
Developer’s Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

Delphi™ 7
for Windows™

Refer to the DEPLOY document located in the root directory of your Delphi 7 product for a complete list of files that
you can distribute in accordance with the Delphi 7 License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 1983–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE1370WW21001 7E5R0802
0203040506-9 8 7 6 5 4 3 2 1
D3

iii

Chapter 1
Introduction 1-1
What’s in this manual? 1-1
Manual conventions 1-2
Developer support services 1-3

Part I
Programming with Delphi

Chapter 2
Developing applications with Delphi 2-1
Integrated development environment 2-1
Designing applications 2-2
Creating projects 2-3
Editing code . 2-4
Compiling applications 2-4
Debugging applications 2-5
Deploying applications 2-5

Chapter 3
Using the component library 3-1
Understanding the component library 3-1

Properties, methods, and events 3-3
Properties 3-3
Methods 3-4
Events . 3-4
User events 3-4
System events 3-4
Internal events 3-4

Objects, components, and controls 3-5
TObject branch 3-6
TPersistent branch 3-7
TComponent branch 3-7
TControl branch 3-9
TWinControl/TWidgetControl branch . . .3-10

Chapter 4
Using the object model 4-1
What is an object? 4-1

Examining a Delphi object 4-2
Changing the name of a component 4-4

Inheriting data and code from an object. 4-5
Scope and qualifiers 4-5

Private, protected, public, and published
declarations 4-6

Using object variables 4-7
Creating, instantiating, and destroying

objects . 4-8
Components and ownership 4-9

Defining new classes 4-9
Using interfaces 4-12

Using interfaces across the hierarchy 4-13
Using interfaces with procedures 4-14
Implementing IInterface 4-14
TInterfacedObject 4-15
Using the as operator with interfaces 4-16
Reusing code and delegation. 4-16

Using implements for delegation 4-17
Aggregation 4-18

Memory management of interface
objects. 4-18

Using reference counting 4-19
Not using reference counting 4-20

Using interfaces in distributed
applications 4-21

Chapter 5
Using BaseCLX 5-1
Using streams 5-2

Using streams to read or write data 5-2
Stream methods for reading

and writing 5-2
Reading and writing components . . . 5-3
Reading and writing strings 5-3

Copying data from one stream
to another. 5-4

Specifying the stream position and size. . . 5-4
Seeking to a specific position 5-4
Using Position and Size properties . . . 5-5

Working with files 5-5
Approaches to file I/O 5-6
Using file streams 5-6

Creating and opening files using
file streams 5-7

Using the file handle 5-8
Manipulating files 5-8

Deleting a file 5-8
Finding a file 5-8
Renaming a file 5-10
File date-time routines 5-10
Copying a file 5-11

Contents

iv

Working with ini files and the system
Registry . 5-11

Using TIniFile and TMemIniFile 5-12
Using TRegistryIniFile 5-13
Using TRegistry 5-13

Working with lists 5-14
Common list operations 5-15

Adding list items 5-15
Deleting list items 5-15
Accessing list items 5-16
Rearranging list items 5-16

Persistent lists. 5-16
Working with string lists 5-17

Loading and saving string lists 5-17
Creating a new string list 5-18

Short-term string lists 5-18
Long-term string lists 5-18

Manipulating strings in a list 5-20
Counting the strings in a list 5-20
Accessing a particular string 5-20
Locating items in a string list 5-20
Iterating through strings in a list 5-20
Adding a string to a list 5-21
Moving a string within a list 5-21
Deleting a string from a list 5-21
Associating objects with a

string list 5-22
Working with strings 5-22

Wide character routines 5-22
Commonly used long string routines . . . 5-23
Commonly used routines for

null-terminated strings. 5-26
Declaring and initializing strings 5-27
Mixing and converting string types 5-28
String to PChar conversions. 5-28

String dependencies 5-29
Returning a PChar local variable . . . 5-29
Passing a local variable as

a PChar 5-29
Compiler directives for strings 5-30

Creating drawing spaces 5-31
Printing . 5-32
Converting measurements 5-33

Performing conversions 5-33
Performing simple conversions 5-33
Performing complex conversions . . . 5-33

Adding new measurement types 5-34

Creating a simple conversion family
and adding units. 5-34

Declare variables 5-35
Register the conversion family 5-35
Register measurement units 5-35
Use the new units 5-35

Using a conversion function 5-36
Declare variables 5-36
Register the conversion family 5-36
Register the base unit 5-36
Write methods to convert to and

from the base unit 5-36
Register the other units 5-37
Use the new units 5-37

Using a class to manage conversions 5-37
Creating the conversion class 5-38
Declare variables 5-39
Register the conversion family and

the other units 5-39
Use the new units 5-40

Defining custom variants 5-40
Storing a custom variant type’s data 5-41
Creating a class to enable the

custom variant type 5-42
Enabling casting 5-42
Implementing binary operations 5-44
Implementing comparison

operations 5-46
Implementing unary operations 5-47

Copying and clearing custom variants . . . 5-48
Loading and saving custom

variant values 5-49
Using the TCustomVariantType

descendant 5-50
Writing utilities to work with a

custom variant type 5-50
Supporting properties and methods

in custom variants 5-51
Using TInvokeableVariantType 5-51
Using TPublishableVariantType 5-53

Chapter 6
Working with components 6-1
Setting component properties 6-2

Setting properties at design time 6-2
Using property editors 6-3

Setting properties at runtime. 6-3
Calling methods. 6-3

v

Working with events and event handlers 6-3
Generating a new event handler 6-4
Generating a handler for a

component’s default event 6-4
Locating event handlers 6-4
Associating an event with an existing

event handler 6-5
Using the Sender parameter 6-5
Displaying and coding shared

events 6-5
Associating menu events with

event handlers 6-6
Deleting event handlers 6-6

Cross-platform and non-cross-platform
components . 6-7

Adding custom components to the
Component palette 6-9

Chapter 7
Working with controls 7-1
Implementing drag and drop in controls 7-1

Starting a drag operation 7-1
Accepting dragged items 7-2
Dropping items 7-3
Ending a drag operation. 7-3
Customizing drag and drop with

a drag object. 7-3
Changing the drag mouse pointer 7-4

Implementing drag and dock in controls 7-4
Making a windowed control a

docking site 7-4
Making a control a dockable child 7-5
Controlling how child controls

are docked 7-5
Controlling how child controls

are undocked 7-6
Controlling how child controls respond

to drag-and-dock operations 7-6
Working with text in controls. 7-6

Setting text alignment 7-7
Adding scroll bars at runtime. 7-7
Adding the clipboard object. 7-8
Selecting text 7-9
Selecting all text 7-9
Cutting, copying, and pasting text 7-10
Deleting selected text 7-10
Disabling menu items 7-11
Providing a pop-up menu 7-11
Handling the OnPopup event. 7-12

Adding graphics to controls 7-13
Indicating that a control is

owner-drawn. 7-13
Adding graphical objects to

a string list 7-14
Adding images to an application 7-14
Adding images to a string list 7-14
Drawing owner-drawn items 7-15

Sizing owner-draw items 7-16
Drawing owner-draw items 7-17

Chapter 8
Building applications, components,
and libraries 8-1

Creating applications 8-1
GUI applications. 8-2

User interface models 8-2
SDI applications 8-2
MDI applications 8-2
Setting IDE, project, and compiler

options 8-3
Programming templates 8-3
Console applications 8-4
Service applications 8-5

Service threads 8-8
Service name properties 8-9
Debugging service applications 8-10

Creating packages and DLLs 8-11
When to use packages and DLLs 8-11

Writing database applications 8-12
Distributing database applications 8-13

Creating Web server applications 8-13
Creating Web Broker applications 8-14
Creating WebSnap applications 8-15
Creating Web Services applications 8-15

Writing applications using COM 8-16
Using COM and DCOM 8-16
Using MTS and COM+ 8-16

Using data modules 8-17
Creating and editing standard data

modules. 8-17
Naming a data module and

its unit file 8-18
Placing and naming components 8-19
Using component properties and

events in a data module 8-19
Creating business rules in a

data module 8-20

vi

Accessing a data module from a form . . . 8-20
Adding a remote data module to an

application server project 8-21
Using the Object Repository 8-21

Sharing items within a project 8-21
Adding items to the Object

Repository 8-22
Sharing objects in a team

environment. 8-22
Using an Object Repository item in

a project 8-22
Copying an item 8-22
Inheriting an item 8-23
Using an item 8-23

Using project templates 8-23
Modifying shared items 8-23
Specifying a default project, new form,

and main form 8-24
Enabling Help in applications 8-24

Help system interfaces 8-25
Implementing ICustomHelpViewer 8-25
Communicating with the Help

Manager 8-26
Asking the Help Manager for

information 8-26
Displaying keyword-based Help 8-27
Displaying tables of contents 8-28
Implementing IExtendedHelpViewer . . . 8-28
Implementing IHelpSelector 8-29
Registering Help system objects 8-30

Registering Help viewers 8-30
Registering Help selectors 8-30

Using Help in a VCL application. 8-31
How TApplication processes

VCL Help 8-31
How VCL controls process Help 8-31

Using Help in a CLX application. 8-32
How TApplication processes

CLX Help 8-32
How CLX controls process Help 8-32

Calling a Help system directly 8-33
Using IHelpSystem 8-33
Customizing the IDE Help system 8-34

Chapter 9
Developing the application
user interface 9-1

Controlling application behavior 9-1
Working at the application level 9-2
Handling the screen. 9-2

Setting up forms. 9-3
Using the main form 9-3
Hiding the main form. 9-3
Adding forms 9-4

Linking forms 9-4
Avoiding circular unit references 9-4

Managing layout 9-5
Using forms . 9-6

Controlling when forms reside
in memory 9-6

Displaying an auto-created form 9-6
Creating forms dynamically 9-7
Creating modeless forms such

as windows 9-8
Creating a form instance using

a local variable 9-8
Passing additional arguments to forms . . . 9-8
Retrieving data from forms. 9-9

Retrieving data from modeless
forms 9-9

Retrieving data from modal forms . . . 9-11
Reusing components and groups of

components 9-13
Creating and using component

templates . 9-13
Working with frames 9-14

Creating frames 9-14
Adding frames to the Component

palette . 9-15
Using and modifying frames. 9-15
Sharing frames. 9-16

Developing dialog boxes 9-17
Using open dialog boxes 9-17

Organizing actions for toolbars
and menus . 9-18

What is an action? 9-19
Setting up action bands 9-20

vii

Creating toolbars and menus 9-20
Adding color, patterns, or pictures

to menus, buttons, and toolbars . . . 9-22
Adding icons to menus and

toolbars 9-22
Selecting menu and toolbar styles . . . 9-23
Creating dynamic menus 9-24
Creating toolbars and menus that

users can customize 9-24
Hiding unused items and categories

in action bands 9-24
Creating most recently used

(MRU) lists 9-25
Using action lists 9-26

Setting up action lists 9-26
What happens when an action fires 9-27

Responding with events 9-27
How actions find their targets 9-29

Updating actions 9-29
Predefined action classes 9-30
Writing action components 9-31
Registering actions 9-31

Creating and managing menus. 9-32
Opening the Menu Designer 9-33
Building menus. 9-34

Naming menus 9-34
Naming the menu items 9-34
Adding, inserting, and deleting

menu items 9-35
Adding separator bars 9-36
Specifying accelerator keys and

keyboard shortcuts 9-36
Creating submenus. 9-37

Creating submenus by demoting
existing menus 9-37

Moving menu items 9-38
Adding images to menu items 9-38
Viewing the menu 9-39

Editing menu items in the Object
Inspector 9-39

Using the Menu Designer context
menu . 9-40

Commands on the context menu . . . 9-40
Switching between menus at

design time 9-41
Using menu templates 9-41
Saving a menu as a template 9-43

Naming conventions for template
menu items and event handlers . . . 9-44

Manipulating menu items at runtime 9-44
Merging menus 9-44

Specifying the active menu: Menu
property 9-45

Determining the order of merged menu
items: GroupIndex property 9-45

Importing resource files 9-45
Designing toolbars and cool bars 9-46

Adding a toolbar using a panel
component 9-47

Adding a speed button to a panel . . . 9-47
Assigning a speed button’s glyph . . . 9-48
Setting the initial condition of a

speed button 9-48
Creating a group of speed buttons . . . 9-48
Allowing toggle buttons 9-49

Adding a toolbar using the toolbar
component 9-49

Adding a tool button 9-49
Assigning images to tool buttons 9-50
Setting tool button appearance and

initial conditions 9-50
Creating groups of tool buttons 9-51
Allowing toggled tool buttons 9-51

Adding a cool bar component 9-51
Setting the appearance of the

cool bar 9-52
Responding to clicks 9-52

Assigning a menu to a tool button . . . 9-52
Adding hidden toolbars 9-53
Hiding and showing toolbars 9-53
Demo programs 9-53

Common controls and XP themes. 9-54

Chapter 10
Types of controls 10-1
Text controls . 10-1

Edit controls 10-1
Memo and rich edit controls 10-2

Text viewing controls 10-3
Labels . 10-3

Specialized input controls 10-4
Scroll bars 10-4
Track bars. 10-5
Up-down controls 10-5
Spin edit controls (CLX only) 10-5
Hot key controls (VCL only) 10-6
Splitter controls 10-6

viii

Buttons and similar controls 10-6
Button controls 10-7
Bitmap buttons 10-7
Speed buttons. 10-8
Check boxes 10-8
Radio buttons 10-8
Toolbars . 10-9
Cool bars (VCL only). 10-9

List controls. 10-9
List boxes and check-list boxes 10-10
Combo boxes 10-11
Tree views 10-11
List views 10-12
Icon views (CLX only) 10-12
Date-time pickers and month

calendars. 10-12
Grouping controls 10-12

Group boxes and radio groups 10-13
Panels . 10-13
Scroll boxes 10-13
Tab controls 10-14
Page controls 10-14
Header controls. 10-14

Display controls 10-15
Status bars. 10-15
Progress bars 10-15
Help and hint properties 10-16

Grids. 10-16
Draw grids 10-16
String grids 10-16

Value list editors (VCL only) 10-17
Graphic controls 10-18

Images . 10-18
Shapes . 10-18
Bevels . 10-18
Paint boxes 10-19
Animation control 10-19

Chapter 11
Designing classes and
components with ModelMaker 11-1

ModelMaker fundamentals 11-2
ModelMaker models 11-2
Using ModelMaker with the IDE 11-2
Creating models 11-3

Using ModelMaker views 11-4
Collections pane 11-5

Classes view 11-5
Units view 11-5
Diagrams view 11-6

Members pane 11-7
Editors pane 11-7

Implementation Editor 11-7
Unit Code Editor 11-8
Diagram Editor 11-9
Other Editors 11-9

For more information. 11-10

Chapter 12
Working with graphics and
multimedia 12-1

Overview of graphics programming 12-1
Refreshing the screen 12-2
Types of graphic objects 12-3
Common properties and methods

of Canvas 12-4
Using the properties of the Canvas

object . 12-5
Using pens 12-5
Using brushes 12-8
Reading and setting pixels 12-9

Using Canvas methods to draw
graphic objects 12-10

Drawing lines and polylines 12-10
Drawing shapes 12-11

Handling multiple drawing objects
in your application 12-12

Keeping track of which drawing
tool to use 12-12

Changing the tool with speed
buttons 12-13

Using drawing tools 12-14
Drawing on a graphic 12-16

Making scrollable graphics 12-17
Adding an image control 12-17

Loading and saving graphics files 12-19
Loading a picture from a file 12-19
Saving a picture to a file 12-20
Replacing the picture 12-20

ix

Using the clipboard with graphics 12-21
Copying graphics to the

clipboard 12-22
Cutting graphics to the clipboard . . . 12-22
Pasting graphics from the

clipboard 12-23
Rubber banding example 12-24

Responding to the mouse 12-24
Responding to a mouse-down

action 12-25
Adding a field to a form object to

track mouse actions 12-27
Refining line drawing 12-28

Working with multimedia 12-30
Adding silent video clips to an

application. 12-30
Example of adding silent

video clips 12-31
Adding audio and/or video clips to

an application 12-32
Example of adding audio and/or

video clips (VCL only) 12-33

Chapter 13
Writing multi-threaded applications 13-1
Defining thread objects 13-2

Initializing the thread 13-3
Assigning a default priority 13-3
Indicating when threads are freed . . . 13-4

Writing the thread function 13-4
Using the main VCL/CLX thread . . . 13-4
Using thread-local variables 13-6
Checking for termination by other

threads 13-6
Handling exceptions in the thread

function 13-6
Writing clean-up code 13-7

Coordinating threads 13-7
Avoiding simultaneous access 13-7

Locking objects 13-8
Using critical sections 13-8
Using the multi-read exclusive-write

synchronizer 13-8
Other techniques for sharing

memory 13-9
Waiting for other threads 13-9

Waiting for a thread to finish
executing 13-10

Waiting for a task to be
completed 13-10

Executing thread objects 13-12
Overriding the default priority 13-12
Starting and stopping threads 13-12

Debugging multi-threaded applications . . . 13-13
Naming a thread. 13-13

Converting an unnamed thread
to a named thread 13-13

Assigning separate names to
similar threads 13-15

Chapter 14
Exception handling 14-1
Defining protected blocks 14-2

Writing the try block 14-2
Raising an exception 14-3

Writing exception handlers. 14-4
Exception-handling statements 14-4
Handling classes of exceptions 14-6
Scope of exception handlers 14-6
Reraising exceptions 14-7

Writing finally blocks 14-8
Writing a finally block 14-9

Handling exceptions in VCL
applications 14-9

VCL exception classes 14-10
Default exception handling in VCL 14-11
Silent exceptions. 14-12
Defining your own VCL exceptions. . . . 14-13

Chapter 15
Developing cross-platform
applications 15-1

Creating CLX applications 15-2
Porting VCL applications 15-2

Porting techniques 15-2
Platform-specific ports 15-3
Cross-platform ports 15-3
Windows emulation ports 15-3

Modifying VCL applications 15-4
WinCLX versus VisualCLX. 15-5

What VisualCLX does differently 15-6
Features that do not port directly

or are missing 15-7
Comparing WinCLX and

VisualCLX units 15-8
Differences in CLX object constructors . . 15-11
Handling system and widget events . . . 15-12

x

Writing portable code 15-12
Using conditional directives 15-13
Terminating conditional

directives 15-14
Including inline assembler code 15-15

Programming differences on Linux 15-16
Transferring applications between

Windows and Linux 15-17
Sharing source files between

Windows and Linux 15-17
Environmental differences between

Windows and Linux 15-18
Registry 15-20
Look and feel 15-20

Directory structure on Linux 15-20
Cross-platform database applications 15-21

dbExpress differences 15-22
Component-level differences 15-22
User interface-level differences 15-23
Porting database applications

to Linux 15-24
Updating data in dbExpress

applications 15-26
Cross-platform Internet applications 15-28

Porting Internet applications
to Linux 15-28

Chapter 16
Working with packages and
components 16-1

Why use packages? 16-2
Packages and standard DLLs 16-2

Runtime packages 16-3
Loading packages in an application 16-3

Loading packages with the
LoadPackage function 16-4

Deciding which runtime packages
to use . 16-4

Custom packages 16-5
Design-time packages 16-5

Installing component packages 16-6
Creating and editing packages 16-7

Creating a package 16-7
Editing an existing package 16-8
Understanding the structure of

a package 16-8
Naming packages 16-8
Requires clause 16-9
Contains clause 16-9

Editing package source files
manually 16-10

Compiling packages 16-10
Package-specific compiler

directives 16-11
Compiling and linking from the

command line 16-13
 Package files created when

compiling 16-13
Deploying packages 16-14

Deploying applications that use
packages 16-14

Distributing packages to other
developers 16-14

Package collection files 16-14

Chapter 17
Creating international applications 17-1
Internationalization and localization 17-1

Internationalization 17-1
Localization 17-2

Internationalizing applications 17-2
Enabling application code 17-2

~Character sets 17-2
OEM and ANSI character sets 17-3
Multibyte character sets 17-3
Wide characters 17-4
Including bi-directional functionality

in applications 17-4
BiDiMode property 17-4
Locale-specific features 17-7

Designing the user interface 17-7
Text . 17-7
Graphic images 17-8
Formats and sort order 17-8
Keyboard mappings 17-8

Isolating resources. 17-8
Creating resource DLLs. 17-9
Using resource DLLs 17-10
Dynamic switching of resource DLLs . . . 17-11

Localizing applications 17-12
Localizing resources. 17-12

xi

Chapter 18
Deploying applications 18-1
Deploying general applications 18-1

Using installation programs. 18-2
Identifying application files 18-2
Application files 18-3
Package files 18-3
Merge modules 18-3
ActiveX controls 18-5
Helper applications 18-5
DLL locations 18-6

Deploying CLX applications 18-6
Deploying database applications. 18-6

Deploying dbExpress database
applications 18-7

Deploying BDE applications 18-8
Borland Database Engine 18-8

Deploying multi-tiered database
applications (DataSnap) 18-9

Deploying Web applications 18-9
 Deploying on Apache servers 18-10

Enabling modules 18-10
CGI applications 18-11

Programming for varying host
environments 18-12

Screen resolutions and color depths 18-12
Considerations when not

dynamically resizing 18-12
Considerations when dynamically

resizing forms and controls 18-13
Accommodating varying

color depths 18-14
Fonts . 18-14
Operating systems versions 18-15

Software license requirements 18-15
DEPLOY. 18-15
README 18-16
No-nonsense license agreement 18-16
Third-party product documentation 18-16

Part II
Developing database applications

Chapter 19
Designing database applications 19-1
Using databases 19-1

Types of databases 19-2
Database security. 19-4

Transactions 19-4
Referential integrity, stored procedures,

and triggers. 19-5
Database architecture. 19-6

General structure 19-6
The user interface form 19-6
The data module 19-6

Connecting directly to a database
server . 19-8

Using a dedicated file on disk 19-9
Connecting to another dataset 19-10

Connecting a client dataset to another
dataset in the same application . . . 19-12

Using a multi-tiered architecture . . . 19-13
Combining approaches 19-14

Designing the user interface 19-15
Analyzing data 19-15
Writing reports. 19-16

Chapter 20
Using data controls 20-1
Using common data control features 20-2

Associating a data control with
a dataset 20-3

Changing the associated dataset
at runtime 20-4

Enabling and disabling the data
source 20-4

Responding to changes mediated
by the data source 20-4

Editing and updating data 20-5
Enabling editing in controls on

user entry 20-5
Editing data in a control 20-5

Disabling and enabling data display 20-6
Refreshing data display. 20-7
Enabling mouse, keyboard, and

timer events 20-7
Choosing how to organize the data 20-7

Displaying a single record 20-7
Displaying data as labels 20-8
Displaying and editing fields in

an edit box 20-8
Displaying and editing text in a

memo control 20-9
Displaying and editing text in a rich

edit memo control 20-9
Displaying and editing graphics

fields in an image control 20-10

xii

Displaying and editing data in list
and combo boxes 20-10

Handling Boolean field values
with check boxes 20-13

Restricting field values with
radio controls 20-14

Displaying multiple records. 20-14
Viewing and editing data with TDBGrid . . . 20-15

Using a grid control in its default
state . 20-16

Creating a customized grid 20-17
Understanding persistent

columns 20-17
Creating persistent columns 20-18
Deleting persistent columns 20-19
Arranging the order of persistent

columns 20-19
Setting column properties at

design time 20-20
Defining a lookup list column 20-21
Putting a button in a column 20-22
Restoring default values to

a column 20-22
Displaying ADT and array fields 20-22
Setting grid options 20-24
Editing in the grid 20-26
Controlling grid drawing 20-26
Responding to user actions

at runtime 20-27
Creating a grid that contains other

data-aware controls 20-28
Navigating and manipulating records. 20-29

Choosing navigator buttons to
display . 20-30

Hiding and showing navigator
buttons at design time 20-30

Hiding and showing navigator
buttons at runtime 20-31

Displaying fly-over help. 20-31
Using a single navigator for multiple

datasets 20-32

Chapter 21
Creating reports with Rave Reports 21-1
Overview . 21-1
Getting started 21-2
The Rave Visual Designer. 21-3

Component overview 21-4
VCL/CLX components 21-4

Engine components 21-4
Render components 21-4
Data connection components 21-4
Rave project component 21-5

Reporting components 21-5
Project components 21-5
Data objects 21-5
Standard components 21-5
Drawing components 21-5
Report components 21-6
Bar code components 21-6

Getting more information 21-6

Chapter 22
Using decision support
components 22-1

Overview . 22-1
About crosstabs 22-2

One-dimensional crosstabs. 22-3
Multidimensional crosstabs 22-3

Guidelines for using decision support
components 22-4

Using datasets with decision support
components 22-5

Creating decision datasets with
TQuery or TTable 22-6

Creating decision datasets with the
Decision Query editor. 22-6

Using decision cubes 22-7
Decision cube properties and events 22-7
Using the Decision Cube editor 22-8

Viewing and changing dimension
settings 22-8

Setting the maximum available
dimensions and summaries 22-9

Viewing and changing design
options 22-9

Using decision sources 22-9
Properties and events 22-9

Using decision pivots. 22-10
Decision pivot properties. 22-10

Creating and using decision grids 22-11
Creating decision grids 22-11
Using decision grids 22-11

