queue object, filling each of them with numbers.
One of the form’s two buttons displays a list of the numbers in each container, and the other
removes the last item (displayed in a message box):

procedure TForml.btnQueueClick(Sender: TObject);
var

I: Integer;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

176

Chapter 5 e Core Library Classes

begin
ListBox1l.Clear;
for I := 0 to Stack.Count - 1 do begin
ListBox1l.Items.Add (IntToStr (Integer (Queue.Peek)));
Queue.Push(Queue.Pop);
end;
ShowMessage ('Removed: ' + IntToStr (Integer (Stack.Pop)));
end;

By pressing the two buttons, you can see that calling Pop for each container returns the last

item. The difference is that the TQueue class inserts elements at the beginning, and the
TStack class inserts them at the end.

Hashed Associative Lists

After whetting our appetite in Delphi 5, Borland has pushed the idea of container classes
a little further in Delphi 6, introducing a new set of lists, particularly TBucketList and
TObjectBucketList. These two lists are associative, which means they have a key and an
actual entry. The key is used to identify the items and search for them. To add an item, you
call the Add method, with two parameters, the key and the actual data. When you use the
Find method, you pass the key and retrieve the data. The same effect is achieved by using the
Data array property, passing the key as parameter.

These lists are also based on a hash system. The lists create an internal array of items, called
buckets, each having a sub-list of actual elements of the list. As you add an item, its key value is
used to compute the hash value, which determines the bucket to add the item to. When search-
ing the item, the hash is computed again, and the list immediately grabs the sublist containing
the item, searching for it there. This makes for very fast insertion and searches, but only if the
hash algorithm distributes the items evenly among the various buckets and if there are enough
different entries in the array. In fact, when many elements can be in the same bucket, searching
gets slower.

For this reason, as you create the TObjectBucketList you can specify the number of
entries for the list, using the parameter of the constructor, choosing a value between 2 and 256.
"The value of the bucket is determined by taking the first byte of the pointer (or number)
passed as key and doing an and operation with a number corresponding to the entries.

NotE

| don't find this algorithm very convincing for a hash system, but replacing it with your own
implies only overriding the BucketFor virtual function and eventually changing the number of
entries in the array, by setting a different value for the BucketCount property.

Another interesting feature, not available for lists, is the ForEach method, which allows you
to execute a given function on each item contained in the list. You pass to the ForEach
method a pointer to data of your own and a procedure, which receives four parameters,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Lists and Container Classes 177

including your custom pointer, each key and object of the list, and a Boolean parameter you
can set to False to stop the execution. In other words, these are the two signatures:
type
TBucketProc = procedure(AInfo, Altem, AData: Pointer;
out AContinue: Boolean);

function TCustomBucketList.ForEach(AProc: TBucketProc;
AInfo: Pointer): Boolean;

NotE

Besides these containers, Delphi includes also a THashedStringList class, which inherits
from TStringList. This class has no direct relationship with the hashed lists and is even
defined in a different unit, IniFile. The hashed string list has two associated hash tables (of type
TStringHash), which are completely refreshed every time the content of the string list
changes. So this class is useful only for reading a large set of fixed strings, not for handling a
list of strings changing often over time. On the other hand, the TStringHash support class
seems to be quite useful in general cases, and has a good algorithm for computing the hash
value of a string.

Type-Safe Containers and Lists

Containers and lists have a problem: They are not type-safe, as I've shown in both examples
by adding a button object to a list of dates. To ensure that the data in a list is homogenous,
you can check the type of the data you extract before you insert it, but as an extra safety mea-
sure you might also want to check the type of the data while extracting it. However, adding
run-time type checking slows down a program and is risky—a programmer might fail to
check the type in some cases.

"To solve both problems, you can create specific list classes for given data types and fashion
the code from the existing TList or TObjectList classes (or another container class). There
are two approaches to accomplish this:

e Derive a new class from the list class and customize the Add method and the access
methods, which relate to the Items property. This is also the approach used by Borland
for the container classes, which all derive from TList.

NoTE

Delphi container classes use static overrides to perform simple type conveniences (parameters
and function results of the desired type). Static overrides are not the same as polymorphism;
someone using a container class via a TLi st variable will not be calling the container’s special-
ized functions. Static override is a simple and effective technique, but it has one very impor-
tant restriction: The methods in the descendent should not do anything beyond simple
type-casting, because you aren’t guaranteed that the descendent methods will be called. The
list might be accessed and manipulated using the ancestor methods as much as by the descen-
dent methods, so their actual operations must be identical. The only difference is the type
used in the descendent methods, which allows you to avoid extra typecasting.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

178

Chapter 5 e Core Library Classes

e Create a brand-new class that contains a TList object, and map the methods of the new

class to the internal list using proper type checking. This approach defines a wrapper
class, a class that “wraps” around an existing one to provide a different or limited access
to its methods (in our case, to perform a type conversion).

I’'ve implemented both solutions in the DateList example, which defines lists of TDate

objects. In the code that follows, you’ll find the declaration of the two classes, the inheritance-
based TDateListI class and the wrapper class TDateListW.

type
// inheritance-based
TDatelListI = class (TObjectlList)
protected
procedure SetObject (Index: Integer; Item: TDate);
function GetObject (Index: Integer): TDate;
public
function Add (Obj: TDate): Integer;
procedure Insert (Index: Integer; Obj: TDate);
property Objects [Index: Integer]: TDate
read GetObject write SetObject; default;
end;

// wrapper based
TDateListW = class(TObject)
private
FList: TObjectList;
function GetObject (Index: Integer): TDate;
procedure SetObject (Index: Integer; Obj: TDate);
function GetCount: Integer;
public
constructor Create;
destructor Destroy; override;
function Add (Obj: TDate): Integer;
function Remove (Obj: TDate): Integer;
function IndexOf (Obj: TDate): Integer;
property Count: Integer read GetCount;
property Objects [Index: Integer]: TDate
read GetObject write SetObject; default;
end;

Obviously, the first class is simpler to write—it has fewer methods, and they simply call the

inherited ones. The good thing is that a TDateListI object can be passed to parameters expect-
ing a TList. The problem is that the code that manipulates an instance of this list via a generic
TList variable will not be calling the specialized methods, because they are not virtual and
might end up adding to the list objects of other data types.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Streaming 179

Instead, if you decide not to use inheritance, you end up writing a lot of code, because you
need to reproduce each and every one of the original TList methods, simply calling the meth-
ods of the internal FList object. The drawback is that the TDateListW class is not type com-
patible with TList, which limits its usefulness. It can’t be passed as parameter to methods
expecting a TList.

Both of these approaches provide good type checking. After you’ve created an instance of
one of these list classes, you can add only objects of the appropriate type, and the objects you
extract will naturally be of the correct type. This is demonstrated by the DateList example.
This program has a few buttons, a combo box to let a user choose which of the lists to show,
and a list box to show the actual values of the list. The program stretches the lists by trying to
add a button to the list of TDate objects. To add an object of a different type to the TDateListI
list, we can simply convert the list to its base class, TList. This might accidentally happen if
you pass the list as a parameter to a method that expects a base class object. In contrast, for the
TDateListW list to fail we must explicitly cast the object to TDate before inserting it, something
a programmer should never do:

procedure TForml.ButtonAddButtonClick(Sender: TObject);
begin
ListW.Add (TDate(TButton.Create (nil)));
TList(ListI).Add (TButton.Create (nil));
UpdatelList;
end;

The UpdateList call triggers an exception, displayed directly in the list box, because I've
used an as typecast in the custom list classes. A wise programmer should never write the
above code. To summarize, writing a custom list for a specific type makes a program much
more robust. Writing a wrapper list instead of one that’s based on inheritance tends to be a
little safer, although it requires more coding.

NortE Instead of rewriting wrapper-style list classes for different types, you can use my List Template
Wizard, available on my Web site, www.marcocantu.com.

Streaming

Another core area of the Delphi class library is its support for streaming, which includes file
management, memory, sockets, and other sources of information arranged in a sequence.
The idea of streaming is that you move along the data while reading it, much like the tradi-
tional read and write functions used by the Pascal language (and discussed in Chapter 12 of
Essential Pascal, available on the companion CD).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

180

Chapter 5 e Core Library Classes

The TStream Class

The VCL defines the abstract TStream class and several subclasses. The parent class, TStream,
has just a few properties, and you’ll never create an instance of it, but it has an interesting list
of methods you’ll generally use when working with derived stream classes.

The TStream class defines two properties, Size and Position. All stream objects have a spe-
cific size (which generally grows if you write something after the end of the stream), and you
must specify a position within the stream where you want to either read or write information.

Reading and writing bytes depends on the actual stream class you are using, but in both
cases you don’t need to know much more than the size of the stream and your relative posi-
tion in the stream to read or write data. In fact, that’s one of the advantages of using streams.
"The basic interface remains the same whether you’re manipulating a disk file, a binary large
object (BLOB) field, or a long sequence of bytes in memory.

In addition to the Size and Position properties, the TStream class also defines several
important methods, most of which are virtual and abstract. (In other words, the TStream class
doesn’t define what these methods doj; therefore, derived classes are responsible for imple-
menting them.) Some of these methods are important only in the context of reading or writ-
ing components within a stream (for instance, ReadComponent and WriteComponent), but
some are useful in other contexts, too. In Listing 5.2, you can find the declaration of the
TStream class, extracted from the Classes unit.

Listing 5.2: The public portion of the definition of the TStream class

TStream = class(TObject)

public
// read and write a buffer
function Read(var Buffer; Count: Longint): Longint; virtual; abstract;
function Write(const Buffer; Count: Longint): Longint; virtual; abstract;
procedure ReadBuffer(var Buffer; Count: Longint);
procedure WriteBuffer(const Buffer; Count: Longint);

// move to a specific position

function Seek(Offset: Longint; Origin: Word): Longint; overload; virtual;

function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;
overload; virtual;

// copy the stream
function CopyFrom(Source: TStream; Count: Int64): Int64;

// read or write a component

function ReadComponent(Instance: TComponent): TComponent;

function ReadComponentRes(Instance: TComponent): TComponent;

procedure WriteComponent(Instance: TComponent);

procedure WriteComponentRes(const ResName: string; Instance: TComponent);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Streaming 181

procedure WriteDescendent(Instance, Ancestor: TComponent);
procedure WriteDescendentRes(
const ResName: string; Instance, Ancestor: TComponent);
procedure WriteResourceHeader(const ResName: string; out FixupInfo: Integer);
procedure FixupResourceHeader(FixupInfo: Integer);
procedure ReadResHeader;

// properties
property Position: Int64 read GetPosition write SetPosition;
property Size: Int64 read GetSize write SetSize64;

end;

The basic use of a string involves calling the ReadBuffer and WriteBuffer methods, which
are very powerful but not terribly easy to use. The first parameter, in fact, is an untyped buffer
in which you can pass the variable to save from or load to. For example, you can save into a file
a number (in binary format) and a string, with this code:

var
stream: TStream;
n: integer;
str: string;
begin
n := 10;
str := 'test string';

stream := TFileStream.Create ('c:\tmp\test', fmCreate);
stream.WriteBuffer (n, sizeOf(integer));
stream.WriteBuffer (str[1], Length (str));
stream.Free;
A totally alternative approach is to let specific components save or load data to and from
streams. Many VCL classes define a LoadFromStream or a SaveToStream method, including
TStrings, TStringList, TBlobField, TMemoField, TIcon, and TBitmap.

Specific Stream Classes

Creating a TStream instance makes no sense, because this class is abstract and provides no
direct support for saving data. Instead, you can use one of the derived classes to load data from
or store it to an actual file, a BLOB field, a socket, or a memory block. Use TFileStream when
you want to work with a file, passing the filename and some file access options to the Create
method. Use TMemoryStream to manipulate a stream in memory and not an actual file.

Several units define TStream-derived classes. In the Classes unit are the following classes:

e THandleStream defines a stream that manipulates a disk file represented by a Windows

file handle.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

182

Chapter 5 e Core Library Classes

e TFileStreamdefines a stream that manipulates a disk file (a file that exists on a local or
network disk) represented by a filename. It inherits from THandTeStream.

e TCustomMemoryStream is the base class for streams stored in memory but is not used
directly.

e TMemoryStream defines a stream that manipulates a sequence of bytes in memory. It
inherits from TCustomMemoryStream.

e TStringStream provides a simple way for associating a stream to a string in memory, so
that you can access the string with the TStream interface and also copy the string to and
from another stream.

e TResourceStream defines a stream that manipulates a sequence of bytes in memory,
and provides read-only access to resource data linked into the executable file of an
application (an example of these resource data are the DFM files). It inherits from
TCustomMemoryStream.

Stream classes defined in other units include

e TBlobStream defines a stream that provides simple access to database BLOB fields. There
are similar BLOB streams for other database access technologies rather than the BDE.

e TOleStream defines a stream for reading and writing information over the interface for
streaming provided by an OLE object.

e TWinSocketStream provides streaming support for a socket connection.

Using File Streams

Creating and using a file stream can be as simple as creating a variable of a type that descends
from TStream and calling components methods to load content from the file:

var
S: TFileStream;
begin
if OpenDialogl.Execute then
begin
S := TFileStream.Create (OpenDialogl.FileName, fmOpenRead);
try
Memol.Lines.LoadFromStream (S);
finally
S.Free;
end;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Streaming 183

As you can see in this code, the Create method for file streams has two parameters: the name
of the file and a flag indicating the requested access mode. In this case, we want to read the file,
so we used the fmOpenRead flag (other available flags are documented in the Delphi help).

NoTE

Of the different modes, the most important are fmShareDenyWrite, which you'll use when you're
simply reading data from a shared file, and fmShareExclusive, which you'll use when you're writ-
ing data to a shared file.

A big advantage of streams over other file access techniques is that they’re very inter-
changeable, so you can work with memory streams and then save them to a file, or you can
perform the opposite operations. This might be a way to improve the speed of a file-intensive
program. Here is a snippet of code, a file-copying function, to give you another idea of how
you can use streams:

procedure CopyFile (SourceName, TargetName: String);

var
Streaml, Stream2: TFileStream;
begin
Streaml := TFileStream.Create (SourceName, fmOpenRead);
try
Stream2 := TFileStream.Create (TargetName, fmOpenWrite or fmCreate);
try
Stream?2.CopyFrom (Streaml, Streaml.Size);
finally
Stream2.Free;
end
finally
Streaml.Free;
end
end;

Another important use of streams is to handle database BLOB fields or other large fields
directly. In fact, you can export such data to a stream or read it from one by simply calling
the SaveToStream and LoadFromStream methods of the TBTobField class.

The TReader and TWriter Classes

By themselves, the stream classes of VCL don’t provide much support for reading or writing
data. In fact, stream classes don’t implement much beyond simply reading and writing blocks
of data. If you want to load or save specific data types in a stream (and don’t want to perform
a great deal of typecasting), you can use the TReader and TWriter classes, which derive from the

generic TFiTer class.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

184

Chapter 5 e Core Library Classes

Basically, the TReader and TWriter classes exist to simplify loading and saving stream data
according to its type, and not just as a sequence of bytes. To do this, TWriter embeds special
signatures into the stream that specify the type for each object’s data. Conversely, the TReader
class reads these signatures from the stream, creates the appropriate objects, and then initial-
izes those objects using the subsequent data from the stream.

For example, I could have written out a number and a string to a stream by writing:

var
stream: TStream;
n: integer;
str: string;

w: TWriter;
begin
n := 10;
str := 'test string';

stream := TFileStream.Create ('c:\tmp\test.txt', fmCreate);

w := TWriter.Create (stream, 1024);

w.WriteInteger (n);

w.WriteString (str);

w.Free;

stream.Free;

This time the actual file will include also the extra signature characters, so that I can read

back this file only by using a TReader object. For this reason, using the TReader and TWriter is
generally confined to components streaming and is seldom applied in general file management.

Streams and Persistency

In Delphi, streams play a considerable role for persistency. For this reason, many methods of
TStream relate to saving and loading a component and its subcomponents. For example, you
can store a form in a stream by writing

stream.WriteComponent(Forml);

If you examine the structure of a Delphi DFM file, you’ll discover that it’s really just a
resource file that contains a custom format resource. Inside this resource, you’ll find the com-
ponent information for the form or data module and for each of the components it contains.
As you would expect, the stream classes provide two methods to read and write this custom
resource data for components: WriteComponentRes to store the data, and ReadComponentRes
to load it.

For your experiment in memory (not involving actual DFM files), though, using
WriteComponent is generally better suited. After you create a memory stream and save the
current form to it, the problem is how to display it. This can be accomplished by transform-
ing the binary representation of forms to a textual representation. Even though the Delphi

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Streaming 185

IDE, since version 5, can save DFM files in text format, the representation used internally
for the compiled code is invariably a binary format.

The form conversion can be accomplished by the IDE, generally with the View as Text
command of the form designer, and in other ways. There is also a command-line utility,
CONVERT. EXE, found in the Delphi Bin directory. Within your own code, the standard way to
obtain a conversion is to call the specific methods of VCL. There are four functions for con-
verting to and from the internal object format obtained by the WriteComponent method:

procedure ObjectBinaryToText(Input, Output: TStream); overload;
procedure ObjectBinaryToText(Input, Output: TStream;

var OriginalFormat: TStreamOriginalFormat); overload;
procedure ObjectTextToBinary(Input, Output: TStream); overload;

procedure ObjectTextToBinary(Input, Output: TStream;
var OriginalFormat: TStreamOriginalFormat); overload;

Four different functions, with the same parameters and names containing the name Resource
instead of Binary (as in ObjectResourceToText), convert the resource format obtained by

WriteComponentRes. A final method, TestStreamFormat, indicates whether a DFM is storing a
binary or textual representation.

In the FormToText program, I’ve used the ObjectBinaryToText method to copy the binary
definition of a form into another stream, and then I've displayed the resulting stream in a
memo, as you can see in Figure 5.5. This is the code of the two methods involved:

FIGURE 5.5: Form To Text (Ol x]
The textual description of a
form component, displayed
inside itself by the FormTo- abiect formT ext: ThormT ext -
Text example

Current Form Object Fanel Object | Form in Executable File ‘

Left =191
Top=113
“Wwidth = 545
Height = 374
ActiveControl = btnCurrent
Caption = 'Form Ta Test'
Color = clBtrFace
Font.Charzet = DEFAULT_CHARSET
Fomt.Color = chwfindowT ext
Fart.Height = -11
FortMame = M5 5anz: Senf'
Font.Style =[]
OldCreateCrder = True
Wizible = True
PixelzPerlnch = 36
TextHeight =13
object memolut: TMemo

Left=0

Top=41

‘wiidth = 537

Height = 308

Align = alClient |

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

186 Chapter 5 e Core Library Classes

procedure TformText.btnCurrentClick(Sender: TObject);

var
MemStr: TStream;
begin
MemStr := TMemoryStream.Create;
try
MemStr.WriteComponent (Self);
ConvertAndShow (MemStr);
finally
MemStr.Free
end;
end;

procedure TformText.ConvertAndShow (aStream: TStream);
var
ConvStream: TStream;
begin
aStream.Position := 0;
ConvStream := TMemoryStream.Create;
try
ObjectBinaryToText (aStream, ConvStream);
ConvStream.Position := 0;
MemoOut.Lines.LoadFromStream (ConvStream);
finally
ConvStream.Free
end;
end;

Notice that by repeatedly clicking the Current Form Object button you’ll get more and
more text, and the text of the memo is included in the stream. After a few times, the entire
operation will get extremely slow, so that the program seems to be hung up. In this code, we
start to see some of the flexibility of using streams—we can write a generic procedure we can
use to convert any stream.

NortEe It's important to stress that after you've written data to a stream, you must explicitly seek back
to the beginning (or set the Position property to 0) before you can use the stream further,
unless you want to append data to the stream, of course.

Another button, labeled Panel Object, shows the textual representation of a specific compo-
nent, the panel, passing the component to the WriteComponent method. The third button,
Form in Executable File, does a different operation. Instead of streaming an existing object in

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Streaming 187

memory, it loads in a TResourceStream object the design-time representation of the form—
that is, its DFM file—from the corresponding resource embedded in the executable file:

procedure TformText.btnResourceClick(Sender: TObject);

var
ResStr: TResourceStream;
begin
ResStr := TResourceStream.Create(hInstance, 'TFORMTEXT', RT_RCDATA);
try
ConvertAndShow (ResStr);
finally
ResStr.Free
end;
end;

By clicking the buttons in sequence (or modifying the form of the program) you can com-
pare the form saved in the DFM file to the current run-time object.

Writing a Custom Stream Class

Besides using the existing stream classes, Delphi programmers can write their own stream
classes, and use them in place of the existing ones. To accomplish this, you need only specify
how a generic block of raw data is saved and loaded, and VCL will be able to use your new
class wherever you call for it. You may not need to create a brand-new stream class for work-
ing with a new type of media, but only need to customize an existing stream. In that case, all
you have to do is write the proper read and write methods.

As an example, | created a class to encode and decode a generic file stream. Although this
example is limited by its use of a totally dumb encoding mechanism, it fully integrates with VCL
and works properly. The new stream class simply declares the two core reading and writing
methods and has a property that stores a key.

type

TEncodedStream = class (TFileStream)

private
FKey: Char;

public
constructor Create(const FileName: string; Mode: Word);
function Read(var Buffer; Count: Longint): Longint; override;
function Write(const Buffer; Count: Longint): Longint; override;
property Key: Char read FKey write FKey;

end;

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Chapter 5 e Core Library Classes

The value of the key is simply added to each of the bytes saved to a file, and subtracted when the
data is read. Here is the complete code of the Write and Read methods, which uses pointers

quite heavily:

constructor TEncodedStream.Create(const FileName:

begin
inherited Create (FileName, Mode);
FKey := 'A'; // default

end;

function TEncodedStream.Write(const Buffer; Count:

var
pBuf, pEnc: PChar;
I, EncVal: Integer;
begin
// allocate memory for the encoded buffer
GetMem (pEnc, Count);
try
// use the buffer as an array of characters
pBuf := PChar (@Buffer);
// for every character of the buffer
for I := 0 to Count - 1 do
begin
// encode the value and store it

string; Mode: Word);

Longint): Longint;

Encval := (Ord (pBuf[I]) + Ord(Key)) mod 256;

pEnc [I] := Chr (EncVal);
end;
// write the encoded buffer to the file
Result := dinherited Write (pEnc”, Count);
finally
FreeMem (pEnc, Count);
end;
end;

function TEncodedStream.Read(var Buffer; Count: Longint): Longint;

var
pBuf, pEnc: PChar;
I, CountRead, EncVal: Integer;
begin
// allocate memory for the encoded buffer
GetMem (pEnc, Count);
try

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

189

// read the encoded buffer from the file
CountRead := inherited Read (pEnc”, Count);
// use the output buffer as a string
pBuf := PChar (@Buffer);
// for every character actually read
for I := 0 to CountRead - 1 do
begin
// decode the value and store it

Encval := (Ord (pEnc[I]) - Ord(Key)) mod 256;
pBuf [I] := Chr (EncvVal);
end;
finally
FreeMem (pEnc, Count);
end;
// return the number of characters read
Result := CountRead;
end;

The comments in this rather complex code should help you understand the details. Now that
we have an encoded stream, we can try to use it in a demo program, which is called EncDemo.
The form of this program has two memo components and three buttons, as you can see in the
graphic below. The first button loads a plain text file in the first memo; the second button
saves the text of this first memo in an encoded file; and the last button reloads the encoded file
into the second memo, decoding it. In this example, after encoding the file, I've reloaded it in
the first memo as a plain text file on the left, which of course is unreadable.

M Encoded Stream Demo - O] x|
Load Plait... Save Encoded...
T 2l BN N pFSeBNKNK TN aale TINK. | |unit EncadStr; -

HEp2+NE aall” B e ie®a™ ate sl el @K aat

MK aatMEmatl Ha 12 NKaal{al pl FINKEZ MK
aappar-- Hepla @855 a) @l " Yial 155FNK aal]

appac- Hpla®i® 2§ Say Slal oY dat N5SFNK aalipl - |

2 oMK aaaall® a1 MK a8 BN K aaaa™ 1@ interfacf

Safleplie pnal-le® a1 el al*¥iNK aaaas H

P allpd FaMESFal T plal™ Y pilal” Y pla” P uses

HEazaaSl Hpd aF2pi ™ palfSselar T plal™ o pil Classes;

al T plat PRINE aaaa s+ Ep sl a1 Dl e allta B
plallPa¥EetpahlhiNKaa ¥INKNE2B 8 nep” NK | [lvpe

M i =l el ®oPlep i palPle®ap TEncadedStream = class [TFileStream)
Al Al EINE LY MK aa? ©Fpaplep sl le®im private

al¥INK aalli®ai~ ahlbM K] $INKNESY B2 all #r FE.e: Char;

e @oF2 i palEERal Y plal™ Y pial™ piNE: public

constructor Createconst FileM ame: string; Maode: ‘Word):
function Read(war Buffer; Count: Langint): Largint;

pl®aixl Fmal piMKaapNK.aaaaHM8al~a 1®e2al overide;

19555 MK aaaaE "alal~agap’al™ panar¥'NK azaaas function wiite{const Buffer; Count: Longint]: Longint;
£ Hallla{~ a5 allNK aaaal fpal~ad ©Fp¥aPila—t |ovenide:

i+ Hmal MK aas® -tNEaaaaFll®ai+] Smal™ property Key: Char read FEey viite FEey default 'A';
K sl AN NKNESY S0 all Sdepieoale | end:

YretaMEEPal Y plal™ ¥ pital” ¥ pINE cNK aatlE

mat] Ha 12N aalmal ¥ plic¥al (ENEENT NEa implementation

i

Copyright ©2001 SYBEX, Inc., Alameda, CA

Continued on next page

www.sybex.com

190 Chapter 5 e Core Library Classes

Since we have the encoded stream class available, the code of this program is very similar to
that of any other program using streams. For example, here is the method used to save the
encoded file (you can compare its code to that of earlier examples based on streams):

procedure TFormEncode.BtnSaveEncodedClick(Sender: TObject);

var
EncStr: TEncodedStream;
begin
if SaveDialogl.Execute then
begin
EncStr := TEncodedStream.Create(SaveDialogl.Filename, fmCreate);
try
Memol.Lines.SaveToStream (EncStr);
finally
EncStr.Free;
end;
end;
end;

Summarizing the Core VCL and BaseCLX Units

We’ve spent most of the space of this chapter discussing the classes of a single unit of the
library, Classes. This unit is certainly important, but it is not the only core unit of the library

(although there aren’t many others). In this section, I’'m providing an overview of these units
and their content.

The Classes Unit

The Classes unit is at the heart of both VCL and CLX libraries, and though it sees many
internal changes from the last version of Delphi, there is little new for the average users.

(Most changes are related to modified IDE integration and are meant for expert component
writers.)

Here is a list of what you can find in the Classes unit, a unit that every Delphi programmer
should spend some time with:

e Many enumerated types, the standard method pointer types (including TNoti fyEvent),
and many exception classes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Summarizing the Core VCL and BaseCLX Units 191

Core library classes, including TPersistent and TComponent but also TBasicAction and
TBasicActionLink.

List classes, including TList, TThreadList (a thread-safe version of the list), TInterfaceList
(a list of interfaces, used internally), TColTection, TCollectionItem, TOwnedCollection
(which is simply a collection with an owner), TStrings, and TStringList.

All the stream classes I discussed in the previous section but won’t list here again. There
are also the TFiler, TReader, and TWriter classes and a TParser class used internally for
DFEM parsing.

Utility classes, such as TBits for binary manipulation and a few utility routines (for
example, point and rectangle constructors, and string list manipulation routines such as
LineStart and ExtractStrings). There are also many registration classes, to notify the
system of the existence of components, classes, special utility functions you can replace,
and much more.

"The TDataModu1e class, a simple object container alternative to a form. Data modules
can contain only nonvisual components and are generally used in database and Web
applications.

NotE

In past versions of Delphi, the TDataModuTle class was defined in the Forms unit; now it has
been moved to the Classes unit. This was done to eliminate the code overhead of the GUI
classes from non-visual applications (for example, Web server modules) and to better separate
non-portable Windows code from OS-independent classes, such as TDataModule. Other
changes relate to the data modules, for example, to allow the creation of Web applications
with multiple data modules, something not possible in Delphi 5.

New interface-related classes, such as TInterfacedPersistent, aimed at providing fur-
ther support for interfaces. This particular class allows Delphi code to hold onto a ref-
erence to a TPersistent object or any descendent implementing interfaces, and is a
core element of the new support for interfaced objects in the Object Inspector (see
Chapter 11 for an example).

e The new TRecall class, used to maintain a temporary copy of an object, particularly

useful for graphical-based resources.

e The new TClassFinder class used for finding a registered class instead of the Find-

Class method.

e The TThread class, which provides the core to operating system—independent support

for multithreaded applications.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

192 Chapter 5 e Core Library Classes

Other Core Units

Other units that are part of the RTL package are not directly used by typical Delphi pro-
grammers as often as Classes. Here is a list:

e The Typlnfo unit includes support for Accessing RT'TT information for published
properties, as we've seen in the section “Accessing Properties by Name.”

e The SyncObjs unit contains a few generic classes for thread synchronization.

Of course, the RTL package also includes the units with functions and procedures dis-
cussed in the preceding chapter, such as Math, SysU'tils, Variants, VarUtils, StrUtils,
DateUtils, and so on.

What’s Next?

As we have seen in this chapter, the Delphi class library has a few root classes that play a con-
siderable role and that you should learn to leverage to the maximum possible extent. Some
programmers tend to become expert on the components they use every day, and this is impor-
tant, but without understanding the core classes (and ideas such as ownership and streaming),
you’ll have a tough time grasping the full power of Delphi.

Of course, in this book, we also need to discuss visual and database classes, which I will do
in the next chapter. Now that we’ve seen all the base elements of Delphi (language, RTL,
core classes), we are ready to discuss the development of real applications with this tool.

Part IT of the book, which starts with the next chapter, is fully devoted to examples of the use
of the various components, particularly visual components with the development of the user
interface. We’ll start with the advanced use of traditional controls and menus, discuss the
actions architecture, cover the TForm class, and then examine toolbars, status bars, dialog boxes,
and MDI applications in later chapters. Then we’ll move to the development of database appli-
cations in Part IIT of the book.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Visual Programming

Chapter 6: Controls: VCL Versus VisualCLX

Chapter 7: Advanced VCL Controls

Chapter 8: Building the User Interface

Chapter 9: Working with Forms

Chapter 10: The Architecture of Delphi Applications
Chapter 11: Creating Components

Chapter 12: Libraries and Packages

CHAPTER

Controls: VCL Versus
VisualCLX

e VCL versus VisualCLX

e TControl, TWinControl, and TWidgetControl
e An overview of the standard components

e Basic and advanced menu construction

e Modifying the system menu

e Graphics in menus and list boxes

e OwnerDraw and styles

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

196 Chapter 6 e Controls: VCL Versus VisualCLX

Now that you’ve been introduced to the Delphi environment and have seen an overview
of the Object Pascal language and the base elements of component library, we are ready to
delve into the second part of the book: the use of components and the development of the
user interface of applications. This is really what Delphi is about. Visual programming using
components is the key feature of this development environment.

Delphi comes with a large number of ready-to-use components. I won’t describe every
component in detail, examining each of its properties and methods; if you need this informa-
tion, you can find it in the Help system. The aim of Part II of this book is to show you how
to use some of the advanced features offered by the Delphi predefined components to build
applications and to discuss specific programming techniques.

I'll start with a comparison of the VCL and Visual CLX libraries available in Delphi 6 and a
coverage of the core classes (particularly TControl). Then I'll try to list all the various visual
components you have, because choosing the right basic controls is often a way to get into a
project faster.

VCL versus VisualCLX

As we've seen in the last chapter, Delphi 6 introduces the new CLX library alongside the tra-
ditional VCL library. There are certainly many differences, even in the use of the RTL and
code library classes, between developing programs specifically for Windows or with a cross-
platform attitude, but the user interface portion is where differences are most striking.

The visual portion of VCL is a wrapper of the Window APL. It includes wrappers of the
native Windows controls (like buttons and edit boxes), of the common controls (like tree
views and list views), plus a bunch of native Delphi controls bound to the Windows concept
of a window. There is also a TCanvas class that wraps the basic graphic calls, so you can easily
paint on the surface of a window.

Visual CLX, the visual portion of CLX, is a wrapper of the Qt (pronounced “cute”) library.
It includes wrappers of the native Qt widgets, which range from basic to advanced controls,
very similar to Windows’ own standard and common controls. It includes also painting sup-
port using another, similar, TCanvas class. Qtis a C++ class library, developed by Trolltech
(www. trolltech.com), a Norwegian company with a strong relationship with Borland.

On Linux, Qt is one of the de facto standard user-interface libraries and is the basis of the
KDE desktop environment. On Windows, Qt provides an alternative to the use of the native
APIs. In fact, unlike VCL, which provides a wrapper to the native controls, Qt provides an
alternate implementation to those controls. This allows programs to be truly portable, as

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

VCL versus VisualCLX 197

there are no hidden differences created by the operating system (and that the operating sys-
tem vendor can introduce behind the scenes). It also allows us to avoid an extra layer; CLX
on top of Qt on top of Windows native controls suggests three layers, but in fact there are
two layers in each solution (CLX controls on top of Qt, VCL controls on top of Windows).

NoTE

Distributing Qt applications on Windows implies the distribution of the Qt library itself (some-
thing you can generally take for granted on the Linux platform). Distributing the Qt libraries
with a professional application (as opposed to an open source project) generally implies paying
a license to Trolltech. If you use Delphi or Kylix to build Qt applications, however, Borland has
already paid the license to Trolltech for you. However, you must use the CLX classes wrapping
Qt: If you use the Qt classes directly, you apparently still owe the license to Qt, even when
using Delphi or Kylix.

"Technically, there are huge differences behind the scenes between a native Windows applica-
tion built with VCL and a portable Qt program developed with Visual CLX. Suffice to say that
at the low level, Windows uses API function calls and messages to communicate with controls,
while Qt uses class methods and direct method callbacks and has no internal messages. Techni-
cally, the Qt classes offer a high-level object-oriented architecture, while the Windows API
is still bound to its C legacy and a message-based system dated 1985 (when Windows was
released). VCL offers an object-oriented abstraction on top of a low-level API, while Visual-
CLX remaps an already high-level interface into a more familiar class library.

NoTE

To be honest, Microsoft has apparently reached the point of starting to abandon the tradi-
tional low-level Windows API for a native high-level class library, part of the dotNet architec-
ture. Of course, this change won't happen overnight, but new high-level user-interface
technologies might be introduced only in dotNet. Actually, dotNet consists of multiple tech-
nologies, including a virtual machine or runtime interpreter, a low-level nonvisual RTL, and a
class framework for visual stuff (partially overlapping with VCL. If having a new visual class
library on top of the Windows API might be of little use to programmers already using a mod-
ern class library (like VCL) other areas of dotNet would be of interest to Delphi programmers. So
far, Borland has released no official statement regarding possible support for the dotNet byte
code and virtual machine, or other areas of the future Microsoft operating system offering.

Having a familiar class library on top of a totally new platform is the advantage for Delphi
programmers of using Visual CLX on Linux. This implies that the two class libraries, CLX
and VCL, are very similar for their users, even if they are very different internally, as I men-
tioned. From the outside, a button is an object of the TButton class for both libraries, and it
has more or less the same set of methods, properties, and events. In many occasions, you can
recompile your existing programs for the new class library in a matter of minutes, if they
don’t map directly to low-level APIs.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

198 Chapter 6 e Controls: VCL Versus VisualCLX

Delphi 6 Dual Libraries Support

Delphi 6 has full support for both libraries at design time and at run time. As you start devel-
oping a new application, you can use the File > New Application command to create a new
VCL-based program and File > New CLX Application for a new CLX-based program.
After giving one of these two commands, Delphi’s IDE will create a VCL or CLX design-
time form and update the Component Palette so that it displays only the visual components
compatible with the type of application you’ve selected (see Figure 6.1 for a comparison). In
fact, you cannot place a VCL button into a CLX form, and you cannot even mix forms of the
libraries within a single executable file. In other words, the user interface of every application
must be built using exclusively one of the two libraries, which (aside from the technical
implications) actually makes a lot of sense to me.

FIGURE 6.1:

A comparison of the first
three pages of the
Component Palette for a
CXL-based application
(above) and a VCL-based
application (below)

Standard IAdditionaI] Common Eontrols] DataAccess] Data Eontrols] dbExDress] DataSnaD] BDE] ADO] InterBase] IntemetExDress]
h OEF S AMEmr @ Slgw=" | E =

Standard Additional] Common Controls] DataAccess] Data Controls] dbExDress] DataSnaD] EDE] ADO] InterBase] IntemnetExoress |
y PN ER Qe EEH (O s

Standard | Additional Common Cantrols]Data Access | Data Controls | dbExoress | DataSnao | EDE | ADO | InterBase | IntemnetExoress

Standard IAdditionaI] Win32] Sustem] Data .&ccess] Data Eontrols] dbEHDIBSSI DataSnaD] EDE] ADO] InterBase] |nthBtEHDIBSSI
r OF R AMEm R 6 S g2 F
Standard Additional]W’in32] Svstem | Data Access | Data Controls | dbEsoress | DataSnao | BDE | ADO | InterBass | InternetExoress |

y WM EE e HE+ADEERE BEE B

If you haven’t already done so, I suggest you to try experimenting with the creation of a
CLX application, looking at the available controls and trying to use them. You’ll find very
few differences in the use of the components, and if you have been using Delphi for some
time, you’ll probably be immediately adept with CLX.

Same Classes, Different Units

One of the cornerstones of the source-code compatibility between CLX and VCL code is
that fact that similar classes in the two libraries have exactly the same class name. Each
library has a class called TButton representing a push button; the methods and properties are
so similar, this code will work with both libraries:

with TButton.Create (Self) do

begin

SetBounds (20, 20, 80, 35);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

VCL versus VisualCLX 199

Caption := 'New';
Parent := Self;
end;

The two TButton classes have the same name, and this is possible because they are saved in
two different units, called StdCtrls and QStdCtrls. Of course, you cannot have the two com-
ponents available at design time in the palette, as the Delphi IDE can register only compo-
nents with unique names. The entire Visual CLX library is defined by units corresponding to
the VCL units, but with the letter Q as a prefix—so there is a QForms unit, a QDialogs unit,
a QGraphics unit, and so on. There are also a few peculiar ones, such as the QStyle unit, that
have no correspondence in VCL.

Notice that there are no compile settings or other hidden techniques to distinguish
between the two libraries; what matters is the set of units referenced in the code. Remember
that these references must be consistent, as you cannot mix visual controls of the two
libraries in a single form and not even in a single program.

DFM and XFM

As you create a form at design time, this is saved to a form definition file. Traditional VCL
applications use the DFM extension, which stands for Delphi form module. CLX applica-
tions use the XFM extension, which stands for cross-platform (i.e., X) form modules. The
actual format of DFM or XFM files, which can be based on a textual or binary representa-
tion, is identical. A form module is the result of streaming the form and its components, and
the two libraries share the streaming code, so they produce a fairly similar effect.

So the reason for having two different extensions doesn’t lie in internal compiler tricks or
incompatible formats. It is merely an indication to programmers and to the IDE of the type
of components you should expect to find within that definition (as this indication is noz
included in the file itself).

If you want to convert a DFM file into an XFM file, you can simply rename the file. How-
ever, expect to find some differences in the properties, events, and available components, so
that reopening the form definition for a different library will probably cause quite a few
warnings.

Tip

Apparently Delphi’s IDE chooses the active library only by looking at the extension of the form
module, ignoring the references in the uses statements. For this reason, do change the exten-
sion if you plan using CLX. On Kylix, a different extension is pretty useless, because any form is
opened in the IDE as a CLX form, regardless of the extension. On Linux, there is only the Qt-
based CLX library, which is both the cross-platform and the native library.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

200

Chapter 6 ¢ Controls: VCL Versus VisualCLX

As an example, I've built two simple identical applications, LibComp and QLibComp
(available on this book’s CD-ROM), with only a few components and a single event handler.
Listing 6.1 presents the textual form definitions for two applications, built using the same
steps in the Delphi 6 IDE, after choosing a CLX or VCL application. I've marked out differ-
ences in bold; as you can see, there are very few, most relating to the form and its font. The
OldCreateOrder is a legacy property, used for compatibility with Delphi 3 and older code;
standard colors have different names; and CLX saves the scrollbars’ ranges.

Listing 6.1:

object Forml: TForml

Left = 192

Top = 107

Width = 350

Height = 210

Caption = 'QLibComp’
Color = clBackground
VertScroll1Bar.Range
HorzScrol1Bar.Range

161
297

TextHeight = 13
TextWidth = 6
PixelsPerInch = 96
object Buttonl: TButton

Left = 56
Top = 64
Width = 75
Height = 25
Caption = 'Add'
TabOrder = 0
OnClick = ButtonlClick
end
object Editl: TEdit
Left = 40
Top = 32
Width = 105
Height = 21
TabOrder = 1
Text = 'my name'
end
object ListBoxl: TListBox
Left = 176
Top = 32
Width = 121
Height = 129
Rows = 3

Items.Strings = (

Copyright ©2001 SYBEX, Inc., Alameda, CA

An XFM file (left) and an equivalent DFM file (right)
object Forml: TForml

Left = 192

Top = 107

Width = 350

Height = 210

Caption = 'LibComp'

Color = cl1BtnFace
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = 'MS Sans Serif'
Font.Style = []

TextHeight = 13
OldCreateOrder = False
PixeTsPerInch = 96

object Buttonl: TButton

Left = 56
Top = 64
Width = 75
Height = 25
Caption = 'Add’
TabOrder = 0
OnClick = ButtonlClick
end
object Editl: TEdit
Left = 40
Top = 32
Width = 105
Height = 21
TabOrder = 1
Text = 'my name'
end
object ListBox1l: TListBox
Left = 176
Top = 32
Width = 121
Height = 129

ItemHeight = 13
Items.Strings = (

www.sybex.com

VCL versus VisualCLX 201

"marco’ "marco’
"john' "john'
"helen') "helen')
TabOrder = 2 TabOrder = 2
end end
end end

uses Statements
By looking at the source code of the two examples, the differences are even less relevant, as
they simply relate to the uses statements. The form of the CLX application has the follow-
ing initial code:

unit QLibCompForm;

interface

uses
SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QStdCtrls;

The form of the VCL program has the traditional uses statement:

unit LibCompForm;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;
The code of the class and of the only event handler is absolutely identical. Of course, the
classic compiler directive {$R *.dfm} is replaced by {$R *.xfm} in the CLX version of the
program.

Disabling the Dual Library Help Support

In Delphi 6, when you press the F1 key in the editor asking for help on a routine, class, or
method of the Delphi library, you’ll usually get a choice between the VCL and CLX declara-
tions of the same feature. You’ll need to make a choice to proceed to the related help page,
which can be quite annoying after a while (especially as the two pages are often identical).

If you don’t care about CLX and are planning to use only VCL (or vice versa), you can dis-
able this alternative by choosing the Help > Customize command, removing everything
with CLX in the name from Contents, Index, and Link, and saving the project. Then restart
the Delphi IDE, and the Help engine won’t bother asking you about CLX any more. Of
course, don’t forget to add those help files again in case you decide to start using CLX.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

202

Chapter 6 ¢ Controls: VCL Versus VisualCLX

Choosing a Visual Library

Because you have two different user interface libraries available in Delphi 6, you’ll have to
choose one for each visual application. You must evaluate multiple criteria to come to the
proper decision, which isn’t always easy.

The first criterion is portability. If running your program on Windows and on Linux, with
the same user interface, is a major concern to you, using CLX will probably make your life
simpler and let you keep a single source code file with very limited IFDEFs. The same applies
if you consider Linux to be (or possibly become) your key platform. Instead, if most of your
users are on Windows and you just want to extend your offering with a Linux version, you
might want to keep a dual VCL/CLX system. This probably implies two different sets of
source code files, or too many for IFDEFs.

In fact, another criterion is the native look-and-feel. By using CLX on Windows, some of
the controls will behave slightly differently than users will expect—at least expert users. For a
simple user interface (edits, buttons, grids), this probably won’t matter much, but if you have
many tree view and list view controls, the differences will be quite clear. On the other hand,
with CLX you’ll be able to let your users select a look-and-feel of their choice, different from
the basic Windows look, and use it consistently across platforms.

Using native controls implies also that as soon as you get a new version of the Windows
operating system, your application will (probably) adapt to it. This is good for the user, but
might cause you a lot of headaches in case of incompatibilities. Differences in the Microsoft
common controls library over the last few years have been a major source of frustration for
Windows programmers in general, including Delphi programmers.

Another criterion is the deployment: If you use CLX, you’ll have to ship your Windows
program with the Qt libraries, which are not commonly available on Windows systems.

Finally, I've done a little testing, and it seems that the speed of VCL and CLX applications
is similar. I've tried creating a thousand components, showing them on screen, and the speed
differences are few, with a slight advantage for the VCL-based solution. You can try them out
with the LibSpeed and QLibSpeed applications on the companion CD.

Running It on Linux

So the real issue of choosing the library resolves to the importance of Linux for you and your
users. What is very important to notice is that, if you create a CLX application, you’ll be able
to recompile it unchanged (with the exact source code) with Kylix producing a native Linux
application.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

VCL versus VisualCLX 203

As an example, I've recompiled the QLibComp example introduced earlier, and you can
see it running in Figure 6.2, where you can also see the Kylix IDE in action on a KDE 2

SuSE system.
FIGURE 6.2: 3 Kylix__QLibComp [Running] Cls=]
File Edit Search Yiew Project Bun Component Tools Help hase - 5;', @,
An appllcatlon written DE-8B @ (25 & Stendad]Addnmnal] Common Cumm\s} D\a\ugs} Data. Accessw dhExpress] Data Cummls] \memeﬂ Indy Chems] Indy Servers} o
with CLX can be directly Sl = b OF A g wr @ Sigw = H
. . L
recompiled under Linux oo = Shcomn > GRS
with KleX (dISp|ayed in Form1: TForm1 -
! marco
the background). Propertes | vents | Jmy rame! i
Action =l Add helen
ActiveContral — Button]
mAnchars [akLeft,ak
Autoscrall True
Bitmap (Hone) Qtontrols, QForms, QDialogs,
mEBardercons [biSystem™
Borderstyle thsSizeak
Caption LibComp
SINHCIEEeild Buttonl: TButton;
Clientwidth 350 il WEEEE
Colar clBackgre ListBoxl: TListBox;
[Constraints (TsizeCor procedure Buttonlclick(Sender: Tohjec
Cursor crDefault private
DragMode dmhianua { Private declarations } |my nate marco
Fratila True public
Al showin ¢ public declaratioms } Add S

end;

: || X txconsale) = GLibCompForm....| & Object Inspector
B [4§ Kyl - Glinco. [X GLibComp <2» |

[k |

Conditional Compilation for Libraries

If you want to keep a single source code file but compile with VCL on Windows and CXL
on Linux, you can use platform-specific symbols (such as $IFDEF LINUX) to distinguish the
two situations in case of conditional compilation. But what if you want to be able to compile
a portion of code for both libraries on Windows?

