Developer’s Guide

Borland®

Delphi” 7

for Windows™

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Refer to the DEPLOY document located in the root directory of your Delphi 7 product for a complete list of files that
you can distribute in accordance with the Delphi 7 License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

CoPYRIGHT © 1983-2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE1370WW21001 7E5R0802
0203040506-987654321
D3

Contents

Chapter 1
Introduction 1-1
What'sin thismanual? 1-1
Manual conventions. 1-2
Developer support services. 1-
Part 1
Programming with Delphi
Chapter 2
Developing applications with Delphi 2-1
Integrated development environment. 2-1
Designing applications 2-2
Creating projects. 2-3
Editingcode 2-4
Compiling applications 2-4
Debugging applications. 2-5
Deploying applications 2-5
Chapter 3
Using the component library 3-1
Understanding the component library 3-1
Properties, methods, and events 3-3
Properties 3-3
Methods 3-4
Events 3-4
Userevents 3-4
Systemevents 3-4
Internalevents 3-4
Objects, components, and controls. 3-5
TObjectbranch 3-6
TPersistentbranch 3-7
TComponentbranch. 3-7
TControlbranch 3-9
TWinControl / TWidgetControl branch . . .3-10
Chapter 4
Using the object model 4-1
Whatisanobject? 4-1
Examining a Delphiobject 4-2
Changing the name of a component 4-4
Inheriting data and code from an object. 4-5
Scope and qualifiers 4-5

Private, protected, public, and published
declarations

iii

Using object variables
Creating, instantiating, and destroying
objects
Components and ownership
Defining new classes
Using interfaces
Using interfaces across the hierarchy
Using interfaces with procedures
Implementing IInterface
TInterfacedObject
Using the as operator with interfaces
Reusing code and delegation.
Using implements for delegation
Aggregation
Memory management of interface
objects. L
Using reference counting
Not using reference counting
Using interfaces in distributed
applications

Chapter 5
Using BaseCLX

Using streams
Using streams to read or write data
Stream methods for reading
and writing
Reading and writing components
Reading and writing strings
Copying data from one stream
toanother.
Specifying the stream position and size. . .
Seeking to a specific position
Using Position and Size properties . . .
Working with files
Approaches to file I/O
Using file streams
Creating and opening files using
file streams
Using the file handle
Manipulating files
Deleting a file
Finding a file
Renaming a file
File date-time routines
Copying a file

Working with ini files and the system
Registry
Using TIniFile and TMemIniFile
Using TRegistryIniFile
Using TRegistry
Working with lists
Common list operations
Adding list items
Deleting list items
Accessing list items
Rearranging list items
Persistentlists.
Working with string lists
Loading and saving string lists
Creating a new string list
Short-term string lists
Long-term string lists
Manipulating strings in a list
Counting the strings in a list
Accessing a particular string
Locating items in a string list
Iterating through strings ina list
Adding a string to a list
Moving a string within a list
Deleting a string from a list
Associating objects with a
string list
Working with strings
Wide character routines
Commonly used long string routines . . .
Commonly used routines for
null-terminated strings.
Declaring and initializing strings.
Mixing and converting string types
String to PChar conversions.
String dependencies
Returning a PChar local variable
Passing a local variable as
a PChar
Compiler directives for strings
Creating drawing spaces
Printing
Converting measurements
Performing conversions
Performing simple conversions
Performing complex conversions . . .
Adding new measurement types.

iv

Creating a simple conversion family
and adding units.
Declare variables
Register the conversion family
Register measurement units
Use the new units
Using a conversion function
Declare variables
Register the conversion family
Register the base unit
Write methods to convert to and
from the base unit
Register the other units
Use the new units
Using a class to manage conversions
Creating the conversion class
Declare variables
Register the conversion family and
the other units
Use the new units
Defining custom variants
Storing a custom variant type’s data
Creating a class to enable the
custom variant type
Enabling casting
Implementing binary operations
Implementing comparison
operations
Implementing unary operations
Copying and clearing custom variants . . .
Loading and saving custom
variant values
Using the TCustomVariantType
descendant
Writing utilities to work with a
custom variant type
Supporting properties and methods
in custom variants
Using TInvokeableVariantType
Using TPublishableVariantType

Chapter 6
Working with components

Setting component properties
Setting properties at design time
Using property editors
Setting properties at runtime.
Calling methods.

5-50

5-50

5-51
5-51

. 5-53

Working with events and event handlers
Generating a new event handler
Generating a handler for a

component’s default event
Locating event handlers.
Associating an event with an existing
event handler
Using the Sender parameter
Displaying and coding shared
events
Associating menu events with
event handlers
Deleting eventhandlers
Cross-platform and non-cross-platform
components.
Adding custom components to the
Component palette.

Chapter 7
Working with controls

Implementing drag and drop in controls
Starting a drag operation
Accepting dragged items
Droppingitems.
Ending a drag operation.
Customizing drag and drop with

adragobject.
Changing the drag mouse pointer
Implementing drag and dock in controls
Making a windowed control a
docking site
Making a control a dockable child
Controlling how child controls
aredocked.
Controlling how child controls
are undocked
Controlling how child controls respond
to drag-and-dock operations

Working with text in controls.
Setting text alignment
Adding scroll bars at runtime.
Adding the clipboard object.
Selecting text
Selecting all text
Cutting, copying, and pasting text
Deleting selected text
Disabling menu items
Providing a pop-up menu.
Handling the OnPopup event.

6-3

6-4
6-4

6-5

6-5

6-6
6-6

6-7

6-9

7-1
7-1
7-1
72
7-3
7-3

7-3
7-4
7-4

7-4
7-5

7-5

Adding graphics to controls. 7-13
Indicating that a control is
owner-drawn. 7-13
Adding graphical objects to
astringlist 7-14
Adding images to an application 7-14
Adding images to a string list 7-14
Drawing owner-drawn items 7-15
Sizing owner-draw items. 7-16
Drawing owner-draw items 7-17

Chapter 8
Building applications, components,
and libraries

Creating applications. 8-1
GUI applications. 8-2
User interfacemodels 8-2
SDI applications 8-2
MDI applications 8-2
Setting IDE, project, and compiler
options 8-3
Programming templates 8-3
Console applications 8-4
Service applications. 8-5
Servicethreads 8-8
Service name properties 8-9
Debugging service applications 8-10
Creating packagesand DLLs 8-11
When to use packages and DLLs 8-11
Writing database applications. 8-12
Distributing database applications 8-13
Creating Web server applications. 8-13
Creating Web Broker applications. 8-14
Creating WebSnap applications 8-15
Creating Web Services applications 8-15
Writing applications using COM 8-16
UsingCOMand DCOM 8-16
Using MTSand COM+. 8-16
Using datamodules 8-17
Creating and editing standard data
modules. L L 8-17
Naming a data module and
itsunitfile 8-18
Placing and naming components 8-19
Using component properties and
eventsinadatamodule 8-19
Creating business rules in a
datamodule 8-20

Accessing a data module from a form . . .
Adding a remote data module to an
application server project
Using the Object Repository
Sharing items within a project
Adding items to the Object
Repository.
Sharing objects in a team
environment.
Using an Object Repository item in
a project
Copying an item
Inheriting an item
Using an item
Using project templates
Modifying shared items
Specifying a default project, new form,
and main form
Enabling Help in applications
Help system interfaces.
Implementing ICustomHelpViewer
Communicating with the Help
Manager.
Asking the Help Manager for
information
Displaying keyword-based Help
Displaying tables of contents
Implementing IExtendedHelpViewer . . .
Implementing IHelpSelector
Registering Help system objects
Registering Help viewers
Registering Help selectors
Using Help in a VCL application.
How TApplication processes
VCL Help
How VCL controls process Help
Using Help in a CLX application.
How TApplication processes
CLX Help
How CLX controls process Help
Calling a Help system directly
Using IHelpSystem
Customizing the IDE Help system.

8-20

8-21
8-21
8-21

8-22

8-22

8-22
8-22
8-23
8-23
8-23
8-23

8-24
8-24
8-25
8-25

8-26

8-26
8-27
8-28
8-28
8-29
8-30
8-30
8-30
8-31

8-31
8-31
8-32

8-32
8-32
8-33
8-33
8-34

Chapter 9
Developing the application
user interface

Controlling application behavior
Working at the application level.
Handling the screen.

Settingup forms.
Using the main form
Hiding the main form.
Adding forms

Linking forms
Avoiding circular unit references
Managing layout
Usingforms
Controlling when forms reside

in memory
Displaying an auto-created form
Creating forms dynamically
Creating modeless forms such
as windows
Creating a form instance using
a local variable
Passing additional arguments to forms. . .
Retrieving data from forms.

Retrieving data from modeless
forms
Retrieving data from modal forms . . .

Reusing components and groups of

components

Creating and using component

templates. L

Working with frames.
Creating frames
Adding frames to the Component

palette.
Using and modifying frames.
Sharing frames.

Developing dialogboxes.
Using open dialogboxes

Organizing actions for toolbars

andmenus.

9-1

9-1

9-2
9-3

9-3
9-4
9-4
9-4

9-6
9-6
9-6
9-7

9-8

Creating toolbars and menus 9-20
Adding color, patterns, or pictures
to menus, buttons, and toolbars 9-22
Adding icons to menus and
toolbars 9-22
Selecting menu and toolbar styles . . . 9-23
Creating dynamic menus 9-24
Creating toolbars and menus that
users can customize 9-24
Hiding unused items and categories
inactionbands 9-24
Creating most recently used
(MRU) lists 9-25
Usingactionlists. 9-26
Setting up actionlists 9-26
What happens when an action fires 9-27
Responding withevents 9-27
How actions find their targets 9-29
Updatingactions 9-29
Predefined action classes 9-30
Writing action components 9-31
Registering actions 9-31
Creating and managing menus. 9-32
Opening the Menu Designer 9-33
Buildingmenus. 9-34
Naming menus 9-34
Naming the menu items 9-34
Adding, inserting, and deleting
menuitems 9-35
Adding separatorbars 9-36
Specifying accelerator keys and
keyboard shortcuts 9-36
Creating submenus. 9-37
Creating submenus by demoting
existingmenus 9-37
Moving menuitems 9-38
Adding images to menu items 9-38
Viewing themenu 9-39
Editing menu items in the Object
Inspector., 9-39
Using the Menu Designer context
MeNU.t v i i 9-40
Commands on the context menu 9-40
Switching between menus at
designtime 9-41
Using menu templates. 9-41
Saving a menu as a template 9-43
Naming conventions for template
menu items and event handlers 9-44

vii

Manipulating menu items at runtime. . . . 9-44
Mergingmenus 9-44
Specifying the active menu: Menu
property 9-45
Determining the order of merged menu
items: GroupIndex property 9-45
Importing resource files 9-45
Designing toolbars and cool bars 9-46
Adding a toolbar using a panel
component 9-47
Adding a speed button to a panel 9-47
Assigning a speed button’s glyph 9-48
Setting the initial condition of a
speedbutton oL 9-48
Creating a group of speed buttons 9-48
Allowing toggle buttons 9-49
Adding a toolbar using the toolbar
component 9-49
Adding atoolbutton 9-49
Assigning images to tool buttons 9-50
Setting tool button appearance and
initial conditions 9-50
Creating groups of tool buttons 9-51
Allowing toggled tool buttons 9-51
Adding a cool bar component 9-51
Setting the appearance of the
coolbar 9-52
Responding toclicks 9-52
Assigning a menu to a tool button 9-52
Adding hidden toolbars 9-53
Hiding and showing toolbars 9-53
Demo programs 9-53
Common controls and XP themes. 9-54
Chapter 10
Types of controls 10-1
Textcontrols. 10-1
Editcontrols 10-1
Memo and rich edit controls 10-2
Text viewing controls 10-3
Labels. 10-3
Specialized input controls 10-4
Scrollbars 10-4
Trackbars. 10-5
Up-downcontrols. 10-5
Spin edit controls (CLX only) 10-5
Hot key controls (VCLonly). 10-6
Splitter controls 10-6

Buttons and similar controls
Buttoncontrols
Bitmap buttons
Speed buttons.
Checkboxes.
Radiobuttons.
Toolbars
Coolbars (VCLonly).

Listcontrols.
List boxes and check-list boxes
Combo boxes
Treeviews.
List views
Icon views (CLXonly)
Date-time pickers and month

calendars.

Groupingcontrols
Group boxes and radio groups
Panels
Scroll boxes
Tabcontrols.
Page controls
Headercontrols.

Display controls
Statusbars.
Progress bars
Help and hint properties

Draw grids
String grids
Value list editors (VCL only)
Graphiccontrols
Images.
Shapes.
Bevels
Paint boxes
Animation control

Chapter 11
Designing classes and
components with ModelMaker
ModelMaker fundamentals.
ModelMaker models.
Using ModelMaker with the IDE.
Creating models

11-1
11-2
11-2
11-2
11-3

viii

Using ModelMaker views 11-4
Collectionspane. 11-5
Classesview 11-5
Unitsview 11-5
Diagramsview 11-6
Memberspane. 11-7
Editorspane 11-7
Implementation Editor 11-7
Unit Code Editor 11-8
Diagram Editor 11-9
Other Editors 11-9
For more information. 11-10
Chapter 12
Working with graphics and
multimedia 12-1
Overview of graphics programming 12-1
Refreshing thescreen 12-2
Types of graphic objects 12-3
Common properties and methods
ofCanvas. 12-4
Using the properties of the Canvas
object L 12-5
Usingpens 12-5
Usingbrushes 12-8
Reading and setting pixels 12-9
Using Canvas methods to draw
graphicobjects. 12-10
Drawing lines and polylines 12-10
Drawing shapes 12-11
Handling multiple drawing objects
in your application 12-12
Keeping track of which drawing
tooltouse 12-12
Changing the tool with speed
buttons 12-13
Using drawing tools 12-14
Drawing on a graphic. 12-16
Making scrollable graphics 12-17
Adding an image control 12-17
Loading and saving graphics files. 12-19
Loading a picture from a file 12-19
Saving a picturetoafile 12-20
Replacing the picture 12-20

Using the clipboard with graphics

Copying graphics to the
clipboard

Cutting graphics to the clipboard

Pasting graphics from the
clipboard

Rubber banding example
Responding to the mouse

Responding to a mouse-down
action
Adding a field to a form object to

track mouse actions
Refining line drawing
Working with multimedia
Adding silent video clips to an

application.

Example of adding silent
video clips
Adding audio and/or video clips to

anapplication.

Example of adding audio and/or
video clips (VCL only)

Chapter 13

Writing multi-threaded applications 13-1

Defining thread objects
Initializing the thread

Assigning a default priority

Indicating when threads are freed . . .
Writing the thread function.
Using the main VCL/CLX thread . . .

Using thread-local variables
Checking for termination by other
threads
Handling exceptions in the thread
function

Writing clean-upcode
Coordinating threads

Avoiding simultaneous access
Locking objects
Using critical sections
Using the multi-read exclusive-write

synchronizer
Other techniques for sharing
memory

Waiting for other threads

Waiting for a thread to finish
executing
Waiting for a task to be
completed

13-2

Executing thread objects

Overriding the default priority
Starting and stopping threads

Debugging multi-threaded applications . . .

Namingathread.
Converting an unnamed thread

to a named thread

Assigning separate names to

similar threads

Chapter 14

Exception handling
Defining protected blocks

Writing the try block
Raising an exception
Writing exception handlers.
Exception-handling statements
Handling classes of exceptions
Scope of exception handlers
Reraising exceptions
Writing finally blocks
Writing a finally block

Handling exceptions in VCL

applications, ..
VCL exception classes
Default exception handling in VCL
Silent exceptions.
Defining your own VCL exceptions. . . .

Chapter 15
Developing cross-platform

applications

Creating CLX applications.
Porting VCL applications

Porting techniques
Platform-specific ports
Cross-platform ports
Windows emulation ports

Modifying VCL applications.

WinCLX versus VisualCLX.
What VisualCLX does differently

Features that do not port directly

or are missing
Comparing WinCLX and

VisualCLX units
Differences in CLX object constructors . .
Handling system and widget events . . .

14-1
14-2
14-2
14-3
14-4
14-4
14-6
14-6
14-7
14-8
14-9

14-9
14-10
14-11
14-12
14-13

15-1
15-2
15-2
15-2
15-3
15-3
15-3
15-4
15-5
15-6

15-7
15-8

15-11
15-12

Writing portablecode
Using conditional directives

Terminating conditional

directives
Including inline assembler code
Programming differences on Linux

Transferring applications between

Windowsand Linux.

Sharing source files between

Windows and Linux

Environmental differences between

Windowsand Linux
Registry
Lookandfeel

Directory structure on Linux
Cross-platform database applications . . .
dbExpress differences
Component-level differences
User interface-level differences

Porting database applications

toLinux

Updating data in dbExpress

applications
Cross-platform Internet applications . . .

Porting Internet applications

toLinux

Chapter 16
Working with packages and
components

Why use packages?
Packages and standard DLLs
Runtime packages
Loading packages in an application

Loading packages with the

LoadPackage function

Deciding which runtime packages

Custom packages.
Design-time packages.
Installing component packages.
Creating and editing packages
Creating a package.
Editing an existing package.

Understanding the structure of

apackage
Naming packages
Requires clause
Contains clause

15-17

15-18
15-20
15-20
15-20
15-21
15-22
15-22
15-23

15-24

15-26
15-28

15-28

16-1
16-2
16-2
16-3
16-3

16-4

Editing package source files
manually o L
Compiling packages
Package-specific compiler
directives
Compiling and linking from the
commandline
Package files created when
compiling
Deploying packages
Deploying applications that use
packages
Distributing packages to other
developers
Package collection files

Chapter 17
Creating international applications

Internationalization and localization
Internationalization.
Localization

Internationalizing applications
Enabling applicationcode

~Charactersets
OEM and ANSI charactersets
Multibyte charactersets
Wide characters
Including bi-directional functionality
in applications
BiDiMode property
Locale-specific features
Designing the user interface
Text L
Graphicimages
Formats and sortorder
Keyboard mappings
Isolating resources.
Creating resource DLLs.
Using resource DLLs
Dynamic switching of resource DLLs. . .

Localizing applications.

Localizing resources.

171

17-1

Chapter 18
Deploying applications

Deploying general applications

Using installation programs.
Identifying application files
Application files
Package files
Merge modules
ActiveX controls
Helper applications
DLL locations

Deploying CLX applications
Deploying database applications.

Deploying dbExpress database
applications,
Deploying BDE applications
Borland Database Engine
Deploying multi-tiered database
applications (DataSnap)

Deploying Web applications
Deploying on Apache servers
Enabling modules

CGI applications
Programming for varying host

environments.

Screen resolutions and color depths . . .
Considerations when not
dynamically resizing
Considerations when dynamically
resizing forms and controls
Accommodating varying
color depths
Fonts.,
Operating systems versions.

Software license requirements

DEPLOY.

README
No-nonsense license agreement

Third-party product documentation . . .

PartII

18-6
18-6

18-7
18-8
18-8

18-9
18-9
18-10
18-10
18-11

18-12

. 18-12

18-12

18-13

18-14
18-14
18-15
18-15
18-15
18-16
18-16

. 18-16

Developing database applications

Chapter 19

Designing database applications

Using databases

Types of databases
Database security.

19-1

Xi

Transactions
Referential integrity, stored procedures,
and triggers.

Database architecture.

General structure
The user interface form
The data module

Connecting directly to a database

SEIVEL . . . v v i

Using a dedicated fileondisk

Connecting to another dataset.
Connecting a client dataset to another

dataset in the same application . . .
Using a multi-tiered architecture . . .
Combining approaches.

Designing the user interface.

Analyzing data
Writing reports.

Chapter 20
Using data controls

Using common data control features
Associating a data control with

a dataset
Changing the associated dataset
at runtime

Enabling and disabling the data
source
Responding to changes mediated
by the data source
Editing and updatingdata
Enabling editing in controls on
user entry
Editing data in a control

Disabling and enabling data display
Refreshing data display.
Enabling mouse, keyboard, and

timer events

Choosing how to organize the data.
Displaying a single record

Displaying data as labels
Displaying and editing fields in
an edit box
Displaying and editing text in a
memo control
Displaying and editing text in a rich
edit memo control

Displaying and editing graphics
fields in an image control

Displaying and editing data in list

Component overview
VCL/CLX components.

Engine components
Render components
Data connection components
Rave project component

Reporting components

Project components
Data objects
Standard components
Drawing components
Report components
Bar code components

Getting more information

Chapter 22
Using decision support
components

Overview
Aboutcrosstabs
One-dimensional crosstabs.
Multidimensional crosstabs

Guidelines for using decision support

components

Using datasets with decision support

components

Creating decision datasets with

and comboboxes 20-10
Handling Boolean field values
with checkboxes 20-13
Restricting field values with
radiocontrols 20-14
Displaying multiple records. 20-14
Viewing and editing data with TDBGrid . . . 20-15
Using a grid control in its default
state 20-16
Creating a customized grid 20-17
Understanding persistent
columns 20-17
Creating persistent columns 20-18
Deleting persistent columns 20-19
Arranging the order of persistent
columns 20-19
Setting column properties at
designtime 20-20
Defining a lookup list column 20-21
Putting a button in a column 20-22
Restoring default values to
acolumn 20-22
Displaying ADT and array fields. 20-22
Setting grid options 20-24
Editinginthegrid 20-26
Controlling grid drawing 20-26
Responding to user actions
atruntime L. 20-27
Creating a grid that contains other
data-awarecontrols 20-28
Navigating and manipulating records. 20-29
Choosing navigator buttons to
display. 20-30
Hiding and showing navigator
buttons at design time 20-30
Hiding and showing navigator
buttons atruntime 20-31
Displaying fly-overhelp. 20-31
Using a single navigator for multiple
datasets 20-32
Chapter 21
Creating reports with Rave Reports 21-1
Overview i 21-1
Gettingstarted L. 21-2
The Rave Visual Designer. 21-3

TQuery or TTable

Creating decision datasets with the

Decision Query editor.

Using decisioncubes
Decision cube properties and events
Using the Decision Cube editor

Viewing and changing dimension
settings

Setting the maximum available
dimensions and summaries

Viewing and changing design
options

Using decision sources.
Propertiesandevents.

Using decision pivots.
Decision pivot properties.

Creating and using decision grids
Creating decision grids
Using decisiongrids

Opening and closing decision
grid fields

Reorganizing rows and columns in
decision grids
Drilling down for detail in
decision grids
Limiting dimension selection in
decision grids

Decision grid properties.
Creating and using decision graphs
Creating decision graphs
Using decisiongraphs
The decision graph display
Customizing decision graphs.

Setting decision graph template

defaults

Customizing decision graph
series
Decision support components at

runtime
Decision pivots at runtime
Decision grids at runtime
Decision graphs at runtime

Decision support components and

memory control

Setting maximum dimensions,

summaries,and cells.
Setting dimension state
Using paged dimensions

Chapter 23
Connecting to databases

Using implicit connections
Controlling connections.
Connecting to a database server
Disconnecting from a database server . . .
Controlling server login.
Managing transactions
Starting a transaction
Ending a transaction.

Ending a successful transaction
Ending an unsuccessful

transaction

Specifying the transaction

isolationlevel
Sending commands to the server
Working with associated datasets

Closing all datasets without

disconnecting from the server.

Iterating through the associated

datasets

23-1
23-2
23-3
23-3
23-4
23-4
23-6
23-7
23-8
23-8

239

Obtaining metadata.

Listing available tables
Listing the fieldsinatable
Listing available stored procedures
Listing available indexes
Listing stored procedure parameters . . .

Chapter 24

Understanding datasets

Using TDataSet descendants
Determining dataset states.
Opening and closing datasets
Navigating datasets.

Using the First and Last methods
Using the Next and Prior methods
Using the MoveBy method.
Using the Eof and Bof properties
Eof
Bof
Marking and returning to records.
The Bookmark property
The GetBookmark method
The GotoBookmark and
BookmarkValid methods
The CompareBookmarks method
The FreeBookmark method
A bookmarking example

Searching datasets

UsingLocate.
UsingLookup

Displaying and editing a subset of data
using filters oo

Enabling and disabling filtering
Creating filters.
Setting the Filter property
Writing an OnFilterRecord
event handler
Switching filter event handlers
at runtime
Setting filter options.
Navigating records in a filtered
dataset

Modifyingdata

Editing records.
Addingnew records
Inserting records
Appending records
Deletingrecords
Postingdata

Canceling changes
Modifying entire records
Calculating fields
Types of datasets
Using table type datasets
Advantages of using table type
datasets
Sorting records with indexes
Obtaining information about
indexes
Specifying an index with
IndexName
Creating an index with
IndexFieldNames
Using Indexes to search for records . . .
Executing a search with Goto
methods
Executing a search with Find
methods
Specifying the current record after
a successful search
Searching on partial keys
Repeating or extending a search . . .
Limiting records with ranges
Understanding the differences
between ranges and filters
Specifying ranges
Modifying a range
Applying or canceling a range
Creating master/detail relationships. . .
Making the table a detail of
another dataset
Using nested detail tables
Controlling Read /write access
to tables
Creating and deleting tables
Creating tables
Deleting tables
Emptying tables
Synchronizing tables
Using query-type datasets
Specifying the query
Specifying a query using the
SQL property
Specifying a query using the
CommandText property

24-27

24-28

. 24-28

24-29

24-30

24-30
24-30

. 24-30

24-31

24-31
24-31
24-34
24-34

. 24-35

24-35
24-37

24-38
24-38
24-38
24-41
24-41
24-42
24-42
24-43

24-44

24-44

Xiv

Using parameters in queries 24-45
Supplying parameters at design
time 24-45
Supplying parameters at runtime 24-47
Establishing master /detail relationships
using parameters 24-47
Preparing queries 24-48
Executing queries that don’t return
aresultset 24-49
Using unidirectional resultsets 24-49
Using stored procedure-type datasets 24-50
Working with stored procedure
parameters 24-51
Setting up parameters at
designtime 24-52
Using parameters at runtime 24-54
Preparing stored procedures. 24-55
Executing stored procedures that don’t
returnaresultset 24-55
Fetching multiple resultsets 24-56
Chapter 25
Working with field components 25-1
Dynamic field components 25-2
Persistent field components 25-3
Creating persistent fields. 25-4
Arranging persistent fields. 25-5
Defining new persistent fields. 25-5
Defining a data field 25-6
Defining a calculated field 25-7
Programming a calculated field 25-8
Defining a lookup field 25-9
Defining an aggregate field 25-10
Deleting persistent field components . . . 25-11
Setting persistent field properties
andevents 25-11
Setting display and edit properties
atdesigntime 25-11
Setting field component properties
atruntime 25-13
Creating attribute sets for field
components 25-13
Associating attribute sets with field
components 25-14
Removing attribute associations 25-14
Controlling and masking
userinput 25-15

Using default formatting for numeric,
date, and time fields
Handling events
Working with field component methods
at runtime
Displaying, converting, and accessing
field values
Displaying field component values in
standard controls
Converting field values
Accessing field values with the default
dataset property
Accessing field values with a dataset’s
Fields property
Accessing field values with a dataset’s
FieldByName method
Setting a default value for a field
Working with constraints
Creating a custom constraint
Using server constraints
Using object fields
Displaying ADT and array fields
Working with ADT fields
Using persistent field
components
Using the dataset’s FieldByName
method
Using the dateset’s Field Values
property
Using the ADT field’s FieldValues
property
Using the ADT field’s Fields
property
Working with array fields
Using persistent fields
Using the array field’s FieldValues
property
Using the array field’s Fields
property
Working with dataset fields
Displaying dataset fields
Accessing data in a nested dataset . . .
Working with reference fields
Displaying reference fields
Accessing data in a reference field . .

25-15
25-16

25-17

25-18

25-18
25-19

25-20

25-21

25-21
25-22
25-22
25-22
25-23
25-23
25-24
25-25

25-25
25-25
25-25
25-26
25-26
25-26
25-26
25-27
25-27
25-27
25-27
25-28

25-28
25-28

. 25-29

Xv

Chapter 26

Using the Borland Database Engine
BDE-based architecture.
Using BDE-enabled datasets
Associating a dataset with database
and session connections
Caching BLOBs
Obtaining a BDE handle
Using TTable
Specifying the table type for local
tables
Controlling read /write access to
localtables
Specifying a dBASE index file
Renaming local tables
Importing data from another table . . .
Using TQuery
Creating heterogeneous queries
Obtaining an editable result set
Updating read-only result sets
Using TStoredProc
Binding parameters
Working with Oracle overloaded
stored procedures
Connecting to databases with
TDatabase
Associating a database component
with a session
Understanding database and session
component interactions
Identifying the database
Opening a connection using
TDatabase
Using database components in data
modules
Managing database sessions
Activating a session
Specifying default database
connection behavior
Managing database connections
Working with password-protected
Paradox and dBASE tables
Specifying Paradox directory
locations
Working with BDE aliases
Retrieving information about
a session

26-1

26-1

Creating additional sessions
Naming a session
Managing multiple sessions
Using transactions with the BDE.
Using passthrough SQL
Using local transactions
Using the BDE to cache updates
Enabling BDE-based cached updates . .
Applying BDE-based cached updates . .
Applying cached updates using
a database
Applying cached updates with dataset
component methods
Creating an OnUpdateRecord
event handler
Handling cached update errors
Using update objects to update
a dataset
Creating SQL statements for update
components
Using multiple update objects
Executing the SQL statements
Using TBatchMove.
Creating a batch move component.
Specifying a batch move mode
Appending records
Updating records
Appending and updating
records
Copying datasets
Deleting records
Mapping data types
Executing a batch move
Handling batch move errors
The Data Dictionary
Tools for working with the BDE

Chapter 27
Working with ADO components

Overview of ADO components
Connecting to ADO data stores
Connecting to a data store using
TADOConnection.
Accessing the connection object
Fine-tuning a connection
Forcing asynchronous
connections
Controlling time-outs

. 26-34
. 26-35

26-37

. 26-38

26-40

26-41
26-45
26-46
26-49
26-49
26-50
26-50
26-50

26-51
26-51
26-51
26-51
26-52
26-52
26-53
26-55

271
27-2
27-3

27-3
27-5
27-5

27-5
27-6

Indicating the types of operations
the connection supports
Specifying whether the connection
automatically initiates
transactions
Accessing the connection’s
commands
ADO connectionevents.
Events when establishing a
connection
Events when disconnecting
Events when managing
transactions
Other events
Using ADO datasets
Connecting an ADO dataset to
a data store
Working with record sets
Filtering records based on
bookmarks
Fetching records asynchronously . . .
Using batch updates
Loading data from and saving
data to files
Using TADODataSet
Using Command objects
Specifying the command
Using the Execute method
Canceling commands
Retrieving result sets with commands . .
Handling command parameters.

Chapter 28
Using unidirectional datasets

Types of unidirectional datasets.
Connecting to the database server
Setting up TSQLConnection
Identifying the driver
Specifying connection parameters
Naming a connection description
Using the Connection Editor
Specifying what data to display.
Representing the results of a query
Representing the records in a table
Representing a table using
TSQLDataSet
Representing a table using
TSQLTable

Representing the results of a
stored procedure
Fetching thedata.
Preparing the dataset
Fetching multiple datasets
Executing commands that do not
returnrecords.
Specifying the command to execute
Executing the command.
Creating and modifying server
metadata.
Setting up master/detail linked cursors. . . .
Accessing schema information.
Fetching metadata into a unidirectional
dataset.
Fetching data after using the dataset
for metadata
The structure of metadata
datasets
Debugging dbExpress applications
Using TSQLMonitor to monitor
SQL commands.
Using a callback to monitor
SQLcommands.

Chapter 29
Using client datasets

Working with data using a client dataset . . .

Navigating data in client datasets
Limiting what records appear.
Editingdata.
Undoing changes
Saving changes
Constraining data values
Specifying custom constraints
Sorting and indexing.
Adding a new index
Deleting and switching indexes
Using indexes to group data
Representing calculated values.
Using internally calculated fields
in client datasets
Using maintained aggregates.
Specifying aggregates
Aggregating over groups of
records
Obtaining aggregate values

29-1
29-2
29-2
29-2
29-5
29-5
29-6
29-7
29-7
29-8
29-8
299
29-9

29-10

29-11
29-11
29-12

Copying data from another dataset
Assigning data directly
Cloning a client dataset cursor

Adding application-specific information

to the data
Using a client dataset to cache updates. . . .
Overview of using cached updates
Choosing the type of dataset for caching
updates. L.

Indicating what records are modified. . .

Updating records
Applying updates
Intervening as updates are

applied
Reconciling update errors
Using a client dataset with a provider
Specifying a provider.
Requesting data from the source dataset
or document
Incremental fetching
Fetch-on-demand

Getting parameters from the source

dataset

Passing parameters to the source

dataset

Sending query or stored procedure

parameters
Limiting records with parameters

Handling constraints from the server. . .

Refreshing records.

Communicating with providers using

custom events

Overriding the source dataset

Using a client dataset with file-based
data.

Creating anew dataset

Loading data from a file or stream

Merging changes intodata.

Saving data to a file or stream

Using asimpledataset

When to use TSimpleDataSet

Setting up a simple dataset.

Chapter 30
Using provider components

Determining the source of data.
Using a dataset as the source
ofthedata.
Using an XML document as the source
ofthedata.
Communicating with the client dataset
Choosing how to apply updates using
a dataset provider
Controlling what information is included
in data packets
Specifying what fields appear in
datapackets.
Setting options that influence the
datapackets.
Adding custom information to
datapackets.
Responding to client data requests.
Responding to client update requests
Editing delta packets before updating
thedatabase.
Influencing how updates are applied . .
Screening individual updates.
Resolving update errors on
theprovider.
Applying updates to datasets that do
not represent a single table
Responding to client-generated events . . .
Handling server constraints

Chapter 31
Creating multi-tiered applications

Advantages of the multi-tiered
databasemodel.
Understanding multi-tiered database
applications.
Overview of a three-tiered application. . .
The structure of the client application . . .
The structure of the application server. . .
The contents of the remote
data module
Using transactional data modules . . .
Pooling remote data modules
Choosing a connection protocol
Using DCOM connections
Using Socket connections
Using Web connections
Using SOAP connections

30-1

30-2
30-2

30-2
30-3

30-4
30-4
30-4
30-5
30-6
30-7
30-8

30-9

. 30-10

30-11

30-11

30-12

. 30-12

30-13

31-1
31-2

31-2
31-3
31-4
31-5

31-6
31-7
31-8
31-9
319
319
31-10
31-11

Building a multi-tiered application.
Creating the application server
Setting up the remote data module
Configuring
TRemoteDataModule
Configuring TMTSDataModule
Configuring TSoapDataModule
Extending the application server’s
interface.
Adding callbacks to the application
server’s interface
Extending a transactional application
server’s interface
Managing transactions in multi-tiered
applications
Supporting master/detail
relationships
Supporting state information in remote
datamodules.
Using multiple remote data modules . . .
Registering the application server
Creating the client application.
Connecting to the application server . . .
Specifying a connection
using DCOM
Specifying a connection
using sockets
Specifying a connection
using HTTP
Specifying a connection
using SOAP
Brokering connections
Managing server connections
Connecting to the server
Dropping or changing a server
connection
Calling server interfaces
Using early binding with DCOM . . .
Using dispatch interfaces with
TCP/IP or HTTP
Calling the interface of a SOAP-based
server
Connecting to an application server that
uses multiple data modules
Writing Web-based client applications
Distributing a client application as an
ActiveX control
Creating an Active Form for the client
application

XViii

Building Web applications using
InternetExpress
Building an InternetExpress
application.
Using the javascript libraries
Granting permission to access and
launch the application server
Using an XML broker
Fetching XML data packets
Applying updates from XML
delta packets
Creating Web pages with an
InternetExpress page producer
Using the Web page editor
Setting Web item properties
Customizing the InternetExpress
page producer template

Chapter 32
Using XML in database
applications

Defining transformations

Mapping between XML nodes and
data packet fields.
Using XMLMapper.
Loading an XML schema or
data packet
Defining mappings
Generating transformation files

Converting XML documents into

datapackets.
Specifying the source XML document . . .
Specifying the transformation
Obtaining the resulting data packet
Converting user-defined nodes.

Using an XML document as the source

foraprovider.

Using an XML document as the client

ofaprovider

Fetching an XML document from
aprovider,

Applying updates from an XML
document toa provider

32-1

32-1

32-2
32-4

32-4
32-5
32-6
32-6
32-6
32-7
32-7
32-7
32-8
32-9
32-9

32-11

Part IIT
Writing Internet applications

Chapter 33
Creating Internet server
applications

About Web Broker and WebSnap
Terminology and standards
Parts of a Uniform Resource Locator . . .
URIvs.URL
HTTP request header information. . . .
HTTP server activity
Composing client requests
Serving client requests
Responding to client requests
Types of Web server applications
ISAPTand NSAPT

CGI stand-alone

Web App Debugger
Converting Web server application

targettypes.
Debugging server applications
Using the Web Application Debugger . .

Launching your application with

the Web Application Debugger . . .

Converting your application to
another type of Web server

application

Debugging Web applications

thatare DLLs.