Opening and closing decision
grid fields 22-11

xiii

Reorganizing rows and columns in
decision grids 22-12

Drilling down for detail in
decision grids 22-12

Limiting dimension selection in
decision grids 22-12

Decision grid properties 22-12
Creating and using decision graphs 22-13

Creating decision graphs 22-13
Using decision graphs 22-14
The decision graph display 22-15
Customizing decision graphs 22-16

Setting decision graph template
defaults 22-17

Customizing decision graph
series 22-18

Decision support components at
runtime . 22-19

Decision pivots at runtime 22-19
Decision grids at runtime 22-19
Decision graphs at runtime 22-20

Decision support components and
memory control 22-20

Setting maximum dimensions,
summaries, and cells 22-20

Setting dimension state 22-21
Using paged dimensions 22-21

Chapter 23
Connecting to databases 23-1
Using implicit connections 23-2
Controlling connections 23-3

Connecting to a database server 23-3
Disconnecting from a database server . . . 23-4

Controlling server login 23-4
Managing transactions 23-6

Starting a transaction 23-7
Ending a transaction 23-8

Ending a successful transaction 23-8
Ending an unsuccessful

transaction 23-9
Specifying the transaction

isolation level 23-9
Sending commands to the server 23-10
Working with associated datasets 23-12

Closing all datasets without
disconnecting from the server. 23-12

Iterating through the associated
datasets 23-13

Obtaining metadata. 23-13
Listing available tables 23-14
Listing the fields in a table 23-14
Listing available stored procedures 23-14
Listing available indexes 23-14
Listing stored procedure parameters . . . 23-15

Chapter 24
Understanding datasets 24-1
Using TDataSet descendants 24-2
Determining dataset states. 24-3
Opening and closing datasets 24-4
Navigating datasets. 24-5

Using the First and Last methods 24-6
Using the Next and Prior methods 24-7
Using the MoveBy method. 24-7
Using the Eof and Bof properties 24-8

Eof . 24-8
Bof . 24-9

Marking and returning to records 24-9
The Bookmark property 24-9
The GetBookmark method 24-10
The GotoBookmark and

BookmarkValid methods 24-10
The CompareBookmarks method . . 24-10
The FreeBookmark method 24-10
A bookmarking example 24-10

Searching datasets 24-11
Using Locate 24-11
Using Lookup 24-12

Displaying and editing a subset of data
using filters 24-13

Enabling and disabling filtering 24-13
Creating filters 24-13

Setting the Filter property 24-14
Writing an OnFilterRecord

event handler 24-15
Switching filter event handlers

at runtime 24-16
Setting filter options. 24-16
Navigating records in a filtered

dataset 24-16
Modifying data 24-17

Editing records. 24-18
Adding new records 24-19

Inserting records 24-19
Appending records 24-20

Deleting records 24-20
Posting data 24-21

xiv

Canceling changes 24-21
Modifying entire records 24-22

Calculating fields 24-23
Types of datasets 24-24
Using table type datasets 24-25

Advantages of using table type
datasets 24-26

Sorting records with indexes 24-26
Obtaining information about

indexes 24-27
Specifying an index with

IndexName 24-27
Creating an index with

IndexFieldNames 24-28
Using Indexes to search for records 24-28

Executing a search with Goto
methods 24-29

Executing a search with Find
methods 24-30

Specifying the current record after
a successful search 24-30

Searching on partial keys 24-30
Repeating or extending a search 24-30

Limiting records with ranges 24-31
Understanding the differences

between ranges and filters 24-31
Specifying ranges 24-31
Modifying a range 24-34
Applying or canceling a range 24-34

Creating master/detail relationships. . . . 24-35
Making the table a detail of

another dataset 24-35
Using nested detail tables 24-37

Controlling Read/write access
to tables 24-38

Creating and deleting tables 24-38
Creating tables 24-38
Deleting tables 24-41

Emptying tables 24-41
Synchronizing tables 24-42

Using query-type datasets 24-42
Specifying the query 24-43

Specifying a query using the
SQL property 24-44

Specifying a query using the
CommandText property 24-44

Using parameters in queries 24-45
Supplying parameters at design

time 24-45
Supplying parameters at runtime . . 24-47

Establishing master/detail relationships
using parameters 24-47

Preparing queries 24-48
Executing queries that don’t return

a result set 24-49
Using unidirectional result sets 24-49

Using stored procedure-type datasets 24-50
Working with stored procedure

parameters 24-51
Setting up parameters at

design time 24-52
Using parameters at runtime 24-54

Preparing stored procedures 24-55
Executing stored procedures that don’t

return a result set 24-55
Fetching multiple result sets 24-56

Chapter 25
Working with field components 25-1
Dynamic field components 25-2
Persistent field components 25-3

Creating persistent fields 25-4
Arranging persistent fields 25-5
Defining new persistent fields 25-5

Defining a data field 25-6
Defining a calculated field 25-7
Programming a calculated field 25-8
Defining a lookup field 25-9
Defining an aggregate field 25-10

Deleting persistent field components . . . 25-11
Setting persistent field properties

and events 25-11
Setting display and edit properties

at design time 25-11
Setting field component properties

at runtime 25-13
Creating attribute sets for field

components 25-13
Associating attribute sets with field

components 25-14
Removing attribute associations . . . 25-14
Controlling and masking

user input 25-15

xv

Using default formatting for numeric,
date, and time fields 25-15

Handling events 25-16
Working with field component methods

at runtime . 25-17
Displaying, converting, and accessing

field values 25-18
Displaying field component values in

standard controls 25-18
Converting field values 25-19
Accessing field values with the default

dataset property 25-20
Accessing field values with a dataset’s

Fields property 25-21
Accessing field values with a dataset’s

FieldByName method 25-21
Setting a default value for a field. 25-22
Working with constraints 25-22

Creating a custom constraint 25-22
Using server constraints 25-23

Using object fields 25-23
Displaying ADT and array fields 25-24
Working with ADT fields 25-25

Using persistent field
components 25-25

Using the dataset’s FieldByName
method 25-25

Using the dateset’s FieldValues
property 25-25

Using the ADT field’s FieldValues
property 25-26

Using the ADT field’s Fields
property 25-26

Working with array fields 25-26
Using persistent fields 25-26
Using the array field’s FieldValues

property 25-27
Using the array field’s Fields

property 25-27
Working with dataset fields 25-27

Displaying dataset fields 25-27
Accessing data in a nested dataset . . . 25-28

Working with reference fields. 25-28
Displaying reference fields 25-28
Accessing data in a reference field . . . 25-29

Chapter 26
Using the Borland Database Engine 26-1
BDE-based architecture. 26-1

Using BDE-enabled datasets 26-2
Associating a dataset with database

and session connections 26-3
Caching BLOBs 26-4
Obtaining a BDE handle 26-4

Using TTable 26-5
Specifying the table type for local

tables 26-5
Controlling read/write access to

local tables 26-6
Specifying a dBASE index file 26-6
Renaming local tables 26-8
Importing data from another table . . . 26-8

Using TQuery 26-9
Creating heterogeneous queries 26-9
Obtaining an editable result set 26-10
Updating read-only result sets 26-11

Using TStoredProc 26-11
Binding parameters 26-12
Working with Oracle overloaded

stored procedures 26-12
Connecting to databases with

TDatabase 26-12
Associating a database component

with a session 26-13
Understanding database and session

component interactions 26-13
Identifying the database 26-14
Opening a connection using

TDatabase 26-15
Using database components in data

modules 26-16
Managing database sessions 26-16

Activating a session 26-18
Specifying default database

connection behavior 26-18
Managing database connections . . . 26-19
Working with password-protected

Paradox and dBASE tables 26-21
Specifying Paradox directory

locations 26-24
Working with BDE aliases 26-25
Retrieving information about

a session 26-27

xvi

Creating additional sessions 26-28
Naming a session 26-29
Managing multiple sessions 26-29

Using transactions with the BDE. 26-31
Using passthrough SQL 26-32
Using local transactions 26-32

Using the BDE to cache updates 26-33
Enabling BDE-based cached updates . . . 26-34
Applying BDE-based cached updates . . . 26-35

Applying cached updates using
a database 26-36

Applying cached updates with dataset
component methods 26-36

Creating an OnUpdateRecord
event handler 26-37

Handling cached update errors 26-38
Using update objects to update

a dataset 26-40
Creating SQL statements for update

components 26-41
Using multiple update objects 26-45
Executing the SQL statements 26-46

Using TBatchMove. 26-49
Creating a batch move component 26-49
Specifying a batch move mode 26-50

Appending records 26-50
Updating records 26-50
Appending and updating

records 26-51
Copying datasets 26-51
Deleting records 26-51

Mapping data types 26-51
Executing a batch move 26-52
Handling batch move errors 26-52

The Data Dictionary 26-53
Tools for working with the BDE 26-55

Chapter 27
Working with ADO components 27-1
Overview of ADO components 27-2
Connecting to ADO data stores 27-3

Connecting to a data store using
TADOConnection. 27-3

Accessing the connection object 27-5
Fine-tuning a connection 27-5

Forcing asynchronous
connections 27-5

Controlling time-outs 27-6

Indicating the types of operations
the connection supports 27-6

Specifying whether the connection
automatically initiates
transactions 27-7

Accessing the connection’s
commands 27-7

ADO connection events. 27-8
Events when establishing a

connection 27-8
Events when disconnecting 27-8
Events when managing

transactions 27-9
Other events 27-9

Using ADO datasets 27-9
Connecting an ADO dataset to

a data store 27-10
Working with record sets 27-11
Filtering records based on

bookmarks 27-11
Fetching records asynchronously . . . 27-12
Using batch updates 27-13
Loading data from and saving

data to files 27-15
Using TADODataSet 27-16

Using Command objects 27-18
Specifying the command 27-18
Using the Execute method 27-19
Canceling commands 27-19
Retrieving result sets with commands . . 27-20
Handling command parameters 27-20

Chapter 28
Using unidirectional datasets 28-1
Types of unidirectional datasets 28-2
Connecting to the database server 28-2

Setting up TSQLConnection 28-3
Identifying the driver 28-3
Specifying connection parameters . . . 28-4
Naming a connection description 28-4
Using the Connection Editor 28-5

Specifying what data to display 28-6
Representing the results of a query 28-6
Representing the records in a table 28-7

Representing a table using
TSQLDataSet 28-7

Representing a table using
TSQLTable 28-7

xvii

Representing the results of a
stored procedure 28-8

Fetching the data. 28-8
Preparing the dataset 28-9
Fetching multiple datasets 28-9

Executing commands that do not
return records. 28-10

Specifying the command to execute 28-10
Executing the command 28-11
Creating and modifying server

metadata 28-11
Setting up master/detail linked cursors. . . . 28-12
Accessing schema information 28-13

Fetching metadata into a unidirectional
dataset . 28-13

Fetching data after using the dataset
for metadata 28-14

The structure of metadata
datasets 28-14

Debugging dbExpress applications 28-19
Using TSQLMonitor to monitor

SQL commands 28-19
Using a callback to monitor

SQL commands 28-20

Chapter 29
Using client datasets 29-1
Working with data using a client dataset . . . 29-2

Navigating data in client datasets 29-2
Limiting what records appear. 29-2
Editing data 29-5

Undoing changes 29-5
Saving changes 29-6

Constraining data values 29-7
Specifying custom constraints 29-7

Sorting and indexing. 29-8
Adding a new index 29-8
Deleting and switching indexes 29-9
Using indexes to group data 29-9

Representing calculated values 29-10
Using internally calculated fields

in client datasets 29-11
Using maintained aggregates 29-11

 Specifying aggregates 29-12
Aggregating over groups of

records 29-13
Obtaining aggregate values 29-14

Copying data from another dataset 29-14
Assigning data directly 29-14
Cloning a client dataset cursor 29-15

Adding application-specific information
to the data 29-15

Using a client dataset to cache updates. . . . 29-16
Overview of using cached updates 29-17
Choosing the type of dataset for caching

updates 29-18
Indicating what records are modified. . . 29-19
Updating records 29-20

Applying updates 29-20
Intervening as updates are

applied 29-21
Reconciling update errors 29-23

Using a client dataset with a provider 29-24
Specifying a provider 29-25
Requesting data from the source dataset

or document 29-26
Incremental fetching 29-26
Fetch-on-demand 29-27

Getting parameters from the source
dataset 29-27

Passing parameters to the source
dataset 29-28

Sending query or stored procedure
parameters 29-29

Limiting records with parameters . . 29-29
Handling constraints from the server . . . 29-30
Refreshing records. 29-31
Communicating with providers using

custom events 29-31
Overriding the source dataset 29-32

Using a client dataset with file-based
data . 29-33

Creating a new dataset 29-33
Loading data from a file or stream 29-34
Merging changes into data 29-34
Saving data to a file or stream 29-35

Using a simple dataset 29-35
When to use TSimpleDataSet 29-36
Setting up a simple dataset 29-36

xviii

Chapter 30
Using provider components 30-1
Determining the source of data. 30-2

Using a dataset as the source
of the data 30-2

Using an XML document as the source
of the data 30-2

Communicating with the client dataset 30-3
Choosing how to apply updates using

a dataset provider 30-4
Controlling what information is included

in data packets 30-4
Specifying what fields appear in

data packets 30-4
Setting options that influence the

data packets 30-5
Adding custom information to

data packets 30-6
Responding to client data requests. 30-7
Responding to client update requests 30-8

Editing delta packets before updating
the database 30-9

Influencing how updates are applied . . . 30-10
Screening individual updates 30-11
Resolving update errors on

the provider 30-11
Applying updates to datasets that do

not represent a single table 30-12
Responding to client-generated events 30-12
Handling server constraints 30-13

Chapter 31
Creating multi-tiered applications 31-1
Advantages of the multi-tiered

database model 31-2
Understanding multi-tiered database

applications 31-2
Overview of a three-tiered application. . . 31-3
The structure of the client application . . . 31-4
The structure of the application server. . . 31-5

The contents of the remote
data module 31-6

Using transactional data modules . . . 31-7
Pooling remote data modules 31-8

Choosing a connection protocol 31-9
Using DCOM connections 31-9
Using Socket connections 31-9
Using Web connections 31-10
Using SOAP connections 31-11

Building a multi-tiered application 31-11
Creating the application server 31-12

Setting up the remote data module 31-13
Configuring

TRemoteDataModule 31-13
Configuring TMTSDataModule . . . 31-15
Configuring TSoapDataModule . . . 31-16

Extending the application server’s
interface. 31-16

Adding callbacks to the application
server’s interface 31-17

Extending a transactional application
server’s interface 31-17

Managing transactions in multi-tiered
applications 31-17

Supporting master/detail
relationships 31-18

Supporting state information in remote
data modules. 31-19

Using multiple remote data modules . . . 31-21
Registering the application server 31-22
Creating the client application. 31-22

Connecting to the application server . . . 31-23
Specifying a connection

using DCOM 31-24
Specifying a connection

using sockets 31-24
Specifying a connection

using HTTP 31-25
Specifying a connection

using SOAP 31-26
Brokering connections 31-27

Managing server connections 31-27
Connecting to the server 31-27
Dropping or changing a server

connection 31-28
Calling server interfaces 31-28

Using early binding with DCOM . . . 31-29
Using dispatch interfaces with

TCP/IP or HTTP 31-29
Calling the interface of a SOAP-based

server 31-30
Connecting to an application server that

uses multiple data modules 31-30
Writing Web-based client applications 31-31

Distributing a client application as an
ActiveX control 31-32

Creating an Active Form for the client
application 31-33

xix

Building Web applications using
InternetExpress 31-33

Building an InternetExpress
application. 31-34

Using the javascript libraries 31-35
Granting permission to access and

launch the application server 31-36
Using an XML broker 31-36

Fetching XML data packets 31-36
Applying updates from XML

delta packets 31-37
Creating Web pages with an

InternetExpress page producer 31-39
Using the Web page editor 31-39
Setting Web item properties 31-40
Customizing the InternetExpress

page producer template 31-41

Chapter 32
Using XML in database
applications 32-1

Defining transformations 32-1
Mapping between XML nodes and

data packet fields 32-2
Using XMLMapper. 32-4

Loading an XML schema or
data packet 32-4

Defining mappings 32-5
Generating transformation files 32-6

Converting XML documents into
data packets. 32-6

Specifying the source XML document . . . 32-6
Specifying the transformation 32-7
Obtaining the resulting data packet 32-7
Converting user-defined nodes 32-7

Using an XML document as the source
for a provider 32-8

Using an XML document as the client
of a provider 32-9

Fetching an XML document from
a provider 32-9

Applying updates from an XML
document to a provider 32-11

Part III
Writing Internet applications

Chapter 33
Creating Internet server
applications 33-1

About Web Broker and WebSnap 33-1
Terminology and standards 33-3

Parts of a Uniform Resource Locator 33-3
URI vs. URL 33-4

HTTP request header information. 33-4
HTTP server activity 33-5

Composing client requests 33-5
Serving client requests 33-5
Responding to client requests 33-6

Types of Web server applications 33-6
ISAPI and NSAPI 33-6
CGI stand-alone 33-6
Apache 33-7
Web App Debugger 33-7

Converting Web server application
target types 33-8

Debugging server applications 33-9
Using the Web Application Debugger . . . 33-9

Launching your application with
the Web Application Debugger 33-9

Converting your application to
another type of Web server
application 33-10

Debugging Web applications
that are DLLs. 33-10

User rights necessary for
DLL debugging 33-10

Chapter 34
Using Web Broker 34-1
Creating Web server applications with

Web Broker. 34-1
The Web module. 34-2
The Web Application object 34-3

The structure of a Web Broker
application . 34-3

The Web dispatcher. 34-5
Adding actions to the dispatcher 34-5
Dispatching request messages 34-5

xx

Action items 34-6
Determining when action items fire 34-6

The target URL 34-6
The request method type 34-7
Enabling and disabling action

items 34-7
Choosing a default action item 34-7

Responding to request messages with
action items 34-8

Sending the response 34-8
Using multiple action items 34-9

Accessing client request information 34-9
Properties that contain request header

information 34-9
Properties that identify the target . . . 34-9
Properties that describe the

Web client 34-10
Properties that identify the purpose

of the request 34-10
Properties that describe the expected

response 34-10
Properties that describe the

content 34-11
The content of HTTP request

messages. 34-11
Creating HTTP response messages 34-11

Filling in the response header. 34-11
Indicating the response status 34-12
Indicating the need for client

action 34-12
Describing the server application . . . 34-12
Describing the content 34-12

Setting the response content 34-13
Sending the response 34-13

Generating the content of response
messages . 34-13

Using page producer components 34-14
HTML templates 34-14
Specifying the HTML template 34-15
Converting HTML-transparent

tags 34-16
Using page producers from an

action item 34-16
Chaining page producers

together 34-17
Using database information in

responses . 34-18
Adding a session to the Web module . . . 34-18

Representing database information
in HTML 34-19

Using dataset page producers 34-19
Using table producers 34-20
Specifying the table attributes 34-20
Specifying the row attributes 34-20
Specifying the columns 34-20
Embedding tables in HTML

documents 34-21
Setting up a dataset table

producer 34-21
Setting up a query table

producer 34-21

Chapter 35
Creating Web Server applications
using WebSnap 35-1

Fundamental WebSnap components 35-2
Web modules. 35-2

Web application module types 35-3
Web page modules 35-4
Web data modules 35-5

Adapters . 35-5
Fields . 35-6
Actions 35-6
Errors 35-6
Records 35-6

Page producers 35-6
Creating Web server applications

with WebSnap 35-7
Selecting a server type 35-8
Specifying application module

components 35-9
Selecting Web application module

options 35-10
Advanced HTML design. 35-11

Manipulating server-side script in
HTML files 35-12

Login support 35-13
Adding login support. 35-13
Using the sessions service 35-14
Login pages 35-15
Setting pages to require logins 35-17
User access rights 35-17

Dynamically displaying fields as
edit or text boxes 35-18

Hiding fields and their contents . . . 35-18
Preventing page access 35-19

xxi

Server-side scripting in WebSnap 35-19
Active scripting 35-20
Script engine 35-20
Script blocks. 35-20
Creating script 35-21

Wizard templates 35-21
TAdapterPageProducer 35-21

Editing and viewing script 35-21
Including script in a page 35-21
Script objects 35-22

Dispatching requests and responses 35-22
Dispatcher components 35-23
Adapter dispatcher operation. 35-23

Using adapter components to
generate content 35-23

Receiving adapter requests and
generating responses 35-25

Image request 35-26
Image response 35-27

Dispatching action items 35-27
Page dispatcher operation. 35-28

Chapter 36
Creating Web server applications
using IntraWeb 36-1

Using IntraWeb components 36-2
Getting started with IntraWeb 36-3

Creating a new IntraWeb application . . . 36-4
Editing the main form 36-4
Writing an event handler for

the button 36-5
Running the completed application 36-6

Using IntraWeb with Web Broker
and WebSnap 36-7

For more information 36-8

Chapter 37
Working with XML documents 37-1
Using the Document Object Model 37-2
Working with XML components 37-4

Using TXMLDocument 37-4
Working with XML nodes 37-4

Working with a node’s value 37-5
Working with a node’s attributes . . . 37-5
Adding and deleting child nodes . . . 37-6

Abstracting XML documents with the
Data Binding wizard 37-6

Using the XML Data Binding wizard 37-8
Using code that the XML Data

Binding wizard generates. 37-9

Chapter 38
Using Web Services 38-1
Understanding invokable interfaces 38-2

Using nonscalar types in invokable
interfaces 38-4

Registering nonscalar types 38-5
Using remotable objects 38-6
Representing attachments 38-7
Managing the lifetime of remotable

objects 38-7
Remotable object example 38-7

Writing servers that support Web Services. . . 38-9
Building a Web Service server 38-9
Using the SOAP application wizard . . . 38-10
Adding new Web Services 38-11

Editing the generated code 38-12
Using a different base class 38-12

Using the WSDL importer 38-13
Browsing for Business services 38-14

Understanding UDDI 38-15
Using the UDDI browser 38-15

Defining and using SOAP headers 38-16
Defining header classes 38-16
Sending and receiving headers 38-16
Handling scalar-type headers 38-17
Communicating the structure of your

headers to other applications 38-18
Creating custom exception classes for

Web Services 38-18
Generating WSDL documents for

a Web Service application. 38-19
Writing clients for Web Services. 38-20

Importing WSDL documents 38-20
Calling invokable interfaces 38-20

Obtaining an invokable interface
from the generated function 38-21

Using a remote interfaced object . . . 38-21
Processing headers in client

applications 38-23

xxii

Chapter 39
Working with sockets 39-1
Implementing services 39-1

Understanding service protocols 39-2
Communicating with

applications 39-2
Services and ports 39-2

Types of socket connections. 39-3
Client connections 39-3
Listening connections 39-3
Server connections 39-3

Describing sockets 39-4
Describing the host 39-4

Choosing between a host name
and an IP address 39-5

Using ports 39-5
Using socket components 39-6

Getting information about the
connection 39-6

Using client sockets 39-6
Specifying the desired server 39-7
Forming the connection 39-7
Getting information about the

connection 39-7
Closing the connection 39-7

Using server sockets 39-7
Specifying the port 39-8
Listening for client requests 39-8
Connecting to clients 39-8
Closing server connections 39-8

Responding to socket events 39-8
Error events 39-9
Client events 39-9
Server events 39-9

Events when listening 39-9
Events with client connections 39-10

Reading and writing over socket
connections 39-10

Non-blocking connections. 39-10
Reading and writing events 39-11

Blocking connections. 39-11

Part IV
Developing COM-based applications

Chapter 40
Overview of COM technologies 40-1

COM as a specification and
implementation 40-2

COM extensions 40-2
Parts of a COM application 40-3

COM interfaces 40-3
The fundamental COM interface,

IUnknown 40-4
COM interface pointers 40-5

COM servers 40-5
CoClasses and class factories 40-6
In-process, out-of-process, and

remote servers 40-7
The marshaling mechanism 40-8
Aggregation 40-9

COM clients 40-10
COM extensions. 40-10

Automation servers 40-12
Active Server Pages 40-13
ActiveX controls 40-13
Active Documents. 40-14
Transactional objects 40-15
Type libraries. 40-16

The content of type libraries 40-16
Creating type libraries 40-17
When to use type libraries 40-17
Accessing type libraries 40-18
Benefits of using type libraries 40-18
Using type library tools 40-19

Implementing COM objects
with wizards 40-19

Code generated by wizards 40-22

xxiii

Chapter 41
Working with type libraries 41-1
Type Library editor 41-2

Parts of the Type Library editor. 41-3
Toolbar 41-3
Object list pane 41-5
Status bar 41-5
Pages of type information 41-6

Type library elements 41-8
Interfaces 41-9
Dispinterfaces 41-9
CoClasses 41-10
Type definitions 41-10
Modules 41-11