You can either define a symbol of your own, and use conditional compilation, or (at times)
test for the presence of identifiers that exist only in VCL or CLX only, as in:

{$IF Declared(QForms)}
...CLX-specific code
{SIFEND}

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

204 Chapter 6 e Controls: VCL Versus VisualCLX

Converting Existing Applications

Besides starting with new CLX applications, you might want to convert some of your exist-
ing VCL applications to the new class library. There are a series of operations you have to
do, without any specific help from the Delphi IDE:

¢ You'll have to rename the DFM file as XFM and update all of the {$R *.DFM} state-
ments as {$R *.XFM}.

e You'll have to update all of the uses statements of your program (in the units and pro-
ject files) to refer to the CLX units instead of the VCL units. Notice that by missing
even a few, you’ll bump into trouble when running your application.

Tip To prevent a CLX application from compiling if it contains references to VCL units, you can
move the VCL units to a different directory under 1ib and avoid including this folder in your
search path. This way, eventual leftover references to VCL units will cause a “Unit not found”
error.

Table 6.1 is a comparison of the names of the visual VCL and CLX units, excluding the
database portion and some rarely referenced units:

TABLE 6.1: Names of Equivalent VCL and CLX Units

VCL CLX
ActnList QActnList
Buttons QButtons
Clipbrd QClipbrd
ComCtrls QComCtrils
Consts QConsts
Controls QControls
Dialogs QDialogs
ExtCtrls QExtCtrils
Forms QForms
Graphics QGraphics
Grids QGrids
ImgList QImgList
Menus QMenus
Printers QPrinters
Search QSearch
StdCtrils QStdCtrils

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

TControl and Derived Classes 205

You might also convert references to Windows and Messages into references to the Qt
unit. Some Windows data structures are now also available in the Types unit (see Chapter 4,
“The Run-Time Library,” for details), so you might have to add it to your CLX programs.
Notice, however, that the Q'Iypes unit is not the CLX version of VCLs "Types unit; these two
units are totally unrelated.

WARNING \vatch out for your uses statements! If you happen to compile a project that includes a CLX
form, but fail to update the project unit, leaving a reference to the VCL Forms unit there, your
program will run but stop immediately. The reason is that no VCL form was created, so
the program terminated right away. In other cases, trying to create a CLX form within a VCL
application will cause run-time errors. Finally, the Delphi IDE might inappropriately add refer-
ences to uses statements of the wrong library, so you end up with a single uses statement refer-
ring to the same unit for both, but only the second of the two will be effective. This rarely
prevents the program from compiling, but you won't be able to run it.

The VclToClx Helper Tool

As a helper in converting some of my own programs, I’ve written a simple unit-replacement
tool, called Vel ToClx and available with its complete source code in the TooTs folder of the
book CD and on my Web site.

The program converts unit names, based on a configuration file, and fixes the DFM issue,
by renaming the DFM files to XFM and fixing the references in the source code. The pro-
gram is quite naive, as it doesn’t really parse the source code, but simply looks for the occur-
rences of the unit names followed by a comma or semicolon, as happens in a uses statement.
It also requires that the unit name is preceded by a space, but of course you can modify the
program to look for a comma. Don’t skip this extra test; otherwise the Forms unit will be
turned to QForms, but the QForms unit will be converted again to QQForms!

TControl and Derived Classes

In the preceding chapter, I discussed the base classes of the Delphi library, focusing particularly
on the TComponent class. One of the most important subclasses of TComponent is TContro1, which
corresponds to visual components. This base class is available both in CLX and VCL and
defines general concepts, such as the position and the size of the control, the parent control
hosting it, and more. For an actual implementation, though, you have to refer to its two sub-
classes. In VCL these are TWinControl and T'GraphicControl; in CLX they are TWidget-
Control and T'GraphicControl. Here are their key features:

o Window-based controls (also called windowed controls) are visual components based on an
operating-system window. A TWinContro1l in VCL has a window handle, a number
referring to an internal Windows structure. A TWidgetControl in CLX has a Qt handle,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

206

Chapter 6 ¢ Controls: VCL Versus VisualCLX

a reference to the internal Qt object. From a user perspective, windowed controls can
receive the input focus, and some of them can contain other controls. This is the biggest
group of components in the Delphi library. We can further divide windowed controls in
two groups: wrappers of native controls of Windows or Qt, and custom controls, which
generally inherit from TCustomContro]l.

Graphical controls (also called nonwindowed controls) are visual components that are not based
on an operating-system window. Therefore, they have no handle, cannot receive the focus,
and cannot contain other controls. These controls inherit from TGraphicControl and are
painted by their parent form, which sends them mouse-related and other events. Examples
of nonwindowed controls are the Label and SpeedButton components. There are just a
few controls in this group, which were critical to minimizing the use of system resources

in the early days of Delphi (on 16-bit Windows). Using graphical controls to save Win-
dows resources is still quite useful on Win9x/Me, which has pushed the system limits
higher but hasn’t fully gotten rid of them (unlike Windows N'172000).

A Short History of Windows Controls

You might have asked yourself where the idea of using components for Windows program-
ming came from. The answer is simple: Windows itself has some components, usually called
controls. A control is technically a predefined window that has a specific behavior and some
styles and is capable of responding to specific messages. These controls were the first step in
the direction of component development. The second step was probably Visual Basic controls,
and the third step is Delphi components. (Actually, Microsoft's third step was its ActiveX tech-
nology, which is now followed by the dotNet framework, which is more or less at the level of
the VCL controls.)

Windows 3.1 had six kinds of predefined controls, which were generally used in dialog boxes.
Still used in Win32, they are buttons (push buttons, check boxes, and radio buttons), static
labels, edit fields, list boxes, combo boxes, and scroll bars. Windows 95 added new predefined
components, such as the list view, the status bar, the spin button, the progress bar, the tab
control, and many others. Win32 developers can use the standard common controls provided
by the system, and Delphi developers have the further advantage of having corresponding
easy-to-use components.

As we have seen, Qt offers to CLX comparable basic and common controls, and even if there
are internal differences, the Delphi libraries exposing those controls provide wrappers that can
minimize those differences. VCL, in fact, literally wraps Windows predefined controls in some
of its basic components. A Delphi wrapper class—for example, TEdit—simply surfaces the
capabilities of the underlying Windows control, making it easier to use. However, Delphi adds
nothing to the capabilities of this control. In Windows 95/98, an edit or memo control has a
physical limit of 32 KB of text, and this limit is retained by the Delphi component.

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

TControl and Derived Classes 207

Why hasn‘t Borland overcome this limit? Why can’t we change the color of a button? Simply
because by replacing a Windows control with a custom version, we would lose the close con-
nection with the operating system. Suppose Microsoft improves some of the controls in the
next version of Windows. If we use our own version of the component, the application we
build won't have the new features. By using controls that are based on the operating-system
capabilities, instead, our programs have the opportunity to migrate through different versions
of the OS and retain all the features provided by the specific version. This doesn‘t apply to the
use of Qt, of course, but you have the advantage of being able to have an identical application
based on the same source code running on Linux.

Note that wrapping an existing Windows or Qt control is an effective way of reusing code and
also helps reduce the size of your compiled program. Implementing yet another button control
from scratch requires custom code in your application, while a wrapper around the OS-supplied
button control requires less code and makes use of system code shared by many applications.

Parent and Controls

The Parent property of a control indicates which other control is responsible for displaying
it. When you drop a component into a form in the Form Designer, the form will become
both parent and owner of the new control. But if you drop the component inside a Panel,
ScrollBox, or any other container component, this will become its parent, while the form will
still be the owner of the control.

When you create the control at run time, you’ll need to set the owner (using the Create
constructor parameter); but you must also set the Parent property, or the control won’t be
visible.

Like the Owner property, the Parent property has an inverse. The Controls array, in fact,
lists all of the controls parented by the current one, numbered from 0 to ControlsCount - 1.
You can scan this property to operate on all of the controls hosted by another one, eventually
using a recursive method that operates on the controls parented by each subcontrol.

Properties Related to Control Size and Position

Some of the properties introduced by TControl and common to all controls are those related
to size and position. The position of a control is determined by its Left and Top properties,
its size by the Height and Width properties. Technically, all components have a position,
because when you reopen an existing form at design time, you want to be able to see the
icons for the nonvisual components in exactly the position where you’ve placed them. This
position is visible in the form file.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

208

Chapter 6 ¢ Controls: VCL Versus VisualCLX

Tip

As you change any of the positional or size properties, you end up calling the single Set-
Bounds method. So any time you need to change two or more of these properties at once,
calling SetBounds directly will speed up the program. Another method, BoundsRect, returns
the rectangle bounding of the control and corresponds to accessing those four properties.

An important feature of the position of a component is that, like any other coordinate, it
always relates to the client area of its parent component (indicated by its Parent property).
For a form, the client area is the surface included within its borders (excluding the borders
themselves). It would have been messy to work in screen coordinates, although there are
some ready-to-use methods that convert the coordinates between the form and the screen
and vice versa.

Note, however, that the coordinates of a control are always relative to the parent control,
such as a form or another container component. If you place a panel in a form, and a button in
a panel, the coordinates of the button relate to the panel and not to the form containing the
panel. In fact, in this case, the parent component of the button is the panel.

Activation and Visibility Properties

There are two basic properties you can use to let the user activate or hide a component. The
simpler is the Enabled property. When a component is disabled (when Enabled is set to False),
usually some visual hint indicates this state to the user. At design time, the “disabled” property
does not always have an effect, but at run time, disabled components are generally grayed.

For a more radical approach, you can completely hide a component, either by using the
corresponding Hide method or by setting its Visible property to False. Be aware, however,
that reading the status of the Visible property does not tell you whether the control is actu-
ally visible. In fact, if the container of a control is hidden, even if the control is set to
Visible, you cannot see it. For this reason, there is another property, Showing, which is a
run-time and read-only property. You can read the value of Showing to know whether the
control is really visible to the user; that is, if it is visible, its parent control is also visible, the
parent control of the parent control is also visible, and so on.

Fonts

"Two properties often used to customize the user interface of a component are Color and
Font. Several properties are related to the color. The Color property itself usually refers to
the background color of the component. Also, there is a Color property for fonts and many
other graphic elements. Many components also have a ParentColor and a ParentFont prop-
erty, indicating whether the control should use the same font and color as its parent compo-
nent, which is usually the form. You can use these properties to change the font of each
control on a form by setting only the Font property of the form itself.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

TControl and Derived Classes 209

When you set a font, either by entering values for the attributes of the property in the
Object Inspector or by using the standard font selection dialog box, you can choose one of
the fonts installed in the system. The fact that Delphi allows you to use all the fonts installed
on your system has both advantages and drawbacks. The main advantage is that if you have a
number of nice fonts installed, your program can use any of them. The drawback is that if
you distribute your application, these fonts might not be available on your users’ computers.

If your program uses a font that your user doesn’t have, Windows will select some other
font to use in its place. A program’s carefully formatted output can be ruined by the font sub-
stitution. For this reason, you should probably rely only on standard Windows fonts (such as
MS Sans Serif, System, Arial, Times New Roman, and so on).

Colors

There are various ways to set the value of a color. The type of this property is TColor. For
properties of this type, you can choose a value from a series of predefined name constants or
enter a value directly. The constants for colors include clBlue, clSilver, cIWhite, clGreen,
clRed, and many others.

Tip

Delphi 6 adds four new standard colors: clMoneyGreen, cISkyBlue, clCream, and clIMedGray.

As a better alternative, you can use one of the colors used by the system to denote the sta-
tus of given elements. These sets of colors are different in VCL and CLX. VCL includes pre-
defined Windows colors such as the background of a window (cIWindow), the color of the text
of a highlighted menu (cIHightlight Text), the active caption (clActiveCaption), and the ubiqui-
tous button face color (clBtnFace).

CLX includes a different and incompatible set of system colors, including clBackground,
which is the standard color of a form; clBase, used by edit boxes and other visual controls;
clActiveForeground, the foreground color for active controls; and cIDisabledBase, the back-
ground color for disabled text controls. All the color constants mentioned here are listed in

VCL and CLX Help files under the “T'Color type” topic.

Another option is to specify a TColor as a number (a 4-byte hexadecimal value) instead of
using a predefined value. If you use this approach, you should know that the low three bytes
of this number represent RGB color intensities for blue, green, and red, respectively. For
example, the value $00FF0000 corresponds to a pure blue color, the value $0000FF00 to

green, the value $000000FF to red, the value $00000000 to black, and the value $OOFFFFFF
to white. By specifying intermediate values, you can obtain any of 16 million possible colors.

Instead of specifying these hexadecimal values directly, you should use the Windows RGB
function, which has three parameters, all ranging from 0 to 255. The first indicates the
amount of red, the second the amount of green, and the last the amount of blue. Using the
RGB function makes programs generally more readable than using a single hexadecimal

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

210

Chapter 6 ¢ Controls: VCL Versus VisualCLX

constant. Actually, RGB is #/most a Windows API function. It is defined by the Windows-
related units and not by Delphi units, but a similar function does not exist in the Windows
API. In C, there is a macro that has the same name and effect, so this is a welcome addition
to the Pascal interface to Windows. RGB is not available on CLX, so I've written my own ver-

sion as:
function RGB (red, green, blue: Byte): Cardinal;

begin
Result := blue + green * 256 + red * 256 * 256;

end;

The highest-order byte of the TCoTor type is used to indicate which palette should be
searched for the closest matching color, but palettes are too advanced a topic to discuss here.
(Sophisticated imaging programs also use this byte to carry transparency information for
each display element on the screen.) Regarding palettes and color matching, note that Win-
dows sometimes replaces an arbitrary color with the closest available solid color, at least in
video modes that use a palette. This is always the case with fonts, lines, and so on. At other
times, Windows uses a dithering technique to mimic the requested color by drawing a tight
pattern of pixels with the available colors. In 16-color (VGA) adapters and at higher resolu-
tions, you often end up seeing strange patterns of pixels of different colors and not the color
you had in mind.

The TWinControl Class (VCL)

In Windows, most elements of the user interface are windows. From a user standpoint, a
window is a portion of the screen surrounded by a border, having a caption and usually a sys-
tem menu. But technically speaking, a window is an entry in an internal system table, often
corresponding to an element visible on the screen that has some associated code. Most of
these windows have the role of controls; others are temporarily created by the system (for
example, to show a pull-down menu). Still other windows are created by the application but
remain hidden from the user and are used only as a way to receive a message (for example,
nonblocking sockets use windows to communicate with the system).

The common denominator of all windows is that they are known by the Windows system
and refer to a function for their behavior; each time something happens in the system, a noti-
fication message is sent to the proper window, which responds by executing some code. Each
window of the system, in fact, has an associated function (generally called its window
procedure), which handles the various messages the window is interested in.

In Delphi, any TWinContro1 class can override the WndProc method or define a new value
for the WindowProc property. Interesting Windows messages, however, can be better tracked
by providing specific message handlers. Even better, VCL converts these lower-level mes-
sages into events. In short, Delphi allows us to work at a high level, making application
development easier, but still allows us to go low-level when this is required.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 211

Notice also that creating a WinControl doesn’t automatically create its corresponding
Window handle. Delphi, in fact, uses a lazy initialization technique, so that the low control is
only created when this is required, generally as soon as a method accesses the Hand1e prop-
erty. The get method for this property the first time calls Hand1eNeeded, which eventually
calls CreateHandTe... and so on reaching CreatelWnd, CreateParams, and CreateWindowHandle
(the sequence is rather complex, and I don’t think it is necessary to know it in detail). At the
opposite end, you can keep an existing (perhaps invisible) control in memory but destroy its
window handle, to save system resources.

The TWidgetControl Class (CLX)

In CLX, every TWidgetControl has an internal Qt object, referenced using the Handle prop-
erty. This property has the same name as the corresponding Windows property, but it is
totally different behind the scenes.

The Qt object is generally owned by the TWidgetControl, which automatically frees the
object when it is destroyed. The class also uses delayed construction, as you can see in the
InitWidget method, similar to CreateWindow. However it is also possible to create a widget
around an existing Qt object: in this case, the widget won’t own the Qt object and won’t
destroy it. The behavior is indicated by the OwnHand1e property.

Actually each Visual CLX component has two associated C++ objects, the Qt Handle and
the Qt Hook, which is the object receiving the system events. With the current Qt design, this
has to be a C++ object, which acts as an intermediary to the event handlers of the Object Pas-
cal control. The HookEvents method associates the hook object to the CLX control.

Differently from Windows, Qt defines two different types of events:

o Euvents are the translation of input or system events (such as key press, mouse move, and
paint).

e Signals are internal component events (corresponding to VCL internal or abstract
operations, such as OnCl1ick and OnChange)

NortE In CLX there is a seldom-used EventHandTler method, which corresponds more or less to the
WndProc method of VCL.

Opening the Component Tool Box

So you want to write a Delphi application. You open a new Delphi project and find yourself
faced with a large number of components. The problem is that for every operation, there are
multiple alternatives. For example, you can show a list of values using a list box, a combo box,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

212 Chapter 6 ¢ Controls: VCL Versus VisualCLX

a radio group, a string grid, a list view, or even a tree view if there is a hierarchical order.
Which should you use? That’s difficult to say. There are many considerations, depending on
what you want your application to do. For this reason, I've provided a highly condensed
summary of alternative options for a few common tasks.

NortE For some of the controls described in the following sections, Delphi also includes a data-aware
version, usually indicated by the DB prefix. As you'll see in Chapter 13, “Delphi’s Database
Architecture,” the DB version of a control typically serves a role similar to that of its “stan-
dard” equivalent; but the properties and the ways you use it are often quite different. For
example, in an Edit control you use the Text property, while in a DBEdit component you
access the Value of the related field object.

The Text Input Components

Although a form or component can handle keyboard input directly, using the OnKeyPress
event, this isn’t a common operation. Windows provides ready-to-use controls you can use to
get string input and even build a simple text editor. Delphi has several slightly different com-
ponents in this area.

The Edit Component

The Edit component allows the user to enter a single line of text. You can also display a single
line of text with a Label or a StaticText control, but these components are generally used
only for fixed text or program-generated output, not for input. In CLX, there is also a native
LCD digit control you can use to display numbers.

The Edit component uses the Text property, whereas many other controls use the Caption
property to refer to the text they display. The only condition you can impose on user input is
the number of characters to accept. If you want to accept only specific characters, you can
handle the OnKeyPress event of the edit box. For example, we can write a method that tests
whether the character is a number or the Backspace key (which has a numerical value of 8).
If it’s not, we change the value of the key to the null character (#0), so that it won’t be
processed by the edit control and will produce a warning beep:

procedure TForml.EditlKeyPress(
Sender: TObject; var Key: Char);
begin
// check if the key is a number or backspace
if not (Key in ['0'..'9', #8]) then
begin
Key := #0;
Beep;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 213

NotEe A minor difference of CLX is that the Edit control has no Undo mechanism built in. Another is

that the PasswordChar property is replaced by the EchoMode property. You don‘t determine
the character to display, but whether to echo the entered text or display an asterisk instead.

The New LabeledEdit Control

Delphi 6 adds a very nice control, called LabeledEdit, which is an Edit control with a label

attached to it. The Label appears as a property of the compound control, which inherits from
TCustomEdit.

I have to say this component is very handy, because it allows you to reduce the number of
components on your forms, move them around more easily, and have a more standard layout
for labels, particularly when they are placed above the edit box. The EditLabel property is
connected with the subcomponent, which has the usual properties and events. Two more

properties, LabeTPosition and Label1Spacing, allow you to configure the relative positions of
the two controls.

NortEe This component has been added to the ExtCtrls unit to demonstrate the use of subcompo-

nents in the Object Inspector, which is a new feature of Delphi 6. I'll discuss the development
of these components in Chapter 11, “Creating Components.” Notice also that this compo-
nent, along with all of the other new Delphi 6 components, is not (yet) available on CLX and
on the first release of Kylix. However, we can expect all non-Windows-specific additions to

VCL, including subcomponents in general and the LabeledEdit control in particular, to be avail-
able in the next release of Kylix.

The MaskEdit Component

"To customize the input of an edit box further, you can use the MaskEdit component, which
has an EditMask property. This is a string indicating for each character whether it should be

uppercase, lowercase, or a number, and other similar conditions. You can see the editor of the
EditMask property in Figure 6.3.

FIGURE 6.3:

Input Mask Editor
The MaskEdit component’s Iriput Mask: Sample Masks:
EditMask property editor [D00%-00%-0000;1;_ Phone [415)555-1212
Eutenzion 15450
Character for Blanks: _ Securty o GA5-H5-5555
Short Zip Code 90504
¥ Save Literal Characters Long Zip Cade 90504-0000
Date 06/27/94
Test Input: Lang Tirme 09:085:15PM
| Short Tirme 1345
Mazks. .. Ok | Cancel Help

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

214

Chapter 6 ¢ Controls: VCL Versus VisualCLX

Tip

You can display any property’s editor by selecting the property in the Object Inspector and
clicking the ellipsis (...) button.

The Input Mask editor allows you to enter a mask, but it also asks you to indicate a charac-
ter to be used as a placeholder for the input and to decide whether to save the /iterals present
in the mask, together with the final string. For example, you can choose to display the paren-
theses around the area code of a phone number only as an input hint or to save them with the
string holding the resulting number. These two entries in the Input Mask editor correspond
to the last two fields of the mask (separated by semicolons).

Tip

Clicking the Masks button of the Mask Editor lets you choose predefined input masks for dif-
ferent countries.

The Memo and RichEdit Components

Both of the controls discussed so far allow a single line of input. The Memo component, by
contrast, can host several lines of text but (on the Win95/98 platforms) still retains the 16-bit
Windows text limit (32 KB) and allows only a single font for the entire text. You can work on
the text of the memo line by line (using the Lines string list) or access the entire text at once
(using the Text property).

If you want to host a large amount of text or change fonts and paragraph alignments, in VCL
you should use the RichEdit control, a Win32 common control based on the RTF document
format. You can find an example of a complete editor based on the RichEdit component among
the sample programs that ship with Delphi. (The example is named RichEdit, too.)

The RichEdit component has a DefAttributes property indicating the default styles and a
SelAttributes property indicating the style of the current selection. These two properties
are not of the TFont type, but they are compatible with fonts, so we can use the Assign
method to copy the value, as in the following code fragment:

procedure TForml.ButtonlClick(Sender: TObject);
begin
if RichEditl.SelLength > O then
begin
FontDialogl.Font.Assign (RichEditl.DefAttributes);
if FontDialogl.Execute then
RichEditl.SelAttributes.Assign (FontDialogl.Font);
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 215

The TextViewer CLX Control

Among all of the common controls, CLX and Qt lack a RichEdit control. However, they
provide a full-blown HTML viewer, which is very powerful for displaying formatted text but
not for typing it. This HI'ML viewer is embedded in two different controls, the single-page
TextViewer control or the TextBrowser control with active links.

As a simple demo, I've added a memo and a text viewer to a CLX form and connected
them so that everything you type on the memo is immediately displayed in the viewer. I've
called the example HtmlIEdit not because this is a real HI'ML editor, but because this is the
simplest way I know of to build an HTML preview inside a program. The form of the pro-
gram is visible at run time in Figure 6.4, while typing some text inside a cell of the table.

FIGURE 6.4: o1 HimlE dit =I0] x|
The HtmlEdit example at <h1>Test Himlc/h1>
run time: when you add <pTest text with bold< /b

new HTML text to the

<prand more test on a new line, followed by a table

<p
<table border=1>

memo, you get an ctre<bdzcell 1¢/4d> <t cell adding new custom text to zee the live effects /tds<td>cells Ad: <tdscelle Atd <

immediate preview.

<trr<bdycell 2¢40ds <ty cell be Ads <tde cells Adx <bdr cell< Ads <

<hree bz cell 3¢tds <tds cell bt <tdz cell< At <td> celld ftds <

<trr<bdycell 4<Ads <ty cell be Ads <tde cells Adx <t cell< Ads < M

<tre<bdscell 5oAds <ty cell be Atds <tdscells A <hd final cell< Atds< s

</table>

<prand finally a "'dead" hupelink., marcocantu.com </az.

Test Html

Test text with bold

and mare test on a new line, followed by a table

cell1 | cell adding new custom text to see the live effect |cell |cell

cell 2 |cellb cell |cel
cel 3 |cellb cell |cel
cel 4 |cellb cell |cel
cel5 |cellb cell final cell

and finally a “dead" hyperlink, marcocantu.com .

Tip

| originally built this example with Kylix on Linux. To port it to Windows and Delphi 6, all | had
to do was to copy the files and recompile.

Selecting Options

There are two standard Windows controls that allow the user to choose different options, as
well as controls for grouping sets of options.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

216

Chapter 6 ¢ Controls: VCL Versus VisualCLX

The CheckBox and RadioButton Components

"The first standard option-selecting control is the check box, which corresponds to an option
that can be selected regardless of the status of other check boxes. Setting the A11owGrayed
property of the check box allows you to display three different states (selected, not selected,
and grayed), which alternate as a user clicks the check box.

The second type of control is the 7adio button, which corresponds to an exclusive selection.
"Two radio buttons on the same form or inside the same radio group container cannot be
selected at the same time, and one of them should always be selected (as programmer, you
are responsible for selecting one of the radio buttons at design time).

The GroupBox Components

"To host several groups of radio buttons, you can use a GroupBox control to hold them
together, both functionally and visually. To build a group box with radio buttons, simply
place the GroupBox component on a form and then add the radio buttons to the group box.

You can handle the radio buttons individually, but it’s easier to navigate through the array
of controls owned by the group box, as discussed in the previous chapter. Here is a small
code excerpt used to get the text of the selected radio button of a group:

var
I: Integer;
Text: string;
begin

for I := 0 to GroupBoxl.ControlCount - 1 do
if (GroupBoxl.Controls[I] as TRadioButton).Checked then
Text := (GroupBoxl.Controls[I] as TRadioButton).Caption;

The RadioGroup Component

Delphi has a similar component that can be used specifically for radio buttons: the RadioGroup
component. A RadioGroup is a group box with some radio button clones painted inside it.
The term clone in this context refers to the fact that the RadioGroup component is a single
control, a single window, with elements similar to radio buttons painted on its surface.

Using the radio group is generally easier than using the group box, since the various items
are part of a list, as in a list box. This is how you can get the text of the selected item:

Text := RadioGroupl.Items [RadioGroupl.ItemIndex];

Technically, a RadioGroup uses fewer resources and less memory, and it should be faster to
create and paint. Also, the RadioGroup component can automatically align its radio buttons
in one or more columns (as indicated by the Columns property), and you can easily add new
choices at run time, by adding strings to the Items string list. By contrast, adding new radio
buttons to a group box would be quite complex.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 217

Lists

When you have many selections, radio buttons are not appropriate. The usual number of
radio buttons is no more than five or six, to avoid cluttering the user interface; when you
have more choices, you can use a list box or one of the other controls that display lists of
items and allow the selection of one of them.

The ListBox Component
"The selection of an item in a list box uses the Items and ItemIndex properties as in the code
shown above for the RadioGroup control. If you need access to the text of selected list box
items often, you can write a small wrapper function like this:
function SelText (List: TListBox): string;
var
nItem: Integer;
begin
nItem := List.ItemIndex;
if nItem >= 0 then
Result := List.Items [nItem]
else
Result := '';
end;

Another important feature is that by using the ListBox component, you can choose between
allowing only a single selection, as in a group of radio buttons, and allowing multiple selec-
tions, as in a group of check boxes. You make this choice by specifying the value of the
MultiSelect property. There are two kinds of multiple selections in Windows and in Delphi
list boxes: multiple selection and extended selection. In the first case, a user selects multiple items
simply by clicking them, while in the second case the user can use the Shift and Ctrl keys to
select multiple consecutive or nonconsecutive items, respectively. This second choice is
determined by the ExtendedSelect property.

For a multiple-selection list box, a program can retrieve information about the number of
selected items by using the Se1Count property, and it can determine which items are selected
by examining the Selected array. This array of Boolean values has the same number of entries
as the list box. For example, to concatenate all the selected items into a string, you can scan
the Selected array as follows:

var
SelItems: string;
nlItem: Integer;
begin
SelItems := '';
for nItem := 0 to ListBoxl.Items.Count - 1 do
if ListBox1l.Selected [nItem] then
SelItems := SelItems + ListBoxl.Items[nItem] + ' ';

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

218

Chapter 6 ¢ Controls: VCL Versus VisualCLX

In CLX the ListBox can be configured to use a fixed number of columns and rows, using
the Columns, Row, CoTumnLayout and RowLayout properties. Of these, the VCL ListBox has
only the Columns property.

The ComboBox Component

List boxes take up a lot of screen space, and they offer a fixed selection—that is, a user can
choose only among the items in the list box and cannot enter any choice that the program-
mer did not specifically foresee.

You can solve both problems by using a ComboBox control, which combines an edit box
and a drop-down list. The behavior of a ComboBox component changes a lot depending on
the value of its Style property:

e The csDropDown style defines a typical combo box, which allows direct editing and
displays a list box on request.

e The csDropDownList style defines a combo box that does not allow editing (but uses
the keystrokes to select an item).

e The csSimple style defines a combo box that always displays the list box below it.

Note also that accessing the text of the selected value of a ComboBox is easier than doing
the same operation for a list box, since you can simply use the Text property. A useful and
common trick for combo boxes is to add a new element to the list when a user enters some
text and presses the Enter key. The following method first tests whether the user has pressed
that key, by looking for the character with the numeric (ASCII) value of 13. It then tests to
make sure the text of the combo box is not empty and is not already in the list—if its position
in the list is less than zero. Here is the code:

procedure TForml.ComboBox1KeyPress(

Sender: TObject; var Key: Char);
begin

// if the user presses the Enter key

if Key = Chr (13) then

with ComboBox3 do
if (Text <> '') and (Items.IndexOf (Text) < 0) then
Items.Add (Text);

end;

NotE

In CLX, the combo box can automatically add the text typed into the edit to the drop-down
list, when the user presses the Enter key. Also, some events fire at different times than in VCL.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 219

Delphi 6 includes two new events for the combo box. The OnCloseUp event corresponds to
the closing of the drop-down list and complements the preexisting OnDropDown event. The
OnSelect event fires only when the user selects something in the drop-down list, as opposed
to typing in the edit portion.

Another very nice addition is the AutoComplete property. When it is set, the ComboBox
component (and the ListBox, as well) automatically locates the string nearest to the one the
user is entering, suggesting the final part of the text. The core of this feature, available also in
CLX, is implemented in the TCustomListBox.KeyPress method.

The CheckListBox Component

Another extension of the list box control is represented by the CheckListBox component, a
list box with each item preceded by a check box (as you can see in Figure 6.5). A user can
select a single item of the list, but can also click the check boxes to toggle their status. This
makes the CheckListBox a very good component for multiple selections or for highlighting
the status of a series of independent items (as in a series of check boxes).

"To check the current status of each item, you can use the Checked and the State array
properties (use the latter if the check boxes can be grayed). Delphi 5 introduced the Item-
Enabled array property, which you can use to enable or disable each item of the list. We’ll use
the CheckListBox in the DragList example, later in this chapter.

FIGURE 6.5:

The user interface of the
CheckListBox control,
basically a list of check
boxes

i Forml

=13

one
two
three
four
five
5iX
seven
eight

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

220

Chapter 6 ¢ Controls: VCL Versus VisualCLX

Tip

Most of the list-based controls share a common and important feature. Each item of the list
has an associated 32-bit value, usually indicated by the TObject type. This value can be used
as a tag for each list item, and it's very useful for storing additional information along with
each item. This approach is connected to a specific feature of the native Windows list box con-
trol, which offers four bytes of extra storage for each list box item. We'll use this feature in the
ODList example later on in this chapter.

New Combo Boxes: ComboBoxEx and ColorBox

The ComboBoxEx (where ex stands for extended) is the wrapper of a new Win32 common
controls, which extends the traditional combo box by allowing images to appear next to the
items in the list. You attach an image list to the combo, and then select an image index for
each item to display. The effect of this change is that the simple Items string list is replaced
by a more complex collection, the ItemsEx property.

The ColorBox control is a new version of the combo box specifically aimed at selecting col-
ors. You can use its StyTe property for choosing which groups of colors you want to see in
the list (standard color, extended colors, system colors, and so on).

The ListView and TreeView Components

If you want an even more sophisticated list, you can use the ListView common control, which
will make the user interface of your application look very modern. This component is slightly
more complex to use, as described at the beginning of the next chapter, “Advanced VCL Con-
trols.” Other alternatives for listing values are the TreeView common control, which shows
items in a hierarchical output, and the StringGrid control, which shows multiple elements for
each line. The string grid control is described in the “Graphics in Delphi” bonus chapter,
available on the companion CD.

If you use the common controls in your application, users will already know how to interact
with them, and they will regard the user interface of your program as up to date. TreeView
and ListView are the two key components of Windows Explorer, and you can assume that
many users will be familiar with them, even more than with the traditional Windows controls.
CLX adds also an IconView control, which parallels part of the features of the VCL ListView.

The New ValueListEditor Component

Delphi applications often use the name/value structure natively offered by string lists, which I
discussed in the last chapter. Delphi 6 introduces a version of the StringGrid component specif-
ically geared towards this type of string lists. The ValueListEditor has two columns where you
can display and let the user edit the contents of a string list with name/value pairs, as you can
see in Figure 6.6. This string list is indicated in the Strings property of the control.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 221

FIGURE 6.6: # NameValues =10lx|
The NameValues example Walue List E ditar
has the new ValueListEditor m [va |
. ey alue
component, which shows e
the name/value or key/ b 2
value pairs of a string list, three 3

visible also in a plain memo.

Plair b emo Copy Up Copy Down

one=1
tiwo=2
three=3

The power of this control lies in the fact you can customize the editing options for each
position of the grid or for each key value, using the run-time-only ItemProps array property.
For each item, you can indicate:

e Whether it is read-only

e The maximum number of characters of the string

e An edit mask (eventually requested in the OnGetEditMask event)

e The items of a drop-down pick list (eventually requested in the OnGetPickList event)

e The display of a button for showing an editing dialog (in the OnEditButtonCl1ick event)

Needless to say, this behavior resembles what is available generally for string grids and the
DBGrid control, but also the behavior of the Object Inspector.

The ItemProps property has to be set up at run time, by creating an object of the TItemProp
class and assigning it to an index or a key of the string list. To have a default editor for each
line, you can assign the same item property object multiple times. In the example, this shared
editor sets an edit mask for up to three numbers:

procedure TForml.FormCreate(Sender: TObject);
var
I: Integer;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

222 Chapter 6 ¢ Controls: VCL Versus VisualCLX

begin
SharedItemProp := TItemProp.Create (ValuelListEditorl);
SharedItemProp.EditMask := '999;0; ';

Memol.Lines := ValuelListEditorl.Strings;
for I := 0 to ValuelListEditorl.Strings.Count - 1 do
ValuelListEditorl.ItemProps [I] := SharedItemProp;
end;

Similar code has to be repeated in case the number of lines changes—for example, by
adding new elements in the memo and copying them up to the value list:

procedure TForml.ValuelistEditorlStringsChange(Sender: TObject);
var

I: Integer;
begin

for I := 0 to ValuelListEditorl.Strings.Count - 1 do

if not Assigned (ValuelListEditorl.ItemProps [I]) then
ValueListEditorl.ItemProps [I] := SharedItemProp;

end;

Norte Apparently reassigning the same editor twice causes some trouble, so I've assigned the editor
only to the lines not having already one.

Another property, KeyOptions, allows you to let the user also edit the keys (the names), add
new entries, delete existing ones, and allow for duplicated names in the first portion of the string.
Oddly enough, you cannot add new keys unless you also activate the edit options, which makes it
hard to let the user add extra entries while preserving the names of the basic ones.

Ranges

Finally, there are a few components you can use to select values in a range. Ranges can be
used for numeric input and for selecting an element in a list.

The ScroliBar Component

The stand-alone ScrollBar control is the original component of this group, but it is seldom
used by itself. Scroll bars are usually associated with other components, such as list boxes and
memo fields, or are associated directly with forms. In all these cases, the scroll bar can be
considered part of the surface of the other components. For example, a form with a scroll bar
is actually a form that has an area resembling a scroll bar painted on its border, a feature gov-
erned by a specific Windows style of the form window. By resembling, I mean that it is not
technically a separate window of the ScrollBar component type. These “fake” scroll bars are
usually controlled in Delphi using specific properties of the form and the other components
hosting them.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 223

The TrackBar and ProgressBar Components

Direct use of the ScrollBar component is quite rare, especially with the TrackBar component
introduced with Windows 95, which is used to let a user select a value in a range. Among
Win32 common controls is the companion ProgressBar control, which allows the program
to output a value in a range, showing the progress of a lengthy operation.

The UpDown Component

Another related control is the UpDown component, which is usually connected to an edit box
so that the user can either type a number in it or increase and decrease the number using the
two small arrow buttons. To connect the two controls, you set the Associate property of the
UpDown component. Nothing prevents you from using the UpDown component as a stand-
alone control, displaying the current value in a label or in some other way.

NoTE

In CLX there is no UpDown control, but a SpinEdit that bundles an Edit with the UpDown in a
single control.

The PageScroller Component

The Win32 PageScroller control is a container allowing you to scroll the internal control. For
example, if you place a toolbar in the page scroller and the toolbar is larger than the available
area, the PageScroller will display two small arrows on the side. Clicking these arrows will
scroll the internal area. This component can be used as a scrollbar, but it also partially replaces
the ScrollBox control.

The ScrollBox Component

The ScrollBox control represents a region of a form that can scroll independently from the
rest of the surface. For this reason, the ScrollBox has two scrollbars used to move the embed-
ded components. You can easily place other components inside a ScrollBox, as you do with a
panel. In fact, a ScrollBox is basically a panel with scroll bars to move its internal surface, an
interface element used in many Windows applications. When you have a form with many
controls and a toolbar or status bar, you might use a ScrollBox to cover the central area of the
form, leaving its toolbars and status bars outside of the scrolling region. By relying on the
scrollbars of the form, in fact, you might allow the user to move the toolbar or status bar out
of view, a very odd situation.

Handling the Input Focus

Using the TabStop and TabOrder properties available in most controls, you can specify the
order in which controls will receive the input focus when the user presses the Tab key.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

224 Chapter 6 ¢ Controls: VCL Versus VisualCLX

Instead of setting the tab order property of each component of a form manually, you can use
the shortcut menu of the Form Designer to activate the Edit Tab Order dialog box, as shown
in Figure 6.7.

FIGURE 6.7: Edit Tab Order

The Edit Tab Order
dialog box

LControls listed in tab order:

EditLasth arme: TEdit
EditPassword: TEdit
StatuzBarl: TStabusBar

1
4]

(] 4 | Cancel | Help ‘

Besides these basics settings, it is important to know that each time a component receives
or loses the input focus, it receives a corresponding OnEnter or OnExit event. This allows you
to fine-tune and customize the order of the user operations. Some of these techniques are
demonstrated by the InFocus example, which creates a fairly typical password-login window.
Its form has three edit boxes with labels indicating their meaning, as shown in Figure 6.8. At
the bottom of the window is a status area with prompts guiding the user. Each item needs to
be entered in sequence.

FIGURE 6.8: FInFocus HEE
The InFocus example at
run time First name |Marco

Last name |Cd

Paszward |

Enter Last name

For the output of the status information, I've used the StatusBar component, with a single
output area (obtained by setting its SimpTePanel property to True). Here is a summary of the
properties for this example. Notice the & character in the labels, indicating a shortcut key,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Opening the Component Tool Box 225

and the connection of these labels with corresponding edit boxes (using the FocusControT
property):
object FocusForm: TFocusForm

ActiveControl = EditFirstName

Caption = 'InFocus'

object Labell: TLabel
Caption = '&First name'
FocusControl = EditFirstName

end

object EditFirstName: TEdit
OnEnter = GlobalEnter
OnExit = EditFirstNameExit

end

object Label2: TLabel
Caption = '&Last name'
FocusControl = EditLastName

end

object EditlLastName: TEdit
OnEnter = GlobalEnter

end

object Label3: TLabel
Caption = '&Password’
FocusControl = EditPassword

end

object EditPassword: TEdit
PasswordChar = '*’
OnEnter = GlobalEnter

end

object StatusBarl: TStatusBar
SimplePanel = True
end
end

The program is very simple and does only two operations. The first is to identify, in the
status bar, the edit control that has the focus. It does this by handling the controls’ OnEnter
event, possibly using a single generic event handler to avoid repetitive code. In the example,
instead of storing some extra information for each edit box, I've checked each control of the
form to determine which label is connected to the current edit box (indicated by the Sender
parameter):

procedure TFocusForm.GlobalEnter(Sender: TObject);
var
I: Integer;
begin
for I := 0 to ControlCount - 1 do
// if the control is a label

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

226 Chapter 6 e Controls: VCL Versus VisualCLX

if (Controls [I] is TLabel) and
// and the Tabel is connected to the current edit box
(TLabeT(Controls[I]).FocusControl = Sender) then
// copy the text, leaving off the initial & character
StatusBarl.SimpleText := 'Enter ' +
Copy (TLabeTl(Controls[I]).Caption, 2, 1000);
end;

The second event handler of the form relates to the OnExit event of the first edit box. If
the control is left empty, it refuses to release the input focus and sets it back before showing a
message to the user. The methods also look for a given input value, automatically filling the
second edit box and moving the focus directly to the third one:

procedure TFocusForm.EditFirstNameExit(Sender: TObject);
begin
if EditFirstName.Text = '' then
begin
// don't let the user get out
EditFirstName.SetFocus;
MessageDlg ('First name is required', mtError, [mbOK], 0);

end

else 1if EditFirstName.Text = 'Admin’' then

begin
// fill the second edit and jump to the third
EditLastName.Text := 'Admin';
EditPassword.SetFocus;

end;

end;
Tip The CLX version of this example has exactly the same code and is available as the QInFocus

program. The same happens for most of the other examples of this chapter. Notice that some
of the examples are quite complex, but | rarely had to touch the code at all.

Working with Menus

Working with menus and menu items is generally quite simple. This section offers only some
very brief notes and a few more advanced examples. The first thing to keep in mind about
menu items is that they can serve different purposes:

Commands are menu items used to execute an action.

State-setters are menu items used to toggle an option on and off, to change the state of a
particular element. These commands usually have a check mark on the left to indicate they

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 227

are active. In Delphi 6 you can automatically obtain this behavior using the handy
AutoCheck property.

Radio items have a round check mark and are grouped to represent alternative selections,
like radio buttons. To obtain radio menu items, simply set the RadioItem property to True
and set the GroupIndex property for the alternative menu items to the same value.

Dialog menu items cause a dialog box to appear and are usually indicated by an ellipsis
(three dots) after the text.

As you enter new elements in the Menu Designer, Delphi creates a new component for each
menu item and lists it in the Object Inspector (although nothing is added to the form). To
name each component, Delphi uses the caption you enter and appends a number (so that Open
becomes Open1). Because Delphi removes spaces and other special characters in the caption
when it creates the name, and the menu item separators are set up using a hyphen as caption,
these items would have an empty name. For this reason Delphi adds the letter N to the name,
appending the number and generating items called N1, N2, and so on.

WARNING Do not use the Break property, which is used to lay out a pull-down menu on multiple
columns. The mbMenuBarBreak value indicates that this item will be displayed in a second or
subsequent line; the mbMenuBreak value that this item will be added to a second or subse-
guent column of the pull-down.

Accelerator Keys

Since Delphi 5, you don’t need to enter the & character in the Caption of a menu item; it pro-
vides an automatic accelerator key if you omit one. Delphi’s automatic accelerator-key system
can also figure out if you have entered conflicting accelerator keys and fix them on-the-fly.
This doesn’t mean you should stop adding custom accelerator keys with the & character,
because the automatic system simply uses the first available letter, and it doesn’t follow the
default standards. You might also find better mnemonic keys than those chosen by the auto-
matic system.

This feature is controlled by the AutoHotkeys property, which is available in the main
menu component and in each of the pull-down menus and menu items. In the main menu,
this property defaults to maAutomatic, while in the pull-downs and menu items it defaults to
maParent, so that the value you set for the main menu component will be used automatically
by all the subitems, unless they have a specific value of maAutomatic or maManual.

The engine behind this system is the RethinkHotkeys method of the TMenuItem class, and
the companion InternalRethinkHotkeys. There is also a RethinkLines method, which

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

228 Chapter 6 e Controls: VCL Versus VisualCLX

checks whether a pull-down has two consecutive separators or begins or ends with a separa-
tor. In all these cases, the separator is automatically removed.

One of the reasons Delphi includes this feature is the Integrated Translation Environment
(ITE). When you need to translate the menu of an application, it is convenient if you don’t
have to deal with the accelerator keys, or at least if you don’t have to worry about whether
two items on the same menu conflict. Having a system that can automatically resolve similar
problems is definitely an advantage. Another motivation was Delphi’s IDE itself. With all the
dynamically loaded packages that install menu items in the IDE main menu or in pop-up menus,
and with different packages loaded in different versions of the product, it’s next to impossible to
get nonconflicting accelerator-key selections in each menu. That is why this mechanism isn’t a
wizard that does static analysis of your menus at design time; it was created to deal with the real
problem of managing menus created dynamically at run time.