User rights necessary for
DLL debugging

Chapter 34
Using Web Broker

Creating Web server applications with

Web Broker.
The Webmodule.
The Web Application object

The structure of a Web Broker

application.
The Web dispatcher.
Adding actions to the dispatcher
Dispatching request messages

Apache

33-1
33-1
33-3

. 333

33-4
33-4
33-5
33-5
33-5
33-6
33-6
33-6
33-6
33-7
33-7

33-8
33-9

. 33-9

. 339

33-10

33-10

33-10

XX

Actionitems 34-6 Representing database information
Determining when action items fire 34-6 inHTML 34-19
Thetarget URL 34-6 Using dataset page producers 34-19
The request method type 34-7 Using table producers 34-20
Enabling and disabling action Specifying the table attributes 34-20
items L 34-7 Specifying the row attributes 34-20
Choosing a default action item 34-7 Specifying the columns 34-20
Responding to request messages with Embedding tables in HTML
actionitems 34-8 documents 34-21
Sending theresponse 34-8 Setting up a dataset table
Using multiple action items 34-9 producer 34-21
Accessing client request information 34-9 Setting up a query table
Properties that contain request header producer 34-21
information L. 34-9
Properties that identify the target 34-9 Chapter 35
Properties that describe the Creating Web Server applications
Web C!lent T 34-10 using WebSnap 35_1
Properties that identify the purpose Fundamental WebSnap components 35-2
of therequest 34-10 Web modules. . . - .. 350
Properties that describe the expected Web applic.a.tic.)r; mo ciu.le. tslp.)e.s """ 35.3
response .- .- - S 34-10 Web page modules 35-4
Properties that describe the Web data modules 35-5
content 34-11 Adapters . 35.5
The content of HTTP request Ffel ds . 356
MESSAZES. - « v v v v e e 34-11 Ac tions: """""""""" 35.6
Creating HTTP response messages 34-11 Errors . 356
Filling in the response header. 34-11 Records 35-6
Indicating the response status 34-12 Page pro ducei"s """"""""" 35.6
Indicating the need for client Creatﬁlngeb serveI: a‘pi)l.ic.at.i(;n.s
action 34-12 .

o S withWebSnap 35-7
Describing the server application . 34-12 Selecting a server type 35-8
]?escnbmg thecontent 34-12 Specifying application module

Setting the response content 34-13 components 35-9
SendTng theresponse 34-13 Selecting Web application module
Generating the content of response options 35-10
MESSABES -« « e v e 313) dvanced HTML design. 35-11
Using page producer components 34-14 Manipulating server-side script in
HTML templates 34-14 HTML files 35.12
Specifying the HTML template . 34-15 Losin support
. oginsupport. 35-13
Converting HTML-transparent Adding login support. 35-13
g o 3416 Using the sessions service 35-14
Using page producers from an Login pages 3515
actionitem 3416 Setting pages to require logins. 35-17
Chaining page producers User access rights 35-17
together 34-17 . L
. . L Dynamically displaying fields as
Using database information in odit or text boxes 35-18
TESPONSES . . o v v oo et 34-18 e o L)
Adding a session to the Web module . . . 34-18 gj&zgtffé(ﬁaagzict:}cf;z contents gg_ig

Server-side scripting in WebSnap
Active scripting
Script engine
Script blocks
Creating script

Wizard templates
TAdapterPageProducer
Editing and viewing script
Including script in a page
Script objects

Dispatching requests and responses
Dispatcher components
Adapter dispatcher operation

Using adapter components to
generate content
Receiving adapter requests and
generating responses
Image request
Image response
Dispatching action items
Page dispatcher operation

Chapter 36
Creating Web server applications
using IntraWeb

Using IntraWeb components
Getting started with IntraWeb
Creating a new IntraWeb application . . .
Editing the main form
Writing an event handler for
the button
Running the completed application
Using IntraWeb with Web Broker
and WebSnap
For more information

Chapter 37

Working with XML documents
Using the Document Object Model
Working with XML components
Using TXMLDocument
Working with XML nodes
Working with a node’s value
Working with a node’s attributes
Adding and deleting child nodes

36-1
36-2
36-3
36-4
36-4

36-5
36-6

36-7
36-8

37-1
37-2
37-4
37-4
37-4
37-5
37-5
37-6

Abstracting XML documents with the
Data Binding wizard
Using the XML Data Binding wizard
Using code that the XML Data
Binding wizard generates

Chapter 38
Using Web Services

Understanding invokable interfaces
Using nonscalar types in invokable
interfaces
Registering nonscalar types
Using remotable objects
Representing attachments
Managing the lifetime of remotable
objects
Remotable object example
Writing servers that support Web Services. . .
Building a Web Service server
Using the SOAP application wizard . . .
Adding new Web Services
Editing the generated code
Using a different base class
Using the WSDL importer
Browsing for Business services
Understanding UDDI
Using the UDDI browser
Defining and using SOAP headers
Defining header classes
Sending and receiving headers
Handling scalar-type headers
Communicating the structure of your
headers to other applications
Creating custom exception classes for
Web Services
Generating WSDL documents for
a Web Service application
Writing clients for Web Services
Importing WSDL documents
Calling invokable interfaces
Obtaining an invokable interface
from the generated function
Using a remote interfaced object
Processing headers in client
applications

Chapter 39
Working with sockets

Implementing services
Understanding service protocols
Communicating with
applications
Services and ports
Types of socket connections.
Client connections
Listening connections
Server connections
Describing sockets
Describing the host
Choosing between a host name
and an IP address
Using ports
Using socket components
Getting information about the
connection.
Using client sockets
Specifying the desired server
Forming the connection
Getting information about the
connection
Closing the connection
Using server sockets
Specifying the port
Listening for client requests
Connecting to clients
Closing server connections
Responding to socket events
Error events
Client events
Server events
Events when listening
Events with client connections
Reading and writing over socket
connections
Non-blocking connections
Reading and writing events
Blocking connections

39-6

Xxii

Part IV
Developing COM-based applications

Chapter 40
Overview of COM technologies

COM as a specification and

40-1

implementation 40-2
COMextensions 40-2
Parts of a COM application 40-3
COMinterfaces 40-3
The fundamental COM interface,
IUnknown 40-4
COM interface pointers 40-5
COMServers. vvv v ii .. 40-5
CoClasses and class factories 40-6
In-process, out-of-process, and
remoteservers 40-7
The marshaling mechanism 40-8
Aggregation 40-9
COMudlients 40-10
COMextensions. 40-10
Automationservers. 40-12
Active ServerPages. 40-13
ActiveXcontrols. 40-13
Active Documents. 40-14
Transactional objects 40-15
Typelibraries. 40-16
The content of type libraries 40-16
Creating type libraries 40-17
When to use type libraries 40-17
Accessing type libraries 40-18
Benefits of using type libraries 40-18
Using type library tools 40-19
Implementing COM objects
withwizards. 40-19
Code generated by wizards 40-22

Chapter 41 Chapter 42

Working with type libraries 41-1 Creating COM clients 421
Type Library editor 41-2 Importing type library information. 42-2
Parts of the Type Library editor. 41-3 Using the Import Type Library dialog . . . 42-3
Toolbar 41-3 Using the Import ActiveX dialog 42-4
Objectlistpane 41-5 Code generated when you import
Statusbar 41-5 type library information 42-5
Pages of type information 41-6 Controlling an imported object 42-6
Type library elements 41-8 Using component wrappers 42-6
Interfaces 41-9 ActiveX wrappers 42-6
Dispinterfaces 41-9 Automation object wrappers 42-7
CoClasses 41-10 Using data-aware ActiveX controls 42-8
Type definitions 41-10 Example: Printing a document with
Modules 41-11 Microsoft Word 429
Using the Type Library editor. 41-11 Preparing Delphi for this example . . 42-10
Validtypes 41-12 Importing the Word type library . . . 42-10
Using Delphi or IDL syntax 41-13 Using a VTable or dispatch
Creating a new type library 41-19 interface object to control
Opening an existing type library . . . 41-20 Microsoft Word 42-11
Adding an interface to the type Cleaning up the example 42-12
library 41-21 Writing client code based on type
Modifying an interface using the library definitions 42-13
typelibrary 41-21 Connecting toa server 42-13
Adding properties and methods to Controlling an Automation server
an interface or dispinterface 41-22 using a dual interface 42-13
Adding a CoClass to the type Controlling an Automation server
library 41-23 using a dispatch interface 42-14
Adding an interface to a CoClass . . . 41-23 Handling events in an automation
Adding an enumeration to the controller 42-14
typelibrary 41-24 Creating clients for servers that do not
Adding an alias to the type haveatypelibrary 42-16
library 41-24 Using .NET assemblies with Delphi 42-17
Adding a record or union to the Requirements for COM
typelibrary 41-24 interoperability 42-17
Adding a module to the type .NET components and type libraries . . . 42-18
library 41-25 Accessing user-defined NET
Saving and registering type library components 42-20
information 41-25
Apply Updates dialog 41-26
Saving a type library 41-26
Refreshing the type library 41-26
Registering the type library 41-27
ExportinganIDL file 41-27
Deploying type libraries 41-27

xxiii

Chapter 43
Creating simple COM servers

Overview of creating a COM object
Designing a COM object
Using the COM object wizard
Using the Automation object wizard
COM object instancing types
Choosing a threading model

Writing an object that supports the
free threading model
Writing an object that supports the
apartment threading model
Writing an object that supports the
neutral threading model

Defining a COM object’s interface

Adding a property to the object’s

interface

Adding a method to the object’s

interface
Exposing events to clients.

Managing events in your

Automation object
Automation interfaces.
Dual interfaces
Dispatch interfaces.
Custom interfaces
Marshalingdata
Automation compatible types

Type restrictions for automatic

marshaling
Custom marshaling
Registering a COM object.
Registering an in-process server
Registering an out-of-process server. . .
Testing and debugging the application

Chapter 44
Creating an Active Server Page

Creating an Active Server Object.
Using the ASP intrinsics.
Application
Request
Response

Session

Server

Creating ASPs for in-process or

out-of-process servers

43-1
432
432
43-3
435
436
43-6

43-8
43-9

439
439

43-10

43-10
43-11

43-12
43-13
43-13
43-14
43-15
43-15
43-16

43-16
43-17
43-17
43-17

. 43-17

43-18

4441
44-2
44-3
44-4
44-4
44-5
44-6
44-6

44-7

Registering an Active Server Object
Registering an in-process server.
Registering an out-of-process server

Testing and debugging the Active Server

Page application.

Chapter 45
Creating an ActiveX control

Overview of ActiveX control creation . . .
Elements of an ActiveX control
VCLcontrol
ActiveX wrapper
Typelibrary
Propertypage
Designing an ActiveX control

Generating an ActiveX control from a

VCLcontrol

Generating an ActiveX control based on

aVCLform.
Licensing ActiveX controls.

Customizing the ActiveX control’s

interface

Adding additional properties,

methods, and events

Adding properties and methods
Adding events
Enabling simple data binding with

the type library.

Creating a property page for an

ActiveXcontrol
Creating anew property page.
Adding controls to a property page. . . .

Associating property page controls

with ActiveX control properties
Updating the property page

Updating the object
Connecting a property page to an

ActiveX control
Registering an ActiveX control
Testing an ActiveX control.

Deploying an ActiveX control

ontheWeb.
Setting options.

XXiv

45-1
45-2
45-2
45-3
45-3
453
45-3
45-4

45-4

Chapter 46
Creating MTS or COM+ objects

Understanding transactional objects
Requirements for a transactional
object
Managing resources
Accessing the object context
Just-in-time activation
Resource pooling
Database resource dispensers
Shared property manager
Releasing resources
Object pooling
MTS and COM+ transaction support
Transaction attributes
Setting the transaction attribute
Stateful and stateless objects
Influencing how transactions end
Initiating transactions
Setting up a transaction object
on the client side
Setting up a transaction object on

the server side
Transaction time-out

Role-based security 46-15
Overview of creating transactional
objects 46-15
Using the Transactional Object wizard 46-16
Choosing a threading model for a
transactional object 46-17
Activities L. 46-18
Generating events under COM+ 46-19
Using the Event Object wizard. 46-21
Using the COM+ Event Subscription
objectwizard. 46-22
Firing events using a COM+ event
object 46-23
Passing object references. 46-23
Using the SafeRef method 46-24
Callbacks 46-25
Debugging and testing transactional
objects L. 46-25
Installing transactional objects 46-26
Administering transactional objects 46-27
Index -1

1.1
3.1
32
5.1
52
53
54

55
5.6
57
5.8
59
5.10
5.11

5.12

5.13
5.14
5.15
5.16
6.1
7.1
7.2
8.1
8.2

8.3
8.4

8.5
9.1
9.2

9.3
94

9.5
9.6
9.7

9.8
9.9

Tables

Typefaces and symbols 1-2
Component sublibraries 3-1
Important base classes 3-5
Values for the Origin parameter 5-5
Openmodes 5-7
Sharemodes 5-7
Shared modes available for each

openmode 5-7
Attribute constants and values. 5-9
Classes for managing lists 5-14
String comparison routines. 5-24
Case conversionroutines 5-25
String modification routines 5-25
Sub-string routines 5-25

Null-terminated string comparison
routines. 5-26

Case conversion routines for

null-terminated strings 5-26
String modification routines 5-26
Sub-string routines 5-26
String copying routines 5-27
Compiler directives for strings. 5-30
Component palette pages 6-7
Properties of selected text. 7-9
Fixed vs. variable owner-draw styles . . .7-13
Compiler directives for libraries 8-11
Database pages on the Component

palette. L 8-12
Web server applications. 8-14
Context menu options for data

modules. L 8-18
Help methods in TApplication. 8-31
Action setup terminology. 9-18
Default values of the action manager’s
PrioritySchedule property 9-25
Actionclasses 9-30
Methods overriden by base classes

of specificactions 9-31
Sample captions and their derived

NAMES . . « . v v v v e 9-34
Menu Designer context menu

commands L. 9-40
Setting speed buttons’ appearance. 9-48
Setting tool buttons” appearance. 9-50
Setting a cool button’s appearance. 9-52

10.1
12.1
12.2

12.3

12.4
12.5
12.6
12.7

13.1
13.2
14.1
15.1
15.2
15.3

15.4
15.5
15.6

15.7
15.8

15.9

16.1
16.2
16.3

17.1
17.2
17.3
18.1
18.2

18.3
18.4
20.1

20.2
20.3

XXVi

Edit control properties 10-2
Graphic object types 12-3
Common properties of the Canvas

object. L 12-4
Common methods of the Canvas

object. L 12-4
CLX MIME types and constants 12-22
Mouseevents 12-24
Mouse-event parameters. 12-25
Multimedia device types and their

functions. L. 12-33
Thread priorities 13-3
WaitFor return values 13-11
Selected exception classes 14-10
Porting techniques 15-2
Changed or different features 15-7
WinCLX-only and equivalent

VisualCLX units. 15-8
VisualCLX-only units 15-9
WinCLX-only units. 15-9
Differences in the Linux and Windows
operating environments 15-18
Common Linux directories 15-20
Comparable data-access

components 15-23
Properties, methods, and events

for cachedupdates 15-27
Packagefiles. 16-2
Package-specific compiler directives . . .16-11
Package-specific command-line

compiler switches. 16-13
Runtime library functions 17-3
VCL methods that support BiDi 17-6
Estimating string lengths 17-7
Applicationfiles 18-3
Merge modules and their

dependencies 18-4
dbExpress deployment as stand-alone
executable 18-7
dbExpress deployment with

driver DLLs 18-8
Datacontrols 20-2
Column properties 20-20
Expanded TColumn Title

properties L. 20-21

20.4

20.5

20.6
20.7

20.8
21.1
23.1
241
24.2
24.3
244

245
24.6

24.7

24.8

249
25.1

25.2
25.3
254

25.5
25.6
25.7
25.8
259

26.1
26.2
26.3
26.4
26.5
26.6
26.7

26.8
26.9

Properties that affect the way
composite fields appear.
Expanded TDBGrid Options

properties.
Grid control events
Selected database control grid
properties.
TDBNavigator buttons
Rave Reports documentation.
Database connection components

Values for the dataset State property . . .

Navigational methods of datasets

Navigational properties of datasets

Comparison and logical operators
that can appear in a filter
FilterOptions values.
Filtered dataset navigational

methods.
Dataset methods for inserting,
updating, and deleting data
Methods that work with entire
records
Index-based search methods
TFloatField properties that affect
data display
Special persistent field kinds
Field component properties
Field component formatting
routines
Field componentevents.
Selected field component methods . . .
Special conversion results
Types of object field components
Common object field descendant
properties. L.
Table types recognized by the BDE
based on file extension
TableType values.
BatchMove import modes
Database-related informational
methods for session components
TSessionList properties and

methods.
Properties, methods, and events

for cached updates.
UpdateKind values
Batchmovemodes.
Data Dictionary interface

27.1
20-24 272
27.3
20-25 274
20-27
27.5
20-29
20-30 28.1
.21-6
.23-1 282
24-3
.24-5 283
24-6
28.4
24-14
24-16 285
24-16 29.1
29.2
24-17
29.3
24-22
24-28 30.1
30.2
.25-1 303
.25-6 304
25-11 30.5
31.1
25-15
25-16 31.2
25-17 313
25-20 331
25-24 341
34.2
25-24 351
35.2
.26-5 353
.26-6 354
.26-8 355
26-27 36.1
26-30 38.1
40.1
26-33 402
26-39
26-50 403
26-54

Xxvii

ADO components. 27-2
Connection parameters 27-4
ADO connectionmodes 27-6
Execution options for ADO

datasets 27-12
Comparison of ADO and client dataset
cachedupdates 27-13
Columns in tables of metadata

listing tables. 28-15
Columns in tables of metadata

listing stored procedures. 28-15
Columns in tables of metadata

listing fields 28-16
Columns in tables of metadata

listing indexes. 28-17
Columns in tables of metadata listing
parameters. 28-18
Filter support in client datasets 29-3
Summary operators for maintained
aggregates. 29-12
Specialized client datasets for
cachingupdates. 29-18
AppServer interface members. 30-3
Provideroptions 30-5
UpdateStatus values 30-9
UpdateMode values 30-10
ProviderFlags values. 30-10
Components used in multi-tiered
applications 31-3
Connection components 31-5
Javascript libraries 31-35
Web Broker versus WebSnap 33-2
MethodTypevalues. 34-7
Predefined tag names 34-10
Web application module types 35-3
Web server application types 35-8
Web application components 35-9
Scriptobjects 35-22
Request information found in

actionrequests 35-25
VCL/CLX and IntraWeb

components, 36-2
Remotable classes. 38-6
COM object requirements 40-12
Delphi wizards for implementing COM,
Automation, and ActiveX objects. . . . 40-21
DAX Base classes for generated
implementation classes 40-23

41.1
41.2
413
43.1
441

44.2
44.3

Type Library editor files 41-2
Type Library editor parts 41-3
Attributesyntax L. 41-14
Threading models for COM objects43-7
IApplicationObject interface

members 44-4
IRequest interface members 44-4
IResponse interface members 44-5

444
44.5
46.1

46.2

46.3
46.4

XXViil

ISessionObject interface members 44-6
IServer interface members. 44-6
IObjectContext methods for

transaction support. 46-12
Threading models for transactional

objects L 46-17
Call synchronization options 46-19
Event publisher return codes 46-23

3.1
4.1
9.1

9.3
94

9.6
9.7
10.2
11.1
11.2

11.3
11.4
11.5
11.6
11.7
11.8
11.9
12.1

17.1
17.2
17.3
17.4

19.1
19.2

19.3
19.4

19.5
20.1
20.2
20.3

20.4

Figures

A simplified hierarchy diagram 3-5
Asimpleform 4-3
A frame with data-aware controls

and a data source component 9-16
Menu terminology. 9-32
MainMenu and PopupMenu

components 9-33
Adding menu items to a main menu . . .9-36
Nested menu structures. 9-37
Aprogressbar 10-15
Part of the ModelMaker toolbar 11-3
ModelMaker showing a sample

model 11-4
The Classesview. 11-5
The Unitsview. 11-5
The Diagrams view 11-6
The Membersview 11-7
The Implementation Editor view 11-8
The Unit Code Editor 11-8
The Diagram Editor 11-9
Bitmap-dimension dialog box from

the BMPDIgunit. 12-21
TListBox set to bdLeftToRight 17-5
TListBox set to bdRightToLeft 17-5
TListBox set to

bdRightToLeftNoAlign 17-5
TListBox set to

bdRightToLeftReadingOnly 17-5
Generic Database Architecture. 19-6
Connecting directly to the

databaseserver. 19-8
A file-based database application 19-9
Architecture combining a client

dataset and another dataset 19-12
Multi-tiered database architecture. . . . 19-13
TDBGrid control 20-15
TDBGrid control with ObjectView

settoFalse 20-23
TDBGrid control with Expanded

settoFalse 20-23
TDBGrid control with Expanded

settoTrue. 20-24

20.5
20.6

221

22.2
223
22.4

26.1

31.1

33.1
34.1
35.2
35.3

35.4

35.5
35.6
35.7
35.8
36.2

40.1
40.2
40.3
40.4
40.5
40.6
40.7
40.8
40.9
411
41.2
43.1
45.1

46.1

XXiX

TDBCtrlGrid at design time
Buttons on the TDBNavigator

control
Decision support components
at design time
One-dimensional crosstab
Three-dimensional crosstab
Decision graphs bound to different
decisionsources.
Components in a BDE-based

application.
Web-based multi-tiered database
application.,
Parts of a Uniform Resource Locator. . .
Structure of a Server Application.
Web App Components dialog.
Web App Components dialog with
options for login support selected . . .
An example of a login page as seen

from a Web page editor
Generating content flow
Action request and response
Image response toarequest.
Dispatching a page
The main form of the IntraWeb
application.
A COM interface
Interface vtable
In-process server
Out-of-process and remote servers
COM-based technologies
Simple COM object interface
Automation object interface.
ActiveX object interface
Delphi ActiveX framework
Type Library editor.
Object list pane
Dual interface VTable
Mask Edit property page in
designmode.
The COM+ Events system

XXX

Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, creating Internet Web server
applications, and writing custom components. It allows you to build applications
that meet many industry-standard specifications such as SOAP, TCP/IP, COM+, and
ActiveX. Many of the advanced features that support Web development, advanced
XML technologies, and database development require components or wizards that
are not available in all editions of Delphi.

The Developer’s Guide assumes you are familiar with using Delphi and understand
fundamental Delphi programming techniques. For an introduction to Delphi
programming and the integrated development environment (IDE), see the Quick
Start manual or the online Help.

What’s in this manual?

This manual contains five parts, as follows:

e Part I, “Programming with Delphi,” describes how to build general-purpose
Delphi applications. This part provides details on programming techniques you
can use in any Delphi application. For example, it describes how to use common
objects that make user interface programming easy. Objects are available for
handling strings, manipulating text, implementing common dialogs, and so on.
This section also includes chapters on working with graphics, error and exception
handling, using DLLs, OLE automation, and writing international applications.

A chapter describes how to develop cross-platform applications that can be
compiled and run on either Windows or Linux platforms.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how

Introduction 1-1

Manual conventions

to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

e Part II, “Developing database applications,” describes how to build database
applications using database tools and components. You can access several types of
databases, including local databases such as Paradox and dBASE, and network
SQL server databases such as InterBase, Oracle, and Sybase. You can choose from
a variety of data access mechanisms, including dbExpress, InterbaseExpress, and
ADO. To implement the more advanced database applications, you need the
features that are not available in all editions.

e Part III, “Writing Internet applications,” describes how to create applications that
are distributed over the Internet. Delphi includes a wide array of tools for writing
Web server applications, including: the Web Broker architecture, with which you
can create cross-platform server applications; WebSnap, with which you can
design Web pages in a GUI environment; support for working with XML
documents; and BizSnap, an architecture for using SOAP-based Web Services. For
lower-level support that underlies much of the messaging in Internet applications,
this section also describes how to work with socket components. The components
that implement many of these features are not available in all editions.

¢ Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects on the
system such as Windows Shell extensions or multimedia applications. Delphi
contains components that support the ActiveX, COM+, and a COM-based library
for COM controls that can be used for general-purpose and Web-based
applications. A Type Library editor simplifies the development of COM servers.
Support for COM controls and ActiveX controls is not available in all editions of
Delphi.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in Delphi code.
It also represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent Delphi keywords or
compiler options. Boldface is also used to emphasize certain words, such as
new terms.

Italics Italicized words in text represent Delphi identifiers, such as variable or
type names.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

1-2 Developer’'s Guide

Developer support services

Developer support services

Borland offers a variety of support options, including free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products, technical support, and fee-based consultant-level support.

For more information about Borland’s developer support services, please see our
Web site at http:/ /www.borland.com/devsupport/delphi, call Borland Assist at
(800) 523-7070, or contact our Sales Department at (831) 431-1064. For customers
outside of the United States of America, see our Web site at

http:/ /www .borland.com/bww.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi.

When contacting support, be prepared to provide complete information about your
environment, the version and edition of the product you are using, and a detailed
description of the problem.

Introduction 1-3

1-4 Developer’'s Guide

Programming with Delphi

The chapters in “Programming with Delphi” introduce concepts and skills necessary
for creating applications using any edition of Delphi.

Programming with Delphi

Developing applications with Delphi

Borland Delphi is an object-oriented, visual programming environment to develop
32-bit applications for deployment on Windows and Linux. Using Delphi, you can
create highly efficient applications with a minimum of manual coding.

Delphi provides a suite of Rapid Application Development (RAD) design tools,
including programming wizards and application and form templates, and supports
object-oriented programming with a comprehensive class library that includes:

* The Visual Component Library (VCL), which includes objects that encapsulate the
Windows API as well as other useful programming techniques (Windows).

* The Borland Component Library for Cross-Platform (CLX), which includes objects that
encapsulate the Qt library (Windows or Linux).

This chapter briefly describes the Delphi development environment and how it fits
into the development life cycle. The rest of this manual provides technical details on
developing general-purpose, database, Internet and Intranet applications, creating
ActiveX and COM controls, and writing your own components.

Integrated development environment

When you start Delphi, you are immediately placed within the integrated
development environment, also called the IDE. This IDE provides all the tools you
need to design, develop, test, debug, and deploy applications, allowing rapid
prototyping and a shorter development time.

The IDE includes all the tools necessary to start designing applications, such as the:

¢ Form Designer, or form, a blank window on which to design the user interface (UI)
for your application.

¢ Component palette for displaying visual and nonvisual components you can use
to design your user interface.

Developing applications with Delphi 2-1

Designing applications

* Object Inspector for examining and changing an object’s properties and events.

* Object TreeView for displaying and changing a components’ logical relationships.
e Code editor for writing and editing the underlying program logic.

¢ Project Manager for managing the files that make up one or more projects.

¢ Integrated debugger for finding and fixing errors in your code.

* Many other tools such as property editors to change the values for an object’s
property.
¢ Command-line tools including compilers, linkers, and other utilities.

¢ Extensive class libraries with many reusable objects. Many of the objects provided
in the class library are accessible in the IDE from the Component palette. By
convention, the names of objects in the class library begin with a T, such as
TStatusBar. Names of objects that begin with a Q are based on the Qt library and
are used for cross-platform applications.

Some tools may not be included in all editions of the product.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialog boxes, and windows.

Designing applications

You can design any kind of 32-bit application—from general-purpose utilities to
sophisticated data access programs or distributed applications.

As you visually design the user interface for your application, the Form Designer
generates the underlying Delphi code to support the application. As you select and
modify the properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment.

You can create your own components using the Delphi language. Most of the
components provided are written in Delphi. You can add components that you write
to the Component palette and customize the palette for your use by including new
tabs if needed.

You can also design applications that run on both Linux and Windows by using CLX
components. CLX contains a set of classes that, if used instead of those in the VCL,
allows your program to port between Windows and Linux. Refer to Chapter 15,
“Developing cross-platform applications” for details about cross-platform
programming and the differences between the Windows and Linux environments. If
you are using Kylix while developing cross-platform applications, Kylix also

2-2 Developer’'s Guide

Creating projects

includes a Developer’s Guide that is tailored for the Linux environment. You can refer
to the manual both in the Kylix online Help or the printed manual provided with the
Kylix product.

Chapter 8, “Building applications, components, and libraries,” introduces support
for different types of applications.

Creating projects

All application development revolves around projects. When you create an
application in Delphi you are creating a project. A project is a collection of files that
make up an application. Some of these files are created at design time. Others are
generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools.

At the top of the project hierarchy is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.dpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, and compiler. These
project options are stored in the project file with the project.

Units and forms are the basic building blocks of an application. A project can share
any existing form and unit file including those that reside outside the project
directory tree. This includes custom procedures and functions that have been written
as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the uses clause of the project file.
Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

Developing applications with Delphi 2-3

Editing code

Editing code

The Code editor is a full-featured ASCII editor. If using the visual programming
environment, a form is automatically displayed as part of a new project. You can start
designing your application interface by placing objects on the form and modifying
how they work in the Object Inspector. But other programming tasks, such as writing
event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changes and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor, and continue adjusting the form from there.

The code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final executable
file—all of the VCL objects, CLX objects, RTL sources, and project files—can be
viewed and edited in the Code editor.

Compiling applications

When you have finished designing your application interface on the form and
writing additional code so it does what you want, you can compile the project from
the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

* When you compile, only units that have changed since the last compile are
recompiled.

e When you build, all units in the project are compiled, regardless of whether they
have changed since the last compile. This technique is useful when you are unsure
of exactly which files have or have not been changed, or when you simply want to
ensure that all files are current and synchronized. It's also important to build when
you've changed global compiler directives to ensure that all code compiles in the
proper state.You can also test the validity of your source code without attempting
to compile the project.

¢ When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project | Compile All Projects or Project | Build
All Projects with the project group selected in the Project Manager.

Note To compile a CLX application on Linux, you need Kylix.

2-4 Developer’s Guide

Debugging applications

Debugging applications

With the integrated debugger, you can find and fix errors in your applications. The
integrated debugger lets you control program execution, monitor variable values and
items in data structures, and modify data values while debugging.

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the variable values, the functions
on the call stack, and the program output, you can monitor how your program
behaves and find the areas where it is not behaving as designed. The debugger is
described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions are classes, like other classes in Delphi, except, by convention, they begin
with an initial E rather than a T.

Deploying applications

Note

Delphi includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all editions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. TeamSource software (not available in all editions) is also
available for tracking application updates.

To deploy a CLX application on Linux, you need Kylix.
Not all editions have deployment capabilities.

Refer to Chapter 18, “Deploying applications,” for specific information on
deployment.

Developing applications with Delphi 2-5

2-6 Developer’s Guide

Using the component library

This chapter presents an overview of the component library that you use while
developing applications. The component library includes the Visual Component
Library (VCL) and the Borland Component Library for Cross-Platform (CLX). The
VCL is for Windows-only development and CLX is for cross-platform development
on both Windows and Linux. The component library is extensive, containing both
components that you can work with in the IDE and classes that you create and use in
runtime code. Some of the classes can be used in any application, while others can
only appear in certain types of applications.

Understanding the component library

The component library is made up of objects separated into several sublibraries, each
of which serves a different purpose. These sublibraries are listed in Table 3.1:

Table 3.1 Component sublibraries

Part Description

BaseCLX Lowe-level classes and routines available for all CLX applications. BaseCLX includes
the runtime library (RTL) up to and including the Classes unit.

DataCLX Client data-access components. The components in DataCLX are a subset of the total
available set of components for working with databases. These components are used
in cross-platform applications that access databases. They can access data from a file
on disk or from a database server using dbExpress.

NetCLX Components for building Web Server applications. These include support for
applications that use Apache or CGI Web Servers.

Using the component library 3-1

Understanding the component library

Table 3.1 Component sublibraries

Part Description

VisualCLX Cross-platform GUI components and graphics classes. Visual CLX classes make use
of an underlying cross-platform widget library (Qt).

WinCLX Classes that are available only on the Windows platform. These include controls that
are wrappers for native Windows controls, database access components that use
mechanisms (such as the Borland Database Engine or ADO) that are not available on
Linux, and components that support Windows-only technologies (such as COM, NT
Services, or control panel applets).

The VCL and CLX contain many of the same sublibraries. They both include
BaseCLX, DataCLX, NetCLX. The VCL also includes WinCLX while CLX includes
VisualCLX instead. Use the VCL when you want to use native Windows controls,
Windows-specific features, or extend an existing VCL application. Use CLX when
you want to write a cross-platform application or use controls that are available in
CLX applications, such as TLCDNumber. For more information on writing cross-
platform applications, see Chapter 15, “Developing cross-platform applications.”

All classes descend from TObject. TObject introduces methods that implement
fundamental behavior like construction, destruction, and message handling.

Components are a subset of the component library that descend from the class
TComponent. You can place components on a form or data module and manipulate
them at design time. Using the Object Inspector, you can assign property values
without writing code. Most components are either visual or nonvisual, depending on
whether they are visible at runtime. Some components appear on the Component
palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend
from TControl. Controls are used in GUI applications, and appear to the user at
runtime. TControl provides properties that specify the visual attributes of controls,
such as their height and width.

Nonvisual components are used for a variety of tasks. For example, if you are writing
an application that connects to a database, you can place a TDataSource component
on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At design time, nonvisual
components are represented by an icon. This allows you to manipulate their
properties and events just as you would a visual control.

Classes that are not components (that is, classes that descend from TObject but not
TComponent) are also used for a variety of tasks. Typically, these classes are used for
accessing system objects (such as a file or the clipboard) or for transient tasks (such as
storing data in a list). You can’t create instances of these classes at design time,
although they are sometimes created by the components that you add in the Form
Designer.

3-2 Developer’s Guide

Understanding the component library

Detailed reference material on all VCL and CLX objects is accessible through online
Help while you are programming. In the Code editor, place the cursor anywhere on
the object and press F1 to display the Help topic. Objects, properties, methods, and
events that are in the VCL are marked “VCL Reference” and those in CLX are
marked “CLX Reference.”

Properties, methods, and events

Both the VCL and CLX form hierarchies of classes that are tied to the IDE, where you
can develop applications quickly. The classes in both component libraries are based
on properties, methods, and events. Each class includes data members (properties),
functions that operate on the data (methods), and a way to interact with users of the
class (events). The component library is written in the Delphi language, although the
VCL is based on the Windows API and CLX is based on the Qt widget library.

Properties

Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen in an application interface. Well-designed properties make your
components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

* Unlike methods, which are only available at runtime, you can see and change
some properties at design time and get immediate feedback as the components
change in the IDE.

* You can access some properties in the Object Inspector, where you can modify the
values of your object visually. Setting properties at design time is easier than
writing code and makes your code easier to maintain.

* Because the data is encapsulated, it is protected and private to the actual object.

¢ The calls to get and set the values of properties can be methods, so special
processing can be done that is invisible to the user of the object. For example, data
could reside in a table, but could appear as a normal data member to the
programmer.

* You can implement logic that triggers events or modifies other data during the
access of a property. For example, changing the value of one property may require
you to modify another. You can change the methods created for the property.

* Properties can be virtual.

* A property is not restricted to a single object. Changing one property on one object
can affect several objects. For example, setting the Checked property on a radio
button affects all of the radio buttons in the group.

Using the component library 3-3

Understanding the component library

Methods

A method is a procedure that is always associated with a class. Methods define the
behavior of an object. Class methods can access all the public, protected, and
privateproperties and fields of the class and are commonly referred to as member
functions. See “Controlling access” on page 2-6 of the Component Writer's Guide.
Although most methods belong to an instance of a class, some methods belong
instead to the class type. These are called class methods.

Events

An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform. For example, the user may choose a menu item, click a button, or
mark some text. You can write code to handle the events in which you are interested,
rather than writing code that always executes in the same restricted order.

Regardless of how an event is triggered, VCL objects look to see if you have written
any code to handle that event. If you have, that code is executed; otherwise, the
default event handling behavior takes place.

The kinds of events that can occur can be divided into two main categories:

e User events
¢ System events
¢ Internal events

User events
User events are actions that the user initiates. Examples of user events are OnClick

(the user clicked the mouse), OnKeyPress (the user pressed a key on the keyboard),
and OnDDbIClick (the user double-clicked a mouse button).

System events

System events are events that the operating system fires for you. For example, the
OnTimer event (which the Timer component issues whenever a predefined interval
has elapsed), the OnPaint event (a component or window needs to be redrawn), and
so on. Usually, system events are not directly initiated by a user action.

Internal events

Internal events are events that are generated by the objects in your application. An
example of an internal event is the OnPost event that a dataset generates when your
application tells it to post the current record.

3-4 Developer’s Guide

Objects, components, and controls

Objects, components, and controls

Figure 3.2 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.1 A simplified hierarchy diagram

TObject TPersistent '—»(TComponent)—»(TControl ’—»(TWinControl*)
[Objects] Y y V v
[Objects] [Objects] TGraphicControl [Objects]

[Objects]

\

\

Y

(Exception) * TWidgetControl in cross-platform applications.

Every object (class) inherits from TObject. Objects that can appear in the Form
Designer inherit from TPersistent or TComponent. Controls, which appear to the user
at runtime, inherit from TControl. There are two types of controls, graphic controls,
which inherit from TGraphicControl, and windowed controls, which inherit from
TWinControl or TWidgetControl. A control like TCheckBox inherits all the functionality
of TObject, TPersistent, TComponent, TControl, and TWinControl or TWidgetControl,
and adds specialized capabilities of its own.

The figure shows several important base classes, which are described in the
following table:

Table 3.2 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or
CLX. TObject encapsulates the fundamental behavior common to all VCL/
CLX objects by introducing methods that perform basic functions such as
creating, maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to VCL exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement publishable properties.
Classes under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all components. Components can be added to the
Component palette and manipulated at design time. Components can own
other components.

Using the component library 3-5

Objects, components, and controls

Table 3.2 Important base classes (continued)

Class Description

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWinControl or Specifies the base class of all controls that can have keyboard focus. Controls
TWidgetControl under TWinControl are called windowed controls while those under
TWidgetControl are called widgets.

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL and CLX object hierarchies,
refer to the VCL Object Hierarchy and CLX Object Hierarchy wall charts included
with this product.

TObject branch

The TObject branch includes all VCL and CLX classes that descend from TObject but
not from TPersistent. Much of the powerful capability of the component library is
established by the methods that TObject introduces. TObject encapsulates the
fundamental behavior common to all classes in the component library by introducing
methods that provide:

¢ The ability to respond when object instances are created or destroyed.

¢ (Class type and instance information on an object, and runtime type information
(RTTI) about its published properties.

* Support for handling messages (VCL applications) or handling notifications (CLX
applications).

TObject is the immediate ancestor of many simple classes. Classes in the TObject
branch have one common, important characteristic: they are transitory. This means
that these classes do not have a method to save the state that they are in prior to
destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another group in the TObject branch is classes that encapsulate data structures, such
as:

TBits, a class that stores an “array” of Boolean values.

TList, a linked list class.

TStack, a class that maintains a last-in first-out array of pointers.
TQueue, a class that maintains a first-in first-out array of pointers.

Another group in the TObject branch are wrappers for external objects like TPrinter,
which encapsulates a printer interface, and TIniFile, which lets a program read from
or write to an ini file.

3-6 Developer’s Guide

Objects, components, and controls

TStream is a good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on (see “Using streams” on

page 5-2 for information on streams).

See Chapter 5, “Using BaseCLX,” for information on many of the classes in the
TObject branch (as well as on many global routines in the Delphi Runtime Library).

TPersistent branch

The TPersistent branch includes all VCL and CLX classes that descend from
TPersistent but not from TComponent. Persistence determines what gets saved with a
form file or data module and what gets loaded into the form or data module when it
is retrieved from memory.

Because of their persistence, objects from this branch can appear at design time.
However, they can’t exist independently. Rather, they implement properties for
components. Properties are only loaded and saved with a form if they have an
owner. The owner must be some component. TPersistent introduces the GetOwner
method, which lets the Form Designer determine the owner of the object.

Classes in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method lets
each class indicate how to load and save properties.

Following are some of the classes in the TPersistent branch of the hierarchy:
¢ Graphics such as: TBrush, TFont, and TPen.

¢ Classes such as TBitmap and TIcon, which store and display visual images, and
TClipboard, which contains text or graphics that have been cut or copied from an
application.

¢ String lists, such as TStringList, which represent text or lists of strings that can be
assigned at design time.

e Collections and collection items, which descend from TCollection or
TCollectionltem. These classes maintain indexed collections of specially defined
items that belong to a component. Examples include THeaderSections and
THeaderSection or TListColumns and TListColumn.

TComponent branch

The TComponent branch contains classes that descend from TComponent but not
TControl. Objects in this branch are components that you can manipulate on forms at
design time but which do not appear to the user at runtime. They are persistent
objects that can do the following:

* Appear on the Component palette and be changed on the form.
¢ Own and manage other components.
* Load and save themselves.

Using the component library 3-7

Objects, components, and controls

Several methods introduced by TComponent dictate how components act during
design time and what information gets saved with the component. Streaming (the
saving and loading of form files, which store information about the property values
of objects on a form) is introduced in this branch. Properties are persistent if they are
published and published properties are automatically streamed.

The TComponent branch also introduces the concept of ownership that is propagated
throughout the component library. Two properties support ownership: Owner and
Components. Every component has an Owner property that references another
component as its owner. A component may own other components. In this case, all
owned components are referenced in the component’s Components property.

The constructor for every component takes a parameter that specifies the new
component's owner. If the passed-in owner exists, the new component is added to
that owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by a form are destroyed and their memory freed
when the form is destroyed. (Assuming, of course, that the components have
properly designed destructors that clean them up correctly.)

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and reads values for that instance’s properties.

Some of the classes in the TComponent branch include:

* TActionList, a class that maintains a list of actions, which provides an abstraction
of the responses your program can make to user input.

e TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

* TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,
classes that display and gather information from commonly used dialog boxes.

e TScreen, a class that keeps track of the forms and data modules that an application
creates, the active form, the active control within that form, the size and resolution
of the screen, and the cursors and fonts available for the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs
internal functions that are accessed through code rather than appearing in the user
interface at runtime.

See Chapter 6, “Working with components,” for details on setting properties, calling
methods, and working with events for components.

3-8 Developer’s Guide

Objects, components, and controls

TControl branch

The TControl branch consists of components that descend from TControl but not
TWinControl (TWidgetControl in CLX applications). Classes in this branch are
controls: visual objects that the user can see and manipulate at runtime. All controls
have properties, methods, and events in common that relate to how the control looks,
such as its position, the cursor associated with the control’s window, methods to
paint or move the control, and events to respond to mouse actions. Controls in this
branch, however, can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

TControl introduces many visual properties that all controls inherit. These include the
Caption, Color, Font, and HelpContext or HelpKeyword. While these properties inherited
from TControl, they are only published—and hence appear in the Object Inspector—
for controls to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays. TControl also
introduces the Parent property, which specifies another control that visually contains
the control.