Using the Type Library editor. 41-11
Valid types 41-12
Using Delphi or IDL syntax 41-13
Creating a new type library 41-19
Opening an existing type library . . . 41-20
Adding an interface to the type

library 41-21
Modifying an interface using the

type library 41-21
Adding properties and methods to

an interface or dispinterface 41-22
Adding a CoClass to the type

library 41-23
Adding an interface to a CoClass . . . 41-23
Adding an enumeration to the

type library 41-24
Adding an alias to the type

library 41-24
Adding a record or union to the

type library 41-24
Adding a module to the type

library 41-25
Saving and registering type library

information 41-25
Apply Updates dialog 41-26
Saving a type library 41-26
Refreshing the type library 41-26
Registering the type library 41-27
Exporting an IDL file 41-27

Deploying type libraries 41-27

Chapter 42
Creating COM clients 42-1
Importing type library information 42-2

Using the Import Type Library dialog . . . 42-3
Using the Import ActiveX dialog 42-4
Code generated when you import

type library information 42-5
Controlling an imported object 42-6

Using component wrappers 42-6
ActiveX wrappers 42-6
Automation object wrappers 42-7

Using data-aware ActiveX controls 42-8
Example: Printing a document with

Microsoft Word 42-9
Preparing Delphi for this example . . 42-10
Importing the Word type library . . . 42-10
Using a VTable or dispatch

interface object to control
Microsoft Word 42-11

Cleaning up the example 42-12
Writing client code based on type

library definitions 42-13
Connecting to a server 42-13
Controlling an Automation server

using a dual interface 42-13
Controlling an Automation server

using a dispatch interface 42-14
Handling events in an automation

controller 42-14
Creating clients for servers that do not

have a type library 42-16
Using .NET assemblies with Delphi 42-17

Requirements for COM
interoperability 42-17

.NET components and type libraries . . . 42-18
Accessing user-defined .NET

components 42-20

xxiv

Chapter 43
Creating simple COM servers 43-1
Overview of creating a COM object 43-2
Designing a COM object 43-2
Using the COM object wizard 43-3
Using the Automation object wizard 43-5

COM object instancing types 43-6
Choosing a threading model 43-6

Writing an object that supports the
free threading model 43-8

Writing an object that supports the
apartment threading model 43-9

Writing an object that supports the
neutral threading model 43-9

Defining a COM object’s interface 43-9
Adding a property to the object’s

interface 43-10
Adding a method to the object’s

interface 43-10
Exposing events to clients 43-11

Managing events in your
Automation object 43-12

Automation interfaces 43-13
Dual interfaces 43-13
Dispatch interfaces 43-14
Custom interfaces 43-15

Marshaling data 43-15
Automation compatible types 43-16
Type restrictions for automatic

marshaling 43-16
Custom marshaling 43-17

Registering a COM object 43-17
Registering an in-process server 43-17
Registering an out-of-process server 43-17

Testing and debugging the application 43-18

Chapter 44
Creating an Active Server Page 44-1
Creating an Active Server Object. 44-2

Using the ASP intrinsics 44-3
Application 44-4
Request 44-4
Response 44-5
Session 44-6
Server 44-6

Creating ASPs for in-process or
out-of-process servers 44-7

Registering an Active Server Object 44-8
Registering an in-process server 44-8
Registering an out-of-process server 44-8

Testing and debugging the Active Server
Page application. 44-8

Chapter 45
Creating an ActiveX control 45-1
Overview of ActiveX control creation 45-2

Elements of an ActiveX control 45-2
VCL control 45-3
ActiveX wrapper 45-3
Type library 45-3
Property page 45-3

Designing an ActiveX control 45-4
Generating an ActiveX control from a

VCL control 45-4
Generating an ActiveX control based on

a VCL form. 45-6
Licensing ActiveX controls. 45-7
Customizing the ActiveX control’s

interface . 45-8
Adding additional properties,

methods, and events 45-9
Adding properties and methods 45-9
Adding events 45-10

Enabling simple data binding with
the type library. 45-11

Creating a property page for an
ActiveX control 45-12

Creating a new property page 45-13
Adding controls to a property page 45-13
Associating property page controls

with ActiveX control properties 45-13
Updating the property page 45-13
Updating the object 45-14

Connecting a property page to an
ActiveX control 45-14

Registering an ActiveX control 45-15
Testing an ActiveX control 45-15
Deploying an ActiveX control

on the Web 45-15
Setting options 45-16

xxv

Chapter 46
Creating MTS or COM+ objects 46-1
Understanding transactional objects. 46-2

Requirements for a transactional
object . 46-3

Managing resources 46-3
Accessing the object context. 46-4
Just-in-time activation 46-4
Resource pooling 46-5

Database resource dispensers 46-6
Shared property manager 46-6
Releasing resources 46-8

Object pooling 46-8
MTS and COM+ transaction support 46-9

Transaction attributes 46-10
Setting the transaction attribute 46-11

Stateful and stateless objects 46-11
Influencing how transactions end 46-12
Initiating transactions 46-12

Setting up a transaction object
on the client side 46-13

Setting up a transaction object on
the server side 46-14

Transaction time-out 46-14

Role-based security 46-15
Overview of creating transactional

objects . 46-15
Using the Transactional Object wizard 46-16

Choosing a threading model for a
transactional object 46-17

Activities 46-18
Generating events under COM+ 46-19

Using the Event Object wizard. 46-21
Using the COM+ Event Subscription

object wizard 46-22
Firing events using a COM+ event

object . 46-23
Passing object references 46-23

Using the SafeRef method 46-24
Callbacks 46-25

Debugging and testing transactional
objects . 46-25

Installing transactional objects 46-26
Administering transactional objects 46-27

Index I-1

xxvi

1.1 Typefaces and symbols 1-2
3.1 Component sublibraries 3-1
3.2 Important base classes 3-5
5.1 Values for the Origin parameter 5-5
5.2 Open modes 5-7
5.3 Share modes 5-7
5.4 Shared modes available for each

open mode 5-7
5.5 Attribute constants and values 5-9
5.6 Classes for managing lists 5-14
5.7 String comparison routines 5-24
5.8 Case conversion routines 5-25
5.9 String modification routines 5-25
5.10 Sub-string routines 5-25
5.11 Null-terminated string comparison

routines . 5-26
5.12 Case conversion routines for

null-terminated strings 5-26
5.13 String modification routines 5-26
5.14 Sub-string routines 5-26
5.15 String copying routines 5-27
5.16 Compiler directives for strings 5-30
6.1 Component palette pages 6-7
7.1 Properties of selected text. 7-9
7.2 Fixed vs. variable owner-draw styles . . . 7-13
8.1 Compiler directives for libraries 8-11
8.2 Database pages on the Component

palette . 8-12
8.3 Web server applications. 8-14
8.4 Context menu options for data

modules. 8-18
8.5 Help methods in TApplication 8-31
9.1 Action setup terminology. 9-18
9.2 Default values of the action manager’s

PrioritySchedule property 9-25
9.3 Action classes 9-30
9.4 Methods overriden by base classes

of specific actions 9-31
9.5 Sample captions and their derived

names . 9-34
9.6 Menu Designer context menu

commands 9-40
9.7 Setting speed buttons’ appearance. 9-48
9.8 Setting tool buttons’ appearance9-50
9.9 Setting a cool button’s appearance. 9-52

10.1 Edit control properties 10-2
12.1 Graphic object types 12-3
12.2 Common properties of the Canvas

object . 12-4
12.3 Common methods of the Canvas

object . 12-4
12.4 CLX MIME types and constants 12-22
12.5 Mouse events 12-24
12.6 Mouse-event parameters. 12-25
12.7 Multimedia device types and their

functions 12-33
13.1 Thread priorities 13-3
13.2 WaitFor return values 13-11
14.1 Selected exception classes 14-10
15.1 Porting techniques 15-2
15.2 Changed or different features 15-7
15.3 WinCLX-only and equivalent

VisualCLX units. 15-8
15.4 VisualCLX-only units 15-9
15.5 WinCLX-only units 15-9
15.6 Differences in the Linux and Windows

operating environments 15-18
15.7 Common Linux directories 15-20
15.8 Comparable data-access

components 15-23
15.9 Properties, methods, and events

for cached updates 15-27
16.1 Package files. 16-2
16.2 Package-specific compiler directives . . .16-11
16.3 Package-specific command-line

compiler switches. 16-13
17.1 Runtime library functions 17-3
17.2 VCL methods that support BiDi 17-6
17.3 Estimating string lengths 17-7
18.1 Application files 18-3
18.2 Merge modules and their

dependencies 18-4
18.3 dbExpress deployment as stand-alone

executable 18-7
18.4 dbExpress deployment with

driver DLLs 18-8
20.1 Data controls 20-2
20.2 Column properties 20-20
20.3 Expanded TColumn Title

properties 20-21

Tables

xxvii

20.4 Properties that affect the way
composite fields appear 20-24

20.5 Expanded TDBGrid Options
properties 20-25

20.6 Grid control events 20-27
20.7 Selected database control grid

properties 20-29
20.8 TDBNavigator buttons 20-30
21.1 Rave Reports documentation. 21-6
23.1 Database connection components 23-1
24.1 Values for the dataset State property . . .24-3
24.2 Navigational methods of datasets 24-5
24.3 Navigational properties of datasets 24-6
24.4 Comparison and logical operators

that can appear in a filter 24-14
24.5 FilterOptions values 24-16
24.6 Filtered dataset navigational

methods. 24-16
24.7 Dataset methods for inserting,

updating, and deleting data 24-17
24.8 Methods that work with entire

records 24-22
24.9 Index-based search methods 24-28
25.1 TFloatField properties that affect

data display 25-1
25.2 Special persistent field kinds 25-6
25.3 Field component properties 25-11
25.4 Field component formatting

routines 25-15
25.5 Field component events. 25-16
25.6 Selected field component methods . . . 25-17
25.7 Special conversion results 25-20
25.8 Types of object field components 25-24
25.9 Common object field descendant

properties 25-24
26.1 Table types recognized by the BDE

based on file extension 26-5
26.2 TableType values. 26-6
26.3 BatchMove import modes 26-8
26.4 Database-related informational

methods for session components 26-27
26.5 TSessionList properties and

methods. 26-30
26.6 Properties, methods, and events

for cached updates. 26-33
26.7 UpdateKind values 26-39
26.8 Batch move modes. 26-50
26.9 Data Dictionary interface 26-54

27.1 ADO components. 27-2
27.2 Connection parameters 27-4
27.3 ADO connection modes 27-6
27.4 Execution options for ADO

datasets 27-12
27.5 Comparison of ADO and client dataset

cached updates 27-13
28.1 Columns in tables of metadata

listing tables 28-15
28.2 Columns in tables of metadata

listing stored procedures. 28-15
28.3 Columns in tables of metadata

listing fields 28-16
28.4 Columns in tables of metadata

listing indexes 28-17
28.5 Columns in tables of metadata listing

parameters. 28-18
29.1 Filter support in client datasets 29-3
29.2 Summary operators for maintained

aggregates 29-12
29.3 Specialized client datasets for

caching updates. 29-18
30.1 AppServer interface members. 30-3
30.2 Provider options 30-5
30.3 UpdateStatus values 30-9
30.4 UpdateMode values 30-10
30.5 ProviderFlags values 30-10
31.1 Components used in multi-tiered

applications 31-3
31.2 Connection components 31-5
31.3 Javascript libraries 31-35
33.1 Web Broker versus WebSnap 33-2
34.1 MethodType values. 34-7
34.2 Predefined tag names 34-10
35.1 Web application module types 35-3
35.2 Web server application types 35-8
35.3 Web application components 35-9
35.4 Script objects 35-22
35.5 Request information found in

action requests 35-25
36.1 VCL/CLX and IntraWeb

components 36-2
38.1 Remotable classes. 38-6
40.1 COM object requirements 40-12
40.2 Delphi wizards for implementing COM,

Automation, and ActiveX objects 40-21
40.3 DAX Base classes for generated

implementation classes 40-23

xxviii

41.1 Type Library editor files 41-2
41.2 Type Library editor parts 41-3
41.3 Attribute syntax 41-14
43.1 Threading models for COM objects 43-7
44.1 IApplicationObject interface

members 44-4
44.2 IRequest interface members 44-4
44.3 IResponse interface members 44-5

44.4 ISessionObject interface members 44-6
44.5 IServer interface members 44-6
46.1 IObjectContext methods for

transaction support 46-12
46.2 Threading models for transactional

objects 46-17
46.3 Call synchronization options 46-19
46.4 Event publisher return codes 46-23

xxix

3.1 A simplified hierarchy diagram 3-5
4.1 A simple form 4-3
9.1 A frame with data-aware controls

and a data source component 9-16
9.3 Menu terminology. 9-32
9.4 MainMenu and PopupMenu

components 9-33
9.6 Adding menu items to a main menu . . .9-36
9.7 Nested menu structures. 9-37
10.2 A progress bar 10-15
11.1 Part of the ModelMaker toolbar 11-3
11.2 ModelMaker showing a sample

model . 11-4
11.3 The Classes view. 11-5
11.4 The Units view 11-5
11.5 The Diagrams view 11-6
11.6 The Members view 11-7
11.7 The Implementation Editor view 11-8
11.8 The Unit Code Editor 11-8
11.9 The Diagram Editor 11-9
12.1 Bitmap-dimension dialog box from

the BMPDlg unit 12-21
17.1 TListBox set to bdLeftToRight 17-5
17.2 TListBox set to bdRightToLeft 17-5
17.3 TListBox set to

bdRightToLeftNoAlign 17-5
17.4 TListBox set to

bdRightToLeftReadingOnly 17-5
19.1 Generic Database Architecture 19-6
19.2 Connecting directly to the

database server. 19-8
19.3 A file-based database application 19-9
19.4 Architecture combining a client

dataset and another dataset 19-12
19.5 Multi-tiered database architecture 19-13
20.1 TDBGrid control 20-15
20.2 TDBGrid control with ObjectView

set to False 20-23
20.3 TDBGrid control with Expanded

set to False 20-23
20.4 TDBGrid control with Expanded

set to True. 20-24

20.5 TDBCtrlGrid at design time 20-28
20.6 Buttons on the TDBNavigator

control 20-29
22.1 Decision support components

at design time 22-2
22.2 One-dimensional crosstab 22-3
22.3 Three-dimensional crosstab 22-3
22.4 Decision graphs bound to different

decision sources. 22-15
26.1 Components in a BDE-based

application. 26-2
31.1 Web-based multi-tiered database

application. 31-31
33.1 Parts of a Uniform Resource Locator . . . 33-3
34.1 Structure of a Server Application 34-4
35.2 Web App Components dialog 35-9
35.3 Web App Components dialog with

options for login support selected . . . 35-14
35.4 An example of a login page as seen

from a Web page editor 35-16
35.5 Generating content flow 35-24
35.6 Action request and response 35-26
35.7 Image response to a request 35-27
35.8 Dispatching a page 35-28
36.2 The main form of the IntraWeb

application. 36-5
40.1 A COM interface 40-3
40.2 Interface vtable 40-5
40.3 In-process server 40-7
40.4 Out-of-process and remote servers 40-8
40.5 COM-based technologies 40-11
40.6 Simple COM object interface 40-20
40.7 Automation object interface 40-20
40.8 ActiveX object interface 40-20
40.9 Delphi ActiveX framework 40-23
41.1 Type Library editor 41-3
41.2 Object list pane 41-5
43.1 Dual interface VTable 43-14
45.1 Mask Edit property page in

design mode. 45-13
46.1 The COM+ Events system 46-21

Figures

xxx

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, creating Internet Web server
applications, and writing custom components. It allows you to build applications
that meet many industry-standard specifications such as SOAP, TCP/IP, COM+, and
ActiveX. Many of the advanced features that support Web development, advanced
XML technologies, and database development require components or wizards that
are not available in all editions of Delphi.

The Developer’s Guide assumes you are familiar with using Delphi and understand
fundamental Delphi programming techniques. For an introduction to Delphi
programming and the integrated development environment (IDE), see the Quick
Start manual or the online Help.

What’s in this manual?
This manual contains five parts, as follows:

• Part I, “Programming with Delphi,” describes how to build general-purpose
Delphi applications. This part provides details on programming techniques you
can use in any Delphi application. For example, it describes how to use common
objects that make user interface programming easy. Objects are available for
handling strings, manipulating text, implementing common dialogs, and so on.
This section also includes chapters on working with graphics, error and exception
handling, using DLLs, OLE automation, and writing international applications.

A chapter describes how to develop cross-platform applications that can be
compiled and run on either Windows or Linux platforms.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how

1-2 D e v e l o p e r ’ s G u i d e

M a n u a l c o n v e n t i o n s

to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

• Part II, “Developing database applications,” describes how to build database
applications using database tools and components. You can access several types of
databases, including local databases such as Paradox and dBASE, and network
SQL server databases such as InterBase, Oracle, and Sybase. You can choose from
a variety of data access mechanisms, including dbExpress, InterbaseExpress, and
ADO. To implement the more advanced database applications, you need the
features that are not available in all editions.

• Part III, “Writing Internet applications,” describes how to create applications that
are distributed over the Internet. Delphi includes a wide array of tools for writing
Web server applications, including: the Web Broker architecture, with which you
can create cross-platform server applications; WebSnap, with which you can
design Web pages in a GUI environment; support for working with XML
documents; and BizSnap, an architecture for using SOAP-based Web Services. For
lower-level support that underlies much of the messaging in Internet applications,
this section also describes how to work with socket components. The components
that implement many of these features are not available in all editions.

• Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects on the
system such as Windows Shell extensions or multimedia applications. Delphi
contains components that support the ActiveX, COM+, and a COM-based library
for COM controls that can be used for general-purpose and Web-based
applications. A Type Library editor simplifies the development of COM servers.
Support for COM controls and ActiveX controls is not available in all editions of
Delphi.

Manual conventions
This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in Delphi code.
It also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent Delphi keywords or
compiler options. Boldface is also used to emphasize certain words, such as
new terms.

Italics Italicized words in text represent Delphi identifiers, such as variable or
type names.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

I n t r o d u c t i o n 1-3

D e v e l o p e r s u p p o r t s e r v i c e s

Developer support services
Borland offers a variety of support options, including free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products, technical support, and fee-based consultant-level support.

For more information about Borland’s developer support services, please see our
Web site at http://www.borland.com/devsupport/delphi, call Borland Assist at
(800) 523-7070, or contact our Sales Department at (831) 431-1064. For customers
outside of the United States of America, see our Web site at
http://www.borland.com/bww.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi.

When contacting support, be prepared to provide complete information about your
environment, the version and edition of the product you are using, and a detailed
description of the problem.

1-4 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g w i t h D e l p h i

P a r t

I
Part IProgramming with Delphi

The chapters in “Programming with Delphi” introduce concepts and skills necessary
for creating applications using any edition of Delphi.

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-1

C h a p t e r

2
Chapter2Developing applications with Delphi

Borland Delphi is an object-oriented, visual programming environment to develop
32-bit applications for deployment on Windows and Linux. Using Delphi, you can
create highly efficient applications with a minimum of manual coding.

Delphi provides a suite of Rapid Application Development (RAD) design tools,
including programming wizards and application and form templates, and supports
object-oriented programming with a comprehensive class library that includes:

• The Visual Component Library (VCL), which includes objects that encapsulate the
Windows API as well as other useful programming techniques (Windows).

• The Borland Component Library for Cross-Platform (CLX), which includes objects that
encapsulate the Qt library (Windows or Linux).

This chapter briefly describes the Delphi development environment and how it fits
into the development life cycle. The rest of this manual provides technical details on
developing general-purpose, database, Internet and Intranet applications, creating
ActiveX and COM controls, and writing your own components.

Integrated development environment
When you start Delphi, you are immediately placed within the integrated
development environment, also called the IDE. This IDE provides all the tools you
need to design, develop, test, debug, and deploy applications, allowing rapid
prototyping and a shorter development time.

The IDE includes all the tools necessary to start designing applications, such as the:

• Form Designer, or form, a blank window on which to design the user interface (UI)
for your application.

• Component palette for displaying visual and nonvisual components you can use
to design your user interface.

2-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a p p l i c a t i o n s

• Object Inspector for examining and changing an object’s properties and events.

• Object TreeView for displaying and changing a components’ logical relationships.

• Code editor for writing and editing the underlying program logic.

• Project Manager for managing the files that make up one or more projects.

• Integrated debugger for finding and fixing errors in your code.

• Many other tools such as property editors to change the values for an object’s
property.

• Command-line tools including compilers, linkers, and other utilities.

• Extensive class libraries with many reusable objects. Many of the objects provided
in the class library are accessible in the IDE from the Component palette. By
convention, the names of objects in the class library begin with a T, such as
TStatusBar. Names of objects that begin with a Q are based on the Qt library and
are used for cross-platform applications.

Some tools may not be included in all editions of the product.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialog boxes, and windows.

Designing applications
You can design any kind of 32-bit application—from general-purpose utilities to
sophisticated data access programs or distributed applications.

As you visually design the user interface for your application, the Form Designer
generates the underlying Delphi code to support the application. As you select and
modify the properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment.

You can create your own components using the Delphi language. Most of the
components provided are written in Delphi. You can add components that you write
to the Component palette and customize the palette for your use by including new
tabs if needed.

You can also design applications that run on both Linux and Windows by using CLX
components. CLX contains a set of classes that, if used instead of those in the VCL,
allows your program to port between Windows and Linux. Refer to Chapter 15,
“Developing cross-platform applications” for details about cross-platform
programming and the differences between the Windows and Linux environments. If
you are using Kylix while developing cross-platform applications, Kylix also

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-3

C r e a t i n g p r o j e c t s

includes a Developer’s Guide that is tailored for the Linux environment. You can refer
to the manual both in the Kylix online Help or the printed manual provided with the
Kylix product.

Chapter 8, “Building applications, components, and libraries,” introduces support
for different types of applications.

Creating projects
All application development revolves around projects. When you create an
application in Delphi you are creating a project. A project is a collection of files that
make up an application. Some of these files are created at design time. Others are
generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools.

At the top of the project hierarchy is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.dpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, and compiler. These
project options are stored in the project file with the project.

Units and forms are the basic building blocks of an application. A project can share
any existing form and unit file including those that reside outside the project
directory tree. This includes custom procedures and functions that have been written
as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the uses clause of the project file.
Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

2-4 D e v e l o p e r ’ s G u i d e

E d i t i n g c o d e

Editing code
The Code editor is a full-featured ASCII editor. If using the visual programming
environment, a form is automatically displayed as part of a new project. You can start
designing your application interface by placing objects on the form and modifying
how they work in the Object Inspector. But other programming tasks, such as writing
event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changes and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor, and continue adjusting the form from there.

The code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final executable
file—all of the VCL objects, CLX objects, RTL sources, and project files—can be
viewed and edited in the Code editor.

Compiling applications
When you have finished designing your application interface on the form and
writing additional code so it does what you want, you can compile the project from
the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

• When you compile, only units that have changed since the last compile are
recompiled.

• When you build, all units in the project are compiled, regardless of whether they
have changed since the last compile. This technique is useful when you are unsure
of exactly which files have or have not been changed, or when you simply want to
ensure that all files are current and synchronized. It's also important to build when
you've changed global compiler directives to ensure that all code compiles in the
proper state.You can also test the validity of your source code without attempting
to compile the project.

• When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project|Compile All Projects or Project|Build
All Projects with the project group selected in the Project Manager.

Note To compile a CLX application on Linux, you need Kylix.

D e v e l o p i n g a p p l i c a t i o n s w i t h D e l p h i 2-5

D e b u g g i n g a p p l i c a t i o n s

Debugging applications
With the integrated debugger, you can find and fix errors in your applications. The
integrated debugger lets you control program execution, monitor variable values and
items in data structures, and modify data values while debugging.

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the variable values, the functions
on the call stack, and the program output, you can monitor how your program
behaves and find the areas where it is not behaving as designed. The debugger is
described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions are classes, like other classes in Delphi, except, by convention, they begin
with an initial E rather than a T.

Deploying applications
Delphi includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all editions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. TeamSource software (not available in all editions) is also
available for tracking application updates.

To deploy a CLX application on Linux, you need Kylix.

Note Not all editions have deployment capabilities.

Refer to Chapter 18, “Deploying applications,” for specific information on
deployment.

2-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e c o m p o n e n t l i b r a r y 3-1

C h a p t e r

3
Chapter3Using the component library

This chapter presents an overview of the component library that you use while
developing applications. The component library includes the Visual Component
Library (VCL) and the Borland Component Library for Cross-Platform (CLX). The
VCL is for Windows-only development and CLX is for cross-platform development
on both Windows and Linux. The component library is extensive, containing both
components that you can work with in the IDE and classes that you create and use in
runtime code. Some of the classes can be used in any application, while others can
only appear in certain types of applications.

Understanding the component library
The component library is made up of objects separated into several sublibraries, each
of which serves a different purpose. These sublibraries are listed in Table 3.1:

Table 3.1 Component sublibraries

Part Description

BaseCLX Low-level classes and routines available for all CLX applications. BaseCLX includes
the runtime library (RTL) up to and including the Classes unit.

DataCLX Client data-access components. The components in DataCLX are a subset of the total
available set of components for working with databases. These components are used
in cross-platform applications that access databases. They can access data from a file
on disk or from a database server using dbExpress.

NetCLX Components for building Web Server applications. These include support for
applications that use Apache or CGI Web Servers.