WARNING This feature is certainly very handy, but because it is active by default, it can break existing code.
| had to modify two of this chapter’s program examples, between the Delphi 4 and Delphi 5 edi-
tion of the book, just to avoid run-time errors caused by this change. The problem is that | use
the caption in the code, and the extra & broke my code. The change was quite simple, though:
All | had to do was to set the AutoHotkeys property of the main menu component to
maManual.

Pop-Up Menus and the OnContextPopup Event

Besides the MainMenu component, you can use the similar PopupMenu component. This is
typically displayed when the user right-clicks a component that uses the given pop-up menu
as the value for its PopupMenu property.

However, besides connecting the pop-up menu to a component with the corresponding
property, you can call its Popup method, which requires the position of the pop-up in screen
coordinates. The proper values can be obtained by converting a local point to a screen point
with the C1ientToScreen method of the local component, in this code fragment a label:

procedure TForml.Label3MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
ScreenPoint: TPoint;
begin
// if some condition applies...
if Button = mbRight then
begin
ScreenPoint := Label3.ClientToScreen (Point (X, Y));
PopupMenul.Popup (ScreenPoint.X, ScreenPoint.Y)
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 229

An alternative approach is the use of the OnContextMenu event. This event, introduced in
Delphi 5, fires when a user right-clicks a component—exactly what we’ve traced above with
the test if Button = mbRight. The advantage is that the same event is also fired in response
to a Shift+F10 key combination, as well as by any other user-input methods defined by Win-
dows Accessibility options or hardware (including the shortcut-menu key of some Windows-
compatible keyboards). We can use this event to fire a pop-up menu with little code:

procedure TFormPopup.LabellContextPopup(Sender: TObject;
MousePos: TPoint; var Handled: Boolean);

var
ScreenPoint: TPoint;

begin
// add dynamic items
PopupMenu?2.Items.Add (NewLine);
PopupMenu2.Items.Add (NewItem (TimeToStr (Now), O, False, True, nil, 0, ''));
// show popup
ScreenPoint := ClientToScreen (MousePos);
PopupMenu?2.Popup (ScreenPoint.X, ScreenPoint.Y);
Handled := True;
// remove dynamic 1items
PopupMenu2.Items [4].Free;
PopupMenu2.Items [3].Free;

end;

This example adds some dynamic behavior to the shortcut menu, adding a temporary item
indicating when the pop-up menu is displayed. This is not particularly useful, but I've done it
to highlight that if you need to display a plain pop-up menu, you can easily use the PopupMenu
property of the control in question or one of its parent controls. Handling the OnContextMenu
event makes sense only when you want to do some extra processing.

The Handled parameter is preinitialized to False, so that if you do nothing in the event handler,
the normal pop-up menu processing will occur. If you do something in your event handler to
replace the normal pop-up menu processing (such as popping up a dialog or a customized menu,
as in this case), you should set Handled to True and the system will stop processing the message.
Setting Hand1ed to "True should be fairly rare, as you’ll generally handle the OnContextPopup to
dynamically create or customize the pop-up menu, but then you can let the default handler
actually show the menu.

The handler of an OnContextPopup event isn’t limited to displaying a pop-up menu. It can
do any other operation, such as directly display a dialog box. Here is an example of a right-
click operation used to change the color of the control:

procedure TFormPopup.Label2ContextPopup(Sender: TObject;

MousePos: TPoint; var Handled: Boolean);
begin

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

230

Chapter 6 ¢ Controls: VCL Versus VisualCLX

ColorDialogl.Color := Label2.Color;
if ColorDialogl.Execute then
Label2.Color := ColorDialogl.Color;
Handled := True;
end;

All the code snippets of this section are available in the simple CustPop example for VCL
and QCustPop for CLX, on the book’s companion CD.

Creating Menu Items Dynamically

Besides defining the structure of a menu with the Menu Designer and modifying the status of
the items using the Checked, Visible, and Caption properties, you can create an entire menu
or portions of one at run time. This makes sense, for example, when you have many repetitive
items, or when the menu items depend on some system configuration or user permissions.

The basic idea is that each object of the TMenuItem class—which Delphi uses for both
menu items and pull-down menus—contains a list of menu items. Each of these items has the
same structure, in a kind of recursive way. A pull-down menu has a list of submenus, and each
submenu has a list of submenus, each with its own list of submenus, and so on. The proper-
ties you can use to explore the structure of an existing menu are Items, which contains the
actual list of menu items, and Count, which contains the number of subitems. Adding new
menu items or entire pull-down menus to an existing menu is fairly easy, particularly if you
can write a single event handler for all of them.

This is demonstrated by the DynaMenu example (and its QDynaMenu counterpart),
which also illustrates the use of menu check marks, radio items, and many other features of
menus that aren’t described in detail in the text. As soon as you start this program, it creates a
new pull-down with menu items used to change the font size of a big label hosted by the
form. Instead of creating a bunch of menu items with captions indicating sizes ranging from
8 to 48, you can let the program do this repetitive work for you.

The new pull-down menu should be inserted in the Items property of the MainMenul com-
ponent. You can calculate the position by asking the MainMenu component for the previous
pull-down menu:

procedure TFormColorText.FormCreate(Sender: TObject);
var
Pul1Down, Item: TMenultem;
Position, I: Integer;
begin
// create the new pull-down menu
Pul1Down := TMenuItem.Create (Self);
Pul1Down.AutoHotkeys := maManual;
Pul1Down.Caption := '&Size’;
Pul1Down.OnClick := SizeClick;
// compute the position and add it

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 231

Position := MainMenul.Items.IndexOf (Optionsl);
MainMenul.Items.Insert (Position + 1, PullDown);
// create menu items for various sizes
I :=38;
while I <= 48 do
begin
// create the new item
Item := TMenuItem.Create (Self);
Item.Caption := IntToStr (I);
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle click and insert
Item.OnClick := SizeItemClick;
Pul1Down.Insert (PullDown.Count, Item);
I:=1+ 4;
end;
// add extra item at the end
Item := TMenuItem.Create (Self);
Item.Caption := 'More...';
// make it a radio item
Item.GroupIndex := 1;
Item.RadioItem := True;
// handle it by showing the font selection dialog
Item.OnClick := FontlClick;
Pul1Down.Insert (PullDown.Count, Item);
end;

As you can see in the preceding code, the menu items are created in a whiTe loop, setting
the radio item style and calling the Insert method with the number of items as a parameter
to add each item at the end of the pull-down. At the end, the program adds one extra item,
which is used to set a different size than those listed. The OnCT1ick event of this last menu
item is handled by the Font1C11ick method (also connected to a specific menu item), which
displays the font selection dialog box. You can see the dynamic menu in Figure 6.9.

FIGURE 6.9:

j‘-' Dynamic Menu I =]
The Size pull-down menu of File Options | Size Help
the DynaMenu example is 8

created at run time, along 12 ECt th e menu

16

con 2 |ds to change the

L]

for*= [he background

cc:»lcmig his label. and the
¢ we. Nent of its text

with all of its menu items

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

232 Chapter 6 e Controls: VCL Versus VisualCLX

WARNING gecause the program uses the Caption of the new items dynamically, we should either dis-
able the AutoHotkeys property of the main menu component, or disable this feature for the
pull-down menu we are going to add (and thus automatically disable it for the menu items).
This is what I've done in the code above by setting the AutoHotkeys property of the dynami-
cally created pull-down component to maManual. An alternative approach is to let the menu
display the automatic captions and then call the new StripHotkeys function before convert-
ing the caption to a number. There is also a new GetHotkey function, which returns the active
character of the caption.

The handler for the OnCl1ick event of these dynamically created menu items uses the cap-
tion of the Sender menu item to set the size of the font:

procedure TFormColorText.SizeItemClick(Sender: TObject);
begin
with Sender as TMenuItem do
Labell.Font.Size := StrToInt (Caption);
end;

This code doesn’t set the proper radio-item mark next to the selected item, because the
user can select a new size also by changing the font. The proper radio item is checked in the
OnCTick event handler of the entire pull-down menu, which is connected just after the pull-
down is created and activated just before showing the pull-down. The code scans the items of
the pull-down menu (the Sender object) and checks whether the caption matches the current
Size of the font. If no match is found, the program checks the last menu item, to indicate
that a different size is active:

procedure TFormColorText.SizeClick (Sender: TObject);
var
I: Integer;
Found: Boolean;
begin
Found := False;
with Sender as TMenuItem do
begin
// Tlook for a match, skipping the last item
for I := 0 to Count - 2 do
if StrToInt (Items [I].Caption) = Labell.Font.Size then
begin
Items [I].Checked := True;
Found := True;
System.Break; // skip the rest of the Toop
end;
if not Found then
Items [Count - 1].Checked := True;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 233

When you want to create a menu or a menu item dynamically, you can use the correspond-
ing components, as I've done in the DynaMenu and QDynaMenu examples. As an alternative,
you can also use some global functions available in the Menus unit: NewMenu, NewPopupMenu,
NewSubMenu, NewItem, and NewLine.

Using Menu Images

In Delphi it is very easy to improve a program’s user interface by adding images to menu
items. This is becoming common in Windows applications, and it’s very nice that Borland
has added all the required support, making the development of graphical menu items trivial.

All you have to do is add an image list control to the form, add a series of bitmaps to the
image list, connect the image list to the menu using its Images property, and set the proper
ImageIndex property for the menu items. You can see the effect of these simple operations in
Figure 6.10. (You can also associate a bitmap with the menu item directly, using the Bitmap

property.)
FIGURE 6.10:)‘-'Menulmages !E
The simple graphical menu Eile Help
of the Menulmg example 0 Mew I
&A Large Font Chrl+F
Tip The definition of images for menus is quite flexible, as it allows you to associate an image list

with any specific pull-down menu (and even a specific menu item) using the SubMenuImages
property. Having a specific and smaller image list for each pull-down menu, instead of one single
huge image list for the entire menu, allows for more run-time customization of an application.

To create the image list, double-click the component, activating the corresponding editor
(shown in Figure 6.11), then import existing bitmap or icon files. You can actually prepare a
single large bitmap and let the image editor divide it according to the Height and Width
properties of the ImageList component, which refer to the size of the individual bitmaps in
the list.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

234 Chapter 6 e Controls: VCL Versus VisualCLX

FIGURE 6.11: Forml.ImageList1 ImageList
The Image List editor, with Selected Image
the bitmaps of the Options
Menulmg example E ; Cancel
[ohore IS |
Images Help
O B ? &4
i N 3
Add. .. | Delete | LClear Ezport...

Tip As an alternative, you can use the series of images that ship with Delphi and are stored by

default in the \Program Files\Common Files\Borland Shared\Images\Buttons direc-
tory. Each bitmap contains both an “enabled” and a “disabled” image. As you import them,
the Image List editor will ask you whether to split them in two, a suggestion you should
accept. This operation adds to the image list a normal image and a disabled one, which is not
generally used (as it can be built automatically when needed). For this reason | generally delete
the disabled part of the bitmap from the image list.

The program’s code is very simple. The only element I want to emphasize is that if you set
the Checked property of a menu item with an image instead of displaying a check mark, the
item paints its image as “sunken” or “recessed.” You can see this in the Large Font menu of
the Menulmg example in Figure 6.10. Here is the code for that menu item selection:

procedure TForml.LargeFontlClick(Sender: TObject);
begin
if Memol.Font.Size = 8 then

Memol.Font.Size := 12
else
Memol.Font.Size := 8;

// changes the image style near the item
LargeFontl.Checked := not LargeFontl.Checked;
end;

WARNING 1o make the CLX version of the program, QMenulmg, display the bitmaps properly, I had to
reimport them. Simply converting the Image List component data didn't work.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 235

Customizing the System Menu

In some circumstances, it is interesting to add menu commands to the system menu itself,
instead of (or besides) having a menu bar. This might be useful for secondary windows, tool-
boxes, windows requiring a large area on the screen, and “quick-and-dirty” applications.
Adding a single menu item to the system menu is straightforward:

AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, '');
AppendMenu (GetSystemMenu (Handle, FALSE), MF_STRING, idSysAbout, '&About...');

This code fragment (extracted from the OnCreate event handler of the SysMenu example)
adds a separator and a new item to the system menu item. The GetSystemMenu API function,
which requires as a parameter the handle of the form, returns a handle to the system menu.
The AppendMenu API function is a general-purpose function you can use to add menu items
or complete pull-down menus to any menu (the menu bar, the system menu, or an existing
pull-down menu). When adding a menu item, you have to specify its text and a numeric
identifier. In the example I've defined this identifier as:

const idSysAbout = 100;

Adding a menu item to the system menu is easy, but how can we handle its selection?
Selecting a normal menu generates the wn_Command Windows message. This is handled inter-
nally by Delphi, which activates the OnCl11ick event of the corresponding menu item compo-
nent. The selection of system menu commands, instead, generates a wn_SysCommand message,
which is passed by Delphi to the default handler. Windows usually needs to do something in
response to a system menu command.

We can intercept this command and check to see whether the command identifier (passed
in the CmdType field of the TWmSysCommand parameter) of the menu item is idSysAbout. Since
there isn’t a corresponding event in Delphi, we have to define a new message-response
method for the form class:

public

procedure WMSysCommand (var Msg: TMessage);
message wm_SysCommand;
The code of this procedure is not very complex. We just need to check whether the com-
mand is our own and call the default handler:
procedure TForml.WMSysCommand (var Msg: TWMSysCommand) ;
begin
if Msg.CmdType = idSysAbout then
ShowMessage ('Mastering Delphi: SysMenu example');
inherited;
end;

"To build a more complex system menu, instead of adding and handling each menu item as
we have just done, we can follow a different approach. Just add a MainMenu component to

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

236 Chapter 6 e Controls: VCL Versus VisualCLX

the form, create its structure (any structure will do), and write the proper event handlers.
Then reset the value of the Menu property of the form, removing the menu bar.

Now we can add some code to the SysMenu example to add each of the items from the
hidden menu to the system menu. This operation takes place when the button of the form is
clicked. The corresponding handler uses generic code that doesn’t depend on the structure of
the menu we are appending to the system menu:

procedure TForml.ButtonlClick(Sender: TObject);
var
I: Integer;
begin
// add a separator
AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, '');
// add the main menu to the system menu
with MainMenul do
for I := 0 to Items.Count - 1 do
AppendMenu (GetSystemMenu (Self.Handle, FALSE),
mf_Popup, Items[I].Handle, PChar (Items[I].Caption));
// disable the button
Buttonl.Enabled := False;
end;

Tip This code uses the expression Self.Handle to access the handle of the form. This is required
because we are currently working on the MainMenul component, as specified by the with
statement.

The menu flag used in this case, mf_Popup, indicates that we are adding a pull-down menu.
In this function call, the fourth parameter is interpreted as the handle of the pull-down
menu we are adding (in the previous example, we passed the identifier of the menu, instead).
Since we are adding to the system menu items with submenus, the final structure of the sys-
tem menu will have two levels, as you can see in Figure 6.12.

FIGURE 6.12:

/" SysMenu =]
The second-level system
menu items of the SysMenu Move
Size
example are the result of iy |
. . — Minimize
copying a complete main T
menu to the system menu. L
¥ Close Alt+F4
About. .
Hew
Edit 3 Open...
Help 3

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Working with Menus 237

WARNING The Windows API uses the terms pop-up menu and pull-down menu interchangeably. This is

really odd, because most of us use the terms to mean different things. Pop-up menus are
shortcut menus, and pull-down menus are the secondary menus of the menu bar. Apparently,
Microsoft uses the terms in this way because the two elements are implemented with the
same kind of internal windows; the fact that they are two distinct user-interface elements is
probably something that was later conceptually built over a single basic internal structure.

Once you have added the menu items to the system menu, you need to handle them. Of
course, you can check for each menu item in the WSysCommand method, or you can try build-
ing a smarter approach. Since in Delphi it is easier to write a handler for the OnC11ick event of
each item, we can look for the item corresponding to the given identifier in the menu struc-
ture. Delphi helps us by providing a FindItem method.

When (and if) we have found a main menu item that corresponds to the item selected in the
system menu, we can call its C1ick method (which invokes the OnC1ick handler). Here is the
code I’'ve added to the WMSysCommand method:

var

Item: TMenuItem;
begin

Item := MainMenul.FindItem (Msg.CmdType, fkCommand);
if Item <> nil then
Item.Click;

In this code, the CmdType field of the message structure that is passed to the WSysCommand
procedure holds the command of the menu item being called.

You can also use a simple if or case statement to handle one of the system menu’s prede-
fined menu items that have special codes for this identifier, such as sc_Close, sc_Minimize,
sc_Maximize, and so on. For more information, you can see the description of the
wm_SysCommand message in the Windows API Help file.

This application works but has one glitch. If you click the right mouse button over the
"Taskbar icon representing the application, you get a plain system menu (actually different
from the default one). The reason is that this system menu belongs to a different window, the
window of the AppTication global object. I'll discuss the Application object, and update this
example to make it work with the Taskbar button, in Chapter 9, “Working with Forms.”

NotE

Because this program uses low-level Windows features (APl calls and messages), it is not possible
to compile it with CLX, so there is no Qt version of this example.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

238

Chapter 6 ¢ Controls: VCL Versus VisualCLX

Owner-Draw Controls and Styles

Let’s return briefly to menu graphics. Besides using an ImageList to add glyphs to the menu
items, you can turn a menu into a completely graphical element, using the owner-draw tech-
nique. The same technique also works for other controls, such as list boxes. In Windows, the
system is usually responsible for painting buttons, list boxes, edit boxes, menu items, and similar
elements. Basically, these controls know how to paint themselves. As an alternative, however, the
system allows the owner of these controls, generally a form, to paint them. This technique, avail-
able for buttons, list boxes, combo boxes, and menu items, is called owner-draw.

In VCL, the situation is slightly more complex. The components can take care of painting
themselves in this case (as in the TBitBtn class for bitmap buttons) and possibly activate cor-
responding events. The system sends the request for painting to the owner (usually the
form), and the form forwards the event back to the proper control, firing its event handlers.

In CLX, some of the controls, such as ListBoxes and ComboBoxes, surface events very
similar to Windows owner-draw, but menus lack them. The native approach of Qt is to use
styles to determine the graphical behavior of all of the controls in the system, of a specific
application, or of a given control. I'll introduce styles shortly, later in this section.

NoTE

Most of the Win32 common controls have support for the owner-draw technique, generally
called custom drawing. You can fully customize the appearance of a ListView, TreeView, Tab-
Control, PageControl, HeaderControl, StatusBar, and ToolBar. The ToolBar, ListView, and Tree-
View controls also support advanced custom drawing, a more fine-tuned drawing capability
introduced by Microsoft in the latest versions of the Win32 common controls library. The
downside to owner-draw is that when the Windows user interface style changes in the future
(and it always does), your owner-draw controls that fit in perfectly with the current user inter-
face styles will look outdated and out of place. Since you are creating a custom user interface,
you'll need to keep it updated yourself. By contrast, if you use the standard output of the con-
trols, your applications will automatically adapt to a new version of such controls.

Owner-Draw Menu Items

VCL makes the development of graphical menu items quite simple compared to the tradi-
tional approach of the Windows API: You set the OwnerDraw property of a menu item compo-
nent to True and handle its OnMeasureItem and OnDrawItem events. This same feature is not
available on CLX.

In the OnMeasureItem event, you can determine the size of the menu items. This event
handler is activated once for each menu item when the pull-down menu is displayed and has
two reference parameters you can set:

procedure ColorMeasureItem (Sender: TObject; ACanvas: TCanvas;
var Width, Height: Integer);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Owner-Draw Controls and Styles 239

The other parameter, ACanvas, is typically used to determine the height of the current font.

In the OnDrawItem event, you paint the actual image. This event handler is activated every
time the item has to be repainted. This happens when Windows first displays the items and
each time the status changes; for example, when the mouse moves over an item, it should
become highlighted. In fact, to paint the menu items, we have to consider all the possibilities,
including drawing the highlighted items with specific colors, drawing the check mark if
required, and so on. Luckily enough, the Delphi event passes to the handler the Canvas
where it should paint, the output rectangle, and the status of the item (selected or not):

procedure ColorDrawItem(Sender: TObject; ACanvas: TCanvas; ARect: TRect;
Selected: Boolean);

In the ODMenu example, I'll handle the highlighted color, but skip other advanced aspects
(such as the check marks). I've set the OwnerDraw property of the menu and written handlers
for some of the menu items. To write a single handler for each event of the three color-
related menu items, I've set their Tag property to the value of the actual color in the OnCreate
event handler of the form. This makes the handler of the actual OnC11ick event of the items
quite straightforward:

procedure TForml.ColorClick(Sender: TObject);
begin

ShapeDemo.Brush.Color := (Sender as TComponent).Tag
end;

The handler of the OnMeasureItem event doesn’t depend on the actual items, but uses fixed
values (different from the handler of the other pull-down). The most important portion of
the code is in the handlers of the OnDrawItem events. For the color, we use the value of the
tag to paint a rectangle of the given color, as you can see in Figure 6.13. Before doing this,
however, we have to fill the background of the menu items (the rectangular area passed as a
parameter) with the standard color for the menu (cIMenu) or the selected menu items
(cIHighlight):

procedure TForml.ColorDrawItem(Sender: TObject; ACanvas: TCanvas;
ARect: TRect; Selected: Boolean);

begin
// set the background color and draw it
if Selected then

ACanvas.Brush.Color := clHighlight
else
ACanvas.Brush.Color := cIMenu;

ACanvas.FiTTRect (ARect);

// show the color

ACanvas.Brush.Color := (Sender as TComponent).Tag;

InflateRect (ARect, -5, -5);

ACanvas.Rectangle (ARect.Left, ARect.Top, ARect.Right, ARect.Bottom);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

240 Chapter 6 e Controls: VCL Versus VisualCLX

FIGURE 6.13: ' DDMenu H[=1E3
The owner-draw menu of File Shape [[RS Hel
the ODMenu example _

The three handlers for this event of the Shape pull-down menu items are all different,
although they use similar code:

procedure TForml.ET1ipselDrawItem(Sender: TObject; ACanvas: TCanvas;
ARect: TRect; Selected: Boolean);

begin
// set the background color and draw it
if Selected then

ACanvas.Brush.Color := clHighlight
else
ACanvas.Brush.Color := clMenu;

ACanvas.Fil1Rect (ARect);

// draw the ellipse

ACanvas.Brush.Color := clWhite;

InflateRect (ARect, -5, -5);

ACanvas.El11lipse (ARect.Left, ARect.Top, ARect.Right, ARect.Bottom);
end;

NortEe To accommodate the increasing number of states in the Windows 2000 user interface style,
since version 5, Delphi has included the OnAdvancedDrawItem event for menus.

A ListBox of Colors

As we have just seen for menus, list boxes have an owner-draw capability, which means a pro-
gram can paint the items of a list box. The same support is provided for combo boxes and is
also available on CLX. To create an owner-draw list box, we set its StyTle property to IbOwn-
erDrawFixed or IbOwnerDrawVariable. The first value indicates that we are going to set the
height of the items of the list box by specifying the ItemHeight property and that this will be

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Owner-Draw Controls and Styles 241

the height of each and every item. The second owner-draw style indicates a list box with
items of different heights; in this case, the component will trigger the OnMeasureItem event
for each item, to ask the program for their heights.

In the ODList example (and its QODList version), I'll stick with the first, simpler,
approach. The example stores color information along with the items of the list box and then
draws the items in colors (instead of using a single color for the whole list).

The DFM or XFM file of every form, including this one, has a TextHeight attribute, which
indicates the number of pixels required to display text. This is the value we should use for the
ItemHeight property of the list box. An alternative solution is to compute this value at run
time, so that if we later change the font at design time, we don’t have to remember to set the
height of the items accordingly.

NotE

I've just described TextHeight as an attribute of the form, not a property. And in fact itisn't a
property but a local value of the form. If it is not a property, you might ask, how does Delphi
save it in the DFM file? Well, the answer is that Delphi’s streaming mechanism is based on prop-
erties plus special property clones created by the DefineProperties method.

Since TextHeight is 7ot a property, although it is listed in the form description, we cannot
access it directly. Studying the VCL source code, I found that this value is computed by call-
ing a private method of the form: GetTextHeight. Since it is private, we cannot call this func-
tion. What we can do is duplicate its code (which is actually quite simple) in the FormCreate
method of the form, after selecting the font of the list box:

Canvas.Font := ListBoxl.Font;
ListBox1l.ItemHeight := Canvas.TextHeight('0');

The next thing we have to do is add some items to the list box. Since this is a list box of col-
ors, we want to add color names to the Items of the list box and the corresponding color values
to the Objects data storage related to each item of the list. Instead of adding the two values sep-
arately, I've written a procedure to add new items to the list:

procedure TODListForm.AddColors (Colors: array of TColor);
var
I: Integer;
begin
for I := Low (Colors) to High (Colors) do
ListBox1l.Items.AddObject (ColorToString (Colors[I]), TObject(Colors[I]));
end;

"This method uses an open-array parameter, an array of an undetermined number of elements
of the same type. For each item passed as a parameter, we add the name of the color to the list,
and we add its value to the related data, by calling the AddObject method. To obtain the string
corresponding to the color, we call the Delphi ColorToString function. This returns a string

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

242 Chapter 6 ¢ Controls: VCL Versus VisualCLX

containing either the corresponding color constant, if any, or the hexadecimal value of the
color. The color data is added to the list box after casting its value to the TObject data type (a
four-byte reference), as required by the AddObject method.

Tip Besides ColorToString, which converts a color value into the corresponding string with the
identifier or the hexadecimal value, there is also a Delphi function to convert a properly for-
matted string into a color, StringToColor.

In the ODList example, this method is called in the OnCreate event handler of the form
(after previously setting the height of the items):

AddColors ([c1Red, c1Blue, clYellow, clGreen, clFuchsia, clLime, clPurple,

clGray, RGB (213, 23, 123), RGB (0, 0, 0), clAqua, clINavy, cl0live, clTeal]);

"To compile the CLX version of this code, I've added to it the RGB function described earlier
in the section “Colors.” The code used to draw the items is not particularly complex. We
simply retrieve the color associated with the item, set it as the color of the font, and then
draw the text:

procedure TODListForm.ListBox1DrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
begin
with Control as TListbox do
begin
// erase
Canvas.FiTl1Rect(Rect);
// draw item
Canvas.Font.Color := TColor (Items.Objects [Index]);
Canvas.TextOut(Rect.Left, Rect.Top, Listboxl.Items[Index]);
end;
end;

The system already sets the proper background color, so the selected item is displayed

properly even without any extra code on our part. You can see an example of the output of
this program at startup in Figure 6.14.

The example also allows you to add new items, by double-clicking the list box:
procedure TODListForm.ListBox1Db1Click(Sender: TObject);
begin
if ColorDialogl.Execute then
AddColors ([ColorDialogl.Color]);
end;

If you try using this capability, you’ll notice that some colors you add are turned into color
names (one of the Delphi color constants) while others are converted into hexadecimal numbers.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Owner-Draw Controls and Styles 243

FIGURE 6.14: /' Dwner-draw Listbox - |Of =
The output of the ODList =
example, with a colored $007 B 1 7 D5

clBlack
ciBlue
clFuchsia

clGreen
clLime
cIiNavy =
clOlive

clPurple -

CLX Styles

In Windows, the system has full control of the user interface of the controls, unless the pro-
gram takes over using owner-draw or other advanced techniques. In Qt (and in Linux in gen-
eral), the user chooses the user interface style of the controls. A system will generally offer a
few basic styles, such as the Windows look-and-feel, the Motif one, and others. A user can
add also install new styles in the system and make them available to applications.

NortE The styles I'm discussing here refer to the user interface of the controls, not of the forms and
their borders. This is generally configurable on Linux systems but is technically a separate ele-
ment of the user interface.

Because this technique is embedded in Qt, it is also available on the Windows version of
the library, and CLX makes it available to Delphi developers. The AppTication global object
of CLX has a Style property, which can be used to set a custom style or a default one, indi-
cated by the DefaultStyle subproperty. For example, you can select a Motif look-and-feel
with this code:

Application.Style.DefaultStyle := dsMotif;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

244 Chapter 6 ¢ Controls: VCL Versus VisualCLX

In the StylesDemo program, I've added, among various sample controls, a list box with the
names of the default styles, as indicated in the TDefaultStyle enumeration, and this code for
its OnDb1CT4ck event:

procedure TForml.ListBox1Db1Click(Sender: TObject);
begin

Application.Style.DefaultStyle := TDefaultStyle (ListBoxl.ItemIndex);
end;

The effect is that, by double-clicking the list box, you can change the current application
style and immediately see its effect on screen, as demonstrated in Figure 6.15.

FIGURE 6.15:

The StylesDemo program, a
Windows application cur-

#" StylezDemo o]

dwwindaws Edit1

rently with an unusual _fPl GroupB oxl
Motif layout dzcgé . Buttarl RadioB uttan
dsld tS_GI R adioButtor2
d=Platirum
dsSystemD efault CheckBoxl
ComboB oxl bbb
= ddd
1 =1 ff

it
it

What’s Next?

In this chapter, we have explored the foundations of the libraries available in Delphi for
building user interfaces, the native-Windows VCL and the Qt-based CLX. We’ve discussed
the TControl class, its properties, and its most important derived classes.

Then we've started to explore some of the basic components available in Delphi, looking at
both libraries. These components correspond to the standard Windows controls and some of
the common controls, and they are extremely common in applications. You've also seen how to
create main menus and pop-up menus and how to add extra graphics to some of these controls.

The next step, however, is to explore in depth the elements of a complete user interface,
discussing other common controls, multipage forms, action lists, and the new Delphi 6
Action Manager, to end up discussing technical details of forms. All of these topics will be
covered in the next three chapters.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

Advanced VCL Controls

e ListView and TreeView controls
e Multipage forms

e Pages and tabs

e Form-splitting techniques

e Control anchors

e A ToolBar and a StatusBar for the RichEdit
control

e Customizing hints

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

246 Chapter 7 e Advanced VCL Controls

In the preceding chapter, I discussed the core concepts of the TContro1 class and its
derived classes in the VCL and Visual CLX libraries. After that, I provided a sort of rapid
tour of the key controls you can use to build a user interface, including editing components,
lists, range selectors, and more.

This chapter provides more details on some of these components (such as the ListView
and TreeView) and then discusses other controls used to define the overall design of a form,
such as the PageControl, TabControl, and Splitter. The chapter also presents examples of
splitting forms and resizing controls dynamically. These topics are not particularly complex,
but it is worth examining their key concepts briefly.

After these components, I'll introduce toolbars and status bars, including the customiza-
tion of hints and other slightly more advanced features. This will give us all the foundation
material for the following chapter, which covers actions and the new action manager archi-
tecture of Delphi 6.

ListView and TreeView Controls

In Chapter 6, I introduced all the various visual controls you can use to display lists of values.
The standard list box and combo box components are still very common, but they are often
replaced by the more powerful ListView and TreeView controls. Again, these two controls are
part of the Win32 common controls, stored in the ComCt132.DLL library. Similar controls
are available in Qt and Visual CLX.

A Graphical Reference List

When you use a ListView component, you can provide bitmaps both indicating the status of
the element (for example, the selected item) and describing the contents of the item in a
graphical way.

How do we connect the images to a list or tree? We need to refer to the ImageList compo-
nent we’ve already used for the images of the menu. A ListView can actually have three image
lists: one for the large icons (the LargeImages property), one for the small icons (the Sma11Im-
ages property), and one used for the state of the items (the StateImages property). In the
RefList example on the companion CD, I've set the first two properties using two different
ImageList components.

Each of the items of the ListView has an ImageIndex, which refers to its image in the list.
For this to work properly, the elements in the two image lists should follow the same order.
When you have a fixed image list, you can add items to it using Delphi’s ListView Item Edi-
tor, which is connected to the Items property. In this editor, you can define items and so-
called subitems. The subitems are displayed only in the detailed view (when you set the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ListView and TreeView Controls 247

vsReport value of the ViewStyTe property) and are connected with the titles set in the
Columns property.

List¥iew ltems E ditor
tems Itern Properties
aa .

e Mew Subltem Image Index: |0

Delete State Index: |1

cC

il

Ok

Cancel ‘ Apply | Help ‘

In my RefList example (a simple list of references to books, magazines, CD-ROMs, and
Web sites), the items are stored to a file, since users of the program can edit the contents of
the list, which are automatically saved as the program exits. This way, edits made by the user
become persistent. Saving and loading the contents of a ListView is not trivial, since the
TListItems type doesn’t have an automatic mechanism to save the data. As an alternative
simple approach, I've copied the data to and from a string list, using a custom format. The
string list can then be saved to a file and reloaded with a single command.

The file format is simple, as you can see in the following saving code. For each item of the
list, the program saves the caption on one line, the image index on another line (prefixed by
the @ character), and the subitems on the following lines, indented with a tab character:

procedure TForml.FormDestroy(Sender: TObject);
var
I, J: Integer;
List: TStringlList;
begin
// store the items
List := TStringlList.Create;
try
for I := 0 to ListViewl.Items.Count - 1 do
begin
// save the caption
List.Add (ListViewl.Items[I].Caption);
// save the index
List.Add ('@’ + IntToStr (ListViewl.Items[I].ImageIndex));
// save the subitems (indented)
for J := 0 to ListViewl.Items[I].SubItems.Count - 1 do
List.Add (#9 + ListViewl.Items[I].SubItems []]);
end;
List.SaveToFile (ExtractFilePath (Application.ExeName) + 'Items.txt');
finally

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

248 Chapter 7 e Advanced VCL Controls

List.Free;
end;
end;

The items are then reloaded in the FormCreate method:

procedure TForml.FormCreate(Sender: TObject);
var
List: TStringlList;
NewItem: TListItem;
I: Integer;
begin
// stops warning message
NewItem := nil;
// load the 1items
ListViewl.Items.Clear;
List := TStringlList.Create;
try
List.LoadFromFile (
ExtractFilePath (Application.ExeName) + 'Items.txt');
for I := 0 to List.Count - 1 do
if List [I][1] = #9 then
NewItem.SubItems.Add (Trim (List [I]))
else if List [I][1] = '@' then
NewItem.ImageIndex := StrToIntDef (List [I][2], 0)
else
begin
// a new item
NewItem := ListViewl.Items.Add;
NewItem.Caption := List [I];
end;
finally
List.Free;
end;
end;

The program has a menu you can use to choose one of the different views supported by the
ListView control, and to add check boxes to the items, as in a CheckListBox. You can see
some of the various combinations of these styles in Figure 7.1.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ListView and TreeView Controls

249

FIGURE 7.1:

Different examples of the
output of a ListView
component of the RefList
program, obtained

+I" Reference List

File “iew Help

Reference

| Author

D{%Burlﬁnd Developers Conf._.

O:=<Delphi Client/Server

Borland Software Cor...
Borland Software Cor...

by changing the O% Delphi Developer's Hand... Marco Canti and Tim ...
ViewStyTe property and O« Delphi Informant Informant Communicat...
adding the check boxes [Mastering Delphi Marco Canti

[J:% The Delphi Magazine
0= Thinking in Java

O] marco@marcocantu.com
I:lﬂwww.burland.cum

ITEC

Bruce Eckel
Marco Canti
Yarious
Marco Cantd

4 www.marcocantu.com

41" Reference List

File Wiew Help

ey 5 B & B

Borland Delphi Delphi Delphi Mastering The
Develo... ClientyS... Develo... Informant Delphi Delphi...

a

Thinking
in Java

Another important feature, which is common in the detailed or report view of the control,
is to let a user sort the items on one of the columns. To accomplish this requires three opera-
tions. The first is to set the SortType property of the ListView to stBoth or stData. In this
way, the ListView will operate the sorting not based on the captions, but by calling the
OnCompare event for each two items it has to sort. Since we want to do the sorting on each of
the columns of the detailed view, we also handle the OnCoTumnC14ck event (which takes place
when the user clicks the column titles in the detailed view, but only if the ShowColumnHeaders
property is set to True). Each time a column is clicked, the program saves the number of that
column in the nSortCo1 private field of the form class:

procedure TForml.ListViewlColumnClick(Sender:
Column: TListColumn);

TObject;

begin
nSortCol := Column.Index;
ListViewl.AlphaSort;

end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

250 Chapter 7 e Advanced VCL Controls

Then, in the third step, the sorting code uses either the caption or one of the subitems
according to the current sort column:

procedure TForml.ListViewlCompare(Sender: TObject;
Iteml, Item2: TListItem;
Data: Integer; var Compare: Integer);
begin
if nSortCol = 0 then
Compare := CompareStr (Iteml.Caption, Item2.Caption)
else
Compare := CompareStr (Iteml.SubItems [nSortCol - 1],
Item2.SubItems [nSortCol - 1]);
end;

The final features I've added to the program relate to mouse operations. When the user
left-clicks an item, the RefList program shows a description of the selected item. Right-clicking
the selected item sets it in edit mode, and a user can change it (keep in mind that the changes
will automatically be saved when the program terminates). Here is the code for both opera-
tions, in the OnMouseDown event handler of the ListView control:

procedure TForml.ListViewlMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
var
strDescr: string;
I: Integer;
begin
// if there is a selected item
if ListViewl.Selected <> nil then
if Button = mbLeft then
begin
// create and show a description
strDescr := ListViewl.Columns [0].Caption + #9 +
ListViewl.Selected.Caption + #13;
for I := 1 to ListViewl.Selected.SubItems.Count do
strDescr := strDescr + ListViewl.Columns [I].Caption + #9 +
ListViewl.Selected.SubItems [I-1] + #13;
ShowMessage (strDescr);
end
else if Button = mbRight then
// edit the caption
ListViewl.Selected.EditCaption;
end;

Although it is not feature-complete, this example shows some of the potential of the ListView
control. I've also activated the “hot-tracking” feature, which lets the list view highlight and

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ListView and TreeView Controls 251

underline the item under the mouse. The relevant properties of the ListView can be seen in
its textual description:

object ListViewl: TListView
Align = alClient
Columns = <
item
Caption = 'Reference’
Width = 230
end
item
Caption = 'Author'
Width = 180
end
item
Caption = 'Country'
Width = 80
end>
Font.Height = -13
Font.Name = 'MS Sans Serif'
Font.Style = [fsBold]
FullDrag = True
HideSelection = False
HotTrack = True
HotTrackStyles = [htHandPoint, htUnderlineHot]
SortType = stBoth
ViewStyle = vslList
OnColumnClick = ListViewlColumnClick
OnCompare = ListViewlCompare
OnMouseDown = ListViewlMouseDown
end

This program is actually quite interesting, and I’ll further extend it in Chapter 9, adding a
dialog box to it.
To build its CLX version, QRefList, I had to use only one of the image lists, and disable

the small images and large images menus, as a ListView is limited to the list and report view
styles. Large and small icons are available in a different control, called IconView.

A Tree of Data

Now that we’ve seen an example based on the ListView, we can examine the TreeView con-
trol. The TreeView has a user interface that is flexible and powerful (with support for editing
and dragging elements). It is also standard, because it is the user interface of the Windows
Explorer. There are properties and various ways to customize the bitmap of each line or of

each type of line.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

252 Chapter 7 e Advanced VCL Controls

To define the structure of the nodes of the TreeView at design time, you can use the Tree-
View Items property editor. In this case, however, I've decided to load it in the TreeView
data at startup, in a way similar to the last example.

TreeView Items Editor

Iterms Itern Properties

=l New Itern Test: e
=
= J Mew Subltem Image Index: |2—
Delete Selected Index: (0
State Indeg: -1
wy ﬂ Load L

il

0k, ‘ Cancel ‘ Apply ‘ Help ‘

The Items property of the TreeView component has many member functions you can use
to alter the hierarchy of strings. For example, we can build a two-level tree with the follow-
ing lines:

var
Node: TTreeNode;

begin
Node := TreeViewl.Items.Add (nil, 'First Tevel');
TreeViewl.Items.AddChild (Node, 'Second Tevel');

Using these two methods (Add and AddChi1d), we can build a complex structure at run
time. But how do we load the information? Again, you can use a StringList at run time, load
a text file with the information, and parse it.

However, since the TreeView control has a LoadFromFile method, the DragTree and
QDragTree examples use the following simpler code:
procedure TForml.FormCreate(Sender: TObject);
begin
TreeViewl.LoadFromFile (ExtractFilePath (Application.ExeName) +

'"TreeText.txt');
end;

The LoadFromFile method loads the data in a string list and checks the level of each item
by looking at the number of tab characters. (If you are curious, see the TTreeStrings.Get-
BufStart method, which you can find in the ComCtrls unit in the VCL source code included

in Delphi.) By the way, the data I've prepared for the TreeView is the organizational chart of
a multinational company.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ListView and TreeView Controls 253

Besides loading the data, the program saves it when it terminates, making the changes per-
sistent. It also has a few menu items to customize the font of the TreeView control and
change some other simple settings. The specific feature I've implemented in this example is
support for dragging items and entire subtrees. I've set the DragMode property of the compo-
nent to dmAutomatic and written the event handlers for the OnDragOver and OnDragDrop
events.

In the first of the two handlers, the program makes sure the user is not trying to drag an
item over a child item (which would be moved along with the item, leading to an infinite
recursion):

procedure TForml.TreeViewlDragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);
var
TargetNode, SourceNode: TTreeNode;
begin
TargetNode := TreeViewl.GetNodeAt (X, Y);
// accept dragging from itself
if (Source = Sender) and (TargetNode <> nil) then
begin
Accept := True;
// determines source and target
SourceNode := TreeViewl.Selected;
// look up the target parent chain
while (TargetNode.Parent <> nil) and (TargetNode <> SourceNode) do
TargetNode := TargetNode.Parent;
// if source is found
if TargetNode = SourceNode then
// do not allow dragging over a child
Accept := False;
end
else
Accept := False;
end;

The effect of this code is that (except for the particular case we need to disallow) a user can
drag an item of the TreeView over another one, as shown in Figure 7.2. Writing the actual
code for moving the items is simple, because the TreeView control provides the support for
this operation, through the MoveTo method of the TTreeNode class.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

254 Chapter 7 e Advanced VCL Controls

FIGURE 7.2: J DragTree M=l E3
The DragTree example File Options Help
during a dragging opera- =l U Headquarters =
tion Board of Directors
-1 Marketing
Steve Fubens
—I- Sales
—I- Far East
+- Tokio
+- Singapore
+- Sidney
-+ European Dffices

-
Joe Winkler %

b4 arian Kim
—|- Pariz
Francois M artoni
Jeanette Moret
+- Milan
+- Frankfurt
toscow
—I- U5 Offices
+|- Mews York,
=l San Franci

Il

procedure TForml.TreeViewlDragDrop(Sender, Source: TObject; X, Y: Integer);
var
TargetNode, SourceNode: TTreeNode;
begin
TargetNode := TreeViewl.GetNodeAt (X, Y);
if TargetNode <> nil then
begin
SourceNode := TreeViewl.Selected;
SourceNode.MoveTo (TargetNode, naAddChildFirst);
TargetNode.Expand (False);
TreeViewl.Selected := TargetNode;
end;
end;

Norte Among the demos shipping with Delphi is an interesting one showing a custom-draw Tree-

View control. The example is in the CustomDraw subdirectory.

Custom Tree Nodes

Delphi 6 adds a few new features to the TreeView controls, including multiple selection (see

the MultiSelect and MuTtiSelectStyle properties and the Selections array), improved
sorting, and several new events.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

ListView and TreeView Controls 255

Another improved area relates to the creation of custom tree node items, which is useful to
add extra custom information to each node and possibly create nodes of different classes. To
support this technique, there is a new AddNode method for the TTreeItems class and a new
specific event, OnCreateNodesClass. In the handler of this event, you return the class of the
object to be created, which must inherit from TTreeNode.

As this is a very common technique, I've built an example to discuss it in detail. The
CustomNodes example on the CD doesn’t focus on a real-world case, but it shows a rather
complex situation, in which there are two different custom tree node classes, derived one
from the other. The base class adds an ExtraCode property, mapped to virtual methods, and
the subclass overrides one of these methods. For the base class the GetExtraCode function
simply returns the value, while for the derived class the value is multiplied to the parent node
value. Here are the classes and this second method:

type
TMyNode = class (TTreeNode)
private
FExtraCode: Integer;
protected

procedure SetExtraCode(const Value: Integer); virtual;

function GetExtraCode: Integer; virtual;
public

property ExtraCode: Integer read GetExtraCode write SetExtraCode;
end;

TMySubNode = class (TMyNode)
protected

function GetExtraCode: Integer; override;
end;

function TMySubNode.GetExtraCode: Integer;
begin

Result := fExtraCode * (Parent as TMyNode).ExtraCode;
end;

With these custom tree node classes available, the program creates a tree of items, using
the first type for the first-level nodes and the second class for the other nodes. As we have
only one OnCreateNodeClass event handler, it uses the class reference stored in a private field
of the form (CurrentNodeClass of type TTreeNodeClass):

procedure TForml.TreeViewlCreateNodeClass(Sender: TCustomTreeView;
var NodeClass: TTreeNodeClass);

begin
NodeClass := CurrentNodeClass;

end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

256 Chapter 7 e Advanced VCL Controls

The program sets this class reference before creating nodes of each type—for example,
with code like
var
MyNode: TMyNode;
begin
CurrentNodeClass := TMyNode;

MyNode := TreeViewl.Items.AddChild (nil, 'item’' + IntToStr (nValue))
as TMyNode;

MyNode.ExtraCode := nValue;

Once the entire tree has been created, as the user selects an item, you can cast its type to
TMyNode and access to the extra properties (but also methods and data):
procedure TForml.TreeViewlClick(Sender: TObject);

var
MyNode: TMyNode;
begin
MyNode := TreeViewl.Selected as TMyNode;
Labell.Caption := MyNode.Text + ' [' + MyNode.ClassName + 'J = ' +

IntToStr (MyNode.ExtraCode);
end;

This is the code used by the CustomNodes example to display the description of the
selected node into a label, as you can see in Figure 7.3. Note that when you select an item
down into the tree, its value is multiplied for that of each of the parent nodes. Though there
are certainly easier ways to obtain this effect, having a tree view with item objects created

from different classes of a hierarchy provides an object-oriented structure upon which you
can base some very complex code.

FIGURE 7.3:

The CustomNodes
example has a tree view
with node objects based
on different custom
classes, thanks to the new
OnCreateNodesClass
event.