Classes in the TControl branch often called graphic controls, because they all descend
from TGraphicControl, which is an immediate descendant of TControl. Although these
controls appear to the user at runtime, graphic controls do not have their own
underlying window or widget. Instead, they use their parent’s window or widget. It
is because of this limitation that graphic controls cant receive keyboard input or act
as a parent to other controls. However, because they do not have their own window
or widget, graphic controls use fewer system resources. For details on many of the
classes in the TControl branch, see “Graphic controls” on page 10-18.

There are two versions of TControl, one for VCL (Windows-only) applications and
one for CLX (cross-platform) applications. Most controls have two versions as well, a
Windows-only version that descends from the Windows-only version of TControl,
and a cross-platform version that descends from the cross-platform version of
TControl. The Windows-only controls use native Windows APIs in their
implementations, while the cross-platform versions sit on top of the Qt cross-
platform widget library.

Using the component library 3-9

Objects, components, and controls

See Chapter 7, “Working with controls,” for details on how to interact with controls
at runtime.

TWinControl/TWidgetControl branch

Most controls fall into the TWinControl/ TWidgetControl branch. Unlike graphic
controls, controls in this branch have their own associated window or widget.
Because of this, they are sometimes called windowed controls or widget controls.
Windowed controls all descend from TWinControl, which descends from the
windows-only version of TControl. Widget controls all descend from TWidgetControl,
which descends from the CLX version of TControl.

Controls in the TWinControl / TWidgetControl branch:

¢ Can receive focus while an application is running, which means they can receive
keyboard input from the application user. In comparison, graphic controls can
only display data and respond to the mouse.

¢ Can be the parent of one or more child controls.

¢ Have a handle, or unique identifier, that allows them to access the underlying
window or widget.

The TWinControl/TWidgetControl branch includes both controls that are drawn
automatically (such as TEdit, TListBox, TComboBox, TPageControl, and so on) and
custom controls that do not correspond directly to a single underlying Windows
control or widget. Controls in this latter category, which includes classes like
TStringGrid and TDBNavigator, must handle the details of painting themselves.
Because of this, they descend from TCustomControl, which introduces a Canvas
property on which they can paint themselves.

For details on many of the controls in the TWinControl / TWidgetControl branch, see
Chapter 10, “Types of controls.”

3-10 Developer’'s Guide

Using the object model

The Delphi language is a set of object-oriented extensions to standard Pascal. Object-
oriented programming is an extension of structured programming that emphasizes
code reuse and encapsulation of data with functionality. Once you define a class, you
and other programmers can use it in different applications, thus reducing
development time and increasing productivity.

This chapter is a brief introduction of object-oriented concepts for programmers who
are just starting out with the Delphi language. For more details on object-oriented
programming for programmers who want to write components that can be installed
on the Component palette, see Chapter 1, “Overview of component creation,” of the
Component Writer’s Guide.

What is an object?

A class is a data type that encapsulates data and operations on data in a single unit.
Before object-oriented programming, data and operations (functions) were treated as
separate elements. An object is an instance of a class. That is, it is a value whose type
is a class. The term object is often used more loosely in this documentation and where
the distinction between a class and an instance of the class is not important, the term
“object” may also refer to a class.

You can begin to understand objects if you understand Pascal records or structures in
C. Records are made of up fields that contain data, where each field has its own type.
Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain
procedures and functions that operate on their data. These procedures and functions
are called methods.

Using the object model 4-1

What is an object?

An object’s data elements are accessed through properties. The properties of many
Delphi objects have values that you can change at design time without writing code.
If you want a property value to change at runtime, you need to write only a small
amount of code.

The combination of data and functionality in a single unit is called encapsulation. In
addition to encapsulation, object-oriented programming is characterized by
inheritance and polymorphism. Inheritance means that objects derive functionality from
other objects (called ancestors); objects can modify their inherited behavior.
Polymorphism means that different objects derived from the same ancestor support
the same method and property interfaces, which often can be called interchangeably.

Examining a Delphi object

When you create a new project, the IDE displays a new form for you to customize. In
the Code editor, the automatically generated unit declares a new class type for the
form and includes the code that creates the new form instance. The generated code
for a new Windows application looks like this:

unit Unitl;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;

type
TForml = class(TForm){ The type declaration of the form begins here }
private
{ Private declarations }
public
{ Public declarations }
end; { The type declaration of the form ends here }

var
Forml: TForml;

implementation{ Beginning of implementation part }
{SR *.dfm}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains
methods—code that acts on the object’s data. So far, TForm1 appears to contain no
fields or methods, because you haven’t added any components (the fields of the new
object) to the form and you haven’t created any event handlers (the methods of the
new object). TForm1 does contain inherited fields and methods, even though you
don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm]1.

var
Forml: TForml;

4-2 Developer’'s Guide

What is an object?

Form1 represents an instance, or object, of the class type TForm1. You can declare
more than one instance of a class type; you might want to do this, for example, to
create multiple child windows in a Multiple Document Interface (MDI) application.
Each instance maintains its own data, but all instances use the same code to execute
methods.

Although you haven’t added any components to the form or written any code, you
already have a complete GUI application that you can compile and run. All it does is
display a blank form.

Suppose you add a button component to this form and write an OnClick event
handler that changes the color of the form when the user clicks the button. The result
might look like this:

Figure 41 A simple form

L Bultor LIl

When the user clicks the button, the form’s color changes to green. This is the event-
handler code for the button’s OnClick event:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Forml.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on
a form, a new field appears in the form’s type declaration. If you create the
application described above and look at the code in the Code editor, this is what you
see:

unit Unitl;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type
TForml = class(TForm)
Buttonl: TButton;{ New data field }
procedure ButtonlClick(Sender: TObject);{ New method declaration }
private
{ Private declarations }
public
{ Public declarations }
end;

Using the object model 4-3

What is an object?

var
Forml: TForml;

implementation

{SR *.dfm}

procedure TForml.ButtonlClick(Sender: TObject);{ The code of the new method }

begin
Forml.Color := clGreen;

end;

end.

TForm1 has a Button1 field that corresponds to the button you added to the form.
TButton is a class type, so Button1 refers to an object.

All the event handlers you write using the IDE are methods of the form object. Each
time you create an event handler, a method is declared in the form object type. The
TForm1 type now contains a new method, the Button1Click procedure, declared in the
TForm1 type declaration. The code that implements the Button1Click method appears
in the implementation part of the unit.

Changing the name of a component

You should always use the Object Inspector to change the name of a component. For
example, suppose you want to change a form’s name from the default Form1 to a
more descriptive name, such as ColorWindow. When you change the form’s Name
property in the Object Inspector, the new name is automatically reflected in the
form’s .dfm or .xfm file (which you usually don’t edit manually) and in the source
code that the IDE generates:

unit Unitl;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type
TColorWindow = class(TForm){ Changed from TForml to TColorWindow }
Buttonl: TButton;
procedure ButtonlClick(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
ColorWindow: TColorWindow;{ Changed from Forml to ColorWindow }
implementation
{SR *.dfm}
procedure TColorWindow.ButtonlClick(Sender: TObject);
begin
Forml.Color := clGreen;{ The reference to Forml didn't change! }
end;
end.

4-4 Developer’s Guide

Inheriting data and code from an object

Note that the code in the OnClick event handler for the button hasn’t changed.
Because you wrote the code, you have to update it yourself and correct any
references to the form:

procedure TColorWindow.ButtonlClick(Sender: TObject);
begin

ColorWindow.Color := clGreen;
end;

Inheriting data and code from an object

The TForm1 object seems simple. TForm1 appears to contain one field (Buttonl), one
method (Button1Click), and no properties. Yet you can show, hide, or resize of the
form, add or delete standard border icons, and set up the form to become part of a
Multiple Document Interface (MDI) application. You can do these things because the
form has inherited all the properties and methods of the component TForm. When you
add a new form to your project, you start with TForm and customize it by adding
components, changing property values, and writing event handlers. To customize
any object, you first derive a new object from the existing one; when you add a new
form to your project, the IDE automatically derives a new form from the TForm type:

TForml = class(TForm)

A derived class inherits all the properties, events, and methods of the class from
which it derives. The derived class is called a descendant and the class from which it
derives is called an ancestor. If you look up TForm in the online Help, you’ll see lists of
its properties, events, and methods, including the ones that TForm inherits from its
ancestors. A Delphi class can have only one immediate ancestor, but it can have
many direct descendants.

Scope and qualifiers

Scope determines the accessibility of an object’s fields, properties, and methods. All
members declared in a class are available to that class and, as is discussed later, often
to its descendants. Although a method’s implementation code appears outside of the
class declaration, the method is still within the scope of the class because it is
declared in the class declaration.

When you write code to implement a method that refers to properties, methods, or
fields of the class where the method is declared, you don’t need to preface those
identifiers with the name of the class. For example, if you put a button on a new form,
you could write this event handler for the button’s OnClick event:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Color := clFuchsia;

Buttonl.Color := clLime;
end;

Using the object model 4-5

Scope and qualifiers

The first statement is equivalent to
Forml.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of
TForm1; identifiers in the method body therefore fall within the scope of the TForm1
instance where the method is called. The second statement, in contrast, refers to the
color of the button object (not of the form where the event handler is declared), so it
requires qualification.

The IDE creates a separate unit (source code) file for each form. If you want to access
one form’s components from another form’s unit file, you need to qualify the
component names, like this:

Form2.Editl.Color := clLime;

In the same way, you can access a component’s methods from another form. For
example,

Form2.Editl.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit
to the uses clause of Form1’s unit.

The scope of a class extends to its descendants. You can, however, redeclare a field,
property, or method in a descendant class. Such redeclarations either hide or
override the inherited member.

For more information about scope, inheritance, and the uses clause, see the Delphi
Language Guide.

Private, protected, public, and published declarations

A class type declaration contains three or four possible sections that control the
accessibility of its fields and methods:

Type
TClassName = Class(TObject)
public
{public fields}
{public methods}
protected
{protected fields}
{protected methods}
private
{private fields}
{private methods}
end;

¢ The public section declares fields and methods with no access restrictions. Class
instances and descendant classes can access these fields and methods. A public
member is accessible from wherever the class it belongs to is accessible—that is,
from the unit where the class is declared and from any unit that uses that unit.

4-6 Developer’s Guide

Using object variables

¢ The protected section includes fields and methods with some access restrictions. A
protected member is accessible within the unit where its class is declared and by
any descendant class, regardless of the descendant class’s unit.

¢ The private section declares fields and methods that have rigorous access
restrictions. A private member is accessible only within the unit where it is
declared. Private members are often used in a class to implement other (public or
published) methods and properties.

¢ For classes that descend from TPersistent, a published section declares properties
and events that are available at design time. A published member has the same
visibility as a public member, but the compiler generates runtime type information
for published members. Published properties appear in the Object Inspector at
design time.

When you declare a field, property, or method, the new member is added to one of
these four sections, which gives it its visibility: private, protected, public, or
published.

For more information about visibility, see the Delphi Language Guide.

Using object variables

You can assign one object variable to another object variable if the variables are of the
same type or are assignment compatible. In particular, you can assign an object
variable to another object variable if the type of the variable to which you are
assigning is an ancestor of the type of the variable being assigned. For example, here
is a TSimpleForm type declaration and a variable declaration section declaring two
variables, AForm and Simple:

type
TSimpleForm = class(TForm)
Buttonl: TButton;
Editl: TEdit;
private
{ Private declarations }
public
{ Public declarations }
end;

var
AForm: TForm;
SimpleForm: TSimpleForm;

Using the object model 4-7

Creating, instantiating, and destroying objects

AForm is of type TForm, and SimpleForm is of type TSimpleForm. Because TSimpleForm
is a descendant of TForm, this assignment statement is legal:

AForm := SimpleForm;

Suppose you write an event handler for the OnClick event of a button. When the
button is clicked, the event handler for the OnClick event is called. Each event handler
has a Sender parameter of type TObject:

procedure TForml.ButtonlClick(Sender: TObject);

begin

énd ;
Because Sender is of type TObject, any object can be assigned to Sender. The value of
Sender is always the control or component that responds to the event. You can test

Sender to find the type of component or control that called the event handler using
the reserved word is. For example,

if Sender is TEdit then
DoSomething

else
DoSomethingElse;

Creating, instantiating, and destroying objects

Many of the objects you use in the Form Designer, such as buttons and edit boxes, are
visible at both design time and runtime. Some, such as common dialog boxes, appear
only at runtime. Still others, such as timers and data source components, have no
visual representation at runtime.

You may want to create your own classes. For example, you could create a TEmployee
class that contains Name, Title, and HourlyPayRate properties. You could then add a
CalculatePay method that uses the data in HourlyPayRate to compute a paycheck
amount. The TEmployee type declaration might look like this:

type

TEmployee = class(TObject)

private
FName: string;
FTitle: string;
FHourlyPayRate: Double;

public
property Name: string read FName write FName;
property Title: string read FTitle write FTitle;
property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
function CalculatePay: Double;

end;

4-8 Developer’s Guide

Defining new classes

In addition to the fields, properties, and methods you've defined, TEmployee inherits
all the methods of TObject. You can place a type declaration like this one in either the
interface or implementation part of a unit, and then create instances of the new class
by calling the Create method that TEmployee inherits from TObject:

var

Employee: TEmployee;
begin

Employee := TEmployee.Create;
end;

The Create method is called a constructor. It allocates memory for a new instance
object and returns a reference to the object.

Components on a form are created and destroyed automatically. However, if you
write your own code to instantiate objects, you are responsible for disposing of them
as well. Every object inherits a Destroy method (called a destructor) from TObject. To
destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free;

destroys the Employee object and deallocates its memory.

Components and ownership

Delphi components have a built-in memory-management mechanism that allows one
component to assume responsibility for freeing another. The former component is
said to own the latter. The memory for an owned component is automatically freed
when its owner's memory is freed. The owner of a component—the value of its
Owner property—is determined by a parameter passed to the constructor when the
component is created. By default, a form owns all components on it and is in turn
owned by the application. Thus, when the application shuts down, the memory for
all forms and the components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for
example, a TStringList or TCollection object (even if it is associated with a form), you
are responsible for freeing the object.

Defining new classes

Although there are many classes in the object hierarchy, you are likely to need to
create additional classes if you are writing object-oriented programs. The classes you
write must descend from TObject or one of its descendants.

The advantage of using classes comes from being able to create new classes as
descendants of existing ones. Each descendant class inherits the fields and methods
of its parent and ancestor classes. You can also declare methods in the new class that
override inherited ones, introducing new, more specialized behavior.

Using the object model 4-9

Defining new classes

The general syntax of a descendant class is as follows:

Type
TClassName = Class (TParentClass)
public
{public fields}
{public methods}
protected
{protected fields}
{protected methods}
private
{private fields}
{private methods}
end;

If no parent class name is specified, the class inherits directly from TObject. TObject
defines only a handful of methods, including a basic constructor and destructor.

To define a class:

1 In the IDE, start with a project open and choose File | New | Unit to create a new
unit where you can define the new class.

2 Add the uses clause and type section to the interface section.

3 In the type section, write the class declaration. You need to declare all the member
variables, properties, methods, and events.

TMyClass = class; {This implicitly descends from TObject}
public

private

published {If descended from TPersistent or below}

If you want the class to descend from a specific class, you need to indicate that
class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}
For example:

type TMyButton = class(TButton)
property Size: Integer;
procedure DoSomething;

end;

4 Some editions of the IDE include a feature called class completion that simplifies
the work of defining and implementing new classes by generating skeleton code
for the class members you declare. If you have code completion, invoke it to finish
the class declaration: place the cursor within a method definition in the interface
section and press Ctri+Shift+C (or right-click and select Complete Class at Cursor).
Any unfinished property declarations are completed, and for any methods that
require an implementation, empty methods are added to the implementation
section.

4-10 Developer’'s Guide

Defining new classes

If you do not have class completion, you need to write the code yourself,
completing property declarations and writing the methods.

Given the example above, if you have class completion, read and write specifiers
are added to your declaration, including any supporting fields or methods:

type TMyButton = class(TButton)
property Size: Integer read FSize write SetSize;
procedure DoSomething;
private
FSize: Integer;
procedure SetSize(const Value: Integer);

The following code is also added to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;

begin
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
FSize := Value;
end;

5 Fill in the methods. For example, to make it so the button beeps when you call the
DoSomething method, add the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
Beep;
end;
procedure TMyButton.SetSize(const Value: Integer);

begin
if fsize < > value then
begin
FSize := Value;
DoSomething;
end;
end;
Note that the button also beeps when you call SetSize to change the size of the
button.

For more information about the syntax, language definitions, and rules for classes,
see the Delphi Language Guide.

Using the object model 4-11

Using interfaces

Using interfaces

Delphi is a single-inheritance language. That means that any class has only a single
direct ancestor. However, there are times you want a new class to inherit properties
and methods from more than one base class so that you can use it sometimes like one
and sometimes like the other. Interfaces let you achieve something like this effect.

An interface is like a class that contains only abstract methods (methods with no
implementation) and a clear definition of their functionality. Interface method
definitions include the number and types of their parameters, their return type, and
their expected behavior. By convention, interfaces are named according to their
behavior and prefaced with a capital I. For example, an IMalloc interface would
allocate, free, and manage memory. Similarly, an IPersist interface could be used as a
general base interface for descendants, each of which defines specific method
prototypes for loading and saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
procedure MyProcedure;
end;

A simple example of an interface declaration is:

type

IEdit = interface
procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;

end;

Interfaces can never be instantiated. To use an interface, you need to obtain it from an
implementing class.

To implement an interface, define a class that declares the interface in its ancestor list,
indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;
end;

While interfaces define the behavior and signature of their methods, they do not
define the implementations. As long as the class’s implementation conforms to the
interface definition, the interface is fully polymorphic, meaning that accessing and
using the interface is the same for any implementation of it.

For more details about the syntax, language definitions and rules for interfaces, see
the Delphi Language Guide

4-12 Developer’'s Guide

Usinginterfaces

Using interfaces across the hierarchy

Using interfaces lets you separate the way a class is used from the way it is
implemented. Two classes can implement the same interface without descending
from the same base class. By obtaining an interface from either class, you can call the
same methods without having to know the type of the class. This polymorphic use of
the same methods on unrelated objects is possible because the objects implement the
same interface. For example, consider the interface,

IPaint = interface
procedure Paint;
end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
procedure Paint;
end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;
end;

Whether or not the two classes share a common ancestor, they are still assignment
compatible with a variable of [Paint as in

var
Painter: IPaint;

begin
Painter := TSquare.Create;
Painter.Paint;
Painter := TCircle.Create;
Painter.Paint;

end;

This could have been accomplished by having TCircle and TSquare descend from a
common ancestor (say, TFigure), which declares a virtual method Paint. Both TCircle
and TSquare would then have overridden the Paint method. In the previous example,
IPaint could be replaced by TFigure. However, consider the following interface:

IRotate = interface
procedure Rotate(Degrees: Integer);
end;

IRotate makes sense for the rectangle but not the circle. The classes would look like

TSquare = class(TRectangularObject, IPaint, IRotate)
procedure Paint;
procedure Rotate(Degrees: Integer);

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;
end;

Using the object model 4-13

Using interfaces

Later, you could create a class TFilledCircle that implements the IRotate interface to
allow rotation of a pattern that fills the circle without having to add rotation to the
simple circle.

Note For these examples, the immediate base class or an ancestor class is assumed to have
implemented the methods of IInterface, the base interface from which all interfaces
descend. For more information on IInterface, see “Implementing IInterface” on
page 4-14 and “Memory management of interface objects” on page 4-18.

Using interfaces with procedures

Interfaces allow you to write generic procedures that can handle objects without
requiring that the objects descend from a particular base class. Using the IPaint and
IRotate interfaces defined previously, you can write the following procedures:

procedure PaintObjects(Painters: array of IPaint);
var
I: Integer;
begin
for I := Low(Painters) to High(Painters) do
Painters[I].Paint;
end;

procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var
I: Integer;
begin
for I := Low(Rotaters) to High(Rotaters) do
Rotaters[I].Rotate(Degrees);
end;

RotateObjects does not require that the objects know how to paint themselves and
PaintObjects does not require the objects know how to rotate. This allows the generic
procedures to be used more often than if they were written to only work against a
TFigure class.

Implementing lInterface

Just as all objects descend, directly or indirectly, from TObject, all interfaces derive
from the IInterface interface. IInterface provides for dynamic querying and lifetime
management of the interface. This is established in the three IInterface methods:

* Querylnterface dynamically queries a given object to obtain interface references for
the interfaces that the object supports.

* _AddRef is a reference counting method that increments the count each time a call
to Querylnterface succeeds. While the reference count is nonzero the object must
remain in memory.

® _Release is used with _AddRef to allow an object to track its own lifetime and
determine when it is safe to delete itself. Once the reference count reaches zero, the
object is freed from memory.

4-14 Developer’'s Guide

Usinginterfaces

Every class that implements interfaces must implement the three IInterface methods,
as well as all of the methods declared by any other ancestor interfaces, and all of the
methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of
lifetime management, disabling reference-counting. This is a powerful technique that
lets you decouple interfaces from reference-counting.

TinterfacedObject

When defining a class that supports one or more interfaces, it is convenient to use
TInterfacedObject as a base class because it implements the methods of IInterface.
TInterfacedObject class is declared in the System unit as follows:

type
TInterfacedObject = class(TObject, IInterface)
protected
FRefCount: Integer;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
public
procedure AfterConstruction; override;
procedure BeforeDestruction; override;
class function NewInstance: TObject; override;
property RefCount: Integer read FRefCount;
end;

Deriving directly from TInterfacedObject is straightforward. In the following example
declaration, TDerived is a direct descendant of TInterfacedObject and implements a
hypothetical [Paint interface.

type
TDerived = class(TInterfacedObject, IPaint)

end;

Because it implements the methods of IInterface, TInterfacedObject automatically
handles reference counting and memory management of interfaced objects. For more
information, see “Memory management of interface objects” on page 4-18, which
also discusses writing your own classes that implement interfaces but that do not
follow the reference-counting mechanism inherent in TInterfacedObject.

Using the object model 4-15

Using interfaces

Using the as operator with interfaces

Classes that implement interfaces can use the as operator for dynamic binding on the
interface. In the following example,

procedure PaintObjects(P: TInterfacedObject)
var
X: IPaint;
begin
X := P as IPaint;
{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an
IPaint interface reference. Dynamic binding makes this assignment possible. For this
assignment, the compiler generates code to call the QueryInterface method of P’s
IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports IPaint. At runtime, P either resolves to an
IPaint reference or an exception is raised. In either case, assigning P to X will not
generate a compile-time error as it would if P was of a class type that did not
implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be
aware of the following requirements:

o Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is
not sufficient, if you want to use the as operator, for a class to simply implement
the methods of IInterface. This is true even if it also implements the interfaces it
explicitly declares. The class must explicitly declare IInterface in its interface list.

¢ Using an IID: Interfaces can use an identifier that is based on a GUID (globally
unique identifier). GUIDs that are used to identify interfaces are referred to as
interface identifiers (IIDs). If you are using the as operator with an interface, it
must have an associated IID. To create a new GUID in your source code you can
use the Cirl+Shift+G editor shortcut key.

Reusing code and delegation

One approach to reusing code with interfaces is to have one interfaced object contain,
or be contained by another. Using properties that are object types provides an
approach to containment and code reuse. To support this design for interfaces, the
Delphi language has a keyword implements, that makes if easy to write code to
delegate all or part of the implementation of an interface to a subobject.

Aggregation is another way of reusing code through containment and delegation. In
aggregation, an outer object uses an inner object that implements interfaces which are
exposed only by the outer object.

4-16 Developer’'s Guide

Usinginterfaces

Using implements for delegation

Many classes have properties that are subobjects. You can also use interfaces as
property types. When a property is of an interface type (or a class type that
implements the methods of an interface) you can use the keyword implements to
specify that the methods of that interface are delegated to the object or interface
reference which is the value of the property. The delegate only needs to provide
implementation for the methods. It does not have to declare the interface support.
The class containing the property must include the interface in its ancestor list.

By default, using the implements keyword delegates all interface methods. However,
you can use methods resolution clauses or declare methods in your class that
implement some of the interface methods to override this default behavior.

The following example uses the implements keyword in the design of a color adapter
object that converts an 8-bit RGB color value to a Color reference:

unit cadapt;

interface

type

IRGB8bit = interface

["{1d76360a-f4f5-11d1-87d4-00c04fb17199} "]
function Red: Byte;
function Green: Byte;
function Blue: Byte;
end;

IColorRef = interface
['{1d76360b-f4f5-11d1-87d4-00c04fb17199}"]
function Color: Integer;

end;
{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef
private
FRGB8bit: IRGB8bit;
FPalRelative: Boolean;

public
constructor Create(rgb: IRGB8bit);
property RGB8Intf: IRGB8bit read FRGBS8bit implements IRGBSbit;
property PalRelative: Boolean read FPalRelative write FPalRelative;
function Color: Integer;

end;

implementation

constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8hit);

begin
FRGB8bit := rgb;

end;

function TRGB8ColorRefAdapter.Color: Integer;

begin
if FPalRelative then

Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)
else
Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);

end;

end.

Using the object model 4-17

Using interfaces

For more information about the syntax, implementation details, and language rules
of the implements keyword, see the Delphi Language Guide.

Aggregation

Aggregation offers a modular approach to code reuse through sub-objects that make
up the functionality of a containing object, but that hide the implementation details
from that object. In aggregation, an outer object implements one or more interfaces.
At a minimum, it must implement IInterface. The inner object, or objects, also
implement one or more interfaces. However, only the outer object exposes the
interfaces. That is, the outer object exposes both the interfaces it implements and the
ones that its contained objects implement.

Clients know nothing about inner objects. While the outer object provides access to
the inner object interfaces, their implementation is completely transparent. Therefore,
the outer object class can exchange the inner object class type for any class that
implements the same interface. Correspondingly, the code for the inner object classes
can be shared by other classes that want to use it.

The aggregation model defines explicit rules for implementing IInterface using
delegation. The inner object must implement two versions of the IInterface methods.

¢ It must implement IInterface on itself, controlling its own reference count. This
implementation of IInterface tracks the relationship between the outer and the
inner object. For example, when an object of its type (the inner object) is created,
the creation succeeds only for a requested interface of type IInterface.

e It also implements a second IInterface for all the interfaces it implements that the
outer object exposes. This second IInterface delegates calls to QueryInterface,
_AddRef, and _Release to the outer object. The outer IInterface is referred to as the
“controlling Unknown.”

Refer to the MS online help for the rules about creating an aggregation. When writing
your own aggregation classes, you can also refer to the implementation details of
IInterface in TComObject. TComObject is a COM class that supports aggregation. If you
are writing COM applications, you can also use TComObject directly as a base class.

Memory management of interface objects

One of the concepts behind the design of interfaces is ensuring the lifetime
management of the objects that implement them. The _AddRef and _Release methods
of IInterface provide a way to implement this lifetime management. _AddRef and
_Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object
when that reference count is zero.

If you are creating COM objects for distributed applications (in the Windows
environment only), then you should strictly adhere to the reference counting rules.
However, if you are using interfaces only internally in your application, then you
have a choice that depends upon the nature of your object and how you decide to use
it.

4-18 Developer’'s Guide

Note

Usinginterfaces

Using reference counting

The Delphi compiler provides most of the IInterface memory management for you by
its implementation of interface querying and reference counting. Therefore, if you
have an object that lives and dies by its interfaces, you can easily use reference
counting by deriving from TInterfacedObject. If you decide to use reference counting,
then you must be careful to only hold the object as an interface reference, and to be
consistent in your reference counting. For example:

procedure beep(x: ITest);

function test_func(

var
y: ITest;

begin
y := TTest.Create; // because y is of type ITest, the reference count is one
beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;

This is the cleanest and safest approach to memory management; and if you use
TInterfacedObject it is handled automatically. If you do not follow this rule, your
object can unexpectedly disappear, as demonstrated in the following code:

function test_func(
var
x: TTest;
begin
x := TTest.Create; // no count on the object yet
beep(x as ITest); // count is incremented by the act of calling beep
// and decremented when it returns
x.something; // surprise, the object is gone
end;

In the examples above, the beep procedure, as it is declared, increments the reference
count (call _AddRef) on the parameter, whereas either of the following declarations
do not:

procedure beep(const x: ITest);
or
procedure beep(var x: ITest);
These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently
applied, is if your object is a component or a control owned by another component.
In that case, you can still use interfaces, but you should not use reference counting
because the lifetime of the object is not dictated by its interfaces.

Using the object model 4-19

Using interfaces

Not using reference counting

If your object is a component or a control that is owned by another component, then
it is part of a different memory management system that is based in TComponent.
Although some classes mix the object lifetime management approaches of
TComponent and interface reference counting, this is very tricky to implement
correctly.

To create a component that supports interfaces but bypasses the interface reference
counting mechanism, you must implement the _AddRef and _Release methods in code
such as the following:

function TMyObject._AddRef: Integer;
begin

Result := -1;
end;

function TMyObject._ Release: Integer;
begin

Result := -1;
end;

You would still implement Querylnterface as usual to provide dynamic querying on
your object.

Note that, because you implement Querylnterface, you can still use the as operator for
interfaces, as long as you create an interface identifier (IID). You can also use
aggregation. If the outer object is a component, the inner object implements reference
counting as usual, by delegating to the “controlling Unknown.” It is at the level of the
outer object that the decision is made to circumvent the _AddRef and _Release
methods, and to handle memory management via another approach. In fact, you can
use TlnterfacedObject as a base class for an inner object of an aggregation that has a as
its containing outer object one that does not follow the interface lifetime model.

Note The “controlling Unknown” is the [Unknown implemented by the outer object and
the one for which the reference count of the entire object is maintained. [Unknown is
the same as IInterface, but is used instead in COM-based applications (Windows
only). For more information distinguishing the various implementations of the
IUnknown or IInterface interface by the inner and outer objects, see “Aggregation” on
page 4-18 and the Microsoft online Help topics on the “controlling Unknown.”

4-20 Developer’'s Guide

Usinginterfaces

Using interfaces in distributed applications

In VCL applications, interfaces are a fundamental element in the COM, SOAP, and
CORBA distributed object models. Delphi provides base classes for these
technologies that extend the basic interface functionality in TInterfacedObject, which
simply implements the IInterface interface methods.

When using COM, classes and interfaces are defined in terms of IUnknown rather
than IInterface. There is no semantic difference between IUnknown and IInterface, the
use of IUnknown is simply a way to adapt Delphi interfaces to the COM definition.
COM classes add functionality for using class factories and class identifiers (CLSIDs).
Class factories are responsible for creating class instances via CLSIDs. The CLSIDs
are used to register and manipulate COM classes. COM classes that have class
factories and class identifiers are called CoClasses. CoClasses take advantage of the
versioning capabilities of Querylnterface, so that when a software module is updated
Querylnterface can be invoked at runtime to query the current capabilities of an object.

New versions of old interfaces, as well as any new interfaces or features of an object,
can become immediately available to new clients. At the same time, objects retain
complete compatibility with existing client code; no recompilation is necessary
because interface implementations are hidden (while the methods and parameters
remain constant). In COM applications, developers can change the implementation
to improve performance, or for any internal reason, without breaking any client code
that relies on that interface. For more information about COM interfaces, see
Chapter 40, “Overview of COM technologies.”

When distributing an application using SOAP, interfaces are required to carry their
own runtime type information (RTTI). The compiler only adds RTTI to an interface
when it is compiled using the {$M+] switch. Such interfaces are called invokable
interfaces. The descendant of any invokable interface is also invokable. However, if an
invokable interface descends from another interface that is not invokable, client
applications can only call the methods defined in the invokable interface and its
descendants. Methods inherited from the non-invokable ancestors are not compiled
with type information and so can’t be called by clients.

The easiest way to define invokable interfaces is to define your interface so that it
descends from IInvokable. IInvokable is the same as IInterface, except that it is compiled
using the {$M+} switch. For more information about Web Service applications that
are distributed using SOAP, and about invokable interfaces, see Chapter 38, “Using
Web Services.”

Another distributed application technology is CORBA. The use of interfaces in
CORBA applications is mediated by stub classes on the client and skeleton classes on
the server. These stub and skeleton classes handle the details of marshaling interface
calls so that parameter values and return values can be transmitted correctly.
Applications must use either a stub or skeleton class, or employ the Dynamic
Invocation Interface (DII) which converts all parameters to special variants (so that
they carry their own type information).

Using the object model 4-21

4-22 Developer’'s Guide

Note

Using BaseCLX

There are a number of units in the component library that provide the underlying
support for most of the component libraries. These units include the global routines
that make up the runtime library, a number of utility classes such as those that
represent streams and lists, and the classes TObject, TPersistent, and TComponent.
Collectively, these units are called BaseCLX. BaseCLX does not include any of the
components that appear on the Component palette. Rather, the classes and routines
in BaseCLX are used by the components that do appear on the Component palette
and are available for you to use in application code or when you are writing your
own classes.

The following topics discuss many of the classes and routines that make up BaseCLX
and illustrate how to use them.

Using streams

Working with files~
Working with .ini files
Working with lists
Working with string lists
Working with strings~
Creating drawing spaces
Printing

Converting measurements
Defining custom variants

This list of tasks is not exhaustive. The runtime library in BaseCLX contains many
routines to perform tasks that are not mentioned here. These include a host of
mathematical functions (defined in the Math unit), routines for working with date/
time values (defined in the SysUtils and DateUltils units), and routines for working
with Variant values (defined in the Variants unit).

Using BaseCLX 5-1

Using streams

Using streams

Streams are classes that let you read and write data. They provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and BLOB fields in databases. There are several stream classes, which all descend
from TStream. Each stream class is specific to one media type. For example,
TMemoryStream reads from or writes to a memory image; TFileStream reads from or
writes to a file.

Using streams to read or write data

Stream classes all share several methods for reading and writing data. These methods
are distinguished by whether they:

® Return the number of bytes read or written.
® Require the number of bytes to be known.
¢ Raise an exception on error.

Stream methods for reading and writing

The Read method reads a specified number of bytes from the stream, starting at its
current Position, into a buffer. Read then advances the current position by the number
of bytes actually transferred. The prototype for Read is:

function Read(var Buffer; Count: Longint): Longint;

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the stream did
not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the
current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint;

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered or the stream can’t accept any more
bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the

5-2 Developer’s Guide

Using streams

Read and Write methods, which can return a byte count that differs from the
requested value. The prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer (var Buffer; Count: Longint);
procedure WriteBuffer (const Buffer; Count: Longint);

These methods call the Read and Write methods to perform the actual reading and
writing.

Reading and writing components

TStream defines specialized methods, ReadComponent and WriteComponent, for
reading and writing components. You can use them in your applications as a way to
save components and their properties when you create or alter them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read
components from or write them to form files. When streaming components to or
from a form file, stream classes work with the TFiler classes, TReader and TWriter, to
read objects from the form file or write them out to disk. For more information about
using the component streaming system, see the online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

Reading and writing strings

If you are passing a string to a read or write function, you need to be aware of the
correct syntax. The Buffer parameters for the read and write routines are var and
const types, respectively. These are untyped parameters, so the routine takes the
address of a variable.

The most commonly used type when working with strings is a long string. However,
passing a long string as the Buffer parameter does not produce the correct result.
Long strings contain a size, a reference count, and a pointer to the characters in the
string. Consequently, dereferencing a long string does not result in the pointer
element. You need to first cast the string to a Pointer or PChar, and then dereference it.
For example:

procedure caststring;

var

fs: TFileStream;
const

s: string = 'Hello';
begin

fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
fs.Write(s, Length(s));// this will give you garbage
fs.Write(PChar(s)”, Length(s));// this is the correct way

end;

Using BaseCLX 5-3

Using streams

Copying data from one stream to another

When copying data from one stream to another, you do not need to explicitly read
and then write the data. Instead, you can use the CopyFrom method, as illustrated in
the following example.

In the following example, one file is copied to another one using streams. The
application includes two edit controls (EdFrom and EdTo) and a Copy File button.

procedure TForml.CopyFileClick(Sender: TObject);

var
Source, Destination:TStream;
begin
Source := TFileStream.Create(edFrom.Text, fmOpenRead or fmShareDenyWrite);
try
Destination := TFileStream.Create(edTo.Text, fmOpenCreate or fmShareDenyRead);
try
Destination.CopyFrom(Source, Source.Size);
finally
Destination.Free;
end;
finally
Source.Free
end;

Specifying the stream position and size

In addition to methods for reading and writing, streams permit applications to seek
to an arbitrary position in the stream or change the size of the stream. Once you seek
to a specified position, the next read or write operation starts reading from or writing
to the stream at that position.

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position
in the stream. There are two overloads for the Seek method:

function Seek(Offset: Longint; Origin: Word): Longint;
function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;

Both overloads work the same way. The difference is that one version uses a 32-bit
integer to represent positions and offsets, while the other uses a 64-bit integer.

5-4 Developer’s Guide

Working with files

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Table 5.1 Values for the Origin parameter

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >=0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.
soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a

number of bytes before the end of the file.

Seek resets the current stream position, moving it by the indicated offset. Seek returns
the new current position in the stream.

Using Position and Size properties

All streams have properties that hold the current position and size of the stream.
These are used by the Seek method, as well as all the methods that read from or write
to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the
beginning of the streamed data). The declaration for Position is:

property Position: Int64;

The Size property indicates the size of the stream in bytes. It can be used to determine
the number of bytes available for reading, or to truncate the data in the stream. The
declaration for Size is:

property Size: Int64;
Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a
file stream, setting Size inserts an end of file marker to truncate the file. If the Size of
the stream cannot be changed, an exception is raised. For example, trying to change
the Size of a read-only file stream raises an exception.

Working with files

BaseCLX supports several ways of working with files. The previous section, “Using
streams,” states that you can use specialized streams to read from or write to files. In
addition to using file streams, there are several runtime library routines for
performing file I/O. Both file streams and the global routines for reading from and
writing to files are described in “Approaches to file I/O” on page 5-6.

In addition to input/output operations, you may want to manipulate files on disk.
Support for operations on the files themselves rather than their contents is described
in “Manipulating files” on page 5-8.

Using BaseCLX 5-5

Working with files

Note

When writing cross-platform applications, remember that although the Delphi
language is not case sensitive, the Linux operating system is. When using objects and
routines that work with files, be attentive to the case of file names.

Approaches to file I/O

There are several approaches you can take when reading from and writing to files:

* The recommended approach for working with files is to use file streams. File
streams are instances of the TFileStream class used to access information in disk
files. File streams are a portable and high-level approach to file I/O. Because file
streams make the file handle available, this approach can be combined with the
next one. The next section, “Using file streams” discusses TFileStream in detail.

* You can work with files using a handle-based approach. File handles are provided
by the operating system when you create or open a file to work with its contents.
The SysUtils unit defines a number of file-handling routines that work with files
using file handles. On Windows, these are typically wrappers around Windows
API functions. Because the BaseCLX functions can use the Delphi language syntax,
and occasionally provide default parameter values, they are a convenient interface
to the Windows API. Furthermore, there are corresponding versions on Linux, so
you can use these routines in cross-platform applications. To use a handle-based
approach, you first open a file using the FileOpen function or create a new file
using the FileCreate function. Once you have the handle, use handle-based routines
to work with its contents (write a line, read text, and so on).

¢ The System unit defines a number of file I/O routines that work with file
variables, usually of the format "F: Text:" or "F: File:" File variables can have one of
three types: typed, text, and untyped. A number of file-handling routines, such as
AssignPrn and writeln, use them. The use of file variables is deprecated, and these
file types are supported only for backward compatibility. They are incompatible
with Windows file handles. If you need to work with them, see the Delphi Language
Guide.

Using file streams

The TFileStream class enables applications to read from and write to a file on disk.
Because TFileStream is a stream object, it shares the common stream methods. You
can use these methods to read from or write to the file, copy data to or from other
stream classes, and read or write components values. See “Using streams” on
page 5-2 for details on the capabilities that files streams inherit by being stream
classes.

In addition, file streams give you access to the file handle, so that you can use them
with global file handling routines that require the file handle.