3-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e c o m p o n e n t l i b r a r y

The VCL and CLX contain many of the same sublibraries. They both include
BaseCLX, DataCLX, NetCLX. The VCL also includes WinCLX while CLX includes
VisualCLX instead. Use the VCL when you want to use native Windows controls,
Windows-specific features, or extend an existing VCL application. Use CLX when
you want to write a cross-platform application or use controls that are available in
CLX applications, such as TLCDNumber. For more information on writing cross-
platform applications, see Chapter 15, “Developing cross-platform applications.”

All classes descend from TObject. TObject introduces methods that implement
fundamental behavior like construction, destruction, and message handling.

Components are a subset of the component library that descend from the class
TComponent. You can place components on a form or data module and manipulate
them at design time. Using the Object Inspector, you can assign property values
without writing code. Most components are either visual or nonvisual, depending on
whether they are visible at runtime. Some components appear on the Component
palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend
from TControl. Controls are used in GUI applications, and appear to the user at
runtime. TControl provides properties that specify the visual attributes of controls,
such as their height and width.

Nonvisual components are used for a variety of tasks. For example, if you are writing
an application that connects to a database, you can place a TDataSource component
on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At design time, nonvisual
components are represented by an icon. This allows you to manipulate their
properties and events just as you would a visual control.

Classes that are not components (that is, classes that descend from TObject but not
TComponent) are also used for a variety of tasks. Typically, these classes are used for
accessing system objects (such as a file or the clipboard) or for transient tasks (such as
storing data in a list). You can’t create instances of these classes at design time,
although they are sometimes created by the components that you add in the Form
Designer.

VisualCLX Cross-platform GUI components and graphics classes. VisualCLX classes make use
of an underlying cross-platform widget library (Qt).

WinCLX Classes that are available only on the Windows platform. These include controls that
are wrappers for native Windows controls, database access components that use
mechanisms (such as the Borland Database Engine or ADO) that are not available on
Linux, and components that support Windows-only technologies (such as COM, NT
Services, or control panel applets).

Table 3.1 Component sublibraries

Part Description

U s i n g t h e c o m p o n e n t l i b r a r y 3-3

U n d e r s t a n d i n g t h e c o m p o n e n t l i b r a r y

Detailed reference material on all VCL and CLX objects is accessible through online
Help while you are programming. In the Code editor, place the cursor anywhere on
the object and press F1 to display the Help topic. Objects, properties, methods, and
events that are in the VCL are marked “VCL Reference” and those in CLX are
marked “CLX Reference.”

Properties, methods, and events

Both the VCL and CLX form hierarchies of classes that are tied to the IDE, where you
can develop applications quickly. The classes in both component libraries are based
on properties, methods, and events. Each class includes data members (properties),
functions that operate on the data (methods), and a way to interact with users of the
class (events). The component library is written in the Delphi language, although the
VCL is based on the Windows API and CLX is based on the Qt widget library.

Properties
Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen in an application interface. Well-designed properties make your
components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

• Unlike methods, which are only available at runtime, you can see and change
some properties at design time and get immediate feedback as the components
change in the IDE.

• You can access some properties in the Object Inspector, where you can modify the
values of your object visually. Setting properties at design time is easier than
writing code and makes your code easier to maintain.

• Because the data is encapsulated, it is protected and private to the actual object.

• The calls to get and set the values of properties can be methods, so special
processing can be done that is invisible to the user of the object. For example, data
could reside in a table, but could appear as a normal data member to the
programmer.

• You can implement logic that triggers events or modifies other data during the
access of a property. For example, changing the value of one property may require
you to modify another. You can change the methods created for the property.

• Properties can be virtual.

• A property is not restricted to a single object. Changing one property on one object
can affect several objects. For example, setting the Checked property on a radio
button affects all of the radio buttons in the group.

3-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e c o m p o n e n t l i b r a r y

Methods
A method is a procedure that is always associated with a class. Methods define the
behavior of an object. Class methods can access all the public, protected, and
privateproperties and fields of the class and are commonly referred to as member
functions. See “Controlling access” on page 2-6 of the Component Writer’s Guide.
Although most methods belong to an instance of a class, some methods belong
instead to the class type. These are called class methods.

Events
An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform. For example, the user may choose a menu item, click a button, or
mark some text. You can write code to handle the events in which you are interested,
rather than writing code that always executes in the same restricted order.

Regardless of how an event is triggered, VCL objects look to see if you have written
any code to handle that event. If you have, that code is executed; otherwise, the
default event handling behavior takes place.

The kinds of events that can occur can be divided into two main categories:

• User events
• System events
• Internal events

User events
User events are actions that the user initiates. Examples of user events are OnClick
(the user clicked the mouse), OnKeyPress (the user pressed a key on the keyboard),
and OnDblClick (the user double-clicked a mouse button).

System events
System events are events that the operating system fires for you. For example, the
OnTimer event (which the Timer component issues whenever a predefined interval
has elapsed), the OnPaint event (a component or window needs to be redrawn), and
so on. Usually, system events are not directly initiated by a user action.

Internal events
Internal events are events that are generated by the objects in your application. An
example of an internal event is the OnPost event that a dataset generates when your
application tells it to post the current record.

U s i n g t h e c o m p o n e n t l i b r a r y 3-5

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Objects, components, and controls
Figure 3.2 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.1 A simplified hierarchy diagram

Every object (class) inherits from TObject. Objects that can appear in the Form
Designer inherit from TPersistent or TComponent. Controls, which appear to the user
at runtime, inherit from TControl. There are two types of controls, graphic controls,
which inherit from TGraphicControl, and windowed controls, which inherit from
TWinControl or TWidgetControl. A control like TCheckBox inherits all the functionality
of TObject, TPersistent, TComponent, TControl, and TWinControl or TWidgetControl,
and adds specialized capabilities of its own.

The figure shows several important base classes, which are described in the
following table:

Table 3.2 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or
CLX. TObject encapsulates the fundamental behavior common to all VCL/
CLX objects by introducing methods that perform basic functions such as
creating, maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to VCL exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement publishable properties.
Classes under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all components. Components can be added to the
Component palette and manipulated at design time. Components can own
other components.

TObject

TGraphicControl

Exception

TComponent TControl TWinControl*TPersistent

[Objects]

[Objects]

[Objects]

[Objects] [Objects] [Objects]

* TWidgetControl in cross-platform applications.

3-6 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL and CLX object hierarchies,
refer to the VCL Object Hierarchy and CLX Object Hierarchy wall charts included
with this product.

TObject branch

The TObject branch includes all VCL and CLX classes that descend from TObject but
not from TPersistent. Much of the powerful capability of the component library is
established by the methods that TObject introduces. TObject encapsulates the
fundamental behavior common to all classes in the component library by introducing
methods that provide:

• The ability to respond when object instances are created or destroyed.

• Class type and instance information on an object, and runtime type information
(RTTI) about its published properties.

• Support for handling messages (VCL applications) or handling notifications (CLX
applications).

TObject is the immediate ancestor of many simple classes. Classes in the TObject
branch have one common, important characteristic: they are transitory. This means
that these classes do not have a method to save the state that they are in prior to
destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another group in the TObject branch is classes that encapsulate data structures, such
as:

• TBits, a class that stores an “array” of Boolean values.
• TList, a linked list class.
• TStack, a class that maintains a last-in first-out array of pointers.
• TQueue, a class that maintains a first-in first-out array of pointers.

Another group in the TObject branch are wrappers for external objects like TPrinter,
which encapsulates a printer interface, and TIniFile, which lets a program read from
or write to an ini file.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWinControl or
TWidgetControl

Specifies the base class of all controls that can have keyboard focus. Controls
under TWinControl are called windowed controls while those under
TWidgetControl are called widgets.

Table 3.2 Important base classes (continued)

Class Description

U s i n g t h e c o m p o n e n t l i b r a r y 3-7

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

TStream is a good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on (see “Using streams” on
page 5-2 for information on streams).

See Chapter 5, “Using BaseCLX,” for information on many of the classes in the
TObject branch (as well as on many global routines in the Delphi Runtime Library).

TPersistent branch

The TPersistent branch includes all VCL and CLX classes that descend from
TPersistent but not from TComponent. Persistence determines what gets saved with a
form file or data module and what gets loaded into the form or data module when it
is retrieved from memory.

Because of their persistence, objects from this branch can appear at design time.
However, they can’t exist independently. Rather, they implement properties for
components. Properties are only loaded and saved with a form if they have an
owner. The owner must be some component. TPersistent introduces the GetOwner
method, which lets the Form Designer determine the owner of the object.

Classes in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method lets
each class indicate how to load and save properties.

Following are some of the classes in the TPersistent branch of the hierarchy:

• Graphics such as: TBrush, TFont, and TPen.

• Classes such as TBitmap and TIcon, which store and display visual images, and
TClipboard, which contains text or graphics that have been cut or copied from an
application.

• String lists, such as TStringList, which represent text or lists of strings that can be
assigned at design time.

• Collections and collection items, which descend from TCollection or
TCollectionItem. These classes maintain indexed collections of specially defined
items that belong to a component. Examples include THeaderSections and
THeaderSection or TListColumns and TListColumn.

TComponent branch

The TComponent branch contains classes that descend from TComponent but not
TControl. Objects in this branch are components that you can manipulate on forms at
design time but which do not appear to the user at runtime. They are persistent
objects that can do the following:

• Appear on the Component palette and be changed on the form.
• Own and manage other components.
• Load and save themselves.

3-8 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Several methods introduced by TComponent dictate how components act during
design time and what information gets saved with the component. Streaming (the
saving and loading of form files, which store information about the property values
of objects on a form) is introduced in this branch. Properties are persistent if they are
published and published properties are automatically streamed.

The TComponent branch also introduces the concept of ownership that is propagated
throughout the component library. Two properties support ownership: Owner and
Components. Every component has an Owner property that references another
component as its owner. A component may own other components. In this case, all
owned components are referenced in the component’s Components property.

The constructor for every component takes a parameter that specifies the new
component's owner. If the passed-in owner exists, the new component is added to
that owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by a form are destroyed and their memory freed
when the form is destroyed. (Assuming, of course, that the components have
properly designed destructors that clean them up correctly.)

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and reads values for that instance’s properties.

Some of the classes in the TComponent branch include:

• TActionList, a class that maintains a list of actions, which provides an abstraction
of the responses your program can make to user input.

• TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

• TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,
classes that display and gather information from commonly used dialog boxes.

• TScreen, a class that keeps track of the forms and data modules that an application
creates, the active form, the active control within that form, the size and resolution
of the screen, and the cursors and fonts available for the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs
internal functions that are accessed through code rather than appearing in the user
interface at runtime.

See Chapter 6, “Working with components,” for details on setting properties, calling
methods, and working with events for components.

U s i n g t h e c o m p o n e n t l i b r a r y 3-9

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

TControl branch

The TControl branch consists of components that descend from TControl but not
TWinControl (TWidgetControl in CLX applications). Classes in this branch are
controls: visual objects that the user can see and manipulate at runtime. All controls
have properties, methods, and events in common that relate to how the control looks,
such as its position, the cursor associated with the control’s window, methods to
paint or move the control, and events to respond to mouse actions. Controls in this
branch, however, can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

TControl introduces many visual properties that all controls inherit. These include the
Caption, Color, Font, and HelpContext or HelpKeyword. While these properties inherited
from TControl, they are only published—and hence appear in the Object Inspector—
for controls to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays. TControl also
introduces the Parent property, which specifies another control that visually contains
the control.

Classes in the TControl branch often called graphic controls, because they all descend
from TGraphicControl, which is an immediate descendant of TControl. Although these
controls appear to the user at runtime, graphic controls do not have their own
underlying window or widget. Instead, they use their parent’s window or widget. It
is because of this limitation that graphic controls cant receive keyboard input or act
as a parent to other controls. However, because they do not have their own window
or widget, graphic controls use fewer system resources. For details on many of the
classes in the TControl branch, see “Graphic controls” on page 10-18.

There are two versions of TControl, one for VCL (Windows-only) applications and
one for CLX (cross-platform) applications. Most controls have two versions as well, a
Windows-only version that descends from the Windows-only version of TControl,
and a cross-platform version that descends from the cross-platform version of
TControl. The Windows-only controls use native Windows APIs in their
implementations, while the cross-platform versions sit on top of the Qt cross-
platform widget library.

3-10 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

See Chapter 7, “Working with controls,” for details on how to interact with controls
at runtime.

TWinControl/TWidgetControl branch

Most controls fall into the TWinControl/ TWidgetControl branch. Unlike graphic
controls, controls in this branch have their own associated window or widget.
Because of this, they are sometimes called windowed controls or widget controls.
Windowed controls all descend from TWinControl, which descends from the
windows-only version of TControl. Widget controls all descend from TWidgetControl,
which descends from the CLX version of TControl.

Controls in the TWinControl/TWidgetControl branch:

• Can receive focus while an application is running, which means they can receive
keyboard input from the application user. In comparison, graphic controls can
only display data and respond to the mouse.

• Can be the parent of one or more child controls.

• Have a handle, or unique identifier, that allows them to access the underlying
window or widget.

The TWinControl/TWidgetControl branch includes both controls that are drawn
automatically (such as TEdit, TListBox, TComboBox, TPageControl, and so on) and
custom controls that do not correspond directly to a single underlying Windows
control or widget. Controls in this latter category, which includes classes like
TStringGrid and TDBNavigator, must handle the details of painting themselves.
Because of this, they descend from TCustomControl, which introduces a Canvas
property on which they can paint themselves.

For details on many of the controls in the TWinControl/TWidgetControl branch, see
Chapter 10, “Types of controls.”

U s i n g t h e o b j e c t m o d e l 4-1

C h a p t e r

4
Chapter4Using the object model

The Delphi language is a set of object-oriented extensions to standard Pascal. Object-
oriented programming is an extension of structured programming that emphasizes
code reuse and encapsulation of data with functionality. Once you define a class, you
and other programmers can use it in different applications, thus reducing
development time and increasing productivity.

This chapter is a brief introduction of object-oriented concepts for programmers who
are just starting out with the Delphi language. For more details on object-oriented
programming for programmers who want to write components that can be installed
on the Component palette, see Chapter 1, “Overview of component creation,” of the
Component Writer’s Guide.

What is an object?
A class is a data type that encapsulates data and operations on data in a single unit.
Before object-oriented programming, data and operations (functions) were treated as
separate elements. An object is an instance of a class. That is, it is a value whose type
is a class. The term object is often used more loosely in this documentation and where
the distinction between a class and an instance of the class is not important, the term
“object” may also refer to a class.

You can begin to understand objects if you understand Pascal records or structures in
C. Records are made of up fields that contain data, where each field has its own type.
Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain
procedures and functions that operate on their data. These procedures and functions
are called methods.

4-2 D e v e l o p e r ’ s G u i d e

W h a t i s a n o b j e c t ?

An object’s data elements are accessed through properties. The properties of many
Delphi objects have values that you can change at design time without writing code.
If you want a property value to change at runtime, you need to write only a small
amount of code.

The combination of data and functionality in a single unit is called encapsulation. In
addition to encapsulation, object-oriented programming is characterized by
inheritance and polymorphism. Inheritance means that objects derive functionality from
other objects (called ancestors); objects can modify their inherited behavior.
Polymorphism means that different objects derived from the same ancestor support
the same method and property interfaces, which often can be called interchangeably.

Examining a Delphi object

When you create a new project, the IDE displays a new form for you to customize. In
the Code editor, the automatically generated unit declares a new class type for the
form and includes the code that creates the new form instance. The generated code
for a new Windows application looks like this:

unit Unit1;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;

type
 TForm1 = class(TForm){ The type declaration of the form begins here }

private
{ Private declarations }

public
{ Public declarations }

end;{ The type declaration of the form ends here }

var
Form1: TForm1;

implementation{ Beginning of implementation part }
{$R *.dfm}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains
methods—code that acts on the object’s data. So far, TForm1 appears to contain no
fields or methods, because you haven’t added any components (the fields of the new
object) to the form and you haven’t created any event handlers (the methods of the
new object). TForm1 does contain inherited fields and methods, even though you
don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
Form1: TForm1;

U s i n g t h e o b j e c t m o d e l 4-3

W h a t i s a n o b j e c t ?

Form1 represents an instance, or object, of the class type TForm1. You can declare
more than one instance of a class type; you might want to do this, for example, to
create multiple child windows in a Multiple Document Interface (MDI) application.
Each instance maintains its own data, but all instances use the same code to execute
methods.

Although you haven’t added any components to the form or written any code, you
already have a complete GUI application that you can compile and run. All it does is
display a blank form.

Suppose you add a button component to this form and write an OnClick event
handler that changes the color of the form when the user clicks the button. The result
might look like this:

Figure 4.1 A simple form

When the user clicks the button, the form’s color changes to green. This is the event-
handler code for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on
a form, a new field appears in the form’s type declaration. If you create the
application described above and look at the code in the Code editor, this is what you
see:

unit Unit1;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type

TForm1 = class(TForm)
Button1: TButton;{ New data field }
procedure Button1Click(Sender: TObject);{ New method declaration }

private
{ Private declarations }

public
{ Public declarations }

end;

4-4 D e v e l o p e r ’ s G u i d e

W h a t i s a n o b j e c t ?

var
Form1: TForm1;

implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);{ The code of the new method }
begin

Form1.Color := clGreen;
end;
end.

TForm1 has a Button1 field that corresponds to the button you added to the form.
TButton is a class type, so Button1 refers to an object.

All the event handlers you write using the IDE are methods of the form object. Each
time you create an event handler, a method is declared in the form object type. The
TForm1 type now contains a new method, the Button1Click procedure, declared in the
TForm1 type declaration. The code that implements the Button1Click method appears
in the implementation part of the unit.

Changing the name of a component

You should always use the Object Inspector to change the name of a component. For
example, suppose you want to change a form’s name from the default Form1 to a
more descriptive name, such as ColorWindow. When you change the form’s Name
property in the Object Inspector, the new name is automatically reflected in the
form’s .dfm or .xfm file (which you usually don’t edit manually) and in the source
code that the IDE generates:

unit Unit1;
interface

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
type

TColorWindow = class(TForm){ Changed from TForm1 to TColorWindow }
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

 end;
var

ColorWindow: TColorWindow;{ Changed from Form1 to ColorWindow }
implementation
{$R *.dfm}
procedure TColorWindow.Button1Click(Sender: TObject);
begin

Form1.Color := clGreen;{ The reference to Form1 didn't change! }
end;
end.

U s i n g t h e o b j e c t m o d e l 4-5

I n h e r i t i n g d a t a a n d c o d e f r o m a n o b j e c t

Note that the code in the OnClick event handler for the button hasn’t changed.
Because you wrote the code, you have to update it yourself and correct any
references to the form:

procedure TColorWindow.Button1Click(Sender: TObject);
begin

ColorWindow.Color := clGreen;
end;

Inheriting data and code from an object
The TForm1 object seems simple. TForm1 appears to contain one field (Button1), one
method (Button1Click), and no properties. Yet you can show, hide, or resize of the
form, add or delete standard border icons, and set up the form to become part of a
Multiple Document Interface (MDI) application. You can do these things because the
form has inherited all the properties and methods of the component TForm. When you
add a new form to your project, you start with TForm and customize it by adding
components, changing property values, and writing event handlers. To customize
any object, you first derive a new object from the existing one; when you add a new
form to your project, the IDE automatically derives a new form from the TForm type:

TForm1 = class(TForm)

A derived class inherits all the properties, events, and methods of the class from
which it derives. The derived class is called a descendant and the class from which it
derives is called an ancestor. If you look up TForm in the online Help, you’ll see lists of
its properties, events, and methods, including the ones that TForm inherits from its
ancestors. A Delphi class can have only one immediate ancestor, but it can have
many direct descendants.

Scope and qualifiers
Scope determines the accessibility of an object’s fields, properties, and methods. All
members declared in a class are available to that class and, as is discussed later, often
to its descendants. Although a method’s implementation code appears outside of the
class declaration, the method is still within the scope of the class because it is
declared in the class declaration.

When you write code to implement a method that refers to properties, methods, or
fields of the class where the method is declared, you don’t need to preface those
identifiers with the name of the class. For example, if you put a button on a new form,
you could write this event handler for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin

Color := clFuchsia;
Button1.Color := clLime;

end;

4-6 D e v e l o p e r ’ s G u i d e

S c o p e a n d q u a l i f i e r s

The first statement is equivalent to

Form1.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of
TForm1; identifiers in the method body therefore fall within the scope of the TForm1
instance where the method is called. The second statement, in contrast, refers to the
color of the button object (not of the form where the event handler is declared), so it
requires qualification.

The IDE creates a separate unit (source code) file for each form. If you want to access
one form’s components from another form’s unit file, you need to qualify the
component names, like this:

Form2.Edit1.Color := clLime;

In the same way, you can access a component’s methods from another form. For
example,

Form2.Edit1.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit
to the uses clause of Form1’s unit.

The scope of a class extends to its descendants. You can, however, redeclare a field,
property, or method in a descendant class. Such redeclarations either hide or
override the inherited member.

For more information about scope, inheritance, and the uses clause, see the Delphi
Language Guide.

Private, protected, public, and published declarations

A class type declaration contains three or four possible sections that control the
accessibility of its fields and methods:

Type
TClassName = Class(TObject)

public
{public fields}
{public methods}

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

• The public section declares fields and methods with no access restrictions. Class
instances and descendant classes can access these fields and methods. A public
member is accessible from wherever the class it belongs to is accessible—that is,
from the unit where the class is declared and from any unit that uses that unit.

U s i n g t h e o b j e c t m o d e l 4-7

U s i n g o b j e c t v a r i a b l e s

• The protected section includes fields and methods with some access restrictions. A
protected member is accessible within the unit where its class is declared and by
any descendant class, regardless of the descendant class’s unit.

• The private section declares fields and methods that have rigorous access
restrictions. A private member is accessible only within the unit where it is
declared. Private members are often used in a class to implement other (public or
published) methods and properties.

• For classes that descend from TPersistent, a published section declares properties
and events that are available at design time. A published member has the same
visibility as a public member, but the compiler generates runtime type information
for published members. Published properties appear in the Object Inspector at
design time.

When you declare a field, property, or method, the new member is added to one of
these four sections, which gives it its visibility: private, protected, public, or
published.

For more information about visibility, see the Delphi Language Guide.

Using object variables
You can assign one object variable to another object variable if the variables are of the
same type or are assignment compatible. In particular, you can assign an object
variable to another object variable if the type of the variable to which you are
assigning is an ancestor of the type of the variable being assigned. For example, here
is a TSimpleForm type declaration and a variable declaration section declaring two
variables, AForm and Simple:

type
TSimpleForm = class(TForm)

Button1: TButton;
Edit1: TEdit;

private
{ Private declarations }

public
{ Public declarations }

end;

var
AForm: TForm;
SimpleForm: TSimpleForm;

4-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g , i n s t a n t i a t i n g , a n d d e s t r o y i n g o b j e c t s

AForm is of type TForm, and SimpleForm is of type TSimpleForm. Because TSimpleForm
is a descendant of TForm, this assignment statement is legal:

AForm := SimpleForm;

Suppose you write an event handler for the OnClick event of a button. When the
button is clicked, the event handler for the OnClick event is called. Each event handler
has a Sender parameter of type TObject:

procedure TForm1.Button1Click(Sender: TObject);
begin
ƒ
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of
Sender is always the control or component that responds to the event. You can test
Sender to find the type of component or control that called the event handler using
the reserved word is. For example,

if Sender is TEdit then
DoSomething

else
DoSomethingElse;

Creating, instantiating, and destroying objects
Many of the objects you use in the Form Designer, such as buttons and edit boxes, are
visible at both design time and runtime. Some, such as common dialog boxes, appear
only at runtime. Still others, such as timers and data source components, have no
visual representation at runtime.

You may want to create your own classes. For example, you could create a TEmployee
class that contains Name, Title, and HourlyPayRate properties. You could then add a
CalculatePay method that uses the data in HourlyPayRate to compute a paycheck
amount. The TEmployee type declaration might look like this:

type
TEmployee = class(TObject)
private

FName: string;
FTitle: string;
FHourlyPayRate: Double;

public
property Name: string read FName write FName;
property Title: string read FTitle write FTitle;
property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
function CalculatePay: Double;

end;

U s i n g t h e o b j e c t m o d e l 4-9

D e f i n i n g n e w c l a s s e s

In addition to the fields, properties, and methods you’ve defined, TEmployee inherits
all the methods of TObject. You can place a type declaration like this one in either the
interface or implementation part of a unit, and then create instances of the new class
by calling the Create method that TEmployee inherits from TObject:

var
Employee: TEmployee;

begin
Employee := TEmployee.Create;

end;

The Create method is called a constructor. It allocates memory for a new instance
object and returns a reference to the object.

Components on a form are created and destroyed automatically. However, if you
write your own code to instantiate objects, you are responsible for disposing of them
as well. Every object inherits a Destroy method (called a destructor) from TObject. To
destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free;

destroys the Employee object and deallocates its memory.

Components and ownership

Delphi components have a built-in memory-management mechanism that allows one
component to assume responsibility for freeing another. The former component is
said to own the latter. The memory for an owned component is automatically freed
when its owner's memory is freed. The owner of a component—the value of its
Owner property—is determined by a parameter passed to the constructor when the
component is created. By default, a form owns all components on it and is in turn
owned by the application. Thus, when the application shuts down, the memory for
all forms and the components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for
example, a TStringList or TCollection object (even if it is associated with a form), you
are responsible for freeing the object.