A CuztomModes

=10f x|

item3
|- iternd
+|- waluel
|- walue?
+- waluel
+- walue?
—I- walue3
+- waluel
+ walug
=1 walue3
valuel
+- waluel
+- value2
—I- walued

walusl [TMySubMode] = 144

| AddModes

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

Multiple-Page Forms 257

Multiple-Page Forms

When you have a lot of information and controls to display in a dialog box or a form, you can
use multiple pages. The metaphor is that of a notebook: Using tabs, a user can select one of
the possible pages.

There are two controls you can use to build a multiple-page application in Delphi:

¢ You can use the PageControl component, which has tabs on one of the sides and multiple
pages (similar to panels) covering the rest of its surface. As there is one page per tab,
you can simply place components on each page to obtain the proper effect both at
design time and at run time.

e You can use the TabControl, which has only the tab portion but offers no pages to host
the information. In this case, you’ll want to use one or more components to mimic the
page change operation.

A third related class, the TabSheet, represents a single page of the PageControl. This is not
a stand-alone component and is not available on the Component Palette. You create a TabSheet
at design time by using the local menu of the PageControl or at run time by using methods of
the same control.

Norte Delphi still includes the Notebook, TabSet, and TabbedNotebook components introduced in
early versions. Use these components only if you need to create a 16-bit version of an applica-
tion. For any other purpose, the PageControl and TabControl components, which encapsulate
Win32 common controls, provide a more modern user interface. Actually, in 32-bit versions of
Delphi, the TabbedNotebook component was reimplemented using the Win32 PageControl
internally, to reduce the code size and update the look.

PageControls and TabSheets

As usual, instead of duplicating the Help system’s list of properties and methods of the Page-
Control component, I've built an example that stretches its capabilities and allows you to
change its behavior at run time. The example, called Pages, has a PageControl with three
pages. The structure of the PageControl and of the other key components is listed here:

object Forml: TForml

BorderIcons = [biSystemMenu, biMinimize]

BorderStyle = bsSingle

Caption = 'Pages Test'

OnCreate = FormCreate

object PageControll: TPageControl
ActivePage = TabSheetl
Align = alClient

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

258 Chapter 7 e Advanced VCL Controls

HotTrack = True

Images = Imagelistl

MultiLine = True

object TabSheetl: TTabSheet
Caption = 'Pages’
object Label3: TLabel
object ListBox1l: TListBox

end

object TabSheet2: TTabSheet
Caption = 'Tabs Size'
ImageIndex = 1
object Labell: TLabel
// other controls

end

object TabSheet3: TTabSheet
Caption = 'Tabs Text'
ImageIndex = 2
object Memol: TMemo

Anchors = [akLeft, akTop, akRight, akBottom]
OnChange = MemolChange

end
object BitBtnChange: TBitBtn

Anchors = [akTop, akRight]
Caption = '&Change'’
end
end

end
object BitBtnPrevious: TBitBtn
Anchors = [akRight, akBottom]

Caption = '&Previous’
OnClick = BitBtnPreviousClick
end

object BitBtnNext: TBitBtn

Anchors = [akRight, akBottom]

Caption = '&Next'

OnClick = BitBtnNextClick
end

object ImagelListl: TImagelList
Bitmap = {...}
end
end

Notice that the tabs are connected to the bitmaps provided by an ImageList control and
that some controls use the Anchors property to remain at a fixed distance from the right or
bottom borders of the form. Even if the form doesn’t support resizing (this would have been
far too complex to set up with so many controls), the positions can change when the tabs are
displayed on multiple lines (simply increase the length of the captions) or on the left side of
the form.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Multiple-Page Forms 259

Each TabSheet object has its own Caption, which is displayed as the sheet’s tab. At design
time, you can use the local menu to create new pages and to move between pages. You can
see the local menu of the PageControl component in Figure 7.4, together with the first page.
This page holds a list box and a small caption, and it shares two buttons with the other pages.

FIGURE 7.4:

The first sheet of the
PageControl of the
Pages example, with
its local menu

==
i Pages Test

Fages l Tabs Size] A Tahs Tthl

=13

* Click on the listhox
to change page

Align to Grid
n,-gﬁ Ering to Front
?}T Send to Back

ImageList]

'?:[3 Seale..

) TabOrder... M
éE Creation Order... 4= Previous
' Flip Children v —
Add ta Bepositary. ..
Wiew az Text
Text DFM

If you place a component on a page, it is available only in that page. How can you have the
same component (in this case, two bitmap buttons) in each of the pages, without duplicating
it? Simply place the component on the form, outside of the PageControl (or before aligning
it to the client area) and then move it in front of the pages, calling the Bring To Front com-
mand of the form’s local menu. The two buttons I've placed in each page can be used to
move back and forth between the pages and are an alternative to using the tabs. Here is the
code associated with one of them:

procedure TForml.BitBtnNextClick(Sender: TObject);
begin

PageControll.SelectNextPage (True);
end;

The other button calls the same procedure, passing False as its parameter to select the pre-
vious page. Notice that there is no need to check whether we are on the first or last page,
because the SelectNextPage method considers the last page to be the one before the first and
will move you directly between those two pages.

Now we can focus on the first page again. It has a list box, which at run time will hold the
names of the tabs. If a user clicks an item of this list box, the current page changes. This is
the third method available to change pages (after the tabs and the Next and Previous but-
tons). The list box is filled in the FormCreate method, which is associated with the OnCreate

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

260 Chapter 7 e Advanced VCL Controls

event of the form and copies the caption of each page (the Page property stores a list of Tab-

Sheet objects):

for I := 0 to PageControll.PageCount - 1 do
ListBox1l.Items.Add (PageControll.Pages.Caption);

When you click a list item, you can select the corresponding page:

procedure TForml.ListBox1Click(Sender: TObject);

begin

PageControll.ActivePage := PageControll.Pages [ListBoxl.ItemIndex];
end;

The second page hosts two edit boxes (connected with two UpDown components), two
check boxes, and two radio buttons, as you can see in Figure 7.5. The user can input a number
(or choose it by clicking the up or down buttons with the mouse or pressing the Up or Down
arrow key while the corresponding edit box has the focus), check the boxes and the radio but-

tons, and then click the Apply button to make the changes:

procedure TForml.BitBtnApplyClick(Sender: TObject);
begin
// set tab width, height, and Tines
PageControll.TabWidth := StrToInt (EditWidth.Text);
PageControll.TabHeight := StrToInt (EditHeight.Text);
PageControll.MultiLine := CheckBoxMultiLine.Checked;
// show or hide the last tab
TabSheet3.TabVisible := CheckBoxVisible.Checked;
// set the tab position
if RadioButtonl.Checked then
PageControll.TabPosition := tpTop
else
PageControll.TabPosition := tplLeft;

end;

FIGURE 7.5: /'Pages Test S ES

The second page of the 5
example can be used to " _
size and position the tabs. Tabswidh: [0
Here you can see the tabs 8)
on the left of the page 3 TabsHeight [0 -
control. e
v Multi-Line Tabs [w Last Tabz Yisible
E Tab Fosition
E " Top
A & Left Nest

= Previous

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Multiple-Page Forms 261

With this code, we can change the width and height of each tab (remember that 0 means
the size is computed automatically from the space taken by each string). We can choose to
have either multiple lines of tabs or two small arrows to scroll the tab area, and move them to
the left side. The control also allows tabs to be placed on the bottom or on the right, but our
program doesn’t allow that, because it would make the placement of the other controls quite
complex.

You can also hide the last tab on the PageControl, which corresponds to the TabSheet3
component. If you hide one of the tabs by setting its TabVisible property to False, you can-
not reach that tab by clicking on the Next and Previous buttons, which are based on the
SelectNextPage method. Instead, you should use the FindNextPage function, as shown below
in this new version of the Next button’s OnC11ick event handler:

procedure TForml.BitBtnNextClick(Sender: TObject);
begin
PageControll.ActivePage := PageControll.FindNextPage (
PageControll.ActivePage, True, False);
end;

The last page has a memo component, again with the names of the pages (added in the
FormCreate method). You can edit the names of the pages and click the Change button to
change the text of the tabs, but only if the number of strings matches the number of tabs:

procedure TForml.BitBtnChangeClick(Sender: TObject);
var
I: Integer;
begin
if Memol.Lines.Count <> PageControll.PageCount then
MessageDlg ('One Tine per tab, please', mtError, [mbOK], 0)
else
for I := 0 to PageControll.PageCount -1 do
PageControll.Pages [I].Caption := Memol.Lines [I];
BitBtnChange.Enabled := False;
end;

Finally the last button, Add Page, allows you to add a new tab sheet to the page control,
although the program doesn’t add any components to it. The (empty) tab sheet object is created
using the page control as its owner, but it won’t work unless you also set the PageControl prop-
erty. Before doing this, however, you should make the new tab sheet visible. Here is the code:

procedure TForml.BitBtnAddClick(Sender: TObject);
var
strCaption: string;
NewTabSheet: TTabSheet;
begin
strCaption := 'New Tab';
if InputQuery ('New Tab', 'Tab Caption', strCaption) then

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

262 Chapter 7 e Advanced VCL Controls

begin
// add a new empty page to the control
NewTabSheet := TTabSheet.Create (PageControll);
NewTabSheet.Visible := True;
NewTabSheet.Caption := strCaption;
NewTabSheet.PageControl := PageControll;
PageControll.ActivePage := NewTabSheet;
// add it to both lists
Memol.Lines.Add (strCaption);
ListBox1l.Items.Add (strCaption);

end;

end;

Tip Whenever you write a form based on a PageControl, remember that the first page displayed at
run time is the page you were in before the code was compiled. This means that if you are
working on the third page and then compile and run the program, it will start with that page.
A common way to solve this problem is to add a line of code in the FormCreate method to set
the PageControl or notebook to the first page. This way, the current page at design time doesn’t
determine the initial page at run time.

An Image Viewer with Owner-Draw Tabs

"The use of the TabControl and of a dynamic approach, as described in the last example, can
also be applied in more general (and simpler) cases. Every time you need multiple pages that
all have the same type of content, instead of replicating the controls in each page, you can use
a TabControl and change its contents when a new tab is selected.

This is what I’ll do in the multiple-page bitmap viewer example, called BmpViewer. The
image that appears in the TabControl of this form, aligned to the whole client area, depends
on the selection in the tab above it (as you can see in Figure 7.6).

FIGURE 7.6:

/" Bitmap Viewer M=l
The interface of the bitmap Eile Help
viewer in the BmpViewer {:ﬂ earth.bmp ‘ @ skyline.bmp l ?,T-: athema.brp
example. Notice the owner- % technlgy.bmp ‘ iﬁ chip.bmp ﬁconstlucbmp
draw tabs. =

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Multiple-Page Forms 263

At the beginning, the TabControl is empty. After selecting File > Open, the user can
choose various files in the File Open dialog box, and the array of strings with the names of
the files (the Files property of the OpenDialogl component) is added to the tabs (the Tabs
property of TabContro11):

procedure TFormBmpViewer.OpenlClick(Sender: TObject);
begin
if OpenDialogl.Execute then
begin
TabControll.Tabs.AddStrings (OpenDialogl.Files);
TabControll.TabIndex := 0;
TabControllChange (TabControll);
end;
end;

After we display the new tabs, we have to update the image so that it matches the first tab.
"To accomplish this, the program calls the method connected with the OnChange event of the
TabControl, which loads the file corresponding to the current tab in the image component:

procedure TFormBmpViewer.TabControllChange(Sender: TObject);
begin

Imagel.Picture.LoadFromFile (TabControll.Tabs [TabControll.TabIndex]);
end;

This example works, unless you select a file that doesn’t contain a bitmap. The program
will warn the user with a standard exception, ignore the file, and continue its execution.

The program also allows pasting the bitmap on the clipboard (without actually copying it,
though) and copying the current bitmap to it. Clipboard support is available in Delphi via the
global Clipboard object defined in the ClipBrd unit. For copying or pasting bitmaps, you can
use the Assign method of the TCTipboard and TBitmap classes. When you select the Edit >
Paste command of the example, a new tab named Clipboard is added to the tab set (unless it
is already present). Then the number of the new tab is used to change the active tab:

procedure TFormBmpViewer.PastelClick(Sender: TObject);
var
TabNum: Integer;
begin
// try to locate the page
TabNum := TabControll.Tabs.IndexO0f ('Clipboard’);
if TabNum < 0 then
// create a new page for the Clipboard
TabNum := TabControll.Tabs.Add ('Clipboard');
// go to the Clipboard page and force repaint
TabControll.TabIndex := TabNum;
TabControllChange (Self);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

264 Chapter 7 e Advanced VCL Controls

The Edit > Copy operation, instead, is as simple as copying the bitmap currently in the
image control:
Clipboard.Assign (Imagel.Picture.Graphic);

"To account for the possible presence of the Clipboard tab, the code of the
TabControllChange method becomes:

procedure TFormBmpViewer.TabControllChange(Sender: TObject);
var
TabText: string;
begin
Imagel.Visible := True;
TabText := TabControll.Tabs [TabControll.TabIndex];
if TabText <> 'Clipboard' then
// load the file indicated in the tab
Imagel.Picture.LoadFromFile (TabText)
else
{if the tab is 'Clipboard' and a bitmap
is available in the clipboard}
if Clipboard.HasFormat (cf_Bitmap) then
Imagel.Picture.Assign (Clipboard)
else
begin
// else remove the clipboard tab
TabControll.Tabs.Delete (TabControll.TabIndex);
if TabControll.Tabs.Count = 0 then
Imagel.Visible := False;
end;

This program pastes the bitmap from the Clipboard each time you change the tab. The
program stores only one image at a time, and it has no way to store the Clipboard bitmap.
However, if the Clipboard content changes and the bitmap format is no longer available, the
Clipboard tab is automatically deleted (as you can see in the listing above). If no more tabs
are left, the Image component is hidden.

An image can also be removed using either of two menu commands: Cut or Delete.
Cut removes the tab after making a copy of the bitmap to the Clipboard. In practice, the
Cut1CTlick method does nothing besides calling the Copy1Click and Deletel1C11ck methods.
The Copy1Click method is responsible for copying the current image to the Clipboard,
DeletelClick simply removes the current tab. Here is their code:

procedure TFormBmpViewer.CopylClick(Sender: TObject);
begin

Clipboard.Assign (Imagel.Picture.Graphic);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Multiple-Page Forms 265

procedure TFormBmpViewer.DeletelClick(Sender: TObject);
begin
with TabControll do
begin
if TabIndex >= 0 then
Tabs.Delete (TabIndex);
if Tabs.Count = 0 then
Imagel.Visible := False;
end;
end;

One of the special features of the example is that the TabControl has the OwnerDraw prop-
erty set to True. This means that the control won’t paint the tabs (which will be empty at
design time) but will have the application do this, by calling the OnDrawTab event. In its code,
the program displays the text vertically centered, using the DrawText API function. The text
displayed is not the entire file path but only the filename. Then, if the text is not None, the
program reads the bitmap the tab refers to and paints a small version of it in the tab itself. To
accomplish this, the program uses the TabBmp object, which is of type TBitmap and is created
and destroyed along with the form. The program also uses the BmpSide constant to position
the bitmap and the text properly:

procedure TFormBmpViewer.TabControllDrawTab(Control: TCustomTabControl;
TabIndex: Integer; const Rect: TRect; Active: Boolean);
var
TabText: string;
OutRect: TRect;
begin
TabText := TabControll.Tabs [TabIndex];
OutRect := Rect;
InflateRect (OutRect, -3, -3);
OutRect.Left := OutRect.Left + BmpSide + 3;
DrawText (Control.Canvas.Handle, PChar (ExtractFileName (TabText)),
Length (ExtractFileName (TabText)), OutRect,
dt_Left or dt_SingleLine or dt_VCenter);
if TabText = 'Clipboard’' then
if Clipboard.HasFormat (cf_Bitmap) then
TabBmp.Assign (Clipboard)
else
TabBmp.FreeImage
else
TabBmp.LoadFromFile (TabText);
OutRect.Left := OutRect.Left - BmpSide - 3;
OutRect.Right := OutRect.Left + BmpSide;
Control.Canvas.StretchDraw (OutRect, TabBmp);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

266

Chapter 7 e Advanced VCL Controls

The program has also support for printing the current bitmap, after showing a page pre-
view form in which the user can select the proper scaling. This extra portion of the program
I built for earlier editions of the book is not discussed in detail, but I've left the code in the
program so that you can have a look at its code anyway.

The User Interface of a Wizard

Just as you can use a TabControl without pages, you can also take the opposite approach and
use a PageControl without tabs. What I want to focus on now is the development of the user
interface of a wizard. In a wizard, you are directing the user through a sequence of steps, one
screen at a time, and at each step you typically want to offer the choice of proceeding to the
next step or going back to correct input entered in a previous step. So instead of tabs that can
be selected in any order, wizards typically offer Next and Back buttons to navigate. This

won’t be a complex example; its purpose is just to give you a few guidelines. The example is
called WizardUL

The starting point is to create a series of pages in a PageControl and set the TabVisible
property of each TabSheet to False (while keeping the Visible property set to True). Unlike
past versions, since Delphi 5 you can also hide the tabs at design time. In this case, you’ll
need to use the shortcut menu of the page control or the combo box of the Object Inspector
to move to another page, instead of the tabs. But why don’t you want to see the tabs at design
time? You can place controls on the pages and then place extra controls in front of the pages
(as I've done in the example), without seeing their relative positions change at run time. You
might also want to remove the useless captions of the tabs, which take up space in memory
and in the resources of the application.

In the first page, I've placed on one side an image and a bevel control and on the other side
some text, a check box, and two buttons. Actually, the Next button is inside the page, while
the Back button is over it (and is shared by all the pages). You can see this first page at design
time in Figure 7.7. The following pages look similar, with a label, check boxes, and buttons
on the right side and nothing on the left.

When you click the Next button on the first page, the program looks at the status of the
check box and decides which page is the following one. I could have written the code like this:

procedure TForml.btnNextlClick(Sender: TObject);
begin
BtnBack.Enabled := True;
if CheckInprise.Checked then
PageControll.ActivePage := TabSheet2
else
PageControll.ActivePage := TabSheet3;
// move image and bevel
Bevell.Parent := PageControll.ActivePage;
Imagel.Parent := PageControll.ActivePage;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Multiple-Page Forms 267

FIGURE 7.7:

The first page of the
WizardUl example at

_lol x|
u
Delphi *+eb ‘wizard
[&bout Borland sites
| L |
Back ‘ hext ‘
n n L]

After enabling the common Back button, the program changes the active page and finally
moves the graphical portion to the new page. Because this code has to be repeated for each but-
ton, I've placed it in a method after adding a couple of extra features. This is the actual code:

procedure TForml.btnNextlClick(Sender: TObject);
begin
if CheckInprise.Checked then
MoveTo (TabSheet2)
else
MoveTo (TabSheet3);
end;

procedure TForml.MoveTo(TabSheet: TTabSheet);
begin
// add the last page to the list
BackPages.Add (PageControll.ActivePage);
BtnBack.Enabled := True;
// change page
PageControll.ActivePage := TabSheet;
// move image and bevel
Bevell.Parent := PageControll.ActivePage;
Imagel.Parent := PageControll.ActivePage;
end;

Besides the code I've already explained, the MoveTo method adds the last page (the one before
the page change) to a list of visited pages, which behaves like a stack. In fact, the BackPages
object of the TList class is created as the program starts and the last page is always added to the
end. When the user clicks the Back button, which is not dependent on the page, the program
extracts the last page from the list, deletes its entry, and moves to that page:

procedure TForml.btnBackClick(Sender: TObject);
var

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

268

Chapter 7 e Advanced VCL Controls

LastPage: TTabSheet;
begin
// get the last page and jump to it
LastPage := TTabSheet (BackPages [BackPages.Count - 1]);
PageControll.ActivePage := LastPage;
// delete the last page from the Tist
BackPages.Delete (BackPages.Count - 1);
// eventually disable the back button
BtnBack.Enabled := not (BackPages.Count = 0);
// move image and bevel
Bevell.Parent := PageControll.ActivePage;
Imagel.Parent := PageControll.ActivePage;
end;

With this code, the user can move back several pages until the list is empty, at which point
we disable the Back button. The complication we need to deal with is that while moving
from a particular page, we know which pages are its “next” and “previous,” but we don’t
know which page we came from, because there can be multiple paths to reach a page. Only
by keeping track of the movements with a list can we reliably go back.

The rest of the code of the program, which simply shows some Web site addresses, is very
simple. The good news is that you can reuse the navigational structure of this example in
your own programs and modify only the graphical portion and the content of the pages.
Actually, as most of the labels of the programs show HT TP addresses, a user can click those
labels to open the default browser showing that page. This is accomplished by extracting the
HTTP address from the label and calling the She11Execute function.

procedure TForml.lLabelLinkClick(Sender: TObject);
var
Caption, StrUrl: string;
begin
Caption := (Sender as TLabel).Caption;
StrUrl := Copy (Caption, Pos ('http://', Caption), 1000);
ShellExecute (Handle, 'open’, PChar (StrUrl), '', '', sw_Show);
end;
The method above is hooked to the OnCTick event of many labels of the form, which have
been turned into /inks by setting its Cursor to a hand. This is one of the labels:
object Label2: TLabel
Cursor = crHandPoint
Caption = 'Main site: http://www.borland.com’

OnClick = LabelLinkClick
end

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Form-Splitting Techniques 269

Form-Splitting Techniques

There are several ways to implement form-splitting techniques in Delphi, but the simplest
approach is to use the Splitter component, found in the Additional page of the Component
Palette. To make it more effective, the splitter can be used in combination with the Constraints
property of the controls it relates to. As we’ll see in the Splitl example, this allows us to
define maximum and minimum positions of the splitter and of the form.

"To build this example, simply place a ListBox component in a form; then add a Splitter
component, a second ListBox, another Splitter, and finally a third ListBox component. The
form also has a simple toolbar based on a panel.

By simply placing these two splitter components, you give your form the complete func-
tionality of moving and sizing the controls it hosts at run time. The Width, Beveled, and
Color properties of the splitter components determine their appearance, and in the Splitl
example you can use the toolbar controls to change them. Another relevant property is
MinSize, which determines the minimum size of the components of the form. During the
splitting operation (see Figure 7.8), a line marks the final position of the splitter, but you can-
not drag this line beyond a certain limit. The behavior of the Splitl program is not to let
controls become too small. An alternative technique is to set the new AutoSnap property of
the splitter to True. This property will make the splitter hide the control when its size goes
below the MinSize limit.

FIGURE 7.8: ,‘ Split [with the Splitter component] M=l E3

The splitter component Bovded | Coo. | Misie= [0 H wian I 4
of the Split1 example

determines the minimum D g L—‘iriard
size for each control on VV h a I e Shrirmp
the form, even those not Bug

Cat Bug
.adjacent to the splitter |
sl Elephan H r;key
Rhino (S
H
Shark e

Giraffe

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

270

Chapter 7 e Advanced VCL Controls

I suggest you try using the Splitl program, so that you’ll fully understand how the splitter
affects its adjacent controls and the other controls of the form. Even if we set the MinSize
property, a user of this program can reduce the size of its entire form to a minimum, hiding
some of the list boxes. If you test the Split2 version of the example, instead, you’ll get better
behavior. In Split2, I've set some Constraints for the ListBox controls—for example,

object ListBoxl: TListBox
Constraints.MaxHeight = 400

Constraints.MinHeight = 200
Constraints.MinWidth = 150

The size constraints are applied only as you actually resize the controls, so to make this
program work in a satisfactory way, you have to set the ResizeStyle property of the two
splitters to rsUpdate. This value indicates that the position of the controls is updated for
every movement of the splitter, not only at the end of the operation. If you select the rsLine
or the new rsPattern values, instead, the splitter simply draws a line in the required position,
checking the MinSize property but not the constraints of the controls.

Tip

When you set the Splitter component’s AutoSnap property to True, the splitter will completely
hide the neighboring control when the size of that control is below the minimum set for it in
the Splitter component.

Horizontal Splitting

"The Splitter component can also be used for horizontal splitting, instead of the default verti-
cal splitting. However, this approach is a little more complicated. Basically you can place a
component on a form, align it to the top, and then place the splitter on the form. By default,
it will be left aligned. Choose the al'Top value for the A1ign property, and then resize the
component manually, by changing the Height property in the Object Inspector (or by resiz-
ing the component).

You can see a form with a horizontal splitter in the SplitH example. This program has two
memo components you can open a file into, and it has a splitter dividing them, defined as:
object Splitterl: TSplitter
Cursor = crVSplit
Align = alTop
OnMoved = SplitterlMoved
end

When you double-click a memo, the program loads a text file into it (notice the structure of
the with statement):

procedure TForml.MemoDb1Click(Sender: TObject);
begin

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

271

Form-Splitting Techniques

with Sender as TMemo, OpenDialogl do
if Execute then
Lines.LoadFromFile (FileName);
The program features a status bar, which keeps track of the current height of the two
memo components. [t handles the OnMoved event of the splitter (the only event of this com-
ponent) to update the text of the status bar. The same code is executed whenever the form is

end;
= Format ('Upper Memo: %d - Lower Memo: %d',

resized:
procedure TForml.SplitterlMoved(Sender: TObject);

begin
StatusBarl.Panels[0].Text
[MemoUp.Height, MemoDown.Height]);

Il

4|*

end;
You can see the effect of this code by looking at Figure 7.9, or by running the SplitH example

i Horizontal Splitter

FIGURE 7.9:

The status bar of the
SplitH example indicates

the position of the
horizontal splitter
component.

Upper Memo: 93 - Lower Memo: 127

An alternative to using splitters is to use the standard HeaderControl component. If you
place this control on a form, it will be automatically aligned with the top of the form. Then

Splitting with a Header
you can add the three list boxes to the rest of the client area of the form. The first list box can
be aligned on the left, but this time you cannot align the second and third list box as well.

The problem is that the sections of the header can be dragged outside the visible surface of
the form. If the list boxes use automatic alignment, they cannot move outside the visible sur-

face of the form, as the program requires.

The solution is to define the sections of the header, using the specific editor of the Sections
property. This property editor allows you to access the various subobjects of the collection,
changing various settings. You can set the caption and alignment of the text; the current, mini-
mum, and maximum size of the header; and so on. Setting the limit values is a powerful tool,

www.sybex.com

Copyright ©2001 SYBEX, Inc., Alameda, CA

272 Chapter 7 e Advanced VCL Controls

and it replaces the MinSize property of the splitter or the constraints of the list boxes we’ve
used in past examples. You can see the output of this program, named HdrSplit, in Figure 7.10.

FIGURE 7.10: i# Split Animal Lists
The output of the HdrSplit Big lst | Medium st | Smalllist

example =] Lizard
| Whale cat |
Bee
Elephant 5oy
R h : Hare
INO Hen
S h k |Monkey
alr Sheep
We need to handle two events: OnSectionResize and OnSectionClick. The first handler
simply resizes the list box connected with the modified section (determined by associating

numbers with the ImageIndex property of each section and using it to determine the name of
the list box control):

procedure TForml.HeaderControllSectionResize(
HeaderControl: THeaderControl; Section: THeaderSection);
var
List: TListBox;
begin
List := FindComponent ('ListBox' + IntToStr (Section.Imagelndex))
as TListBox;
List.Width := Section.Width;
end;

Along with this event, we need to handle the resizing of the form, using it to synchronize
the list boxes with the sections, which are all resized by default:

procedure TForml.FormResize(Sender: TObject);

var
I: Integer;
List: TListBox;
begin
for I :=0 to 2 do
begin

List := FindComponent ('ListBox' + IntToStr (
HeaderControll.Sections[I].ImageIndex)) as TListBox;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Form-Splitting Techniques 273

List.Left := HeaderControll.Sections[I].Left;
List.Width := HeaderControll.Sections[I].Width;
end;
end;

After setting the height of the list boxes, this method simply calls the previous one, passing
parameters that we won’t use in this example. The second method of the HeaderControl,
called in response to a click on one of the sections, is used to sort the contents of the corre-
sponding list box:

procedure TForml.HeaderControllSectionClick(
HeaderControl: THeaderControl; Section: THeaderSection);
var
List: TListBox;
begin
List := FindComponent ('ListBox' + IntToStr (Section.Imagelndex))
as TListBox;
List.Sorted := not List.Sorted;
end;

Of course, this code doesn’t provide the common behavior of sorting the elements when
you click the header and then sorting them in the reverse order if you click again. To imple-
ment this, you should write your own sorting algorithm.

Finally, the HdrSplit example uses a new feature for the header control. It sets the DragRe-
order property to enable dragging operations to reorder the header sections. When this
operation is performed, the control fires the OnSectionDrag event, where you can exchange
the positions of the list boxes. This event fires before the sections are actually moved, so I
have to use the coordinates of the other section:

procedure TForml.HeaderControllSectionDrag(Sender: TObject; FromSection,
ToSection: THeaderSection; var AllowDrag: Boolean);
var
List: TListBox;
begin
List := FindComponent ('ListBox' + IntToStr (FromSection.ImageIndex))
as TListBox;
List.Left := ToSection.Left;
List.Width := ToSection.Width;

List := FindComponent ('ListBox' + IntToStr (ToSection.ImageIndex))
as TListBox;
List.Left := FromSection.Left;
List.Width :=fromSection.Width
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

274 Chapter 7 e Advanced VCL Controls

Control Anchors

In this chapter, I’'ve described how you can use alignment and splitters to create nice, flexible
user interfaces, that adapt to the current size of the form, giving users maximum freedom.
Delphi also supports right and bottom anchors. Before this feature was introduced in Delphi 4,
every control placed on a form had coordinates relative to the top and bottom, unless it was
aligned to the bottom or right sides. Aligning is good for some controls but not all of them,
particularly buttons.

By using anchors, you can make the position of a control relative to any side of the form.
For example, to have a button anchored to the bottom-right corner of the form, place the
button in the required position and set its Anchors property to [akRight, akBottom]. When
the form size changes, the distance of the button from the anchored sides is kept fixed. In
other words, if you set these two anchors and remove the two defaults, the button will remain
in the bottom-right corner.

On the other hand, if you place a large component such as a Memo or a ListBox in the
middle of a form, you can set its Anchors property to include all four sides. This way the con-
trol will behave as an aligned control, growing and shrinking with the size of the form, but
there will be some margin between it and the form sides.

Tip Anchors, like constraints, work both at design time and at run time, so you should set them up
as early as possible, to benefit from this feature while you're designing the form as well as at
run time.

As an example of both approaches, you can try out the Anchors application, which has two
buttons on the bottom-right corner and a list box in the middle. As shown in Figure 7.11, the
controls automatically move and stretch as the form size changes. To make this form work
properly, you must also set its Constraints property; otherwise, as the form becomes too
small the controls can overlap or disappear.

Tip If you remove all of the anchors, or two opposite ones (for example, left and right), the resize
operations will cause the control to float. The control keeps its current size, and the system
adds or removes the same number of pixels on each side of it. This can be defined as a cen-
tered anchor, because if the component is initially in the middle of the form it will keep that
position. In any case, if you want a centered control, you should generally use both opposite
anchors, so that if the user makes the form larger, the control size will grow as well. In the case
just presented, in fact, making the form larger leaves a small control in its center.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ToolBar Control 275

FIGURE 7.11:

L1l =10l x|

The controls of the Anchors
example move and stretch :::
automatically as the user three 2l Anchors i [=] E3
changes the size of the four e "
form. No code is needed to five two
move the controls, only a six three |
proper use of the Anchors seven four Show

roperty. eight five
property six = Close

The ToolBar Control

In early versions of Delphi, toolbars had to be created using panels and speed buttons. Start-
ing with version 3, Delphi introduced a specific ToolBar component, which encapsulates the
corresponding Win32 common control or the corresponding Qt widget in Visual CLX. This
component provides a toolbar, with its own buttons, and it has many advanced capabilities.
To use this component, you place it on a form and then use the component editor (the short-
cut menu activated by a right mouse button click) to create a few buttons and separators.

Building a Toolbar with a Panel

Before the toolbar control was available in Delphi, the standard approach for building a toolbar
was to use a panel aligned to the top of the form and place SpeedButton components inside it.
A speed button is a lightweight graphical control (consuming no Windows resources); it can-
not receive the input focus, it has no tab order, and it is faster to create and paint than a
bitmap button.

Speed buttons can behave like push buttons, check boxes, or radio buttons, and they can have
different bitmaps depending on their status. To make a group of speed buttons work like radio
buttons, just place some speed buttons on the panel, select all of them, and give the same
value to each one’s GroupIndex property. All the buttons having the same GroupIndex
become mutually exclusive selections. One of these buttons should always be selected, so
remember to set the Down property to True for one of them at design time or as soon as the
program starts.

Continued on next page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

276

Chapter 7 e Advanced VCL Controls

By setting the A1TowAT11Up property, you can create a group of mutually exclusive buttons,
each of which can be up—that is, a group from which the user can select one option or leave
them all unselected. As a special case, you can make a speed button work as a check box, sim-
ply by defining a group (the GroupIndex property) that has only one button and that allows it
to be deselected (the ATTowA11Up property).

Finally, you can set the Flat property of all the SpeedButton components to True, obtaining a
more modern user interface. If you are interested in this approach, you can look at the Panel-
Bar example, illustrated here:

/' Toolbar - (O] x|
Fil= Toolbar Help
J B & u g

A caption with some - ple text fo show the
effect of the spead Hu ofthe foothar. You
can replace it with something mare Laeful.

The use of SpeedButton controls is becoming less common. Besides the fact that the ToolBar
control is very handy and definitely more standard, speed buttons have two big problems. First,
each of them requires a specific bitmap and cannot use one from an image list (unless you
write some complex code). Second, speed buttons don’t work very well with actions, because
some properties, such as the Down state, do not map directly.

The toolbar is populated with objects of the TTooTButton class. These objects have a funda-
mental property, Style, which determines their behavior:

The tbsButton style indicates a standard push button.

The tbsCheck style indicates a button with the behavior of a check box, or that of a
radio button if the button is Grouped with the others in its block (determined by the
presence of separators).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ToolBar Control 277

e The tbsDropDown style indicates a drop-down button, a sort of combo box. The
drop-down portion can be easily implemented in Delphi by connecting a PopupMenu
control to the DropdownMenu property of the control.

e The tbsSeparator and tbsDivider styles indicate separators with no or different vertical
lines (depending on the Flat property of the toolbar).

"To create a graphic toolbar, you can add an ImageList component to the form, load some
bitmaps into it, and then connect the ImageList with the Images property of the toolbar. By
default, the images will be assigned to the buttons in the order they appear, but you can change
this quite easily by setting the ImageIndex property of each toolbar button. You can prepare
further ImageLists for special conditions of the buttons and assign them to the DisabledImages
and HotImages properties of the toolbar. The first group is used for the disabled buttons; the
second for the button currently under the mouse.

NotE

In a nontrivial application, you would generally create toolbars using an ActionList or the new
Action Manager architecture, both discussed in the next chapter. In this case, you'll attach very
little behavior to the toolbar buttons, as their properties and events will be managed by the
action components.

The RichBar Example

As an example of the use of a toolbar, I've built the RichBar application, which has a
RichEdit component you can operate by using the toolbar. The program has buttons for
loading and saving files, for copy and paste operations, and to change some of the attributes
of the current font.

I don’t want to cover the details of the features of the RichEdit control, which are many,
nor discuss the details of this application, which has quite a lot of code. All I want to do is to
focus on features specific to the ToolBar used by the example and visible in Figure 7.12. This
toolbar has buttons, separators, and even a drop-down menu and two combo boxes discussed
in the next section.

The various buttons implement features, one of them being a complete scheme for open-
ing and saving the text files, including the ability to ask the user to save any modified file
before opening a new one, to avoid losing any changes. The file-handling portion of the pro-
gram is quite complex, but it is worth exploring, as many file-based applications will use simi-
lar code. I've made more details available in the bonus chapter “The RichBar Example” on
the companion CD.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

278 Chapter 7 e Advanced VCL Controls

Besides file operations, the program supports copy and paste operations and font manage-
ment. The copy and paste operations don’t require an actual interaction with the clipboard,
as the component can handle them with simple commands, such as:

RichEdit.CutToClipboard;
RichEdit.CopyToClipboard;

RichEdit.PasteFromClipboard;
RichEdit.Undo;

FIGURE 7.12:

The toolbar of the RichBar
example. Notice the drop-
down menu.

+[* RichMote - C:\md6code\07%RichB ar\5Sample text rtf i | ﬂ
O = = | B 7| atl- |TimesNewF|oman ﬂ |icIBIack j
Small =]
M edium
Large

Sample Text

More text More text More text More text More text More text

4y o

141

It is a little more advanced to know when these operations (and the corresponding but-
tons) should be enabled. We can enable Copy and Cut buttons when some text is selected,
in the OnSeTlectionChange event of the RichEdit control:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin

tbtnCut.Enabled := RichEdit.SellLength > 0;

tbtnCopy.Enabled := tbtnCut.Enabled;
end;

The Copy operation, instead, cannot be determined by an action of the user, as it depends
on the content of the Clipboard, influenced also by other applications. One approach is to
use a timer and check the clipboard content from time to time. A better approach is to use
the OnIdTe event of the AppTication object (or the ApplicationEvents component). As the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ToolBar Control 279

RichEdit supports multiple clipboard formats, the code cannot simply look at those, but
should ask the component itself, using a low-level feature not surfaced by the Delphi control:
procedure TFormRichNote.ApplicationEventslIdle(Sender: TObject;
var Done: Boolean);
begin
// update toolbar buttons
tbtnPaste.Enabled := SendMessage (RichEdit.Handle, em_CanPaste, 0, 0) <> 0;
end;

Basic font management is given by the Bold and Italic buttons, which have similar code.
The Bold button toggles the relative attribute from the selected text (or changes the style at
the current edit position):

procedure TFormRichNote.BoldExecute(Sender: TObject);
begin
with RichEdit.SelAttributes do
if fsBold in Style then
Style := Style - [fsBold]
else
Style := Style + [fsBold];
end;

Again, the current status of the button is determined by the current selection, so we’ll need

to add the following line to the RichEditSelectionChange method:

tbtnBold.Down := fsBold in RichEdit.SelAttributes.Style;

A Menu and a Combo Box in a Toolbar

Besides a series of buttons, the RichBar example has a drop-down menu and a couple of
combo boxes, a feature shared by many common applications. The drop-down button allows
selection of the font size, while the combo boxes allow rapid selection of the font family and
the font color. This second combo is actually built using a ColorBox control.

The Size button is connected to a PopupMenu component (called SizeMenu) using the
DropdownMenu property. A user can press the button, firing its OnC11ick event as usual, or
select the drop-down arrow, open the pop-up menu (see again Figure 7.12), and choose one
of its options. This case has three possible font sizes, per the menu definition:

object SizeMenu: TPopupMenu
object Smalll: TMenuItem

Tag = 10
Caption = 'Small’
OnClick = SetFontSize
end
object Mediuml: TMenuItem
Tag = 16

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

280 Chapter 7 e Advanced VCL Controls

Caption = 'Medium’
OnClick = SetFontSize
end
object Largel: TMenuItem
Tag = 32

Caption = 'Large’
OnClick = SetFontSize
end
end

Each menu item has a tag indicating the actual size of the font, activated by a shared event

handler:
procedure TFormRichNote.SetFontSize(Sender: TObject);
begin
RichEdit.SelAttributes.Size := (Sender as TMenultem).Tag;
end;

As the ToolBar control is a full-featured control container, you can directly take an edit
box, a combo box, and other controls and place them inside the toolbar. The combo box in
the toolbar is initialized in the FormCreate method, which extracts the screen fonts available
in the system:

ComboFont.Items := Screen.Fonts;
ComboFont.ItemIndex := ComboFont.Items.IndexOf (RichEdit.Font.Name)

The combo box initially displays the name of the default font used in the RichEdit control,
which is set at design time. This value is recomputed each time the current selection changes,
using the font of the selected text, along with the current color for the ColorBox:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin
ComboFont.ItemIndex :=
ComboFont.Items.IndexOf (RichEdit.SelAttributes.Name);
ColorBoxl.Selected := RichEdit.SelAttributes.Color;
end;

When a new font is selected from the combo box, the reverse action takes place. The text
of the current combo box item is assigned as the name of the font for any text selected in the
RichEdit control:

RichEdit.SelAttributes.Name := ComboFont.Text;

The selection of a color in the ColorBox activates similar code.

Toolbar Hints

Another common element in toolbars is the fly-by hint, also called balloon help—some text that
briefly describes the button currently under the cursor. This text is usually displayed in a yel-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ToolBar Control 281

low box after the mouse cursor has remained steady over a button for a set amount of time.
To add hints to an application’s toolbar, simply set its ShowHints property to True and enter
some text for the Hint property of each button (more on hints text in the next section, “A
Simple Status Bar”).

If you want to have more control on how hints are displayed, you can use some of the
properties and events of the App1ication object. This global object has, among others, the
following properties:

Property Defines

HintColor The background color of the hint window

HintPause How long the cursor should remain on a component before hints
are displayed

HintHidePause How long the hint will be displayed

HintShortPause How long the system should wait to display a hint if another hint
has just been displayed

A program, for example, might allow a user to customize the hint background color by
selecting a specific with the following code:
ColorDialog.Color := Application.HintColor;

if ColorDialog.Execute then
Application.HintColor := ColorDialog.Color;

NotE

As an alternative, you can change the hint color by handling the OnShowH1int property of the
AppTication object. This handler can change the color of the hint just for specific controls.
The OnShowH1int event is used in the CustHint example described later in this chapter.

A Simple Status Bar

Building a status bar is even simpler than building a toolbar. Delphi includes a specific
StatusBar component, based on the corresponding Windows common control (a similar
control is available also in Visual CLX). This component can be used almost as a panel when
its SimplePanel property is set to True. In this case, you can use the SimpleText property to
output some text. The real advantage of this component, however, is that it allows you to
define a number of subpanels just by activating the editor of its Panels property. (You can
also display this property editor by double-clicking the status bar control.) Each subpanel has
its own graphical attributes, which you can customize using the editor. Another feature of the
status bar component is the “size grip” area added to the lower-right corner of the bar, which
is useful for resizing the form itself. This is a typical element of the Windows user interface,
and you can control it with the SizeGrip property.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

282

Chapter 7 e Advanced VCL Controls

There are various uses for a status bar. The most common is to display information about
the menu item currently selected by the user. Besides this, a status bar often displays other
information about the status of a program: the position of the cursor in a graphical applica-
tion, the current line of text in a word processor, the status of the lock keys, the time and
date, and so on. To show information on a panel, you simply use its Text property, generally
using an expression like this:

StatusBarl.Panels[1].Text := 'message’;

In the RichBar example, I’ve built a status bar with three panels, for command hints, the
status of the Caps Lock key, and the current editing position. The StatusBar component of
the example actually has four panels; we need to define the fourth in order to delimit the area
of the third panel. The last panel, in fact, is always large enough to cover the remaining sur-
face of the status bar.

Tip

Again, for more detail on the RichBar program, see the bonus chapter “The RichBar Example”
on the companion CD.

The panels are not independent components, so you cannot access them by name, only by
position as in the preceding code snippet. A good solution to improve the readability of a
program is to define a constant for each panel you want to use, and then use these constants
when referring to the panels. This is my sample code:

const
sbpMessage = 0;
sbpCaps = 1;
sbpPosition = 2;

In the first panel of the status bar, I want to display the hint message of the toolbar button.
"The program obtains this effect by handling the application’s OnHint event, again using the
ApplicationEvents component, and copying the current value of the application’s Hint prop-
erty to the status bar:

procedure TFormRichNote.ApplicationEventslHint (Sender: TObject);
begin

StatusBarl.Panels[sbpMessage].Text := Application.Hint;
end;

By default, this code displays in the status bar the same text of the fly-by hints. Actually, we
can use the Hint property to specify different strings for the two cases, by writing a string
divided into two portions by a separator, the pipe (]) character. For example, you might enter
the following as the value of the Hint property:

'New[Create a new document'

"The first portion of the string, New, is used by fly-by hints, and the second portion, Create a
new document, by the status bar. You can see an example in Figure 7.13.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ToolBar Control 283

FIGURE 7.13:

The S B fth 4" RichMote - C:A\md6code\07\RichBar\5ample text rtf - |EI|5|
.E tatusBar o tle O §| ¥ B« | B i.H Al - ||\-’erdana 'Hli clBlue j
RichBar example displays 1% |
a more detailed description i
than the fly-by hint.
More text More fext More text More text More fext More text
<] L|_I
|Togale the italic style | 210 | Y
Tip When the hint for a control is made up of two strings, you can use the GetShortHint and

GetLongHint methods to extract the first (short) and second (long) substrings from the string
you pass as a parameter, which is usually the value of the Hint property.

The second panel displays the status of the Caps Lock key, obtained by calling the
GetKeyState API function, which returns a state number. If the low-order bit of this number
is set (that is, if the number is odd), then the key is pressed. When do we check this state?
I've decided to do this when the application is idle, so that this test is executed every time a
key is pressed, but also as soon as a message reaches the window (in case the user changes this
setting while working with another program). I've added to the AppTicationEventslIdle
handler a call to the custom CheckCapslock method, implemented as follows:

procedure TFormRichNote.CheckCapslock;
begin
if 0dd (GetKeyState (VK_CAPITAL)) then
StatusBarl.Panels[sbpCaps].Text := 'CAPS'
else
StatusBarl.Panels[sbpCaps].Text := '';
end;

Finally, the program uses the third panel to display the current cursor position (measured

in lines and characters per line) every time the selection changes. Because the CaretPos

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

284 Chapter 7 e Advanced VCL Controls

values are zero-based (that is, the upper-left corner is line 0, character 0), I've decided to add
one to each value, to make them more reasonable for a casual user:

procedure TFormRichNote.RichEditSelectionChange(Sender: TObject);
begin

// update the position in the status bar
StatusBar.Panels[sbpPosition].Text := Format ('%d/%d',
[RichEdit.CaretPos.Y + 1, RichEdit.CaretPos.X + 1]);
end;

Customizing the Hints

Just as we have added hints to an application’s toolbar, we can add hints to forms or to the com-
ponents of a form. For a large control, the hint will show up near the mouse cursor. In some
cases, it is important to know that a program can freely customize how hints are displayed.