5-6 Developer’s Guide

Working with files

Creating and opening files using file streams

To create or open a file and get access to its handle, you simply instantiate a
TFileStream. This opens or creates a specified file and provides methods to read from
or write to it. If the file cannot be opened, the TFileStream constructor raises an
exception.

constructor Create(const filename: string; Mode: Word);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode OR’ed
together. The open mode must be one of the following values:

Table 5.2 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the

current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

The share mode can be one of the following values with the restrictions listed below:

Table 5.3 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened (VCL applications
only).

fmShareExclusive Other applications can not open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

fmShareDenyRead Other applications can open the file for writing but not for reading (VCL

applications only).

fmShareDenyNone No attempt is made to prevent other applications from reading from or
writing to the file.

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

Table 5.4 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available
fmOpenWrite Available Available Can’t use Available Available
fmOpenReadWrite Available Available Available Available Available

The file open and share mode constants are defined in the SysUtils unit.

Using BaseCLX 5-7

Working with files

Using the file handle

When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. On Windows, Handle is a Windows file handle. On
Linux versions of CLX, it is a Linux file handle. Handle is read-only and reflects the
mode in which the file was opened. If you want to change the attributes of the file
Handle, you must create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a
file stream, you can use the Handle property in any situation in which you would use
a file handle. Be aware that, unlike handle streams, file streams close file handles
when the object is destroyed.

Manipulating files

Several common file operations are built into the runtime library. The routines for
working with files operate at a high level. For most routines, you specify the name of
the file and the routine makes the necessary calls to the operating system for you. In
some cases, you use file handles instead.

Caution Although the Delphi language is not case sensitive, the Linux operating system is. Be
attentive to case when working with files in cross-platform applications.

Deleting a file

Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm before deleting files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns True if it deleted the file and False if it did not (for example, if the
file did not exist or if it was read-only). DeleteFile erases the file named by FileName
from the disk.

Finding a file

There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns True if the
file exists, False otherwise.

5-8 Developer’s Guide

Working with files

The three file find routines take a TSearchRec as one of the parameters. T'SearchRec
defines the file information searched for by FindFirst or FindNext. If a file is found, the
tields of the TSearchRec type parameter are modified to describe the found file.
type
TFileName = string;
TSearchRec = record
Time: Integer;//Time contains the time stamp of the file.
Size: Integer;//Size contains the size of the file in bytes.
Attr: Integer;//Attr represents the file attributes of the file.
Name: TFileName;//Name contains the filename and extension.
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;//FindData contains additional information such as
//file creation time, last access time, long and short filenames.
end;

On field of TSearchRec that is of particular interest is the Attr field. You can test Attr
against the following attribute constants or values to determine if a file has a specific
attribute:

Table 5.5 Attribute constants and values

Constant Value Description

faReadOnly ~ $00000001 Read-only files
faHidden $00000002 Hidden files
faSysFile $00000004 System files
faVolumeID $00000008 Volume ID files
faDirectory ~ $00000010 Directory files
faArchive $00000020 Archive files
faAnyFile $0000003F Any file

To test for an attribute, combine the value of the Attr field with the attribute constant
using the and operator. If the file has that attribute, the result will be greater than 0.
For example, if the found file is a hidden file, the following expression will evaluate
to True:

(SearchRec.Attr and faHidden > 0).

Attributes can be combined by OR’ing their constants or values. For example, to
search for read-only and hidden files in addition to normal files, pass the following as
the Attr parameter.

(faReadOnly or faHidden).

Using BaseCLX 5-9

Working with files

The following example illustrates the use of the three file find routines. It uses a label,
a button named Search, and a button named Again on a form. When the user clicks the
Search button, the first file in the specified path is found, and the name and the
number of bytes in the file appear in the label's caption. Each time the user clicks the
Again button, the next matching filename and size is displayed in the label:

var
SearchRec: TSearchRec;

procedure TForml.SearchClick(Sender: TObject);
begin

FindFirst('c:\Program Files\MyProgram\bin*.*', faAnyFile, SearchRec);

Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';
end;

procedure TForml.AgainClick(Sender: TObject);
begin
if FindNext (SearchRec) = 0 then
Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size'
else
FindClose (SearchRec);
end;

Note In cross-platform applications, you should replace any hard-coded pathnames with
the correct pathname for the system or use environment variables (on the
Environment Variables page when you choose Tools | Environment Options) to
represent them.

Renaming a file
To change a file name, use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;

RenameFile changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns True. If it cannot rename
the file (for example, if a file called NewFileName already exists), RenameFile returns

False. For example:

if not RenameFile('OLDNAME.TXT', 'NEWNAME.TXT') then
ErrorMsg ('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

Note RenameFile in the runtime library is a wrapper around the Windows API MoveFile
function, so MoveFile will not work across drives either.

File date-time routines

The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or -1 if the handle is invalid.

5-10 Developer’'s Guide

Working with ini files and the system Registry

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, use a Handle type as a parameter. To get the file
handle either:

* Use the FileOpen or FileCreate function to create a new file or open an existing file.
Both FileOpen and FileCreate return the file handle.

¢ Instantiate TFileStream to create or open a file. Then use its Handle property. See
“Using file streams” on page 5-6 for more information.

Copying a file
FindingAFile;RenamingAFile;FileDateTimeRoutines;Deleting AFileThe runtime
library does not provide any routines for copying a file. However, if you are writing
Windows-only applications, you can directly call the Windows API CopyFile function
to copy a file. Like most of the runtime library file routines, CopyFile takes a filename
as a parameter, not a file handle. When copying a file, be aware that the file attributes
for the existing file are copied to the new file, but the security attributes are not.
CopyfFile is also useful when moving files across drives because neither the RenameFile
function nor the Windows API MoveFile function can rename or move files across
drives. For more information, see the Microsoft Windows online Help.

Working with ini files and the system Registry

Many applications use ini files to store configuration information. BaseCLX includes
two classes for working with ini files: TIniFile and TMemIniFile. Using ini files has the
advantage that they can be used in cross-platform applications and they are easy to
read and edit. For information on these classes, see “Using TIniFile and
TMemlIniFile” on page 5-12 for more information.

Many Windows applications replace the use of ini files with the system Registry. The
Windows system Registry is a hierarchical database that acts as a centralized storage
space for configuration information. The VCL includes classes for working with the
system Registry. While these are technically not part of BaseCLX (because they are
only available on Windows), two of these classes, TRegistryIniFile and TRegistry, are
discussed here because of their similarity to the classes for working with ini files.

TRegistrylniFile is useful for cross-platform applications, because it shares a common
ancestor (TCustomlIniFile) with the classes that work with ini files. If you confine
yourself to the methods of the common ancestor (TCustomIniFile) your application
can work on both applications with a minimum of conditional code. TRegistryIniFile
is discussed in “Using TRegistryIniFile” on page 5-13.

For applications that are not cross-platform, you can use the TRegistry class. The
properties and methods of TRegistry have names that correspond more directly to the
way the system Registry is organized, because it does not need to be compatible with
the classes for ini files. TRegistry is discussed in “Using TRegistry” on page 5-13.

Using BaseCLX 5-11

Working with ini files and the system Registry

Using TIniFile and TMeminiFile

The ini file format is still popular, many configuration files (such as the DSK Desktop
settings file) are in this format. This format is especially useful in cross-platform
applications, where you can’t always count on a system Registry for storing
configuration information. BaseCLX provides two classes, TIniFile and TMem!IniFile,
to make reading and writing ini files very easy.

TIniFile works directly with the ini file on disk while TMemIniFile buffers all changes
in memory and does not write them to disk until you call the UpdateFile method.

When you instantiate the TIniFile or TMemIniFile object, you pass the name of the ini
file as a parameter to the constructor. If the file does not exist, it is automatically
created. You are then free to read values using the various read methods, such as
ReadString, ReadDate, ReadInteger, or ReadBool. Alternatively, if you want to read an
entire section of the ini file, you can use the ReadSection method. Similarly, you can
write values using methods such as WriteBool, Writelnteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a
form's OnCreate event handler and writing values in the OnClose event handler.

procedure TForml.FormCreate(Sender: TObject);

var
Ini: TIniFile;
begin
Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try
Top := Ini.ReadInteger('Form', 'Top', 100);
Left := Ini.ReadInteger('Form', 'Left', 100);

Caption := Ini.ReadString('Form', 'Caption', 'New Form');
if Ini.ReadBool('Form', 'InitMax',6 false) then
WindowState = wsMaximized
else
WindowState = wsNormal;
finally
TIniFile.Free;
end;
end;

procedure TForml.FormClose(Sender: TObject; var Action TCloseAction)

var
Ini: TIniFile;

begin
Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try

Ini.WriteInteger('Form', 'Top', Top);
Ini.WriteInteger('Form', 'Left', Left);
Ini.WriteString('Form', 'Caption', Caption);
Ini.WriteBool('Form', 'InitMax', WindowState = wsMaximized);
finally
TIniFile.Free;
end;
end;

5-12 Developer’'s Guide

Note

Working with ini files and the system Registry

Each of the Read routines takes three parameters. The first parameter identifies the
section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.
Just as the Read methods gracefully handle the case when a section or value does not
exist, the Write routines create the section and/or value if they do not exist. The
example code creates an ini file the first time it is run that looks like this:

[Form]

Top=100

Left=100
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form
is created and written back out in the OnClose event.

Using TRegistrylniFile

Many 32-bit Windows applications store their information in the system Registry
instead of ini files because the Registry is hierarchical and doesn't suffer from the size
limitations of ini files. If you are accustomed to using ini files and want to move your
configuration information to the Registry instead, you can use the TRegistrylniFile
class. You may also want to use TRegistrylniFile in cross-platform applications if you
want to use the system Registry on Windows and an ini file on Linux. You can write
most of your application so that it uses the TCustomIniFile type. You need only
conditionalize the code that creates an instance of TRegistrylniFile (on Windows) or
TMemIniFile (on Linux) and assigns it to the TCustomIniFile your application uses.

TRegistryIniFile makes Registry entries look like ini file entries. All the methods from
TIniFile and TMemIniFile (read and write) exist in TRegistrylniFile.

When you construct a TRegistryIniFile object, the parameter you pass to the
constructor (corresponding to the filename for an IniFile or TMemIniFile object)
becomes a key value under the user key in the registry. All sections and values
branch from that root. TRegistryIniFile simplifies the Registry interface considerably,
so you may want to use it instead of the TRegistry component even if you aren't
porting existing code or writing a cross-platform application.

Using TRegistry

If you are writing a Windows-only application and are comfortable with the
structure of the system Registry, you can use TRegistry. Unlike TRegistryIniFile, which
uses the same properties and methods of other ini file components, the properties
and methods of TRegistry correspond more directly to the structure of the system
Registry. For example, TRegistry lets you specify both the root key and subkey, while
TRegistrylniFile assumes HKEY_CURRENT_USER as a root key. In addition to
methods for opening, closing, saving, moving, copying, and deleting keys, TRegistry
lets you specify the access level you want to use.

TRegistry is not available for cross-platform programming.

Using BaseCLX 5-13

Working with lists

The following example retrieves a value from a registry entry:

function GetRegistryValue(KeyName: string): string;

var
Registry: TRegistry;

begin
Registry := TRegistry.Create(KEY_READ);
try

Registry.RootKey = HKEY LOCAL_MACHINE;
// False because we do not want to create it if it doesn’t exist
Registry.OpenKey (KeyName, False);
Result := Registry.ReadString('VALUEl');

finally
Registry.Free;

end;

end;

Working with lists

BaseCLX includes many classes that represents lists or collections of items. They vary
depending on the types of items they contain, what operations they support, and

whether they are persistent.

The following table lists various list classes, and indicates the types of items they

contain:
Table 5.6 Classes for managing lists
Object Maintains
TList A list of pointers
TThreadList A thread-safe list of pointers
TBucketList A hashed list of pointers
TObjectBucketList A hashed list of object instances
TObjectList A memory-managed list of object instances
TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)
TClassList A list of class references
TInterfaceList A list of interface pointers.
TQueue A first-in first-out list of pointers
TStack A last-in first-out list of pointers
TObjectQueue~ A first-in first-out list of objects
TObjectStack~ A last-in first-out list of objects
TCollection Base class for many specialized classes of typed items.
TStringList A list of strings
THashedStringList A list of strings with the form Name=Value, hashed for performance.

5-14 Developer’'s Guide

Working with lists

Common list operations

Although the various list classes contain different types of items and have different
ancestries, most of them share a common set of methods for adding, deleting,
rearranging, and accessing the items in the list.

Adding list items

Most list classes have an Add method, which lets you add an item to the end of the list
(if it is not sorted) or to its appropriate position (if the list is sorted). Typically, the
Add method takes as a parameter the item you are adding to the list and returns the
position in the list where the item was added. In the case of bucket lists (TBucketList
and TObjectBucketList), Add takes not only the item to add, but also a datum you can
associate with that item. In the case of collections, Add takes no parameters, but
creates a new item that it adds. The Add method on collections returns the item it
added, so that you can assign values to the new item’s properties.

Some list classes have an Insert method in addition to the Add method. Insert works
the same way as the Add method, but has an additional parameter that lets you
specify the position in the list where you want the new item to appear. If a class has
an Add method, it also has an Insert method unless the position of items is
predetermined For example, you can’t use Insert with sorted lists because items must
go in sort order, and you can’t use Insert with bucket lists because the hash algorithm
determines the item position.

The only classes that do not have an Add method are the ordered lists. Ordered lists
are queues and stacks. To add items to an ordered list, use the Push method instead.
Push, like Add, takes an item as a parameter and inserts it in the correct position.

Deleting list items

To delete a single item from one of the list classes, use either the Delete method or the
Remove method. Delete takes a single parameter, the index of the item to remove.
Remove also takes a single parameter, but that parameter is a reference to the item to
remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of
using a Delete or Remove method, you remove an item from an ordered list by calling
its Pop method. Pop takes no arguments, because there is only one item that can be
removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is
available for all lists except ordered lists.

Using BaseCLX 5-15

Working with lists

Accessing list items

All list classes (except TThreadList and the ordered lists) have a property that lets you
access the items in the list. Typically, this property is called Items. For string lists, the
property is called Strings, and for bucket lists it is called Data. The Items, Strings, or
Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the
list, the LockList method returns a TList object that you can use to access the items.

Ordered lists only let you access the “top” item of the list. You can obtain a reference
to this item by calling the Peek method.

Rearranging list items

Some list classes have methods that let you rearrange the items in the list. Some have
an Exchange method, that swaps the position of two items. Some have a Move method
that lets you move an item to a specified location. Some have a Sort method that lets
you sort the items in the list.

To see what methods are available, check the online Help for the list class you are
using.

Persistent lists

Persistent lists can be saved to a form file. Because of this, they are often used as the
type of a published property on a component. You can add items to the list at design
time, and those items are saved with the object so that they are there when the
component that uses them is loaded into memory at runtime. There are two main
types of persistent lists: string lists and collections.

Examples of string lists include TStringList and THashedStringList. String lists, as the
name implies, contain strings. They provide special support for strings of the form
Name=Value, so that you can look up the value associated with a name. In addition,
most string lists let you associate an object with each string in the list. String lists are
described in more detail in “Working with string lists” on page 5-17.

Collections descend from the class TCollection. Each TCollection descendant is
specialized to manage a specific class of items, where that class descends from
TCollectionltem. Collections support many of the common list operations. All
collections are designed to be the type of a published property, and many can not
function independently of the object that uses them to implement on of its properties.
At design time, the property whose value is a collection can use the collection editor
to let you add, remove, and rearrange items. The collection editor provides a
common user interface for manipulating collections.

5-16 Developer’'s Guide

Working with string lists

Working with string lists

One of the most commonly used types of list is a list of character strings. Examples
include items in a combo box, lines in a memo, names of fonts, and names of rows
and columns in a string grid. BaseCLX provides a common interface to any list of
strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods
introduced by TStrings, and introduces properties, events, and methods to

e Sort the strings in the list.
¢ Prohibit duplicate strings in sorted lists.
* Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are a
TStrings descendant) and then use these lines as items in a combo box (also a TStrings
descendant).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

Loading and saving string lists
Creating a new string list
Manipulating strings in a list
Associating objects with a string list

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the MyFile.ini file into a memo field and
makes a backup copy called MyFile bak.

procedure EditWinIni;

var
FileName: string;{ storage for file name }
begin
FileName := 'c:\Program Files\MyProgram\MyFile.ini'{ set the file name }
with Forml.Memol.Lines do
begin

LoadFromFile (FileName); { load from file }
SaveToFile (ChangeFileExt (FileName, '.bak'));{ save into backup file }
end;
end;

Using BaseCLX 5-17

Working with string lists

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists

If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

procedure TForml.ButtonlClick(Sender: TObject);

var
TempList: TStrings;{ declare the list }
begin
TempList := TStringList.Create;{ construct the list object }
try
{ use the string list }
finally
TempList.Free;{ destroy the list object }
end;
end;

Long-term string lists

If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s OnCreate event that executes before
the form appears. It should create a string list and assign it to the field you
declared in the first step.

3 Write an event handler that frees the string list for the form’s OnClose event.

5-18 Developer’'s Guide

Working with string lists

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

unit Unitl;

interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
{For CLX apps: uses SysUtils, Variants, Classes, QGraphics, QControls, QForms, QDialogs;}

type
TForml = class(TForm)
procedure FormCreate(Sender: TObject);
procedure FormDestroy (Sender: TObject);
procedure FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
private
{ Private declarations }
public
{ Public declarations }
ClickList: TStrings;{ declare the field }
end;

var
Forml: TForml;

implementation
{SR *.DFM}

procedure TForml.FormCreate(Sender: TObject);
begin

ClickList := TStringList.Create;{ construct the list }
end;

procedure TForml.FormDestroy (Sender: TObject);

begin
ClickList.SaveToFile(ChangeFileExt (Application.ExeName, '.log'));{ save the list }
ClickList.Free;{ destroy the list object }

end;

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

ClickList.Add(Format ('Click at (%d, %d)', [X, Y]));{ add a string to the list }
end;

end.

Using BaseCLX 5-19

Working with string lists

Manipulating strings in a list

Operations commonly performed on string lists include:

Counting the strings in a list

Accessing a particular string

Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list

Moving a string within a list

Deleting a string from a list

Copying a complete string list

Counting the strings in a list

The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string

The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the Strings
identifier when accessing the list; thus

StringListl.Strings[0] := 'This is the first string.';
is equivalent to

StringList1[0] := 'This is the first string.';

Locating items in a string list

To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns -1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if FileListBoxl.Items.IndexOf ('TargetFileName') > -1 ...

lterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count — 1.

The following example converts each string in a list box to uppercase characters.

procedure TForml.ButtonlClick(Sender: TObject);

var
Index: Integer;
begin
for Index := 0 to ListBoxl.Items.Count - 1 do
ListBoxl.Items[Index] := UpperCase(ListBoxl.Items[Index]);
end;

5-20 Developer’'s Guide

Working with string lists

Adding a string to a list

To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

Insert (2, 'Three');
To append the strings from one list onto another, call AddStrings:

StringListl.AddStrings (StringList2); { append the strings from StringList2 to StringListl }

Moving a string within a list

To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject.Move (2, 4)

Deleting a string from a list

To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

The following example uses IndexOf and Delete to find and delete a string:

with ListBoxl.Items do
begin
BIndex := IndexOf ('bureaucracy');
if BIndex > -1 then
Delete (BIndex) ;
end;

Copying a complete string list

You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memol.Lines.Assign (ComboBox1.Items); { overwrites original strings }

copies the lines from a combo box into a memo (overwriting the memo), while
Memol.Lines.AddStrings (ComboBoxl.Items) ; { appends strings to end }

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringListl := StringList2;

—the original string-list object will be lost, often with unpredictable results.

Using BaseCLX 5-21

Working with strings

Associating objects with a string list

In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Working with strings

The runtime library provides many specialized string-handling routines specific to a
string type. These are routines for wide strings, long strings, and null-terminated
strings (meaning PChars). Routines that deal with null-terminated strings use the
null-termination to determine the length of the string. There are no categories of
routines listed for ShortString types. However, some built-in compiler routines deal
with the ShortString type. These include, for example, the Low and High standard
functions. For more details about the various string types, see the Delphi Language
Guide.

The following topics provide an overview of many of the string-handling routines in
the runtime library.

Wide character routines

Wide strings are used in a variety of situations. Some technologies, such as XML, use
wide strings as a native type. You may also choose to use wide strings because they
simplify some of the string-handling issues in applications that have multiple target
locales. Using a wide character encoding scheme has the advantage that you can
make many of the usual assumptions about strings that do not work for MBCS
systems. There is a direct relationship between the number of bytes in the string and
the number of characters in the string. You do not need to worry about cutting
characters in half or mistaking the second part of a character for the start of a
different character.

A disadvantage of working with wide characters is that many VCL controls
represent string values as single byte or MBCS strings. (Cross-platform versions of
the controls typically use wide strings.) Translating between the wide character
system and the MBCS system every time you set a string property or read its value
can require tremendous amounts of extra code and slow your application down.
However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between
characters and WideChars.

5-22 Developer’'s Guide

Working with strings

The following functions convert between standard single-byte character strings (or
MBCS strings) and Unicode strings:

StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString
WideCharToStrVar

In addition, the following functions translate between WideStrings and other
representations:

e UCS4StringToWideString
¢ WideStringToUCS45tring
* VarToWideStr

¢ VarToWideStrDef

The following routines work directly with WideStrings:

WideCompareStr

WideCompareText

WideSameStr

WideSameText

WideSameCaption (CLX applications only)
WideFmtStr

WideFormat

WideLowerCase

WideUpperCase

Finally, some routines include overloads for working with wide strings:

UniqueString
Length

Trim
TrimLeft
TrimRight

Commonly used long string routines

The long string handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether they use a
particular criterion in their calculations. The following tables list these routines by
these functional areas:

¢ Comparison

e (Case conversion
¢ Modification

* Sub-string

Using BaseCLX 5-23

Working with strings

Where appropriate, the tables also provide columns indicating whether a routine
satisfies the following criteria.

* Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal
values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

¢ Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the system locale are typically
prefaced with Ansi (that is, AnsiXXX).

* Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented by one or more
character codes, so the length in bytes does not necessarily correspond to the
length of the string. The routines that support MBCS parse one- and multibyte
characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
multibyte character. Be careful when using multibyte characters not to truncate a
string by cutting a character in half. Do not pass characters as a parameter to a
function or procedure, since the size of a character cannot be predetermined. Pass,
instead, a pointer to a to a character or string. For more information about MBCS,
see “Enabling application code” on page 17-2.

Table 5.7 String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS
AnsiCompareStr yes yes yes
AnsiCompareText no yes yes
AnsiCompareFileName no (yes in CLX) yes yes
AnsiMatchStr yes yes yes
AnsiMatchText no yes yes
AnsiContainsStr yes yes yes
AnsiContainsText no yes yes
AnsiStartsStr yes yes yes
AnsiStartsText no yes yes
AnsiEndsStr yes yes yes
AnsiEndsText no yes yes
AnsilndexStr yes yes yes
AnsilndexText no yes yes
CompareStr yes no no
CompareText no no no
AnsiResemblesText no no no

5-24 Developer’'s Guide

Note

Table 5.8
Routine

AnsiLowerCase

Case conversion routines

Uses locale settings

yes

AnsiLowerCaseFileName yes

AnsiUpperCaseFileName yes

AnsiUpperCase
LowerCase
UpperCase

yes
no
no

yes
yes
yes

yes
no
no

Supports MBCS

The routines used for string file names: AnsiCompareFileName,

Working with strings

AnsiLowerCaseFileName, and AnsillpperCaseFileName all use the system locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 5.9 String modification routines
Routine Case-sensitive Supports MBCS
AdjustLineBreaks NA yes
AnsiQuotedStr NA yes
AnsiReplaceStr yes yes
AnsiReplaceText no yes
StringReplace optional by flag yes
ReverseString NA no
StuffString NA no
Trim NA yes
TrimLeft NA yes
TrimRight NA yes
WrapText NA yes

Table 5.10 Sub-string routines
Routine Case-sensitive ~ Supports MBCS
AnsiExtractQuotedStr NA yes
AnsiPos yes yes
IsDelimiter yes yes
IsPathDelimiter yes yes
LastDelimiter yes yes
LeftStr NA no
RightStr NA no
MidStr NA no
QuotedStr no no

Using BaseCLX 5-25

Working with strings

Commonly used routines for null-terminated strings

The null-terminated string handling routines cover several functional areas. Within
these areas, some are used for the same purpose, the differences being whether or not
they use a particular criteria in their calculations. The following tables list these
routines by these functional areas:

Sub-string
Copying

Comparison
Case conversion
Modification

Where appropriate, the tables also provide columns indicating whether the routine is

case-sensitive,

uses the current locale, and/or supports multi-byte character sets.

Table 5.11 Null-terminated string comparison routines

Routine

AnsiStrComp
AnsiStrIComp
AnsiStrLComp
AnsiStrLIComp
StrComp
StrIComp
StrLComp
StrLIComp

Case-sensitive Uses locale settings Supports MBCS

yes yes yes
no yes yes
yes yes yes
no yes yes
yes no no
no no no
yes no no
no no no

Table 5.12 Case conversion routines for null-terminated strings

Routine
AnsiStrLower
AnsiStrUpper
StrLower
StrUpper

Uses locale settings Supports MBCS

yes yes
yes yes
no no
no no

Table 5.13 String modification routines

Routine

StrCat
StrLCat

Table 5.14 Sub-string routines

Routine

AnsiStrPos
AnsiStrScan
AnsiStrRScan

5-26 Developer’'s Guide

Case-sensitive Supports MBCS

yes yes
yes yes
yes yes

Working with strings

Table 5.14 Sub-string routines (continued)

Routine Case-sensitive Supports MBCS
StrPos yes no
StrScan yes no
StrRScan yes no

Table 5.15 String copying routines

Routine

StrCopy
StrLCopy
StrECopy
StrMove
StrPCopy
StrPLCopy

Declaring and initializing strings

When you declare a long string:
S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To
test a string for empty you can either use the EmptyStr variable:

S = EmptyStr;
or test against an empty string;:
S = 11 I.

An empty string has no valid data. Therefore, trying to index an empty string is like
trying to access nil and will result in an access violation:

var
S: string;

begin
S[il; // this will cause an access violation
// statements

end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you
are passing such a PChar to a routine that needs to read or write to it, be sure that the
routine can handle nil:

var
S: string; // empty string

begin
proc(PChar(S)); // be sure that proc can handle nil
// statements

end;

Using BaseCLX 5-27

Working with strings

If it cannot, then you can either initialize the string:

S := ‘No longer nil’;
proc (PChar(S));// proc does not need to handle nil now

or set the length, using the SetLength procedure:

SetLength(S, 100);//sets the dynamic length of S to 100
proc (PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the
contents of any newly allocated space is undefined. Following a call to SetLength, S is
guaranteed to reference a unique string, that is a string with a reference count of one.
To obtain the length of a string, use the Length function.

Remember when declaring a string that:
S: string(n];

implicitly declares a short string, not a long string of n length. To declare a long string
of specifically n length, declare a variable of type string and use the SetLength
procedure.

S: string;
SetLength(S, n);

Mixing and converting string types

Short, long, and wide strings can be mixed in assignments and expressions, and the
compiler automatically generates code to perform the necessary string type
conversions. However, when assigning a string value to a short string variable, be
aware that the string value is truncated if it is longer than the declared maximum
length of the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer
types, such as PAnsiString, PString, or PWideString, remember that you are
introducing another level of indirection. Be sure this is what you intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList,
QStringListToTStringList) are provided for converting underlying Qt string types and
CLX string types. These functions are located in Qtypes.pas.

String to PChar conversions

Long string to PChar conversions are not automatic. Some of the differences between
strings and PChars can make conversions problematic:

* Long strings are reference-counted, while PChars are not.
* Assigning to a string copies the data, while a PChar is a pointer to memory.

* Long strings are null-terminated and also contain the length of the string, while
PChars are simply null-terminated.

5-28 Developer’'s Guide

Working with strings

Situations in which these differences can cause subtle errors are discussed in the
following topics.

String dependencies

Sometimes you need convert a long string to a null-terminated string, for example, if
you are using a function that takes a PChar. If you must cast a string to a PChar, be
aware that you are responsible for the lifetime of the resulting PChar. Because long
strings are reference counted, typecasting a string to a PChar increases the
dependency on the string by one, without actually incrementing the reference count.
When the reference count hits zero, the string will be destroyed, even though there is
an extra dependency on it. The cast PChar will also disappear, while the routine you
passed it to may still be using it. For example:

procedure my_func(x: string);
begin
// do something with x
some_proc (PChar (x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it
end;

Returning a PChar local variable

A common error when working with PChars is to store a local variable in a data
structure, or return it as a value. When your routine ends, the PChar disappears
because it is a pointer to memory, and not a reference counted copy of the string. For
example:

function title(n: Integer): PChar;
var
s: string;
begin
s := Format(‘title - %d', [n]);
Result := PChar(s); // DON'T DO THIS
end;

This example returns a pointer to string data that is freed when the title function
returns.

Passing a local variable as a PChar

Consider the case where you have a local string variable that you need to initialize by
calling a function that takes a PChar. One approach is to create a local array of char
and pass it to the function, then assign that variable to the string:

// assume FillBuffer is a predefined function
function FillBuffer (Buf:PChar;Count:Integer):Integer
begin

end;

// assume MAX_SIZE is a predefined constant

Using BaseCLX 5-29

Working with strings

var
i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;
begin
i := FillBuffer (0, buf, SizeOf(buf));// treats buf as a PChar
S := buf;
//statements
end;

This approach is useful if the size of the buffer is relatively small, since it is allocated
on the stack. It is also safe, since the conversion between an array of char and a string
is automatic. The Length of the string is automatically set to the right value after
assigning buf to the string.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if
you are certain that the routine does not need the PChar to remain in memory).
However, synchronizing the length of the string does not happen automatically, as it
does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns
the number of bytes copied, you can do this safely with one line of code:

var
S: string;
begin
SetLength(S, MAX_SIZE;// when casting to a PChar, be sure the string is not empty
SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
// statements
end;

Compiler directives for strings

The following compiler directives affect character and string types.

Table 5.16 Compiler directives for strings
Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a short
string or a long string. In the default state, {$H+}, string represents a long string. You
can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is
provided for backwards compatibility. $P controls the meaning of variable parameters
declared using the string keyword in the {$H-} state.

In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters. Regardless
of the setting of the $P directive, the OpenString identifier can always be used to
declare open string parameters.

5-30 Developer’'s Guide

Creating drawing spaces

Table 5.16 Compiler directives for strings (continued)

Directive Description

{$V+/-} The $V directive controls type checking on short strings passed as variable parameters.
In the {$V+} state, strict type checking is performed, requiring the formal and actual
parameters to be of identical string types.

In the {$V-} (relaxed) state, any short string type variable is allowed as an actual

parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string(3];

procedure Test (var T: string);
begin

T := '1234";
end;

begin
Test (S);
end.

{$X+/-} The {$X+} compiler directive enables support for null-terminated strings by activating
the special rules that apply to the built-in PChar type and zero-based character arrays.
(These rules allow zero-based arrays and character pointers to be used with Write,
Writeln, Val, Assign, and Rename from the System unit.)

Creating drawing spaces

Technically speaking, the TCanvas class does not belong to BaseCLX because there
are two separate versions, one for the Windows only (in the Graphics unit) and one
for cross-platform applications (in the QGraphics unit). The TCanvas class defined in
the Graphics unit encapsulates a Windows device context and the version in the
QGraphics unit encapsulates a paint device (Qt painter). This class handles all
drawing for forms, visual containers (such as panels) and the printer object (see
“Printing” on page 5-32). Using the canvas object, you need not worry about
allocating pens, brushes, palettes, and so on—all the allocation and deallocation are
handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Canvas.Pen.Color := clBlue;

Canvas.MoveTo(10, 10);

Canvas.LineTo(100, 100);

Canvas.Brush.Color := clBtnFace;

Canvas.Font.Name := ‘Arial’;

Canvas.TextOut (Canvas.PenPos.x, Canvas.PenPos.y,’This is the end of the line’);
end;

Using BaseCLX 5-31

Printing

The TCanvas object defined in the Graphics unit also protects you against common
Windows graphics errors, such as restoring device contexts, pens, brushes, and so on
to the value they had before the drawing operation. TCanvas is used everywhere in
the VCL that drawing is required or possible, and makes drawing graphics both fail-
safe and easy.

See TCanvas in the online Help reference for a complete listing of properties and
methods.

Printing

Like TCanvas, the TPrinter class does not belong to BaseCLX because there are two
separate versions, one for VCL applications (in the Printers unit) and one for CLX
applications (in the QPrinters unit). The VCL TPrinter object encapsulates details of
Windows printers. The CLX TPrinter object is a paint device that paints on a printer.
It generates postscript and sends that to lpr, lp, or another print command. Both
versions of TPrinter, however, are extremely similar.

To get a list of installed and available printers, use the Printers property. Both printer
objects use a TCanvas (which is identical to the form's TCanvas) which means that
anything that can be drawn on a form can be printed as well. To print an image, call
the BeginDoc method followed by whatever canvas graphics you want to print
(including text through the TextOut method) and send the job to the printer by calling
the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, add Printers to your uses clause.

procedure TForml.ButtonlClick(Sender: TObject);
var
r: TRect;
i: Integer;
begin
with Printer do
begin
r := Rect (200,200, (Pagewidth - 200), (PageHeight - 200));
BeginDoc;
Canvas.Brush.Style := bsClear;
for i := 0 to Memol.Lines.Count do
Canvas.TextOut (200,200 + (i *
Canvas.TextHeight (Memol.Lines.Strings[i])),
Memol.Lines.Strings[i]);
Canvas.Brush.Color := clBlack;
Canvas.FrameRect (r);
EndDoc;
end;
end;

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

5-32 Developer’'s Guide

Convertingmeasurements

Converting measurements

The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you're converting must be in the same conversion
family. For information on doing conversions, see “Performing conversions” on
page 5-33 and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily
functions. For information on extending conversion and conversion units, see
“Adding new measurement types” on page 5-34 and refer to Convert in the online
Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions

You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin := Convert (StrToFloat (Editl.Text), tuFahrenheit, tuKelvin);

Performing complex conversions

You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:
nKPL := Convert (StrToFloat (Editl.Text), duMiles, vuGallons, duKilometers, vulLiter);

The units you're converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Converf raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

Using BaseCLX 5-33

Converting measurements
The StdConvs unit defines several families of TConvType values. See Conversion

family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the
StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

For more examples, refer to the source code for the standard conversions unit
(stdconvs.pas). (Note that the source is not included in all editions of Delphi.)

Creating a simple conversion family and adding units

One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when
performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

5-34 Developer’'s Guide

Convertingmeasurements

Declare variables

First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

var
cbLongTime: TConvFamily;
ltMonths: TConvType;
ltYears: TConvType;
1tDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

Register the conversion family
Next, register the conversion family:

cbLongTime := RegisterConversionFamily (‘Long Times');

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units

Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for [tMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

The code to register the measurement units is shown here:

1tMonths:=RegisterConversionType (cbLongTime, ‘Months’,1/12);
1tYears:=RegisterConversionType (cbLongTime, 'Years’,1);
1tDecades:=RegisterConversionType (cbLongTime, 'Decades’, 10) ;
ltCenturies:=RegisterConversionType (cbLongTime, 'Centuries’, 100);
1tMillennia:=RegisterConversionType (cbLongTime, 'Millennia’, 1000);

Use the new units

You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,
Convert (StrToFloat (Editl.Text), tuMonths,tuMillennia);
you can now use this one for greater accuracy:

Convert (StrToFloat (Editl.Text),ltMonths,1tMillennia);

Using BaseCLX 5-35

Converting measurements

Note

Using a conversion function

For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units.

Declare variables
First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

var
cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature := RegisterConversionFamily ('Temperature’);

Register the base unit

Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius:=RegisterConversionType (cbTemperature, ‘Celsius’,1);

Write methods to convert to and from the base unit

You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are taken from the StdConvs unit:

function FahrenheitToCelsius(const AValue: Double): Double;

begin
Result := ((Avalue - 32) * 5) / 9;
end;
function CelsiusToFahrenheit (const AValue: Double): Double;
begin
Result := ((AValue * 9) / 5) + 32;
end;
function KelvinToCelsius(const AValue: Double): Double;
begin
Result := AValue - 273.15;
end;

5-36 Developer’'s Guide

Convertingmeasurements

function CelsiusToKelvin(const AValue: Double): Double;
begin

Result := AValue + 273.15;
end;

Register the other units

Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

The code to register the other units in the family is shown here:

tuKelvin := RegisterConversionType (cbTemperature, 'Kelvin', KelvinToCelsius,
CelsiusToKelvin);

tuFahrenheit := RegisterConversionType (cbTemperature, 'Fahrenheit', FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the cbTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert (StrToFloat (Editl.Text), tuFahrenheit, tuKelvin);

Using a class to manage conversions

You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

* The conversion must round to a currency-specific number of digits.

¢ The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

function FromEuro(const AValue: Double, Factor; FRound: TRoundToRange): Double;
begin
Result := RoundTo(AValue * Factor, FRound);
end;
function ToEuro(const AValue: Double, Factor): Double;
begin
Result := AValue / Factor;
end;

Using BaseCLX 5-37

Converting measurements

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Creating the conversion class

The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a
conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class:

type
TConvTypeEuroFactor = class(TConvTypeFactor)
private
FRound: TRoundToRange;
public

constructor Create(const AConvFamily: TConvFamily;
const ADescription: string; const AFactor: Double;
const ARound: TRoundToRange);
function ToCommon (const AValue: Double): Double; override;
function FromCommon (const AValue: Double): Double; override;
end;
end;

The constructor assigns values to those private members:

constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
const ADescription: string; const AFactor: Double;
const ARound: TRoundToRange) ;
begin
inherited Create(AConvFamily, ADescription, AFactor);
FRound := ARound;
end;

The two conversion functions simply use these private members:

function TConvTypeEuroFactor.FromCommon (const AValue: Double): Double;
begin

Result := RoundTo(AValue * Factor, FRound);
end;

function TConvTypeEuroFactor.ToCommon (const AValue: Double): Double;
begin

Result := AValue / Factor;
end;

5-38 Developer’'s Guide

Convertingmeasurements

Declare variables

Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

var
euEUR: TConvType;
euBEF: TConvType;
euDEM: TConvType;
euGRD: TConvType;
euESP: TConvType;
euFFR: TConvType;
eulEP: TConvType;
eulITL: TConvType;
euLUF: TConvType;
eulNLG: TConvType;
euATS: TConvType;
euPTE: TConvType;
euFIM: TConvType;
cbEuro: TConvFamily;

EU euro }

Belgian francs }
German marks }

Greek drachmas }
Spanish pesetas }
French francs }
Irish pounds }
Italian lire }
Luxembourg francs }
Dutch guilders }
Austrian schillings }
Portuguese escudos }
Finnish marks }

P T N NP

—

Register the conversion family and the other units

Now you are ready to register the conversion family and the European monetary
units, using your new conversion class. Register the conversion family the same way
you registered the other conversion families:

cbEuro := RegisterConversionFamily ('European currency');

To register each conversion type, create an instance of the conversion class that
reflects the factor and rounding properties of that currency, and call the
RegisterConversionType method:

var
LInfo: TConvTypeInfo;
begin
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'EUEuro', 1.0, -2);
if not RegisterConversionType (LInfo, euEUR) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'BelgianFrancs', 40.3399, 0);
if not RegisterConversionType (LInfo, euBEF) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GermanMarks', 1.95583, -2);
if not RegisterConversionType (LInfo, euDEM) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GreekDrachmas', 340.75, 0);
if not RegisterConversionType (LInfo, euGRD) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'SpanishPesetas', 166.386, 0);
if not RegisterConversionType (LInfo, euESP) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FrenchFrancs', 6.55957, -2);
if not RegisterConversionType (LInfo, euFFR) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'IrishPounds', 0.787564, -2);

Using BaseCLX 5-39

Defining custom variants

if not RegisterConversionType(LInfo, euIEP) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'TtalianLire', 1936.27, 0);
if not RegisterConversionType(LInfo, euITL) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'LuxembourgFrancs', 40.3399, -2);
if not RegisterConversionType(LInfo, euLUF) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'DutchGuilders', 2.20371, -2);
if not RegisterConversionType(LInfo, euNLG) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'AustrianSchillings', 13.7603, -2);
if not RegisterConversionType(LInfo, euATS) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'PortugueseEscudos', 200.482, -2);
if not RegisterConversionType(LInfo, euPTE) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FinnishMarks', 5.94573, 0);
if not RegisterConversionType(LInfo, euFIM) then
LInfo.Free;
end;

Note The Convertlt demo provides an expanded version of this example that includes
other currencies (that do not have fixed conversion rates) and more error checking.