Defining new classes
Although there are many classes in the object hierarchy, you are likely to need to
create additional classes if you are writing object-oriented programs. The classes you
write must descend from TObject or one of its descendants.

The advantage of using classes comes from being able to create new classes as
descendants of existing ones. Each descendant class inherits the fields and methods
of its parent and ancestor classes. You can also declare methods in the new class that
override inherited ones, introducing new, more specialized behavior.

4-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w c l a s s e s

The general syntax of a descendant class is as follows:

Type
TClassName = Class (TParentClass)

public
{public fields}
{public methods}

protected
{protected fields}
{protected methods}

private
{private fields}
{private methods}

end;

If no parent class name is specified, the class inherits directly from TObject. TObject
defines only a handful of methods, including a basic constructor and destructor.

To define a class:

1 In the IDE, start with a project open and choose File|New|Unit to create a new
unit where you can define the new class.

2 Add the uses clause and type section to the interface section.

3 In the type section, write the class declaration. You need to declare all the member
variables, properties, methods, and events.

TMyClass = class; {This implicitly descends from TObject}
public
ƒ
private
ƒ
published {If descended from TPersistent or below}
ƒ

If you want the class to descend from a specific class, you need to indicate that
class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}

For example:

type TMyButton = class(TButton)
property Size: Integer;
procedure DoSomething;

end;

4 Some editions of the IDE include a feature called class completion that simplifies
the work of defining and implementing new classes by generating skeleton code
for the class members you declare. If you have code completion, invoke it to finish
the class declaration: place the cursor within a method definition in the interface
section and press Ctrl+Shift+C (or right-click and select Complete Class at Cursor).
Any unfinished property declarations are completed, and for any methods that
require an implementation, empty methods are added to the implementation
section.

U s i n g t h e o b j e c t m o d e l 4-11

D e f i n i n g n e w c l a s s e s

If you do not have class completion, you need to write the code yourself,
completing property declarations and writing the methods.

Given the example above, if you have class completion, read and write specifiers
are added to your declaration, including any supporting fields or methods:

type TMyButton = class(TButton)
property Size: Integer read FSize write SetSize;
procedure DoSomething;

private
FSize: Integer;
procedure SetSize(const Value: Integer);

The following code is also added to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
end;
procedure TMyButton.SetSize(const Value: Integer);
begin

FSize := Value;
end;

5 Fill in the methods. For example, to make it so the button beeps when you call the
DoSomething method, add the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin

Beep;
end;
procedure TMyButton.SetSize(const Value: Integer);
begin

if fsize < > value then
begin

FSize := Value;
DoSomething;

end;
end;

Note that the button also beeps when you call SetSize to change the size of the
button.

For more information about the syntax, language definitions, and rules for classes,
see the Delphi Language Guide.

4-12 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Using interfaces
Delphi is a single-inheritance language. That means that any class has only a single
direct ancestor. However, there are times you want a new class to inherit properties
and methods from more than one base class so that you can use it sometimes like one
and sometimes like the other. Interfaces let you achieve something like this effect.

An interface is like a class that contains only abstract methods (methods with no
implementation) and a clear definition of their functionality. Interface method
definitions include the number and types of their parameters, their return type, and
their expected behavior. By convention, interfaces are named according to their
behavior and prefaced with a capital I. For example, an IMalloc interface would
allocate, free, and manage memory. Similarly, an IPersist interface could be used as a
general base interface for descendants, each of which defines specific method
prototypes for loading and saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
procedure MyProcedure;

end;

A simple example of an interface declaration is:

type
IEdit = interface

procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;

end;

Interfaces can never be instantiated. To use an interface, you need to obtain it from an
implementing class.

To implement an interface, define a class that declares the interface in its ancestor list,
indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;

end;

While interfaces define the behavior and signature of their methods, they do not
define the implementations. As long as the class’s implementation conforms to the
interface definition, the interface is fully polymorphic, meaning that accessing and
using the interface is the same for any implementation of it.

For more details about the syntax, language definitions and rules for interfaces, see
the Delphi Language Guide

U s i n g t h e o b j e c t m o d e l 4-13

U s i n g i n t e r f a c e s

Using interfaces across the hierarchy

Using interfaces lets you separate the way a class is used from the way it is
implemented. Two classes can implement the same interface without descending
from the same base class. By obtaining an interface from either class, you can call the
same methods without having to know the type of the class. This polymorphic use of
the same methods on unrelated objects is possible because the objects implement the
same interface. For example, consider the interface,

IPaint = interface
procedure Paint;

end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
procedure Paint;

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

Whether or not the two classes share a common ancestor, they are still assignment
compatible with a variable of IPaint as in

var
Painter: IPaint;

begin
Painter := TSquare.Create;
Painter.Paint;
Painter := TCircle.Create;
Painter.Paint;

end;

This could have been accomplished by having TCircle and TSquare descend from a
common ancestor (say, TFigure), which declares a virtual method Paint. Both TCircle
and TSquare would then have overridden the Paint method. In the previous example,
IPaint could be replaced by TFigure. However, consider the following interface:

IRotate = interface
procedure Rotate(Degrees: Integer);

end;

IRotate makes sense for the rectangle but not the circle. The classes would look like

TSquare = class(TRectangularObject, IPaint, IRotate)
procedure Paint;
procedure Rotate(Degrees: Integer);

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;

end;

4-14 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Later, you could create a class TFilledCircle that implements the IRotate interface to
allow rotation of a pattern that fills the circle without having to add rotation to the
simple circle.

Note For these examples, the immediate base class or an ancestor class is assumed to have
implemented the methods of IInterface, the base interface from which all interfaces
descend. For more information on IInterface, see “Implementing IInterface” on
page 4-14 and “Memory management of interface objects” on page 4-18.

Using interfaces with procedures

Interfaces allow you to write generic procedures that can handle objects without
requiring that the objects descend from a particular base class. Using the IPaint and
IRotate interfaces defined previously, you can write the following procedures:

procedure PaintObjects(Painters: array of IPaint);
var

I: Integer;
begin

for I := Low(Painters) to High(Painters) do
Painters[I].Paint;

end;

procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var

I: Integer;
begin

for I := Low(Rotaters) to High(Rotaters) do
Rotaters[I].Rotate(Degrees);

end;

RotateObjects does not require that the objects know how to paint themselves and
PaintObjects does not require the objects know how to rotate. This allows the generic
procedures to be used more often than if they were written to only work against a
TFigure class.

Implementing IInterface

Just as all objects descend, directly or indirectly, from TObject, all interfaces derive
from the IInterface interface. IInterface provides for dynamic querying and lifetime
management of the interface. This is established in the three IInterface methods:

• QueryInterface dynamically queries a given object to obtain interface references for
the interfaces that the object supports.

• _AddRef is a reference counting method that increments the count each time a call
to QueryInterface succeeds. While the reference count is nonzero the object must
remain in memory.

• _Release is used with _AddRef to allow an object to track its own lifetime and
determine when it is safe to delete itself. Once the reference count reaches zero, the
object is freed from memory.

U s i n g t h e o b j e c t m o d e l 4-15

U s i n g i n t e r f a c e s

Every class that implements interfaces must implement the three IInterface methods,
as well as all of the methods declared by any other ancestor interfaces, and all of the
methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of
lifetime management, disabling reference-counting. This is a powerful technique that
lets you decouple interfaces from reference-counting.

TInterfacedObject

When defining a class that supports one or more interfaces, it is convenient to use
TInterfacedObject as a base class because it implements the methods of IInterface.
TInterfacedObject class is declared in the System unit as follows:

type
TInterfacedObject = class(TObject, IInterface)
protected

FRefCount: Integer;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

public
procedure AfterConstruction; override;

 procedure BeforeDestruction; override;
 class function NewInstance: TObject; override;

property RefCount: Integer read FRefCount;
end;

Deriving directly from TInterfacedObject is straightforward. In the following example
declaration, TDerived is a direct descendant of TInterfacedObject and implements a
hypothetical IPaint interface.

type
TDerived = class(TInterfacedObject, IPaint)
ƒ
end;

Because it implements the methods of IInterface, TInterfacedObject automatically
handles reference counting and memory management of interfaced objects. For more
information, see “Memory management of interface objects” on page 4-18, which
also discusses writing your own classes that implement interfaces but that do not
follow the reference-counting mechanism inherent in TInterfacedObject.

4-16 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Using the as operator with interfaces

Classes that implement interfaces can use the as operator for dynamic binding on the
interface. In the following example,

procedure PaintObjects(P: TInterfacedObject)
var

X: IPaint;

begin
X := P as IPaint;

{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an
IPaint interface reference. Dynamic binding makes this assignment possible. For this
assignment, the compiler generates code to call the QueryInterface method of P’s
IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports IPaint. At runtime, P either resolves to an
IPaint reference or an exception is raised. In either case, assigning P to X will not
generate a compile-time error as it would if P was of a class type that did not
implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be
aware of the following requirements:

• Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is
not sufficient, if you want to use the as operator, for a class to simply implement
the methods of IInterface. This is true even if it also implements the interfaces it
explicitly declares. The class must explicitly declare IInterface in its interface list.

• Using an IID: Interfaces can use an identifier that is based on a GUID (globally
unique identifier). GUIDs that are used to identify interfaces are referred to as
interface identifiers (IIDs). If you are using the as operator with an interface, it
must have an associated IID. To create a new GUID in your source code you can
use the Ctrl+Shift+G editor shortcut key.

Reusing code and delegation

One approach to reusing code with interfaces is to have one interfaced object contain,
or be contained by another. Using properties that are object types provides an
approach to containment and code reuse. To support this design for interfaces, the
Delphi language has a keyword implements, that makes if easy to write code to
delegate all or part of the implementation of an interface to a subobject.

Aggregation is another way of reusing code through containment and delegation. In
aggregation, an outer object uses an inner object that implements interfaces which are
exposed only by the outer object.

U s i n g t h e o b j e c t m o d e l 4-17

U s i n g i n t e r f a c e s

Using implements for delegation
Many classes have properties that are subobjects. You can also use interfaces as
property types. When a property is of an interface type (or a class type that
implements the methods of an interface) you can use the keyword implements to
specify that the methods of that interface are delegated to the object or interface
reference which is the value of the property. The delegate only needs to provide
implementation for the methods. It does not have to declare the interface support.
The class containing the property must include the interface in its ancestor list.

By default, using the implements keyword delegates all interface methods. However,
you can use methods resolution clauses or declare methods in your class that
implement some of the interface methods to override this default behavior.

The following example uses the implements keyword in the design of a color adapter
object that converts an 8-bit RGB color value to a Color reference:

unit cadapt;
interface
type
IRGB8bit = interface
 ['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']

function Red: Byte;
function Green: Byte;
function Blue: Byte;

end;
IColorRef = interface
 ['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']

function Color: Integer;
end;

{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
 TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)

private
FRGB8bit: IRGB8bit;
FPalRelative: Boolean;

public
constructor Create(rgb: IRGB8bit);
property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
property PalRelative: Boolean read FPalRelative write FPalRelative;
function Color: Integer;

end;
implementation
constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin

FRGB8bit := rgb;
end;
function TRGB8ColorRefAdapter.Color: Integer;
begin

if FPalRelative then
Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)

else
Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);

end;
end.

4-18 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

For more information about the syntax, implementation details, and language rules
of the implements keyword, see the Delphi Language Guide.

Aggregation
Aggregation offers a modular approach to code reuse through sub-objects that make
up the functionality of a containing object, but that hide the implementation details
from that object. In aggregation, an outer object implements one or more interfaces.
At a minimum, it must implement IInterface. The inner object, or objects, also
implement one or more interfaces. However, only the outer object exposes the
interfaces. That is, the outer object exposes both the interfaces it implements and the
ones that its contained objects implement.

Clients know nothing about inner objects. While the outer object provides access to
the inner object interfaces, their implementation is completely transparent. Therefore,
the outer object class can exchange the inner object class type for any class that
implements the same interface. Correspondingly, the code for the inner object classes
can be shared by other classes that want to use it.

The aggregation model defines explicit rules for implementing IInterface using
delegation. The inner object must implement two versions of the IInterface methods.

• It must implement IInterface on itself, controlling its own reference count. This
implementation of IInterface tracks the relationship between the outer and the
inner object. For example, when an object of its type (the inner object) is created,
the creation succeeds only for a requested interface of type IInterface.

• It also implements a second IInterface for all the interfaces it implements that the
outer object exposes. This second IInterface delegates calls to QueryInterface,
_AddRef, and _Release to the outer object. The outer IInterface is referred to as the
“controlling Unknown.”

Refer to the MS online help for the rules about creating an aggregation. When writing
your own aggregation classes, you can also refer to the implementation details of
IInterface in TComObject. TComObject is a COM class that supports aggregation. If you
are writing COM applications, you can also use TComObject directly as a base class.

Memory management of interface objects

One of the concepts behind the design of interfaces is ensuring the lifetime
management of the objects that implement them. The _AddRef and _Release methods
of IInterface provide a way to implement this lifetime management. _AddRef and
_Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object
when that reference count is zero.

If you are creating COM objects for distributed applications (in the Windows
environment only), then you should strictly adhere to the reference counting rules.
However, if you are using interfaces only internally in your application, then you
have a choice that depends upon the nature of your object and how you decide to use
it.

U s i n g t h e o b j e c t m o d e l 4-19

U s i n g i n t e r f a c e s

Using reference counting
The Delphi compiler provides most of the IInterface memory management for you by
its implementation of interface querying and reference counting. Therefore, if you
have an object that lives and dies by its interfaces, you can easily use reference
counting by deriving from TInterfacedObject. If you decide to use reference counting,
then you must be careful to only hold the object as an interface reference, and to be
consistent in your reference counting. For example:

procedure beep(x: ITest);
function test_func()
var

y: ITest;
begin

y := TTest.Create; // because y is of type ITest, the reference count is one
beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;

This is the cleanest and safest approach to memory management; and if you use
TInterfacedObject it is handled automatically. If you do not follow this rule, your
object can unexpectedly disappear, as demonstrated in the following code:

function test_func()
var

x: TTest;
begin

x := TTest.Create; // no count on the object yet
beep(x as ITest); // count is incremented by the act of calling beep
// and decremented when it returns
x.something; // surprise, the object is gone

end;

Note In the examples above, the beep procedure, as it is declared, increments the reference
count (call _AddRef) on the parameter, whereas either of the following declarations
do not:

procedure beep(const x: ITest);

or

procedure beep(var x: ITest);

These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently
applied, is if your object is a component or a control owned by another component.
In that case, you can still use interfaces, but you should not use reference counting
because the lifetime of the object is not dictated by its interfaces.

4-20 D e v e l o p e r ’ s G u i d e

U s i n g i n t e r f a c e s

Not using reference counting
If your object is a component or a control that is owned by another component, then
it is part of a different memory management system that is based in TComponent.
Although some classes mix the object lifetime management approaches of
TComponent and interface reference counting, this is very tricky to implement
correctly.

To create a component that supports interfaces but bypasses the interface reference
counting mechanism, you must implement the _AddRef and _Release methods in code
such as the following:

function TMyObject._AddRef: Integer;
begin

Result := -1;
end;

function TMyObject._Release: Integer;
begin

Result := -1;
end;

You would still implement QueryInterface as usual to provide dynamic querying on
your object.

Note that, because you implement QueryInterface, you can still use the as operator for
interfaces, as long as you create an interface identifier (IID). You can also use
aggregation. If the outer object is a component, the inner object implements reference
counting as usual, by delegating to the “controlling Unknown.” It is at the level of the
outer object that the decision is made to circumvent the _AddRef and _Release
methods, and to handle memory management via another approach. In fact, you can
use TInterfacedObject as a base class for an inner object of an aggregation that has a as
its containing outer object one that does not follow the interface lifetime model.

Note The “controlling Unknown” is the IUnknown implemented by the outer object and
the one for which the reference count of the entire object is maintained. IUnknown is
the same as IInterface, but is used instead in COM-based applications (Windows
only). For more information distinguishing the various implementations of the
IUnknown or IInterface interface by the inner and outer objects, see “Aggregation” on
page 4-18 and the Microsoft online Help topics on the “controlling Unknown.”

U s i n g t h e o b j e c t m o d e l 4-21

U s i n g i n t e r f a c e s

Using interfaces in distributed applications

In VCL applications, interfaces are a fundamental element in the COM, SOAP, and
CORBA distributed object models. Delphi provides base classes for these
technologies that extend the basic interface functionality in TInterfacedObject, which
simply implements the IInterface interface methods.

When using COM, classes and interfaces are defined in terms of IUnknown rather
than IInterface. There is no semantic difference between IUnknown and IInterface, the
use of IUnknown is simply a way to adapt Delphi interfaces to the COM definition.
COM classes add functionality for using class factories and class identifiers (CLSIDs).
Class factories are responsible for creating class instances via CLSIDs. The CLSIDs
are used to register and manipulate COM classes. COM classes that have class
factories and class identifiers are called CoClasses. CoClasses take advantage of the
versioning capabilities of QueryInterface, so that when a software module is updated
QueryInterface can be invoked at runtime to query the current capabilities of an object.

New versions of old interfaces, as well as any new interfaces or features of an object,
can become immediately available to new clients. At the same time, objects retain
complete compatibility with existing client code; no recompilation is necessary
because interface implementations are hidden (while the methods and parameters
remain constant). In COM applications, developers can change the implementation
to improve performance, or for any internal reason, without breaking any client code
that relies on that interface. For more information about COM interfaces, see
Chapter 40, “Overview of COM technologies.”

When distributing an application using SOAP, interfaces are required to carry their
own runtime type information (RTTI). The compiler only adds RTTI to an interface
when it is compiled using the {$M+} switch. Such interfaces are called invokable
interfaces. The descendant of any invokable interface is also invokable. However, if an
invokable interface descends from another interface that is not invokable, client
applications can only call the methods defined in the invokable interface and its
descendants. Methods inherited from the non-invokable ancestors are not compiled
with type information and so can’t be called by clients.

The easiest way to define invokable interfaces is to define your interface so that it
descends from IInvokable. IInvokable is the same as IInterface, except that it is compiled
using the {$M+} switch. For more information about Web Service applications that
are distributed using SOAP, and about invokable interfaces, see Chapter 38, “Using
Web Services.”

Another distributed application technology is CORBA. The use of interfaces in
CORBA applications is mediated by stub classes on the client and skeleton classes on
the server. These stub and skeleton classes handle the details of marshaling interface
calls so that parameter values and return values can be transmitted correctly.
Applications must use either a stub or skeleton class, or employ the Dynamic
Invocation Interface (DII) which converts all parameters to special variants (so that
they carry their own type information).

4-22 D e v e l o p e r ’ s G u i d e

U s i n g B a s e C L X 5-1

C h a p t e r

5
Chapter5Using BaseCLX

There are a number of units in the component library that provide the underlying
support for most of the component libraries. These units include the global routines
that make up the runtime library, a number of utility classes such as those that
represent streams and lists, and the classes TObject, TPersistent, and TComponent.
Collectively, these units are called BaseCLX. BaseCLX does not include any of the
components that appear on the Component palette. Rather, the classes and routines
in BaseCLX are used by the components that do appear on the Component palette
and are available for you to use in application code or when you are writing your
own classes.

The following topics discuss many of the classes and routines that make up BaseCLX
and illustrate how to use them.

• Using streams
• Working with files~
• Working with .ini files
• Working with lists
• Working with string lists
• Working with strings~
• Creating drawing spaces
• Printing
• Converting measurements
• Defining custom variants

Note This list of tasks is not exhaustive. The runtime library in BaseCLX contains many
routines to perform tasks that are not mentioned here. These include a host of
mathematical functions (defined in the Math unit), routines for working with date/
time values (defined in the SysUtils and DateUtils units), and routines for working
with Variant values (defined in the Variants unit).

5-2 D e v e l o p e r ’ s G u i d e

U s i n g s t r e a m s

Using streams
Streams are classes that let you read and write data. They provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and BLOB fields in databases. There are several stream classes, which all descend
from TStream. Each stream class is specific to one media type. For example,
TMemoryStream reads from or writes to a memory image; TFileStream reads from or
writes to a file.

Using streams to read or write data

Stream classes all share several methods for reading and writing data. These methods
are distinguished by whether they:

• Return the number of bytes read or written.
• Require the number of bytes to be known.
• Raise an exception on error.

Stream methods for reading and writing
The Read method reads a specified number of bytes from the stream, starting at its
current Position, into a buffer. Read then advances the current position by the number
of bytes actually transferred. The prototype for Read is:

function Read(var Buffer; Count: Longint): Longint;

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the stream did
not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the
current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint;

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered or the stream can’t accept any more
bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the

U s i n g B a s e C L X 5-3

U s i n g s t r e a m s

Read and Write methods, which can return a byte count that differs from the
requested value. The prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);

procedure WriteBuffer(const Buffer; Count: Longint);

These methods call the Read and Write methods to perform the actual reading and
writing.

Reading and writing components
TStream defines specialized methods, ReadComponent and WriteComponent, for
reading and writing components. You can use them in your applications as a way to
save components and their properties when you create or alter them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read
components from or write them to form files. When streaming components to or
from a form file, stream classes work with the TFiler classes, TReader and TWriter, to
read objects from the form file or write them out to disk. For more information about
using the component streaming system, see the online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

Reading and writing strings
If you are passing a string to a read or write function, you need to be aware of the
correct syntax. The Buffer parameters for the read and write routines are var and
const types, respectively. These are untyped parameters, so the routine takes the
address of a variable.

The most commonly used type when working with strings is a long string. However,
passing a long string as the Buffer parameter does not produce the correct result.
Long strings contain a size, a reference count, and a pointer to the characters in the
string. Consequently, dereferencing a long string does not result in the pointer
element. You need to first cast the string to a Pointer or PChar, and then dereference it.
For example:

procedure caststring;
var

fs: TFileStream;
const

s: string = 'Hello';
begin

fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
fs.Write(s, Length(s));// this will give you garbage
fs.Write(PChar(s)^, Length(s));// this is the correct way

end;

5-4 D e v e l o p e r ’ s G u i d e

U s i n g s t r e a m s

Copying data from one stream to another

When copying data from one stream to another, you do not need to explicitly read
and then write the data. Instead, you can use the CopyFrom method, as illustrated in
the following example.

In the following example, one file is copied to another one using streams. The
application includes two edit controls (EdFrom and EdTo) and a Copy File button.

procedure TForm1.CopyFileClick(Sender: TObject);
var
 Source, Destination:TStream;
begin
 Source := TFileStream.Create(edFrom.Text, fmOpenRead or fmShareDenyWrite);
 try
 Destination := TFileStream.Create(edTo.Text, fmOpenCreate or fmShareDenyRead);
 try
 Destination.CopyFrom(Source,Source.Size);

finally
 Destination.Free;

end;
finally

Source.Free
end;

Specifying the stream position and size

In addition to methods for reading and writing, streams permit applications to seek
to an arbitrary position in the stream or change the size of the stream. Once you seek
to a specified position, the next read or write operation starts reading from or writing
to the stream at that position.

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position
in the stream. There are two overloads for the Seek method:

function Seek(Offset: Longint; Origin: Word): Longint;

function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;

Both overloads work the same way. The difference is that one version uses a 32-bit
integer to represent positions and offsets, while the other uses a 64-bit integer.

U s i n g B a s e C L X 5-5

W o r k i n g w i t h f i l e s

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Seek resets the current stream position, moving it by the indicated offset. Seek returns
the new current position in the stream.

Using Position and Size properties
All streams have properties that hold the current position and size of the stream.
These are used by the Seek method, as well as all the methods that read from or write
to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the
beginning of the streamed data). The declaration for Position is:

property Position: Int64;

The Size property indicates the size of the stream in bytes. It can be used to determine
the number of bytes available for reading, or to truncate the data in the stream. The
declaration for Size is:

property Size: Int64;

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a
file stream, setting Size inserts an end of file marker to truncate the file. If the Size of
the stream cannot be changed, an exception is raised. For example, trying to change
the Size of a read-only file stream raises an exception.

Working with files
BaseCLX supports several ways of working with files. The previous section, “Using
streams,” states that you can use specialized streams to read from or write to files. In
addition to using file streams, there are several runtime library routines for
performing file I/O. Both file streams and the global routines for reading from and
writing to files are described in “Approaches to file I/O” on page 5-6.

In addition to input/output operations, you may want to manipulate files on disk.
Support for operations on the files themselves rather than their contents is described
in “Manipulating files” on page 5-8.

Table 5.1 Values for the Origin parameter

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a
number of bytes before the end of the file.

5-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Note When writing cross-platform applications, remember that although the Delphi
language is not case sensitive, the Linux operating system is. When using objects and
routines that work with files, be attentive to the case of file names.

Approaches to file I/O

There are several approaches you can take when reading from and writing to files:

• The recommended approach for working with files is to use file streams. File
streams are instances of the TFileStream class used to access information in disk
files. File streams are a portable and high-level approach to file I/O. Because file
streams make the file handle available, this approach can be combined with the
next one. The next section, “Using file streams” discusses TFileStream in detail.