The simplest thing you can do is, change the value of the properties of the AppTication
object as I mentioned at the end of the last section. To obtain more control over hints, you
can customize them even further by assigning a method to the application’s OnShowHint
event. You need to either hook them up manually or—better—add an ApplicationEvents
component to the form and handle its OnShowHint event.

The method you have to define has some interesting parameters, such as a string with the
text of the hint, a Boolean flag for its activation, and a THintInfo structure with further infor-
mation, including the control, the hint position, and its color. Each of the parameters is passed
by reference, so you have a chance to change them and also modify the values of the THintInfo
structure; for example, you can change the position of the hint window before it is displayed.

This is what I’ve done in the CustHint example, which shows the hint of the label at the
center of its area. Here is what you can write to show the hint for the big label in the center
of its surface:

procedure TForml.ShowHint (var HintStr: string; var CanShow: Boolean;

var HintInfo: THintInfo);
begin

with HintInfo do

if HintControl = Labell then
HintPos := HintControl.ClientToScreen (Point (
HintControl.Width div 2, HintControl.Height div 2));

end;

The code has to retrieve the center of the generic control (the HintInfo.HintControl) and
then convert its coordinates to screen coordinates, applying the ClientToScreen method to the
control itself. We can further update the CustHint example in a different way. The RadioGroup

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Customizing the Hints 285

control in the form has three radio buttons. However, these are not stand-alone components,
but simply radio button clones painted on the surface of the radio group. What if we want to
add a hint for each of them?

The CursorRect field of the THintInfo record can be used for this purpose. It indicates the
area of the component that the cursor can move over without disabling the hint. When the
cursor moves outside this area, Delphi hides the hint window. If we specify a different text
for the hint and a different area for each of the radio buttons, we can in practice provide
three different hints. Because computing the actual position of each radio button isn’t easy,
I've simply divided the surface of the radio group into as many equal parts as there are radio
buttons. The text of the radio button (not the selected item, but the item under the cursor) is
then added to the text of the hint:

procedure TForml.ShowHint (var HintStr: string;

var CanShow: Boolean; var HintInfo: THintInfo);
var

RadioItem, RadioHeight: Integer;

RadioRect: TRect;
begin

with HintInfo do

if HintControl

Labell ... // as before

else
if HintControl = RadioGroupl then
begin
RadioHeight := (RadioGroupl.Height) div RadioGroupl.Items.Count;

RadioItem := CursorPos.Y div RadioHeight;
HintStr := 'Choose the ' + RadioGroupl.Items [RadioIltem] + ' button’;
RadioRect := RadioGroupl.ClientRect;
RadioRect.Top := RadioRect.Top + RadioHeight * RadioIltem;
RadioRect.Bottom := RadioRect.Top + RadioHeight;
// assign the hints rect and pos
CursorRect := RadioRect;
end;
end;

The final part of the code builds the rectangle for the hint, starting with the rectangle cor-
responding to the client area of the component and moving its Top and Bottom values to the
proper section of the RadioGroupl component. The resulting effect is that each radio button
of the radio group appears to have a specific hint, as shown in Figure 7.14.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

286 Chapter 7 e Advanced VCL Controls

FIGURE 7. 14:)‘-'CuslHint !E
The RadioGroup control of EhEnse .
the CustHint example Selection sequence: one - three - four - three -
shows a different hint, 04 = Clis
depending on which radio
. ¢ two
button the mouse is over. [
Choose the bwo button
= three
" four

What’s Next?

In this chapter I've discussed the use of some Delphi common controls, including the
ListView, TreeView, PageControl, TabControl, ToolBar, StatusBar, and RichEdit. For each
of these controls, I've built one example, trying to discuss it in the context of an actual appli-
cation, even if most of the programs have been quite simple. I've also covered the Splitter
component and various form-splitting techniques, the anchors for control positioning, and
the customization of hints.

What is still missing is the development of an application with a complete user interface,
including a menu and one or more toolbars. The reason I haven’t covered this topic in the
current chapter is that Delphi 6 adds quite a lot to VCL in this respect, including a complete
architecture for letting the end users configure menus and toolbars based on a number of
predefined actions. As this topic and related ones, such as docking toolbars, are complex, I've
devoted the entire next chapter to them.

After this step, we’ll move to the development of applications with multiple forms, includ-
ing advanced dialog boxes, MDI, visual form inheritance, and the use of frames. All these
topics are covered in Chapters 9 and 10.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

Building the User Interface

e Actions and ActionList

e Predefined actions in Delphi 6

e The ControlBar and CoolBar components
e Docking toolbars and other controls

e The Action Manager architecture

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

288

Chapter8 e Building the User Interface

Modern Windows applications usually have multiple ways of giving a command, includ-
ing menu items, toolbar buttons, shortcut menus, and so on. To separate the actual com-
mands a user can give from their multiple representations in the user interface, Delphi has
the idea of actions. In Delphi 6 this architecture has been largely extended to make the con-
struction of the user interface on top of actions totally visual. You can now also easily let the
user of your programs customize this interface, as happens in many professional programs.

This chapter focuses on actions, action lists and action managers, and the related compo-
nents. It also covers a few related topics, such as toolbar container controls and toolbar dock-
ing, and docking in general.

The ActionList Component

Delphi’s event architecture is very open: You can write a single event handler and connect it
to the OnC1ick events of a toolbar button and a menu. You can also connect the same event
handler to different buttons or menu items, as the event handler can use the Sender parameter
to refer to the object that fired the event. It’s a little more difficult to synchronize the status
of toolbar buttons and menu items. If you have a menu item and a toolbar button that both
toggle the same option, every time the option is toggled, you must both add the check mark
to the menu item and change the status of the button to show it pressed.

"To overcome this problem, Delphi 4 introduced an event-handling architecture based on
actions. An action (or command) both indicates the operation to do when a menu item or but-
ton is clicked and determines the status of all the elements connected to the action. The con-
nection of the action with the user interface of the linked controls is very important and
should not be underestimated, because it is where you can get the real advantages of this
architecture.

NotE

If you have ever written code using the MFC class library of Visual C++, you'll recognize that a
Delphi action maps to both a command and a CCommandUpdateUI object. The Delphi archi-
tecture is more flexible, though, because it can be extended by subclassing the action classes.

There are many players in this event-handling architecture. The central role is certainly
played by the action objects. An action object has a name, like any other component, and other
properties that will be applied to the linked controls (called action clients). These properties
include the Caption, the graphical representation (ImageIndex), the status (Checked, Enabled,
and Visible), and the user feedback (Hint and HelpContext). There is also the ShortCut and a
list of SecondaryShortCuts, the AutoCheck property for two-state actions, the help support, and
a Category property used to arrange actions in logical groups.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionList Component 289

The base class for an all action object is TBasicAction, which introduces the abstract core
behavior of an action, without any specific binding or correction (not even to menu items or
controls). The derived TContainedAction class introduces properties and methods that enable
actions to appear in an action list or action manager. The further-derived TCustomAction class
introduces support for the properties and methods of menu items and controls that are
linked to action objects. Finally, there is the derived ready-to-use TAction class.

Each action object is connected to one or more client objects through an ActionLink object.
Multiple controls, possibly of different types, can share the same action object, as indicated by
their Action property. Technically, the ActionLink objects maintain a bidirectional connection
between the client object and the action. The ActionLink object is required because the con-
nection works in both directions. An operation on the object (such as a click) is forwarded to
the action object and results in a call to its OnExecute event; an update to the status of the
action object is reflected in the connected client controls. In other words, one or more client
controls can create an ActionLink, which registers itself with the action object.

You should not set the properties of the client controls you connect with an action, because
the action will override the property values of the client controls. For this reason, you should
generally write the actions first and then create the menu items and buttons you want to con-
nect with them. Note also that when an action has no OnExecute handler, the client control is
automatically disabled (or grayed), unless the DisableIfNoHandler property is set to False.

The client controls connected to actions are usually menu items and various types of but-
tons (push buttons, check boxes, radio buttons, speed buttons, toolbar buttons, and the like),
but nothing prevents you from creating new components that hook into this architecture.
Component writers can even define new actions, as we’ll do in Chapter 11, and new link
action objects.

Besides a client control, some actions can also have a target component. Some predefined
actions hook to a specific target component (for examples, see the coverage of the DataSet
components in the Chapter 13 section “Looking for Records in a Table”). Other actions
automatically look for a target component in the form that supports the given action, starting
with the active control.

Finally, the action objects are held by an ActionList component, the only class of the basic
architecture that shows up on the Component Palette. The action list receives the execute
actions that aren’t handled by the specific action objects, firing the OnExecuteAction. If even
the action list doesn’t handle the action, Delphi calls the OnExecuteAction event of the
Application object. The ActionList component has a special editor you can use to create
several actions, as you can see in Figure 8.1.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

290 Chapter8 e Building the User Interface

FIGURE 8.1:

The ActionList component

. . . Available Action Classes:
editor, with a list of pre- o
defined actions you can use E[= P]

AV Standard Action Classes

Categories: Actions: - TEdittut

-~ TEditCapy

- TEditPaste

- TEditSelectal

- TEditUndo

- TEditDelete

- Farmat

- TRichE ditBold

- TRichE ditltalic

- TRichE ditUnderline

- TRichE ditStrikedut

- TRichE ditBullzts

- TRichE ditslignLeft

- TRichE ditslignRight
- TRichE ditalignCenter

-Help

- THelpContents

- THelpT opicSearch

- THelpOnHelp

- THelpContextd.ction

[=- Wdindow

R T TR o P

[a]:8 I Cancel |

In the editor, actions are displayed in groups, as indicated by their Category property. By
simply setting this property to a brand-new value, you instruct the editor to introduce a new
category. These categories are basically logical groups, although in some cases a group of
actions can work only on a specific type of target component. You might want to define a cat-
egory for every pull-down menu or group them in some other logical way.

Predefined Actions in Delphi 6

With the action list editor, you can create a brand new action or choose one of the existing
actions registered in the system. These are listed in a secondary dialog box, as shown in Fig-
ure 8.1. There are many predefined actions, which can be divided into logical groups:

File actions include open, save as, open with, run, print setup, and exit.

Edit actions are illustrated in the next example. They include cut, copy, paste, select all,
undo, and delete.

RichEdit actions complement the edit actions for RichEdit controls and include bold,
italic, underline, strikeout, bullets, and various alignment actions.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionList Component 291

MDI window actions will be demonstrated in Chapter 10, as we examine the Multiple
Document Interface approach. They include all the most common MDI operations:
arrange, cascade, close, tile (horizontally or vertically), and minimize all.

Dataset actions relate to database tables and queries and will be discussed in Chapter 13.
There are many dataset actions, representing all the main operations you can perform on a
dataset.

Help actions allow you to activate the contents page or index of the Help file attached to
the application.

Search actions include find, find first, find next, and replace.
Tab and Page control actions include previous page and next page navigation.
Dialog actions activate color, font, open, save, and print dialogs.

List actions include clear, copy, move, delete, and select all. These actions let you interact
with a list control. Another group of actions, including static list, virtual list, and some sup-
port classes, allow the definition of lists that can be connected to a user interface. More on
this topic is in the section “Using List Actions” toward the end of this chapter.

Web actions include browse URL, download URL, and send mail actions.

Tools actions include only the dialog to customize the action bars.

NotE

You can also define new custom actions and register them in Delphi’s IDE, as we'll see in
Chapter 11.

Besides handling the OnExecute event of the action and changing the status of the action to
affect the user interface of the client controls, an action can also handle the OnUpdate event,
which is activated when the application is idle. This gives you the opportunity to check the
status of the application or the system and change the user interface of the controls accord-
ingly. For example, the standard PasteEdit action enables the client controls only when there
is some text in the Clipboard.

Actions in Practice

Now that you understand the main ideas behind this very important Delphi feature, let’s try
out an example from the companion CD. The program is called Actions and demonstrates a
number of features of the action architecture. I began building it by placing a new ActionList
component in its form and adding the three standard edit actions and a few custom ones.
"The form also has a panel with some speed buttons, a main menu, and a Memo control (the

automatic target of the edit actions). Listing 8.1 is the list of the actions, extracted from the
DFM file.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

292 Chapter8 e Building the User Interface

Listing 8.1: The actions of the Actions example

object ActionListl: TActionlList
Images = Imagelistl
object ActionCopy: TEditCopy
Category = 'Edit'
Caption = '&Copy'
ShortCut = <Ctrl1+C>
end
object ActionCut: TEditCut
Category = 'Edit'
Caption = 'Cué&t'’
ShortCut = <Ctrl1+X>
end
object ActionPaste: TEditPaste
Category = 'Edit’
Caption = '&Paste’
ShortCut = <Ctrl+Vv>
end
object ActionNew: TAction
Category = 'File'’
Caption = '&New’
ShortCut = <Ctrl1+N>
OnExecute = ActionNewExecute
end
object ActionExit: TAction
Category = 'File'
Caption = 'E&xit'
ShortCut = <ATt+F4>
OnExecute = ActionExitExecute
end
object NoAction: TAction
Category = 'Test'
Caption = '&\o Action’
end
object ActionCount: TAction
Category = 'Test'
Caption = '&Count Chars'
OnExecute = ActionCountExecute
OnUpdate = ActionCountUpdate
end
object ActionBold: TAction
Category = 'Edit'
Caption = '&Bold’
ShortCut = <Ctrl1+B>
OnExecute = ActionBoldExecute
end
object ActionEnable: TAction
Category = 'Test'
Caption = '&Enable NoAction'

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

The ActionList Component 293

OnExecute = ActionEnableExecute
end
object ActionSender: TAction
Category = 'Test'
Caption = 'Test &Sender’
OnExecute = ActionSenderExecute
end
end

NortE The shortcut keys are stored in the DFM files using virtual key numbers, which also include

values for the Ctrl and Alt keys. In this and other listings throughout the book, I've replaced
the numbers with the literal values, enclosing them in angle brackets.

All of these actions are connected to the items of a MainMenu component and some of
them also to the buttons of a Toolbar control. Notice that the images selected in the Action-
List control affect the actions in the editor only, as you can see in Figure 8.2. For the images
of the ImageList to show up also in the menu items and in the toolbar buttons, you must also
select the image list in the MainMenu and in the Toolbar components.

FIGURE 8.2:

The ActionList editor of the
Actions example

[Editing Form1.ActionListl x|

-1 + &

Categaries: Actions:

Mo Cateioli SE s ctionCopy
File m.&ctiontut
Test
[#ll sctions] | 44 ActionBold

The three predefined actions for the Edit menu don’t have associated handlers, but these
special objects have internal code to perform the related action on the active edit or memo
control. These actions also enable and disable themselves, depending on the content of the
Clipboard and on the existence of selected text in the active edit control. Most other actions
have custom code, except for the NoAction object. Having no code, the menu item and the

button connected with this command are disabled, even if the Enabled property of the action
is set to True.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

294 Chapter8 e Building the User Interface

I’'ve added to the example, and to the Test menu, another action that enables the menu
item connected to the NoAction object:
procedure TForml.ActionEnableExecute(Sender: TObject);
begin
NoAction.DisableIfNoHandler := False;
NoAction.Enabled := True;

ActionEnable.Enabled := False;
end;

Simply setting EnabTed to True will produce the effect for only a very short time, unless
you set the DisableIfNoHandler property, as discussed in the previous section. Once this
operation is done, I disable the current action, since there is no need to issue the same com-
mand again.

This is different from an action you can toggle, such as the Edit > Bold menu item and the
corresponding speed button. Here is the code of the Bold action:

procedure TForml.ActionBoldExecute(Sender: TObject);
begin
with Memol.Font do
if fsBold in Style then
Style := Style - [fsBold]
else
Style := Style + [fsBold];
// toggle status
ActionBold.Checked := not ActionBold.Checked;
end;

The ActionCount object has very simple code, but it demonstrates an OnUpdate handler;
when the memo control is empty, it is automatically disabled. We could have obtained the
same effect by handling the OnChange event of the memo control itself, but in general it
might not always be possible or easy to determine the status of a control simply by handling
one of its events. Here is the code of the two handlers of this action:

procedure TForml.ActionCountExecute(Sender: TObject);
begin

ShowMessage ('Characters: ' + IntToStr (Length (Memol.Text)));
end;

procedure TForml.ActionCountUpdate(Sender: TObject);
begin

ActionCount.Enabled := Memol.Text <> '';
end;

Finally, I've added a special action to test the sender object of the action event handler and
get some other system information. Besides showing the object class and name, I've added

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionList Component 295

code that accesses the action list object. I've done this mainly to show that you can access this
information and how to do it:

procedure TForml.ActionSenderExecute(Sender: TObject);

begin
Memol.Lines.Add ('Sender class: ' + Sender.ClassName);
Memol.Lines.Add ('Sender name: ' + (Sender as TComponent).Name);

Memol.Lines.Add ('Category: ' + (Sender as TAction).Category);
Memol.Lines.Add (

"Action 1ist name: ' + (Sender as TAction).ActionList.Name);
end;

You can see the output of this code in Figure 8.3, along with the user interface of the exam-
ple. Notice that the Sender is not the menu item you’ve selected, even if the event handler is
connected to it. The Sender object, which fires the event, is the action, which intercepts the
user operation.

FIGURE 8.3: ﬁ-’Acliuns M=
The Actions example, with File Edit Test

a detailed description of] AA Kl

the Sender of an Action Sender class: TAction

object’s OnExecute event

Sender name: ActionSender
Category: Test
Action list name: ActionList]

Finally, keep in mind that you can also write handlers for the events of the ActionList
object itself, which play the role of global handlers for all the actions of the list, and for the
Application global object, which fires for all the actions of the application. Before calling the
action’s OnExecute event, in fact, Delphi activates the OnExecute event of the ActionList and
the OnActionExecute event of the Application global object. These events can have a look at the
action, eventually execute some shared code, and then stop the execution (using the Hand7ed
parameter) or let it reach the next level.

If no event handler is assigned to respond to the action, either at the action list, applica-
tion, or action level, then the application tries to identify a target object to which the action
can apply itself.

NotE

When an action is executed, it searches for a control to play the role of the action target, by
looking at the active control, the active form, and other controls on the form. For example,
edit actions refer to the currently active control (if they inherit from TCustomEdit), while
dataset controls look for the dataset connected with the data source of the data-aware con-
trol having the input focus. Other actions follow different approaches to find a target compo-
nent, but the overall idea is shared by most standard actions.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

296 Chapter8 e Building the User Interface

The Toolbar and the ActionList of an Editor

In the previous chapter, I built the RichBar example to demonstrate the development of an
editor with a toolbar and a status bar. Of course, I should have also added a menu bar to the
form, but this would have created quite a few troubles in synchronizing the status of the toolbar
buttons with those of the menu items. A very good solution to this problem is to use actions,
which is what I've done in the MdEdit example, discussed in this section and available on the CD.

The application is based on an ActionList component, which includes actions for file han-
dling and Clipboard support, with code similar to the RichBar version. The Font type and
color selection is still based on combo boxes, so this doesn’t involve action—same for the
drop-down menu of the Size button. The menu, however, has a few extra commands, includ-
ing one for character counting and one for changing the background color. These are based
on actions, and the same happens for the three new paragraph justification buttons (and
menu commands).

One of the key differences in this new version is that the code never refers to the status of
the toolbar buttons, but eventually modifies the status of the actions. In other cases I've
used the actions OnUpdate events. For example, the RichEditSelectionChange method doesn’t
update the status of the bold button, which is connected to an action with the following
OnUpdate handler:

procedure TFormRichNote.acBoldUpdate(Sender: TObject);
begin

acBold.Checked := fsBold 1in RichEdit.SelAttributes.Style;
end;

Similar OnUpdate event handlers are available for most actions, including the counting
operations (available only if there is some text in the RichEdit control), the Save operation
(available if the text has been modified), and the Cut and Copy operations (available only if
some text is selected):

procedure TFormRichNote.acCountcharsUpdate(Sender: TObject);
begin

acCountChars.Enabled := RichEdit.GetTextLen > 0;
end;

procedure TFormRichNote.acSaveUpdate(Sender: TObject);
begin

acSave.Enabled := Modified;
end;

procedure TFormRichNote.acCutUpdate(Sender: TObject);
begin
acCut.Enabled := RichEdit.SelLength > 0;
acCopy.Enabled := acCut.Enabled;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionList Component 297

In the older example, the status of the Paste button was updated in the OnIdle event of the
Application object. Now that we use actions we can convert it into yet another OnUpdate
handler (see the preceding chapter for details on this code):

procedure TFormRichNote.acPasteUpdate(Sender: TObject);
begin

acPaste.Enabled := SendMessage (RichEdit.Handle, em_CanPaste, 0, 0) <> 0;
end;

Finally, the program has an addition compared to the last version: the three paragraph-
alignment buttons. These toolbar buttons and the related menu items should work like
radio buttons, being mutually exclusive with one of the three options always selected. For
this reason the actions have the GroupIndex set to 1, the corresponding menu items have the
RadioItem property set to True, and the three toolbar buttons have their Grouped property
set to True and the A11owA11Up property set to False. (They are also visually enclosed
between two separators.)

This is required so that the program can set the Checked property for the action corre-
sponding to the current style, which avoids unchecking the other two actions directly. This
code is part of the OnUpdate event of the action list, as it applies to multiple actions:

procedure TFormRichNote.ActionListUpdate(Action: TBasicAction;
var Handled: Boolean);
begin
// check the proper paragraph alignment
case RichEdit.Paragraph.Alignment of
taleftJustify: acLeftAligned.Checked := True;
taRightJustify: acRightAligned.Checked := True;

taCenter: acCentered.Checked := True;
end;
// checks the caps lock status
CheckCapslock;

end;

Finally, when one of these buttons is selected, the shared event handler uses the value of
the Tag, set to the corresponding value of the TATignment enumeration, to determine the
proper alignment:

procedure TFormRichNote.ChangeATlignment(Sender: TObject);
begin

RichEdit.Paragraph.Alignment := TATignment ((Sender as TAction).Tag);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

298 Chapter8 e Building the User Interface

Toolbar Containers

Most modern applications have multiple toolbars, generally hosted by a specific container.
Microsoft Internet Explorer, the various standard business applications, and the Delphi IDE
all use this general approach. However, they each implement this differently. Delphi has two
ready-to-use toolbar containers, the CoolBar and the ControlBar components. They have
differences in their user interface, but the biggest one is that the CoolBar is a Win32 com-
mon control, part of the operating system, while the ControlBar is a VCL-based component.

Both components can host toolbar controls as well as some extra elements such as combo
boxes and other controls. Actually, a toolbar can also replace the menu of an application, as
we’ll see later on.

We'll investigate the two components in the next two sections, but I want to emphasize here
(without getting too far ahead of myself) that I generally favor the use of the ControlBar. It
is based on VCL (and not subject to upgrade along with each minor release of Microsoft
Internet Explorer), and its user interface is nicer and more similar to that of common office
applications.

A Really Cool Toolbar

The CoolBar component is basically a collection of TCoo1Band objects that you can activate
by selecting the Band Editor item of the CoolBar shortcut menu, the Bands property, or the
Object TreeView. You can customize the CoolBar component in many ways: You can set a
bitmap for its background, add some bands to the Bands collection, and then assign to each
band an existing component or component container. You can use any window-based control
(not graphic controls), but only some of them will show up properly. If you want to have a
bitmap on the background of the CoolBar, for example, you need to use partially transparent
controls.

The typical component used in a CoolBar is the Toolbar (which can be made completely
transparent), but combo boxes, edit boxes, and animation controls are also quite common.
"This is often inspired by the user interface of Internet Explorer, the first Microsoft applica-
tion featuring the CoolBar component.

You can place one band on each line or all of them on the same line. Each would use a part of
the available surface, and it would be automatically enlarged when the user clicks on its title. It
is easier to use this new component than to explain it. Try it yourself or follow the description
below, in which we build a new version of our continuing toolbar example based on a CoolBar
control. You can see the form displayed by this application at run time in Figure 8.4.

The CoolBar example has a TCoo1Bar component with four bands, two for each of the two
lines. The first band includes a subset of the toolbar of the previous example, this time
adding an ImageList for the highlighted images. The second has an edit box used to set the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Toolbar Containers 299

font of the text; the third has a ColorGrid component, used to choose the font color and that
of the background. The last band has a ComboBox control with the available fonts.

FIGURE 8.4: ,‘-;'EoolhalFDrm

The form of the CoolBar
example at run time

his is the text of the label, very bare if you
compare it with the really cool toolbar at the top
of this form...

The user interface of the CoolBar component is really very nice, and Microsoft is increas-
ingly using it in its applications. However, the Windows CoolBar control has had many dif-
ferent and incompatible versions, as Microsoft has released different versions of the common
control library with different versions of the Internet Explorer. Some of these versions
“broke” existing programs built with Delphi.

Norte It is interesting to note that Microsoft applications generally don’t use the common control
libraries. Word and Excel use their own internal versions of the common controls, and VB uses an
OCX, not the common controls directly. Part of the reason that Borland had so much trouble with
the common controls is that it uses them more (and in more ways) than even Microsoft does.

For this reason, Borland introduced (in Delphi 4) a toolbar container called the Control-
Bar. A control bar hosts several controls, as a CoolBar does, and offers a similar user interface
that lets a user drag items and reorganize the toolbar at run time. A good example of the use of
the ControlBar control is Delphi’s own toolbar, but Microsoft applications use a very similar
user interface.

The ControlBar

The ControlBar is a control container, and you build it just by placing other controls inside
it, as you do with a panel (there is no list of Bands in it). Every control placed in the bar gets its
own dragging area (a small panel with two vertical lines, on the left of the control), as you can

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

300 Chapter8 e Building the User Interface

see in Figure 8.5. For this reason, you should generally avoid placing specific buttons inside
the ControlBar, but rather add containers with buttons inside them. Rather than using a
panel, you should generally use one ToolBar control for every section of the ControlBar.

FIGURE 8.5:

The ControlBar is a con-
tainer that allows a user to
drag all the elements, using
the special drag bar on the
side. Notice that each but-
ton gets a separate drag
bar, something you'll gen-
erally try to avoid.

-1o/x|

] _||] [Edtt ‘ | [ComboBox1

Buttond |“ Button2 |H Button3 ||

The MdEdit2 example is another version of the demo we’ve developed throughout the last
and this chapter. I've basically grouped the buttons into three toolbars (instead of a single
one) and left the two combo boxes as stand-alone controls. All these components are inside a
ControlBar, so that a user can arrange them at runtime, as you can see in Figure 8.6.

FIGURE 8.6: AF MdEditZ - [Untitled] _[ol x|
The MdEdit2 example at Fie Edit Font Paragraph Options Help H 0= §| “i clBlack j|

runtlme,.whlleauserls . P H I B 7 ”g At -
rearranging the toolbars in 13

the control bar

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Toolbar Containers 301

The following snippet of the DFM listing of the MdEdit2 example shows how the various
toolbars and controls are embedded in the ControlBar component:

object ControlBarl: TControlBar
Align = alTop
AutoSize = True
ShowHint = True
PopupMenu = BarMenu
object ToolBarFile: TToolBar
Flat = True
Images = Images
Wrapable = False
object ToolButtonl: TToolButton
Action = acNew
end
// more buttons...
end
object ToolBarEdit: TToolBar...
object ToolBarFont: TToolBar...
object ToolBarMenu: TToolBar
AutoSize = True

Flat = True
Menu = MainMenu
end

object ComboFont: TComboBox
Hint = 'Font Family'
Style = csDropDownlList
OnClick = ComboFontClick
end
object ColorBox1l: TColorBox...
end

"To obtain the standard effect, you have to disable the edges of the toolbar controls and set
their style to flat. Sizing all the controls alike, so that you obtain one or two rows of elements
of the same height, is not as easy as it might seem at first. Some controls have automatic siz-
ing or various constraints. In particular, to make the combo box the same height as the tool-
bars, you have to tweak the type and size of its font. Resizing the control itself has no effect.

The ControlBar also has a shortcut menu that allows you to show or hide each of the con-
trols currently inside it. Instead of writing code specific to this example, I've implemented a
more generic (and reusable) solution. The shortcut menu, called BarMenu, is empty at design
time and is populated when the program starts:

procedure TFormRichNote.FormCreate(Sender: TObject);
var

I: Integer;

mItem: TMenuItem;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

302 Chapter8 e Building the User Interface

begin

// populate the control bar menu
for I := 0 to ControlBar.ControlCount - 1 do

begin
mItem := TMenuItem.Create (Self);
mItem.Caption := ControlBar.Controls [I].Name;

mItem.Tag := Integer (ControlBar.Controls [I]);
mItem.OnClick := BarMenuClick;
BarMenu.Items.Add (mItem);

end;

The BarMenuClick procedure is a single event handler that is used by all of the items of
the menu and uses the Tag property of the Sender menu item to refer to the element of the
ControlBar associated with the item in the FormCreate method:

procedure TFormRichNote.BarMenuClick(Sender: TObject);
var
aCtrl: TControl;
begin
aCtrl := TControl ((Sender as TComponent).Tag);
aCtrl.Visible := not aCtrl.Visible;
end;

Finally, the OnPopup event of the menu is used to refresh the check mark of the menu
items:

procedure TFormRichNote.BarMenuPopup(Sender: TObject);
var

I: Integer;
begin

// update the menu checkmarks

for I := 0 to BarMenu.Items.Count - 1 do

BarMenu.Items [I].Checked := TControl (BarMenu.Items [I].Tag).Visible;

end;

A Menu in a Control Bar

If you look at the user interface of the MdEdit2 application, in Figure 8.6, you’ll notice that the
menu of the form actually shows up inside a toolbar, hosted by the control bar, and below the
application caption. In prior versions of Delphi, this required writing some custom code. In
Delphi 6, instead, all you have to do is to set the Menu property of the toolbar. You must also
remove the main menu from the Menu property of the form, to avoid having two menus.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Delphi’s Docking Support 303

Delphi’s Docking Support

Another feature added in Delphi 4 was support for dockable toolbars and controls. In other
words, you can create a toolbar and move it to any of the sides of a form, or even move it
freely on the screen, undocking it. However, setting up a program properly to obtain this
effect is not as easy as it sounds.

First of all, Delphi’s docking support is connected with container controls, not with forms.
A panel, a ControlBar, and other containers (technically, any control derived from TWinContro1)
can be set up as dock targets by enabling their DockSite property. You can also set the Auto-
Size property of these containers, so that they’ll show up only if they actually hold a control.

"To be able to drag a control (an object of any TControl-derived class) into the dock site,
simply set its DragKind property to dkDock and its DragMode property to dmAutomatic. This
way, the control can be dragged away from its current position into a new docking container.
To undock a component and move it to a special form, you can set its FloatingDockSiteClass
property to TCustomDockForm (to use a predefined stand-alone form with a small caption).

All the docking and undocking operations can be tracked by using special events of the com-
ponent being dragged (OnStartDock and OnEndDock) and the component that will receive the
docked control (OnDragOver and OnDragDrop). These docking events are very similar to the
dragging events available in earlier versions of Delphi.

There are also commands you can use to accomplish docking operations in code and to
explore the status of a docking container. Every control can be moved to a different location
using the Dock, ManualDock, and ManualFloat methods. A container has a DockClientCount
property, indicating the number of docked controls, and a DockClients property, with the
array of these controls.

Moreover, if the dock container has the UseDockManager property set to True, you’ll be
able to use the DockManager property, which implements the IDockManager interface. This
interface has many features you can use to customize the behavior of a dock container, even
including support for streaming its status.

As you can see from this brief description, docking support in Delphi is based on a large
number of properties, events, methods and objects (such as dock zones and dock trees)—
more features than we have room to explore in detail. The next example introduces the main
features you’ll generally need.

NotE

Docking support in not currently available in VisualCLX on either platform.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

304

Chapter8 e Building the User Interface

Docking Toolbars in ControlBars

In the MdEdit2 example, already discussed, I've included docking support. The program has
a second ControlBar at the bottom of the form, which accepts dragging one of the toolbars
in the ControlBar at the top. Since both toolbar containers have the AutoSize property set to
"True, they are automatically removed when the host contains no controls. I've also set to True
the AutoDrag and AutoDock properties of both ControlBars.

Actually, I had to place the bottom ControlBar inside a panel, together with the RichEdit
control. Without this trick, the ControlBar, when activated and automatically resized, kept
moving below the status bar, which I don’t think is the correct behavior. Because, in the
example, the ControlBar is the only control of the panel aligned to the bottom, there is no
possible confusion.

To let users drag the toolbars out of the original container, all you have to do is, once again
(as stated previously), set their DragKind property to dkDock and their DragMode property to
dmAutomatic. The only two exceptions are the menu toolbar, which I decided to keep close
to the typical position of a menu bar, and the ColorBox control, as unlike the combo box this
component doesn’t expose the DragMode and DragKind properties. (Actually, in the FormCreate
method of the example, you’ll find code you can use to activate docking for the component,
based on the “protected hack” discussed in Chapter 3.) The Fonts combo box can be dragged,
but I don’t want to let a user dock it in the lower control bar. To implement this constraint,
I've used the control bar’s OnDockOver event handler, by accepting the docking operation only
for toolbars:

procedure TFormRichNote.ControlBarLowerDockOver(Sender: TObject;
Source: TDragDockObject; X, Y: Integer; State: TDragState;
var Accept: Boolean);

begin
Accept := Source.Control is TToolbar;

end;

When you move one of the toolbars outside of any container, Delphi automatically creates a
floating form; you might be tempted to set it back by closing the floating form. This doesn’t
work, as the floating form is removed along with the toolbar it contains. However, you can
use the shortcut menu of the topmost ControlBar, attached also to the other ControlBar, to
show this hidden toolbar.

The floating form created by Delphi to host undocked controls has a thin caption, the so-
called zoolbar caption, which by default has no text. For this reason, I've added some code to
the OnEndDock event of each dockable control, to set the caption of the newly created form
into which the control is docked. To avoid a custom data structure for this information, I've

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Delphi’s Docking Support 305

used the text of the Hint property of these controls, which is basically not used, to provide a
suitable caption:
procedure TFormRichNote.EndDock(Sender, Target: TObject; X, Y: Integer);
begin
if Target is TCustomForm then
TCustomForm(Target).Caption := GetShortHint((Sender as TControl).Hint);
end;

You can see an example of this effect in the MdEdit2 program in Figure 8.7. Another
extension of the example, one which I haven’t done, could be the addition of dock areas on
the two sides of the form. The only extra effort this requires would be a routine to turn the
toolbars vertically, instead of horizontally. This basically implies switching the Left and Top
properties of each button, after disabling the automatic sizing.

FIGURE 8.7: o7 MdEditZ - [Untitled] _[Ol x|

The MdEdit2 example File Edit Font Paragraph Options Help ck

allows you to dock the |
£

toolbars (but not the

menu) at the top or bottom Times Hew Roman v

of the form or to leave =

them floating. 0 = 5

at -

-]
N
Ml
[l
Il

141

Controlling Docking Operations

Delphi provides many events and methods that give you a lot of control over docking opera-
tions, including a dock manager. To explore some of these features, try out the DockTest
example, a test bed for docking operations. The program assigns the FloatingDockSiteClass
property of a Memo component to TForm2, so that you can design specific features and add
them to the floating frame that will host the control when it is floating, instead of using an
instance of the default TCustomDockForm class.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

306

Chapter8 e Building the User Interface

Another feature of the program is that it handles the OnDockOver and OnDockDrop events of

a dock host panel to display messages to the user, such as the number of controls currently

docked:

procedure TForml.PanellDockDrop(Sender: TObject; Source: TDragDockObject;
X, Y: Integer);

begin
Caption := 'Docked: ' + IntToStr (Panell.DockClientCount);

end;

In the same way, the program also handles the main form’s docking events. Another con-

trol, a list box, has a shortcut menu you can invoke to perform docking and undocking opera-
tions in code, without the usual mouse dragging:

procedure TForml.DocktoPanellClick(Sender: TObject);
begin

// dock to the panel

ListBox1l.ManualDock (Panell, Panell, alBottom);
end;

procedure TForml.DocktoFormlClick(Sender: TObject);
begin

// dock to the current form

ListBox1l.Dock (Self, Rect (200, 100, 100, 100));
end;

procedure TForml.FloatinglClick(Sender: TObject);
begin
// toggle the floating status
if ListBox1l.Floating then
ListBox1l.ManualDock (Panell, Panell, alBottom)
else
ListBox1l.ManualFloat (Rect (100, 100, 200, 300));
Floatingl.Checked := ListBoxl.Floating;
end;

The final feature of the example is probably the most interesting one: Every time the pro-

gram closes, it saves the current docking status of the panel, using the dock manager support.
When the program is reopened, it reapplies the docking information, restoring the previous
configuration of the windows. The program does this only with the panel, so the other float-
ing windows will be displayed in their original positions. Here is the code for saving and

loading:
procedure TForml.FormDestroy(Sender: TObject);
var
FileStr: TFileStream;
begin

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Delphi’s Docking Support 307

if Panell.DockClientCount > 0 then
begin
FileStr := TFileStream.Create (DockFileName, fmCreate or fmOpenWrite);
try
Panell.DockManager.SaveToStream (FileStr);
finally
FileStr.Free;
end;
end
else
// remove the file
DeleteFile (DockFileName);
end;

procedure TForml.FormCreate(Sender: TObject);
var
FileStr: TFileStream;
begin
// reload the settings
DockFileName := ExtractFilePath (Application.Exename) + 'dock.dck';
if FileExists (DockFiTleName) then

begin
FileStr := TFileStream.Create (DockFileName, fmOpenRead);
try
Panell.DockManager.LoadFromStream (FileStr);
finally
FileStr.Free;
end;
end;
Panell.DockManager.ResetBounds (True);
end;

There are more features one might theoretically add to a docking program, but to add
those you should remove other features, as some of them might conflict. For example, auto-
matic alignments don’t work terribly well with the docking manager’s code for restoring. I
suggest you take this program and explore its behavior, extending it to support the type of
user interface you prefer.

NotE

Remember that although docking panels make an application look nice, some users get con-
fused by the fact that their toolbars might disappear or be in a different position than they are
used to. Don't overuse the docking features, or some of your inexperienced users may get lost.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

308 Chapter8 e Building the User Interface

Docking to a PageControl

Another interesting feature of page controls is the specific support for docking. As you dock
a new control over a PageControl, a new page is automatically added to host it, as you can
easily see in the Delphi environment. To accomplish this, you simply set the PageControl as
a dock host and activate docking for the client controls. This works best when you have sec-
ondary forms you want to host. Moreover, if you want to be able to move the entire Page-
Control into a floating window and then dock it back, you’ll need a docking panel in the
main form.

This is exactly what I've done in the DockPage example, which has a main form with the
following settings:

object Forml: TForml
Caption = 'Docking Pages'
object Panell: TPanel
Align = allLeft
DockSite = True
OnMouseDown = PanellMouseDown
object PageControll: TPageControl
ActivePage = TabSheetl
Align = alClient
DockSite = True
DragKind = dkDock
object TabSheetl: TTabSheet
Caption = 'List’
object ListBox1l: TListBox
Align = alClient
end
end
end
end
object Splitterl: TSplitter
Cursor = crHSplit
end
object Memol: TMemo
Align = alClient
end
end

Notice that the Panel has the UseDockManager property set to True and that the PageControl
invariably hosts a page with a list box, as when you remove all of the pages, the code used for
automatic sizing of dock containers might cause you some trouble. Now the program has
two other forms, with similar settings (although they host different controls):

object Form2: TForm2
Caption = 'Small Editor'

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Delphi’s Docking Support 309

DragKind = dkDock
DragMode = dmAutomatic
object Memol: TMemo
Align = alClient
end
end

You can drag these forms onto the page control to add new pages to it, with captions corre-
sponding with the form titles. You can also undock each of these controls and even the entire
PageControl. To do this, the program doesn’t enable automatic dragging, which would make
it impossible to switch pages anymore. Instead, the feature is activated when the user clicks
on the area of the PageControl that has no tabs—that is, on the underlying panel:

procedure TForml.PanellMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
PageControll.BeginDrag (False, 10);

end;

You can test this behavior by running the DockPage example, although Figure 8.8 tries to
depict it. Notice that when you remove the PageControl from the main form, you can
directly dock the other forms to the panel and then split the area with other controls. This is
the situation captured by the figure.

The main form of the Dock-

has been docked to the

uses part of the area of a
hosting panel. 2 27 28 23 3,0 T

FIGURE 8.8: j:-'Docking Pages (O] x|
Page example after a form | July 1998 o
Sun Mon TueWed Thy Fri Sat
page control on the left. 1 2z 3 &
Notice that another form 5 5 7 8 o gdn

12 13 14 15 16 17 18
19 20 21 22 23 24 25

aToday: 7410798

List | Small Editor |

ane

ee %

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

310 Chapter8 e Building the User Interface

The ActionManager Architecture

We have seen that actions and the ActionManager component can play a central role in the
development of Delphi applications, since they allow a much better separation of the user
interface from the actual code of the application. The user interface, in fact, can now easily
change without impacting the code too much. The drawback of this approach is that a pro-
grammer has more work to do. To have a new menu item, you need to add the corresponding
action first, than move to the menu, add the menu item, and connect it to the action.

"To solve this issue, and to provider developers and end users with some advanced features,
Delphi 6 introduces a brand new architecture, based on the ActionManager component,
which largely extends the role of actions. The ActionManager, in fact, has a collection of
actions but also a collection of toolbars and menus tied to them. The development of these
toolbars and menus is completely visual: you drag actions from a special component editor of
the ActionManager to the toolbars to have the buttons you need. Moreover, you can let the
end user of your programs do the same operation, and rearrange their own toolbars and
menus starting with the actions you provide them.

In other words, using this architecture allows you to build applications with a modern user
interface, customizable by the user. The menu can show only the recently used items (as
many Microsoft programs do, nowadays), allows for animation, and more.

This architecture is centered on the ActionManager component, but includes also a few
others components found at the end of the Additional page of the palette:

e The ActionManager component is a replacement of the ActionList (but can also use
one or more existing ActionLists) adding to the architecture visual containers of
actions.

e The ActionMainMenuBar control is a toolbar used to display the menu of an applica-
tion based on the actions of an ActionManager component.

e The ActionToolBar control is a toolbar used to host buttons based on the actions of an
ActionManager component.

e The CustomizeDlg component includes the dialog box you can use to let users cus-
tomize the user interface of an application based on the ActionManager component.

Building a Simple Demo

As this architecture is mostly a visual architecture, a demo is probably worth more than a
general discussion (although a printed book is not the best way to discuss a highly visual
series of operations). To create a sample program based on this architecture, first drop an
ActionManager component on a form, then double click it to open its component editor,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionManager Architecture

31

shown in Figure 8.9. Notice that this editor is not modal, so you can keep it open while

doing other operations in Delphi. Consider also that this same dialog box is displayed by the
CustomizeDlg component, although with some limited features (for example, adding new

actions is disabled).

FIGURE 8.9: 5 Editing Form1.ActionManagsil = B3| Editing Form1_ActionManages1 |5 E diting Form1.ActionManager] x|
Toolbars | actions | options | Toobars Actions | Options | Toolbars | Actions Options
The three pages of the Tobrs: (checkmarktoggles visbity)] - i - erscnalized Menus and Tocbars
. . Mew, ..
ActionManager editor Cotogores gt % renw show recerdy usedpens st
V| ActionToolBar Delete
H Edit
d|alog box N Reset Lissgs Dt
(Al Actions)
Other
[~ Large icons
% Shew tips o taolbars
Toolbar Options Deseription v Shaw shortcut keys in tips
Caption Options Menu animations: |Slide -
Selective |
To add actions to yaur application simply drag and drop from either
I Apply caption options to al toolbars Categories or Actions onto an existing ActionEar,

o The first page of this editor provides a list of visual containers of actions (toolbars or
menus). You add new toolbars by clicking the New button. To add new menus, you
have to add the corresponding component to the form, then open the ActionBars
collection of the ActionManager, select an action bar or add a new one, and hook the

menu to it using the ActionBar property. These are the same steps you could follow to
connect a new toolbar to this architecture at run time.

The second page of the ActionManager editor is very similar to the ActionList editor,
providing a way to add new standard or custom action, arrange them in categories, and
change their order. The new feature of this page, though, is that fact you can drag a
category or a single action from it and drop it onto an action bar control. If you drag
a category to a menu, you obtain a pull-down menu with all of the items of the cate-
gory; if you drag it to a toolbar, each of the actions of the category gets a button on the
toolbar. If you drag a single action to a toolbar, you get the corresponding button; if
you drag it to the menu, you get a direct menu command, which is something you
should generally avoid.

The last page of the ActionManager editor allows you (and optionally an end user) to
activate the display of recently used menu items and to modify some of the visual prop-
erties of the toolbars.

The AcMan'Iest program is an example that uses some of the standard actions and a

RichEdit control to showcase the use of this architecture (I haven’t actually written any cus-
tom code to make the actions work better, as I wanted to focus only on the action manager
for this example). You can experiment with it at design time or run it, click the Customize

button, and see what an end user can do to customize the application (see Figure 8.10).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

312 Chapter8 e Building the User Interface

FIGURE 8.10:

Using the CustomizeDlg
component, you can let a
user customize the toolbars
and the menu of an appli-
cation, simply by dragging
items from the dialog box
or moving them around in
the actions bars
themselves.

=10]

File Edit Format Search Toolz Help
7 Unde % Cut B3Copy (R Paste @ Find... I%t\ﬂeplace
B Bold # ltalic U Undefine = Bulet: = mign_ﬂn = Center = Align Right

ﬂ Save Az.. Customize j‘i_ Ezit @ Caontents
RichE dit1

I Customize x|

Toolbars Actions |Opti0ns|

Categories: Actions:
¥ o Crkx
Format)
File Copy Chrl+C
Search

Paste Chrl+Y
Tools @e
Help Select all Chrl+A
(Al Actions) « Undo Chri+z

Description
Erases the selection

To add actions to vour application simply drag and drop From either
Categories or Actions onko an existing ActionBar,

Close

Actually, in the program you can prevent the user from doing some operations on actions.
Any specific element of the user interface (a TActionClient object) has a ChangedATTowed
property that you can use to disable modify, move, and delete operations. Any action client
container (the visual bars) has a property to disable hiding itself (A1TowHiding by default is set
to True). Each ActionBar Items collection has a Customizable option you can turn off to dis-
able all user changes to the entire bar.