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2.Text = FloatToStr (Convert (StrToFloat (Editl.Text), eulITL, euDEM));

Defining custom variants

One powerful built-in type of the Delphi language is the Variant type. Variants
represent values whose type is not determined at compile time. Instead, the type of
their value can change at runtime. Variants can mix with other variants and with
integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can’t hold values that are records, sets, static arrays, files, classes,
class references, or pointers. You can, however, extend the Variant type to work with
any particular example of these types. All you need to do is create a descendant of
the TCustomVariantType class that indicates how the Variant type performs standard
operations.

5-40 Developer’'s Guide

Note

Defining custom variants

To create a Variant type:
1 Map the storage of the variant’s data on to the TVarData record.

2 Declare a class that descends from TCustomVariantType. Implement all required
behavior (including type conversion rules) in the new class.

3 Write utility methods for creating instances of your custom variant and
recognizing its type.

The above steps extend the Variant type so that the standard operators work with
your new type and the new Variant type can be cast to other data types. You can
further enhance your new Variant type so that it supports properties and methods
that you define. When creating a Variant type that supports properties or methods,
you use TInvokeableVariantType or TPublishableVariantType as a base class rather than
TCustomVariantType.

Storing a custom variant type’s data

Variants store their data in the TVarData record type. This type is a record that
contains 16 bytes. The first word indicates the type of the variant, and the remaining
14 bytes are available to store the data. While your new Variant type can work
directly with a TVarData record, it is usually easier to define a record type whose
members have names that are meaningful for your new type, and cast that new type
onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a
measurement. The data for this type includes the units (TConvType) of measurement,
as well as the value (a double). The VarConv unit defines its own type to represent
such a value:

TConvertVarData = packed record
VType: TVarType;
VConvType: TConvType;
Reservedl, Reserved2: Word;
VValue: Double;

end;

This type is exactly the same size as the TVarData record. When working with a
custom variant of the new type, the variant (or its TVarData record) can be cast to
TConvertVarData, and the custom Variant type simply works with the TVarData
record as if it were a TConvertVarData type.

When defining a record that maps onto the TVarData record in this way, be sure to
define it as a packed record.

Using BaseCLX 5-41

Defining custom variants

If your new custom Variant type needs more than 14 bytes to store its data, you can

define a new record type that includes a pointer or object instance. For example, the
VarCmplx unit uses an instance of the class TComplexData to represent the data in a

complex-valued variant. It therefore defines a record type the same size as TVarData
that includes a reference to a TComplexData object:

TComplexVarData = packed record
VType: TVarType;
Reservedl, Reserved2, Reserved3: Word;
VComplex: TComplexData;
Reservedd: LongInt;
end;

Object references are actually pointers (two Words), so this type is the same size as
the TVarData record. As before, a complex custom variant (or its TVarData record),
can be cast to TComplexVarData, and the custom variant type works with the
TVarData record as if it were a TComplexVarData type.

Creating a class to enable the custom variant type

Custom variants work by using a special helper class that indicates how variants of
the custom type can perform standard operations. You create this helper class by
writing a descendant of TCustomVariantType. This involves overriding the
appropriate virtual methods of TCustomVariantType.

Enabling casting

One of the most important features of the custom variant type for you to implement
is typecasting. The flexibility of variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to
perform typecasts: Cast, which converts another variant type to your custom variant,
and CastTo, which converts your custom Variant type to another type of Variant.

When implementing either of these methods, it is relatively easy to perform the
logical conversions from the built-in variant types. You must consider, however, the
possibility that the variant to or from which you are casting may be another custom
Variant type. To handle this situation, you can try casting to one of the built-in
Variant types as an intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the
type Double as an intermediate type:

procedure TComplexVariantType.Cast (var Dest: TVarData; const Source: TVarData);
var
LSource, LTemp: TVarData;
begin
VarDataInit (LSource) ;
try
VarDataCopyNoInd(LSource, Source);
if VarDataIsStr(LSource) then
TComplexVarData (Dest) .VComplex := TComplexData.Create(VarDataToStr (LSource))

5-42 Developer’'s Guide

Defining custom variants

else
begin
VarDatalInit (LTemp) ;
try
VarDataCastTo (LTemp, LSource, varDouble);
TComplexVarData (Dest) .VComplex := TComplexData.Create(LTemp.VDouble, 0);

finally
VarDataClear (LTemp) ;
end;
end;
Dest.VType := VarType;
finally
VarDataClear (LSource) ;
end;
end;

In addition to the use of Double as an intermediate Variant type, there are a few
things to note in this implementation:

* The last step of this method sets the VType member of the returned TVarData
record. This member gives the Variant type code. It is set to the VarType property
of TComplexVariantType, which is the Variant type code assigned to the custom
variant.

¢ The custom variant’s data (Dest) is typecast from TVarData to the record type that
is actually used to store its data (TComplexVarData). This makes the data easier to
work with.

¢ The method makes a local copy of the source variant rather than working directly
with its data. This prevents side effects that may affect the source data.

When casting from a complex variant to another type, the CastTo method also uses an
intermediate type of Double (for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
const AVarType: TVarType);
var
LTemp: TVarData;
begin
if Source.VType = VarType then
case AVarType of
varOleStr:
VarDataFromQleStr (Dest, TComplexVarData (Source).VComplex.AsString);
varString:
VarDataFromStr (Dest, TComplexVarData (Source).VComplex.AsString);
else
VarDatalnit (LTemp);
try
LTemp.VType := varDouble;
LTemp.VDouble := TComplexVarData(LTemp).VComplex.Real;
VarDataCastTo (Dest, LTemp, AVarType);

Using BaseCLX 5-43

Defining custom variants

finally
VarDataClear (LTemp) ;
end;
end
else
RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not
have a type code that matches the VarType property. This case only occurs for empty
(unassigned) source variants.

Implementing binary operations

To allow the custom variant type to work with standard binary operators (+, -, *, /,
div, mod, shl, shr, and, or, xor listed in the System unit), you must override the
BinaryOp method. BinaryOp has three parameters: the value of the left-hand operand,
the value of the right-hand operand, and the operator. Implement this method to
perform the operation and return the result using the same variable that contained
the left-hand operand.

For example, the following BinaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; comst Right: TVarData;
const Operator: TVarOp);
begin
if Right.VType = VarType then
case Left.VType of
varString:
case Operator of
opAdd: Variant (Left) := Variant (Left) + TComplexVarData(Right).VComplex.AsString;
else
RaiseInvalidOp;
end;
else
if Left.VType = VarType then
case Operator of
opAdd:
TComplexVarData (Left) .VComplex.DoAdd (TComplexVarData (Right).VComplex) ;
opSubtract:
TComplexVarData (Left).VComplex.DoSubtract (TComplexVarData (Right) .VComplex);
opMultiply:
TComplexVarData (Left).VComplex.DoMultiply (TComplexVarData (Right).VComplex);
opDivide:
TComplexVarData (Left).VComplex.DoDivide (TComplexVarData (Right).VComplex) ;
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

5-44 Developer’'s Guide

Defining custom variants

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator
is a custom variant that represents a complex number. If the left-hand operand is a
complex variant and the right-hand operand is not, the complex variant forces the
right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ Complex Op TypeX }
RequiredVarType := VarType;
Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting
the complex value to a string and concatenating), and the addition, subtraction,
multiplication, and division operators are implemented for two complex numbers
using the methods of the TComplexData object that is stored in the complex variant’s
data. This is accessed by casting the TVarData record to a TComplexVarData record
and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the
RaiselnvalidOp method, which causes a runtime error. The TCustom VariantType class
includes a number of utility methods such as RaiselnvalidOp that can be used in the
implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex
variants. It is possible, however, to perform operations between complex numbers
and other numeric types. For the BinaryOp method to work, the operands must be
cast to complex variants before the values are passed to this method. We have
already seen (above) how to use the RightPromotion method to force the right-hand
operand to be a complex variant if the left-hand operand is complex. A similar
method, LeftPromotion, forces a cast of the left-hand operand when the right-hand
operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ TypeX Op Complex }
if (Operator = opAdd) and VarDataIsStr(V) then
RequiredVarType := varString
else
RequiredVarType := VarType;
Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex
variant, unless it is a string and the operation is addition, in which case LeftPromotion
allows the operand to remain a string.

Using BaseCLX 5-45

Defining custom variants

Implementing comparison operations

There are two ways to enable a custom variant type to support comparison operators
(=, <>, <, <=,>,>=). You can override the Compare method, or you can override the
CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of
comparison operators. Compare takes three parameters: the left-hand operand, the
right-hand operand, and a var Parameter that returns the relationship between the
two. For example, the TConvertVariantType object in the VarConv unit implements
the following Compare method:

procedure TConvertVariantType.Compare (const Left, Right: TVarData;
var Relationship: TVarCompareResult);
const
CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
(crLessThan, crEqual, crGreaterThan);
var
LValue: Double;
LType: TConvlype;
LRelationship: TValueRelationship;
begin
// supports...
// convvar cmp number

/! Compare the value of convvar and the given number
// convvarl cmp convvar2
/! Compare after converting convvar2 to convvarl's unit type

// The right can also be a string. If the string has unit info then it is
// treated like a varConvert else it is treated as a double
LRelationship := EqualsValue;
case Right.VType of
varString:
if TryStrToConvUnit (Variant (Right), LValue, LType) then
if LType = CIllegalConvType then
LRelationship := CompareValue(TConvertVarData (Left).Vvalue, LValue)
else
LRelationship := ConvUnitCompareValue(TConvertVarData (Left).Vvalue,
TConvertVarData (Left).VConvType, LValue, LType)

else
RaiseCastError;
varDouble:
LRelationship := CompareValue(TConvertVarData(Left).VValue, TVarData(Right).VDouble);
else

if Left.VType = VarType then
LRelationship := ConvUnitCompareValue (TConvertVarData (Left).VValue,
TConvertVarData (Left).VConvType, TConvertVarData(Right).Vvalue,
TConvertVarData (Right) .VConvType)

else
RaiseInvalidOp;
end;
Relationship := CRelationshipToRelationship[LRelationship];

end;

5-46 Developer’'s Guide

Defining custom variants

If the custom type does not support the concept of “greater than” or “less than,” only
“equal” or “not equal,” however, it is difficult to implement the Compare method,
because Compare must return crLessThan, crEqual, or crGreaterThan. When the only
valid response is “not equal,” it is impossible to know whether to return crLessThan
or crGreaterThan. Thus, for types that do not support the concept of ordering, you can
override the CompareOp method instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the
right-hand operand, and the comparison operator. Implement this method to
perform the operation and return a boolean that indicates whether the comparison is
True. You can then call the RaiselnvalidOp method when the comparison makes no
sense.

For example, the following CompareOp method comes from the TComplexVariantType
object in the VarCmplx unit. It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp (const Left, Right: TVarData;
const Operator: Integer): Boolean;
begin
Result := False;
if (Left.VType = VarType) and (Right.VType = VarType) then
case Operator of

OpCmpEQ:
Result := TComplexVarData(Left).VComplex.Equal (TComplexVarData (Right).VComplex);
opCmpNE :
Result := not TComplexVarData (Left).VComplex.Equal (TComplexVarData (Right).VComplex);
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;

end;

Note that the types of operands that both these implementations support are very
limited. As with binary operations, you can use the RightPromotion and LeftPromotion
methods to limit the cases you must consider by forcing a cast before Compare or
CompareOp is called.

Implementing unary operations

To allow the custom variant type to work with standard unary operators (-, not), you
must override the UnaryOp method. UnaryOp has two parameters: the value of the
operand and the operator. Implement this method to perform the operation and
return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; comst Operator: TVarOp);
begin
if Right.VType = VarType then
case Operator of
opNegate:
TComplexVarData (Right).VComplex.DoNegate;

Using BaseCLX 5-47

Defining custom variants

else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values,
this method calls RaiselnvalidOp to cause a runtime error.

Copying and clearing custom variants

In addition to typecasting and the implementation of operators, you must indicate
how to copy and clear variants of your custom Variant type.

To indicate how to copy the variant’s value, implement the Copy method. Typically,
this is an easy operation, although you must remember to allocate memory for any
classes or structures you use to hold the variant’s value:

procedure TComplexVariantType.Copy (var Dest: TVarData; const Source: TVarData;
const Indirect: Boolean);
begin
if Indirect and VarDataIsByRef (Source) then
VarDataCopyNoInd(Dest, Source)
else
with TComplexVarData(Dest) do
begin
VType := VarType;
VComplex := TComplexData.Create(TComplexVarData (Source).VComplex);
end;
end;

Note The Indirect parameter in the Copy method signals that the copy must take into
account the case when the variant holds only an indirect reference to its data.

Tip If your custom variant type does not allocate any memory to hold its data (if the data
fits entirely in the TVarData record), your implementation of the Copy method can
simply call the SimplisticCopy method.

To indicate how to clear the variant’s value, implement the Clear method. As with the
Copy method, the only tricky thing about doing this is ensuring that you free any
resources allocated to store the variant’s data:

procedure TComplexVariantType.Clear(var V: TVarData);
begin

V.VType := varEmpty;

FreeAndNil (TComplexVarData (V) .VComplex) ;
end;

5-48 Developer’'s Guide

Defining custom variants

You will also need to implement the IsClear method. This way, you can detect any
invalid values or special values that represent “blank” data:

function TComplexVariantType.IsClear (const V: TVarData): Boolean;
begin
Result := (TComplexVarData(V).VComplex = nil) or
TComplexVarData (V) .VComplex.IsZero;
end;

Loading and saving custom variant values

By default, when the custom variant is assigned as the value of a published property,
itis typecast to a string when that property is saved to a form file, and converted back
from a string when the property is read from a form file. You can, however, provide
your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the
IVarStreamable interface from Classes.pas.

IVarStreamable defines two methods, StreamlIn and StreamOut, for reading a variant’s
value from a stream and for writing the variant’s value to the stream. For example,
TComplexVariantType, in the VarCmplx unit, implements the [VarStreamable methods
as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; const Stream: TStream);

begin
with TReader.Create(Stream, 1024) do
try
with TComplexVarData(Dest) do
begin

VComplex := TComplexData.Create;
VComplex.Real := ReadFloat;
VComplex.Imaginary := ReadFloat;
end;
finally
Free;
end;
end;

procedure TComplexVariantType.StreamOut (const Source: TVarData; comst Stream: TStream);
begin
with TWriter.Create(Stream, 1024) do
try
with TComplexVarData(Source).VComplex do
begin
WriteFloat (Real);
WriteFloat (Imaginary);
end;
finally
Free;
end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to
handle the details of reading or writing values.

Using BaseCLX 5-49

Defining custom variants

Using the TCustomVariantType descendant
In the initialization section of the unit that defines your TCustomVariantType
descendant, create an instance of your class. When you instantiate your object, it
automatically registers itself with the variant-handling system so that the new
Variant type is enabled. For example, here is the initialization section of the
VarCmplx unit:

initialization

ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustomVariantType
descendant, free the instance of your class. This automatically unregisters the variant
type. Here is the finalization section of the VarCmplx unit:

finalization
FreeAndNil (ComplexVariantType) ;

Writing utilities to work with a custom variant type

Once you have created a TCustomVariantType descendant to implement your custom
variant type, it is possible to use the new Variant type in applications. However,
without a few utilities, this is not as easy as it should be.

It is a good idea to create a method that creates an instance of your custom variant
type from an appropriate value or set of values. This function or set of functions fills
out the structure you defined to store your custom variant’s data. For example, the
following function could be used to create a complex-valued variant:

function VarComplexCreate (const AReal, AImaginary: Double): Variant;
begin
VarClear (Result);
TComplexVarData (Result) .VType := ComplexVariantType.VarType;
TComplexVarData (ADest).VComplex := TComplexData.Create(ARead, AImaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of
methods that do exist, provided to simplify the example. Note that the returned
variant is cast to the record that was defined to map onto the TVarData structure
(TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new
Variant type. This type code is not a constant. It is automatically generated when you
instantiate your TCustomVariantType descendant. It is therefore useful to provide a
way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning
the VarType property of the TCustomVariantType descendant:

function VarComplex: TVarType;
begin

Result := ComplexVariantType.VarType;
end;

5-50 Developer’'s Guide

Defining custom variants

Two other standard utilities provided for most custom variants check whether a
given variant is of the custom type and cast an arbitrary variant to the new custom
type. Here is the implementation of those utilities from the VarCmplx unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin

Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;

function VarAsComplex(const AValue: Variant): Variant;
begin
if not VarIsComplex(AValue) then
VarCast (Result, AValue, VarComplex)
else
Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the
TVarData record and the VarCast function, which works because of the methods
implemented in the TCustomVariantType descendant for casting data.

In addition to the standard utilities mentioned above, you can write any number of
utilities specific to your new custom variant type. For example, the VarCmplx unit
defines a large number of functions that implement mathematical operations on
complex-valued variants.

Supporting properties and methods in custom variants

Some variants have properties and methods. For example, when the value of a
variant is an interface, you can use the variant to read or write the values of
properties on that interface and call its methods. Even if your custom variant type
does not represent an interface, you may want to give it properties and methods that
an application can use in the same way.

Using TIinvokeableVariantType

To provide support for properties and methods, the class you create to enable the
new custom variant type should descend from TInvokeableVariantType instead of
directly from TCustomVariantType.

TInvokeableVariantType defines four methods:

DoFunction
DoProcedure
GetProperty
SetProperty

that you can implement to support properties and methods on your custom variant
type.

Using BaseCLX 5-51

Defining custom variants

For example, the VarConv unit uses TInvokeableVariantType as the base class for
TConvertVariantType so that the resulting custom variants can support properties.
The following example shows the property getter for these properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
const V: TVarData; comst Name: String): Boolean;

var
LType: TConvlype;
begin
// supports...
// 'Value'
/] 'Type'
// 'TypeName'
// 'Family'
// 'FamilyName'
/] 'As[Type]’

Result := True;
if Name = 'VALUE' then

Variant (Dest) := TConvertVarData(V).VValue
else if Name = 'TYPE' then

Variant (Dest) := TConvertVarData (V) .VConvType
else if Name = 'TYPENAME' then

Variant (Dest) := ConvTypeToDescription(TConvertVarData (V) .VConvType)
else if Name = 'FAMILY' then
Variant (Dest) := ConvTypeToFamily (TConvertVarData (V) .VConvType)
else if Name = 'FAMILYNAME' then
Variant (Dest) := ConvFamilyToDescription (ConvTypeToFamily (TConvertVarData (V) .VConvType))
else if System.Copy (Name, 1, 2) = 'AS' then
begin

if DescriptionToConvType (ConvTypeToFamily (TConvertVarData (V) .VConvType),
System.Copy (Name, 3, MaxInt), LType) then
VarConvertCreateInto(Variant (Dest), Convert (TConvertVarData (V).VValue,
TConvertVarData (V) .VConvType, LType), LType)

else
Result := False;
end
else
Result := False;
end;

The GetProperty method checks the Name parameter to determine what property is
wanted. It then retrieves the information from the TVarData record of the Variant (V),
and returns it as a Variant (Dest). Note that this method supports properties whose
names are dynamically generated at runtime (As[Type]), based on the current value
of the custom variant.

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently
generic that you can dynamically generate method names, or respond to variable
numbers and types of parameters.

5-52 Developer’'s Guide

Note

Defining custom variants

Using TPublishableVariantType

If the custom variant type stores its data using an object instance, then there is an
easier way to implement properties, as long as they are also properties of the object
that represents the variant’s data. If you use TPublishableVariantType as the base class
for your custom variant type, then you need only implement the GetInstance method,
and all the published properties of the object that represents the variant’s data are
automatically implemented for the custom variants.

For example, as was seen in “Storing a custom variant type’s data” on page 5-41,
TComplexVariantType stores the data of a complex-valued variant using an instance of
TComplexData. TComplexData has a number of published properties (Real, [maginary,
Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the
GetInstance method to return the TComplexData object (in TypInfo.pas) that is stored
in a complex-valued variant’s TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin

Result := TComplexVarData (V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty
methods to use the runtime type information (RTTI) of the TComplexData object for
getting and setting property values.

For TPublishableVariantType to work, the object that holds the custom variant’s data
must be compiled with RTTI. This means it must be compiled using the {$M+}
compiler directive, or descend from TPersistent.

Using BaseCLX 5-53

5-54 Developer’'s Guide

Working with components

Many components are provided in the IDE on the Component palette. You select
components from the Component palette and drop them onto a form or data module.
You design the application’s user interface by arranging the visual components such
as buttons and list boxes on a form. You can also place nonvisual components such as
data access components on either a form or a data module.

At first glance, Delphi’s components appear to be just like any other classes. But there
are differences between components in Delphi and the standard class hierarchies that
many programmers work with. Some differences are described here:

¢ All Delphi components descend from TComponent.

¢ Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

¢ Components can only be allocated on the heap, not on the stack.
¢ Properties of components intrinsically contain runtime type information.

e Components can be added to the Component palette in the IDE and manipulated
on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard classes. For example, consider the use of a dialog containing a push button.
In a Windows program developed using VCL components, when a user clicks on the
button, the system generates a WM_LBUTTONDOWN message. The program must
catch this message (typically in a switch statement, a message map, or a response
table) and dispatch it to a routine that will execute in response to the message.

Working with components 6-1

Setting component properties

Most Windows messages (VCL applications) or system events (CLX applications) are
handled by Delphi components. When you want to respond to a message or system
event, you only need to provide an event handler.

Chapter 9, “Developing the application user interface,” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Setting component properties

To set published properties at design time, you can use the Object Inspector and, in
some cases, special property editors. To set properties at runtime, assign their values
in your application source code.

For information about the properties of each component, see the online Help.

Setting properties at design time

When you select a component on a form at design time, the Object Inspector displays
its published properties and (when appropriate) allows you to edit them. Use the Tab
key to toggle between the left-hand Property column and the right-hand Value
column. When the cursor is in the Property column, you can navigate to any property
by typing the first letters of its name. For properties of Boolean or enumerated types,
you can choose values from a drop-down list or toggle their settings by double-
clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+" when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-" hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In addition,
changes to the source code, such as renaming an event handler method in a form
class declaration, is immediately reflected in the Object Inspector.

6-2 Developer’s Guide

Calling methods

Using property editors

Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object
Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

Setting properties at runtime

Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Forml.Caption := MyString;

Calling methods

Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGridl.Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Repaint;
end;

For more information about scope, see “Scope and qualifiers” on page 4-5.

Working with events and event handlers

Almost all the code you write is executed, directly or indirectly, in response to events.
An event is a special kind of property that represents a runtime occurrence, often a
user action. The code that responds directly to an event—called an event handler—is a
Delphi procedure. The sections that follow show how to:

Generate a new event handler.

Generate a handler for a component’s default event.
Locate event handlers.

Associate an event with an existing event handler.
Associate menu events with event handlers.

Delete event handlers.

Working with components 6-3

Working with events and event handlers

Generating a new event handler

You can generate skeleton event handlers for forms and other components. To create
an event handler:

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctri+Enter.
The Code editor opens with the cursor inside the skeleton event handler, or
begin...end block.

4 At the cursor, type the code that you want to execute when the event occurs.

Generating a handler for a component’s default event

Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this
generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
them in the Form Designer. For example, many components open a default property
editor or other dialog when they are double-clicked at design time.

Locating event handlers

If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the
component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor inside the skeleton event-handler.

6-4 Developer’s Guide

Working with events and event handlers

Associating an event with an existing event handler

You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

To associate an event with an existing event handler,
1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The previous procedure is an easy way to reuse event handlers. Action lists and in the
VCL, action bands, however, provide powerful tools for centrally organizing the code
that responds to user commands. Action lists can be used in cross-platform
applications, whereas action bands cannot. For more information about action lists
and action bands, see “Organizing actions for toolbars and menus” on page 9-18.

Using the Sender parameter

In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter in an if...then...else
statement. For example, the following code displays the title of the application in the
caption of a dialog box only if the OnClick event was received by Buttonl.

procedure TMainForm.ButtonlClick(Sender: TObject);
begin
if Sender = Buttonl then

AboutBox.Caption := 'About ' + Application.Title
else

AboutBox.Caption := '';
AboutBox. ShowModal ;
end;

Displaying and coding shared events

When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

Working with components 6-5

Working with events and event handlers

Associating menu events with event handlers

The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This section explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 9-32.

To create an event handler for a menu item,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. The Code editor opens with
the cursor inside the skeleton event handler, or the begin...end block.

4 At the cursor, type the code that you want to execute when the user selects the
menu command.

To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

Deleting event handlers

When you delete a component from a form using the Form Designer, the Code editor
removes the component from the form’s type declaration. It does not, however,
delete any associated methods from the unit file, since these methods may still be
called by other components on the form. You can manually delete a method—such as
an event handler—but if you do so, be sure to delete both the method’s forward
declaration (in the unit’s interface section) and its implementation (in the
implementation section). Otherwise you'll get a compiler error when you build your
project.

6-6 Developer’s Guide

Cross-platform and non-cross-platform components

Cross-platform and non-cross-platform components

The Component palette contains a selection of components that handle a wide
variety of programming tasks. The components are arranged in pages according to
their purpose and functionality. For example, commonly used components such as
those to create menus, edit boxes, or buttons are located on the Standard page. Which
pages appear in the default configuration depends on the edition of the product you

are running.

Table 3.3 lists typical default pages and components available for creating
applications, including those that are not cross-platform. You can use all CLX
components in both Windows and Linux applications. You can use some VCL-
specific components in a Windows-only CLX application; however, the application is
not cross-platform unless you isolate these portions of the code.

Table 6.1

Page name
ActiveX

Additional

ADO
BDE

COM+
Data Access

Data Controls

dbExpress

Component palette pages

Description

Sample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com).

Specialized controls.

Components that provide data access
through the ADO framework.

Components that provide data access
through the Borland Database Engine.

Component for handling COM+ events.

Components for working with database
data that are not tied to any particular
data access mechanism.

Visual, data-aware controls.

Database controls that use dbExpress, a
cross-platform, database-independent
layer that provides methods for
dynamic SQL processing. It defines a
common interface for accessing SQL
servers.

Cross-platform?
No

Yes, though for VCL applications
only: ApplicationEvents,
ValueListEditor, ColorBox, Chart,
ActionManager,
ActionMainMenuBar,
ActionToolBar, CustomizeDlg, and
StaticText.

For CLX applications only:
LCDNumber.

No
No

No

Yes, though for VCL applications
only: XMLTransform,
XMLTransformProvider, and
XMLTransformClient.

Yes, though for VCL applications
only: DBRichEdit, DBCtrlGrid, and
DBChart.

Yes

Working with components 6-7

Cross-platform and non-cross-platform components

Table 6.1 Component palette pages (continued)
Page name Description Cross-platform?
DataSnap Components used for creating multi- No
tiered database applications.
Decision Cube Data analysis components. No

Dialogs Commonly used dialog boxes. Yes, though for VCL applications
only: OpenPictureDialog,
SavePictureDialog, PrintDialog, and
PrinterSetupDialog.
Indy Clients Cross-platform Internet components for ~ Yes
Indy Servers the client and server (open source
Indy Misc Winshoes Internet components).
Indy Intercepts
Indy I/O
Handlers
InterBase Components that provide direct access ~ Yes
to the InterBase database.
InterBaseAdmin Components that access InterBase Yes
Services API calls.
Internet Components for Internet Yes
communication protocols and Web
applications.
InternetExpress ~ Components that are simultaneouslya Yes
Web server application and the client of
a multi-tiered database application.
Office2K COM Server examples for Microsoft No
Excel, Word, and so on (see Microsoft
MSDN documentation).
IW Client Side Components to build Web server No
IW Control applications using IntraWeb.
IW Data
IW Standard
Rave Components to design visual reports. Yes
Samples Sample custom components. No
Servers COM Server examples for Microsoft No
Excel, Word, and so on (see Microsoft
MSDN documentation).
Standard Standard controls, menus. Yes
System Components and controls for system- The components are different

6-8 Developer’s Guide

level access, including timers,
multimedia, and DDE (VCL
applications).

Components for filtering and
displaying files (CLX applications).

between a VCL and CLX

application.

Cross-platform and non-cross-platform components

Table 6.1 Component palette pages (continued)
Page name Description Cross-platform?

WebServices Components for writing applications Yes
that implement or use SOAP-based
Web Services.

WebSnap Components for building Web server Yes

applications.
Win 3.1 Old style Win 3.1 components. No
Win32 (VCL)/ Common Windows controls. In CLX applications, the Common
Common Controls page replaces the Win32
Controls (CLX) page.

VCL applications only: RichEdit,
UpDown, HotKey, DataTimePicker,
MonthCalendar, CoolBar,
PageScroller, and ComboBoxEx.

CLX applications only: TextViewer,
TextBrowser, SpinEdit, and
IconView.

You can add, remove, and rearrange components on the palette, and you can create
component templates and frames that group several components.

For more information about the components on the Component palette, see online
Help. You can press F1 on the Component palette, on the component itself when it is
selected, after it has been dropped onto a form, or anywhere on its name in the Code
editor. If a tab of the Component palette is selected, the Help gives a general
description for all of the components on that tab. Some of the components on the
ActiveX, Servers, and Samples pages, however, are provided as examples only and
are not documented.

For more information on the differences between VCL and CLX applications, see
Chapter 15, “Developing cross-platform applications.”

Adding custom components to the Component palette

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a custom component,
see the Component Writer’s Guide. To install an existing component, see “Installing
component packages” on page 16-6.

Working with components 6-9

6-10 Developer’'s Guide

Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag and drop in controls

Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view— into another.

Starting a drag operation

Accepting dragged items

Dropping items

Ending a drag operation

Customizing drag and drop with a drag object
Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

Working with controls 7-1

Implementing drag and drop in controls

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and, optionally, an integer parameter
called Threshold. If you pass True for Immediate, dragging begins immediately. If you
pass False, dragging does not begin until the user moves the mouse the number of
pixels specified by Threshold. Calling

BeginDrag (False);
allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

procedure TFMForm.FileListBoxIMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
if Button = mbLeft then { drag only if left button pressed }
with Sender as TFileListBox do { treat Sender as TFileListBox }
begin
if TtemAtPos(Point (X, Y), True) >= 0 then { is there an item here? }
BeginDrag(False); { if so, drag it }
end;
end;

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOuver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to
True if it will accept the item. Accept changes the cursor type to an accept cursor or
not.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drag. In the following VCL example, a directory tree view
accepts dragged items only if they come from a file list box.

procedure TFMForm.DirectoryOutlinelDragOver (Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);
begin
if Source is TFileListBox then
Accept := True
else
Accept := False;
end;

7-2 Developer’s Guide

Implementing drag and drop in controls

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components if an item is dropped.

In the following VCL example, a directory tree view, accepting items dragged from a
file list box, responds by moving files to the directory on which they are dropped.

procedure TFMForm.DirectoryOutlinelDragDrop(Sender, Source: TObject; X,
Y: Integer);
begin
if Source is TFileListBox then
with DirectoryOutlinel do
ConfirmChange ('Move', FileListBoxl.FileName, Items[GetItem(X, Y)].FullPath);
end;

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the drag was initiated. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is nil, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In the following VCL example, a file list box handles an end-drag event by refreshing
its file list.

procedure TFMForm.FileListBoxlEndDrag(Sender, Target: TObject; X, Y: Integer);
begin

if Target <> nil then FileListBoxl.Update;
end;

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx (VCL only) and override its virtual methods. Create the custom drag
object in the OnStartDrag event.

Working with controls 7-3

Implementing drag and dock in controls

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

TDragObjectEx descendants (VCL only) are freed automatically whereas descendants
of TDragObject are not. If you have TDragObject descendants that you are not
explicitly freeing, you can change them so they descend from TDragObjectEx instead
to prevent memory loss.

Drag objects let you drag items between a form implemented in the application’s
main executable file and a form implemented using a DLL, or between forms that are
implemented using different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property (VCL only).

Implementing drag and dock in controls

Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

¢ Making a windowed control a docking site

¢ Making a control a dockable child

¢ Controlling how child controls are docked

¢ Controlling how child controls are undocked

¢ Controlling how child controls respond to drag-and-dock operations

Note Drag-and-dock properties are not available in CLX applications.

Making a windowed control a docking site

To make a windowed control a docking site:
1 Set the DockSite property to True.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to True. When AutoSize is True, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

7-4 Developer’s Guide

Implementing drag and dock in controls

Making a control a dockable child

To make a control a dockable child:

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the
control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is
dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var InfluenceRect:
TRect; var CanDock: Boolean) of object;

OnGetSitelnfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSitelnfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to True. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to False.

property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure (Sender: TObject; Source: TDragDockObject; X, Y: Integer; State:
TDragState; var Accept: Boolean) of object;

Working with controls 7-5

Working with text in controls

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSitelnfo event handler (perhaps because
it is the wrong type of control), OnDockOuver does not occur.

property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure (Sender: TObject; Source: TDragDockObject; X, Y: Integer) of
object;

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of object;

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnlUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls

The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

Setting text alignment
Adding scroll bars at runtime
Adding the clipboard object
Selecting text

7-6 Developer’s Guide

Working with text in controls

Selecting all text

Cutting, copying, and pasting text
Deleting selected text

Disabling menu items

Providing a pop-up menu
Handling the OnPopup event

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is True; if word wrapping is turned off, there is
no margin to align to.

For example, the following code attaches an OnClick event handler to a Character |
Left menu item, then attaches the same event handler to both a Character | Right and
Character | Center menu item.

procedure TForm.AlignClick(Sender: TObject);
begin
Leftl.Checked := False; { clear all three checks }
Rightl.Checked := False;
Centerl.Checked := False;
with Sender as TMenultem do Checked := True; { check the item clicked }
with Editor do { then set Alignment to match }
if Leftl.Checked then
Alignment := taLeftJustify
else if Rightl.Checked then
Alignment := taRightJustify
else if Centerl.Checked then
Alignment := taCenter;
end;

You can also use the HMargin property to adjust the left and right margins in a memo
control.

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

Working with controls 7-7

Working with text in controls

The following example attaches an OnClick event handler to a Character | WordWrap
menu item.

procedure TForm.WordWraplClick(Sender: TObject);
begin
with Editor do
begin
WordWrap := not WordWrap; { toggle word wrapping }
if WordWrap then
ScrollBars := ssVertical { wrapped requires only vertical }

else
ScrollBars := ssBoth; { unwrapped might need both }
WordWrapl.Checked := WordWrap; { check menu item to match property }
end;
end;

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. TClipboard object
encapsulates a clipboard (such as the Windows Clipboard) and includes methods for
cutting, copying, and pasting text (and other formats, including graphics). The
Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application:

1 Select the unit that will use the clipboard.

2 Search for the implementation reserved word.

3 Add Clipbrd to the uses clause below implementation.

¢ If there is already a uses clause in the implementation part, add Clipbrd to the end
of it.

e If there is not already a uses clause, add one that says
uses Clipbrd;

For example, in an application with a child window, the uses clause in the unit's
implementation part might look like this:

uses
MDIFrame, Clipbrd;

7-8 Developer’s Guide

Working with text in controls

Selecting text

For text in an edit control, before you can send any text to the clipboard, that text
must be selected. Highlighting of selected text is built into the edit components.
When the user selects text, it appears highlighted.

Table 7.1 lists properties commonly used to handle selected text.

Table 7.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of an edit control’s
text buffer.

For example, the following OnFind event handler searches a Memo component for
the text specified in the FindText property of a find dialog component. If found, the
first occurrence of the text in Memol is selected.

procedure TForml.FindDialoglFind(Sender: TObject);

var
I, J, PosReturn, SkipChars: Integer;
begin
for I := 0 to Memol.Lines.Count do
begin

PosReturn := Pos(FindDialogl.FindText,Memol.Lines[I]);

if PosReturn <> 0 then {found!}

begin
Skipchars := 0;
for g :=0toI-14do

Skipchars := Skipchars + Length(Memol.Lines[J]);

SkipChars := SkipChars + (I*2);
SkipChars := SkipChars + PosReturn - 1;
Memol.SetFocus;
Memol.SelStart := SkipChars;
Memol.SelLength := Length(FindDialogl.FindText);
Break;

end;

end;
end;

Selecting all text

The SelectAll method selects the entire contents of an edit control, such as a rich edit
or memo component. This is especially useful when the component’s contents exceed
the visible area of the component. In most other cases, users select text with either
keystrokes or mouse dragging.

Working with controls 7-9

Working with text in controls

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example:

procedure TMainForm.SelectAll (Sender: TObject);
begin

RichEditl.SelectAll; { select all text in RichEdit }
end;

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 12-21 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit | Cut, Edit| Copy, and Edit | Paste commands, respectively:

procedure TEditForm.CutToClipboard(Sender: TObject);
begin

Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin

Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin

Editor.PasteFromClipboard;
end;

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

procedure TEditForm.Delete(Sender: TObject);
begin

RichEditl.ClearSelection;
end;

7-10 Developer’'s Guide

Note

Working with text in controls

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to False.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

procedure TEditForm.Editl1Click(Sender: TObject);

var
HasSelection: Boolean; { declare a temporary variable }

begin
Pastel.Enabled := Clipboard.HasFormat (CF_TEXT); {enable or disable the Paste menu item}
HasSelection := Editor.SelLength > 0; { True if text is selected }

Cutl.Enabled := HasSelection; { enable menu items if HasSelection is True }
Copyl.Enabled := HasSelection;
Deletel.Enabled := HasSelection;

end;

The HasFormat method (Provides method in CLX applications) of the clipboard
returns a Boolean value based on whether the clipboard contains objects, text, or
images of a particular format. By calling HasFormat with the parameter CF_TEXT,
you can determine whether the clipboard contains any text, and enable or disable the
Paste item as appropriate.

In CLX applications, use the Provides method. In this case, the text is generic. You can
specify the type of text using a subtype such as text/plain for plain text or text/html
for html.

Chapter 12, “Working with graphics and multimedia” provides more information
about using the clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

Working with controls 7-11

Working with text in controls

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form:
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 7-11.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them:

1 Select the pop-up menu component.

2 Attach an event handler to its OnPopup event.

3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 7-11 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

procedure TEditForm.EditlClick(Sender: TObject);

var
HasSelection: Boolean;

begin
Pastel.Enabled := Clipboard.HasFormat (CF_TEXT);
Paste2.Enabled := Pastel.Enabled;{Add this line}
HasSelection := Editor.Sellength <> 0;
Cutl.Enabled := HasSelection;
Cut2.Enabled := HasSelection;{Add this line}
Copyl.Enabled := HasSelection;
Copy2.Enabled := HasSelection;{Add this line}
Deletel.Enabled := HasSelection;

end;

7-12 Developer’'s Guide

Adding graphics to controls

Adding graphics to controls

Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 9-38.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in the list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control involves these steps:
1 Indicating that a control is owner-drawn.
2 Adding graphical objects to a string list.

3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and toolbars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as OnCustomDraw or OnAdvancedCustomDraw.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 7.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Table7.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height [bOwnerDrawFixed,
determined by the ItemHeight property. csOwnerDrawFixed

Variable Each item might have a different height, IbOwnerDrawVariable,
determined by the data at runtime. csOwnerDrawVariable

Working with controls 7-13

Adding graphics to controls

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.
You can also add graphical objects of varying sizes to a string list.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Note that you can also organize graphical objects using an image list by creating a
TImageList. However, these images must all be the same size. See “Adding images to
menu items” on page 9-38 for an example of setting up an image list.

Adding images to an application

An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you'll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.