• You can work with files using a handle-based approach. File handles are provided
by the operating system when you create or open a file to work with its contents.
The SysUtils unit defines a number of file-handling routines that work with files
using file handles. On Windows, these are typically wrappers around Windows
API functions. Because the BaseCLX functions can use the Delphi language syntax,
and occasionally provide default parameter values, they are a convenient interface
to the Windows API. Furthermore, there are corresponding versions on Linux, so
you can use these routines in cross-platform applications. To use a handle-based
approach, you first open a file using the FileOpen function or create a new file
using the FileCreate function. Once you have the handle, use handle-based routines
to work with its contents (write a line, read text, and so on).

• The System unit defines a number of file I/O routines that work with file
variables, usually of the format "F: Text:" or "F: File:" File variables can have one of
three types: typed, text, and untyped. A number of file-handling routines, such as
AssignPrn and writeln, use them. The use of file variables is deprecated, and these
file types are supported only for backward compatibility. They are incompatible
with Windows file handles. If you need to work with them, see the Delphi Language
Guide.

Using file streams

The TFileStream class enables applications to read from and write to a file on disk.
Because TFileStream is a stream object, it shares the common stream methods. You
can use these methods to read from or write to the file, copy data to or from other
stream classes, and read or write components values. See “Using streams” on
page 5-2 for details on the capabilities that files streams inherit by being stream
classes.

In addition, file streams give you access to the file handle, so that you can use them
with global file handling routines that require the file handle.

U s i n g B a s e C L X 5-7

W o r k i n g w i t h f i l e s

Creating and opening files using file streams
To create or open a file and get access to its handle, you simply instantiate a
TFileStream. This opens or creates a specified file and provides methods to read from
or write to it. If the file cannot be opened, the TFileStream constructor raises an
exception.

constructor Create(const filename: string; Mode: Word);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode OR’ed
together. The open mode must be one of the following values:

The share mode can be one of the following values with the restrictions listed below:

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

The file open and share mode constants are defined in the SysUtils unit.

Table 5.2 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the
current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

Table 5.3 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened (VCL applications
only).

fmShareExclusive Other applications can not open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

fmShareDenyRead Other applications can open the file for writing but not for reading (VCL
applications only).

fmShareDenyNone No attempt is made to prevent other applications from reading from or
writing to the file.

Table 5.4 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available

fmOpenWrite Available Available Can’t use Available Available

fmOpenReadWrite Available Available Available Available Available

5-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Using the file handle
When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. On Windows, Handle is a Windows file handle. On
Linux versions of CLX, it is a Linux file handle. Handle is read-only and reflects the
mode in which the file was opened. If you want to change the attributes of the file
Handle, you must create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a
file stream, you can use the Handle property in any situation in which you would use
a file handle. Be aware that, unlike handle streams, file streams close file handles
when the object is destroyed.

Manipulating files

Several common file operations are built into the runtime library. The routines for
working with files operate at a high level. For most routines, you specify the name of
the file and the routine makes the necessary calls to the operating system for you. In
some cases, you use file handles instead.

Caution Although the Delphi language is not case sensitive, the Linux operating system is. Be
attentive to case when working with files in cross-platform applications.

Deleting a file
Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm before deleting files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns True if it deleted the file and False if it did not (for example, if the
file did not exist or if it was read-only). DeleteFile erases the file named by FileName
from the disk.

Finding a file
There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns True if the
file exists, False otherwise.

U s i n g B a s e C L X 5-9

W o r k i n g w i t h f i l e s

The three file find routines take a TSearchRec as one of the parameters. TSearchRec
defines the file information searched for by FindFirst or FindNext. If a file is found, the
fields of the TSearchRec type parameter are modified to describe the found file.

type
TFileName = string;
TSearchRec = record

Time: Integer;//Time contains the time stamp of the file.
Size: Integer;//Size contains the size of the file in bytes.
Attr: Integer;//Attr represents the file attributes of the file.
Name: TFileName;//Name contains the filename and extension.
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;//FindData contains additional information such as
//file creation time, last access time, long and short filenames.

end;

On field of TSearchRec that is of particular interest is the Attr field. You can test Attr
against the following attribute constants or values to determine if a file has a specific
attribute:

To test for an attribute, combine the value of the Attr field with the attribute constant
using the and operator. If the file has that attribute, the result will be greater than 0.
For example, if the found file is a hidden file, the following expression will evaluate
to True:

(SearchRec.Attr and faHidden > 0).

Attributes can be combined by OR’ing their constants or values. For example, to
search for read-only and hidden files in addition to normal files, pass the following as
the Attr parameter.

(faReadOnly or faHidden).

Table 5.5 Attribute constants and values

Constant Value Description

faReadOnly $00000001 Read-only files

faHidden $00000002 Hidden files

faSysFile $00000004 System files

faVolumeID $00000008 Volume ID files

faDirectory $00000010 Directory files

faArchive $00000020 Archive files

faAnyFile $0000003F Any file

5-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

The following example illustrates the use of the three file find routines. It uses a label,
a button named Search, and a button named Again on a form. When the user clicks the
Search button, the first file in the specified path is found, and the name and the
number of bytes in the file appear in the label's caption. Each time the user clicks the
Again button, the next matching filename and size is displayed in the label:

var
SearchRec: TSearchRec;

procedure TForm1.SearchClick(Sender: TObject);
begin

FindFirst('c:\Program Files\MyProgram\bin*.*', faAnyFile, SearchRec);
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';

end;

procedure TForm1.AgainClick(Sender: TObject);
begin

if FindNext(SearchRec) = 0 then
Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size'

else
FindClose(SearchRec);

end;

Note In cross-platform applications, you should replace any hard-coded pathnames with
the correct pathname for the system or use environment variables (on the
Environment Variables page when you choose Tools|Environment Options) to
represent them.

Renaming a file
To change a file name, use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;

RenameFile changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns True. If it cannot rename
the file (for example, if a file called NewFileName already exists), RenameFile returns
False. For example:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
ErrorMsg('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

Note RenameFile in the runtime library is a wrapper around the Windows API MoveFile
function, so MoveFile will not work across drives either.

File date-time routines
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or –1 if the handle is invalid.

U s i n g B a s e C L X 5-11

W o r k i n g w i t h i n i f i l e s a n d t h e s y s t e m R e g i s t r y

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, use a Handle type as a parameter. To get the file
handle either:

• Use the FileOpen or FileCreate function to create a new file or open an existing file.
Both FileOpen and FileCreate return the file handle.

• Instantiate TFileStream to create or open a file. Then use its Handle property. See
“Using file streams” on page 5-6 for more information.

Copying a file
FindingAFile;RenamingAFile;FileDateTimeRoutines;DeletingAFileThe runtime
library does not provide any routines for copying a file. However, if you are writing
Windows-only applications, you can directly call the Windows API CopyFile function
to copy a file. Like most of the runtime library file routines, CopyFile takes a filename
as a parameter, not a file handle. When copying a file, be aware that the file attributes
for the existing file are copied to the new file, but the security attributes are not.
CopyFile is also useful when moving files across drives because neither the RenameFile
function nor the Windows API MoveFile function can rename or move files across
drives. For more information, see the Microsoft Windows online Help.

Working with ini files and the system Registry
Many applications use ini files to store configuration information. BaseCLX includes
two classes for working with ini files: TIniFile and TMemIniFile. Using ini files has the
advantage that they can be used in cross-platform applications and they are easy to
read and edit. For information on these classes, see “Using TIniFile and
TMemIniFile” on page 5-12 for more information.

Many Windows applications replace the use of ini files with the system Registry. The
Windows system Registry is a hierarchical database that acts as a centralized storage
space for configuration information. The VCL includes classes for working with the
system Registry. While these are technically not part of BaseCLX (because they are
only available on Windows), two of these classes, TRegistryIniFile and TRegistry, are
discussed here because of their similarity to the classes for working with ini files.

TRegistryIniFile is useful for cross-platform applications, because it shares a common
ancestor (TCustomIniFile) with the classes that work with ini files. If you confine
yourself to the methods of the common ancestor (TCustomIniFile) your application
can work on both applications with a minimum of conditional code. TRegistryIniFile
is discussed in “Using TRegistryIniFile” on page 5-13.

For applications that are not cross-platform, you can use the TRegistry class. The
properties and methods of TRegistry have names that correspond more directly to the
way the system Registry is organized, because it does not need to be compatible with
the classes for ini files. TRegistry is discussed in “Using TRegistry” on page 5-13.

5-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h i n i f i l e s a n d t h e s y s t e m R e g i s t r y

Using TIniFile and TMemIniFile
The ini file format is still popular, many configuration files (such as the DSK Desktop
settings file) are in this format. This format is especially useful in cross-platform
applications, where you can’t always count on a system Registry for storing
configuration information. BaseCLX provides two classes, TIniFile and TMemIniFile,
to make reading and writing ini files very easy.

TIniFile works directly with the ini file on disk while TMemIniFile buffers all changes
in memory and does not write them to disk until you call the UpdateFile method.

When you instantiate the TIniFile or TMemIniFile object, you pass the name of the ini
file as a parameter to the constructor. If the file does not exist, it is automatically
created. You are then free to read values using the various read methods, such as
ReadString, ReadDate, ReadInteger, or ReadBool. Alternatively, if you want to read an
entire section of the ini file, you can use the ReadSection method. Similarly, you can
write values using methods such as WriteBool, WriteInteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a
form's OnCreate event handler and writing values in the OnClose event handler.

procedure TForm1.FormCreate(Sender: TObject);
var

Ini: TIniFile;
begin

Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try
 Top := Ini.ReadInteger('Form', 'Top', 100);

 Left := Ini.ReadInteger('Form', 'Left', 100);
 Caption := Ini.ReadString('Form', 'Caption', 'New Form');

if Ini.ReadBool('Form', 'InitMax', false) then
WindowState = wsMaximized

else
WindowState = wsNormal;

finally
TIniFile.Free;

end;
end;

procedure TForm1.FormClose(Sender: TObject; var Action TCloseAction)
var

Ini: TIniFile;
begin

Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try

Ini.WriteInteger('Form', 'Top', Top);
Ini.WriteInteger('Form', 'Left', Left);

 Ini.WriteString('Form', 'Caption', Caption);
Ini.WriteBool('Form', 'InitMax', WindowState = wsMaximized);

finally
TIniFile.Free;

end;
end;

U s i n g B a s e C L X 5-13

W o r k i n g w i t h i n i f i l e s a n d t h e s y s t e m R e g i s t r y

Each of the Read routines takes three parameters. The first parameter identifies the
section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.
Just as the Read methods gracefully handle the case when a section or value does not
exist, the Write routines create the section and/or value if they do not exist. The
example code creates an ini file the first time it is run that looks like this:

[Form]
Top=100
Left=100
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form
is created and written back out in the OnClose event.

Using TRegistryIniFile
Many 32-bit Windows applications store their information in the system Registry
instead of ini files because the Registry is hierarchical and doesn't suffer from the size
limitations of ini files. If you are accustomed to using ini files and want to move your
configuration information to the Registry instead, you can use the TRegistryIniFile
class. You may also want to use TRegistryIniFile in cross-platform applications if you
want to use the system Registry on Windows and an ini file on Linux. You can write
most of your application so that it uses the TCustomIniFile type. You need only
conditionalize the code that creates an instance of TRegistryIniFile (on Windows) or
TMemIniFile (on Linux) and assigns it to the TCustomIniFile your application uses.

TRegistryIniFile makes Registry entries look like ini file entries. All the methods from
TIniFile and TMemIniFile (read and write) exist in TRegistryIniFile.

When you construct a TRegistryIniFile object, the parameter you pass to the
constructor (corresponding to the filename for an IniFile or TMemIniFile object)
becomes a key value under the user key in the registry. All sections and values
branch from that root. TRegistryIniFile simplifies the Registry interface considerably,
so you may want to use it instead of the TRegistry component even if you aren't
porting existing code or writing a cross-platform application.

Using TRegistry
If you are writing a Windows-only application and are comfortable with the
structure of the system Registry, you can use TRegistry. Unlike TRegistryIniFile, which
uses the same properties and methods of other ini file components, the properties
and methods of TRegistry correspond more directly to the structure of the system
Registry. For example, TRegistry lets you specify both the root key and subkey, while
TRegistryIniFile assumes HKEY_CURRENT_USER as a root key. In addition to
methods for opening, closing, saving, moving, copying, and deleting keys, TRegistry
lets you specify the access level you want to use.

Note TRegistry is not available for cross-platform programming.

5-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h l i s t s

The following example retrieves a value from a registry entry:

function GetRegistryValue(KeyName: string): string;
var

Registry: TRegistry;
begin
 Registry := TRegistry.Create(KEY_READ);

try
Registry.RootKey = HKEY_LOCAL_MACHINE;

 // False because we do not want to create it if it doesn’t exist
Registry.OpenKey(KeyName, False);
Result := Registry.ReadString('VALUE1');

finally
Registry.Free;

end;
end;

Working with lists
BaseCLX includes many classes that represents lists or collections of items. They vary
depending on the types of items they contain, what operations they support, and
whether they are persistent.

The following table lists various list classes, and indicates the types of items they
contain:

Table 5.6 Classes for managing lists

Object Maintains

TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TClassList A list of class references

TInterfaceList A list of interface pointers.

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue~ A first-in first-out list of objects

TObjectStack~ A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items.

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

U s i n g B a s e C L X 5-15

W o r k i n g w i t h l i s t s

Common list operations

Although the various list classes contain different types of items and have different
ancestries, most of them share a common set of methods for adding, deleting,
rearranging, and accessing the items in the list.

Adding list items
Most list classes have an Add method, which lets you add an item to the end of the list
(if it is not sorted) or to its appropriate position (if the list is sorted). Typically, the
Add method takes as a parameter the item you are adding to the list and returns the
position in the list where the item was added. In the case of bucket lists (TBucketList
and TObjectBucketList), Add takes not only the item to add, but also a datum you can
associate with that item. In the case of collections, Add takes no parameters, but
creates a new item that it adds. The Add method on collections returns the item it
added, so that you can assign values to the new item’s properties.

Some list classes have an Insert method in addition to the Add method. Insert works
the same way as the Add method, but has an additional parameter that lets you
specify the position in the list where you want the new item to appear. If a class has
an Add method, it also has an Insert method unless the position of items is
predetermined For example, you can’t use Insert with sorted lists because items must
go in sort order, and you can’t use Insert with bucket lists because the hash algorithm
determines the item position.

The only classes that do not have an Add method are the ordered lists. Ordered lists
are queues and stacks. To add items to an ordered list, use the Push method instead.
Push, like Add, takes an item as a parameter and inserts it in the correct position.

Deleting list items
To delete a single item from one of the list classes, use either the Delete method or the
Remove method. Delete takes a single parameter, the index of the item to remove.
Remove also takes a single parameter, but that parameter is a reference to the item to
remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of
using a Delete or Remove method, you remove an item from an ordered list by calling
its Pop method. Pop takes no arguments, because there is only one item that can be
removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is
available for all lists except ordered lists.

5-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h l i s t s

Accessing list items
All list classes (except TThreadList and the ordered lists) have a property that lets you
access the items in the list. Typically, this property is called Items. For string lists, the
property is called Strings, and for bucket lists it is called Data. The Items, Strings, or
Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the
list, the LockList method returns a TList object that you can use to access the items.

Ordered lists only let you access the “top” item of the list. You can obtain a reference
to this item by calling the Peek method.

Rearranging list items
Some list classes have methods that let you rearrange the items in the list. Some have
an Exchange method, that swaps the position of two items. Some have a Move method
that lets you move an item to a specified location. Some have a Sort method that lets
you sort the items in the list.

To see what methods are available, check the online Help for the list class you are
using.

Persistent lists

Persistent lists can be saved to a form file. Because of this, they are often used as the
type of a published property on a component. You can add items to the list at design
time, and those items are saved with the object so that they are there when the
component that uses them is loaded into memory at runtime. There are two main
types of persistent lists: string lists and collections.

Examples of string lists include TStringList and THashedStringList. String lists, as the
name implies, contain strings. They provide special support for strings of the form
Name=Value, so that you can look up the value associated with a name. In addition,
most string lists let you associate an object with each string in the list. String lists are
described in more detail in “Working with string lists” on page 5-17.

Collections descend from the class TCollection. Each TCollection descendant is
specialized to manage a specific class of items, where that class descends from
TCollectionItem. Collections support many of the common list operations. All
collections are designed to be the type of a published property, and many can not
function independently of the object that uses them to implement on of its properties.
At design time, the property whose value is a collection can use the collection editor
to let you add, remove, and rearrange items. The collection editor provides a
common user interface for manipulating collections.

U s i n g B a s e C L X 5-17

W o r k i n g w i t h s t r i n g l i s t s

Working with string lists
One of the most commonly used types of list is a list of character strings. Examples
include items in a combo box, lines in a memo, names of fonts, and names of rows
and columns in a string grid. BaseCLX provides a common interface to any list of
strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods
introduced by TStrings, and introduces properties, events, and methods to

• Sort the strings in the list.
• Prohibit duplicate strings in sorted lists.
• Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are a
TStrings descendant) and then use these lines as items in a combo box (also a TStrings
descendant).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

• Loading and saving string lists
• Creating a new string list
• Manipulating strings in a list
• Associating objects with a string list

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the MyFile.ini file into a memo field and
makes a backup copy called MyFile.bak.

procedure EditWinIni;
var

FileName: string;{ storage for file name }
begin

FileName := 'c:\Program Files\MyProgram\MyFile.ini'{ set the file name }
with Form1.Memo1.Lines do
begin

LoadFromFile(FileName);{ load from file }
SaveToFile(ChangeFileExt(FileName, '.bak'));{ save into backup file }

end;
end;

5-18 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g l i s t s

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

procedure TForm1.Button1Click(Sender: TObject);
var

TempList: TStrings;{ declare the list }
begin

TempList := TStringList.Create;{ construct the list object }
try

{ use the string list }
finally

TempList.Free;{ destroy the list object }
end;

end;

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s OnCreate event that executes before
the form appears. It should create a string list and assign it to the field you
declared in the first step.

3 Write an event handler that frees the string list for the form’s OnClose event.

U s i n g B a s e C L X 5-19

W o r k i n g w i t h s t r i n g l i s t s

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

unit Unit1;
interface
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs;
{For CLX apps: uses SysUtils, Variants, Classes, QGraphics, QControls, QForms, QDialogs;}

type
TForm1 = class(TForm)

procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormMouseDown(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
private

{ Private declarations }
public

{ Public declarations }
ClickList: TStrings;{ declare the field }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

ClickList := TStringList.Create;{ construct the list }
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

ClickList.SaveToFile(ChangeFileExt(Application.ExeName, '.log'));{ save the list }
ClickList.Free;{ destroy the list object }

end;

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
ClickList.Add(Format('Click at (%d, %d)', [X, Y]));{ add a string to the list }

end;

end.

5-20 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g l i s t s

Manipulating strings in a list

Operations commonly performed on string lists include:

• Counting the strings in a list
• Accessing a particular string
• Finding the position of a string in the list
• Iterating through strings in a list
• Adding a string to a list
• Moving a string within a list
• Deleting a string from a list
• Copying a complete string list

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the Strings
identifier when accessing the list; thus

StringList1.Strings[0] := 'This is the first string.';

is equivalent to

StringList1[0] := 'This is the first string.';

Locating items in a string list
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns –1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if FileListBox1.Items.IndexOf('TargetFileName') > -1 ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

The following example converts each string in a list box to uppercase characters.

procedure TForm1.Button1Click(Sender: TObject);
var

Index: Integer;
begin

for Index := 0 to ListBox1.Items.Count - 1 do
ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);

end;

U s i n g B a s e C L X 5-21

W o r k i n g w i t h s t r i n g l i s t s

Adding a string to a list
To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

Insert(2, 'Three');

To append the strings from one list onto another, call AddStrings:

StringList1.AddStrings(StringList2); { append the strings from StringList2 to StringList1 }

Moving a string within a list
To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject.Move(2, 4)

Deleting a string from a list
To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

The following example uses IndexOf and Delete to find and delete a string:

with ListBox1.Items do
begin

BIndex := IndexOf('bureaucracy');
if BIndex > -1 then

Delete(BIndex);
end;

Copying a complete string list
You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringList1 := StringList2;

—the original string-list object will be lost, often with unpredictable results.

5-22 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Associating objects with a string list
In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Working with strings
The runtime library provides many specialized string-handling routines specific to a
string type. These are routines for wide strings, long strings, and null-terminated
strings (meaning PChars). Routines that deal with null-terminated strings use the
null-termination to determine the length of the string. There are no categories of
routines listed for ShortString types. However, some built-in compiler routines deal
with the ShortString type. These include, for example, the Low and High standard
functions. For more details about the various string types, see the Delphi Language
Guide.

The following topics provide an overview of many of the string-handling routines in
the runtime library.

Wide character routines

Wide strings are used in a variety of situations. Some technologies, such as XML, use
wide strings as a native type. You may also choose to use wide strings because they
simplify some of the string-handling issues in applications that have multiple target
locales. Using a wide character encoding scheme has the advantage that you can
make many of the usual assumptions about strings that do not work for MBCS
systems. There is a direct relationship between the number of bytes in the string and
the number of characters in the string. You do not need to worry about cutting
characters in half or mistaking the second part of a character for the start of a
different character.

A disadvantage of working with wide characters is that many VCL controls
represent string values as single byte or MBCS strings. (Cross-platform versions of
the controls typically use wide strings.) Translating between the wide character
system and the MBCS system every time you set a string property or read its value
can require tremendous amounts of extra code and slow your application down.
However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between
characters and WideChars.

U s i n g B a s e C L X 5-23

W o r k i n g w i t h s t r i n g s

The following functions convert between standard single-byte character strings (or
MBCS strings) and Unicode strings:

• StringToWideChar
• WideCharLenToString
• WideCharLenToStrVar
• WideCharToString
• WideCharToStrVar

In addition, the following functions translate between WideStrings and other
representations:

• UCS4StringToWideString
• WideStringToUCS4String
• VarToWideStr
• VarToWideStrDef

The following routines work directly with WideStrings:

• WideCompareStr
• WideCompareText
• WideSameStr
• WideSameText
• WideSameCaption (CLX applications only)
• WideFmtStr
• WideFormat
• WideLowerCase
• WideUpperCase

Finally, some routines include overloads for working with wide strings:

• UniqueString
• Length
• Trim
• TrimLeft
• TrimRight

Commonly used long string routines

The long string handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether they use a
particular criterion in their calculations. The following tables list these routines by
these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string

5-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Where appropriate, the tables also provide columns indicating whether a routine
satisfies the following criteria.

• Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal
values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

• Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the system locale are typically
prefaced with Ansi (that is, AnsiXXX).

• Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented by one or more
character codes, so the length in bytes does not necessarily correspond to the
length of the string. The routines that support MBCS parse one- and multibyte
characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
multibyte character. Be careful when using multibyte characters not to truncate a
string by cutting a character in half. Do not pass characters as a parameter to a
function or procedure, since the size of a character cannot be predetermined. Pass,
instead, a pointer to a to a character or string. For more information about MBCS,
see “Enabling application code” on page 17-2.

Table 5.7 String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes

AnsiCompareText no yes yes

AnsiCompareFileName no (yes in CLX) yes yes

AnsiMatchStr yes yes yes

AnsiMatchText no yes yes

AnsiContainsStr yes yes yes

AnsiContainsText no yes yes

AnsiStartsStr yes yes yes

AnsiStartsText no yes yes

AnsiEndsStr yes yes yes

AnsiEndsText no yes yes

AnsiIndexStr yes yes yes

AnsiIndexText no yes yes

CompareStr yes no no

CompareText no no no

AnsiResemblesText no no no

U s i n g B a s e C L X 5-25

W o r k i n g w i t h s t r i n g s

Note The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsiUpperCaseFileName all use the system locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 5.8 Case conversion routines

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes

AnsiLowerCaseFileName yes yes

AnsiUpperCaseFileName yes yes

AnsiUpperCase yes yes

LowerCase no no

UpperCase no no

Table 5.9 String modification routines

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes

AnsiQuotedStr NA yes

AnsiReplaceStr yes yes

AnsiReplaceText no yes

StringReplace optional by flag yes

ReverseString NA no

StuffString NA no

Trim NA yes

TrimLeft NA yes

TrimRight NA yes

WrapText NA yes

Table 5.10 Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes

AnsiPos yes yes

IsDelimiter yes yes

IsPathDelimiter yes yes

LastDelimiter yes yes

LeftStr NA no

RightStr NA no

MidStr NA no

QuotedStr no no

5-26 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

Commonly used routines for null-terminated strings

The null-terminated string handling routines cover several functional areas. Within
these areas, some are used for the same purpose, the differences being whether or not
they use a particular criteria in their calculations. The following tables list these
routines by these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string
• Copying

Where appropriate, the tables also provide columns indicating whether the routine is
case-sensitive, uses the current locale, and/or supports multi-byte character sets.