Tip When | say “ActionBar” | don’t mean the visual toolbars containing action items, but the items
of the ActionBars collection of the ActionManager component, which in turn has an Items
collection. The best way to understand this structure is to look at the sub-tree displayed by the
Object TreeView for an ActionManager component. Each TActionBar collection item has an
actual TCustomActionBar visual component connected, but not the reverse (so, for example,
you cannot reach this Customizable property if you start by selecting the visual toolbar). Due
to the similarity of the two names, it can take a while to understand what the Delphi help
actually means.

"To make user settings persistent, I've connected a file (called settings) to the FileName
property of the ActionManager component. When you assign this property, you should enter

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionManager Architecture 313

a name of the file you want to use; when you start the program, the file will be created for
you by the ActionManager.

The persistency is accomplished by streaming each ActionClientltem connected with the
action manager. As these action client items are based on the user settings and maintain state
information, a single file collects both user changes to the interface and usage data.

Since Delphi stores user setting and status information in a file you provide, you can make
your application support multiple users on a single computer. Simply use a file of settings for
each of them and connect it to the action manager as the program starts (using the current
user of the computer or after some custom login). Another possibility is to store these set-
tings over the network, so that even when a user moves to a different computer, the current
personal settings will move along.

Least-Recently Used Menu Items

Once a file for the user settings is available, the ActionManager will save into it the user pref-
erences and also use it to track the user activity. This is essential to let the system remove
menu items which haven’t been used for some time, making them available in an extended
menu, using the same user interface adopted by Microsoft (see Figure 8.11 for an actual
example).

FIGURE 8.11:

The ActionManager dis-
ables least recently used
menu items that you can
still see by selecting the

menu extension command.

4" AcManTest

Fil= Edit Format Search Tools Help

n Open.. Chl+0
Frint Setyp...

Paste mfind... g";s Replace
nderline 2= Bullets = Align Left = Center

ﬂ Save fs.. Customize| WL Exit @ Contents

RichEdit1

The ActionManager doesn’t simply show the least recently used items: it allows you to cus-
tomize this behavior in a very precise way. Each action bar has a SessionCount property that

keeps track of the number of times the application has been executed. Each ActionClientltem
has a LastSession property and a UsageCount property used to track user operations. Notice,
by the way, that a user can reset all this dynamic information by using the Reset Usage Data
button of the customization dialog.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

314 Chapter8 e Building the User Interface

The system calculates the number of sessions the action has gone unused, by computing the
difference between the number of times the application has been executed (SessionCount) and
the last session in which the action has been used (LastSession). The value of UsageCount is
used to look up in the PrioritySchedule how many sessions the items can go unused before it
is removed. In other words, the PrioritySchedule maps each the usage count with a number
of unused sessions. By modifying the PrioritySchedule, you can determine how fast the
items are removed in case they are not used.

You can also prevent this system to be activated for specific actions or groups of actions.
The Items property of the ActionBars of the ActionManager has a HideUnused property you
can toggle to disable this feature for an entire menu. To make a specific item always visible,
regardless of the actual usage, you can also set its UsageCount property to —1. However, the
user settings might override this value.

"To understand a little better how this system works, I've added a custom action (Action-
ShowStatus) to the AcManTest example. The action has the following code that saves the
current action manager settings to a memory stream, converts it to text, and shows it inside
the memo (refer to Chapter 5 for more information about streaming):

procedure TForml.ActionShowStatusExecute(Sender: TObject);

var
memStr, memStr2: TMemoryStream;
begin
memStr := TMemoryStream.Create;
try
memStr2 := TMemoryStream.Create;
try
ActionManagerl.SaveToStream(memStr);
memStr.Position := 0;
ObjectBinaryToText(memStr, memStr2);
memStr2.Position := 0;
RichEditl.Lines.LoadFromStream(memStr2);
finally
memStr2.Free;
end;
finally
memStr.Free;
end;
end;

The output you obtain is the textual version of the settings file automatically updated at
each execution of the program. Here a small portion of this file, with the details of one of
pull-down menus and plenty of extra comments:

item // File pulldown of the main menu action bar
Items = <

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionManager Architecture 315

item
Action = Forml.FileOpenl
LastSession = 19 // was used in the last session
UsageCount = 4 // was used four times
end
item
Action
end
item
Action = Forml.FilePrintSetupl
LastSession = 7 // used some time ago
UsageCount = 1 // only once
end
item
Action
end
item
Action
end>
Caption = '&File’
LastSession = 19
UsageCount = 5 // the sum of the usage count of the items
end

Forml.FileSaveAsl // never used

Forml.FileRunl // never used

Forml.FileExitl // never used

Porting an Existing Program

If this architecture is nice, you’ll probably need to redo most of your applications to take advan-
tage of it. However, if you’re already using actions (with the ActionList component), this con-
version will be much simpler. In fact, the ActionManager has its own set of actions but can also
use actions from another ActionManager or ActionList. The LinkedActionLists property of
the ActionManager is a collection of other containers of actions (ActionLists or ActionMan-
agers), which can be associated with the current one. Associating all the various groups of
action is useful to let a user customize the entire user interface with a single dialog box.

If you hook external actions and open the ActionManager editor, you’ll see in the Actions
page a combo box listing the current ActionManager plus the other action containers linked
to it. You can choose one of these containers to see its set of actions and change their proper-
ties. The All Action option of this combo box allows you to work on all of the actions from
the various containers at once, but I've noticed that at startup it is selected but not always
effective. Reselect it to actually see all of the actions.

As an example of porting an existing application, I've extended the program built through-
out this chapter, into the MdEdit3 example. This example uses the same action list of the
previous version hooked to an ActionManager that has the extra customize property, to let

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

316

Chapter8 e Building the User Interface

users rearrange the user interface. Differently from the earlier AcManDemo program, the
MdEdit3 example uses a ControlBar as a container for the action bars (a menu, three tool-
bars, and the usual combo boxes) and has full support for dragging them outside of the con-
tainer as floating bars and dropping them into the lower ControlBar.

"To accomplish this, I only had to modify the source code slightly to refer to the new classes
for the containers (that is, TCustomActionToo1Bar instead of TToo1Bar) in the ControlBar-
LowerDockOver method. I also found out that the OnEndDock event of the ActionToolBar com-
ponent passes as parameter an empty target when the system creates a floating form to host
the control, so that I couldn’t easily give to this forms a new custom caption (see the EndDock
method of the form).

Using List Actions

We’ll see more examples of the use of this architecture in the chapters devoted to MDI and
database programming. For the moment, I just want to add an extra example showing how to
use a rather complex group of standard actions introduced in Delphi 6, the list actions. List
actions, in fact, comprise two different groups. Some of them (such as the Move, Copy,
Delete, Clear, and Select All) actions are normal actions working on list boxes or other lists.
The VirtualListAction and StaticListAction elements, instead, define actions based multiple
choices, which are going to be displayed in a toolbar as a combo box.

The ListActions demo highlights both groups of list actions, as its ActionManager has five
of them, displayed on two separate toolbars. This is a summary of the actions of the actions
manager (I’ve omitted the action bars portion of the component’s DFM file):

object ActionManagerl: TActionManager
ActionBars.SessionCount = 1
ActionBars = <...>
object StaticlListActionl: TStaticlListAction
Caption = 'Numbers'
Items.CaseSensitive = False
Items.SortType = stNone
Items = <
item
Caption
end
item
Caption = 'two'
end
I
OnItemSelected = ListActionItemSelected
end
object VirtuallListActionl: TVirtuallListAction
Caption = 'Items'’

"one'

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The ActionManager Architecture 317

OnGetItem = VirtuallListActionlGetItem
OnGetItemCount = VirtuallListActionlGetItemCount
OnItemSelected = ListActionItemSelected

end

object ListControlCopySelectionl: TListControlCopySelection
Caption = 'Copy'
Destination = ListBox2
ListControl = ListBox1l

end

object ListControlDeleteSelectionl: TListControlDeleteSelection
Caption = 'Delete’

end
object ListControlMoveSelection2: TListControlMoveSelection
Caption = 'Move'’

Destination = ListBox2
ListControl = ListBoxl
end
end

The program has also two list boxes in its form, used as action targets. The Copy and Move
actions are tied to these two list boxes by their ListControl and Destination properties. The
Delete action, instead, automatically works with the list box having the input focus.

The StaticListAction defines a series of alternative items, in its Items collection. This is
not a plain string list, as any item has also an ImageIndex, which allows turning the combo
box in graphical selection. You can, of course, add more items to this list programmatically.
However, in case of a highly dynamic list, you can also use the VirtualListAction. This com-
ponent doesn’t define a list of items but has two events you can use to provide strings and
images for the list. The OnGetItemCount event allows you to indicate the number of items to
display; the OnGetItem event is then called for each specific item.

In the ListActions demo, the VirtualListAction has the following event handlers for its def-
inition, producing the list you can see in the active combo box of Figure 8.12:

procedure TForml.VirtuallListActionlGetItemCount(Sender: TCustomListAction;
var Count: Integer);

begin
Count := 100;

end;

procedure TForml.VirtuallListActionlGetItem(Sender: TCustomListAction;
const Index: Integer; var Value: String;
var ImageIndex: Integer; var Data: Pointer);

begin
Value := 'Item' + IntToStr (Index);

end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

318 Chapter8 e Building the User Interface

FIGURE 8.12: I ListActions E -[o| x|
The ListActions application Mumbers |four j Items |Ilem? j
has a toolbar hosting a Copy Delete bove Item? -
static list and a virtual one. IR Items —
h Item3 —
i ltem10
Iternd |bern 1
hemi2 [y
Iterm13
Iterml4 i
|bermd
[temnd
Item?
Norte | thought that the virtual action items were actually requested only when needed to display

them, making this actually a virtual list. Instead, all the items are created right away, as you can
prove by enabling the commented code of the VirtualListActionlGetItem method (notin
the listing above), which adds to each item the time its string is requested.

Both the static and the virtual list have an OnItemSeTlected event. In the shared event handler,
I’ve written the following code, to add the current item to the first list box of the form:
procedure TForml.ListActionItemSelected(Sender: TCustomListAction;
Control: TControl);
begin
ListBox1l.Items.Add ((Control as TCustomActionCombo).SelText);
end;
In this case, the sender is the custom action list, but the ItemIndex property of this list is
not updated with the selected item. However, accessing the visual control that displays the
list, we can obtain the value of the selected item.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

What’s Next? 319

What’s Next?

In this chapter, I've introduced the use of actions, the actions list, and action manager archi-
tectures. As you’ve seen, this is an extremely powerful architecture to separate the user inter-
face from the actual code of your applications, which uses and refers to the actions and not
the menu items or toolbar button related to them. The Delphi 6 extension of this architec-
ture allows users of your programs to have a lot of control, and makes your applications
resemble high-end programs without much effort on your part. The same architecture is also
very handy to let you design the user interface of your program, regardless of whether you
give this ability to users.

I’ve also covered other user-interface techniques, such as docking toolbars and other con-
trols. You can consider this chapter the first step toward building professional applications.
We will take other steps in the following chapters; but you already know enough to make
your programs similar to some best-selling Windows applications, which may be very impor-
tant for your clients.

Now that the elements of the main form of our programs are properly set up, we can con-
sider adding secondary forms and dialog boxes. This is the topic of the next chapter, along
with a general introduction to forms. The following chapter will then cover the overall struc-
ture of a Delphi application.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

Working with Forms

e Form styles, border styles, and border icons
e Mouse and keyboard input

e Painting and special effects

e Positioning, scaling, and scrolling forms

e Creating and closing forms

e Modal and modeless dialog boxes and forms
e Creating secondary forms dynamically

e Predefined dialog boxes

e Building a splash screen

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

322 Chapter 9 e Working with Forms

If you’ve read the previous chapters, you should now be able to use Delphi’s visual compo-
nents to create the user interface of your applications. So let’s turn our attention to another
central element of development in Delphi: forms. We have used forms since the initial chap-
ters, but I've never described in detail what you can do with a form, which properties you can
use, or which methods of the TForm class are particularly interesting.

This chapter looks at some of the properties and styles of forms and at sizing and position-
ing them. I’ll also introduce applications with multiple forms, the use of dialog boxes (custom
and predefined ones), frames, and visual form inheritance. I'll also devote some time to input
on a form, both from the keyboard and the mouse.

The TForm Class

Forms in Delphi are defined by the TForm class, included in the Forms unit of VCL. Of course,
there is now a second definition of forms inside Visual CLX. Although I'll mainly refer to the
VCL class in this chapter, I'll also try to highlight differences with the cross-platform version
provided in CLX.

The TForm class is part of the windowed-controls hierarchy, which starts with the TWinControT
(or TWidgetControl) class. Actually, TForm inherits from the a/most complete TCustomForm,
which in turn inherits from TScrollingWinControl (or TScrolTingWidget). Having all of the
features of their many base classes, forms have a long series of methods, properties, and
events. For this reason, I won't try to list them here, but I'd rather present some interesting
techniques related to forms throughout this chapter. I'll start by presenting a technique for
not defining the form of a program at design time, using the TForm class directly, and then
explore a few interesting properties of the form class.

Throughout the chapter, I'll point out a few differences between VCL forms and CLX
forms. I've actually built a CLX version for most of the examples of this chapter, so you can
immediately start experimenting with forms and dialog boxes in CLX as well as VCL. As in
past chapters, the CLX version of each example is prefixed by the letter Q.

Using Plain Forms

Generally, Delphi developers tend to create forms at design time, which implies deriving a
new class from the base one, and build the content of the form visually. This is certainly a
reasonable standard practice, but it is not compulsory to create a descendant of the TForm
class to show a form, particularly if it is a simple one.

Consider this case: you have to show a rather long message (based on a string) to a user,
and you don’t want to use the simple predefined message box, as it will show up too large and

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TForm Class 323

not provide scroll bars. You can create a form with a memo component in it, and display the
string inside it. Nothing prevents you from creating this form in the standard visual way, but
you might consider doing this in code, particularly if you need a large degree of flexibility.

The DynaForm and QDynaForm examples (both on the companion CD), which are
somewhat extreme, have no form defined at design time but include a unit with this function:

procedure ShowStringForm (str: string);
var
form: TForm;
begin
Application.CreateForm (TForm, form);
form.caption := 'DynaForm';
form.Position := poScreenCenter;
with TMemo.Create (form) do
begin
Parent := form;
Align := alClient;
Scrollbars := ssVertical;
ReadOnly := True;
Color := form.Color;
BorderStyle := bsNone;
WordWrap := True;
Text := str;
end;
form.Show;
end;

Besides the fact I had to create the form using the Application global object, a feature
required by Delphi applications and discussed in the next chapter, this code simply does
dynamically what you generally do with the form designer. Writing this code is undoubtedly
more tedious, but it allows also a greater deal of flexibility, because any parameter can depend
on external settings.

The ShowStringForm function above is not executed by an event of another form, as there
are no traditional forms in this program. Instead, I've modified the project’s source code to
the following:

program DynaForm;
uses
Forms,
DynaMemo in 'DynaMemo.pas’;

{$R *.RES}

var

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

324 Chapter 9 e Working with Forms

str: string;

begin
str = "'";
Randomize;

while Length (str) < 2000 do
str := str + Char (32 + Random (94));

ShowStringForm (str);

Application.Run;
end.

The effect of running the DynaForm program is a strange-looking form filled with ran-
dom characters (as you can see in Figure 9.1), not terribly useful in itself but for the idea it

underscores.

FIGURE 9.1:

The dynamic form
generated by the
DynaForm example
is completely created
at run time, with no
design-time support.

Tip An indirect advantage of this approach, compared to the use of DFM files for design-time forms,
is that it would be much more difficult for an external programmer to grab information about
the structure of the application. In Chapter 5 we saw that you can extract the DFM from the cur-
rent Delphi executable file, but the same can be easily accomplished for any executable file com-
piled with Delphi for which you don’t have the source code. If it is really important for you to
keep to yourself a specific set of components you are using (maybe those in a specific form), and
the default values of their properties, writing the extra code might be worth the effort.

The Form Style

The FormSty1le property allows you to choose between a normal form (fsNormal) and the
windows that make up a Multiple Document Interface (MDI) application. In this case, you’ll
use the fsMDIForm style for the MDI parent window—that is, the frame window of the
MDTI application—and the fsMDIChild style for the MDI child window. To know more

I DynaForm

ISi[=] ﬂ
Ap*ugCASOwWiE z_Unjgpa!l]. xb{ wiall]
MB35, EOL LI el -drmert a5 20H(d 2D W) —
*F 8 MnSn Ty
Prakky wdU DHEM *hdP 240 MEE# mTwS A TCw0 g
dp'cgZhDxEvC =bR|e0T mihxotg3<h Y P
ESAESwty G YBy?h nkU 2R 1qU S[Er0 6d+ K 0]CH 2:BB &
AL AL QG addCron™s 10 uip]Dval 2B 37 g8 0= eral+E #E-9
TJEL!
1]RACz?[_UOfdv<FB0dkgat]k sFpall [fwadHulmbdNiE
Foichal v L)eMEvhs riwdaal FAE g ik 25 T W< 24rHET 0
L3+eMA_my_3INh/c?<o-a
AFF3IHH3E5: CFT CARmAR $R efad VP ALUINE Bn+$PEE 74|
PO7CIpuEI L [ZMO, BT EoF 4 3PFE SwhpdidZhlc7a
ELAnp3 27pCi{]-T88meR > B @Bipr 07K, 3C4+0 HyiidmP -+
izv 19 3px0 iy
37 JFrhiNEp<sit L, naME_DGL rtr. m+5ibLIES: CI"}]awp{EV]ro{yﬂ

about the development of an MDI application, look at Chapter 10.

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

The TForm Class 325

A fourth option is the fsStayOn'Top style, which determines whether the form has to
always remain on top of all other windows, except for any that also happen to be “stay-on-
top” windows.

To create a top-most form (a form whose window is always on top), you need only set the
FormStyTe property, as indicated above. This property has two different effects, depending
on the kind of form you apply it to:

e The main form of an application will remain in front of every other application (unless
other applications have the same top-most style, too). At times, this generates a rather
ugly visual effect, so this makes sense only for special-purpose alert programs.

e A secondary form will remain in front of any other form of the application it belongs
to. The windows of other applications are not affected, though. This is often used for
floating toolbars and other forms that should stay in front of the main window.

The Border Style

Another important property of a form is its BorderStyle. This property refers to a visual ele-
ment of the form, but it has a much more profound influence on the behavior of the window,
as you can see in Figure 9.2.

FIGURE 9.2: g _[olx]
Sample forms with the Border
various border styles, © MNone
created by the Borders & Sl
example " Sizeable o
£ RIS
" Dialog
% T ool Wind
{uln] [Lgln w12} ‘I_;“ _lo ﬂ
" Sizeable Toal Wwindaow
X
T ool Window H

At design time, the form is always shown using the default value of the BorderStyle prop-
erty, bsSizeable. This corresponds to a Windows style known as thick frame. When a main
window has a thick frame around it, a user can resize it by dragging its border. This is made
clear by the special 7esize cursors (with the shape of a double-pointer arrow) displayed when
the user moves the mouse onto this thick window border.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

326 Chapter 9 e Working with Forms

A second important choice for this property is bsDialog. If you select it, the form uses as its
border the typical dialog-box frame—a thick frame that doesn’t allow resizing. In addition to
this graphical element, note that if you select the bsDialog value, the form becomes a dialog
box. This involves several changes. For example, the items on its system menu are different,
and the form will ignore some of the elements of the BorderIcons set property.

WARNING setting the BorderStyTe property at design time produces no visible effect. In fact, several
component properties do not take effect at design time, because they would prevent you
from working on the component while developing the program. For example, how could you
resize the form with the mouse if it were turned into a dialog box? When you run the applica-
tion, though, the form will have the border you requested.

There are four more values we can assign to the BorderStyle property. The style bsSingle
can be used to create a main window that’s not resizable. Many games and applications based
on windows with controls (such as data-entry forms) use this value, simply because resizing
these forms makes no sense. Enlarging a form to see an empty area or reducing its size to
make some components less visible often doesn’t help a program’s user (although Delphi’s
automatic scroll bars partially solve the last problem). The value bsNone is used only in very
special situations and inside other forms. You’ll never see an application with a main window
that has no border or caption (except maybe as an example in a programming book to show
you that it makes no sense).

The last two values, bsToolWindow and bsSize ToolWin, are related to the specific Win32
extended style ws_ex_ToolWindow. This style turns the window into a floating toolbox, with a
small title font and close button. This style should not be used for the main window of an
application.

To test the effect and behavior of the different values of the BorderStyle property, I've
written a simple program called Borders, available also as QBorders in the CLX version.
You’ve already seen its output, in Figure 9.2. However, I suggest you run this example and
experiment with it for a while to understand all the differences in the forms.

WARNING | C(X, the enumeration for the BorderStyTe property uses slightly different values, prefixed
by the letters fbs (form border style). So we have fbsSingle, fbsDialog, and so on.

The main form of this program contains only a radio group and a button. There is also a
secondary form, with no components and the Position property set to poDefaultPosOnly.
"This affects the initial position of the secondary form we’ll create by clicking the button. (I’ll
discuss the Position property later in this chapter.)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TForm Class 327

The code of the program is very simple. When you click the button, a new form is dynami-
cally created, depending on the selected item of the radio group:
procedure TForml.BtnNewFormClick(Sender: TObject);

var
NewForm: TForm2;

begin
NewForm := TForm2.Create (Application);
NewForm.BorderStyle := TFormBorderStyle (BorderRadioGroup.ItemIndex);

NewForm.Caption := BorderRadioGroup.Items[BorderRadioGroup.ItemIndex];
NewForm. Show;

end;

"This code actually uses a trick: it casts the number of the selected item into the TFormBorder-
Style enumeration. This works because I've given the radio buttons the same order as the values
of this enumeration:

type

TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog, bsTolWindow,
bsSizeTooTWin);

The BtnNewFormC1ick method then copies the text of the radio button to the caption of the
secondary form. This program refers to TForm2, the secondary form defined in a secondary
unit of the program, saved as SECOND. PAS. For this reason, to compile the example, you must
add the following lines to the impTementation section of the unit of the main form:

uses
Second;

Tip

Whenever you need to refer to another unit of a program, place the corresponding uses
statement in the impTlementation portion instead of the interface portion if possible. This
speeds up the compilation process, results in cleaner code (because the units you include are
separate from those included by Delphi), and prevents circular unit compilation errors. To
accomplish this, you can also use the File > Use Unit menu command.

The Border Icons

Another important element of a form is the presence of icons on its border. By default, a win-
dow has a small icon connected to the system menu, a Minimize button, a Maximize button,
and a Close button on the far right. You can set different options using the BorderIcons prop-
erty, a set with four possible values: biSystemMenu, biMinimize, biMaximize, and biHelp.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

328

Chapter 9 e Working with Forms

NoTE

The biHelp border icon enables the “What's this?” Help. When this style is included and the
biMinimize and biMaximize styles are excluded, a question mark appears in the form’s title bar.
If you click this question mark and then click a component inside the form (but not the form
itself!), Delphi activates the Help about that object inside a pop-up window. This is demon-
strated by the Blcons example, which has a simple Help file with a page connected to the
HelpContext property of the button in the middle of the form.

The Blcons example demonstrates the behavior of a form with different border icons and
shows how to change this property at run time. The form of this example is very simple: It has
only a menu, with a pull-down containing four menu items, one for each of the possible ele-
ments of the set of border icons. I've written a single method, connected with the four com-
mands, that reads the check marks on the menu items to determine the value of the BorderIcons

property. This code is therefore also a good exercise in working with sets:

procedure TForml.SetIcons(Sender: TObject);
var
BorIco: TBorderIcons;
begin
(Sender as TMenuItem).Checked := not (Sender as TMenuItem).Checked;
if SystemMenul.Checked then
BorIco := [biSystemMenu]
else
BorIco := [];
if MaximizeBox1l.Checked then
Include (BorIco, biMaximize);
if MinimizeBox1.Checked then
Include (BorIco, biMinimize);
if Helpl.Checked then
Include (BorIco, biHelp);
BorderIcons := BorIco;
end;

While running the Blcons example, you can easily set and remove the various visual ele-
ments of the form’s border. You’ll immediately see that some of these elements are closely

related: if you remove the system menu, all of the border icons will disappear; if you remove
either the Minimize or Maximize button, it will be grayed; if you remove both these buttons,

they will disappear. Notice also that in these last two cases, the corresponding items of the
system menu are automatically disabled. This is the standard behavior for any Windows

application. When the Maximize and Minimize buttons have been disabled, you can activate
the Help button. As a shortcut to obtain this effect, you can click the button inside the form.

Also, you can click the button after clicking the Help Menu icon to see a Help message, as
you can see in Figure 9.3.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The TForm Class 329

FIGURE 9.3: PP 2]]

The Blcons example. By
selecting the help border
icon and clicking over the
button, you get the help
displayed in the figure.

Blcons Button

Press this button to activate the help button in the
form border

As an extra feature, the program also displays the time that the Help was invoked in the
caption, by handling the OnHelp event of the form. This effect is visible in the figure.

WARNING gy [00king at the QBIcons version, built with CLX, you can clearly notice that a bug in the
library prevents you from changing the border icons at run time, while the different design-
time settings fully work.

Setting More Window Styles

The border style and border icons are indicated by two different Delphi properties, which
can be used to set the initial value of the corresponding user interface elements. We have
seen that besides changing the user interface, these properties affect the behavior of a win-
dow. It is important to know that in VCL (and obviously not in CLX), these border-related
properties and the FormStyTe property mainly correspond to different settings in the style and
extended style of a window. These two terms reflect two parameters of the CreateWindowEx
API function Delphi uses to create forms.

It is important to acknowledge this, because Delphi allows you to modify these two para-

meters freely by overriding the CreateParams virtual method:
public
procedure CreateParams (var Params: TCreateParams); override;

This is the only way to use some of the peculiar window styles that are not directly avail-
able through form properties. For a list of window styles and extended styles, see the API
Help under the topics “CreateWindow” and “CreateWindowEx.” You’ll notice that the
Win32 API has styles for these functions, including those related to tool windows.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

330 Chapter 9 e Working with Forms

"To show how to use this approach, I've written the NoTitle example on the companion
CD, which lets you create a program with a custom caption. First we have to remove the
standard caption but keep the resizing frame by setting the corresponding styles:

procedure TForml.CreateParams (var Params: TCreateParams);
begin
inherited CreateParams (Params);
Params.Style := (Params.Style or ws_Popup) and not ws_Caption;

end;

Norte Besides changing the style and other features of a window when it is created, you can change
them at run time, although some of the settings do not take effect. To change most of the cre-
ation parameters at run time, you can use the SetWindowLong API function, which allows you
to change the internal information of a window. The companion GetWindowLong function can
be used to read the current status. Two more functions, GetClassLong and SetClasslong,
can be used to read and modify class styles (the information of the WindowClass structure of
TCreateParams). You'll seldom need to use these low-level Windows API functions in Delphi,
unless you write advanced components.

"To remove the caption, we need to change the overlapped style to a pop-up style; other-
wise, the caption will simply stick. Now how do we add a custom caption? I've placed a label
aligned to the upper border of the form and a small button on the far end. You can see this

effect at run time in Figure 9.4.

FIGURE 9.4: NoTitle {drag here to move \;induw)

The NoTitle example has no
real caption but a fake one
made with a label.

"To make the fake caption work, we have to tell the system that a mouse operation on this
area corresponds to a mouse operation on the caption. This can be done by intercepting the
wm_NCHitTest Windows message, which is frequently sent to Windows to determine where

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Direct Form Input 331

the mouse currently is. When the hit is in the client area and on the label, we can pretend the
mouse is on the caption by setting the proper result:
procedure TForml.HitTest (var Msg: TWmNCHitTest);
// message wm_NcHitTest
begin
inherited;
if (Msg.Result = htClient) and
(Msg.YPos < Labell.Height + Top + GetSystemMetrics (sm_cyFrame)) then
Msg.Result := htCaption;
end;

The GetSystemMetrics API function used in the listing above is used to query the operating
system about the size of the various visual elements. It is important to make this request every
time (and not cache the result) because users can customize most of these elements by using
the Appearance page of the Desktop options (in Control Panel) and other Windows settings.
The small button, instead, has a call to the Close method in its OnC11ick event handler. The
button is kept in its position even when the window is resized by using the [akTop,akRight]
value for the Anchors property. The form also has size constraints, so that a user cannot make
it too small, as described in the “Form Constraints” section later in this chapter.

Direct Form Input

Having discussed some special capabilities of forms, I'll now move to a very important topic:
user input in a form. If you decide to make limited use of components, you might write com-
plex programs as well, receiving input from the mouse and the keyboard. In this chapter, I'll

only introduce this topic.

Supervising Keyboard Input

Generally, forms don’t handle keyboard input directly. If a user has to type something, your
form should include an edit component or one of the other input components. If you want to
handle keyboard shortcuts, you can use those connected with menus (possibly using a hidden
pop-up menu).

At other times, however, you might want to handle keyboard input in particular ways for a
specific purpose. What you can do in these cases is turn on the KeyPreview property of the
form. Then, even if you have some input controls, the form’s OnKeyPress event will always be
activated for any keyboard-input operation. The keyboard input will then reach the destina-
tion component, unless you stop it in the form by setting the character value to zero (not the
character 0, but the value 0 of the character set, indicated as #0).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

332 Chapter 9 e Working with Forms

The example I've built to demonstrate this, KPreview, has a form with no special proper-
ties (not even KeyPreview), a radio group with four options, and some edit boxes, as you can
see in Figure 9.5.

FIGURE 9.5: f Hello... caption! k H=l E3
The KPreview program
allows you to type into the

caption of the form (among 7" Mone Editl
other things).

" Enter = Tah Edit2
[moent

Freview Options

" Skip vowels

By default the program does nothing special, except when the various radio buttons are
used to enable the key preview:
procedure TForml.RadioPreviewClick(Sender: TObject);
begin
KeyPreview := RadioPreview.ItemIndex <> 0;
end;

Now we’ll start receiving the OnKeyPress events, and we can do one of the three actions
requested by the three special buttons of the radio group. The action depends on the value of
the ItemIndex property of the radio group component. This is the reason the event handler
is based on a case statement:

procedure TForml.FormKeyPress(Sender: TObject; var Key: Char);

begin
case RadioPreview.ItemIndex of

In the first case, if the value of the Key parameter is #13, which corresponds to the Enter key,
we disable the operation (setting Key to zero) and then mimic the activation of the Tab key.
There are many ways to accomplish this, but the one I've chosen is quite particular. I send the
CM_DialogKey message to the form, passing the code for the Tab key (VK_TAB):

1: // Enter = Tab
if Key = #13 then

begin

Key := #0;

Perform (CM_DialogKey, VK_TAB, 0);
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Direct Form Input 333

NotE

The CM_DialogKey message is an internal, undocumented Delphi message. There are a few
of them, actually quite interesting to build advanced components for and for some special
coding, but Borland never described those. For more information on this topic, refer to the
sidebar “Component Messages and Notifications” in Chapter 11. Notice also that this exact
message-based coding style is not available under CLX.

"To type in the caption of the form, the program simply adds the character to the current
Caption. There are two special cases. When the Backspace key is pressed, the last character
of the string is removed (by copying to the Caption all the characters of the current Caption
but the last one). When the Enter key is pressed, the program stops the operation, by reset-
ting the ItemIndex property of the radio group control. Here is the code:

2: // type in caption
begin
if Key = #8 then // backspace: remove last char
Caption := Copy (Caption, 1, Length (Caption) - 1)
else if Key = #13 then // enter: stop operation
RadioPreview.ItemIndex := 0
else // anything else: add character
Caption := Caption + Key;
Key := #0;
end;

Finally, if the last radio item is selected, the code checks whether the character is a vowel
(by testing for its inclusion in a constant “vowel set”). In this case, the character is skipped
altogether:

3: // skip vowels
if Key in ['a’, 'e’, 'i', 'o', 'u', 'A’, 'E', 'I', '0', 'U'] then
Key := #0;

Getting Mouse Input

When a user clicks one of the mouse buttons over a form (or over a component, by the way),
Windows sends the application some messages. Delphi defines some events you can use to
write code that responds to these messages. The two basic events are OnMouseDown, received
when a mouse button is clicked, and OnMouseUp, received when the button is released. Another
fundamental system message is related to mouse movement; the event is OnMouseMove. Although
it should be easy to understand the meaning of the three messages—down, up, and move—
the question that might arise is, how do they relate to the OnC11ick event we have often used
up to now?

We have used the OnC11ck event for components, but it is also available for the form. Its gen-
eral meaning is that the left mouse button has been clicked and released on the same window or

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

334

Chapter 9 e Working with Forms

component. However, between these two actions, the cursor might have been moved outside
the area of the window or component, while the left mouse button was held down.

Another difference between the OnMouseXX and OnClick events is that the latter relates only
to the Jeft mouse button. Most of the mouse types connected to a Windows PC have two mouse
buttons, and some even have three. Usually we refer to these buttons as the left mouse button,
generally used for selection; the right mouse button, for local menus; and the middle mouse
button, seldom used. Nowadays most new mouse devices have a “button wheel” instead of the
middle button. Users typically use the wheel for scrolling (causing an OnMouseWhee1 event), but
they can also press it (generating the OnMouseWhee1Down and OnMouseWhee1Up events). Mouse
wheel events are automatically converted into scrolling events.

Using Windows without a Mouse

A user should always be able to use any Windows application without the mouse. This is not
an option; it is a Windows programming rule. Of course, an application might be easier to use
with a mouse, but that should never be mandatory. In fact, there are users who for various rea-
sons might not have a mouse connected, such as travelers with a small laptop and no space,
workers in industrial environments, and bank clerks with other peripherals around.

There is another reason to support the keyboard: Using the mouse is nice, but it tends to be
slower. If you are a skilled touch typist, you won't use the mouse to drag a word of text; you'll
use shortcut keys to copy and paste it, without moving your hands from the keyboard.

For all these reasons, you should always set up a proper tab order for a form’s components,
remember to add keys for buttons and menu items for keyboard selection, use shortcut keys
on menu commands, and so on.

The Parameters of the Mouse Events

All of the lower-level mouse events have the same parameters: the usual Sender parameter; a
Button parameter indicating which of the three mouse buttons has been clicked (mbRight,
mbLeft, or mbCenter); the Shift parameter indicating which of the mouse-related keys (Alt,
Ctrl, and Shift, plus the three mouse buttons themselves) were pressed when the event
occurred; and the x and y coordinates of the position of the mouse, in c/ient area coordinates
of the current window.

Using this information, it is very simple to draw a small circle in the position of a left
mouse button-down event:

procedure TForml.FormMouseDown(
Sender: TObject; Button: TMouseButton;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Direct Form Input 335

Shift: TShiftState; X, Y: Integer);
begin
if Button = mbLeft then
Canvas.ElTipse (X-10, Y-10, X+10, Y+10);
end;

NoTE

To draw on the form, we use a very special property: Canvas. A TCanvas object has two dis-
tinctive features: it holds a collection of drawing tools (such as a pen, a brush, and a font) and
it has some drawing methods, which use the current tools. The kind of direct drawing code in
this example is not correct, because the on-screen image is not persistent: moving another
window over the current one will clear its output. The next example demonstrates the Win-
dows “store-and-draw” approach.

Dragging and Drawing with the Mouse

To demonstrate a few of the mouse techniques discussed so far, I've built a simple example
based on a form without any component and called MouseOne in the VCL version and
QMouseOne in the CLX version. The first feature of this program is that it displays in the
Caption of the form the current position of the mouse:
procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);
begin
// display the position of the mouse in the caption
Caption := Format ('Mouse in x=%d, y=%d', [X, Y]);
end;

You can use this simple feature of the program to better understand how the mouse works.
Make this test: run the program (this simple version or the complete one) and resize the win-
dows on the desktop so that the form of the MouseOne or QMouseOne program is behind
another window and inactive but with the title visible. Now move the mouse over the form,
and you’ll see that the coordinates change. This means that the OnMouseMove event is sent to
the application even if its window is not active, and it proves what I have already mentioned:
Mouse messages are always directed to the window under the mouse. The only exception is
the mouse capture operation I’ll discuss in this same example.

Besides showing the position in the title of the window, the MouseOne/QMouseOne
example can track mouse movements by painting small pixels on the form if the user keeps
the Shift key pressed. (Again this direct painting code produces non-persistent output.)

procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

begin
// display the position of the mouse in the caption
Caption := Format ('Mouse in x=%d, y=%d', [X, Y1);

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

336

Chapter 9 e Working with Forms

if ssShift in Shift then
// mark points in yellow
Canvas.Pixels [X, Y] := clYellow;
end;

Tip

The TCanvas class of the CLX library doesn't include a Pixels array. Instead, you can call the
DrawPoint method after setting a proper color for the pen, as I've done in the QMouseOne
example.

The real feature of this example, however, is the direct mouse-dragging support. Contrary
to what you might think, Windows has no system support for dragging, which is implemented
in VCL by means of lower-level mouse events and operations. (An example of dragging from
one control to another was discussed in the last chapter.) In VCL, forms cannot originate
dragging operations, so in this case we are obliged to use the low-level approach. The aim of
this example is to draw a rectangle from the initial position of the dragging operation to the
final one, giving the users some visual clue of the operation they are doing.

The idea behind dragging is quite simple. The program receives a sequence of button-
down, mouse-move, and button-up messages. When the button is clicked, dragging begins,
although the real actions take place only when the user moves the mouse (without releasing
the mouse button) and when dragging terminates (when the button-up message arrives). The
problem with this basic approach is that it is not reliable. A window usually receives mouse
events only when the mouse is over its client area; so if the user clicks the mouse button, moves
the mouse onto another window, and then releases the button, the second window will
receive the button-up message.

There are two solutions to this problem. One (seldom used) is mouse clipping. Using a
Windows API function (namely C1ipCursor), you can force the mouse not to leave a certain
area of the screen. When you try to move it outside the specified area, it stumbles against an
invisible barrier. The second and more common solution is to capture the mouse. When a
window captures the mouse, all the subsequent mouse input is sent to that window. This is
the approach we will use for the MouseOne/QMouseOne example.

The code of the example is built around three methods: FormMouseDown, FormMouseMove,
and FormMouseUp. Clicking the left mouse button over the form starts the process, setting the
fDragging Boolean field of the form (which indicates that dragging is in action in the other
two methods). The method also uses a TRect variable used to keep track of the initial and
current position of the dragging. Here is the code:

procedure TMouseForm.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Direct Form Input 337

begin
fDragging := True;
Mouse.Capture := Handle;
fRect.Left := X;
fRect.Top :=Y;
fRect.BottomRight := fRect.ToplLeft;
Canvas.DrawFocusRect (fRect);

end;

end;

An important action of this method is the call to the SetCapture API function, obtained by
setting the Capture property of the global object Mouse. Now even if a user moves the mouse
outside of the client area, the form still receives all mouse-related messages. You can see that
for yourself by moving the mouse toward the upper-left corner of the screen; the program
shows negative coordinates in the caption.

Tip

The global Mouse object allows you to get global information about the mouse, such as its
presence, its type, and the current position, as well as set some of its global features. This
global object hides a few API functions, making your code simpler and more portable.

When dragging is active and the user moves the mouse, the program draws a dotted rec-
tangle corresponding to the actual position. Actually, the program calls the DrawFocusRect
method twice. The first time this method is called, it deletes the current image, thanks to the
fact that two consecutive calls to DrawFocusRect simply reset the original situation. After
updating the position of the rectangle, the program calls the method a second time:

procedure TMouseForm.FormMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);
begin
// display the position of the mouse in the caption
Caption := Format ('Mouse in x=%d, y=%d', [X, Y1);
if fDragging then
begin
// remove and redraw the dragging rectangle
Canvas.DrawFocusRect (fRect);
fRect.Right := X;
fRect.Bottom := Y;
Canvas.DrawFocusRect (fRect);
end
else
if ssShift in Shift then
// mark points in yellow
Canvas.Pixels [X, Y] := clYellow;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

338 Chapter 9 e Working with Forms

When the mouse button is released, the program terminates the dragging operation by
resetting the Capture property of the Mouse object, which internally calls the ReTeaseCapture
API function, and by setting the value of the fDragging field to False:

procedure TMouseForm.FormMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
if fDragging then
begin
Mouse.Capture := 0; // calls ReleaseCapture
fDragging := False;
Invalidate;
end;
end;

The final call, Invalidate, triggers a painting operation and executes the following
OnPaint event handler:

procedure TMouseForm.FormPaint(Sender: TObject);
begin

Canvas.Rectangle (fRect.Left, fRect.Top, fRect.Right, fRect.Bottom);
end;

This makes the output of the form persistent, even if you hide it behind another form.
Figure 9.6 shows a previous version of the rectangle and a dragging operation in action.

FIGURE 9.6: /" Mouse in 2=272_ y=163

The MouseOne example
uses a dotted line to
indicate, during a dragging
operation, the final area of
a rectangle.

Tip Under Qt, there are no Windows handles, but the Capture property of the mouse is still avail-
able. You assign to it, however, the object of the component that has to capture the mouse
(for example, Self to indicate the form), or set the property to ni1 to release it. You can see
this code in the QMouseOne example.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Painting in Windows 339

Painting in Windows

Why do we need to handle the OnPaint event to produce a proper output, and why can’t we
paint directly over the form canvas? It depends on Windows’ default behavior. As you draw
on a window, Windows does 7ot store the resulting image. When the window is covered, its
contents are usually lost.

The reason for this behavior is simple: to save memory. Windows assumes it’s “cheaper” in
the long run to redraw the screen using code than to dedicate system memory to preserving
the display state of a window. It’s a classic memory-versus-CPU-cycles trade-off. A color
bitmap for a 300x400 image at 256 colors requires about 120 KB. By increasing the color
count or the number of pixels, you can easily have full-screen bitmaps of about 1 MB and
reach 4 MB of memory for a 1280x1024 resolution at 16 million colors. If storing the bitmap
was the default choice, running half a dozen simple applications would require at least 8 MB
of memory, if not 16 MB, just for remembering their current output.

In the event that you want to have a consistent output for your applications, there are two
techniques you can use. The general solution is to store enough data about the output to be
able to reproduce it when the system sends a painting requested. An alternative approach is to
save the output of the form in a bitmap while you produce it, by placing an Image compo-
nent over the form and drawing on the canvas of this image component.

The first technique, painting, is the common approach to handling output in Windows, aside
from particular graphics-oriented programs that store the form’s whole image in a bitmap. The
approach used to implement painting has a very descriptive name: store and paint. In fact, when
the user clicks a mouse button or performs any other operation, we need to store the position
and other elements; then, in the painting method, we use this information to actually paint the
corresponding image.

The idea of this approach is to let the application repaint its whole surface under any of
the possible conditions. If we provide a method to redraw the contents of the form, and if
this method is automatically called when a portion of the form has been hidden and needs
repainting, we will be able to re-create the output properly.

Since this approach takes two steps, we must be able to execute these two operations in a
row, asking the system to repaint the window—without waiting for the system to ask for this.
You can use several methods to invoke repainting: Invalidate, Update, Repaint, and Refresh.
"The first two correspond to the Windows API functions, while the latter two have been intro-
duced by Delphi.

e The Invalidate method informs Windows that the entire surface of the form should
be repainted. The most important thing is that Invalidate does not enforce a painting
operation immediately. Windows simply stores the request and will respond to it only

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

340 Chapter 9 e Working with Forms

after the current procedure has been completely executed and as soon as there are no
other events pending in the system. Windows deliberately delays the painting opera-
tion because it is one of the most time-consuming operations. At times, with this delay,
it is possible to paint the form only after multiple changes have taken place, avoiding
multiple consecutive calls to the (slow) paint method.

e The Update method asks Windows to update the contents of the form, repainting it
immediately. However, remember that this operation will take place only if there is an
invalid area. 'This happens if the Invalidate method has just been called or as the result
of an operation by the user. If there is no invalid area, a call to Update has no effect at
all. For this reason, it is common to see a call to Update just after a call to Invalidate.
"This is exactly what is done by the two Delphi methods, Repaint and Refresh.

e The Repaint method calls Invalidate and Update in sequence. As a result, it activates
the OnPaint event immediately. There is a slightly different version of this method
called Refresh. For a form the effect is the same; for components it might be slightly
different.

When you need to ask the form for a repaint operation, you should generally call Invalidate,
following the standard Windows approach. This is particularly important when you need to
request this operation frequently, because if Windows takes too much time to update the
screen, the requests for repainting can be accumulated into a simple repaint action. The
wm_Paint message in Windows is a sort of low-priority message. To be more precise, if a
request for repainting is pending but other messages are waiting, the other messages are
handled before the system actually performs the paint action.

On the other hand, if you call Repaint several times, the screen must be repainted each
time before Windows can process other messages, and because paint operations are compu-
tationally intensive, this can actually make your application less responsive. There are times,
however, when you want the application to repaint a surface as quickly as possible. In these
less-frequent cases, calling Repaint is the way to go.