4 Set the Picture property of each image to the desired bitmap using the Picture
editor from the Object Inspector.

The image controls are invisible when you run the application. The image is stored
with the form so it doesn’t have to be loaded from a file at runtime.

Adding images to a string list

Once you have graphical images in an application, you can associate them with the
strings in a string list. You can either add the objects at the same time as the strings,
or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

7-14 Developer’'s Guide

Adding graphics to controls

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid
drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

procedure TFMForm.FormCreate (Sender: TObject);
var
Drive: Char;
AddedIndex: Integer;
begin
for Drive := 'A' to 'Z' do { iterate through all possible drives }
begin
case GetDriveType(Drive + ':/') of { positive values mean valid drives }
DRIVE_REMOVABLE: { add a tab }
AddedIndex := DriveTabSet.Tabs.AddObject (Drive, Floppy.Picture.Graphic);
DRIVE_FIXED: { add a tab }
AddedIndex := DriveTabSet.Tabs.AddObject (Drive, Fixed.Picture.Graphic);
DRIVE_REMOTE: { add a tab }
AddedIndex := DriveTabSet.Tabs.AddObject (Drive, Network.Picture.Graphic);
end;
if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
DriveTabSet.TabIndex := AddedIndex; { then make that current tab }
end;
end;

Drawing owner-drawn items

When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, the control is no longer drawn on the
screen. Instead, the operating system generates events for each visible item in the
control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of IsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

Working with controls 7-15

Adding graphics to controls

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, the control receives a measure-item event, which is of type
TMeasureltemEvent. TMeasureltemEvent tells the application where the item appears
on the control.

Delphi determines the size of the item (generally, it is just large enough to display the
item’s text in the current font). Your application can handle the event and change the
rectangle chosen. For example, if you plan to substitute a bitmap for the item’s text,
change the rectangle to the size of the bitmap. If you want a bitmap and text, adjust the
rectangle to be large enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureltem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
height of that item. The height is variable: the application can make it either smaller
or larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureltem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

procedure TFMForm.ListBoxlMeasureItem(Control: TWinControl; Index: Integer;

var Height: Integer); { note that Height is a var parameter}
var

BitmapHeight: Integer;
begin

BitmapHeight := TBitmap (ListBoxl.Items.Objects[Index]).Height;
{ make sure the item height has enough room, plus two }
Height := Max(Height, Bitmap Height +2);

end;

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TODbject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

7-16 Developer’'s Guide

Adding graphics to controls

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a part of the item.

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following;:

® OnDraw, such as OnDrawltem or OnDrawCell
e OnCustomDraw, such as OnCustomDrawltem
e OnAdvancedCustomDraw, such as OnAdvancedCustomDrawltem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawltem event
for the list box:

procedure TFMForm.DriveTabSetDrawTab (Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);
var
Bitmap: TBitmap;
begin
Bitmap := TBitmap (DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap)
TextOut (R.Left + 2 + Bitmap.Width, { position text }
R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }
end;
end;

Working with controls 7-17

7-18 Developer’'s Guide

Building applications, components,
and libraries

This chapter provides an overview of how to create applications, components, and
libraries.

Creating applications

The most common types of applications you can design and build are:

GUI applications
Console applications
Service applications
Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run
from a console window. Service applications are run as Windows services. These
types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in
creating packages or dynamically linkable libraries. These applications produce
executable code without start-up code. Refer to “Creating packages and DLLs” on

page 8-11.

Building applications, components, and libraries 8-1

Creating applications

GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of
your program, and simple programs often consist of only an executable file. You can
extend the application by calling DLLs, packages, and other support files from the
executable.

The IDE offers two application Ul models:

¢ Single document interface (SDI)
* Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

User interface models

Any form can be implemented as a single document interface (SDI) or multiple
document interface (MDI) form. An SDI application normally contains a single
document view. In an MDI application, more than one document or child window
can be opened within a single parent window. This is common in applications such
as spreadsheets or word processors.

For more information on developing the UI for an application, see Chapter 9,
“Developing the application user interface.”

SDI applications

To create a new SDI application:

1 Choose File | New | Other to bring up the New Items dialog.
2 Click on the Projects page and double-click SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so that the
IDE assumes that all new applications are SDI applications.

MDI applications

To create a new MDI application using a wizard:

1 Choose File | New | Other to bring up the New Items dialog.

2 Click on the Projects page and double-click MDI Application.
3 Click OK.

8-2 Developer’s Guide

Creating applications

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

MDI applications often include a Window pop-up on the main menu that has items
such as Cascade and Tile for viewing multiple windows in various styles. When a
child window is minimized, its icon is located in the MDI parent form.

To create a new MDI application without using a wizard:

1 Create the main window form or MDI parent window. Set its FormStyle property
to fsMDIForm.

2 Create a menu for the main window that includes File | Open, File | Save, and
Window which has Cascade, Tile, and Arrange All items.

3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, project, and compiler options

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE. To specify various options for
your project, choose Project | Options.

Setting default project options

To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

For more information, see the online Help.

Programming templates

Programming templates are commonly used skeleton structures that you can add to
your source code and then fill in. You can also use standard code templates such as
those for array, class, and function declarations, and many statements.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

for := to do
begin

end;

Building applications, components, and libraries 8-3

Creating applications

To insert a code template in the Code editor, press Cirl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Choose Tools | Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.
4

Type a name for the template after Shortcut name, enter a brief description of the
new template, and click OK.

Add the template code to the Code text box.
6 Click OK.

(3]

Console applications

Console applications are 32-bit programs that run without a graphical interface, in a
console window. These applications typically don’t require much user input and
perform a limited set of functions. Any application that contains:

{$APPTYPE CONSOLE}
in the code opens a console window of its own.

To create a new console application, choose File | New | Other and double-click
Console Application from the New Items dialog box.

The IDE then creates a project file for this type of source file and displays the Code
editor.

Console applications should make sure that no exceptions escape from the program
scope. Otherwise, when the program terminates, the Windows operating system
displays a modal dialog with exception information. For example, your application
should include exception handling such as shown in the following code:

program ConsoleExceptionHandling;
{SAPPTYPE CONSOLE}

uses
SysUtils;

procedure ExecuteProgram;
begin
//Program does something

raise Exception.Create('Unforeseen exception');
end;

8-4 Developer’s Guide

Creating applications

begin
try
ExecuteProgram;
except
//Handle error condition
WriteIn('Program terminated due to an exception’);

//Set ExitCode <> 0 to flag error condition (by convention)
ExitCode := 1;
end;
end.

Users can terminate console applications in one of the following ways:

Click the Close (X) button.
Press Ctrl+C.

Press Ctrl+Break.

Log off.

Depending on which way the user chooses, the application is terminated forcefully,
the process is not shut down cleanly, and the finalization section isn’t run. Use the
Windows API SetConsoleCtrlHandler function for options for handling these user
termination requests.

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A Web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service:

1 Choose File | New | Other, and double-click Service Application in the New Items
dialog box. This adds a global variable named Application to your project, which is
of type TServiceApplication.

2 A Service window appears that corresponds to a service (TService). Implement the
service by setting its properties and event handlers in the Object Inspector.

3 You can add additional services to your service application by choosing File |
New | Other, and double-click Service in the New Items dialog box. Do not add
services to an application that is not a service application. While a TService object
can be added, the application will not generate the requisite events or make the
appropriate Windows calls on behalf of the service.

4 Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

Building applications, components, and libraries 8-5

Creating applications

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

Example This service has a TServerSocket whose port is set to 80. This is the default port for

8-6

Web browsers to make requests to Web servers and for Web servers to make
responses to Web browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one server listening on any given port, so if you have a Web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a Web browser on the local machine and for the address,
type 'localhost' (with no quotes). The browser will time out eventually, but you
should now have a file called Weblogxxx.log in the C:\Temp directory.

1 To create the example, choose File | New | Other and select Service Application
from the New Items dialog box. The Servicel window appears.

2 From the Internet page of the Component palette, add a ServerSocket component
to the service window (Servicel).

3 Add a private data member of type TMemoryStream to the TServicel class. The
interface section of your unit should now look like this:

interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
ScktComp;
type
TServicel = class(TService)
ServerSocketl: TServerSocket;
procedure ServerSocket1ClientRead (Sender: TObject;
Socket: TCustomWinSocket);
procedure ServicelExecute(Sender: TService);
private
{ Private declarations }
Stream: TMemoryStream; // Add this line here
public
function GetServiceController: PServiceController; override;
{ Public declarations }
end;
var
Servicel: TServicel;

Developer’'s Guide

Creating applications
4 Select ServerSocketl, the component you added in step 1. In the Object Inspector,
double-click the OnClientRead event and add the following event handler:

procedure TServicel.ServerSocket1ClientRead(Sender: TObject;
Socket: TCustomWinSocket);

var

Buffer: PChar;
begin

Buffer := nil;

while Socket.ReceiveLength > 0 do begin

Buffer := AllocMem(Socket.ReceiveLength);

try
Socket .ReceiveBuf (Buffer”, Socket.ReceiveLength);
Stream.Write(Buffer”, StrLen(Buffer));

finally
FreeMem (Buffer);

end;

Stream.Seek (0, soFromBeginning);

Stream.SaveToFile('c:\Temp\Weblog' + IntToStr (ServiceThread.ThreadID) + '.log');
end;

end;

5 Finally, select Servicel by clicking in the window’s client area (but not on the

ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

procedure TServicel.ServicelExecute(Sender: TService);
begin
Stream := TMemoryStream.Create;
try
ServerSocketl.Port := 80; // WWW port
ServerSocketl.Active := True;
while not Terminated do begin
ServiceThread.ProcessRequests (True) ;
end;
ServerSocketl.Active := False;
finally
Stream.Free;
end;
end;

When writing your service application, you should be aware of:

¢ Service threads
¢ Service name properties
¢ Debugging service applications

Note Service applications are not available for cross-platform applications.

Building applications, components, and libraries 8-7

Creating applications

Example

Service threads

Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File | New | Other and double-click Service Application in the New Items
dialog. The Servicel window appears.

2 In the interface section of your unit, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

TSparkyThread = class(TThread)
public
procedure Execute; override;
end;

3 In the implementation section of your unit, create a global variable for a
TSparkyThread instance:

var
SparkyThread: TSparkyThread;

4 In the implementation section for the TSparkyThread Execute method (the thread
function), add the following code:

procedure TSparkyThread.Execute;
begin
while not Terminated do
begin
Beep;
Sleep(500);
end;
end;

8-8 Developer’s Guide

Creating applications

5 Select the Service window (Servicel), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

procedure TServicel.ServicelStart (Sender: TService; var Started: Boolean);
begin

SparkyThread := TSparkyThread.Create(False);

Started := True;
end;

6 Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

procedure TServicel.ServicelContinue(Sender: TService; var Continued: Boolean);
begin

SparkyThread.Resume;

Continued := True;
end;

7 Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

procedure TServicel.ServicelPause(Sender: TService; var Paused: Boolean);
begin

SparkyThread.Suspend;

Paused := True;
end;

8 Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

procedure TServicel.ServicelStop(Sender: TService; var Stopped: Boolean);
begin

SparkyThread.Terminate;

Stopped := True;
end;

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties

The VCL provides classes for creating service applications on the Windows platform
(not available for cross-platform applications). These include TService and
TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And because service
objects are derived from TComponent, they inherit the Name property. The following
sections summarize the name properties.

Building applications, components, and libraries 8-9

Creating applications

TDependency properties

The TDependency DisplayName is both a display name and the actual name of the
service. It is nearly always the same as the TDependency Name property.

TService name properties

The TService Name property is inherited from TComponent. It is the name of the
component, and is also the name of the service. For dependencies that are services,
this property is the same as the TDependency Name and DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This
often differs from the actual service name (TService.Name, TDependency.DisplayName,
TDependency.Name). Note that the DisplayName for the Dependency and the
DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual
service names. A ServiceStartName is the user name input on the Start dialog selected
from the Service Control Manager.

Debugging service applications

You can debug service applications by attaching to the service application process
when it is already running (that is, by starting the service first, and then attaching to
the debugger). To attach to the service application process, choose Run | Attach To
Process, and select the service application in the resulting dialog.

In some cases, this approach may fail, due to insufficient rights. If that happens, you
can use the Service Control Manager to enable your service to work with the
debugger:

1

First create a key called Image File Execution Options in the following registry
location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

Create a subkey with the same name as your service (for example, MYSERV.EXE).
To this subkey, add a value of type REG_SZ, named Debugger. Use the full path to
Delphi32.exe as the string value.

In the Services control panel applet, select your service, click Startup and check
Allow Service to Interact with Desktop.

On Windows NT systems, you can use another approach for debugging service
applications. However, this approach can be tricky, because it requires short time
intervals:

1

First, launch the application in the debugger. Wait a few seconds until it has
finished loading.

2 Quickly start the service from the Control Panel or from the command line:

start MyServ

You must launch the service quickly (within 15-30 seconds of application startup)
because the application will terminate if no service is launched.

8-10 Developer’s Guide

Creating packages and DLLs

Creating packages and DLLs

Dynamic link libraries (DLLs) are modules of compiled code that work in
conjunction with an executable to provide functionality to an application. You can
create DLLs in cross-platform programs. However, on Linux, DLLs (and packages)
recompile as shared objects.

DLLs and libraries should handle all exceptions to prevent the display of errors and
warnings through Windows dialogs.

The following compiler directives can be placed in library project files:

Table 8.1 Compiler directives for libraries

Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could
specify {$LIBPREFIX 'dcl'} for a design-time package, or use
{$LIBPREFIX "'} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For
example, use {$LIBSUFFIX '-2.1.3'} in something.pas to generate
something-2.1.3.bpl.

{$LIBVERSION Adds a second extension to the output file name after the .bpl

'string'} extension. For example, use {$LIBVERSION "2.1.3'} in something.pas to
generate something.bpl.2.1.3.

Packages are special DLLs used by Delphi applications, the IDE, or both. There are
two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running. Design-
time packages extend the functionality of the IDE.

For more information on packages, see Chapter 16, “Working with packages and
components.”

When to use packages and DLLs

For most applications, packages provide greater flexibility and are easier to create
than DLLs. However, there are several situations where DLLs would be better suited
to your projects than packages:

* Your code module will be called from non-Delphi applications.

* You are extending the functionality of a Web server.

* You are creating a code module to be used by third-party developers.

¢ Your project is an OLE container.

However, if your application includes VisualCLX, you must use packages instead of
DLLs. Only packages can manage the startup and shut down of the Qt shared
libraries.

Building applications, components, and libraries 8-11

Writing database applications

You cannot pass Delphi runtime type information (RTTI) across DLLs or from a DLL
to an executable. If you pass an object from one DLL to another DLL or an executable,
you will not be able to use the is or as operators with the passed object. This is
because the is and as operators need to compare RTTI. If you need to pass objects
from a library, use packages instead, as these can share RTTI. Similarly, you should
use packages instead of DLLs in Web Services because they are rely on Delphi RTTI.

Writing database applications

You can create advanced database applications using tools to connect to SQL servers
and databases such as Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix,
PostgreSQL, and DB2 while providing transparent data sharing between
applications.

The Component palette includes many components for accessing databases and
representing the information they contain. The database components are grouped
according to the data access mechanism and function.

Table 8.2 Database pages on the Component palette

Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for
interacting with databases. The BDE supports the broadest range of functions
and comes with the most supporting utilities including Database Desktop,
Database Explorer, SQL Monitor, and BDE Administrator. See Chapter 26,
“Using the Borland Database Engine” for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to
access database information. Many ADO drivers are available for connecting to
different database servers. ADO-based components let you integrate your
application into an ADO-based environment. See Chapter 27, “Working with
ADO components” for details.

dbExpress Cross-platform components that use dbExpress to access database information.
dbExpress drivers provide fast access to databases but need to be used with
TClientDataSet and TDataSetProvider to perform updates. See Chapter 28, “Using
unidirectional datasets” for details.

InterBase Components that access InterBase databases directly, without going through a
separate engine layer. For more information about using the InterBase
components, see the online Help.

Data Access Components that can be used with any data access mechanism such as
TClientDataSet and TDataSetProvider. See Chapter 29, “Using client datasets” for
information about client datasets. See Chapter 30, “Using provider
components”for information about providers.

Data Controls Data-aware controls that can access information from a data source. See
Chapter 20, “Using data controls” for details.

8-12 Developer’s Guide

Creating Web server applications

When designing a database application, you must decide which data access
mechanism to use. Each data access mechanism differs in its range of functional
support, the ease of deployment, and the availability of drivers to support different
database servers.

See Part 11, “Developing database applications,” for details on how to create both
database client applications and application servers. See “Deploying database
applications” on page 18-6 for deployment information.

Note Not all editions of Delphi include database support.

Distributing database applications

You can create distributed database applications using a coordinated set of
components. Distributed database applications can be built on a variety of
communications protocols, including DCOM, CORBA, TCP/IP, and SOAP.

For more information about building distributed database applications, see
Chapter 31, “Creating multi-tiered applications.”

Distributing database applications often requires you to distribute the Borland
Database Engine (BDE) in addition to the application files. For information on
deploying the BDE, see “Deploying database applications” on page 18-6.

Creating Web server applications

Web server applications are applications that run on servers that deliver Web content
such as HTML Web pages or XML documents over the Internet. Examples of Web
server applications include those which control access to a Web site, generate
purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following
technologies:

e Web Broker
e WebSnap

e IntraWeb

e Web Services

Building applications, components, and libraries 8-13

Creating Web server applications

Creating Web Broker applications

You can use Web Broker (also called NetCLX architecture) to create Web server
applications such as CGI applications or dynamic-link libraries (DLLs). These Web
server applications can contain any nonvisual component. Components on the
Internet page of the Component palette enable you to create event handlers,
programmatically construct HTML or XML documents, and transfer them to the
client.

To create a new Web server application using the Web Broker architecture, choose
File | New | Other and double-click the Web Server Application in the New Items
dialog box. Then select the Web server application type:

Table 8.3 Web server applications

Web server
application type Description
ISAPI and NSAPI ISAPI and NSAPI Web server applications are DLLs that are loaded by

Dynamic Link Library = the Web server. Client request information is passed to the DLL as a
structure and evaluated by TISAPIApplication. Each request message is
handled in a separate execution thread.

Selecting this type of application adds the library header of the project
files and required entries to the uses list and exports clause of the project

file.
CGI Stand-alone CGI Web server applications are console applications that receive
executable requests from clients on standard input, process those requests, and
sends back the results to the server on standard output to be sent to the
client.

Selecting this type of application adds the required entries to the uses
clause of the project file and adds the appropriate $APPTYPE directive
to the source.

Apache Shared Selecting this type of application sets up your project as a DLL. Apache

Module (DLL) Web server applications are DLLs loaded by the Web server. Information
is passed to the DLL, processed, and returned to the client by the Web
server.

Web App Debugger Selecting this type of application sets up an environment for developing

stand-alone and testing Web server applications. Web App Debugger applications

executable are executable files loaded by the Web server. This type of application is

not intended for deployment.

CGI applications use more system resources on the server, so complex applications
are better created as ISAPI, NSAPI, or Apache DLL applications. When writing cross-
platform applications, you should select CGI stand-alone or Apache Shared Module
(DLL) for Web server development. These are also the same options you see when
creating WebSnap and Web Service applications.

For more information on building Web server applications, see Chapter 33, “Creating
Internet server applications.”

8-14 Developer’s Guide

Creating Web server applications

Creating WebSnap applications

WebSnap provides a set of components and wizards for building advanced Web
servers that interact with Web browsers. WebSnap components generate HTML or
other MIME content for Web pages. WebSnap is for server-side development.

To create a new WebSnap application, select File | New | Other and select the
WebSnap tab in the New Items dialog box. Choose WebSnap Application. Then
select the Web server application type (ISAPI/NSAPI, CGI, Apache). See Table 8.3,
“Web server applications” for details.

If you want to do client-side scripting instead of server-side scripting, you can use the
InternetExpress technology. For more information on InternetExpress, see “Building
Web applications using InternetExpress” on page 31-33.

For more information on WebSnap, see Chapter 35, “Creating Web Server
applications using WebSnap.”

Creating Web Services applications

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided. You use Web Services to
produce or consume programmable services over the Internet using emerging
standards such as XML, XML Schema, SOAP (Simple Object Access Protocol), and
WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information
in a distributed environment. It uses HT'TP as a communications protocol and XML
to encode remote procedure calls.

You can build servers to implement Web Services and clients that call on those
services. You can write clients for arbitrary servers to implement Web Services that
respond to SOAP messages, and servers to publish Web Services for use by arbitrary
clients.

Refer to Chapter 38, “Using Web Services” for more information on Web Services.

Building applications, components, and libraries 8-15

Writing applications using COM

Writing applications using COM

COM is the Component Object Model, a Windows-based distributed object
architecture designed to provide object interoperability using predefined routines
called interfaces. COM applications use objects that are implemented by a different
process or, if you use DCOM, on a separate machine. You can also use COM+,
ActiveX and Active Server Pages.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Using COM and DCOM

Various classes and wizards that make it easy to create COM, OLE, or ActiveX
applications. You can create COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms. COM also severs as the basis for other technologies such as
Automation, ActiveX controls, Active Documents, and Active Directories.

Using Delphi to create COM-based applications offers a wide range of possibilities,
from improving software design by using interfaces internally in an application, to
creating objects that can interact with other COM-based API objects on the system,
such as the Win9x Shell extensions and DirectX multimedia support. Applications
can access the interfaces of COM components that exist on the same computer as the
application or that exist on another computer on the network using a mechanism
called Distributed COM (DCOM).

For more information on COM and Active X controls, see Chapter 40, “Overview of
COM technologies,” Chapter 45, “Creating an ActiveX control,” and “Distributing a
client application as an ActiveX control” on page 31-32.

For more information on DCOM, see “Using DCOM connections” on page 31-9.

Using MTS and COM+

COM applications can be augmented with special services for managing objects in a
large distributed environment. These services include transaction services, security,
and resource management supplied by Microsoft Transaction Server (MTS) on
versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and
later).

For more information on MTS and COM+, see Chapter 46, “Creating MTS or COM+
objects” and “Using transactional data modules” on page 31-7.

8-16 Developer’'s Guide

Using data modules

Using data modules

A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules,
applet modules, and services, depending on which edition of Delphi you have. Each
type of data module serves a special purpose.

¢ Standard data modules are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating and editing standard data
modules” on page 8-17.

* Remote data modules form the basis of an application server in a multi-tiered
database application. They are not available in all editions. In addition to holding
the nonvisual components in the application server, remote data modules expose
the interface that clients use to communicate with the application server. For more
information about using them, see “Adding a remote data module to an
application server project” on page 8-21.

* Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 33, “Creating
Internet server applications” for more information about using Web modules.

e Applet modules form the basis of control panel applets. In addition to holding the
nonvisual controls that implement the control panel applet, they define the
properties that determine how the applet’s icon appears in the control panel and
include the events that are called when users execute the applet. For more
information about applet modules, see the online Help.

* Services encapsulate individual services in an NT service application. In addition
to holding any nonvisual controls used to implement a service, services include
the events that are called when the service is started or stopped. For more
information about services, see “Service applications” on page 8-5.

Creating and editing standard data modules

To create a standard data module for a project, choose File | New | Data Module. The
IDE opens a data module container on the desktop, displays the unit file for the new
module in the Code editor, and adds the module to the current project.

At design time, a data module looks like a standard form with a white background
and no alignment grid. As with forms, you can place nonvisual components from the
Component palette onto a module, and edit their properties in the Object Inspector.
You can resize a data module to accommodate the components you add to it.

Building applications, components, and libraries 8-17

Using data modules

You can also right-click a module to display a context menu for it. The following
table summarizes the context menu options for a data module.

Table 8.4 Context menu options for data modules

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste, delete, and
select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid (Align To Grid)
or according to criteria you supply in the Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from component to
component when you press the tab key.

Creation Order Enables you to change the order that data access components are created at
start-up.

Revert to Inherited Discards changes made to a module inherited from another module in the
Object Repository, and reverts to the originally inherited module.

Add to Repository Stores a link to the data module in the Object Repository.
View as Text Displays the text representation of the data module’s properties.

Text DFM Toggles between the formats (binary or text) in which this particular form
file is saved.

For more information about data modules, see the online Help.

Naming a data module and its unit file

The title bar of a data module displays the module’s name. The default name for a
data module is “DataModuleN” where N is a number representing the lowest
unused unit number in a project. For example, if you start a new project, and add a
module to it before doing any other application building, the name of the module
defaults to “DataModule2.” The corresponding unit file for DataModule2 defaults to
“Unit2.”

You should rename your data modules and their corresponding unit files at design
time to make them more descriptive. You should especially rename data modules
you add to the Object Repository to avoid name conflicts with other data modules in
the Repository or in applications that use your modules.

To rename a data module:
1 Select the module.
2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the
Object Inspector no longer has focus.

Changing the name of a data module at design time changes its variable name in the
interface section of code. It also changes any use of the type name in procedure
declarations. You must manually change any references to the data module in code
you write.

To rename a unit file for a data module, select the unit file.

8-18 Developer’s Guide

Using data modules

Placing and naming components

You place nonvisual components in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the
Component palette, then click in the data module to place the component. You
cannot place visual controls, such as grids, on a data module. If you attempt it, you
receive an error message.

For ease of use, components are displayed with their names in a data module. When
you first place a component, the module assigns it a generic name that identifies
what kind of component it is, followed by a 1. For example, the TDataSource
component adopts the name DataSourcel. This makes it easy to select specific
components whose properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of
component and what it is used for.

To change the name of a component in a data module:
1 Select the component.
2 Edit the component’s Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon
as the Name property in the Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To
access the table, you need a minimum of two data access components: a data source
component (T'DataSource) and a table component (TClientDataSet). When you place
these components in your data module, the module assigns them the names
DataSourcel and ClientDataSet1. To reflect the type of component and the database
they access, CUSTOMER, you could change these names to CustomerSource and
CustomerTable.

Using component properties and events in a data module

Placing components in a data module centralizes their behavior for your entire
application. For example, you can use the properties of dataset components, such as
TClientDataSet, to control the data available to the data source components that use
those datasets. Setting the ReadOnly property to True for a dataset prevents users
from editing the data they see in a data-aware visual control on a form. You can also
invoke the Fields editor for a dataset, by double-clicking on ClientDataSet1, to restrict
the fields within a table or query that are available to a data source and therefore to
the data-aware controls on forms. The properties you set for components in a data
module apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example,
a TDataSource component has three possible events: OnDataChange, OnStateChange,
and OnlUpdateData. A TClientDataSet component has over 20 potential events. You
can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

Building applications, components, and libraries 8-19

Using data modules

Creating business rules in a data module

Besides writing event handlers for the components in a data module, you can code
methods directly in the unit file for a data module. These methods can be applied to
the forms that use the data module as business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module.

The prototypes for the procedures and functions you write for a data module should
appear in the module’s type declaration:

type
TCustomerData = class(TDataModule)
Customers: TClientDataSet;
Orders: TClientDataSet;

private

{ Private declarations }
public

{ Public declarations }

procedure LineItemsCalcFields(DataSet: TDataSet); { A procedure you add }
end;

var
CustomerData: TCustomerData;

The procedures and functions you write should follow in the implementation section
of the code for the module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module to the form’s uses clause. You can do this in several ways:

¢ In the Code editor, open the form’s unit file and add the name of the data module
to the uses clause in the interface section.

¢ (Click the form’s unit file, choose File | Use Unit, and enter the name of the module
or pick it from the list box in the Use Unit dialog.

¢ For database components, in the data module click a dataset or query component
to open the Fields editor and drag any existing fields from the editor onto the
form. The IDE prompts you to confirm that you want to add the module to the
form’s uses clause, then creates controls (such as edit boxes) for the fields.

For example, if you've added the TClientDataSet component to your data module,
double-click it to open the Fields editor. Select a field and drag it to the form. An edit
box component appears.

Because the data source is not yet defined, Delphi adds a new data source
component, DataSourcel, to the form and sets the edit box’s DataSource property to
DataSourcel. The data source automatically sets its DataSet property to the dataset
component, ClientDataSet1, in the data module.

8-20 Developer’'s Guide

Using the Object Repository

You can define the data source before you drag a field to the form by adding a
TDataSource component to the data module. Set the data source’s DataSet property to
ClientDataSet1. After you drag a field to the form, the edit box appears with its
TDataSource property already set to DataSourcel. This method keeps your data access
model cleaner.

Adding a remote data module to an application server project

Some editions of Delphi allow you to add remote data modules to application server
projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks.

To add a remote data module to a project:
1 Choose File | New | Other.
2 Select the Multitier page in the New Items dialog box.

3 Double-click the Remote Data Module icon to open the Remote Data Module
wizard.

Once you add a remote data module to a project, use it just like a standard data
module.

For more information about multi-tiered database applications, see Chapter 31,
“Creating multi-tiered applications.”

Using the Object Repository

The Object Repository (Tools | Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The Repository is
maintained in DELPHI32.DRO (by default in the BIN directory), a text file that
contains references to the items that appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File | New | Other), you'll see a page tab
with the name of the current project. This page lists all the forms, dialog boxes, and
data modules in the project. You can derive a new item from an existing item and
customize it as needed.

Building applications, components, and libraries 8-21

Using the Object Repository

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project | Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, the Object Repository creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.
6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools | Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the Repository, a DELPHI32.DRO file is created in
the Shared Repository directory if one doesn’t exist already.

Using an Object Repository item in a project

To access items in the Object Repository, choose File | New | Other. The New Items
dialog appears, showing all the items available. Depending on the type of item you
want to use, you have up to three options for adding the item to your project:

e Copy
¢ Inherit
e Use

Copying an item

Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

8-22 Developer’s Guide

Using the Object Repository

Inheriting an item

Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.

Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template:

1 Choose File | New | Other to display the New Items dialog box.

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

The template files are copied to the specified directory, where you can modify them.
The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

¢ Copy the item and modify it in your current project only.

e Copy the item to the current project, modify it, then add it to the Repository under
a different name.

¢ Create a component, DLL, component template, or frame from the item. If you
create a component or DLL, you can share it with other developers.

Building applications, components, and libraries 8-23

Enabling Help in applications

Specifying a default project, new form, and main form

By default, when you choose File | New | Application or File | New | Form, a blank
form appears. You can change this behavior by reconfiguring the Repository:

1 Choose Tools | Repository.

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File | New |
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Enabling Help in applications

Both VCL and CLX applications support displaying Help using an object-based
mechanism that allows Help requests to be passed on to one of multiple external
Help viewers. To support this, an application must include a class that implements
the ICustomHelpViewer interface (and, optionally, one of several interfaces descended
from it), and registers itself with the global Help Manager.

VCL applications provide an instance of TWinHelpViewer, which implements all of
these interfaces and provides a link between applications and WinHelp. CLX
applications require that you provide your own implementation. On Windows, CLX
applications can use the WinHelpViewer unit provided as part of the VCL if they
bind to it statically—that is, by including that unit as part of your project instead of
linking it to the VCL package.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support.

If more than one viewer supports the keyword, as would be the case in an
application that had registered viewers for both WinHelp and HyperHelp on
Windows or Man and Info on Linux, the Help Manager can display a selection box
through which the user of the application can determine which Help viewer to
invoke. Otherwise, it displays the first responding Help system encountered.

8-24 Developer’s Guide

Enabling Help in applications

Help system interfaces

The Help system allows communication between your application and Help viewers
through a series of interfaces. These interfaces are all defined in the HelpIntfs.pas,
which also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. [HelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

Building applications, components, and libraries 8-25

Enabling Help in applications

Communicating with the Help Manager

The ICustomHelpViewer provides four functions that can be used to communicate
system information with the Help Manager:

o GetViewerName
* NotifylD

e ShutDown

¢ SoftShutDown

The Help Manager calls through these functions in the following circumstances:

* [CustomHelpViewer.GetViewerName : String is called when the Help Manager wants
to know the name of the viewer (for example, if the application is asked to display
a list of all registered viewers). This information is returned via a string, and is
required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.

o [CustomHelpViewer.NotifylD(const ViewerID: Integer) is called immediately
following registration to provide the viewer with a unique cookie that identifies it.
This information must be stored off for later use; if the viewer shuts down on its
own (as opposed to in response to a notification from the Help Manager), it must
provide the Help Manager with the identifying cookie so that the Help Manager
can release all references to the viewer. (Failing to provide the cookie, or providing
the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

* [CustomHelpViewer.ShutDown is called by the Help Manager to notify the Help
viewer that the Manager is shutting down and that any resources the Help viewer
has allocated should be freed. It is recommended that all resource freeing be
delegated to this method.

* [CustomHelpViewer.SoftShutDown is called by the Help Manager to ask the Help
viewer to close any externally visible manifestations of the Help system (for
example, windows displaying Help information) without unloading the viewer.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. [HelpManager allows the Help viewer to communicate four things:

¢ A request for the window handle of the currently active control.

* A request for the name of the Help file which the Help Manager believes should
contain help for the currently active control.

* A request for the path to that Help file.

* A notification that the Help viewer is shutting itself down in response to
something other than a request from the Help Manager that it do so.

8-26 Developer’'s Guide

Note

Enabling Help in applications

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the
handle of the currently active control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it needs to know the
name of the Help file which the currently active control believes contains its Help.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is
disconnecting. It should never be called in response to a request through
ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager of
unexpected disconnects.

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular

string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier.

Numeric Help contexts are the default form of Help requests in applications running
under Windows, which use the WinHelp system; while CLX supports them, they are
not recommended for use in CLX applications because most Linux Help systems do
not understand them.

ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

o UnderstandsKeyword
e GetHelpStrings
* ShowHelp

ICustomHelpViewer .UnderstandsKeyword (const HelpString: String): Integer

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the IDE, the HyperHelp viewer
maintains its own index and searches it. If the viewer does not support help on this
keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

ICustomHelpViewer.GetHelpStrings (const HelpString: String): TStringList

Building applications, components, and libraries 8-27

Enabling Help in applications

is called by the Help Manager if more than one viewer can provide Help on a topic.
The viewer is expected to return a TStringList, which is freed by the Help Manager.
The strings in the returned list should map to the pages available for that keyword,
but the characteristics of that mapping can be determined by the viewer. In the case
of the WinHelp viewer on Windows and the HyperHelp viewer on Linux, the string
list always contains exactly one entry. HyperHelp provides its own indexing, and
duplicating that elsewhere would be pointless duplication. In the case of the Man
page viewer (Linux), the string list consists of multiple strings, one for each section of
the manual which contains a page for that keyword.

ICustomHelpViewer.ShowHelp (const HelpString: String)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless the UnderstandsKeyword method is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

* CanShowTableOfContents
* ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling
ICustomHelp Viewer.CanShowTableOfContents : Boolean and then invokes a particular
Help viewer by calling ICustomHelp Viewer.ShowTableOfContents.

It is reasonable for a particular viewer to refuse to allow requests to support a table of
contents. The Man page viewer does this, for example, because the concept of a table
of contents does not map well to the way Man pages work; the HyperHelp viewer
supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to WinHelp on Windows and HyperHelp on Linux. It is not
reasonable, however, for an implementation of ICustomHelpViewer to respond to
queries through CanShowTableOfContents with the answer True, and then ignore
requests through ShowTableOfContents.

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

8-28 Developer’'s Guide

Enabling Help in applications

Applications can talk to systems requiring context-based Help by extending the
object that implements ICustomHelpViewer to also implement IExtendedHelp Viewer.
IExtendedHelpViewer also provides support for talking to Help systems that allow you
to jump directly to high-level topics instead of using keyword searches. The built-in
WinHelp viewer does this for you automatically.

IExtendedHelpViewer exposes four functions. Two of them—UnderstandsContext and
DisplayHelpByContext—are used to support context-based Help; the other two—
UnderstandsTopic and DisplayTopic—are used to support topics.

When an application user presses F1, the Help Manager calls

IExtendedHelpViewer.UnderstandsContext (const ContextID: Integer;
const HelpFileName: String): Boolean

and the currently activated control supports context-based, rather than keyword-
based Help. As with ICustomHelpViewer.UnderstandsKeyword, the Help Manager
queries all registered Help viewers iteratively. Unlike the case with
ICustomHelpViewer.UnderstandsKeyword, however, if more than one viewer supports
a specified context, the first registered viewer with support for a given context is
invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext (const ContextID: Integer;
const HelpFileName: String)

after it has polled the registered Help viewers.

The topic support functions work the same way:
IExtendedHelpViewer.UnderstandsTopic (const Topic: String): Boolean

is used to poll the Help viewers asking if they support a topic;
IExtendedHelpViewer.DisplayTopic (const Topic: String)

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

IHelpSelector is a companion to [CustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

Building applications, components, and libraries 8-29

Enabling Help in applications

Note

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the TStringList) that represents the selected string; the
TStringList is then freed by the Help Manager.

The Help Manager may get confused if the strings are rearranged; it is recommended
that implementors of IHelpSelector refrain from doing this. The Help system only
supports one HelpSelector; when new selectors are registered, any previously
existing selectors are disconnected.

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, 1Special WinHelpViewer, and IHelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to:

* Register the Help viewer.
* Register the Help Selector.

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable
and pass it to the function RegisterViewer. RegisterViewer is a flat function exported by
the HelpIntfs unit, which takes as an argument an ICustomHelpViewer and returns an
IHelpManager. The IHelpManager should be stored for future use.

Registering Help selectors

The unit that contains the object implementation must use either Forms in the VCL or
QForms in CLX. An instance of the object must be declared in the var section of the
implementing unit.

The initialization section of the implementing unit must register the Help selector
through the HelpSystem property of the global Application object:

Application.HelpSystem.AssignHelpSelector (myHelpSelectorInstance)

This procedure does not return a value.

8-30 Developer’'s Guide

Using Help in a VCL application

Using Help in a VCL application

The following sections explain how to use Help within a VCL application.

¢ How TApplication processes VCL Help~
¢ How VCL controls process Help

¢ Calling a Help system directly~

¢ Using IHelpSystem

How TApplication processes VCL Help

TApplication in the VCL provides four methods that are accessible from application
code:

Table 8.5 Help methods in TApplication

Method Description

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to WinHelp.
Help requests forwarded through this mechanism are passed only to
implementations of IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.
HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.
HelpJump Requests the display of a particular topic.

All four functions take the data passed to them and forward it through a data
member of TApplication, which represents the Help system. That data member is
directly accessible through the property HelpSystem.

How VCL controls process Help

All VCL controls that derive from TControl expose several properties that are used by
the Help system: HelpType, HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if
the control’s designer expects help to be provided via keyword-based Help or
context-based Help. If the HelpType is set to htKeyword, then the Help system expects
the control to use keyword-based Help, and the Help system only looks at the
contents of the HelpKeyword property. Conversely, if the HelpType is set to htContext,
the Help system expects the control to use context-based Help and only looks at the
contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be
called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of Help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWinControl calls InvokeHelp.

Building applications, components, and libraries 8-31

Using Help in a CLX application

Using Help in a CLX application

The following sections explain how to use Help within a CLX application.

How TApplication processes CLX Help~
How CLX controls process Help

Calling a Help system directly~

Using IHelpSystem

How TApplication processes CLX Help

TApplication in a CLX application provides two methods that are accessible from
application code:

* ContextHelp, which invokes the Help system with a request for context-based Help

e KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

How CLX controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

8-32 Developer’'s Guide

Calling a Help system directly

Calling a Help system directly

For additional Help system functionality not provided by VCL or CLX applications,
TApplication provides a read-only property that allows direct access to the Help
system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but
one interface is used to allow the application to talk to the Help Manager, and one is
used to allow the Help viewers to talk to the Help Manager.

Using IHelpSystem

IHelpSystem allows an application to do three things:

¢ Provides path information to the Help Manager.
e Provides a new Help selector.
¢ Asks the Help Manager to display Help.

Providing path information is important because the Help Manager is platform-
independent and Help system-independent and so is not able to ascertain the
location of Help files. If an application expects Help to be provided by an external
Help system that is not able to ascertain file locations itself, it must provide this
information through the [HelpSystem’s ProvideHelpPath method, which allows the
information to become available through the IHelpManager’s GetHelpPath method.
(This information propagates outward only if the Help viewer asks for it.)