Table 5.11 Null-terminated string comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiStrComp yes yes yes

AnsiStrIComp no yes yes

AnsiStrLComp yes yes yes

AnsiStrLIComp no yes yes

StrComp yes no no

StrIComp no no no

StrLComp yes no no

StrLIComp no no no

Table 5.12 Case conversion routines for null-terminated strings

Routine Uses locale settings Supports MBCS

AnsiStrLower yes yes

AnsiStrUpper yes yes

StrLower no no

StrUpper no no

Table 5.13 String modification routines

Routine

StrCat

StrLCat

Table 5.14 Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiStrPos yes yes

AnsiStrScan yes yes

AnsiStrRScan yes yes

U s i n g B a s e C L X 5-27

W o r k i n g w i t h s t r i n g s

Declaring and initializing strings

When you declare a long string:

S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To
test a string for empty you can either use the EmptyStr variable:

S = EmptyStr;

or test against an empty string:

S = ‘’;

An empty string has no valid data. Therefore, trying to index an empty string is like
trying to access nil and will result in an access violation:

var
S: string;

begin
S[i]; // this will cause an access violation
// statements

end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you
are passing such a PChar to a routine that needs to read or write to it, be sure that the
routine can handle nil:

var
S: string; // empty string

begin
proc(PChar(S)); // be sure that proc can handle nil
// statements

end;

StrPos yes no

StrScan yes no

StrRScan yes no

Table 5.15 String copying routines

Routine

StrCopy

StrLCopy

StrECopy

StrMove

StrPCopy

StrPLCopy

Table 5.14 Sub-string routines (continued)

Routine Case-sensitive Supports MBCS

5-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

If it cannot, then you can either initialize the string:

S := ‘No longer nil’;
proc(PChar(S));// proc does not need to handle nil now

or set the length, using the SetLength procedure:

SetLength(S, 100);//sets the dynamic length of S to 100
proc(PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the
contents of any newly allocated space is undefined. Following a call to SetLength, S is
guaranteed to reference a unique string, that is a string with a reference count of one.
To obtain the length of a string, use the Length function.

Remember when declaring a string that:

S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string
of specifically n length, declare a variable of type string and use the SetLength
procedure.

S: string;
SetLength(S, n);

Mixing and converting string types

Short, long, and wide strings can be mixed in assignments and expressions, and the
compiler automatically generates code to perform the necessary string type
conversions. However, when assigning a string value to a short string variable, be
aware that the string value is truncated if it is longer than the declared maximum
length of the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer
types, such as PAnsiString, PString, or PWideString, remember that you are
introducing another level of indirection. Be sure this is what you intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList,
QStringListToTStringList) are provided for converting underlying Qt string types and
CLX string types. These functions are located in Qtypes.pas.

String to PChar conversions

Long string to PChar conversions are not automatic. Some of the differences between
strings and PChars can make conversions problematic:

• Long strings are reference-counted, while PChars are not.

• Assigning to a string copies the data, while a PChar is a pointer to memory.

• Long strings are null-terminated and also contain the length of the string, while
PChars are simply null-terminated.

U s i n g B a s e C L X 5-29

W o r k i n g w i t h s t r i n g s

Situations in which these differences can cause subtle errors are discussed in the
following topics.

String dependencies
Sometimes you need convert a long string to a null-terminated string, for example, if
you are using a function that takes a PChar. If you must cast a string to a PChar, be
aware that you are responsible for the lifetime of the resulting PChar. Because long
strings are reference counted, typecasting a string to a PChar increases the
dependency on the string by one, without actually incrementing the reference count.
When the reference count hits zero, the string will be destroyed, even though there is
an extra dependency on it. The cast PChar will also disappear, while the routine you
passed it to may still be using it. For example:

procedure my_func(x: string);
begin

// do something with x
some_proc(PChar(x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it

end;

Returning a PChar local variable
A common error when working with PChars is to store a local variable in a data
structure, or return it as a value. When your routine ends, the PChar disappears
because it is a pointer to memory, and not a reference counted copy of the string. For
example:

function title(n: Integer): PChar;
var

s: string;
begin

s := Format(‘title - %d’, [n]);
Result := PChar(s); // DON’T DO THIS

end;

This example returns a pointer to string data that is freed when the title function
returns.

Passing a local variable as a PChar
Consider the case where you have a local string variable that you need to initialize by
calling a function that takes a PChar. One approach is to create a local array of char
and pass it to the function, then assign that variable to the string:

// assume FillBuffer is a predefined function
function FillBuffer(Buf:PChar;Count:Integer):Integer
begin

. . .
end;

// assume MAX_SIZE is a predefined constant

5-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

var
i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;

begin
i := FillBuffer(0, buf, SizeOf(buf));// treats buf as a PChar
S := buf;
//statements

end;

This approach is useful if the size of the buffer is relatively small, since it is allocated
on the stack. It is also safe, since the conversion between an array of char and a string
is automatic. The Length of the string is automatically set to the right value after
assigning buf to the string.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if
you are certain that the routine does not need the PChar to remain in memory).
However, synchronizing the length of the string does not happen automatically, as it
does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns
the number of bytes copied, you can do this safely with one line of code:

var
S: string;

begin
SetLength(S, MAX_SIZE;// when casting to a PChar, be sure the string is not empty
SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
// statements

end;

Compiler directives for strings

The following compiler directives affect character and string types.

Table 5.16 Compiler directives for strings

Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a short
string or a long string. In the default state, {$H+}, string represents a long string. You
can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is
provided for backwards compatibility. $P controls the meaning of variable parameters
declared using the string keyword in the {$H-} state.
In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters. Regardless
of the setting of the $P directive, the OpenString identifier can always be used to
declare open string parameters.

U s i n g B a s e C L X 5-31

C r e a t i n g d r a w i n g s p a c e s

Creating drawing spaces
Technically speaking, the TCanvas class does not belong to BaseCLX because there
are two separate versions, one for the Windows only (in the Graphics unit) and one
for cross-platform applications (in the QGraphics unit). The TCanvas class defined in
the Graphics unit encapsulates a Windows device context and the version in the
QGraphics unit encapsulates a paint device (Qt painter). This class handles all
drawing for forms, visual containers (such as panels) and the printer object (see
“Printing” on page 5-32). Using the canvas object, you need not worry about
allocating pens, brushes, palettes, and so on—all the allocation and deallocation are
handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Canvas.Pen.Color := clBlue;
 Canvas.MoveTo(10, 10);
 Canvas.LineTo(100, 100);
 Canvas.Brush.Color := clBtnFace;
 Canvas.Font.Name := ‘Arial’;
 Canvas.TextOut(Canvas.PenPos.x, Canvas.PenPos.y,’This is the end of the line’);
end;

{$V+/-} The $V directive controls type checking on short strings passed as variable parameters.
In the {$V+} state, strict type checking is performed, requiring the formal and actual
parameters to be of identical string types.
In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string[3];

procedure Test(var T: string);
begin

T := ‘1234’;
end;

begin
Test(S);

end.

{$X+/-} The {$X+} compiler directive enables support for null-terminated strings by activating
the special rules that apply to the built-in PChar type and zero-based character arrays.
(These rules allow zero-based arrays and character pointers to be used with Write,
Writeln, Val, Assign, and Rename from the System unit.)

Table 5.16 Compiler directives for strings (continued)

Directive Description

5-32 D e v e l o p e r ’ s G u i d e

P r i n t i n g

The TCanvas object defined in the Graphics unit also protects you against common
Windows graphics errors, such as restoring device contexts, pens, brushes, and so on
to the value they had before the drawing operation. TCanvas is used everywhere in
the VCL that drawing is required or possible, and makes drawing graphics both fail-
safe and easy.

See TCanvas in the online Help reference for a complete listing of properties and
methods.

Printing
Like TCanvas, the TPrinter class does not belong to BaseCLX because there are two
separate versions, one for VCL applications (in the Printers unit) and one for CLX
applications (in the QPrinters unit). The VCL TPrinter object encapsulates details of
Windows printers. The CLX TPrinter object is a paint device that paints on a printer.
It generates postscript and sends that to lpr, lp, or another print command. Both
versions of TPrinter, however, are extremely similar.

To get a list of installed and available printers, use the Printers property. Both printer
objects use a TCanvas (which is identical to the form's TCanvas) which means that
anything that can be drawn on a form can be printed as well. To print an image, call
the BeginDoc method followed by whatever canvas graphics you want to print
(including text through the TextOut method) and send the job to the printer by calling
the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, add Printers to your uses clause.

procedure TForm1.Button1Click(Sender: TObject);
var
 r: TRect;
 i: Integer;
begin
 with Printer do
 begin
 r := Rect(200,200,(Pagewidth - 200),(PageHeight - 200));
 BeginDoc;

Canvas.Brush.Style := bsClear;
 for i := 0 to Memo1.Lines.Count do
 Canvas.TextOut(200,200 + (i *

Canvas.TextHeight(Memo1.Lines.Strings[i])),
Memo1.Lines.Strings[i]);

 Canvas.Brush.Color := clBlack;
 Canvas.FrameRect(r);
 EndDoc;
 end;
end;

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

U s i n g B a s e C L X 5-33

C o n v e r t i n g m e a s u r e m e n t s

Converting measurements
The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you’re converting must be in the same conversion
family. For information on doing conversions, see “Performing conversions” on
page 5-33 and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily
functions. For information on extending conversion and conversion units, see
“Adding new measurement types” on page 5-34 and refer to Convert in the online
Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions
You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin := Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

Performing complex conversions
You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

nKPL := Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you’re converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Convert raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

5-34 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

The StdConvs unit defines several families of TConvType values. See Conversion
family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the
StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

For more examples, refer to the source code for the standard conversions unit
(stdconvs.pas). (Note that the source is not included in all editions of Delphi.)

Creating a simple conversion family and adding units

One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when
performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

U s i n g B a s e C L X 5-35

C o n v e r t i n g m e a s u r e m e n t s

Declare variables
First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

var
cbLongTime: TConvFamily;
ltMonths: TConvType;
ltYears: TConvType;
ltDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

Register the conversion family
Next, register the conversion family:

cbLongTime := RegisterConversionFamily (‘Long Times’);

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units
Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for ltMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

The code to register the measurement units is shown here:

ltMonths:=RegisterConversionType(cbLongTime,‘Months’,1/12);
ltYears:=RegisterConversionType(cbLongTime,’Years’,1);
ltDecades:=RegisterConversionType(cbLongTime,’Decades’,10);
ltCenturies:=RegisterConversionType(cbLongTime,’Centuries’,100);
ltMillennia:=RegisterConversionType(cbLongTime,’Millennia’,1000);

Use the new units
You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,

Convert(StrToFloat(Edit1.Text),tuMonths,tuMillennia);

you can now use this one for greater accuracy:

Convert(StrToFloat(Edit1.Text),ltMonths,ltMillennia);

5-36 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

Using a conversion function

For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units.

Declare variables
First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

var
cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

Note The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature := RegisterConversionFamily (‘Temperature’);

Register the base unit
Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius:=RegisterConversionType(cbTemperature,’Celsius’,1);

Write methods to convert to and from the base unit
You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are taken from the StdConvs unit:

function FahrenheitToCelsius(const AValue: Double): Double;
begin
 Result := ((AValue - 32) * 5) / 9;
end;
function CelsiusToFahrenheit(const AValue: Double): Double;
begin
 Result := ((AValue * 9) / 5) + 32;
end;
function KelvinToCelsius(const AValue: Double): Double;
begin
 Result := AValue - 273.15;
end;

U s i n g B a s e C L X 5-37

C o n v e r t i n g m e a s u r e m e n t s

function CelsiusToKelvin(const AValue: Double): Double;
begin
 Result := AValue + 273.15;
end;

Register the other units
Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

The code to register the other units in the family is shown here:

tuKelvin := RegisterConversionType(cbTemperature, 'Kelvin', KelvinToCelsius,
CelsiusToKelvin);
 tuFahrenheit := RegisterConversionType(cbTemperature, 'Fahrenheit', FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the cbTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

Using a class to manage conversions

You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

• The conversion must round to a currency-specific number of digits.

• The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

function FromEuro(const AValue: Double, Factor; FRound: TRoundToRange): Double;
begin
 Result := RoundTo(AValue * Factor, FRound);
end;
function ToEuro(const AValue: Double, Factor): Double;
begin
 Result := AValue / Factor;
end;

5-38 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Creating the conversion class
The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a
conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class:

type
 TConvTypeEuroFactor = class(TConvTypeFactor)
 private
 FRound: TRoundToRange;
 public
 constructor Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
 function ToCommon(const AValue: Double): Double; override;
 function FromCommon(const AValue: Double): Double; override;
 end;
end;

The constructor assigns values to those private members:

constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
begin
 inherited Create(AConvFamily, ADescription, AFactor);
 FRound := ARound;
end;

The two conversion functions simply use these private members:

function TConvTypeEuroFactor.FromCommon(const AValue: Double): Double;
begin
 Result := RoundTo(AValue * Factor, FRound);
end;

function TConvTypeEuroFactor.ToCommon(const AValue: Double): Double;
begin
 Result := AValue / Factor;
end;

U s i n g B a s e C L X 5-39

C o n v e r t i n g m e a s u r e m e n t s

Declare variables
Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

var
euEUR: TConvType; { EU euro }

 euBEF: TConvType; { Belgian francs }
 euDEM: TConvType; { German marks }
 euGRD: TConvType; { Greek drachmas }
 euESP: TConvType; { Spanish pesetas }
 euFFR: TConvType; { French francs }
 euIEP: TConvType; { Irish pounds }
 euITL: TConvType; { Italian lire }
 euLUF: TConvType; { Luxembourg francs }
 euNLG: TConvType; { Dutch guilders }
 euATS: TConvType; { Austrian schillings }
 euPTE: TConvType; { Portuguese escudos }
 euFIM: TConvType; { Finnish marks }

cbEuro: TConvFamily;

Register the conversion family and the other units
Now you are ready to register the conversion family and the European monetary
units, using your new conversion class. Register the conversion family the same way
you registered the other conversion families:

cbEuro := RegisterConversionFamily ('European currency');

To register each conversion type, create an instance of the conversion class that
reflects the factor and rounding properties of that currency, and call the
RegisterConversionType method:

var
LInfo: TConvTypeInfo;

begin
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'EUEuro', 1.0, -2);
if not RegisterConversionType(LInfo, euEUR) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'BelgianFrancs', 40.3399, 0);
if not RegisterConversionType(LInfo, euBEF) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GermanMarks', 1.95583, -2);
if not RegisterConversionType(LInfo, euDEM) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GreekDrachmas', 340.75, 0);
if not RegisterConversionType(LInfo, euGRD) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'SpanishPesetas', 166.386, 0);
if not RegisterConversionType(LInfo, euESP) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FrenchFrancs', 6.55957, -2);
if not RegisterConversionType(LInfo, euFFR) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'IrishPounds', 0.787564, -2);

5-40 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

if not RegisterConversionType(LInfo, euIEP) then
LInfo.Free;

LInfo := TConvTypeEuroFactor.Create(cbEuro, 'ItalianLire', 1936.27, 0);
if not RegisterConversionType(LInfo, euITL) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'LuxembourgFrancs', 40.3399, -2);
if not RegisterConversionType(LInfo, euLUF) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'DutchGuilders', 2.20371, -2);
if not RegisterConversionType(LInfo, euNLG) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'AustrianSchillings', 13.7603, -2);
if not RegisterConversionType(LInfo, euATS) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'PortugueseEscudos', 200.482, -2);
if not RegisterConversionType(LInfo, euPTE) then

LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FinnishMarks', 5.94573, 0);
if not RegisterConversionType(LInfo, euFIM) then

LInfo.Free;
end;

Note The ConvertIt demo provides an expanded version of this example that includes
other currencies (that do not have fixed conversion rates) and more error checking.

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2.Text = FloatToStr(Convert(StrToFloat(Edit1.Text), euITL, euDEM));

Defining custom variants
One powerful built-in type of the Delphi language is the Variant type. Variants
represent values whose type is not determined at compile time. Instead, the type of
their value can change at runtime. Variants can mix with other variants and with
integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can’t hold values that are records, sets, static arrays, files, classes,
class references, or pointers. You can, however, extend the Variant type to work with
any particular example of these types. All you need to do is create a descendant of
the TCustomVariantType class that indicates how the Variant type performs standard
operations.

U s i n g B a s e C L X 5-41

D e f i n i n g c u s t o m v a r i a n t s

To create a Variant type:

1 Map the storage of the variant’s data on to the TVarData record.

2 Declare a class that descends from TCustomVariantType. Implement all required
behavior (including type conversion rules) in the new class.

3 Write utility methods for creating instances of your custom variant and
recognizing its type.

The above steps extend the Variant type so that the standard operators work with
your new type and the new Variant type can be cast to other data types. You can
further enhance your new Variant type so that it supports properties and methods
that you define. When creating a Variant type that supports properties or methods,
you use TInvokeableVariantType or TPublishableVariantType as a base class rather than
TCustomVariantType.

Storing a custom variant type’s data

Variants store their data in the TVarData record type. This type is a record that
contains 16 bytes. The first word indicates the type of the variant, and the remaining
14 bytes are available to store the data. While your new Variant type can work
directly with a TVarData record, it is usually easier to define a record type whose
members have names that are meaningful for your new type, and cast that new type
onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a
measurement. The data for this type includes the units (TConvType) of measurement,
as well as the value (a double). The VarConv unit defines its own type to represent
such a value:

TConvertVarData = packed record
VType: TVarType;
VConvType: TConvType;
Reserved1, Reserved2: Word;
VValue: Double;

end;

This type is exactly the same size as the TVarData record. When working with a
custom variant of the new type, the variant (or its TVarData record) can be cast to
TConvertVarData, and the custom Variant type simply works with the TVarData
record as if it were a TConvertVarData type.

Note When defining a record that maps onto the TVarData record in this way, be sure to
define it as a packed record.

5-42 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

If your new custom Variant type needs more than 14 bytes to store its data, you can
define a new record type that includes a pointer or object instance. For example, the
VarCmplx unit uses an instance of the class TComplexData to represent the data in a
complex-valued variant. It therefore defines a record type the same size as TVarData
that includes a reference to a TComplexData object:

TComplexVarData = packed record
VType: TVarType;
Reserved1, Reserved2, Reserved3: Word;
VComplex: TComplexData;
Reserved4: LongInt;

end;

Object references are actually pointers (two Words), so this type is the same size as
the TVarData record. As before, a complex custom variant (or its TVarData record),
can be cast to TComplexVarData, and the custom variant type works with the
TVarData record as if it were a TComplexVarData type.

Creating a class to enable the custom variant type

Custom variants work by using a special helper class that indicates how variants of
the custom type can perform standard operations. You create this helper class by
writing a descendant of TCustomVariantType. This involves overriding the
appropriate virtual methods of TCustomVariantType.

Enabling casting
One of the most important features of the custom variant type for you to implement
is typecasting. The flexibility of variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to
perform typecasts: Cast, which converts another variant type to your custom variant,
and CastTo, which converts your custom Variant type to another type of Variant.

When implementing either of these methods, it is relatively easy to perform the
logical conversions from the built-in variant types. You must consider, however, the
possibility that the variant to or from which you are casting may be another custom
Variant type. To handle this situation, you can try casting to one of the built-in
Variant types as an intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the
type Double as an intermediate type:

procedure TComplexVariantType.Cast(var Dest: TVarData; const Source: TVarData);
var
 LSource, LTemp: TVarData;
begin
 VarDataInit(LSource);
 try
 VarDataCopyNoInd(LSource, Source);
 if VarDataIsStr(LSource) then
 TComplexVarData(Dest).VComplex := TComplexData.Create(VarDataToStr(LSource))

U s i n g B a s e C L X 5-43

D e f i n i n g c u s t o m v a r i a n t s

 else
 begin
 VarDataInit(LTemp);
 try
 VarDataCastTo(LTemp, LSource, varDouble);
 TComplexVarData(Dest).VComplex := TComplexData.Create(LTemp.VDouble, 0);
 finally
 VarDataClear(LTemp);
 end;
 end;
 Dest.VType := VarType;
 finally
 VarDataClear(LSource);
 end;
end;

In addition to the use of Double as an intermediate Variant type, there are a few
things to note in this implementation:

• The last step of this method sets the VType member of the returned TVarData
record. This member gives the Variant type code. It is set to the VarType property
of TComplexVariantType, which is the Variant type code assigned to the custom
variant.

• The custom variant’s data (Dest) is typecast from TVarData to the record type that
is actually used to store its data (TComplexVarData). This makes the data easier to
work with.

• The method makes a local copy of the source variant rather than working directly
with its data. This prevents side effects that may affect the source data.

When casting from a complex variant to another type, the CastTo method also uses an
intermediate type of Double (for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
 const AVarType: TVarType);
var
 LTemp: TVarData;
begin
 if Source.VType = VarType then
 case AVarType of
 varOleStr:
 VarDataFromOleStr(Dest, TComplexVarData(Source).VComplex.AsString);
 varString:
 VarDataFromStr(Dest, TComplexVarData(Source).VComplex.AsString);
 else
 VarDataInit(LTemp);
 try
 LTemp.VType := varDouble;
 LTemp.VDouble := TComplexVarData(LTemp).VComplex.Real;
 VarDataCastTo(Dest, LTemp, AVarType);

5-44 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

 finally
 VarDataClear(LTemp);
 end;
 end
 else
 RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not
have a type code that matches the VarType property. This case only occurs for empty
(unassigned) source variants.

Implementing binary operations
To allow the custom variant type to work with standard binary operators (+, -, *, /,
div, mod, shl, shr, and, or, xor listed in the System unit), you must override the
BinaryOp method. BinaryOp has three parameters: the value of the left-hand operand,
the value of the right-hand operand, and the operator. Implement this method to
perform the operation and return the result using the same variable that contained
the left-hand operand.

For example, the following BinaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; const Right: TVarData;
const Operator: TVarOp);

begin
if Right.VType = VarType then

case Left.VType of
varString:
case Operator of

opAdd: Variant(Left) := Variant(Left) + TComplexVarData(Right).VComplex.AsString;
else

RaiseInvalidOp;
end;

else
if Left.VType = VarType then

case Operator of
opAdd:

TComplexVarData(Left).VComplex.DoAdd(TComplexVarData(Right).VComplex);
opSubtract:

TComplexVarData(Left).VComplex.DoSubtract(TComplexVarData(Right).VComplex);
opMultiply:

TComplexVarData(Left).VComplex.DoMultiply(TComplexVarData(Right).VComplex);
opDivide:

TComplexVarData(Left).VComplex.DoDivide(TComplexVarData(Right).VComplex);
else

RaiseInvalidOp;
end

else
RaiseInvalidOp;

end
else

RaiseInvalidOp;
end;

U s i n g B a s e C L X 5-45

D e f i n i n g c u s t o m v a r i a n t s

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator
is a custom variant that represents a complex number. If the left-hand operand is a
complex variant and the right-hand operand is not, the complex variant forces the
right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { Complex Op TypeX }
 RequiredVarType := VarType;
 Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting
the complex value to a string and concatenating), and the addition, subtraction,
multiplication, and division operators are implemented for two complex numbers
using the methods of the TComplexData object that is stored in the complex variant’s
data. This is accessed by casting the TVarData record to a TComplexVarData record
and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the
RaiseInvalidOp method, which causes a runtime error. The TCustomVariantType class
includes a number of utility methods such as RaiseInvalidOp that can be used in the
implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex
variants. It is possible, however, to perform operations between complex numbers
and other numeric types. For the BinaryOp method to work, the operands must be
cast to complex variants before the values are passed to this method. We have
already seen (above) how to use the RightPromotion method to force the right-hand
operand to be a complex variant if the left-hand operand is complex. A similar
method, LeftPromotion, forces a cast of the left-hand operand when the right-hand
operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { TypeX Op Complex }
 if (Operator = opAdd) and VarDataIsStr(V) then
 RequiredVarType := varString
 else
 RequiredVarType := VarType;

Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex
variant, unless it is a string and the operation is addition, in which case LeftPromotion
allows the operand to remain a string.

5-46 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

Implementing comparison operations
There are two ways to enable a custom variant type to support comparison operators
(=, <>, <, <=, >, >=). You can override the Compare method, or you can override the
CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of
comparison operators. Compare takes three parameters: the left-hand operand, the
right-hand operand, and a var Parameter that returns the relationship between the
two. For example, the TConvertVariantType object in the VarConv unit implements
the following Compare method:

procedure TConvertVariantType.Compare(const Left, Right: TVarData;
 var Relationship: TVarCompareResult);
const
 CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
 (crLessThan, crEqual, crGreaterThan);
var
 LValue: Double;
 LType: TConvType;
 LRelationship: TValueRelationship;
begin
 // supports...
 // convvar cmp number
 // Compare the value of convvar and the given number

// convvar1 cmp convvar2
 // Compare after converting convvar2 to convvar1's unit type

// The right can also be a string. If the string has unit info then it is
 // treated like a varConvert else it is treated as a double
 LRelationship := EqualsValue;
 case Right.VType of

varString:
if TryStrToConvUnit(Variant(Right), LValue, LType) then
if LType = CIllegalConvType then

LRelationship := CompareValue(TConvertVarData(Left).VValue, LValue)
else

LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
TConvertVarData(Left).VConvType, LValue, LType)

else
RaiseCastError;

varDouble:
LRelationship := CompareValue(TConvertVarData(Left).VValue, TVarData(Right).VDouble);

else
if Left.VType = VarType then
LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,

TConvertVarData(Left).VConvType, TConvertVarData(Right).VValue,
TConvertVarData(Right).VConvType)

else
RaiseInvalidOp;

end;
Relationship := CRelationshipToRelationship[LRelationship];

end;

U s i n g B a s e C L X 5-47

D e f i n i n g c u s t o m v a r i a n t s

If the custom type does not support the concept of “greater than” or “less than,” only
“equal” or “not equal,” however, it is difficult to implement the Compare method,
because Compare must return crLessThan, crEqual, or crGreaterThan. When the only
valid response is “not equal,” it is impossible to know whether to return crLessThan
or crGreaterThan. Thus, for types that do not support the concept of ordering, you can
override the CompareOp method instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the
right-hand operand, and the comparison operator. Implement this method to
perform the operation and return a boolean that indicates whether the comparison is
True. You can then call the RaiseInvalidOp method when the comparison makes no
sense.