NortE Another important consideration is that during a paint operation Windows redraws only the
so-called update region, to speed up the operation. For this reason if you invalidate only a
portion of a window, only that area will be repainted. To accomplish this you can use the
InvalidateRect and InvalidateRegion functions. Actually, this feature is a double-edged
sword. It is a very powerful technique, which can improve speed and reduce the flickering
caused by frequent repaint operations. On the other hand, it can also produce incorrect out-
put. A typical problem is when only some of the areas affected by the user operations are
actually modified, while others remain as they were even if the system executes the source
code that is supposed to update them. In fact, if a painting operation falls outside the update
region, the system ignores it, as if it were outside the visible area of a window.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Unusual Techniques: Alpha Blending, Color Key, and the Animate API 341

Unusual Techniques: Alpha Blending, Color Key,
and the Animate API

One of the few new features of Delphi 6 related to forms is support for some new Windows
APIs regarding the way forms are displayed (not available under Qt/CLX). For a form, alpha
blending allows you to merge the content of a form with what’s behind it on the screen, some-
thing you’ll rarely need, at least in a business application. The technique is certainly more
interesting when applied to bitmap (with the new AlphaBlend and A1phaDIBBlend API func-
tions) than to a form itself. In any case, by setting the ATphaBlend property of a form to True
and giving to the AlphaBlendValue property a value lower than 255, you’ll be able to see, in
transparency, what’s behind the form. The lower the AlphaBlendValue, the more the form

will fade. You can see an example of alpha blending in Figure 9.7, taken from the CkKeyHole
example

FIGURE 9.7:

The output of the
CkKeyHole, showing the
effect of the new

Transparentco]or Fade In &lpha |
and AlphaB1end reeiorsn |

properties, and also the Buticr

AnimateWindow API. Sl Fiom Center | e

4l Color Key Hole _IDIﬂ

I AlphaTest

=Y
Unda

Views

T e e

|| address [¢ mdbodensice =] @co
Folders as CkFomndou CkFormdim B
:ﬂ Desktap
-y My Documents i b
=45 My Computer ColorKeyHole g]I::
[=2 3% Flappy 4]

= COMPASSDISK (C) ColorKeyHole. exe CkForm.pas CalorkeyHal.. ColarkeyHal...
[+ ATI Application

] books . . o n}
) Modified 1241542000 11:03 PM
2] Documents and Settings Size: 348 KB ColoieyHol.. ColorkeyHol.. ColorkeyHal...
{:l Inetpub b Atrbutes: '
il (I Hributes: [narmal] LI LI

‘Typa: Application Size: 348 KB |348 KB @ 4y Computer 4

"This is not the only new Delphi feature in the area of what I can only call unusual. The sec-
ond is the new TransparentColor property, which allows you to indicate a transparent color,
which will be replaced by the background, creating a sort of hole in a form. The transparent

color is indicated by the TransparentColorValue property. Again, you can see an example of
this effect in Figure 9.7.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

342 Chapter 9 e Working with Forms

Finally, you can use a native Windows technique, animated display, which is not directly
supported by Delphi (beyond the display of hints). For example, instead of calling the Show
method of a form, you can write:

Form3.Hide;
AnimateWindow (Form3.Handle, 2000, AW_BLEND);
Form3.Show;

Notice you have to call the Show method at the end for the form to behave properly. A simi-
lar animation effect can also be obtained by changing the AlphaBlendvalue in a loop. The
AnimateWindow API can also be used to obtain the display of the form starting from the center
(with the AW_CENTER flag) or from one of its sides (AW_HOR_POSITIVE, AW_HOR_NEGATIVE,
AW_VER_POSITIVE, or AW_VER_NEGATIVE), as is common for slide shows.

This same function can also be applied to windowed controls, obtaining a fade-in effect
instead of the usual direct appearance. I keep having serious doubts about the waste of CPU
cycles these animations cause, but I have to say that if they are applied properly and in the
right program, they can improve the user interface.

Position, Size, Scrolling, and Scaling

Once you have designed a form in Delphi, you run the program, and you expect the form to
show up exactly as you prepared it. However, a user of your application might have a differ-
ent screen resolution or might want to resize the form (if this is possible, depending on
the border style), eventually affecting the user interface. We’ve already discussed (mainly
in Chapter 7) some techniques related to controls, such as alignment and anchors. Here I
want to specifically address elements related to the form as a whole.

Besides differences in the user system, there are many reasons to change Delphi defaults in
this area. For example, you might want to run two copies of the program and avoid having all
the forms show up in exactly the same place. I've collected many other related elements,
including form scrolling, in this portion of the chapter.

The Form Position

There are a few properties you can use to set the position of a form. The Position property
indicates how Delphi determines the initial position of the form. The default poDesigned
value indicates that the form will appear where you designed it and where you use the posi-
tional (Left and Top) and size (Width and Height) properties of the form.

Some of the other choices (poDefault, poDefaultPosOnly, and poDefaultSizeOnly) depend
on a feature of the operating system: using a specific flag, Windows can position and/or size
new windows using a cascade layout. In this way, the positional and size properties you set at

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 343

design time will be ignored, but running the application twice you won’t get overlapping
windows. The default positions are ignored when the form has a dialog border style.

Finally, with the poScreenCenter value, the form is displayed in the center of the screen,
with the size you set at design time. This is a very common setting for dialog boxes and other
secondary forms.

Another property that affects the initial size and position of a window is its szate. You can
use the WindowState property at design time to display a maximized or minimized window at
startup. This property, in fact, can have only three values: wsNormal, wsMinimized, and
wsMaximized. The meaning of this property is intuitive. If you set a minimized window
state, at startup the form will be displayed in the Windows Taskbar. For the main form of an
application, this property can be automatically set by specifying the corresponding attributes
in a shortcut referring to the application.

Of course, you can maximize or minimize a window at run time, too. Simply changing the
value of the WindowState property to wsMaximized or to wsNormal produces the expected
effect. Setting the property to wsMinimized, however, creates a minimized window that is
placed over the Taskbar, not within it. This is not the expected action for a main form, but
for a secondary form! The simple solution to this problem is to call the Minimize method of
the AppTication object. There is also a Restore method in the TApplication class that you
can use when you need to restore a form, although most often the user will do this operation
using the Restore command of the system menu.

The Size of a Form and Its Client Area

At design time, there are two ways to set the size of a form: by setting the value of the Width
and Height properties or by dragging its borders. At run time, if the form has a resizable bor-
der, the user can resize it (producing the OnResize event, where you can perform custom
actions to adapt the user interface to the new size of the form).

However, if you look at a form’s properties in source code or in the online Help, you can see
that there are two properties referring to its width and two referring to its height. Height and
Width refer to the size of the form, including the borders; ClientHeight and C1ientWidth
refer to the size of the internal area of the form, excluding the borders, caption, scroll bars (if
any), and menu bar. The client area of the form is the surface you can use to place components
on the form, to create output, and to receive user input.

Since you might be interested in having a certain available area for your components, it
often makes more sense to set the client size of a form instead of its global size. This is
straightforward, because as you set one of the two client properties, the corresponding form
property changes accordingly.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

344

Chapter 9 e Working with Forms

Tip

In Windows, it is also possible to create output and receive input from the nonclient area of the
form—that is, its border. Painting on the border and getting input when you click it are complex
issues. If you are interested, look in the Help file at the description of such Windows messages as
wm_NCPaint, wm_NCCalcSize, and wn_NCH1itTest and the series of nonclient messages related
to the mouse input, such as wm_NCLButtonDown. The difficulty of this approach is in combining
your code with the default Windows behavior.

Form Constraints

When you choose a resizable border for a form, users can generally resize the form as they
like and also maximize it to full screen. Windows informs you that the form’s size has changed
with the wm_S1ze message, which generates the OnResize event. OnResize takes place after the
size of the form has already been changed. Modifying the size again in this event (if the user
has reduced or enlarged the form too much) would be silly. A preventive approach is better
suited to this problem.

Delphi provides a specific property for forms and also for all controls: the Constraints
property. Simply setting the subproperties of the Constraints property to the proper maxi-
mum and minimum values creates a form that cannot be resized beyond those limits. Here is
an example:

object Forml: TForml
Constraints.MaxHeight = 300
Constraints.MaxWidth = 300
Constraints.MinHeight = 150

Constraints.MinWidth = 150
end

Notice that as you set up the Constraints property, it has an immediate effect even at design
time, changing the size of the form if it is outside the permitted area.

Delphi also uses the maximum constraints for maximized windows, producing an awkward
effect. For this reason, you should generally disable the Maximize button of a window that has a
maximum size. There are cases in which maximized windows with a limited size make sense—
this is the behavior of Delphi’s main window. In case you need to change constraints at run
time, you can also consider using two specific events, OnCanResize and OnConstrainedResize.
The first of the two can also be used to disable resizing a form or control in given circumstances.

Scrolling a Form

When you build a simple application, a single form might hold all of the components you need.
As the application grows, however, you may need to squeeze in the components, increase the
size of the form, or add new forms. If you reduce the space occupied by the components, you

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 345

might add some capability to resize them at run time, possibly splitting the form into differ-
ent areas. If you choose to increase the size of the form, you might use scroll bars to let the
user move around in a form that is bigger than the screen (or at least bigger than its visible
portion on the screen).

Adding a scroll bar to a form is simple. In fact, you don’t need to do anything. If you place
several components in a big form and then reduce its size, a scroll bar will be added to the
form automatically, as long as you haven’t changed the value of the AutoScrol11 property from
its default of True.

Along with AutoScro11, forms have two properties, HorzScrol1Bar and VertScrol1Bar,
which can be used to set several properties of the two TFormScrol11Bar objects associated with
the form. The Visible property indicates whether the scroll bar is present, the Position
property determines the initial status of the scroll thumb, and the Increment property deter-
mines the effect of clicking one of the arrows at the ends of the scroll bar. The most impor-
tant property, however, is Range.

The Range property of a scroll bar determines the virtual size of the form, not the actual
range of values of the scroll bar. Suppose you need a form that will host several components
and will therefore need to be 1000 pixels wide. We can use this value to set the “virtual range”
of the form, changing the Range of the horizontal scroll bar.

The Position property of the scroll bar will range from 0 to 1000 minus the current size of
the client area. For example, if the client area of the form is 300 pixels wide, you can scroll
700 pixels to see the far end of the form (the thousandth pixel).

A Scroll Testing Example

To demonstrate the specific case I've just discussed, I've built the Scrolll example, which has
a virtual form 1000 pixels wide. To accomplish this, I've set the range of the horizontal scroll
bar to 1000:

object Forml: TForml

Width = 458

Height = 368
HorzScrol1Bar.Range = 1000
VertScrollBar.Range = 305

AutoScroll = False
Caption = 'Scrolling Form'
OnResize = FormResize

The form of this example has been filled with meaningless list boxes, and I could have
obtained the same scroll-bar range by placing the right-most list box so that its position
(Left) plus its size (Width) would equal 1000.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

346 Chapter 9 e Working with Forms

The interesting part of the example is the presence of a toolbox window displaying the
status of the form and of its horizontal scroll bar. This second form has four labels; two with
fixed text and two with the actual output. Besides this, the secondary form (called Status) has
a bsToolWindow border style and is a top-most window. You should also setits Visible
property to True, to have its window automatically displayed at startup:

object Status: TStatus
BorderIcons = [biSystemMenu]
BorderStyle = bsToolWindow
Caption = 'Status’
FormStyle = fsStayOnTop
Visible = True
object Labell: TLabel...

There isn’t much code in this program. Its aim is to update the values in the toolbox each
time the form is resized or scrolled (as you can see in Figure 9.8). The first part is extremely
simple. You can handle the OnRes1ize event of the form and simply copy a couple of values to
the two labels. The labels are part of another form, so you need to prefix them with the name
of the form instance, Status:

procedure TForml.FormResize(Sender: TObject);
begin
Status.Label3.Caption := IntToStr(ClientWidth);
Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;
FIGURE 9.8: ,Scmlling Form H=lE
The output of the Scroll1
example
i <] [oNE 236
2 TWO 568
3 THREE 234
= |4 FOUR 769
5 FIVE 567
b 51X 345
7 SEVEN 234
8 EIGHT 123
] NINE 523
10 — TEN 7h4
11 987
- |12 978
13 654
= = 543
=l =l 432
Form Size [x]: 450
Scroll Position [x]: 300
Kl i

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 347

If we wanted to change the output each time the user scrolls the contents of the form, we
could not use a Delphi event handler, because there isn’t an OnScro11 event for forms (although
there is one for stand-alone ScrollBar components). Omitting this event makes sense, because
Delphi forms handle scroll bars automatically in a powerful way. In Windows, by contrast,
scroll bars are extremely low-level elements, requiring a lot of coding. Handling the scroll
event makes sense only in special cases, such as when you want to keep track precisely of the
scrolling operations made by a user.

Here is the code we need to write. First, add a method declaration to the class and associ-
ate it with the Windows horizontal scroll message (wm_HScro11):

public
procedure FormScroll (var ScrollData: TWMScroll);
message wm_HScroll;

Then write the code of this procedure, which is almost the same as the code of the FormResize
method we’ve seen before:

procedure TForml.FormScroll (var ScrollData: TWMScroll);
begin

inherited;

Status.Label3.Caption := IntToStr(ClientWidth);

Status.Label4.Caption := IntToStr(HorzScrollBar.Position);
end;

It’s important to add the call to inherited, which activates the method related to the same
message in the base class form. The inherited keyword in Windows message handlers calls
the method of the base class we are overriding, which is the one associated with the corre-
sponding Windows message (even if the procedure name is different). Without this call, the
form won’t have its default scrolling behavior; that is, it won’t scroll at all.

NoTE

Because in CLX you cannot handle the low-level scroll messages, there seems to be no easy
way to create a program similar to Scroll1. This isn’t terribly important in real-world applica-
tions, as the scrolling system is automatic, and can probably be accomplished by hooking in
the CLX library at a lower level.

Automatic Scrolling

The scroll bar’s Range property can seem strange until you start to use it consistently. When
you think about it a little, you’ll start to understand the advantages of the “virtual range”
approach. First of all, the scroll bar is automatically removed from the form when the client
area of the form is big enough to accommodate the virtual size; and when you reduce the size
of the form, the scroll bar is added again.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

348

Chapter 9 e Working with Forms

This feature becomes particularly interesting when the AutoScrol11 property of the form is
set to True. In this case, the extreme positions of the right-most and lower controls are auto-
matically copied into the Range properties of the form’s two scroll bars. Automatic scrolling
works well in Delphi. In the last example, the virtual size of the form would be set to the
right border of the last list box. This was defined with the following attributes:

object ListBox6: TListBox

Left = 832
Width = 145
end

Therefore, the horizontal virtual size of the form would be 977 (the sum of the two preced-
ing values). This number is automatically copied into the Range field of the HorzScrol11Bar
property of the form, unless you change it manually to have a bigger form (as I've done for
the Scrolll example, setting it to 1000 to leave some space between the last list box and the
border of the form). You can see this value in the Object Inspector, or make the following
test: run the program, size the form as you like, and move the scroll thumb to the right-most
position. When you add the size of the form and the position of the thumb, you’ll always get
1000, the virtual coordinate of the right-most pixel of the form, whatever the size.

Scrolling and Form Coordinates

We have just seen that forms can automatically scroll their components. But what happens if
you paint directly on the surface of the form? Some problems arise, but their solution is at
hand. Suppose that we want to draw some lines on the virtual surface of a form, as shown in
Figure 9.9.

Since you probably do not own a monitor capable of displaying 2000 pixels on each axis,
you can create a smaller form, add two scroll bars, and set their Range property, as I've done
in the Scroll2 example. Here is the textual description of the form:

object Forml: TForml
HorzScrol1Bar.Range
VertScrollBar.Range
ClientHeight = 336
ClientWidth = 472
OnPaint = FormPaint
end

2000
2000

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 349

FIGURE 9.9: 2000 Pixels

The lines to draw on the
virtual surface of the form

2000
Pixels

500 Pixels 500 Pixels

If we simply draw the lines using the virtual coordinates of the form, the image won’t display
properly. In fact, in the OnPaint response method, we need to compute the virtual coordinates
ourselves. Fortunately, this is easy, since we know that the virtual X1 and Y1 coordinates of the
upper-left corner of the client area correspond to the current positions of the two scroll bars:

procedure TForml.FormPaint(Sender: TObject);

var
X1, Y1: Integer;

begin
X1 := HorzScrollBar.Position;
Y1l := VertScrollBar.Position;

// draw a yellow Tine

Canvas.Pen.Width := 30;

Canvas.Pen.Color := clYellow;

Canvas.MoveTo (30-X1, 30-Y1);

Canvas.LineTo (1970-X1, 1970-Y1);
// and so on ...

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

350

Chapter 9 e Working with Forms

As a better alternative, instead of computing the proper coordinate for each output opera-
tion, we can call the SetWindowOrgEx API to move the origin of the coordinates of the Canvas
itself. This way, our drawing code will directly refer to virtual coordinates but will be dis-
played properly:

procedure TForm2.FormPaint(Sender: TObject);
begin
SetWindowOrgEx (Canvas.Handle, HorzScrollbar.Position,
VertScrollbar.Position, nil);

// draw a yellow Tine
Canvas.Pen.Width := 30;
Canvas.Pen.Color := clYellow;
Canvas.MoveTo (30, 30);
Canvas.LineTo (1970, 1970);

// and so on ...

This is the version of the program you’ll find in the source code on the CD. Try using the
program and commenting out the SetWindowOrgEx call to see what happens if you don’t use
virtual coordinates: You’ll find that the output of the program is not correct—it won’t scroll,
and the same image will always remain in the same position, regardless of scrolling opera-
tions. Notice also that the Qt/CLX version of the program, called QScroll2, doesn’t use vir-
tual coordinates but simply subtracts the scroll positions from each of the hard-coded
coordinates.

Scaling Forms

When you create a form with multiple components, you can select a fixed size border or let
the user resize the form and automatically add scroll bars to reach the components falling
outside the visible portion of the form, as we’ve just seen. This might also happen because a
user of your application has a display driver with a much smaller number of pixels than yours.

Instead of simply reducing the form size and scrolling the content, you might want to
reduce the size of each of the components at the same time. This automatically happens also
if the user has a system font with a different pixel-per-inch ratio than the one you used for
development. To address these problems, Delphi has some nice scaling features, but they
aren’t fully intuitive.

The form’s ScaleBy method allows you to scale the form and each of its components. The
PixelsPerInch and Scaled properties allow Delphi to resize an application automatically
when the application is run with a different system font size, often because of a different
screen resolution. In both cases, to make the form scale its window, be sure to also set the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 351

AutoScrol1 property to False. Otherwise, the contents of the form will be scaled, but the
form border itself will not. These two approaches are discussed in the next two sections.

NotE

Form scaling is calculated based on the difference between the font height at run time and the
font height at design time. Scaling ensures that edit and other controls are large enough to
display their text using the user’s font preferences without clipping the text. The form scales as
well, as we will see later on, but the main point is to make edit and other controls readable.

Manual Form Scaling

Any time you want to scale a form, including its components, you can use the ScaleBy
method, which has two integer parameters, a multiplier and a divisor—it’s a fraction. For
example, with this statement the size of the current form is reduced to three-quarters of its
original size:

ScaleBy (3, 4);

Generally, it is easier to use percentage values. The same effect can be obtained by using:
ScaleBy (75, 100);

When you scale a form, all the proportions are maintained, but if you go below or above
certain limits, the text strings can alter their proportions slightly. The problem is that in
Windows, components can be placed and sized only in whole pixels, while scaling almost
always involves multiplying by fractional numbers. So any fractional portion of a compo-
nent’s origin or size will be truncated.

I’ve built a simple example, Scale or QScale, to show how you can scale a form manually,
responding to a request by the user. The form of this application (see Figure 9.10) has two
buttons, a label, an edit box, and an UpDown control connected to it (via its Associate prop-
erty). With this setting, a user can type numbers in the edit box or click the two small arrows
to increase or decrease the value (by the amount indicated by the Increment property). To
extract the input value, you can use the Text property of the edit box or the Position of the
UpDown control.

When you click the Do Scale button, the current input value is used to determine the scal-
ing percentage of the form:

procedure TForml.ScaleButtonClick(Sender: TObject);
begin
AmountScaled := UpDownl.Position;
ScaleBy (AmountScaled, 100);
UpDownl.Height := Editl.Height;
ScaleButton.Enabled := False;
RestoreButton.Enabled := True;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

352 Chapter 9 e Working with Forms

FIGURE 9.10: o M=k

The form of the Scale
example after a scaling
with 50 and 200

ScaleBy:

200

Restore

This method stores the current input value in the form’s AmountScaled private field and
enables the Restore button, disabling the one that was clicked. Later, when the user clicks the
Restore button, the opposite scaling takes place. By having to restore the form before
another scaling operation takes place, I avoid an accumulation of round-off errors. I've added
also a line to set the Height of the UpDown component to the same Height as the edit box it
is attached to. This prevents small differences between the two, due to scaling problems of
the UpDown control.

NortE If you want to scale the text of the form properly, including the captions of components, the
items in list boxes, and so on, you should use TrueType fonts exclusively. The system font (MS
Sans Serif) doesn’t scale well. The font issue is important because the size of many components
depends on the text height of their captions, and if the caption does not scale well, the compo-
nent might not work properly. For this reason, in the Scale example I've used an Arial font.

Exactly the same scaling technique also works in CLX| as you can see by running the
QQScale example. The only real difference is that I have to replace the UpDown component
(and the related Edit box) with a SpinEdit control, as the former is not available in Qt.

Automatic Form Scaling

Instead of playing with the ScaleBy method, you can ask Delphi to do the work for you.
When Delphi starts, it asks the system for the display configuration and stores the value in
the PixelsPerInch property of the Screen object, a special global object of VCL, available in
any application.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Position, Size, Scrolling, and Scaling 353

PixelsPerInch sounds like it has something to do with the pixel resolution of the screen,
but unfortunately, it doesn’t. If you change your screen resolution from 640x480 to 800x600
to 1024x768 or even 1600x1280, you will find that Windows reports the same PixelsPerInch
value in all cases, unless you change the system font. What PixelsPerInch really refers to is
the screen pixel resolution that the currently installed system font was designed for. When a
user changes the system font scale, usually to make menus and other text easier to read, the user
will expect all applications to honor those settings. An application that does not reflect user desk-
top preferences will look out of place and, in extreme cases, may be unusable to visually impaired
users who rely on very large fonts and high-contrast color schemes.

The most common PixelPerInch values are 96 (small fonts) and 120 (large fonts), but
other values are possible. Newer versions of Windows even allow the user to set the system
font size to an arbitrary scale. At design time, the PixelsPerInch value of the screen, which is
a read-only property, is copied to every form of the application. Delphi then uses the value of
PixelsPerInch, if the Scaled property is set to True, to resize the form when the application
starts.

As I've already mentioned, both automatic scaling and the scaling performed by the
ScaleBy method operate on components by changing the size of the font. The size of each
control, in fact, depends on the font it uses. With automatic scaling, the value of the form’s
PixelsPerInch property (the design-time value) is compared to the current system value
(indicated by the corresponding property of the Screen object), and the result is used to
change the font of the components on the form. Actually, to improve the accuracy of this
code, the final height of the text is compared to the design-time height of the text, and its
size is adjusted if they do not match.

Thanks to Delphi automatic support, the same application running on a system with a dif-
ferent system font size automatically scales itself, without any specific code. The application’s
edit controls will be the correct size to display their text in the user’s preferred font size, and
the form will be the correct size to contain those controls. Although automatic scaling has
problems in some special cases, if you comply with the following rules, you should get good
results:

e Set the Scaled property of forms to True. (This is the default.)
e Use only TrueType fonts.
e Use Windows small fonts (96 dpi) on the computer you use to develop the forms.

e Set the AutoScrol11 property to False, if you want to scale the form and not just the
controls inside it. (AutoScroll defaults to True, so don’t forget to do this step.)

e Set the form position either near the upper-left corner or in the center of the screen
(with the poScreenCenter value) to avoid having an out-of-screen form. Form position
is discussed in the next section.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

354 Chapter 9 e Working with Forms

Creating and Closing Forms

Up to now we have ignored the issue of form creation. We know that when the form is created,
we receive the OnCreate event and can change or test some of the initial form’s properties or
fields. The statement responsible for creating the form is in this project’s source file:
begin
Application.Initialize;
Application.CreateForm(TForml, Forml);

Application.Run;
end.

To skip the automatic form creation, you can either modify this code or use the Forms
page of the Project Options dialog box (see Figure 9.11). In this dialog box, you can decide
whether the form should be automatically created. If you disable the automatic creation, the
project’s initialization code becomes the following:

begin

Applications.Initialize;
Application.Run;

end.

FIGURE 9.11: Project Options
The Forms page of the Directories/Conditionals | Wersioninfa | Packages |
Delphi Project Options Farms] tpplication | Compiler | Linker
dialog box

b air Farm: |F0rm1 j

Auto-create forms: Auvailable forms:

Form]

2 R X BN

[Default oK | Cancel ‘ Help ‘

If you now run this program, nothing happens. It terminates immediately because no main
window is created. So what is the effect of the call to the application’s CreateForm method? It
creates a new instance of the form class passed as the first parameter and assigns it to the
variable passed as the second parameter.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Creating and Closing Forms 355

Something else happens behind the scenes. When CreateForm is called, if there is currently
no main form, the current form is assigned to the application’s MainForm property. For this
reason, the form indicated as Main Form in the dialog box shown in Figure 9.11 corresponds
to the first call to the application’s CreateForm method (that is, when several forms are created

at start-up).

The same holds for closing the application. Closing the main form terminates the applica-
tion, regardless of the other forms. If you want to perform this operation from the program’s
code, simply call the Close method of the main form, as we’ve done several times in past
examples.

Tip You can control the automatic creation of secondary forms by using the Auto Create Forms
check box on the Preferences page of the Environment Options dialog box.

Form Creation Events

Regardless of the manual or automatic creation of forms, when a form is created, there are
many events you can intercept. Form-creation events are fired in the following order:

1. OnCreate indicates that the form is being created.

2. OnShow indicates that the form is being displayed. Besides main forms, this event happens
after you set the Visible property of the form to True or call the Show or ShowModal
methods. This event is fired again if the form is hidden and then displayed again.

3. OnActivate indicates that the form becomes the active form within the application.
This event is fired every time you move from another form of the application to the
current one.

4. Other events, including OnResize and OnPaint, indicate operations always done at
start-up but then repeated many times.

As you can see in the list above, every event has a specific role apart from form initializa-
tion, except for the OnCreate event, which is guaranteed to be called only once as the form is
created.

However, there is an alternative approach to adding initialization code to a form: overrid-
ing the constructor. This is usually done as follows:
constructor TForml.Create(AOwner: TComponent);
begin
inherited Create (AOwner);
// extra initialization code
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

356

Chapter 9 e Working with Forms

Before the call to the Create method of the base class, the properties of the form are still not
loaded and the internal components are not available. For this reason the standard approach
is to call the base class constructor first and then do the custom operations.

Old and New Creation Orders

Now the question is whether these custom operations are executed before or after the OnCreate
event is fired. The answer depends on the value of the 01dCreateOrder property of the form,
introduced in Delphi 4 for backward compatibility with earlier versions of Delphi. By default,
for a new project, all of the code in the constructor is executed before the OnCreate event
handler. In fact, this event handler is not activated by the base class constructor but by its
AfterConstruction method, a sort of constructor introduced for compatibility with
C++Builder.

To study the creation order and the potential problems, you can examine the CreatOrd pro-
gram. This program has an OnCreate event handler, which creates a list box control dynami-
cally. The constructor of the form can access this list box or not, depending on the value of the
O1dCreateOrder property.

Closing a Form

When you close the form using the Close method or by the usual means (Alt+F4, the system
menu, or the Close button), the OnCloseQuery event is called. In this event, you can ask the
user to confirm the action, particularly if there is unsaved data in the form. Here is a simple
scheme of the code you can write:

procedure TForml.FormCloseQuery(Sender: TObject; var CanClose: Boolean);

begin

if MessageDlg ('Are you sure you want to exit?', mtConfirmation,
[mbYes, mbNo], 0) = idNo then
CanClose := False;

end;

If OnCloseQuery indicates that the form should still be closed, the OnClose event is called.
The third step is to call the OnDestroy event, which is the opposite of the OnCreate event and
is generally used to de-allocate objects related to the form and free the corresponding memory.

NotE

To be more precise, the BeforeDestruction method generates an OnDestroy event before
the Destroy destructor is called. That is, unless you have set the 01dCreateOrder property to
True, in which case Delphi uses a different closing sequence.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Dialog Boxes and Other Secondary Forms 357

So what is the use of the intermediate OnClose event? In this method, you have another
chance to avoid closing the application, or you can specify alternative “close actions.” The
method, in fact, has an Action parameter passed by reference. You can assign the following
values to this parameter:

caNone 'The form is not allowed to close. This corresponds to setting the CanClose para-
meter of the OnCloseQuery method to False.

caHide The form is not closed, just hidden. This makes sense if there are other forms in
the application; otherwise, the program terminates. This is the default for secondary
forms, and it’s the reason I had to handle the OnClose event in the previous example to
actually close the secondary forms.

caFree 'The form is closed, freeing its memory, and the application eventually terminates
if this was the main form. This is the default action for the main form and the action you
should use when you create multiple forms dynamically (if you want to remove the Win-
dows and destroy the corresponding Delphi object as the form closes).

caMinimize The form is not closed but only minimized. This is the default action for
MDI child forms.

NortE When a user shuts down Windows, the OnCloseQuery event is activated, and a program can
use it to stop the shut-down process. In this case, the OnClose event is not called even if
OnCloseQuery sets the CanClose parameter to True.

Dialog Boxes and Other Secondary Forms

When you write a program, there is really no big difference between a dialog box and
another secondary form, aside from the border, the border icons, and similar user-interface
elements you can customize.

What users associate with a dialog box is the concept of a 7odal window—a window that
takes the focus and must be closed before the user can move back to the main window. This is
true for message boxes and usually for dialog boxes, as well. However, you can also have non-
modal—or modeless—dialog boxes. So if you think that dialog boxes are just modal forms, you
are on the right track, but your description is not precise. In Delphi (as in Windows), you can
have modeless dialog boxes and modal forms. We have to consider two different elements:

e The form’s border and its user interface determine whether it looks like a dialog box.

e The use of two different methods (Show or ShowModal) to display the secondary form
determines its behavior (modeless or modal).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

358 Chapter 9 e Working with Forms

Adding a Second Form to a Program

"To add a second form to an application, you simply click on the New Form button on the
Delphi toolbar or use the File > New Form menu command. As an alternative you can select
File > New, move to the Forms or Dialogs page, and choose one of the available form tem-
plates or form wizards.

If you have two forms in a project, you can use the Select Form or Select Unit button of
the Delphi toolbar to navigate through them at design time. You can also choose which form
is the main one and which forms should be automatically created at start-up using the Forms
page of the Project Options dialog box. This information is reflected in the source code of
the project file.

Tip Secondary forms are automatically created in the project source-code file depending on a new
Delphi 5 setting, which is the Auto Create Forms check box of the Preferences page of the
Environment Options dialog box. Although automatic creation is the simplest and most reli-
able approach for novice developers and quick-and-dirty projects, | suggest that you disable
this check box for any serious development. When your application contains hundreds of
forms, you really shouldn’t have them all created at application start-up. Create instances
of secondary forms when and where you need them, and free them when you're done.

Once you have prepared the secondary form, you can simply set its Visible property to
"True, and both forms will show up as the program starts. In general, the secondary forms of
an application are left “invisible” and are then displayed by calling the Show method (or set-
ting the Visible property at run time). If you use the Show function, the second form will be
displayed as modeless, so you can move back to the first one while the second is still visible.
To close the second form, you might use its system menu or click a button or menu item that
calls the Close method. As we’ve just seen, the default close action (see the OnClose event) for
a secondary form is simply to hide it, so the secondary form is not destroyed when it is closed.
It is kept in memory (again, not always the best approach) and is available if you want to show
it again.

Creating Secondary Forms at Run Time

Unless you create all the forms when the program starts, you’ll need to check whether a form
exists and create it if necessary. The simplest case is when you want to create multiple copies
of the same form at run time. In the MulttWin/QMultiWin example, I've done this by writ-
ing the following code:
procedure TForml.btnMultipleClick(Sender: TObject);
begin
with TForm3.Create (Application) do

Show;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Dialog Boxes and Other Secondary Forms 359

Every time you click the button, a new copy of the form is created. Notice that I don’t use
the Form3 global variable, because it doesn’t make much sense to assign this variable a new
value every time you create a new form object. The important thing, however, is not to refer
to the global Form3 object in the code of the form itself or in other portions of the applica-
tion. The Form3 variable, in fact, will invariably be a pointer to ni1. My suggestion, in such a
case, is to actually remove it from the unit to avoid any confusion.

Tip

In the code of a form, you should never explicitly refer to the form by using the global variable
that Delphi sets up for it. For example, suppose that in the code of TForm3 you refer to
Form3.Caption. If you create a second object of the same type (the class TForm3), the expres-
sion Form3.Caption will invariably refer to the caption of the form object referenced by the
Form3 variable, which might not be the current object executing the code. To avoid this prob-
lem, refer to the Caption property in the form’s method to indicate the caption of the current
form object, and use the Self keyword when you need a specific reference to the object of
the current form. To avoid any problem when creating multiple copies of a form, | suggest
removing the global form object from the interface portion of the unit declaring the form. This
global variable is required only for the automatic form creation.

When you create multiple copies of a form dynamically, remember to destroy each form

object as is it closed, by handling the corresponding event:

procedure TForm3.FormClose(Sender: TObject; var Action: TCloseAction);

begin

Action := caFree;

end;
Failing to do so will result in a lot of memory consumption, because all the forms you create
(both the windows and the Delphi objects) will be kept in memory and simply hidden from view.

Creating Single-Instance Secondary Forms

Now let us focus on the dynamic creation of a form, in a program that accounts for only one
copy of the form at a time. Creating a modal form is quite simple, because the dialog box can
be destroyed when it is closed, with code like this:

procedure TForml.btnModalClick(Sender: TObject);

var
Modal: TForm4;
begin
Modal := TForm4.Create (Application);
try
ModaT.ShowModal;
finally
Modal.Free;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

360 Chapter 9 e Working with Forms

Because the ShowModal call can raise an exception, you should write it in a finally block to
make sure the object will be de-allocated. Usually this block also includes code that initializes
the dialog box before displaying it and code that extracts the values set by the user before
destroying the form. The final values are read-only if the result of the ShowModal function is
mrOK, as we’ll see in the next example.

The situation is a little more complex when you want to display only one copy of a mode-
less form. In fact, you have to create the form, if it is not already available, and then show it:
procedure TForml.btnSingleClick(Sender: TObject);
begin
if not Assigned (Form2) then
Form2 := TForm2.Create (Application);
Form2.Show;
end;

With this code, the form is created the first time it is required and then is kept in memory,
visible on the screen or hidden from view. To avoid using up memory and system resources
unnecessarily, you’ll want to destroy the secondary form when it is closed. You can do that by
writing a handler for the OnClose event:

procedure TForm2.FormClose(Sender: TObject; var Action: TCloseAction);

begin
Action := caFree;
// important: set pointer to nil!
Form2 := nil;

end;

Notice that after we destroy the form, the global Form2 variable is set to ni1. Without
this code, closing the form would destroy its object, but the Form2 variable would still
refer to the original memory location. At this point, if you try to show the form once more
with the btnSingleCl1ick method shown earlier, the if not Assigned test will succeed, as it
simply checks whether the Form2 variable is ni1. The code fails to create a new object, and
the Show method, invoked on a nonexistent object, will result in a system memory error.

As an experiment, you can generate this error by removing the last line of the listing above.
As we have seen, the solution is to set the Form2 object to ni1 when the object is destroyed, so
that properly written code will “see” that a new form has to be created before using it. Again,
experimenting with the MultiWin/QMultiWin example can prove useful to test various con-
ditions. I haven’t illustrated any screens from this example because the forms it displays are
quite bare (totally empty except for the main form, which has three buttons).

NortEe Setting the form variable to ni1 makes sense—and works—if there is to be only one instance
of the form present at any given instant. If you want to create multiple copies of a form, you'll
have to use other techniques to keep track of them. Also keep in mind that in this case we
cannot use the FreeAndNi1 procedure, because we cannot call Free on Form2. The reason is
that we cannot destroy the form before its event handlers have finished executing.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Creating a Dialog Box 361

Creating a Dialog Box

I stated earlier in this chapter that a dialog box is not very different from other forms. To
build a dialog box instead of a form, you just select the bsDialog value for the BorderStyle
property. With this simple change, the interface of the form becomes like that of a dialog
box, with no system icon, and no Minimize or Maximize boxes. Of course, such a form has
the typical thick dialog box border, which is non-resizable.

Once you have built a dialog box form, you can display it as a modal or modeless window
using the two usual show methods (Show and ShowModal). Modal dialog boxes, however, are
more common than modeless ones. This is exactly the reverse of forms; modal forms should
generally be avoided, because a user won’t expect them.

The Dialog Box of the RefList Example

In Chapter 6 we explored the RefList/QRefList program, which used a ListView control to
display references to books, magazines, Web sites, and more. In the RefList2 version on the
CD (and its QRefLsit2 CLX counterpart), I'll simply add to the basic version of that pro-
gram a dialog box, used in two different circumstances: adding new items to the list and edit-
ing existing items. You can see the form of the dialog box in Figure 9.12 and its textual
description in the following listing (detailed because it has many interesting features, so I
suggest you read this code with care).

FIGURE 9.12: i Item EmEE
The form of the dialog box
of the RefList2 example at Befererce: |
design time | r
Tvpe: &
Luthar: | ﬁ
x Cancel
Country: | %
EdiCountry: TEqdit]
object FormItem: TFormItem
Caption = 'Item’
Color = cl1BtnFace
Position = poScreenCenter
object Labell: TLabel
Caption = '&Reference:’
FocusControl = EditReference
end

object EditReference: TEdit...
object Label2: TlLabel

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

362 Chapter 9 e Working with Forms

Caption = '&Type:’
FocusControl = ComboType
end
object ComboType: TComboBox
Style = csDropDownList
Items.Strings = (
"Book'
VCDI
'"Magazine'
'"Mail Address'’
"Web Site')
end
object Label3: TLabel
Caption = '&Author:’
FocusControl = EditAuthor
end
object EditAuthor: TEdit...
object Label4: TlLabel
Caption = '&Country:'
FocusControl = EditCountry
end
object EditCountry: TEdit...
object BitBtnl: TBitBtn
Kind = bkOK
end
object BitBtn2: TBitBtn
Kind = bkCancel
end
end

Tip The items of the combo box in this dialog describe the available images of the image list so
that a user can select the type of the item and the system will show the corresponding glyph.
An even better option would have been to show those glyphs in a graphical combo box, along
with their descriptions

As I mentioned, this dialog box is used in two different cases. The first takes place as the
user selects File > Add Items from the menu:

procedure TForml.AddItems1Click(Sender: TObject);

var
NewItem: TListItem;

begin
FormItem.Caption := 'New Item';

FormItem.Clear;
if FormItem.ShowModal = mrOK then
begin

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Creating a Dialog Box 363

NewItem := ListViewl.Items.Add;
NewItem.Caption := FormItem.EditReference.Text;
NewItem.ImageIndex := FormItem.ComboType.ItemIndex;
NewItem.SubItems.Add (FormItem.EditAuthor.Text);
NewItem.SubItems.Add (FormItem.EditCountry.Text);
end;
end;

Besides setting the proper caption of the form, this procedure needs to initialize the dialog
box, as we are entering a brand-new value. If the user clicks OK, however, the program adds
a new item to the list view and sets all its values. To empty the edit boxes of the dialog, the
program calls the custom Clear method, which resets the text of each edit box control:

procedure TFormItem.Clear;
var
I: Integer;
begin
// clear each edit box
for I := 0 to ControlCount - 1 do
if Controls [I] dis TEdit then
TEdit (Controls[I]).Text := '';
end;

Editing an existing item requires a slightly different approach. First, the current values are
moved to the dialog box before it is displayed. Second, if the user clicks OK, the program
modifies the current list item instead of creating a new one. Here is the code:

procedure TForml.ListViewlDb1Click(Sender: TObject);

begin
if ListViewl.Selected <> nil then
begin
// dialog initialization
FormItem.Caption := 'Edit Item';

FormItem.EditReference.Text := ListViewl.Selected.Caption;
FormItem.ComboType.ItemIndex := ListViewl.Selected.ImageIndex;
FormItem.EditAuthor.Text := ListViewl.Selected.SubItems [0];
FormItem.EditCountry.Text := ListViewl.Selected.SubItems [1];

// show it

if FormItem.ShowModal = mrOK then

begin
// read the new values
ListViewl.Selected.Caption := FormItem.EditReference.Text;
ListViewl.Selected.ImageIndex := FormItem.ComboType.ItemIndex;
ListViewl.Selected.SubItems [0] := FormItem.EditAuthor.Text;
ListViewl.Selected.SubItems [1] := FormItem.EditCountry.Text;

end;

end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

364 Chapter 9 e Working with Forms

You can see the effect of this code in Figure 9.13. Notice that the code used to read the
value of a new item or modified one is similar. In general, you should try to avoid this type of
duplicated code and possibly place the shared code statements in a method added to the dia-
log box. In this case, the method could receive as parameter a TListItem object and copy the
proper values into it.

FIGURE 9.13: 7]
The dialog box of the

RefList2 example used in ‘< Borland Developers Conference CD

edit mode =< Delphi ClientfServer

i Delphi Developer's Handbook
4 Delphi Informant

@ Mastering Delphi

4 The Delphi Magazine

@ Thinking in C++

A Edit Item [_ O]

Beference: |Del|:|hi Developer's Handbook|

Tuvpe: |Book ﬂ
Authar: |MEIICD and Tim
3 Carcel
Coauntny: ||ta|y and LS
Norte What happens internally when the user clicks the OK or Cancel button of the dialog box? A

modal dialog box is closed by setting its ModaTResult property, and it returns the value of this
property. You can indicate the return value by setting the ModalResult property of the but-
ton. When the user clicks on the button, its ModaTResult value is copied to the form, which
closes the form and returns the value as the result of the ShowModal function.

A Modeless Dialog Box

The second example of dialog boxes shows a more complex modal dialog box that uses the
standard approach as well as a modeless dialog box. The main form of the DIgApply example
(and of the identical CLX-based QDIgApply demo) has five labels with names, as you can see
in Figure 9.14 and by viewing the source code on the companion CD.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Creating a Dialog Box 365

FIGURE 9.14%:

k3
The three forms (a main . .
form and two dialog boxes) o E—— uo
of the DIgApply example at [Bold
run time John - X Close
[Underline
Martha Diouble-click an & name ta
change it or click on the button
Bob below to rmodify text style Sample label
|
ST
Robert =

If the user clicks a name, its color turns to red; if the user double-clicks it, the program
displays a modal dialog box with a list of names to choose from. If the user clicks the Style
button, a modeless dialog box appears, allowing the user to change the font style of the main
form’s labels. The five labels of the main form are connected to two methods, one for the
OnCT1ick event and the second for the OnDoubleCl11ck event. The first method turns the last
label a user has clicked to red, resetting to black all the others (which have the Tag property
set to 1, as a sort of group index). Notice that the same method is associated with all of the
labels:

procedure TForml.LabelCTlick(Sender: TObject);
var

I: Integer;
begin

for I := 0 to ComponentCount - 1 do

if (Components[I] 1is TLabel) and (Components[I].Tag = 1) then
TLabel (Components[I]).Font.Color := clBlack;
// set the color of the clicked Tabel to red

(Sender as TLabel).Font.Color := clRed;
end;

The second method common to all of the labels is the handler of the OnDoub1eC11ck event.
The Labe1DoubleCl1ick method selects the Caption of the current label (indicated by the
Sender parameter) in the list box of the dialog and then shows the modal dialog box. If the
user closes the dialog box by clicking OK and an item of the list is selected, the selection is
copied back to the label’s caption:

procedure TForml.LabelDoubleClick(Sender: TObject);

begin
with ListDial.Listbox1l do

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

366 Chapter 9 e Working with Forms

begin
// select the current name in the Tist box
ItemIndex := Items.IndexOf (Sender as TlLabel).Caption);
// show the modal dialog box, checking the return value
if (ListDial.ShowModal = mrOk) and (ItemIndex >= 0) then
// copy the selected item to the label
(Sender as TLabel).Caption := Items [ItemIndex];
end;
end;

Tip Notice that all the code used to customize the modal dialog box is in the LabeTDoubTeC11ck
method of the main form. The form of this dialog box has no added code.

The modeless dialog box, by contrast, has a lot of coding behind it. The main form simply
displays the dialog box when the Style button is clicked (notice that the button caption ends
with three dots to indicate that it leads to a dialog box), by calling its Show method. You can
see the dialog box running in Figure 9.14 above.

Two buttons, Apply and Close, replace the OK and Cancel buttons in a modeless dialog
box. (The fastest way to obtain these buttons is to select the bkOK or bkCancel value for the
Kind property and then edit the Caption.) At times, you may see a Cancel button that works
as a Close button, but the OK button in a modeless dialog box usually has no meaning. Instead,
there might be one or more buttons that perform specific actions on the main window, such as

Apply, Change Style, Replace, Delete, and so on.

If the user clicks one of the check boxes of this modeless dialog box, the style of the sample
label’s text at the bottom changes accordingly. You accomplish this by adding or removing
the specific flag that indicates the style, as in the following 0nCT1ick event handler:

procedure TStyleDial.ItalicCheckBoxClick(Sender: TObject);
begin
if ItalicCheckBox.Checked then
LabelSampTle.Font.Style := LabelSample.Font.Style + [fsItalic]

else
LabelSample.Font.Style := LabelSample.Font.Style - [fsItalic];

end;

When the user selects the Apply button, the program copies the style of the sample label to
each of the form’s labels, rather than considering the values of the check boxes:
procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
begin
Forml.Labell.Font.Style :
Forml.Label2.Font.Style :

LabelSample.Font.Style;
LabelSample.Font.Style;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Predefined Dialog Boxes 367

As an alternative, instead of referring to each label directly, you can look for it by calling
the FindComponent method of the form, passing the label name as a parameter, and then cast-
ing the result to the TLabe1 type. The advantage of this approach is that we can create the
names of the various labels with a for loop:

procedure TStyleDial.ApplyBitBtnClick(Sender: TObject);
var

I: Integer;
begin

for I :=1 to 5 do

(Forml.FindComponent ('Label' + IntToStr (I)) as TLabel).Font.Style :=
LabelSampTle.Font.Style;

end;

Tip The AppTyBitBtnClick method could also be written by scanning the Controls array in a
loop, as I've already done in other examples. | decided to use the FindComponent method,
instead, to demonstrate a different technique.

"This second version of the code is certainly slower, because it has more operations to do,
but you won’t notice the difference, because it is very fast anyway. Of course, this second
approach is also more flexible; if you add a new label, you only need to fix the higher limit of
the for loop, provided all the labels have consecutive numbers. Notice that when the user
clicks the Apply button, the dialog box does not close. Only the Close button has this effect.
Consider also that this dialog box needs no initialization code because the form is not
destroyed, and its components maintain their status each time the dialog box is displayed.

Predefined Dialog Boxes

Besides building your own dialog boxes, Delphi allows you to use some default dialog boxes
of various kinds. Some are predefined by Windows; others are simple dialog boxes (such as
message boxes) displayed by a Delphi routine. The Delphi Component Palette contains a
page of dialog box components. Each of these dialog boxes—known as Windows common
dialogs—is defined in the system library ComD1g32.DLL.