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide Help for the same keyword.
For more information, see the section “Implementing IHelpSelector” on page 8-29.

IHelpSystem exports four procedures and one function to request the Help Manager
to display Help:

* ShowHelp

* ShowContextHelp

* ShowTopicHelp

* ShowTableOfContents
* Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX
application; it allows processing of WM_HELP messages that cannot be mapped
directly onto requests for keyword-based, context-based, or topic-based Help. The
other methods each take two arguments: the keyword, context ID, or topic for which
help is being requested, and the Help file in which it is expected that help can be
found.

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

Building applications, components, and libraries 8-33

Customizing the IDE Help system

Customizing the IDE Help system

The IDE supports multiple Help viewers in exactly the same way that a VCL or CLX
application does: it delegates Help requests to the Help Manager, which forwards
them to registered Help viewers. The IDE makes use of the same WinHelpViewer
that the VCL uses.

The IDE comes with two Help viewers installed: the HyperHelp viewer, which
allows Help requests to be forwarded to HyperHelp, an external WinHelp emulator
under which the Kylix Help files are viewed, and the Man page viewer, which allows
you to access the Man system installed on most Unix machines. Because it is
necessary for Kylix Help to work, the HyperHelp viewer may not be removed; the
Man page viewer ships in a separate package whose source is available in the
examples directory.

To install a new Help viewer in the IDE, you do exactly what you would do ina VCL
or CLX application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE:
1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the initialization section of the unit, make sure that the instance is passed to the
RegisterHelpViewer function.

8-34 Developer’s Guide

Developing the application
user interface

When you open the IDE or create a new project, a blank form is displayed on the
screen. You design your application’s user interface (UI) by placing and arranging
visual components, such as windows, menus, and dialog boxes, from the Component
palette onto the form.

Once a visual component is on the form, you can adjust its position, size, and other
design-time properties, and code its event handlers. The form takes care of the
underlying programming details.

The following sections describe some of the major interface tasks, such as working
with forms, creating component templates, adding dialog boxes, and organizing
actions for menus and toolbars.

Controlling application behavior

TApplication, TScreen, and TForm are the classes that form the backbone of all
applications by controlling the behavior of your project. The TApplication class forms
the foundation of an application by providing properties and methods that
encapsulate the behavior of a standard program. TScreen is used at runtime to keep
track of forms and data modules that have been loaded as well as maintaining
system-specific information such as screen resolution and available display fonts.
Instances of the TForm class are the building blocks of your application’s user
interface. The windows and dialog boxes in your application are based on TForm.

Developing the application user interface 9-1

Controlling application behavior

Working at the application level

The global variable Application, of type TApplication, is in every VCL- or CLX-based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
handles how you call a Help file from the menu of your program. Understanding
how TApplication works is more important to a component writer than to developers
of stand-alone applications, but you should set the options that Application handles in
the Project | Options Application page when you create a project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the Onldle event lets you perform background processes when the
application is not busy, the OnMessage event lets you intercept Windows messages
(on Windows only), the OnEvent event lets you intercept events, and so on. Although
you can’t use the IDE to examine the properties and events of the global Application
variable, another component, TApplicationEvents, intercepts the events and lets you
supply event-handlers using the IDE.

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying:

¢ The look of the cursor.

¢ The size of the window in which your application is running.
¢ A list of fonts available to the screen device.

¢ Multiple screen behavior (Windows only).

If your Windows application runs on multiple monitors, Screen maintains a list of
monitors and their dimensions so that you can effectively manage the layout of your
user interface.

For CLX applications, the default behavior is that applications create a screen
component based on information about the current screen device and assign it to
Screen.

9-2 Developer’s Guide

Setting up forms

Setting up forms

Note

TForm is the key class for creating GUI applications. When you open a default project
or create a new project, a form appears on which you can begin your UI design.

Using the main form

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

To change the project main form:
1 Choose Project | Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Hiding the main form

You can prevent the main form from appearing when your application starts by
using the global Application variable (described in , “Working at the application
level,” on page 9-2).

To hide the main form at startup:
1 Choose Project | View Source to display the main project file.

2 Add the following code after the call to Application.CreateForm and before the call
to Application.Run.

Application.ShowMainForm := False;
Forml.Visible := False; { the name of your main form may differ }

You can set the form’s Visible property to False using the Object Inspector at design
time rather than setting it at runtime as in the previous example.

Developing the application user interface 9-3

Setting up forms

Adding forms

To add a form to your project, select File | New | Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View | Project
Manager) and you can display a list of the forms alone by choosing View | Forms.

Linking forms

Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you'll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.

2 Choose File| Use Unit.

3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a
reference to the other’s form unit, meaning that the linked form and its components
are now in scope for the linking form.

Avoiding circular unit references

When two forms must reference each other, it’s possible to cause a “Circular
reference” error when you compile your program. To avoid such an error, do one of
the following:

* Place both uses clauses, with the unit identifiers, in the implementation parts of
the respective unit files. (This is what the File | Use Unit command does.)

¢ Place one uses clause in an interface part and the other in an implementation
part. (You rarely need to place another form’s unit identifier in this unit’s interface

part.)

Do not place both uses clauses in the interface parts of their respective unit files. This
generates the “Circular reference” error at compile time.

9-4 Developer’s Guide

Setting up forms

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight, MaxWidth,
MaxHeight: Integer) of object;

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (T’Form, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

Developing the application user interface 9-5

Using forms

Using forms

When you create a form from the IDE, Delphi automatically creates the form in
memory by including code in the main entry point of your application function.
Usually, this is the desired behavior and you don’t have to do anything to change it.
That is, the main window persists through the duration of your program, so you
would likely not change the default behavior when creating the form for your main
window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user

input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, Delphi automatically creates the application’s main form in memory by
including the following code in the application’s main entry point:

Application.CreateForm(TForml, Forml);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any unit that includes the form’s unit in its uses clause can access the
form via this variable.

All forms created in this way in the project unit appear when the program is invoked
and exist in memory for the duration of the application.

Displaying an auto-created form

If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

procedure TMainForm.ButtonlClick(Sender: TObject);
begin

ResultsForm.ShowModal;
end;

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

9-6 Developer’s Guide

Note

Using forms

Creating forms dynamically

You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:
1 Select the File | New | Form from the main menu to display the new form.

2 Remove the form from the Auto-create forms list of the Project | Options | Forms
page.
This removes the form’s invocation at startup. As an alternative, you can manually
remove the following line from program’s main entry point:

Application.CreateForm(TResultsForm, ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

procedure TMainForm.ButtonlClick(Sender: TObject);
begin
ResultsForm := TResultForm.Create(self);
try
ResultsForm.ShowModal;
finally
ResultsForm.Free;
end;
end;

In the above example, note the use of try..finally. Putting in the line resultsrorn.Free; in
the finally clause ensures that the memory for the form is freed even if the form
raises an exception.

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated if you needed to use ResultsForm elsewhere in the
application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

If you create a form using its constructor, be sure to check that the form is not in the
Auto-create forms list on the Project Options | Forms page. Specifically, if you create
the new form without deleting the form of the same name from the list, Delphi
creates the form at startup and this event-handler creates a new instance of the form,
overwriting the reference to the auto-created instance. The auto-created instance still
exists, but the application can no longer access it. After the event-handler terminates,
the global variable no longer points to a valid form. Any attempt to use the global
variable will likely crash the application.

Developing the application user interface 9-7

Using forms

Creating modeless forms such as windows

You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables for each instance.

Creating a form instance using a local variable

A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

procedure TMainForm.ButtonlClick(Sender: TObject);
var
RF:TResultForm;
begin
RF:=TResultForm.Create(self)
RF.ShowModal;
RF.Free;
end;

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is the
owner of the form being created. (The owner is the calling application object or form
object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using this new constructor. The example form class below shows an
additional constructor, with the extra argument whichButton. This new constructor is
added to the form class manually.

TResultsForm = class(TForm)
ResultsLabel: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);

9-8 Developer’s Guide

Using forms

private
public

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin
inherited Create(Owner);
case whichButton of
1: ResultsLabel.Caption := 'You picked the first button.';
2: ResultsLabel.Caption 'You picked the second button.';
3: ResultsLabel.Caption := 'You picked the third button.';
end;
end;

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var
rf: TResultsForm;
begin
rf := TResultsForm.CreateWithButton(2, self);
rf.ShowModal;
rf.Free;
end;

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms

You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red,” “Green,” “Blue,” and so on). The selected
color name string in ColorListBox is automatically stored in a property called

Developing the application user interface 9-9

Using forms

CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

TColorForm = class(TForm)

ColorListBox:TListBox;

procedure ColorListBoxClick(Sender: TObject);
private

FColor:String;
public

property CurColor:String read FColor write FColor;
end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the
actual value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var
Index: Integer;
begin
Index := ColorListBox.ItemIndex;
if Index >= 0 then
CurrentColor := ColorListBox.Items[Index]
else
CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton

might look like this:
procedure TResultForm.UpdateButtonClick(Sender: TObject);
var
MainColor: String;
begin
if Assigned(ColorForm) then
begin

MainColor := ColorForm.CurrentColor;
{do something with the string MainColor}
end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It
then gets the value of ColorForm’s CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could
get the current color without using the CurrentColor property (for example, MainColor
:= ColorForm.GetColor;). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do
MainColor := Items[ItemIndex];

9-10 Developer’'s Guide

Note

Using forms

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms

Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is when form A launches modal form B. When
form B is closed, form A needs to know what the user did with form B to decide how
to proceed with the processing of form A. If form B is still in memory, it can be
queried through properties or member functions just as in the modeless forms
example above. But how do you handle situations where form B is deleted from
memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
SelectButton: TButton;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure SelectButtonClick(Sender: TObject);
private
FColor: Pointer;
public
constructor CreateWithColor (Value: Pointer; Owner: TComponent);
end;

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a Pointer
argument. Presumably, this Pointer points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin

FColor := Value;

String(FColor™) := '';
end;

The constructor saves the pointer to a private data member FColor and initializes the
string to an empty string.

To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 9-6.

Developing the application user interface 9-11

Using forms

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin

with ColorListBox do

if ItemIndex >= 0 then
String(FColor®) := ColorListBox.Items[ItemIndex];

end;

Close;
end;

Notice that the event handler stores the selected color name in the string referenced
by the pointer that was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to

an existing string. For example, assume ColorForm was instantiated by a form called

ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var
MainColor: String;
begin
GetColor (Addr (MainColor)) ;
if MainColor <> '' then
{do something with the MainColor string}
else
{do something else because no color was picked}
end;

procedure GetColor (PColor: Pointer);

begin
ColorForm := TColorForm.CreateWithColor (PColor, Self);
ColorForm. ShowModal;
ColorForm.Free;

end;

UpdateButtonClick creates a String called MainColor. The address of MainColor is
passed to the GetColor function which creates ColorForm, passing the pointer to
MainColor as an argument to the constructor. As soon as ColorForm is closed it is
deleted, but the color name that was selected is still preserved in MainColor,
assuming that a color was selected. Otherwise, MainColor contains an empty string
which is a clear indication that the user exited ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having MainColor default
to an empty string).

9-12 Developer's Guide

Reusing components and groups of components

Reusing components and groups of components

You can save and reuse work you’ve done with components using several tools:

¢ Configure and save groups of components in component templates. See “Creating
and using component templates” on page 9-13.

e Save forms, data modules, and projects in the Object Repository. The Repository
gives you a central database of reusable elements and lets you use form
inheritance to propagate changes. See “Using the Object Repository” on page 8-21.

¢ Save frames on the Component palette or in the Repository. Frames use form
inheritance and can be embedded into forms or other frames. See “Working with
frames” on page 9-14.

¢ Create a custom component, the most complicated but most flexible way of reusing

code. See Chapter 1, “Overview of component creation,” of the Component Writer’s
Guide.

Creating and using component templates

You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component | Create Component Template.

4 Specify a name for the component template in the Component Template
Information edit box. The default proposal is the component type of the first
component selected in step 2 followed by the word “Template.” For example, if
you select a label and then an edit box, the proposed name will be
“TLabelTemplate.” You can change this name, but be careful not to duplicate
existing component names.

Developing the application user interface 9-13

Working with frames

5 In the Palette page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Next to Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component | Configure
Palette.

Working with frames

Note

A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Creating frames

To create an empty frame, choose File | New | Frame, or choose File | New | Other and
double-click Frame. You can then drop components (including other frames) onto
your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File | New |
Application, close the new form and unit without saving them, then choose File |
New | Frame and save the project.

When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

9-14 Developer’'s Guide

Working with frames

At design time, you can display any frame included in the current project by
choosing View | Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

Adding frames to the Component palette

Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click the frame, and
choose Add to Palette. When the Component Template Information dialog opens,
select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

¢ Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

* Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, Delphi declares a new class
that descends from the frame you selected. (Similarly, when you add a new form to a
project, Delphi declares a new class that descends from TForm.) This means that
changes made later to the original (ancestor) frame propagate to the embedded
frame, but changes to the embedded frame do not propagate backward to the
ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

Developing the application user interface 9-15

Working with frames

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

Figure 9.1 A frame with data-aware controls and a data source component

I amne | T

Address |

City State/Province Fostal Code

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage.Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Iimage on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

¢ Add the frame to the Object Repository.
¢ Distribute the frame’s unit (.pas) and form (.dfm or .xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository. For more information, see
“Using the Object Repository” on page 8-21.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it,
they will have to open it as part of a project.

9-16 Developer’'s Guide

Developing dialog boxes

Developing dialog boxes

Note

The dialog box components on the Dialogs page of the Component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening, saving, and printing files. Dialog boxes
display and/or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns True; if the user chooses Cancel to escape from the dialog box without
making or saving changes, Execute returns False.

For CLX applications, you can use the dialogs provided in the QDialogs unit. For
operating systems that have native dialog box types for common tasks, such as for
opening or saving a file or for changing font or color, you can use the UseNativeDialog
property. Set UseNativeDialog to True if your application will run in such an
environment, and if you want it to use the native dialogs instead of the Qt dialogs.

Using open dialog boxes

One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code can be placed in an Action and linked to the Action property of a
TMainMenu subitem or be placed in the subitem’s OnClick event:

if OpenDialogl.Execute then
filename := OpenDialogl.FileName;

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

Developing the application user interface 9-17

Organizing actions for toolbars and menus

Organizing actions for toolbars and menus

Several features simplify the work of creating, customizing, and maintaining menus
and toolbars. These features allow you to organize lists of actions that users of your
application can initiate by pressing a button on a toolbar, choosing a command on a
menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example,
the Cut, Copy, and Paste commands often appear on both an Edit menu and on a
toolbar. You only need to add the action once to use it in multiple UI elements in
your application.

On the Windows platform, tools are provided to make it easy to define and group
actions, create different layouts, and customize menus at design time or runtime.
These tools are known collectively as ActionBand tools, and the menus and toolbars
you create with them are known as action bands. In general, you can create an
ActionBand user interface as follows:

¢ Build the action list to create a set of actions that will be available for your
application (use the Action Manager, TActionManager)

* Add the user interface elements to the application (use ActionBand components
such as TActionMainMenuBar and TActionToolBar)

¢ Drag-and-drop actions from the Action Manager onto the user interface elements

The following table defines the terminology related to setting up menus and toolbars:

Table 9.1 Action setup terminology

Term Definition

Action A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use in
your applications as is. For example, file operations such as File Open, File
SaveAs, File Run, and File Exit are included along with many others for editing,
formatting, searches, help, dialogs, and window actions. You can also program
custom actions and access them using action lists and the Action Manager.

Action band A container for a set of actions associated with a customizable menu or toolbar.
The ActionBand components for main menus and toolbars
(TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar. For
example, one of the standard action categories is Search which includes Find,
FindFirst, FindNext, and Replace actions all at once.

Action classes Classes that perform the actions used in your application. All of the standard
actions are defined in action classes such as TEditCopy, TEditCut, and
TEditUndo. You can use these classes by dragging and dropping them from the
Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification to
initiate an action. When the client receives a user command (such as a mouse
click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to
something a user does.

9-18 Developer’'s Guide

Organizing actions for toolbars and menus

Table 9.1 Action setup terminology (continued)
Term Definition

Action Manager Groups and organizes logical sets of actions that can be reused on ActionBand
components. See TActionManager.

Menu Lists commands that the user of the application can execute by clicking on
them. You can create menus by using the ActionBand menu class
TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a control,
such as a memo or a data control. Not all actions require a target. For example,
the standard help actions ignore the target and simply launch the help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the program
to perform some action, such as printing the current document. You can create
toolbars by using the ActionBand toolbar component TActionToolBar, or by
using the cross-platform component TToolBar.

If you are doing cross-platform development, refer to “Using action lists” on
page 9-26.

What is an action?

As you are developing your application, you can create a set of actions that you can
use on various Ul elements. You can organize them into categories that can be
dropped onto a menu as a set (for example, Cut, Copy, and Paste) or one at a time
(for example, Tools | Customize).

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item. You can create a repertoire
of actions that are available to your application through menus, through buttons,
through toolbars, context menus, and so on.

Actions are associated with other components:

* Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenultem,
TButton, TCheckBox, TRadioButton, and so on). Actions also reside on ActionBand
components such as TActionMainMenuBar and TActionToolBar. When the client
receives a user command (such as a mouse click), it initiates an associated action.
Typically, a client’s OnClick event is associated with its action’s OnExecute event.

e Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

Developing the application user interface 9-19

Organizing actions for toolbars and menus

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to False), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action
List editor (displayed by double-clicking an action list object, TActionList). These
actions are later connected to client controls.

Setting up action bands

Because actions do not maintain any “layout” (either appearance or positional)
information, Delphi provides action bands which are capable of storing this data.
Action bands provide a mechanism that allows you to specify layout information and
a set of controls. You can render actions as Ul elements such as toolbars and menus.

You organize sets of actions using the Action Manager (T'ActionManager). You can
use standard actions provided or create new actions of your own.

You then create the action bands:

e Use TActionMainMenuBar to create a main menu.
e Use TActionToolBar to create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag
and drop items from the Action Manager editor onto the action band at design time.
At runtime, application users can also customize the application’s menus or toolbars
using a dialog box similar to the Action Manager editor.

Creating toolbars and menus

Note This section describes the recommended method for creating menus and toolbars in
Windows applications. For cross-platform development, you need to use TToolBar
and the menu components, such as TMainMenu, organizing them using action lists
(TActionList). See “Setting up action lists” on page 9-26.

You use the Action Manager to automatically generate toolbars and main menus
based on the actions contained in your application. The Action Manager manages
standard actions and any custom actions that you have written. You then create Ul
elements based on these actions and use action bands to render the actions items as
either menu items or as buttons on a toolbar.

The general procedure for creating menus, toolbars, and other action bands involves
these steps:

* Drop an Action Manager onto a form.

¢ Add actions to the Action Manager, which organizes them into appropriate action
lists.

¢ Create the action bands (that is, the menu or the toolbar) for the user interface.

¢ Drag and drop the actions into the application interface.

9-20 Developer’'s Guide

Organizing actions for toolbars and menus

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:

1

From the Additional page of the Component palette, drop an Action Manager
component (TActionManager) onto the form where you want to create the toolbar
or menu.

If you want images on the menu or toolbar, drop an ImageList component from
the Win32 page of the Component palette onto a form. (You need to add the
images you want to use to the ImageList or use the one provided.)

From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

¢ TActionMainMenuBar (for designing main menus)
¢ TActionToolBar (for designing toolbars)

Connect the ImageList to the Action Manager: with focus on the Action Manager
and in the Object Inspector, select the name of the ImageList from the Images
property.

Add actions to the Action Manager editor’s action pane:

* Double-click the Action Manager to display the Action Manager editor.

¢ (Click the drop-down arrow next to the New Action button (the leftmost button
at the top right corner of the Actions tab, as shown in Figure 9.2) and select New
Action or New Standard Action. A tree view is displayed. Add one or more
actions or categories of actions to the Action Manager’s actions pane. The
Action Manager adds the actions to its action lists.

Figure 9.2 Action Manager editor

Editing Form1_ActionManagerl

Toolbars ~ Actions lOptions]

1 New Action button &
Al Actions j 3l - drop-down button.

New Action
Mew Standard Action...

Ackions:

Description

To add actions ko your application simply drag and drop from either

Cateqgaries or Ackions onto an existing ActionBar,

6 Drag and drop single actions or categories of actions from the Action Manager

editor onto the menu or toolbar you are designing.

Developing the application user interface 9-21

Organizing actions for toolbars and menus

To add user-defined actions, create a new TAction by pressing the New Action button
and writing an event handler that defines how it will respond when fired. See “What
happens when an action fires” on page 9-27 for details. Once you've defined the
actions, you can drag and drop them onto menus or toolbars like the standard
actions.

Adding color, patterns, or pictures to menus, buttons, and toolbars

You can use the Background and BackgroundLayout properties to specify a color,
pattern, or bitmap to use on a menu item or button. These properties also let you set
up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If
you want to set the background of the items in a menu, in the form designer click on
the menu item that contains the items. For example, selecting File lets you change the
background of items appearing on the File menu. You can assign a color, pattern, or
bitmap in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the
element. Colors or images can be placed behind the caption normally, stretched to fit
the item area, or tiled in small squares to cover the area.

Items with normal (bINormal), stretched (blStretch), or tiled (blTile) backgrounds are
rendered with a transparent background. If you create a banner, the full image is
placed on the left (blLeftBanner) or the right (bIRightBanner) of the item. You need to
make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar),
select the action band and choose the TActionClientBar through the action band
collection editor. You can set Background and BackgroundLayout properties to specify a
color, pattern, or bitmap to use on the entire toolbar or menu.

Adding icons to menus and toolbars

You can add icons next to menu items or replace captions on toolbars with icons. You
organize bitmaps or icons using an ImageList component.

1 Drop an ImageList component from the Win32 page of the Component palette onto
a form.

2 Add the images you want to use to the image list: Double-click the ImageList icon.
Click Add and navigate to the images you want to use and click OK when done.
Some sample images are included in Program Files\Common Files\ Borland
Shared\Images. (The buttons images include two views of each for active and
inactive buttons.)

3 From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

* TActionMainMenuBar (for designing main menus)
e TActionToolBar (for designing toolbars)

4 Connect the image list to the Action Manager. First, set the focus on the Action
Manager. Next, in the Object Inspector, select the name of the image list from the
Images property, such as ImageListl.

9-22 Developer’'s Guide

Organizing actions for toolbars and menus

5 Use the Action Manager editor to add actions to the Action Manager. You can
associate an image with an action by setting its Imagelndex property to its number
in the image list.

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar.

7 For toolbars where you only want to display the icon and no caption: select the
Toolbar action band and double-click its Items property. In the collection editor,
you can select one or more items and set their Caption properties.

8 The images automatically appear on the menu or toolbar.

Selecting menu and toolbar styles

Just as you can add different colors and icons to individual menus and toolbars, you
can select different menu and toolbar styles to give your application a comprehensive
look and feel. In addition to the standard style, your application can take on the look
of Windows XP, Encarta™, or a custom presentation using a coordinated color
scheme. To give your application a coherent look and feel, the IDE uses colormaps.

A colormap can be simple, merely adding the appropriate colors to existing menus
and toolbars. Or, a colormap can be complex, altering numerous subtle details of a
menu’s or toolbar’s look and feel, including the smallest button edges or menu
shadows. The XP colormap, for example, has numerous subtle refinements for menu
and toolbar classes. The IDE handles the details for you, automatically using the
appropriate colormaps.

By default, the component library uses the XP style. To centrally select an alternate
style for all your application’s menus and toolbars, use the Style property on the
ActionManager component.

1 From the Additional page of the Component palette, drop an ActionManager
component onto a form.

2 In the Object Inspector, select the Style property. You can choose from a number of
different styles.

3 Once you've selected a style, your application’s menus and toolbars will take on
the look of the new colormap.

You can customize the look and feel of a style using colormap components. To
customize the look and feel of a colormap:

1 From the Additional page of the Component palette, drop the appropriate
colormap component onto a form (for example, XPColorMap or StandardColorMap).
In the Object Inspector, you will see numerous properties to adjust appearance,
many with drop downs from which you can select alternate values.

2 Change each ToolBar or menu’s ColorMap property to point to the colormap object
that you dropped on the form.

3 In the Object Inspector, adjust the colormap’s properties to change the appearance
of your toolbars and menus as desired.

Developing the application user interface 9-23

Organizing actions for toolbars and menus

Note Be careful when customizing a colormap. When you select a new, alternate colormap,
your old settings will be lost. You may want to save a copy of your application if you
want to experiment with alternate settings and possibly return to a previous
customization.

Creating dynamic menus

Dynamic menus and toolbars allow users to modify the application in various ways
at run time. Some examples of dynamic usage include customizing the appearance of
toolbars and menus, hiding unused items, and responding to most recently used lists
(MRUgs).

Creating toolbars and menus that users can customize

You can use action bands with the Action Manager to create customizable toolbars
and menus. At runtime, users of your application can customize the toolbars and
menus (action bands) in the application user interface using a customization dialog
similar to the Action Manager editor.

To allow the user of your application to customize an action band in your
application:

1 Drop an Action Manager component onto a form.
2 Drop your action band components (T'ActionMainMenuBar, TActionToolBar).
3 Double-click the Action Manager to display the Action Manager editor:

* Add the actions you want to use in your application. Also add the Customize
action, which appears at the bottom of the standard actions list.

¢ Drop a TCustomizeDlg component from the Additional tab onto the form, and
connect it to the Action Manager using its ActionManager property. You
specify a filename for where to stream customizations made by users.

* Drag and drop the actions onto the action band components. (Make sure you
add the Customize action to the toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command
that displays a customization dialog box similar to the Action Manager editor. They
can drag and drop menu items and create toolbars using the same actions you
supplied in the Action Manager.

Hiding unused items and categories in action bands

One benefit of using ActionBands is that unused items and categories can be hidden
from the user. Over time, the action bands become customized for the application
users, showing only the items that they use and hiding the rest from view. Hidden
items can become visible again when the user presses a drop-down button. Also, the
user can restore the visibility of all action band items by resetting the usage statistics
from the customization dialog. Item hiding is the default behavior of action bands,
but that behavior can be changed to prevent hiding of individual items, all the items

9-24 Developer’'s Guide

Organizing actions for toolbars and menus

in a particular collection (like the File menu), or all of the items in a given action
band.

The action manager keeps track of the number of times an action has been called by
the user, which is stored in the associated TActionClientltem’s UsageCount field. The
action manager also records the number of times the application has been run, which
we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of
sessions the item can go unused before it becomes hidden, which is then compared
with the difference between the current session number and the session number of
the last use of the item. If that difference is greater than the number determined in
PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown
in the table below:

Table 9.2 Default values of the action manager’s PrioritySchedule property

Number of sessions in which Number of sessions an item will
an action band item was used remain unhidden after its last use

0,1 3
2 6
3 9
4,5 12
6-8 17
9-13 23
14-24 29
25 or more 31

It is possible to disable item hiding at design time. To prevent a specific action (and
all the collections containing it) from becoming hidden, find its TActionClientltem
object and set its UsageCount to -1. To prevent hiding for an entire collection of items,
such as the File menu or even the main menu bar, find the TActionClients object
associated with the collection and set its HideUnused property to False.

Creating most recently used (MRU) lists

A most recently used list (MRU) reflects the user’s most recently accessed files in a
specific application. Using action bands, you can code MRU lists in your
applications.

When building MRUs for your applications, it is important not to hard code
references to specific numerical indexes into the Action Manager’s ActionBars
property. At runtime, the user may change the order of items or even delete them
from the action bands, which in turn will change the numerical ordering of the index.
Instead of referring to index numbering, TActionManager includes methods that
facilitate finding items by action or by caption.

For more information about MRU lists, sample code, and methods for finding actions
in lists, see FindItemByAction and FindItemByCaption in the online Help.

Developing the application user interface 9-25

Using action lists

Using action lists

Note The contents of this section apply to setting up toolbars and menus for cross-platform
development. For Windows development you can also use the methods described
here. However, using action bands instead is simpler and offers more options. The
action lists will be handled automatically by the Action Manager. See “Organizing
actions for toolbars and menus” on page 9-18 for information on using action bands
and the Action Manager.

Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:

¢ Create the action list.

¢ Add actions to the action list.
* Set properties on the actions.
e Attach clients to the action.

Here are the steps in more detail:

1 Drop a T'ActionList object onto your form or data module. (ActionList is on the
Standard page of the Component palette.)

2 Double-click the TActionList object to display the Action List editor.

a Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

b The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Action Classes dialog box. Select all the
standard actions you want to add to the action list and click OK.

or
¢ Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, Imagelndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

9-26 Developer’'s Guide

Note

Using action lists

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 9-27 for details.

5 Attach the actions in the action list to the clients that require them:

¢ (Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

* Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you'll need to
understand more about what happens when the action is fired.

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events

When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates
the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

procedure TForml.ActionlExecute(Sender: TObject);
begin
{ Toggle Toolbarl's visibility }
ToolBarl.Visible := not ToolBarl.Visible;
end;

For general information about events and event handlers, see “Working with events
and event handlers” on page 6-3.

You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

e Action list
¢ Application
e Action

Developing the application user interface 9-27

Using action lists

When the user clicks on a client control, Delphi calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail, Delphi
follows this dispatching sequence when looking for a way to respond to the user
action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

The action list’s event handler has a parameter called Handled, that returns False by
default. If the handler is assigned and it handles the event, it returns True, and the
processing sequence ends here. For example:

procedure TForml.ActionListlExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

Handled := True;
end;

If you don’t set Handled to True in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list's OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns False
by default. If an event handler is assigned and handles the event, it returns True,
and the processing sequence ends here. For example:

procedure TForml.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

{ Prevent execution of all actions in Application }

Handled := True;
end;

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is
found at any level, the application next tries to find a target on which to execute the
action. When the application locates a target that the action knows how to address, it
invokes the action. See the next section for details on how the application locates a
target that can respond to a predefined action class.

9-28 Developer’'s Guide

Warning

Using action lists

How actions find their targets

“What happens when an action fires” on page 9-27 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:
1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the Onlpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnlUpdate
event handler for an action that is “checked” when the toolbar is visible:

procedure TForml.ActionlUpdate(Sender: TObject);
begin
{ Indicate whether ToolBarl is currently visible }
(Sender as TAction).Checked := ToolBarl.Visible;
end;

Do not add time-intensive code to the Onlpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

Developing the application user interface 9-29

Using action lists

Predefined action classes

You can add predefined actions to your application by right-clicking on the Action
Manager and choosing New Standard Action. The New Standard Action Classes
dialog box is displayed listing the predefined action classes and the associated
standard actions. These are actions that are included with Delphi and they are objects
that automatically perform actions. The predefined actions are organized within the
following classes:

Table 9.3 Action classes

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the base class for
descendants that each override the ExecuteTarget method to implement copy, cut, and
paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting options such
as bold, italic, underline, strikeout, and so on. TRichEditAction is the base class for
descendants that each override the ExecuteTarget and UpdateTarget methods to
implement formatting of the target.

Help Standard Help actions: Used with any target. THelpAction is the base class for
descendants that each override the ExecuteTarget method to pass the command onto a
Help system.

Window Standard window actions: Used with forms as targets in an MDI application.

TWindowAction is the base class for descendants that each override the ExecuteTarget
method to implement arranging, cascading, closing, tiling, and minimizing MDI child

forms.
File File actions: Used with operations on files such as File Open, File Run, or File Exit.
Search Search actions: Used with search options. TSearchAction implements the common

behavior for actions that display a modeless dialog where the user can enter a search
string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as the Prev and
Next buttons on a wizard.

List List control actions: Used for managing items in a list view.

Dialog Dialog actions: Used with dialog components. TDialogAction implements the common
behavior for actions that display a dialog when executed. Each descendant class
represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing, downloading, and
sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is the base class

for descendants that each override the ExecuteTarget and UpdateTarget methods to
implement navigation and editing of the target.

TDataSetAction introduces a DataSource property that ensures actions are performed on
that dataset. If DataSource is nil, the currently focused data-aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically displaying the
customization dialog for action bands.

All of the action objects are described under the action object names in the online
Help.

9-30 Developer’'s Guide

Using action lists

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of
objects. Then, you can use your custom actions in the same way you use predefined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStd Actns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of
objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Table 9.4 Methods overriden by base classes of specific actions

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a tool button or
menu item) that is linked to the action. The HandlesTarget method lets the action
object indicate whether it is appropriate to execute at this time with the object
specified by the Target parameter as a “target”. See “How actions find their
targets” on page 9-29 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction. See
“Updating actions” on page 9-29 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in place of
OnExecute (for example, when the user selects a menu item or presses a tool
button that is linked to this action). See “What happens when an action fires” on
page 9-27 for details.

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);

procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

Developing the application user interface 9-31

Creating and managing menus

For example, the following code registers the standard actions with the IDE:
{ Standard action registration }
RegisterActions('', [TAction], nil);
RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);

RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Creating and managing menus

Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

Opening the Menu Designer.

Building menus.

Editing menu items in the Object Inspector.
Using the Menu Designer context menu.
Using menu templates.

Saving a menu as a template.

Adding images to menu items.

Figure 9.3 Menu terminology

@l view Project Eun Comp Menu items on the menu bar

Accelerator key E—— ’~— Menu items in a menu list
Search Again Chrl+L

Separator bar Inerementsl Search ShiftsCrl-8———————————— Keyboard shortcut
Goto Line Mumber.
Find Error...

Browse Symbol

For information about hooking up menu items to the code that executes when they
are selected, see “Associating menu events with event handlers” on page 6-6.

9-32 Developer’'s Guide

Creating and managing menus

Opening the Menu Designer

You design menus for your application using the Menu Designer. Before you can
start using the Menu Designer, first add either a TMainMenu or TPopupMenu
component to your form. Both menu components are located on the Standard page of
the Component palette.

Figure 9.4 MainMenu and PopupMenu components

Standard }dehm— MainMenu component
IF { % PopupMenu component

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:
¢ Double-click the menu component.
or

¢ From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Figure 9.5 Menu Designer for a main menu

& Form1.MainMenul

] Placeholder for first

menu item

Developing the application user interface 9-33

Creating and managing menus

Note

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 9-41.

Naming menus

As with all components, when you add a menu component to the form, the form
gives it a default name; for example, MainMenul. You can give the menu a more
meaningful name that follows language naming conventions.

he menu name is added to the form’s type declaration, and the menu name then
appears in the Component list.

Naming the menu items

In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

¢ Directly type the value for the Name property.

¢ Type the value for the Caption property first, and let Delphi derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, Delphi
assigns the menu item a Name property of Filel. If you fill in the Name property
before filling in the Caption property, Delphi leaves the Caption property blank
until you type a value.

If you enter characters in the Caption property that are not valid for Delphi
identifiers, Delphi modifies the Name property accordingly. For example, if you
want the caption to start with a number, Delphi precedes the number with a
character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

Table 9.5 Sample captions and their derived names

Component caption Derived name Explanation

&File Filel Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name
S@e@@# N1 Removes all non-standard characters, adding preceding

letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of caption
with no standard characters

9-34 Developer’'s Guide

Note

Creating and managing menus

As with the menu component, Delphi adds any menu item names to the form’s type
declaration, and those names then appear in the Component list.

Adding, inserting, and deleting menu items

The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,
1 Select the position where you want to create the menu item.

If you've just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.
The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You'll see that Delphi has filled in the Name property based
on the value you entered for the caption. (See “Naming the menu items” on

page 9-34.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,
1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,
1 Place the cursor on the menu item you want to delete.
2 Press Del.

You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

Developing the application user interface 9-35

Creating and managing menus

Figure 9.6 Adding menu items to a main menu

Menu Designer displays WYSIWYG]
menu items as you build the menu. Title bar (shows Name property
for Menu component)

« Form1_MainMenul
Eils Edit i....
Cut
Copy

Menu bar

Object Inspector X
Pastel: TMenultern 52

Properies | Evens | ATMenultem object is created and the

SlizElk mhioe Name property set to the menu item
Coption _|&Paste Caption you specify (minus any illegal
Checked False : -
S characters and plus a numeric suffix).
efault False
Enahled True
Grouplndex |0
{ | HelpContext|0
Hirt
Marme Pastal
Placeh.OIder fOr Radioltern |False
menu item ShortCut | (Mone)

Tag 1]
Wisible True

Adding separator bars

Separator bars insert a line between menu items and items on a toolbar. You can use
separator bars to indicate groupings within the menu list or toolbar, or simply to
provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (-) for the caption or press the
hyphen (-) key while the cursor is positioned on the menu where you want a
separator to appear.

To add a separator onto a TActionToolBar, press the insert key and set the new item's
caption to a separator bar (|) or a hyphen (-).

Specifying accelerator keys and keyboard shortcuts

Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

Delphi automatically checks for duplicate accelerators and adjusts them at runtime.
This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator, add an ampersand in front of the appropriate letter. For
example, to add a Save menu command with the S as an accelerator key, type &Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut, use the Object Inspector to enter a value for the
ShortCut property, or select a key combination from the drop-down list. This list is
only a subset of the valid combinations you can type in.

9-36 Developer’'s Guide

Caution

Creating and managing menus

When you add a shortcut, it appears next to the menu item caption.

Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus

Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. Delphi supports as many levels of such submenus as you

want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only

one submenu, if any.)

Figure 9.7 Nested menu structures

% Form1.MainMenul

File Edit Format——

Font
Size

Syl

» Bold
Italic
Undetrline

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

To create a submenu,
1 Select the menu item under which you want to create a submenu.

2 Press Cirl—> to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or 4, to create the next placeholder.
5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus

You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well. Moving a menu item into an existing submenu
just creates one more level of nesting.

Developing the application user interface 9-37

Creating and managing menus

Moving menu items

During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.
To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items

Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you're using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

To add an image to a menu item using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

9-38 Developer’'s Guide

Note

Creating and managing menus
4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

7 Select the menu item you want to have an image in the Object Inspector and set the
Imagelndex property to the corresponding number of the image in the ImageList
(the default value for Imagelndex is -1, which doesn’t display an image).

Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu

You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

Developing the application user interface 9-39

Creating and managing menus

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 9-41.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Table 9.6 Menu Designer context menu commands

Menu command

Insert
Delete
Create Submenu

Select Menu

Save As Template
Insert From
Template

Delete Templates

Insert From
Resource

Action

Inserts a placeholder above or to the left of the cursor.
Deletes the selected menu item (and all its sub-items, if any).

Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Opens the Save Template dialog box, where you can save a menu for
future reuse.

Opens the Insert Template dialog box, where you can select a template to
reuse.

Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Opens the Insert Menu from Resource file dialog box, where you can
choose a .rc or .mnu file to open in the current form.

9-40 Developer’'s Guide

Creating and managing menus

Switching between menus at design time

If you're designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,
1 Right-click in the Menu Designer and choose Select Menu.
The Select Menu dialog box appears.
Figure 9.8 Select Menu dialog box

Select Menu

Mainkdenul
Popuphdenul

QK | Cancal | Help |

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,
1 Give focus to the form whose menus you want to choose from.
2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

Several predesigned menus, or menu templates, contain frequently used commands.
You can use these menus in your applications without modifying them (except to
write code), or you can use them as a starting point, customizing them as you would
a menu you originally designed yourself. Menu templates do not contain any event
handler code.

The menu templates are stored in the BIN subdirectory in a default installation and
have a .dmt extension.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

Developing the application user interface 9-41

Creating and managing menus

To add a menu template to your application,

1

Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

The Insert Template dialog box opens, displaying a list of available menu
templates.

Figure 9.9 Sample Insert Template dialog box for menus

Insert Template

Edlit Menu

File Menu

File Menu ifor TextEdit Exarmple)
Help Menu

Help Menu (Expanded)

MDI Frame bMenu

indow Menu

QK | Cancel | Help |

Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1

Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.
Select the menu template you want to delete, and press Del.

Delphi deletes the template from the templates list and from your hard disk.

9-42 Developer’'s Guide

Creating and managing menus

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .dmt files.
To save a menu as a template,
1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

2 Right-click in the Menu Designer and choose Save As Template.
The Save Template dialog box appears.
Figure 9.10 Save Template dialog box for menus

Save Template [x]

Ternplate Description:

Form1.Mainkdenul

Edit Menu

File Menu

File Menu ifor TextEdit Exarnple)
Help Menu

Help Menu (Expanded)

MDI Frame Menu

Window Menu

QK | Cancel | Help |

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

Developing the application user interface 9-43

Creating and managing menus

Naming conventions for template menu items and event handlers

When you save a menu as a template, Delphi does not save its Name property, since
every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, Delphi then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, Delphi names it Filel. If
you insert it into a menu with an existing menu item named Filel, Delphi names it
File2.

Delphi also does not save any OnClick event handlers associated with a menu saved
as a template, since there is no way to test whether the code would be applicable in
the new form. When you generate a new event handler for the menu template item,
Delphi still generates the event handler name. You can easily associate items in the
menu template with existing OnClick event handlers in the form.

For more information, see “Associating menu events with event handlers” on
page 6-6.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can
insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 7-11.

In multiple document interface (MDI) and Object Linking and Embedding (OLE)
applications, you can also merge menu items into an existing menu bar. The
following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, and for OLE client
applications, your application’s main menu needs to be able to receive menu items
either from another form or from the OLE server object. This is often called merging
menus. Note that OLE technology is limited to Windows applications only and is not
available for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

® Menu, a property of the form
* Grouplndex, a property of menu items in the menu

9-44 Developer’'s Guide

Creating and managing menus

Specifying the active menu: Menu property

The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Forml.Menu := SecondMenu;

Determining the order of merged menu items: Groupindex property

The Grouplndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for Grouplndex is 0. Several rules apply when specifying a value for
Grouplndex:

* Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

¢ To replace items in the main menu, give items on the child menu the same
Grouplndex value.

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or
more items from the child form's menu by giving them a Grouplndex value of 1 as
well.

Giving multiple items in the child menu the same Grouplndex value keeps their
order intact when they merge into the main menu.

¢ To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Importing resource files

You can build menus with other applications, so long as the menus are in the
standard Windows resource (.RC) file format. You can import such menus directly
into your project, saving you the time and effort of rebuilding menus that you
created elsewhere.

Developing the application user interface 9-45

Designing toolbars and cool bars

Note

To load existing .RC menu files,
1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in
itself.

2 Right-click and choose Insert From Resource.
The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.
The menu appears in the Menu Designer window.

If your resource file contains more than one menu, you first need to save each menu
as a separate resource file before importing it.

Designing toolbars and cool bars

Note

A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. A cool bar (also called a rebar) is a kind of toolbar that
displays controls on movable, resizable bands. If you have multiple panels aligned to
the top of the form, they stack vertically in the order added.

Cool bars are not available in CLX applications.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to
put use color grids, scroll bars, labels, and so on.

You can add a toolbar to a form in several ways:
¢ Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

* Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

* Use a cool bar (T'CoolBar) component and add controls to it. The cool bar displays
controls on independently movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar and cool bar components, you are ensuring that your
application has the look and feel of a Windows application because you are using the
native Windows controls. If these operating system controls change in the future,
your application could change as well. Also, since the toolbar and cool bar rely on
common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.

9-46 Developer’'s Guide

Designing toolbars and cool bars

The following sections describe how to:

* Add a toolbar and corresponding speed button controls using the panel
component.

* Add a toolbar and corresponding tool button controls using the Toolbar
component.

¢ Add a cool bar using the cool bar component.
* Respond to clicks.
¢ Add hidden toolbars and cool bars.

¢ Hide and show toolbars and cool bars.

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

¢ Act like regular pushbuttons
* Toggle on and off when clicked
o Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

* Add a speed button to a toolbar panel.
Assign a speed button’s glyph.

Set the initial condition of a speed button.
Create a group of speed buttons.

Allow toggle buttons.

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

Developing the application user interface 9-47

Designing toolbars and cool bars

Assigning a speed button’s glyph

Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,
1 Select the speed button.
2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button

Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 9.7 lists some actions you can set to change a speed button’s appearance:

Table 9.7 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed Grouplndex property to a value other than zero and its
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its Grouplndex property to a value
other than zero and its Down property to True.

Creating a group of speed buttons

A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s Grouplndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set Grouplndex to a unique value.

9-48 Developer’'s Guide

Designing toolbars and cool bars

Allowing toggle buttons

Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAlIUp to create a grouped button that acts as a toggle: click it once,
it’s down,; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form (from the Win32/Common Controls page of
the Component palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can:

e Act like regular pushbuttons.
* Toggle on and off when clicked.
e Actlike a set of radio buttons.

To implement tool buttons on a toolbar, do the following:

¢ Add a tool button

¢ Assign images to tool buttons

* Set the tool buttons” appearance
¢ Create a group of tool buttons

¢ Allow toggled tool buttons

Adding a tool button

To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

Developing the application user interface 9-49

Designing toolbars and cool bars

Note

Assigning images to tool buttons

Each tool button has an Imagelndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s Imagelndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

Setting tool button appearance and initial conditions
Table 9.8 lists some actions you can set to change a tool button’s appearance:

Table 9.8 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders, thus making Flat property to True.
the toolbar appear transparent

Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
False.

9-50 Developer’'s Guide

Note

Designing toolbars and cool bars

Creating groups of tool buttons

To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to True. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to True forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

¢ A tool button whose Grouped property is False.

* A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

¢ Another control besides a tool button.

Allowing toggled tool buttons

Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down,; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group
automatically sets the same property value for all buttons in the group.

Adding a cool bar component

The TCoolBar component requires version 4.70 or later of COMCTL32.DLL and is not
available in CLX applications.

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls
on independently movable, resizable bands. The user can position the bands by
dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a VCL application:

1 Add a cool bar component to the form (from the Win32 page of the Component
palette). The cool bar automatically aligns to the top of the form.

2 Add windowed controls from the Component palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You
can add graphic controls—such as labels or speed buttons—to a cool bar, but they
will not appear on separate bands.

Developing the application user interface 9-51

Designing toolbars and cool bars

Setting the appearance of the cool bar

The cool bar component offers several useful configuration options. Table 9.9 lists
some actions you can set to change a tool button’s appearance:

Table 9.9 Setting a cool button’s appearance

To make the cool bar: Set the toolbar’s:

Resize automatically to accommodate the bands it AutoSize property to True.

contains

Bands maintain a uniform height FixedSize property to True.

Reorient to vertical rather than horizontal Vertical property to True. This changes
the effect of the FixedSize property.

Prevent the Text properties of the bands from ShowText property to False. Each band in

displaying at runtime a cool bar has its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the bands’ order at FixedOrder to True.

runtime. (The user can still move and resize the

bands.)

Create a background image for the cool bar Bitmap property to TBitmap object.

Choose a list of images to appear on the left of any Images property to TImageList object.

band

To assign images to individual bands, select the cool bar and double-click on the
Bands property in the Object Inspector. Then select a band and assign a value to its
Imagelndex property.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time. For general information about
events and event handlers, see “Working with events and event handlers” on

page 6-3 and “Generating a handler for a component’s default event” on page 6-4.

Assigning a menu to a tool button

If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to True, it will appear automatically when the
button is pressed.

9-52 Developer’'s Guide

Designing toolbars and cool bars

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar:
1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To show or hide a toolbar at runtime, set its Visible property to False or True,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

procedure TForml.PenButtonClick(Sender: TObject);

begin

PenBar.Visible := PenButton.Down;
end;

Demo programs

For examples of Windows applications that use actions, action lists, menus, and
toolbars, refer to Program Files\ Borland \ Delphi7\Demos\RichEdit. In addition, the
Application wizard (File | New | Other Projects page), MDI Application, SDI
Application, and Winx Logo Applications can use the action and action list objects.
For examples of cross-platform applications, refer to Demos\CLX.

Developing the application user interface 9-53

Common controls and XP themes

Common controls and XP themes

Microsoft has forked Windows common controls into two separate versions. Version
5 is available on all Windows versions from Windows 95 or later; it displays controls
using a “3D chiseled” look. Version 6 became available with Windows XP. Under
version 6, controls are rendered by a theme engine which matches the current
Windows XP theme. If the user changes the theme, version 6 common controls will
match the new theme automatically. You don’t need to recompile the application.

The VCL can now accommodate both types of common controls. Borland has added
a number of components to the VCL to handle common control issues automatically
and transparently. These components will be present in any VCL application you
build. By default, any VCL applications will display version 5 common controls. To
display version 6 controls, you (or your application’s users) must add a manifest file
to your application.

A manifest file contains an XML list of dependencies for your application. The file
itself shares the name of your application, with “.manifest” appended to the end. For
example, if your project creates Projectl.exe as its executable, its manifest file should
be named Projectl.exe.manifest. Here is an example of a manifest file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1l" manifestVersion="1.0">
<assemblyIdentity
version="1.0.0.0"
processorArchitecture="x86"
name="CompanyName . ProductName . YourApp"
type="win32"
/>
<description>Your application description here.</description>
<dependency>
<dependentAssembly>
<assemblyIdentity
type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="x86"
publicKeyToken="6595b64144ccfldf"
language="*"
/>
</dependentAssembly>
</dependency>
</assembly>

Use the example above to create a manifest file for your application. If you place your
manifest file in the same directory as your application, its controls will be rendered
using the common controls version 6 theme engine. Your application now supports
Windows XP themes.

For more information on Windows XP common controls, themes, and manifest files,
consult Microsoft’s online documentation.

9-54 Developer’'s Guide

Types of controls

Controls are visual components that help you design your user interface.

This chapter describes the different controls you can use, including text controls,
input controls, buttons, list controls, grouping controls, display controls, grids, value
list editors, and graphic controls. To implement drag and drop in these controls, see
Chapter 7, “Working with controls.”

Text controls

Many applications use text controls to display text to the user. You can use:

e Edit controls, which allow the user to add text.
¢ Text viewing controls and labels, which do not allow user to add text.

Edit controls

Edit controls display text to the user and allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

Use this component: When you want users to do this:

TEdit Edit a single line of text.

TMemo Edit multiple lines of text.

TMaskEdit Adhere to a particular format, such as a postal code or phone number.
TRichEdit Edit multiple lines of text using rich text format (VCL only).

TEdit and TMaskEdit are simple edit controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

Types of controls 10-1

Text controls

Note

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to True. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength

property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo and TRichEdit controls allow the user to add several lines of text.

Edit controls have some of the following important properties:

Table 10.1 Edit control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple edit controls.

SelText Contains the currently selected (highlighted) part of the text.

SelStart, SelLength Indicate the position and length of the selected part of the text.

Memo and rich edit controls
Both the TMemo and TRichEdit controls handle multiple lines of text.
TMemo is another type of edit box that handles multiple lines of text. The lines in a

memo control can extend beyond the right boundary of the edit box, or they can
wrap onto the next line. You control whether the lines wrap using the WordWrap

property.
TRichEdit is a memo control that supports rich text formatting, printing, searching,

and drag-and-drop of text. It allows you to specify font properties, alignment, tabs,
indentation, and numbering.

The rich edit control is available for VCL applications only.

In addition to the properties that all edit controls have, memo and rich edit controls
include other properties, such as the following:

» Alignment specifies how text is aligned (left, right, or center) in the component.

e The Text property contains the text in the control. Your application can tell if the
text changes by checking the Modified property.

* Lines contains the text as a list of strings.

10-2 Developer’s Guide

Textcontrols
* OEMConvert determines whether the text is temporarily converted from ANSI to
OEM as it is entered. This is useful for validating file names (VCL only).
¢ WordWrap determines whether the text will wrap at the right margin.
o WantReturns determines whether the user can insert hard returns in the text.
e WantTabs determines whether the user can insert tabs in the text.

* AutoSelect determines whether the text is automatically selected (highlighted)
when the control becomes active.

At runtime, you can select all the text in the memo with the SelectAll method.

Text viewing controls

In CLX applications only, the text viewing controls display text but are read-only.

Use this component: When you want users to do this:

TTextBrowser Display a text file or simple HTML page that users can scroll through.

TTextViewer Display a text file or simple HTML page. Users can scroll through the
page or click links to view other pages and images.

TLCDNumber~ Display numeric information in a digital display form.

TTextViewer acts as a simple viewer so that users can read and scroll through
documents. With TTextBrowser, users can also click links to navigate to other
documents and other parts of the same document. Documents visited are stored in a
history list, which can be navigated using the Backward, Forward, and Home methods.
TTextViewer and TTextBrowser are best used to display HTML-based text or to
implement an HTML-based Help system.

TTextBrowser has the same properties as TTextViewer plus Factory. Factory determines
the MIME factory object used to determine file types for embedded images. For
example, you can associate filename extensions—such as .txt, .html, and .xml—with
MIME types and have the factory load this data into the control.

Use the FileName property to add a text file, such as .html, to appear in the control at
runtime.

To see an application using the text browser control, see ..\Delphi7\Demos\CIx\
TextBrowser.

Labels

Labels display text and are usually placed next to other controls.

Use this component: When you want users to do this:
TLabel Display text on a nonwindowed control.

TStaticText Display text on a windowed control.

Types of controls 10-3

Specialized input controls

You place a label on a form when you need to identify or annotate another
component such as an edit box or when you want to include text on a form. The
standard label component, TLabel, is a non-windowed control (widget-based control
in CLX applications), so it cannot receive focus; when you need a label with a
window handle, use TStaticText instead.

Label properties include the following;:
¢ Caption contains the text string for the label.

¢ Font, Color, and other properties determine the appearance of the label. Each label
can use only one typeface, size, and color.

® FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

* ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is True, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

o Transparent determines whether items under the label (such as graphics) are
visible.

Labels usually display read-only static text that cannot be changed by the application
user. The application can change the text while it is executing by assigning a new
value to the Caption property. To add a text object to a form that a user can scroll or
edit, use TEdit.

Specialized input controls

The following components provide additional ways of capturing input.

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range

TTrackBar Select values on a continuous range (more visually effective than a scroll
bar)

TUpDown Select a value from a spinner attached to an edit component (VCL
applications only)

THotKey Enter Ctrl/ Shift/ Alt keyboard sequences (VCL applications only)

TSpinEdit Select a value from a spinner widget (CLX applications only)

Scroll bars

The scroll bar component creates a scroll bar that you can use to scroll the contents of
a window, form, or other control. In the OnScroll event handler, you write code that
determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, because many visual components
include scroll bars of their own and thus don’t require additional coding. For

10-4 Developer’s Guide

Specialized input controls
example, TForm has VertScrollBar and HorzScrollBar properties that automatically

configure scroll bars on the form. To create a scrollable region within a form, use
TScrollBox.

Track bars

A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

* Use the Max and Min properties to set the upper and lower range of the track bar.
¢ Use SelEnd and SelStart to highlight a selection range. See Figure 10.1.
e The Orientation property determines whether the track bar is vertical or horizontal.

¢ By default, a track bar has one row of ticks along the bottom. Use the TickMarks
property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTick method.

Figure 10.1 Three views of the track bar component

e Position sets a default position for the track bar and tracks the position at runtime.

* By default, users can move one tick up or down by pressing the up and down
arrow keys. Set LineSize to change that increment.

* Set PageSize to determine the number of ticks moved when the user presses Page Up
and Page Down.

Up-down controls

In VCL applications only, an up-down control (TUpDown) consists of a pair of arrow
buttons that allow users to change an integer value in fixed increments. The current
value is given by the Position property; the increment, which defaults to 1, is specified
by the Increment property. Use the Associate property to attach another component
(such as an edit control) to the up-down control.

Spin edit controls (CLX only)

A spin edit control (TSpinEdit) is also called an up-down widget, little arrows widget,
or spin button. This control lets the application user change an integer value in fixed
increments, either by clicking the up or down arrow buttons to increase or decrease
the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1,
is specified by the Increment property.

Types of controls 10-5

Buttons and similar controls

Hot key controls (VCL only)

Use the hot key component (THotKey) to assign a keyboard shortcut that transfers
focus to any control. The HotKey property contains the current key combination and
the Modifiers property determines which keys are available for HotKey.

The hot key component can be assigned as the ShortCut property of a menu item.
Then, when a user enters the key combination specified by the HotKey and Modifiers
properties, Windows activates the menu item.

Splitter controls

A splitter (TSplitter) placed between aligned controls allows users to resize the
controls. Used with components like panels and group boxes, splitters let you divide
a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to True to give the splitter’s edge a 3D look.

Buttons and similar controls

Aside from menus, buttons provide the most common way to initiate an action or
command in an application. Button-like controls include:

Use this component: To do this:

TButton Present command choices on buttons with text

TBitBtn Present command choices on buttons with text and glyphs

TSpeedButton Create grouped toolbar buttons

TCheckBox Present on/off options

TRadioButton Present a set of mutually exclusive choices

TToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

TCoolBar Display a collection of windowed controls within movable, resizable
bands (VCL only)

10-6 Developer’s Guide

Buttons and similar controls

Action lists let you centralize responses to user commands (actions) for objects such
as menus and buttons that respond to those commands. See “Using action lists” on
page 9-26 for details on how to use action lists with buttons, toolbars, and menus.

You can custom draw buttons individually or application wide. See Chapter 9,
“Developing the application user interface.”

Button controls

Users click button controls with the mouse to initiate actions. Buttons are labeled
with text that represent the action. The text is specified by assigning a string value to
the Caption property. Most buttons can also be selected by pressing a key on the
keyboard as a keyboard shortcut. The shortcut is shown as an underlined letter on
the button.

Users click button controls to initiate actions. You can assign an action to a TButton
component by creating an OnClick event handler for it. Double-clicking a button at
design time takes you to the button’s OnClick event handler in the Code editor.

e Set Cancel to True if you want the button to trigger its OnClick event when the user
presses Esc.

® Set Default to True if you want the Enfer key to trigger the button’s OnClick event.

Bitmap buttons

A bitmap button (TBitBtn) is a button control that presents a bitmap image on its face.
* To choose a bitmap for your button, set the Glyph property.
¢ Use Kind to automatically configure a button with a glyph and default behavior.

* By default, the glyph appears to the left of any text. To move it, use the Layout
property.
* The glyph and text are automatically centered on the button. To move their

position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

* By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

¢ Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Types of controls 10-7

Buttons and similar controls

Note

Speed buttons

Speed buttons (TSpeedButton), which usually have images on their faces, can function
in groups. They are commonly used with panels to create toolbars.

* To make speed buttons act as a group, give the Grouplndex property of all the
buttons the same nonzero value.

¢ By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to True.

o If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set
AllowAllUp to False if you want a group of buttons to act like a radio group.

For more information on speed buttons, refer to the section “Adding a toolbar using
a panel component” on page 9-47 and “Organizing actions for toolbars and menus”
on page 9-18.

Check boxes

A check box is a toggle that lets the user select an on or off state. When the choice is
turned on, the check box is checked. Otherwise, the check box is blank. You create
check boxes using TCheckBox.

® Set Checked to True to make the box appear checked by default.

o Set AllowGrayed to True to give the check box three possible states: checked,
unchecked, and grayed.

* The State property indicates whether the check box is checked (cbChecked),
unchecked (cbUnchecked), or grayed (cbGrayed).

Check box controls display one of two binary states. The indeterminate state is used
when other settings make it impossible to determine the current value for the check
box.

Radio buttons

Radio buttons, also called option buttons, present a set of mutually exclusive choices.
You can create individual radio buttons using TRadioButton or use the radio group
component (T'RadioGroup) to arrange radio buttons into groups automatically. You
can group radio buttons to let the user select one from a limited set of choices. See
“Grouping controls” on page 10-12 for more information.

A selected radio button is displayed as a circle filled in the middle. When not
selected, the radio button shows an empty circle. Assign the value True or False to the
Checked property to change the radio button’s visual state.

10-8 Developer’s Guide

Listcontrols

Toolbars

Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the TToolBar
component, then right-click and choose New Button to add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically
maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and TToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or
action bands. See “Using action lists” on page 9-26 for details on how to use action lists
with buttons and toolbars.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Cool bars (VCL only)

A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime. Cool bars cannot be used in cross-platform applications.

¢ The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

¢ The FixedOrder property determines whether users can reorder the bands.

¢ The FixedSize property determines whether the bands maintain a uniform height.

List controls

Lists present the user with a collection of items to select from. Several components
display lists:

Use this component: To display:

TListBox A list of text strings

TCheckListBox A list with a check box in front of each item

TComboBox An edit box with a scrollable drop-down list

TTreeView A hierarchical list

TListView A list of (draggable) items with optional icons, columns, and headings

Types of controls 10-9

List controls

Use this component: To display:

TIconView~ A list of items or data in rows and columns displayed as either small or
large icons (CLX applications only)

TDateTimePicker A list box for entering dates or times (VCL applications only)

TMonthCalendar A calendar for selecting dates (VCL applications only)

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 5-17.

List boxes and check-list boxes

List boxes (TListBox) and check-list boxes display lists from which users can select
one or more choices from a list of possible options. The choices are represented using
text, graphics, or both.

Items uses a TStrings object to fill the control with values.

ItemIndex indicates which item in the list is selected.

MultiSelect specifies whether a user can select more than one item at a time.
Sorted determines whether the list is arranged alphabetically.

Columns specifies the number of columns in the list control.

IntegralHeight specifies whether the list box shows only entries that fit completely
in the vertical space (VCL only).

ItemHeight specifies the height of each item in pixels. The Style property can cause
ItemHeight to be ignored.

The Style property determines how a list control displays its items. By default,
items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 7-13.

To create a simple list box,

1

Within your project, drop a list box component from the Component palette onto a
form.

2 Size the list box and set its alignment as needed.

5

Double-click the right side of the Items property or choose the ellipsis button to
display the String List Editor.

Use the editor to enter free form text arranged in lines for the contents of the list
box.

Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and
MultiSelect properties.

10-10 Developer’'s Guide

Listcontrols

Combo boxes

A combo box (TComboBox) combines an edit box with a scrollable list. When users
enter data into the control—by typing or selecting from the list—the value of the Text
property changes. If AutoComplete is enabled, the application looks for and displays
the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down
list.

1 Set the Style property to select the type of combo box you need:

* Use csDropDown to create an edit box with a drop-down list. Use
csDropDownList to make the edit box read-only (forcing users to choose from
the list).

* Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo
boxes that display items graphically or in varying heights. For information on
owner-draw controls, see “Adding graphics to controls” on page 7-13.

e Use csSimple to create a combo box with a fixed list that does not close. Be sure
to resize the combo box so that the list items are displayed (VCL only).

2 Set the DropDownCount property to change the number of items displayed in the
list.

At runtime, CLX combo boxes work differently than VCL combo boxes. With the
CLX combo box, you can add an item to a drop-down list by entering text and
pressing Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

Tree views

A tree view (TTreeView) displays items in an indented outline. The control provides
buttons that allow nodes to be expanded and collapsed. You can include icons with
items’ text labels and display different icons to indicate whether a node is expanded
or collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

* [ndent sets the number of pixels horizontally separating items from their parents.

¢ ShowButtons enables the display of '+' and '-' buttons to indicate whether an item
can be expanded.

* ShowLines enables display of connecting lines to show hierarchical relationships
(VCL only).

* ShowRoot determines whether lines connecting the top-level items are displayed
(VCL only).

Types of controls 10-11

Grouping controls

To add items to a tree view control at design time, double-click on the control to
display the TreeView Items editor. The items you add become the value of the Items
property. You can change the items at runtime by using the methods of the Items
property, which is an object of type TTreeNodes. TTreeNodes has methods for adding,
deleting, and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

List views

List views, created using TListView, display lists in various formats. Use the
ViewStyle property to choose the kind of list you want:

e vslcon and vsSmalllcon display each item as an icon with a label. Users can drag
items within the list view window (VCL only).

¢ vsList displays items as labeled icons that cannot be dragged.

¢ vsReport displays items on separate lines with information arranged in columns.
The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Icon views (CLX only)

The icon view, created using TlconView, displays a list of items or data in rows and
columns as either small or large icons.

Date-time pickers and month calendars

In CLX applications, the DateTimePicker component displays a list box for entering
dates or times, while the MonthCalendar component presents a calendar for entering
dates or ranges of dates. To use these components, you must have version 4.70 or
later of COMCTL32.DLL (usually located in the Windows\System or Windows\
System32 directory) at both design time and runtime. They are not available for use in
cross-platform applications.

Grouping controls

A graphical interface is easier to use when related controls and information are
presented in groups. Components for grouping components include:

Use this component: When you want this:

TGroupBox A standard group box with a title
TRadioGroup A simple group of radio buttons
TPanel A more visually flexible group of controls

10-12 Developer’s Guide

Grouping controls

Use this component: When you want this:

TScrollBox A scrollable region containing controls
TTabControl A set of mutually exclusive notebook-style tabs
TPageControl A set of mutually exclusive notebook-style tabs with corresponding pages,

each of which may contain other controls

THeaderControl Resizable column headers

Group boxes and radio groups

A group box (TGroupBox) arranges related controls on a form. The most commonly
grouped controls are radio buttons. After placing a group box on a form, select
components from the Component palette and place them in the group box. The
Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio
buttons and making them work together. To add radio buttons to a radio group, edit
the Items property in the Object Inspector; each string in Items makes a radio button
appear in the group box with the string as its caption. The value of the ItemIndex
property determines which radio button is currently selected. Display the radio
buttons in a single column or in multiple columns by setting the value of the Columns
property. To respace the buttons, resize the radio group component.

Panels

The TPanel component provides a generic container for other controls. Panels are
typically used to visually group components together on a form. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

You can also place other controls onto a panel and use the Align property to ensure
proper positioning of all the controls in the group on the form. You can make a panel
alTop aligned so that its position will remain in place even if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the
BevelOuter and Bevellnner properties. You can vary the values of these properties to
create different visual 3-D effects. Note that if you merely want a raised or lowered
bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information
display areas.

Scroll boxes

Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to
display more information than will fit in a particular area. Some controls—such as
list boxes, memos, and forms themselves—can automatically scroll their contents.

Types of controls 10-13

Grouping controls

Another use of scroll boxes is to create multiple scrolling areas (views) in a window.
Views are common in commercial word-processor, spreadsheet, and project
management applications. Scroll boxes give you the additional flexibility to define
arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and
TCheckBox objects. But a scroll box is normally invisible. If the controls in the scroll
box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a
toolbar or status bar (TPanel components). To prevent a toolbar and status bar from
scrolling, hide the scroll bars, and then position a scroll box in the client area of the
window between the toolbar and status bar. The scroll bars associated with the scroll
box will appear to belong to the window, but will scroll only the area inside the scroll
box.

Tab controls

The tab control component (TTabControl) creates a set of tabs that look like notebook
dividers. You can create tabs by editing the Tabs property in the Object Inspector;
each string in Tabs represents a tab. The tab control is a single panel with one set of
components on it. To change the appearance of the control when the tabs are clicked,
you need to write an OnChange event handler. To create a multipage dialog box, use a
page control instead.

Page controls

The page control component (TPageControl) is a page set suitable for multipage
dialog boxes. A page control displays multiple overlapping pages that are TTabSheet
objects. A page is selected in the user interface by clicking a tab on top of the control.

To create a new page in a page control at design time, right-click the control and
choose New Page. At runtime, you add new pages by creating the object for the page
and setting its PageControl property:

NewTabSheet = TTabSheet.Create(PageControll);
NewTabSheet .PageControl := PageControll;

To access the active page, use the ActivePage property. To change the active page, you
can set either the ActivePage or the ActivePagelndex property.

Header controls

A header control (THeaderControl) is a is a set of column headers that the user can
select or resize at runtime. Edit the control’s Sections property to add or modify
headers. You can place the header sections above columns or fields. For example,
header sections might be placed over a list box (TListBox).

10-14 Developer’s Guide

Display controls

Display controls

There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime to identify the object.

Use this component

or property: To do this:

TStatusBar Display a status region (usually at the bottom of a window)
TProgressBar Show the amount of work completed for a particular task
Hint and ShowHint Activate fly-by or “tooltip” Help

HelpContext and HelpFile Link context-sensitive online Help
Status bars

Although you can use a panel to make a status bar, it is simpler to use the TStatusBar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

If you only want to display one text string at a time in the status bar, set its
SimplePanel property to True and use the SimpleText property to control the text
displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create
panels, edit the Panels property in the Object Inspector, setting each panel’s Width,
Alignment, and Text properties from the Panels editor. Each panel’s Text property
contains the text displayed in the panel.

Progress bars

When your application performs a time-consuming operation, you can use a
progress bar (TProgressBar) to show how much of the task is completed. A progress
bar displays a dotted line that grows from left to right.

Figure 10.2 A progress bar
The Position property tracks the length of the dotted line. Max and Min determine the

range of Position. To make the line grow, increment Position by calling the StepBy or
Steplt method. The Step property determines the increment used by Steplt.

Types of controls 10-15

Grids

Grids

Help and hint properties

Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to True;
setting ParentShowHint to True causes the control’s ShowHint property to have the
same value as its parent’s.

Grids display information in rows and columns. If you're writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 20,
“Using data controls.” Otherwise, use a standard draw grid or string grid.

Draw grids

A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

® The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

* The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and

VisibleRowCount are the number of columns and rows visible in the grid.

* You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

* You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

* The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids

The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

10-16 Developer’'s Guide

Value list editors (VCL only)

Value list editors (VCL only)

TValueListEditor is a specialized grid for editing string lists that contain name/value
pairs in the form Name=Value. The names and values are stored as a TStrings
descendant that is the value of the Strings property. You can look up the value for
any name using the Values property. TValueListEditor is not available for cross-
platform programming.

The grid contains two columns, one for the names and one for the values. By default,
the Name column is named “Key” and the Value column is named “Value”. You can
change these defaults by setting the TitleCaptions property. You can omit these titles
using the DisplayOptions property (which also controls resize when you resize the
control.)

You can control whether users can edit the Name column using the KeyOptions
property. KeyOptions contains separate options to allow editing, adding new names,
deleting names, and controlling whether new names must be unique.

You can control how users edit the entries in the Value column using the ItemProps
property. Each item has a separate TItemProp object that lets you

* Supply an edit mask to limit the valid input.
® Specify a maximum length for values.
¢ Mark the value as read-only.

* Specify that the value list editor displays a drop-down arrow that opens a pick list
of values from which the user can choose or an ellipsis button that triggers an
event you can use for displaying a dialog in which users enter values.

If you specify that there is a drop-down arrow, you must supply the list of values
from which the user chooses. These can be a static list (the PickList property of the
TItemProp object) or they can be dynamically added at runtime using the value list
editor’s OnGetPickList event. You can also combine these approaches and have a
static list that the OnGetPickList event handler modifies.

If you specify that there is an ellipsis button, you must supply the response that
occurs when the user clicks that button (including the setting of a value, if
appropriate). You provide this response by writing an OnEditButtonClick event
handler.

Types of controls 10-17

Graphic controls

Graphic controls

The following components make it easy to incorporate graphics into an application.

Use this component: To display:

TImage Graphics files

TShape Geometric shapes

TBevel 3-D lines and frames

TPaintBox Graphics drawn by your program at runtime

TAnimate AVl files (VCL applications only); GIF files (CLX applications only)

Notice that these include common paint routines (Repaint, Invalidate, and so on) that
never need to receive focus.

To create a graphic control, see Chapter 10, “Creating a graphic control,” in the
Component Writer’s Guide.

Images

The image component (TImage) displays a graphical image, like a bitmap, icon, or
metafile. The Picture property determines the graphic to be displayed. Use Center,
AutoSize, Stretch, and Transparent to set display options. For more information, see
“Overview of graphics programming” on page 12-1.

Shapes

The shape component displays a geometric shape. It is a nonwindowed control (a
widget-based control in CLX applications) and therefore, cannot receive user input.
The Shape property determines which shape the control assumes. To change the
shape’s color or add a pattern, use the Brush property, which holds a TBrush object.
How the shape is painted depends on the Color and Style properties of TBrush.

Bevels

The bevel component (TBevel) is a line that can appear raised or lowered. Some
components, such as TPanel, have built-in properties to create beveled borders. When
such properties are unavailable, use TBevel to create beveled outlines, boxes, or
frames.

10-18 Developer’'s Guide

Graphiccontrols

Paint boxes

The paint box (TPaintBox) allows your application to draw on a form. Write an
OnPaint event handler to render an image directly on the paint box's Canvas.
Drawing outside the boundaries of the paint box is prevented. For more information,
see “Overview of graphics programming” on page 12-1.

Animation control

The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip (VCL applications) or a GIF clip (CLX applications). An AVI
clip is a series of bitmap frames, like a movie. Although AVI clips can have sound,
animation controls work only with silent AVI clips. The files you use must be either
uncompressed AVI files or AVI clips compressed using run-length encoding (RLE).

Following are some of the properties of an animation component:

* ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the
ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

* Set AutoSize to True to have the animation control adjust its size to the size of the
frames in the AVI clip.

e StartFrame and StopFrame specify in which frames to start and stop the clip.

¢ Set CommonAVI to display one of the common Windows AVI clips provided in
Shell32.DLL.

* Specify when to start and interrupt the animation by setting the Active property to
True and False, respectively, and how many repetitions to play by setting the
Repetitions property.

¢ The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

Types of controls 10-19

10-20 Developer’'s Guide

Designing classes and components
with ModelMaker

ModelMaker is a computer assisted software engineering (CASE) tool designed to
make class, interface, and unit development simpler. ModelMaker lets you focus on
defining the members and relationships of your objects. Instead of just writing code,
you can use ModelMaker to create a model that is later converted into Delphi code
automatically. ModelMaker can help you minimize the more tedious aspects of class
and interface development.

ModelMaker’s tools include:

* an active modeling engine, which stores and maintains relationships between
classes and their members

¢ model import and export tools, which convert source code to ModelMaker models
and vice versa

¢ Unified modeling language (UML) diagram generators, to help you visualize your
designs more effectively

* specialized editors for modifying units, classes, UML diagrams, source code
implementations, and other design features

¢ documentation tools, which simplify the development of online help files
compatible with Microsoft WinHelp

Designing classes and components with ModelMaker 11-1

ModelMaker fundamentals

ModelMaker fundamentals

Note

ModelMaker simplifies source code generation and maintenance. To use it
effectively, you must first understand how ModelMaker works, and how it relates to
traditional IDE-based projects.

ModelMaker models

Although ModelMaker ultimately produces source code, it does not manipulate
source code directly for most of its operations. Instead, ModelMaker operates on its
own file sets, known as models. When you are working on a project in ModelMaker,
you are manipulating the structure of the model. ModelMaker converts its model to
source code periodically, either automatically or in response to a user commands.
You use the generated source code to build applications and packages.

Models are not merely a compressed representation of the source code. They can also
contain external information (such as UML diagram data) which isn’t stored in the
generated unit files. Also, models can manage an arbitrary number of source code
units. More often than not, a model doesn’t contain an entire project or package, just
a subset of its units.

Since models contain unique information not found in unit code, it is important to
include your model file sets in your storage and version control processes along with
your unit files.

For more information on models and model files, see the ModelMaker User’s Guide.

Using ModelMaker with the IDE

ModelMaker is a separate application from the IDE, although it has been integrated
into the IDE through the ModelMaker menu. To run ModelMaker, select
ModelMaker | Run ModelMaker. You can also use the Windows Start Menu to start
ModelMaker.

Many developers prefer to use ModelMaker instead of the IDE whenever possible.
ModelMaker is not intended to replace the IDE, however. You still need the IDE for
many common programming tasks, including form design and executable
compilation.

11-2 Developer’s Guide

ModelMaker fundamentals

When you use ModelMaker with the IDE, keep in mind that the IDE cannot change
ModelMaker model files. Any source code changes you make with the IDE editors
will not propagate into the model automatically. Your changes will be destroyed the
next time ModelMaker updates the generated unit code. If you need to make changes
when a model exists, use ModelMaker instead of the IDE to guarantee model-source
synchronization. If that isn’t possible, be sure to reimport the unit into the model
when you’ve finished your changes.

Creating models

There are many ways to create models in ModelMaker. If you are creating entirely
new code, you can start with a new model and design your code (aside from forms)
using ModelMaker. To create a new model, select File | New or click the New model
button on the ModelMaker toolbar. (The New model button is the leftmost button on
the toolbar.)

Figure 11.1 Part of the ModelMaker toolbar

New model Import source

|
ThE-H%

Import source in new model

More often, you will need to make a model from units created outside ModelMaker.
There are two buttons on the toolbar which allow you to import source code into
your model. One button (the second from the left) imports the source file into a new
model, the other (fifth from the left) uses the current model. Once you have imported
your source code, you can use any of ModelMaker’s tools on your model.

Designing classes and components with ModelMaker 11-3

Using ModelMaker views

Using ModelMaker views

ModelMaker has many views and editors, contained in panes of the ModelMaker
window, which can help you visualize and edit your model. The following picture
contains a sample ModelMaker window:

Figure 11.2 ModelMaker showing a sample model

** ModelMaker 6 demo - mmtoolsapi [_ O] x]
File View Options Delphi Tools Help
Fhe-B% @ a M-l o0 ERE EEERMES
Colect SE eI @ - B 8- O [oegawr :
ollections ‘«AII:atsgumes» j Ps et § [oses SysUtils, Classes, =]
pane .\.?:‘:{ 5 = d ﬁ
& I Symbol = interface uses clause
- MM Association
- M ShapeE splorer
5 IMMDiagramPage
2 |t DiagramE xplorer
41 IMhSymbollink _,j .
| 2 Editors
BES g -d- pane |
M 4P @ v
|«AI\ categoriess j type
Methods w—
@] setT aggedvaluss(const TagHame: \WideShi
pane @ m SefizualStylelconst Y alue: WideString); . :
[|®EMCategoy: WideSting TLinkableEntity = (ntt
@) G 0 ocumentation - ‘wideString)
@) [Zl HotLink : IMMFisference TLinkableProp = [lpMam
6 [Fl Hyperlink Count : Integer TLinkahleProps = set o
@E Hyperlinks [Index: Integer] : IMSpmbolLink.
) ({1 1sbstract : Boolean TPageOrientation = (pox
R P - i — 0
i3 u Inzert unit MMDiagramAPl: 7 Class(es). 0 Event(s). |

ModelMaker is always divided into three panes. The collections pane (the top-left
pane by default) can display the Classes view, the Units view, or the Diagrams view.
The members pane (bottom-left by default) always displays the Members view. The
editors pane (rightmost by default) can display the Implementation Editor, Unit
Code Editor, Diagram Editor, Macros view, Patterns view, Unit Difference view,
Documentation view, or Events view.

You can choose particular views through items in the Views menu, or through
buttons on the toolbar. You can also change the view layout using toolbar buttons.

11-4 Developer’s Guide

Using ModelMaker views

Collections pane

The collections pane displays collections of items used in ModelMaker models.
Models often contain multiple classes, units, and diagrams. The collections pane
shows logical groups of these items.

Classes view

The Classes view displays a hierarchical listing of all the classes and interfaces in
your model. It also shows the ancestry for classes and interfaces in the model.
Ancestors contained in the current model have icons surrounded by solid lines.
Those not contained in the model have icons bordered by dashed lines.

Figure 11.3 The Classes view

= TObject "
St 1 | nterfacedbject:

[E] TMMCriticsMatifier
=] TMMDesignCritic
-2 lnterface
=1-=Z [Unknawn
~2 IMMbliast anager
~Z IMMCategoryt anager
~2 IMMCodetModel
-2 IMMCriticsM otifier
=473 I Desinn Critic =]

Note If both an object and its ancestor are not included in a model, then the hierarchy
between them might not be complete.

You can fold the hierarchies to hide branches you're not interested in. You can also
add new classes and interfaces to your model through the Classes view.

Units view
The Units view displays a tree or list of all the units contained in the project. The
view also shows all the objects, interfaces, and events contained in each unit.

Figure 11.4 The Units view

BEEZP 0B EMED-

| Al categoriess

=] TMMDesignCritic
[E] TMMCriticsMatifier
=I-4¥ MbdDiagramdPl in C:\Program Filezihodelk

~Z IMMShape
of

~2 IMMSymbal
You can use buttons in the Units view (above the tree) to change the contents of the
view, add or edit units, or change code generation behavior.

Designing classes