Windows Common Dialogs

I have already used some of these dialog boxes in several examples in the previous chapters,
so you are probably familiar with them. Basically, you need to put the corresponding compo-
nent on a form, set some of its properties, run the dialog box (with the Execute method,
returning a Boolean value), and retrieve the properties that have been set while running it.
"To help you experiment with these dialog boxes, I've built the CommDIg test program.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

368

Chapter 9 e Working with Forms

What I want to do is simply highlight some key and nonobvious features of the common
dialog boxes, and let you study the source code of the example for the details:

The Open Dialog Component can be customized by setting different file extensions
filters, using the Filter property, which has a handy editor and can be assigned directly
with a string like Text File (*.txt)|*.txt. Another handy feature is to let the dialog
check whether the extension of the selected file matches the default extension, by
checking the ofExtensionDifferent flag of the Options property after executing the dia-
log. Finally, this dialog allows multiple selections by setting its ofAllowMultiSelect
option. In this case you can get the list of the selected files by looking at the Files
string list property.

The SaveDialog component is used in similar ways and has similar properties, although
you cannot select multiple files, of course.

The OpenPictureDialog and SavePictureDialog components provide similar features
but have a customized form, which shows a preview of an image. Of course, it makes
sense to use them only for opening or saving graphical files.

The FontDialog component can be used to show and select from all types of fonts, fonts
useable on both the screen and a selected printer (WYSIWYG), or only TrueType fonts.
You can show or hide the portion related to the special effects, and obtain other differ-
ent versions by setting its Options property. You can also activate an Apply button sim-
ply by providing an event handler for its OnApply event and using the fdApplyButton
option. A Font dialog box with an Apply button (see Figure 9.15) behaves almost like a
modeless dialog box (but isn’t one).

FIGURE 9.15: [=5
The Font selection dialog Open Save Font Color Piint Seach Help
box with an Apply button O RTRO FIOOH@K e+ -

+I0OA i_:ZD::fDingbats |F|t0ar;itcsmle:
P ool 4

T Symbol | [Reoular

Systerm

Terminal Eald
ﬁﬁﬁé :%:. T Times New Roman Bold Italic

@ | T wide Latin
T “Wwingdings

Z?DD.:%:: ZapfDingbats

N
- Effects Sample
™ Shikeout
[Underline et - Bk S e S)
Color;
IEack - Seript:
|Westem j

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Predefined Dialog Boxes 369

The ColorDialog component is used with different options, to show the dialog fully
open at first or to prevent it from opening fully. These settings are the cdFullOpen or
cdPreventFullOpen values of the Options property.

The Find and Replace dialog boxes are truly modeless dialogs, but you have to imple-
ment the find and replace functionality yourself, as I've partially done in the CommDIg
example. The custom code is connected to the buttons of the two dialog boxes by pro-
viding the OnFind and OnReplace events.

NotE

Qt offers a similar set of predefined dialog boxes, only the set of options is often more limited.
I've created the QCommDIg version of the example you can use to experiment with these set-
tings. The CLX program has fewer menu items, as some of the options are not available and
there are other minimal changes in the source code.

A Parade of Message Boxes

The Delphi message boxes and input boxes are another set of predefined dialog boxes. There
are many Delphi procedures and functions you can use to display simple dialog boxes:

The MessageD1g function shows a customizable message box, with one or more buttons
and usually a bitmap. The MessageD1gPos function is similar to the MessageD1g function,
but the message box is displayed in a given position, not in the center of the screen.

The ShowMessage procedure displays a simpler message box, with the application name
as the caption and just an OK button. The ShowMessagePos procedure does the same,
but you also indicate the position of the message box. The ShowMessageFmt procedure
is a variation of ShowMessage, which has the same parameters as the Format function. It
corresponds to calling Format inside a call to ShowMessage.

The MessageBox method of the AppTication object allows you to specify both the mes-
sage and the caption; you can also provide various buttons and features. This is a simple
and direct encapsulation of the MessageBox function of the Windows API, which passes
as a main window parameter the handle of the App1ication object. This handle is
required to make the message box behave like a modal window.

The InputBox function asks the user to input a string. You provide the caption, the
query, and a default string. The InputQuery function asks the user to input a string,
too. The only difference between this and the InputBox function is in the syntax. The
InputQuery function has a Boolean return value that indicates whether the user has
clicked OK or Cancel.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

370 Chapter 9 e Working with Forms

"To demonstrate some of the message boxes available in Delphi, I've written another sample
program, with a similar approach to the preceding CommDIg example. In the MBParade
example, you have a high number of choices (radio buttons, check boxes, edit boxes, and spin
edit controls) to set before you click one of the buttons that displays a message box. The sim-
ilar QMbParade example misses only the possibility of the help button, not available in the
CLX message boxes.

About Boxes and Splash Screens

Applications usually have an About box, where you can display information, such as the ver-
sion of the product, a copyright notice, and so on. The simplest way to build an About box is
to use the MessageD1g function. With this method, you can show only a limited amount of
text and no special graphics.

Therefore, the usual method for creating an About box is to use a dialog box, such as the
one generated with one of the Delphi default templates. In this about box you might want to
add some code to display system information, such as the version of Windows or the amount
of free memory, or some user information, such as the registered user name.

Building a Splash Screen

Another typical technique used in applications is to display an initial screen before the main
form is shown. This makes the application seem more responsive, because you show something
to the user while the program is loading, but it also makes a nice visual effect. Sometimes, this
same window is displayed as the application’s About box.

For an example in which a splash screen is particularly useful, I've built a program display-
ing a list box filled with prime numbers. The prime numbers are computed on program
startup, so that they are displayed as soon as the form becomes visible:

procedure TForml.FormCreate(Sender: TObject);
var

I: Integer;
begin

for I := 1 to 30000 do

if IsPrime (I) then
ListBoxl.Items.Add (IntToStr (I));

end;

This method calls an IsPrime function I've added to the program. This function, which
you can find in the source code, computes prime numbers in a terribly slow way; but I
needed a slow form creation to demonstrate my point. The numbers are added to a list box

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

About Boxes and Splash Screens 371

that covers the full client area of the form and allows multiple columns to be displayed, as
you can see in Figure 9.16.

FIGURE 9.16:

The main form of the
Splash example, with the
About box activated from
the menu

il =10l %]

Fil= Help

i 79 153 317 457

2 83 197 33 461

3 89 199 337 463

5 a7 211 347 467

7 101 223 343 479

11 103 227 353 487

13

17 3

19 AboutB ox

23

29

31

37

41

42

47

53

59

61

B7

71

72

KN i
This is my program, version 1

There are three versions of the Splash program (plus the three corresponding CLX ver-

sions). As you can see by running the Splash0 example, the problem with this program is that
the initial operation, which takes place in the FormCreate method, takes a lot of time. When
you start the program, it takes several seconds to display the main form. If your computer is
very fast or very slow, you can change the upper limit of the for loop of the FormCreate
method to make the program faster or slower.

This program has a simple dialog box with an image component, a simple caption, and a
bitmap button, all placed inside a panel taking up the whole surface of the About box. This
form is displayed when you select the Help > About menu item. But what we really want is
to display this About box while the program starts. You can see this effect by running the
Splash1 and Splash2 examples, which show a splash screen using two different techniques.

First of all, I’'ve added a method to the TAboutBox class. This method, called MakeSpT1ash,
changes some properties of the form to make it suitable for a splash form. Basically it
removes the border and caption, hides the OK button, makes the border of the panel thick
(to replace the border of the form), and then shows the form, repainting it immediately:

procedure TAboutBox.MakeSplash;
begin
BorderStyle := bsNone;
BitBtnl.Visible := False;
Panell.BorderWidth := 3;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

372

Chapter 9 e Working with Forms

Show;
Update;
end;

This method is called after creating the form in the project file of the Splash1 example.
"This code is executed before creating the other forms (in this case only the main form), and
the splash screen is then removed before running the application. These operations take
place within a try/finally block. Here is the source code of the main block of the project
file for the Splash2 example:

var
SpTashAbout: TAboutBox;

begin
Application.Initialize;

// create and show the splash form
SplashAbout := TAboutBox.Create (Application);
try
SpTashAbout.MakeSplash;
// standard code. ..
AppTlication.CreateForm(TForml, Forml);
// get rid of the splash form
SplashAbout.Close;
finally
SpTashAbout.Free;
end;

Application.Run;
end.

This approach makes sense only if your application’s main form takes a while to create, to
execute its startup code (as in this case), or to open database tables. Notice that the splash
screen is the first form created, but because the program doesn’t use the CreateForm method
of the App1ication object, this doesn’t become the main form of the application. In this case,
in fact, closing the splash screen would terminate the program!

An alternative approach is to keep the splash form on the screen a little longer and use a timer
to get rid of it after a while. I've implemented this second technique in the Splash2 example.
"This example also uses a different approach for creating the splash form: instead of creating it
in the project source code, it creates the form at the very beginning of the FormCreate
method of the main form.

procedure TForml.FormCreate(Sender: TObject);
var

I: Integer;

SpTashAbout: TAboutBox;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

What’s Next? 373

begin
// create and show the splash form
SplashAbout := TAboutBox.Create (Application);
SpTashAbout.MakeSplash;
// standard code...
for I := 1 to 30000 do
if IsPrime (I) then
ListBoxl.Items.Add (IntToStr (I));
// get rid of the splash form, after a while
SpTashAbout.Timerl.Enabled := True;
end;

The timer is enabled just before terminating the method. After its interval has elapsed (in
the example, 3 seconds) the OnTimer event is activated, and the splash form handles it by clos-
ing and destroying itself:

procedure TAboutBox.TimerlTimer(Sender: TObject);
begin

Close;

Release;
end;

NortEe The Release method of a form is similar to the Free method of objects, only the destruction

of the form is delayed until all event handlers have completed execution. Using Free inside a
form might cause an access violation, as the internal code, which fired the event handler,
might refer again to the form object.

There is one more thing to fix. The main form will be displayed later and in front of the
splash form, unless you make this a top-most form. For this reason I've added one line to the
MakeSpTlash method of the About box in the Splash2 example:

FormStyle := fsStayOnTop;

What’s Next?

In this chapter we’ve explored some important form properties. Now you know how to han-
dle the size and position of a form, how to resize it, and how to get mouse input and paint
over it. You know more about dialog boxes, modal forms, predefined dialogs, splash screens,
and many other techniques, including the funny effect of alpha blending. Understanding the
details of working with forms is critical to a proper use of Delphi, particularly for building

complex applications (unless, of course, you’re building services or Web applications with no
user interface).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

374

Chapter 9 e Working with Forms

In the next chapter we’ll continue by exploring the overall structure of a Delphi applica-
tion, with coverage of the role of two global objects, App1ication and Screen. I'll also discuss
MDI development as you learn some more advanced features of forms, such as visual form
inheritance. I'll also discuss frames, visual component containers similar to forms.

In this chapter, I've also provided a short introduction to direct painting and to the use of
the TCanvas class. More about graphics in Delphi forms can also be found in the bonus chap-
ter “Graphics in Delphi” on the companion CD.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

CHAPTER

The Architecture of Delphi
Applications

e The Application and Screen global objects

e Messages and multitasking in Windows

e Finding the previous instance of an application
e MDI applications

e Visual form inheritance

e Frames

e Base forms and interfaces

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

376 Chapter 10 e The Architecture of Delphi Applications

Although together we’ve built Delphi applications since the beginning of the book, we’ve
never really focused on the structure and the architecture of an application built with Delphi’s
class library. For example, there hasn’t been much coverage about the global Application
object, about techniques for keeping tracks of the forms we’ve created, about the flow of mes-
sages in the system, and other such elements.

In the last chapter you saw how to create applications with multiple forms and dialog boxes,
but we haven’t discussed how these forms can be related one to the other, how can you share
similar features of forms, and how you can operate on multiple similar forms in a coherent
way. All of this is the ambitious goal of this chapter, which covers both basic and advanced
techniques, including visual form inheritance, the use of frames, and MDI development, but
also the use of interfaces for building complex hierarchies of form classes.

The Application Object

I've already mentioned the Application global object on multiple occasions, but as in this
chapter we are focusing on the structure of Delphi applications, it is time to delve into some
more details of this global object and its corresponding class. AppTication is a global object
of the TApplication class, defined in the Forms unit and created in the Controls unit.

The TAppTication class is a component, but you cannot use it at design time. Some of its
properties can be directly set in the Application page of the Project Options dialog box; others
must be assigned in code.

"To handle its events, instead, Delphi includes a handy ApplicationEvents component. Besides
allowing you to assign handlers at design time, the advantage of this component is that it allows
for multiple handlers. If you simply place two instances of the ApplicationEvents component in
two different forms, each of them can handle the same event, and both event handlers will be
executed. In other words, multiple ApplicationEvents components can chain the handlers.

Some of these application-wide events, including OnActivate, OnDeactivate, OnMinimize,
and OnRestore, allow you to keep track of the status of the application. Other events are for-
warded to the application by the controls receiving them, as in OnActionExecute, OnAction-
Update, OnHelp, OnHint, OnShortCut, and OnShowHint. Finally, there is the OnException global
exception handler we used in Chapter 3, the OnIdle event used for background computing, and
the OnMessage event, which fires whenever a message is posted to any of the windows or win-
dowed controls of the application.

Although its class inherits directly from TComponent, the App1ication object has a window
associated with it. The application window is hidden from sight but appears on the Taskbar.
"This is why Delphi names the window Form1 and the corresponding Taskbar icon Project1.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Application Object 377

The window related to the AppTication object—the application window—serves to keep
together all the windows of an application. The fact that all the top-level forms of a program
have this invisible owner window, for example, is fundamental when the application is acti-
vated. In fact, when the windows of your program are behind those of other programs, click-
ing one window in your application will bring all of that application’s windows to the front.
In other words, the unseen application window is used to connect the various forms of the
application. Actually the application window is not hidden, because that would affect its
behavior; it simply has zero height and width, and therefore it is not visible.

Tip

In Windows, the Minimize and Maximize operations are associated by default with system
sounds and a visual animated effect. Applications built with Delphi (starting with version 5)
produce the sound and display the visual effect by default.

When you create a new, blank application, Delphi generates a code for the project file,
which includes the following:
begin
Application.Initialize;
Application.CreateForm(TForml, Forml);
Application.Run;
end.

As you can see in this standard code, the AppTication object can create forms, setting the
first one as the MainForm (one of the Application properties) and closing the entire applica-
tion when this main form is destroyed. Moreover, it contains the Windows message loop
(started by the Run method) that delivers the system messages to the proper windows of the
application. A message loop is required by any Windows application, but you don’t need to
write one in Delphi because the Application object provides a default one.

If this is the main role of the App1ication object, it manages few other interesting areas as well:
e Hints (discussed at the end of Chapter 7)
e The help system, which in Delphi 6 includes the ability to define the type of help

viewer (something not covered in detail in this book)
e Application activation, minimize, and restore
e A global exceptions handler, as discussed in Chapter 3 in the ErrorLog example

e General application information, including the MainForm, executable file name and
path (ExeName), the Icon, and the Title displayed in the Windows taskbar and when
you scan the running applications with the Alt+Tab keys

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

378

Chapter 10 e The Architecture of Delphi Applications

Tip

To avoid a discrepancy between the two titles, you can change the application’s title at design
time. As an alternative, at run time, you can copy the form’s caption to the title of the applica-
tion with this code: AppTlication.Title := Forml.Caption.

In most applications, you don’t care about the application window, apart from setting its
Title and icon and handling some of its events. There are some simple operations you can
do anyway. Setting the ShowMainForm property to False in the project source code indicates
that the main form should not be displayed at startup. Inside a program, instead, you can use
the MainForm property of the Application object to access the main form, which is the first
form created in the program.

Displaying the Application Window
There is no better proof that a window indeed exists for the Application object than to
display it. Actually, we don’t need to show it—we just need to resize it and set a couple of
window attributes, such as the presence of a caption and a border. We can perform these
operations by using Windows API functions on the window indicated by the Handle prop-
erty of the Application object:
procedure TForml.ButtonlClick(Sender: TObject);
var
01dStyle: Integer;
begin
// add border and caption to the app window
01dStyle := GetWindowLong (Application.Handle, gwl_Style);
SetWindowLong (Application.Handle, gwl_Style,
01dStyle or ws_ThickFrame or ws_Caption);
// set the size of the app window
SetWindowPos (Application.Handle, 0, 0, 0, 200, 100,

swp_NoMove or swp_NoZOrder);
end;

The two GetWindowLong and SetWindowLong API functions are used to access the system
information related to the window. In this case, we are using the gw1_Style parameter to read
or write the styles of the window, which include its border, title, system menu, border icons,
and so on. The code above gets the current styles and adds (using an or statement) a standard
border and a caption to the form. As we’ll see later in this chapter, you seldom need to use
these low-level API functions in Delphi, because there are properties of the TForm class that
have the same effect. We need this code here because the application window is not a form.

Executing this code displays the project window, as you can see in Figure 10.1. Although
there’s no need to implement something like this in your own programs, running this program
will reveal the relation between the application window and the main window of a Delphi pro-

gram. This is a very important starting point if you want to understand the internal structure
of Delphi applications.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Application Object 379

FIGURE 10.1: i#Show App =] E3

The hidden application win-
dow revealed by the
ShowApp program

The Application System Menu

Unless you write a very odd program like the example we’ve just looked at, users will only see
the application window in the Taskbar. There, they can activate the window’s system menu by
right-clicking it. As I mentioned in the SysMenu example in Chapter 6, when discussing the
system menu, an application’s menu is not the same as that of the main form. In that example,
I added custom items to the system menu of the main form. Now in the SysMenu2 example, I
want to customize the system menu of the application window in the Taskbar.

First we have to add the new items to the system menu of the application window when the
program starts. Here is the updated code of the FormCreate method:
procedure TForml.FormCreate(Sender: TObject);
begin
// add a separator and a menu item to the system menu
AppendMenu (GetSystemMenu (Handle, FALSE), MF_SEPARATOR, 0, '');
AppendMenu (GetSystemMenu (Handle, FALSE), MF_STRING, idSysAbout,
'&About..."');
// add the same items to the application system menu
AppendMenu (GetSystemMenu (Application.Handle, FALSE), MF_SEPARATOR, 0, '');
AppendMenu (GetSystemMenu (Application.Handle, FALSE), MF_STRING, idSysAbout,
'®@About...");
end;

The first part of the code adds the new separator and item to the system menu of the main
form. The other two calls add the same two items to the application’s system menu, simply
by referring to Application.Handle. This is enough to display the updated system menu, as
you can see by running this program. The next step is to handle the selection of the new

menu item.

To handle form messages, we can simply write new event handlers or message-handling
methods. We cannot do the same with the application window, simply because inheriting
from the TAppTication class is quite a complex issue. Most of the time we can just handle

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

380 Chapter 10 e The Architecture of Delphi Applications

the OnMessage event of this class, which is activated for every message the application
retrieves from the message queue.

"To handle the OnMessage event of the global AppTication object, simply add an Application-
Events component to the main form, and define a handler for the OnMessage event of this com-
ponent. In this case, we only need to handle the wm_SysCommand message, and we only need to
do that if the wParam parameter indicates that the user has selected the menu item we’ve just
added, idSysAbout:

procedure TForml.ApplicationEventsiMessage(var Msg: tagMSG;
var Handled: Boolean);
begin
if (Msg.Message = wm_SysCommand) and (Msg.wParam = idSysAbout) then
begin
ShowMessage ('Mastering Delphi: SysMenu2 exampie');
Handled := True;
end;
end;

This method is very similar to the one used to handle the corresponding system menu item
of the main form:

procedure WMSysCommand (var Msg: TWMSysCommand);
message wm_SysCommand;

procedure TForml.WMSysCommand (var Msg: TWMSysCommand);
begin
// handle a specific command
if Msg.CmdType = idSysAbout then
ShowMessage ('Mastering Delphi: SysMenu? examplie');
inherited;
end;

Activating Applications and Forms

"To show how the activation of forms and applications works, I’ve written a simple, self-
explanatory example, available on the companion CD, called ActivApp. This example has
two forms. Each form has a Label component (LabeTForm) used to display the status of the
form. The program uses text and color for this, as the handlers of the OnActivate and
OnDeactivate events of the first form demonstrate:

procedure TForml.FormActivate(Sender: TObject);

begin
LabelForm.Caption := 'Form2 Active';
LabeTForm.Color := clRed;

end;

procedure TForml.FormDeactivate(Sender: TObject);
begin
LabelForm.Caption := 'Form2 Not Active';

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Application Object 381

LabelForm.Color := cl1BtnFace;
end;

The second form has a similar label and similar code. The main form also displays the
status of the entire application. It uses an ApplicationEvents component to handle the
OnActivate and OnDeactivate events of the Application object. These two event handlers
are similar to the two listed previously, with the only difference being that they modify the
text and color of a second label of the form.

If you try running this program, you’ll see whether this application is the active one and, if
so, which of its forms is the active one. By looking at the output (see Figure 10.2) and listening
for the beep, you can understand how each of the activation events is triggered by Delphi.
Run this program and play with it for a while to understand how it works. We’ll get back to
other events related to the activation of forms in a while.

FIGURE 10.2: ﬂ - 10| x| f-'FurmZ _ O] x|
The ActivApp example

shows whether the _

application is active and

which of the application’s Form1 Not Active _

forms is active.

Tracking Forms with the Screen Object

We have already explored some of the properties and events of the AppTication object.

Other interesting global information about an application is available through the Screen

object, whose base class is TScreen. This object holds information about the system display

(the screen size and the screen fonts) and also about the current set of forms in a running

application. For example, you can display the screen size and the list of fonts by writing:
Labell.Caption := IntToStr (Screen.Width) + 'x' + IntToStr (Screen.Height);
ListBox1l.Items := Screen.Fonts;

TScreen also reports the number and resolution of monitors in a multimonitor system.
What I want to focus on now, however, is the list of forms held by the Forms property of the
Screen object, the top-most form indicated by the ActiveForm property, and the related
OnActiveFormChange event. Note that the forms the Screen object references are the forms of
the application and not those of the system.

These features are demonstrated by the Screen example on the CD, which maintains a list
of the current forms in a list box. This list must be updated each time a new form is created,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

382 Chapter 10 e The Architecture of Delphi Applications

an existing form is destroyed, or the active form of the program changes. To see how this
works, you can create secondary forms by clicking the button labeled New:

procedure TMainForm.NewButtonClick(Sender: TObject);
var
NewForm: TSecondForm;
begin
// create a new form, set its caption, and run it
NewForm := TSecondForm.Create (Self);
Inc (nForms);
NewForm.Caption := ’'Second ' + IntToStr (nForms);
NewForm.Show;
end;

One of the key portions of the program is the OnCreate event handler of the form, which
fills the list a first time and then connects a handler to the OnActiveFormChange event:
procedure TMainForm.FormCreate(Sender: TObject);
begin
FillFormsList (Self);
// set the secondary forms counter to 0

nForms := 0;

// set an event handler on the screen object

Screen.OnActiveFormChange := FillFormsList;
end;

The code used to fill the Forms list box is inside a second procedure, Fil1FormsList,
which is also installed as an event handler for the OnActiveFormChange event of the Screen
object:

procedure TMainForm.FillFormsList (Sender: TObject);
var
I: Integer;
begin
// skip code in destruction phase
if Assigned (FormsListBox) then
begin
FormsLabel.Caption := 'Forms: ' + IntToStr (Screen.FormCount);
FormsListBox.Clear;
// write class name and form title to the 1ist box
for I := 0 to Screen.FormCount - 1 do

FormsListBox.Items.Add (Screen.Forms[I].ClassName + ' - ' +
Screen.Forms[I].Caption);
Activelabel.Caption := 'Active Form : ' + Screen.ActiveForm.Caption;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

The Application Object 383

WARNING |t is very important not to execute this code while the main form is being destroyed. As an

alternative to testing for the listbox not to be set to ni1, you could as well test the form’s
ComponentState for the csDestroying flag. Another approach would be to remove the
OnActiveFormChange event handler before exiting the application; that is, handle the
OnClose event of the main form and assign ni1 to Screen.OnActiveFormChange.

The Fi1TFormsList method fills the list box and sets a value for the two labels above it to
show the number of forms and the name of the active one. When you click the New button,
the program creates an instance of the secondary form, gives it a new title, and displays it.
"The Forms list box is updated automatically because of the handler we have installed for the
OnActiveFormChange event. Figure 10.3 shows the output of this program when some sec-
ondary windows have been created.

FIGURE 10.3: £ _Dﬂ| £ _[O]x]
The output of the Screen :
example with some sec- 2

ondary forms 7 _|O]x] TSecondFom - Second B

Active Form : Second B

=10] x|

Farms: 7

TSecondForm - Second 5
. TSecondFom - Second 4
—_ ﬂ ;lﬂlﬂ ThainFarm - Screen Info
TSecondForm - Second 3
== FJndForm - Second 2

ﬁ ;lglﬂ ondFam - Second 1
A Second 6 [H=]E3

Tip

The program always updates the text of the Activelabel above the list box to show the cur-
rently active form, which is always the same as the first one in the list box.

The secondary forms each have a Close button you can click to remove them. The pro-
gram handles the OnClose event, setting the Action parameter to caFree, so that the form is
actually destroyed when it is closed. This code closes the form, but it doesn’t update the list
of the windows properly. The system moves the focus to another window first, firing the
event that updates the list, and destroys the old form only after this operation.

The first idea I had to update the windows list properly is to introduce a delay, posting a
user-defined Windows message. Because the posted message is queued and not handled

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

384

Chapter 10 e The Architecture of Delphi Applications

immediately, if we send it at the last possible moment of life of the secondary form, the main
form will receive it when the other form is destroyed.

The trick is to post the message in the OnDestroy event handler of the secondary form. To
accomplish this, we need to refer to the MainForm object, by adding a uses statement in the
implementation portion of this unit. I've posted a wm_User message, which is handled by a
specific message method of the main form, as shown here:

public

procedure ChildClosed (var Message: TMessage);
message wm_User;

Here is the code for this method:
procedure TMainForm.ChildClosed (var Message: TMessage);
begin
FiTTFormsList (Self);
end;

The problem here is that if you close the main window before closing the secondary forms,
the main form exists, but its code cannot be executed anymore. To avoid another system
error (an Access Violation Fault), you need to post the message only if the main form is not
closing. But how do you know that? One way is to add a flag to the TMainForm class and
change its value when the main form is closing, so that you can test the flag from the code
of the secondary window.

This is a good solution—so good that the VCL already provides something similar. There
is a barely documented ComponentState property. It is a Pascal set that includes (among other
flags) a csDestroying flag, which is set when the form is closing. Therefore, we can write the
following code:

procedure TSecondForm.FormDestroy(Sender: TObject);
begin
if not (csDestroying in MainForm.ComponentState) then

PostMessage (MainForm.Handle, wm_User, 0, 0);
end;

With this code, the list box always lists all of the forms in the application. Note that you need

to disable the automatic creation of the secondary form by using the Forms page of the Project
Options dialog box.

After giving it some thought, however, I found an alternative and much more Delphi-oriented
solution. Every time a component is destroyed, it tells its owner about the event by calling
the Notification method defined in the TComponent class. Because the secondary forms are
owned by the main one, as specified in the code of the NewButtonC1ick method, we can over-
ride this method and simplify the code. In the form class, simply write

protected

procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Events, Messages, and Multitasking in Windows 385

Here is the code of the method:

procedure TMainForm.Notification(AComponent: TComponent;
Operation: TOperation);
begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and Showing and (AComponent is TForm) then
FiTlFormsList;
end;

You'll find the complete code of this version in the Screen2 directory on the CD.

Note In case the secondary forms were not owned by the main one, we could have used the
FreeNotification method to get the secondary form to notify the main form when they are
destroyed. FreeNotification receives as parameter the component to notify when the cur-
rent component is destroyed. The effect is a call to the Notification method coming from a
component other than the owned ones. FreeNotification is generally used by component
writers to safely connect components on different forms or data modules.

The last feature I've added to both versions of the program is a simple one. When you
click an item in the list box, the corresponding form is activated, using the BringToFront

method:
procedure TMainForm.FormsListBoxClick(Sender: TObject);
begin
Screen.Forms [FormsListBox.ItemIndex].BringToFront;
end;

Nice—well, almost nice. If you click the list box of an inactive form, the main form is acti-
vated first, and the list box is rearranged, so you might end up selecting a different form than
you were expecting. If you experiment with the program, you’ll soon realize what I mean.
"This minor glitch in the program is an example of the risks you face when you dynamically
update some information and let the user work on it at the same time.

Events, Messages, and Multitasking in Windows

"To understand how Windows applications work internally, we need to spend a minute dis-
cussing how multitasking is supported in this environment. We also need to understand the
role of timers (and the Timer component) and of background (or idle) computing.

In short, we need to delve deeper into the event-driven structure of Windows and its
multitasking support. Because this is a book about Delphi programming, I won’t discuss this
topic in detail, but I will provide an overview for readers who have limited experience with
Windows API programming.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

386

Chapter 10 e The Architecture of Delphi Applications

Event-Driven Programming

"The basic idea behind event-driven programming is that specific events determine the con-
trol flow of the application. A program spends most of its time waiting for these events and
provides code to respond to them. For example, when a user clicks one of the mouse buttons,
an event occurs. A message describing this event is sent to the window currently under the
mouse cursor. The program code that responds to events for that window will receive the event,
process it, and respond accordingly. When the program has finished responding to the event, it
returns to a waiting or “idle” state.

As this explanation shows, events are serialized; each event is handled only after the previ-
ous one is completed. When an application is executing event-handling code (that is, when it
is not waiting for an event), other events for that application have to wait in a message queue
reserved for that application (unless the application uses multiple threads). When an applica-
tion has responded to a message and returned to a waiting state, it becomes the last in the list
of programs waiting to handle additional messages. In every version of Win32 (9x, N'T, Me,
and 2000), after a fixed amount of time has elapsed, the system interrupts the current appli-
cation and immediately gives control to the next one in the list. The first program is resumed
only after each application has had a turn. This is called preemptive multitasking.

So, an application performing a time-consuming operation in an event handler doesn’t
prevent the system from working properly, but is generally unable even to repaint its own
windows properly, with a very nasty effect. If you’ve never experienced this problem, try for
yourself: Write a time-consuming loop executed when a button is pressed, and try to move
the form or move another window on top of it. The effect is really annoying. Now try adding the
call AppTication.ProcessMessages within the loop, and you’ll see that the operation
becomes much slower, but the form will be immediately refreshed.

If an application has responded to its events and is waiting for its turn to process messages,
it has no chance to regain control until it receives another message (unless it uses multi-
threading). This is a reason to use timers, a system component that will send a message to
your application every time a time interval elapses.

One final note—when you think about events, remember that input events (using the
mouse or the keyboard) account for only a small percentage of the total message flow in a
Windows application. Most of the messages are the system’s internal messages or messages
exchanged between different controls and windows. Even a familiar input operation such as
clicking a mouse button can result in a huge number of messages, most of which are internal
Windows messages. You can test this yourself by using the WinSight utility included in Del-
phi. In WinSight, choose to view the Message Trace, and select the messages for all of the
windows. Select Start, and then perform some normal operations with the mouse. You’ll see
hundreds of messages in a few seconds.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Events, Messages, and Multitasking in Windows 387

Windows Message Delivery

Before looking at some real examples, we need to consider another key element of message
handling. Windows has two different ways to send a message to a window:

e The PostMessage API function is used to place a message in the application’s message
queue. The message will be handled only when the application has a chance to access
its message queue (that is, when it receives control from the system), and only after
earlier messages have been processed. This is an asynchronous call, since you do not
know when the message will actually be received.

e The SendMessage API function is used to execute message-handler code immediately.
SendMessage bypasses the application’s message queue and sends the message directly
to a target window or control. This is a synchronous call. This function even has a
return value, which is passed back by the message-handling code. Calling SendMessage
is no different than directly calling another method or function of the program.

The difference between these two ways of sending messages is similar to that between
mailing a letter, which will reach its destination sooner or later, and sending a fax, which goes
immediately to the recipient. Although you will rarely need to use these low-level functions
in Delphi, this description should help you determine which one to use if you do need to
write this type of code.

Background Processing and Multitasking

Suppose that you need to implement a time-consuming algorithm. If you write the algorithm
as a response to an event, your application will be stopped completely during all the time it
takes to process that algorithm. To let the user know that something is being processed, you
can display the hourglass cursor, but this is not a user-friendly solution. Win32 allows other
programs to continue their execution, but the program in question will freeze; it won’t even
update its own user interface if a repaint is requested. In fact, while the algorithm is execut-
ing, the application won’t be able to receive and process any other messages, including the
paint messages.

The simplest solution to this problem is to call the ProcessMessages method of the
Application object many times within the algorithm, usually inside an internal loop. This
call stops the execution, allows the program to receive and handle a message, and then
resumes execution. The problem with this approach, however, is that while the program is
paused to accept messages, the user is free to do any operation and might again click the but-
ton or press the keystrokes that started the algorithm. To fix this, you can disable the buttons
and commands you don’t want the user to select, and you can display the hourglass cursor
(which technically doesn’t prevent a mouse click event, but it does suggest that the user

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

388 Chapter 10 e The Architecture of Delphi Applications

should wait before doing any other operation). An alternative solution is to split the algorithm
into smaller pieces and execute each of them in turn, letting the application respond to pend-
ing messages in between processing the pieces. We can use a timer to let the system notify us
once a time interval has elapsed. Although you can use timers to implement some form of
background computing, this is far from a good solution. A slightly better technique would be
to execute each step of the program when the Application object receives the OnIdle event.

The difference between calling ProcessMessages and using the OnIdTe events is that by
calling ProcessMessages, you will give your code more processing time than with the OnIdle
approach. Calling ProcessMessages is a way to let the system perform other operations while
your program is computing; using the OnIdle event is a way to let your application perform
background tasks when it doesn’t have pending requests from the user.

NortE All these techniques for background computing were necessary in 16-bit Windows days. In
Win32, you should generally use secondary threads to perform lengthy or background operations.

Checking for a Previous Instance of an Application

One form of multitasking is the execution of two or more instances of the same application.
Any application can generally be executed by a user in more than one instance, and it needs to
be able to check for a previous instance already running, in order to disable this default behav-
ior and allow for one instance at most. This section demonstrates several ways of implementing
such a check, allowing me to discuss some interesting Windows programming techniques.

Looking for a Copy of the Main Window

"To find a copy of the main window of a previous instance, use the FindWindow API function
and pass it the name of the window class (the name used to register the form’s window type,
or WNDCLASS, in the system) and the caption of the window for which you are looking. In a
Delphi application, the name of the WNDCLASS window class is the same as the Object Pascal
name for the form’s class (for example, TForm1). The result of the FindWindow function is
either a handle to the window or zero (if no matching window was found).

The main code of your Delphi application should be written so that it will execute only if
the FindwWindow result is zero:
var
Hwnd: THandle;
begin
Hwnd := FindWindow ('TForml', nil);
if Hwnd = 0 then

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Checking for a Previous Instance of an Application 389

begin
Application.Initialize;
Application.CreateForm(TForml, Forml);
AppTication.Run;

end

else
SetForegroundWindow (Hwnd)

end.

To activate the window of the previous instance of the application, you can use the
SetForegroundWindow function, which works for windows owned by other processes. This
call produces its effect only if the window passed as parameter hasn’t been minimized. When
the main form of a Delphi application is minimized, in fact, it is hidden, and for this reason
the activation code has no effect.

Unfortunately, if you run a program that uses the FindWindow call just shown from within
the Delphi IDE, a window with that caption and class may already exist: the design-time
form. Thus, the program won'’t start even once. However, it will run if you close the form
and its corresponding source code file (closing only the form, in fact, simply hides the win-
dow), or if you close the project and run the program from the Windows Explorer.

Using a Mutex

A completely different approach is to use a mutex, or mutual exclusion object. This is a typi-
cal Win32 approach, commonly used for synchronizing threads, as we’ll see later in this
chapter. Here we are going to use a mutex for synchronizing two different applications, or
(to be more precise) two instances of the same application.

Once an application has created a mutex with a given name, it can test whether this object
is already owned by another application, calling the WaitForSingleObject Windows API
function. If the mutex has no owner, the application calling this function becomes the owner.
If the mutex is already owned, the application waits until the time-out (the second parameter
of the function) elapses. It then returns an error code.

"To implement this technique, you can use the following project source code, which you’ll
find in the OneCopy example:

var
hMutex: THandle;
begin
HMutex := CreateMutex (nil, False, 'OneCopyMutex');
if WaitForSingleObject (hMutex, 0) <> wait_TimeOut then
begin
AppTlication.Initialize;
Application.CreateForm(TForml, Forml);
Application.Run;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

390

Chapter 10 e The Architecture of Delphi Applications

end;
end.

If you run this example twice, you’ll see that it creates a new, temporary copy of the appli-
cation (the icon appears in the Taskbar) and then destroys it when the time-out elapses. This
approach is certainly more robust than the previous one, but it lacks a feature: how do we
enable the existing instance of the application? We still need to find its form, but we can use
a better approach.

Searching the Window List

When you want to search for a specific main window in the system, you can use the Enumiindows
API functions. Enumeration functions are quite peculiar in Windows, because they usually
require another function as a parameter. These enumeration functions require a pointer to a
function (often described as a callback function) as parameter. The idea is that this function is
applied to each element of the list (in this case, the list of main windows), until the list ends
or the function returns False. Here is the enumeration function from the OneCopy example:

function EnumWndProc (hwnd: THandle;
Param: Cardinal): Bool; stdcall;
var
ClassName, WinModuleName: string;
WinInstance: THandle;
begin
Result := True;
SetLength (ClassName, 100);
GetClassName (hwnd, PChar (ClassName), Length (ClassName));

ClassName := PChar (ClassName);
if ClassName = TForml.ClassName then
begin

// get the module name of the target window
SetLength (WinModuleName, 200);

WinInstance := GetWindowLong (hwnd, GWL_HINSTANCE);
GetModuTleFileName (WinInstance,

PChar (WinModuleName), Length (WinModuleName));
WinModuleName := PChar(WinModuleName); // adjust Tength
// compare module names
if WinModuleName = ModuleName then

begin
FoundWnd := Hwnd;
Result := False; // stop enumeration
end;
end;
end;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Checking for a Previous Instance of an Application 391

This function, called for each nonchild window of the system, checks the name of each
window’s class, looking for the name of the TForml class. When it finds a window with this
string in its class name, it uses GetModuleFilename to extract the name of the executable file
of the application that owns the matching form. If the module name matches that of the cur-
rent program (which was extracted previously with similar code), you can be quite sure that
you have found a previous instance of the same program. Here is how you can call the enu-
merated function:

var
FoundWnd: THandle;
ModuleName: string;
begin
if WaitForSingleObject (hMutex, 0) <> wait_TimeOut then
else
begin
// get the current module name
SetLength (ModuleName, 200);
GetModuleFileName (HInstance, PChar (ModuleName), Length (ModuleName));
ModuTleName := PChar (ModuleName); // adjust length

// find window of previous instance
EnumWindows (@EnumWndProc, 0);

Handling User-Defined Window Messages

I’ve mentioned earlier that the SetForegroundWindow call doesn’t work if the main form of the
program has been minimized. Now we can solve this problem. You can ask the form of another
application—the previous instance of the same program in this case—to restore its main form
by sending it a user-defined window message. You can then test whether the form is mini-
mized and post a new user-defined message to the old window. Here is the code; in the
OneCopy program, it follows the last fragment shown in the preceding section:
if FoundWnd <> 0 then
begin
// show the window, eventually
if not IsWindowVisible (FoundWnd) then
PostMessage (FoundWnd, wm_User, 0, 0);

SetForegroundWindow (FoundWnd);
end;

Again, the PostMessage API function sends a message to the message queue of the applica-
tion that owns the destination window. In the code of the form, you can add a special func-
tion to handle this message:

public

procedure WMUser (var msg: TMessage);
message wm_User;

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

392

Chapter 10 e The Architecture of Delphi Applications

Now you can write the code of this method, which is simple:

procedure TForml.WMUser (var msg: TMessage);
begin

Application.Restore;
end;

Creating MDI Applications

A common approach for the structure of an application is MDI (Multiple Document Inter-
face). An MDI application is made up of several forms that appear inside a single main form.
If you use Windows Notepad, you can open only one text document, because Notepad isn’t
an MDI application. But with your favorite word processor, you can probably open several
different documents, each in its own child window, because they are MDI applications. All
these document windows are usually held by a frame, or application, window.

NoTE

Microsoft is departing more and more from the MDI model stressed in Windows 3 days. Start-
ing with Resource Explorer in Windows 95 and even more with Office 2000, Microsoft tends
to use a specific main window for every document, the classic SDI (Single Document Interface)
approach. In any case, MDI isn't dead and can sometimes be a useful structure.

MDI in Windows: A Technical Overview

The MDI structure gives programmers several benefits automatically. For example, Windows
handles a list of the child windows in one of the pull-down menus of an MDI application, and
there are specific Delphi methods that activate the corresponding MDI functionality, to tile or

cascade the child windows. The following is the technical structure of an MDI application in
Windows:

e The main window of the application acts as a frame or a container.

e A special window, known as the MDI client, covers the whole client area of the frame
window. This MDI client is one of the Windows predefined controls, just like an edit
box or a list box. The MDI client window lacks any specific user-interface element, but
it is visible. In fact, you can change the standard system color of the MDI work area

(called the Application Background) in the Appearance page of the Display Properties
dialog box in Windows.

e There are multiple child windows, of the same kind or of different kinds. These child
windows are not placed in the frame window directly, but each is defined as a child of
the MDI client window, which in turn is a child of the frame window.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Frame and Child Windows in Delphi 393

Frame and Child Windows in Delphi

Delphi makes the development of MDI applications easy, even without using the MDI Appli-
cation template available in Delphi (see the Applications page of the File > New dialog box).
You only need to build at least two forms, one with the FormStyle property set to fsMDIForm
and the other with the same property set to fsMDIChild. Set these two properties in a simple
program and run it, and you’ll see the two forms nested in the typical MDI style.

Generally, however, the child form is not created at startup, and you need to provide a way
to create one or more child windows. This can be done by adding a menu with a New menu
item and writing the following code:

var
ChildForm: TChildForm;

begin
ChildForm := TChildForm.Create (Application);
ChildForm.Show;

Another important feature is to add a “Window” pull-down menu and use it as the value of
the WindowMenu property of the form. This pull-down menu will automatically list all the

available child windows. Of course, you can choose any other name for the pull-down menu,
but Window is the standard.

"To make this program work properly, we can add a number to the title of any child window
when it is created:

procedure TMainForm.NewlClick(Sender: TObject);

var
ChildForm: TChildForm;
begin
WindowMenu := Windowl;

Inc (Counter);
ChildForm := TChildForm.Create (Self);
ChildForm.Caption := ChildForm.Caption + ' ' + IntToStr (Counter);
ChiTldForm.Show;
end;

You can also open child windows, minimize or maximize each of them, close them, and use
the Window pull-down menu to navigate among them. Now suppose that we want to close
some of these child windows, to unclutter the client area of our program. Click the Close boxes
of some of the child windows and they are minimized! What is happening here? Remember
that when you close a window, you generally hide it from view. The closed forms in Delphi still
exist, although they are not visible. In the case of child windows, hiding them won’t work,
because the MDI Window menu and the list of windows will still list existing child windows,
even if they are hidden. For this reason, Delphi minimizes the MDI child windows when you

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

394 Chapter 10 e The Architecture of Delphi Applications

try to close them. 'To solve this problem, we need to delete the child windows when they are
closed, setting the Action reference parameter of the OnClose event to caFree.

Building a Complete Window Menu

Our first task is to define a better menu structure for the example. Typically the Window
pull-down menu has at least three items, titled Cascade, Tile, and Arrange Icons. To handle
the menu commands, we can use some of the predefined methods of TForm that can be used
only for MDI frames:

e The Cascade method cascades the open MDI child windows. The windows overlap
each other. Iconized child windows are also arranged (see ArrangeIcons below).

e The Tile method tiles the open MDI child windows; the child forms are arranged so
that they do not overlap. The default behavior is horizontal tiling, although if you have
several child windows, they will be arranged in several columns. This default can be
changed by using the TileMode property (either tbHorizontal or tbVertical).

e The ArrangeIcons procedure arranges all the iconized child windows. Open forms are
not moved.

As a better alternative to calling these methods, you can place an ActionList in the form
and add to it a series of predefined MDI actions. The related classes are TWindowArrange,
TWindowCascade, TWindowClose, TWindowTileHorizontal, TWindowTileVertical, and
TWindowMinimizeAl1l. The connected menu items will perform the corresponding actions
and will be disabled if no child window is available. The MdiDemo example, which we’ll look
at next, demonstrates the use of the MDI actions, among other things.

There are also some other interesting methods and properties related strictly to MDI in
Delphi:

e ActiveMDIChild is a run-time and read-only property of the MDI frame form, and it
holds the active child window. The user can change this value by selecting a new child
window, or the program can change it using the Next and Previous procedures, which
activate the child window following or preceding the currently active one.

e The ClientHandle property holds the Windows handle of the MDI client window,
which covers the client area of the main form.

e The MDIChildren property is an array of child windows. You can use this and the
MDIChildCount property to cycle among all of the child windows. This can be useful for
finding a particular child window or to operate on each of them.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

Frame and Child Windows in Delphi 395

NotE

Note that the internal order of the child windows is the reverse order of activation. This means
that the last child window selected is the active window (the first in the internal list), the second-
to-last child window selected is the second, and the first child window selected is the last. This
order determines how the windows are arranged on the screen. The first window in the list is
the one above all others, while the last window is below all others, and probably hidden away.
You can imagine an axis (the z axis) coming out of the screen toward you. The active window
has a higher value for the z coordinate and, thus, covers other windows. For this reason, the
Windows ordering schema is known as the z-order.

The MdiDemo Example

I’ve built a first example to demonstrate most of the features of a simple MDI application.
MdiDemo is actually a full-blown MDI text editor, because each child window hosts a Memo
component and can open and save text files. The child form has a Modified property used to
indicate whether the text of the memo has changed (it is set to True in the handler of the
memo’s OnChange event). Modified is set to False in the Save and Load custom methods and
checked when the form is closed (prompting to save the file).

As I've already mentioned, the main form of this example is based