For example, the following CompareOp method comes from the TComplexVariantType
object in the VarCmplx unit. It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp(const Left, Right: TVarData;
 const Operator: Integer): Boolean;
begin
 Result := False;
 if (Left.VType = VarType) and (Right.VType = VarType) then
 case Operator of
 opCmpEQ:
 Result := TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 opCmpNE:
 Result := not TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that the types of operands that both these implementations support are very
limited. As with binary operations, you can use the RightPromotion and LeftPromotion
methods to limit the cases you must consider by forcing a cast before Compare or
CompareOp is called.

Implementing unary operations
To allow the custom variant type to work with standard unary operators (-, not), you
must override the UnaryOp method. UnaryOp has two parameters: the value of the
operand and the operator. Implement this method to perform the operation and
return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; const Operator: TVarOp);
begin
 if Right.VType = VarType then
 case Operator of
 opNegate:
 TComplexVarData(Right).VComplex.DoNegate;

5-48 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values,
this method calls RaiseInvalidOp to cause a runtime error.

Copying and clearing custom variants

In addition to typecasting and the implementation of operators, you must indicate
how to copy and clear variants of your custom Variant type.

To indicate how to copy the variant’s value, implement the Copy method. Typically,
this is an easy operation, although you must remember to allocate memory for any
classes or structures you use to hold the variant’s value:

procedure TComplexVariantType.Copy(var Dest: TVarData; const Source: TVarData;
 const Indirect: Boolean);
begin
 if Indirect and VarDataIsByRef(Source) then
 VarDataCopyNoInd(Dest, Source)
 else
 with TComplexVarData(Dest) do
 begin
 VType := VarType;
 VComplex := TComplexData.Create(TComplexVarData(Source).VComplex);
 end;
end;

Note The Indirect parameter in the Copy method signals that the copy must take into
account the case when the variant holds only an indirect reference to its data.

Tip If your custom variant type does not allocate any memory to hold its data (if the data
fits entirely in the TVarData record), your implementation of the Copy method can
simply call the SimplisticCopy method.

To indicate how to clear the variant’s value, implement the Clear method. As with the
Copy method, the only tricky thing about doing this is ensuring that you free any
resources allocated to store the variant’s data:

procedure TComplexVariantType.Clear(var V: TVarData);
begin
 V.VType := varEmpty;
 FreeAndNil(TComplexVarData(V).VComplex);
end;

U s i n g B a s e C L X 5-49

D e f i n i n g c u s t o m v a r i a n t s

You will also need to implement the IsClear method. This way, you can detect any
invalid values or special values that represent “blank” data:

function TComplexVariantType.IsClear(const V: TVarData): Boolean;
begin
 Result := (TComplexVarData(V).VComplex = nil) or
 TComplexVarData(V).VComplex.IsZero;
end;

Loading and saving custom variant values
By default, when the custom variant is assigned as the value of a published property,
it is typecast to a string when that property is saved to a form file, and converted back
from a string when the property is read from a form file. You can, however, provide
your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the
IVarStreamable interface from Classes.pas.

IVarStreamable defines two methods, StreamIn and StreamOut, for reading a variant’s
value from a stream and for writing the variant’s value to the stream. For example,
TComplexVariantType, in the VarCmplx unit, implements the IVarStreamable methods
as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; const Stream: TStream);
begin
 with TReader.Create(Stream, 1024) do
 try
 with TComplexVarData(Dest) do
 begin
 VComplex := TComplexData.Create;
 VComplex.Real := ReadFloat;
 VComplex.Imaginary := ReadFloat;
 end;
 finally
 Free;
 end;
end;

procedure TComplexVariantType.StreamOut(const Source: TVarData; const Stream: TStream);
begin
 with TWriter.Create(Stream, 1024) do
 try
 with TComplexVarData(Source).VComplex do
 begin
 WriteFloat(Real);
 WriteFloat(Imaginary);
 end;
 finally
 Free;
 end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to
handle the details of reading or writing values.

5-50 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

Using the TCustomVariantType descendant
In the initialization section of the unit that defines your TCustomVariantType
descendant, create an instance of your class. When you instantiate your object, it
automatically registers itself with the variant-handling system so that the new
Variant type is enabled. For example, here is the initialization section of the
VarCmplx unit:

initialization
 ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustomVariantType
descendant, free the instance of your class. This automatically unregisters the variant
type. Here is the finalization section of the VarCmplx unit:

finalization
 FreeAndNil(ComplexVariantType);

Writing utilities to work with a custom variant type

Once you have created a TCustomVariantType descendant to implement your custom
variant type, it is possible to use the new Variant type in applications. However,
without a few utilities, this is not as easy as it should be.

It is a good idea to create a method that creates an instance of your custom variant
type from an appropriate value or set of values. This function or set of functions fills
out the structure you defined to store your custom variant’s data. For example, the
following function could be used to create a complex-valued variant:

function VarComplexCreate(const AReal, AImaginary: Double): Variant;
begin

VarClear(Result);
 TComplexVarData(Result).VType := ComplexVariantType.VarType;
 TComplexVarData(ADest).VComplex := TComplexData.Create(ARead, AImaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of
methods that do exist, provided to simplify the example. Note that the returned
variant is cast to the record that was defined to map onto the TVarData structure
(TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new
Variant type. This type code is not a constant. It is automatically generated when you
instantiate your TCustomVariantType descendant. It is therefore useful to provide a
way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning
the VarType property of the TCustomVariantType descendant:

function VarComplex: TVarType;
begin
 Result := ComplexVariantType.VarType;
end;

U s i n g B a s e C L X 5-51

D e f i n i n g c u s t o m v a r i a n t s

Two other standard utilities provided for most custom variants check whether a
given variant is of the custom type and cast an arbitrary variant to the new custom
type. Here is the implementation of those utilities from the VarCmplx unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin
 Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;

function VarAsComplex(const AValue: Variant): Variant;
begin
 if not VarIsComplex(AValue) then
 VarCast(Result, AValue, VarComplex)
 else
 Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the
TVarData record and the VarCast function, which works because of the methods
implemented in the TCustomVariantType descendant for casting data.

In addition to the standard utilities mentioned above, you can write any number of
utilities specific to your new custom variant type. For example, the VarCmplx unit
defines a large number of functions that implement mathematical operations on
complex-valued variants.

Supporting properties and methods in custom variants

Some variants have properties and methods. For example, when the value of a
variant is an interface, you can use the variant to read or write the values of
properties on that interface and call its methods. Even if your custom variant type
does not represent an interface, you may want to give it properties and methods that
an application can use in the same way.

Using TInvokeableVariantType
To provide support for properties and methods, the class you create to enable the
new custom variant type should descend from TInvokeableVariantType instead of
directly from TCustomVariantType.

TInvokeableVariantType defines four methods:

• DoFunction
• DoProcedure
• GetProperty
• SetProperty

that you can implement to support properties and methods on your custom variant
type.

5-52 D e v e l o p e r ’ s G u i d e

D e f i n i n g c u s t o m v a r i a n t s

For example, the VarConv unit uses TInvokeableVariantType as the base class for
TConvertVariantType so that the resulting custom variants can support properties.
The following example shows the property getter for these properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
 const V: TVarData; const Name: String): Boolean;
var
 LType: TConvType;
begin
 // supports...
 // 'Value'
 // 'Type'
 // 'TypeName'
 // 'Family'
 // 'FamilyName'
 // 'As[Type]'
 Result := True;
 if Name = 'VALUE' then
 Variant(Dest) := TConvertVarData(V).VValue
 else if Name = 'TYPE' then
 Variant(Dest) := TConvertVarData(V).VConvType
 else if Name = 'TYPENAME' then
 Variant(Dest) := ConvTypeToDescription(TConvertVarData(V).VConvType)
 else if Name = 'FAMILY' then
 Variant(Dest) := ConvTypeToFamily(TConvertVarData(V).VConvType)
 else if Name = 'FAMILYNAME' then
 Variant(Dest) := ConvFamilyToDescription(ConvTypeToFamily(TConvertVarData(V).VConvType))
 else if System.Copy(Name, 1, 2) = 'AS' then
 begin
 if DescriptionToConvType(ConvTypeToFamily(TConvertVarData(V).VConvType),
 System.Copy(Name, 3, MaxInt), LType) then
 VarConvertCreateInto(Variant(Dest), Convert(TConvertVarData(V).VValue,
 TConvertVarData(V).VConvType, LType), LType)
 else
 Result := False;
 end
 else
 Result := False;
end;

The GetProperty method checks the Name parameter to determine what property is
wanted. It then retrieves the information from the TVarData record of the Variant (V),
and returns it as a Variant (Dest). Note that this method supports properties whose
names are dynamically generated at runtime (As[Type]), based on the current value
of the custom variant.

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently
generic that you can dynamically generate method names, or respond to variable
numbers and types of parameters.

U s i n g B a s e C L X 5-53

D e f i n i n g c u s t o m v a r i a n t s

Using TPublishableVariantType
If the custom variant type stores its data using an object instance, then there is an
easier way to implement properties, as long as they are also properties of the object
that represents the variant’s data. If you use TPublishableVariantType as the base class
for your custom variant type, then you need only implement the GetInstance method,
and all the published properties of the object that represents the variant’s data are
automatically implemented for the custom variants.

For example, as was seen in “Storing a custom variant type’s data” on page 5-41,
TComplexVariantType stores the data of a complex-valued variant using an instance of
TComplexData. TComplexData has a number of published properties (Real, Imaginary,
Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the
GetInstance method to return the TComplexData object (in TypInfo.pas) that is stored
in a complex-valued variant’s TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin
 Result := TComplexVarData(V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty
methods to use the runtime type information (RTTI) of the TComplexData object for
getting and setting property values.

Note For TPublishableVariantType to work, the object that holds the custom variant’s data
must be compiled with RTTI. This means it must be compiled using the {$M+}
compiler directive, or descend from TPersistent.

5-54 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o m p o n e n t s 6-1

C h a p t e r

6
Chapter6Working with components

Many components are provided in the IDE on the Component palette. You select
components from the Component palette and drop them onto a form or data module.
You design the application’s user interface by arranging the visual components such
as buttons and list boxes on a form. You can also place nonvisual components such as
data access components on either a form or a data module.

At first glance, Delphi’s components appear to be just like any other classes. But there
are differences between components in Delphi and the standard class hierarchies that
many programmers work with. Some differences are described here:

• All Delphi components descend from TComponent.

• Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

• Components can only be allocated on the heap, not on the stack.

• Properties of components intrinsically contain runtime type information.

• Components can be added to the Component palette in the IDE and manipulated
on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard classes. For example, consider the use of a dialog containing a push button.
In a Windows program developed using VCL components, when a user clicks on the
button, the system generates a WM_LBUTTONDOWN message. The program must
catch this message (typically in a switch statement, a message map, or a response
table) and dispatch it to a routine that will execute in response to the message.

6-2 D e v e l o p e r ’ s G u i d e

S e t t i n g c o m p o n e n t p r o p e r t i e s

Most Windows messages (VCL applications) or system events (CLX applications) are
handled by Delphi components. When you want to respond to a message or system
event, you only need to provide an event handler.

Chapter 9, “Developing the application user interface,” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Setting component properties
To set published properties at design time, you can use the Object Inspector and, in
some cases, special property editors. To set properties at runtime, assign their values
in your application source code.

For information about the properties of each component, see the online Help.

Setting properties at design time

When you select a component on a form at design time, the Object Inspector displays
its published properties and (when appropriate) allows you to edit them. Use the Tab
key to toggle between the left-hand Property column and the right-hand Value
column. When the cursor is in the Property column, you can navigate to any property
by typing the first letters of its name. For properties of Boolean or enumerated types,
you can choose values from a drop-down list or toggle their settings by double-
clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+’ when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-’ hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In addition,
changes to the source code, such as renaming an event handler method in a form
class declaration, is immediately reflected in the Object Inspector.

W o r k i n g w i t h c o m p o n e n t s 6-3

C a l l i n g m e t h o d s

Using property editors
Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object
Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

Setting properties at runtime

Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Form1.Caption := MyString;

Calling methods
Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGrid1.Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

procedure TForm1.Button1Click(Sender: TObject);
begin

Repaint;
end;

For more information about scope, see “Scope and qualifiers” on page 4-5.

Working with events and event handlers
Almost all the code you write is executed, directly or indirectly, in response to events.
An event is a special kind of property that represents a runtime occurrence, often a
user action. The code that responds directly to an event—called an event handler—is a
Delphi procedure. The sections that follow show how to:

• Generate a new event handler.
• Generate a handler for a component’s default event.
• Locate event handlers.
• Associate an event with an existing event handler.
• Associate menu events with event handlers.
• Delete event handlers.

6-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h e v e n t s a n d e v e n t h a n d l e r s

Generating a new event handler

You can generate skeleton event handlers for forms and other components. To create
an event handler:

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctrl+Enter.
The Code editor opens with the cursor inside the skeleton event handler, or
begin...end block.

4 At the cursor, type the code that you want to execute when the event occurs.

Generating a handler for a component’s default event

Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this
generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
them in the Form Designer. For example, many components open a default property
editor or other dialog when they are double-clicked at design time.

Locating event handlers

If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the
component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,

1 In the form, select the component whose event handler you want to locate.

2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor inside the skeleton event-handler.

W o r k i n g w i t h c o m p o n e n t s 6-5

W o r k i n g w i t h e v e n t s a n d e v e n t h a n d l e r s

Associating an event with an existing event handler

You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

To associate an event with an existing event handler,

1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The previous procedure is an easy way to reuse event handlers. Action lists and in the
VCL, action bands, however, provide powerful tools for centrally organizing the code
that responds to user commands. Action lists can be used in cross-platform
applications, whereas action bands cannot. For more information about action lists
and action bands, see “Organizing actions for toolbars and menus” on page 9-18.

Using the Sender parameter
In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter in an if...then...else
statement. For example, the following code displays the title of the application in the
caption of a dialog box only if the OnClick event was received by Button1.

procedure TMainForm.Button1Click(Sender: TObject);
begin
if Sender = Button1 then

AboutBox.Caption := 'About ' + Application.Title
else

AboutBox.Caption := '';
AboutBox.ShowModal;
end;

Displaying and coding shared events
When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

6-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h e v e n t s a n d e v e n t h a n d l e r s

Associating menu events with event handlers

The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This section explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 9-32.

To create an event handler for a menu item,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. The Code editor opens with
the cursor inside the skeleton event handler, or the begin...end block.

4 At the cursor, type the code that you want to execute when the user selects the
menu command.

To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

Deleting event handlers

When you delete a component from a form using the Form Designer, the Code editor
removes the component from the form’s type declaration. It does not, however,
delete any associated methods from the unit file, since these methods may still be
called by other components on the form. You can manually delete a method—such as
an event handler—but if you do so, be sure to delete both the method’s forward
declaration (in the unit’s interface section) and its implementation (in the
implementation section). Otherwise you’ll get a compiler error when you build your
project.

W o r k i n g w i t h c o m p o n e n t s 6-7

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

Cross-platform and non-cross-platform components
The Component palette contains a selection of components that handle a wide
variety of programming tasks. The components are arranged in pages according to
their purpose and functionality. For example, commonly used components such as
those to create menus, edit boxes, or buttons are located on the Standard page. Which
pages appear in the default configuration depends on the edition of the product you
are running.

Table 3.3 lists typical default pages and components available for creating
applications, including those that are not cross-platform. You can use all CLX
components in both Windows and Linux applications. You can use some VCL-
specific components in a Windows-only CLX application; however, the application is
not cross-platform unless you isolate these portions of the code.

Table 6.1 Component palette pages

Page name Description Cross-platform?

ActiveX Sample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com).

No

Additional Specialized controls. Yes, though for VCL applications
only: ApplicationEvents,
ValueListEditor, ColorBox, Chart,
ActionManager,
ActionMainMenuBar,
ActionToolBar, CustomizeDlg, and
StaticText.
For CLX applications only:
LCDNumber.

ADO Components that provide data access
through the ADO framework.

No

BDE Components that provide data access
through the Borland Database Engine.

No

COM+ Component for handling COM+ events. No

Data Access Components for working with database
data that are not tied to any particular
data access mechanism.

Yes, though for VCL applications
only: XMLTransform,
XMLTransformProvider, and
XMLTransformClient.

Data Controls Visual, data-aware controls. Yes, though for VCL applications
only: DBRichEdit, DBCtrlGrid, and
DBChart.

dbExpress Database controls that use dbExpress, a
cross-platform, database-independent
layer that provides methods for
dynamic SQL processing. It defines a
common interface for accessing SQL
servers.

Yes

6-8 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

DataSnap Components used for creating multi-
tiered database applications.

No

Decision Cube Data analysis components. No

Dialogs Commonly used dialog boxes. Yes, though for VCL applications
only: OpenPictureDialog,
SavePictureDialog, PrintDialog, and
PrinterSetupDialog.

Indy Clients
Indy Servers
Indy Misc
Indy Intercepts
Indy I/O
Handlers

Cross-platform Internet components for
the client and server (open source
Winshoes Internet components).

Yes

InterBase Components that provide direct access
to the InterBase database.

Yes

InterBaseAdmin Components that access InterBase
Services API calls.

Yes

Internet Components for Internet
communication protocols and Web
applications.

Yes

InternetExpress Components that are simultaneously a
Web server application and the client of
a multi-tiered database application.

Yes

Office2K COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation).

No

IW Client Side
IW Control
IW Data
IW Standard

Components to build Web server
applications using IntraWeb.

No

Rave Components to design visual reports. Yes

Samples Sample custom components. No

Servers COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation).

No

Standard Standard controls, menus. Yes

System Components and controls for system-
level access, including timers,
multimedia, and DDE (VCL
applications).
Components for filtering and
displaying files (CLX applications).

The components are different
between a VCL and CLX
application.

Table 6.1 Component palette pages (continued)

Page name Description Cross-platform?

W o r k i n g w i t h c o m p o n e n t s 6-9

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

You can add, remove, and rearrange components on the palette, and you can create
component templates and frames that group several components.

For more information about the components on the Component palette, see online
Help. You can press F1 on the Component palette, on the component itself when it is
selected, after it has been dropped onto a form, or anywhere on its name in the Code
editor. If a tab of the Component palette is selected, the Help gives a general
description for all of the components on that tab. Some of the components on the
ActiveX, Servers, and Samples pages, however, are provided as examples only and
are not documented.

For more information on the differences between VCL and CLX applications, see
Chapter 15, “Developing cross-platform applications.”

Adding custom components to the Component palette

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a custom component,
see the Component Writer’s Guide. To install an existing component, see “Installing
component packages” on page 16-6.

WebServices Components for writing applications
that implement or use SOAP-based
Web Services.

Yes

WebSnap Components for building Web server
applications.

Yes

Win 3.1 Old style Win 3.1 components. No

Win32 (VCL)/
Common
Controls (CLX)

Common Windows controls. In CLX applications, the Common
Controls page replaces the Win32
page.
VCL applications only: RichEdit,
UpDown, HotKey, DataTimePicker,
MonthCalendar, CoolBar,
PageScroller, and ComboBoxEx.
CLX applications only: TextViewer,
TextBrowser, SpinEdit, and
IconView.

Table 6.1 Component palette pages (continued)

Page name Description Cross-platform?

6-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o n t r o l s 7-1

C h a p t e r

7
Chapter7Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag and drop in controls
Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view— into another.

• Starting a drag operation
• Accepting dragged items
• Dropping items
• Ending a drag operation
• Customizing drag and drop with a drag object
• Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

7-2 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g a n d d r o p i n c o n t r o l s

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and, optionally, an integer parameter
called Threshold. If you pass True for Immediate, dragging begins immediately. If you
pass False, dragging does not begin until the user moves the mouse the number of
pixels specified by Threshold. Calling

BeginDrag (False);

allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button = mbLeft then { drag only if left button pressed }

with Sender as TFileListBox do { treat Sender as TFileListBox }
begin
if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }

BeginDrag(False); { if so, drag it }
end;

end;

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to
True if it will accept the item. Accept changes the cursor type to an accept cursor or
not.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drag. In the following VCL example, a directory tree view
accepts dragged items only if they come from a file list box.

procedure TFMForm.DirectoryOutline1DragOver(Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);

begin
if Source is TFileListBox then

Accept := True
else

Accept := False;
end;

W o r k i n g w i t h c o n t r o l s 7-3

I m p l e m e n t i n g d r a g a n d d r o p i n c o n t r o l s

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components if an item is dropped.

In the following VCL example, a directory tree view, accepting items dragged from a
file list box, responds by moving files to the directory on which they are dropped.

procedure TFMForm.DirectoryOutline1DragDrop(Sender, Source: TObject; X,
Y: Integer);

begin
if Source is TFileListBox then

with DirectoryOutline1 do
ConfirmChange('Move', FileListBox1.FileName, Items[GetItem(X, Y)].FullPath);

end;

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the drag was initiated. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is nil, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In the following VCL example, a file list box handles an end-drag event by refreshing
its file list.

procedure TFMForm.FileListBox1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin

if Target <> nil then FileListBox1.Update;
end;

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx (VCL only) and override its virtual methods. Create the custom drag
object in the OnStartDrag event.

7-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g a n d d o c k i n c o n t r o l s

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

TDragObjectEx descendants (VCL only) are freed automatically whereas descendants
of TDragObject are not. If you have TDragObject descendants that you are not
explicitly freeing, you can change them so they descend from TDragObjectEx instead
to prevent memory loss.

Drag objects let you drag items between a form implemented in the application’s
main executable file and a form implemented using a DLL, or between forms that are
implemented using different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property (VCL only).

Implementing drag and dock in controls
Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

• Making a windowed control a docking site
• Making a control a dockable child
• Controlling how child controls are docked
• Controlling how child controls are undocked
• Controlling how child controls respond to drag-and-dock operations

Note Drag-and-dock properties are not available in CLX applications.

Making a windowed control a docking site

To make a windowed control a docking site:

1 Set the DockSite property to True.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to True. When AutoSize is True, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

W o r k i n g w i t h c o n t r o l s 7-5

I m p l e m e n t i n g d r a g a n d d o c k i n c o n t r o l s

Making a control a dockable child

To make a control a dockable child:

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the
control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is
dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var InfluenceRect:
TRect; var CanDock: Boolean) of object;

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to True. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to False.

property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer; State:
TDragState; var Accept: Boolean) of object;

7-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSiteInfo event handler (perhaps because
it is the wrong type of control), OnDockOver does not occur.

property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer) of
object;

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of object;

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls
The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

• Setting text alignment
• Adding scroll bars at runtime
• Adding the clipboard object
• Selecting text

W o r k i n g w i t h c o n t r o l s 7-7

W o r k i n g w i t h t e x t i n c o n t r o l s

• Selecting all text
• Cutting, copying, and pasting text
• Deleting selected text
• Disabling menu items
• Providing a pop-up menu
• Handling the OnPopup event

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is True; if word wrapping is turned off, there is
no margin to align to.

For example, the following code attaches an OnClick event handler to a Character|
Left menu item, then attaches the same event handler to both a Character|Right and
Character|Center menu item.

procedure TForm.AlignClick(Sender: TObject);
begin

Left1.Checked := False; { clear all three checks }
Right1.Checked := False;
Center1.Checked := False;
with Sender as TMenuItem do Checked := True; { check the item clicked }
with Editor do { then set Alignment to match }

if Left1.Checked then
Alignment := taLeftJustify

else if Right1.Checked then
Alignment := taRightJustify

else if Center1.Checked then
Alignment := taCenter;

end;

You can also use the HMargin property to adjust the left and right margins in a memo
control.

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

7-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

The following example attaches an OnClick event handler to a Character|WordWrap
menu item.

procedure TForm.WordWrap1Click(Sender: TObject);
begin

with Editor do
begin

WordWrap := not WordWrap; { toggle word wrapping }
if WordWrap then

ScrollBars := ssVertical { wrapped requires only vertical }
else

ScrollBars := ssBoth; { unwrapped might need both }
WordWrap1.Checked := WordWrap; { check menu item to match property }

end;
end;

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. TClipboard object
encapsulates a clipboard (such as the Windows Clipboard) and includes methods for
cutting, copying, and pasting text (and other formats, including graphics). The
Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application:

1 Select the unit that will use the clipboard.

2 Search for the implementation reserved word.

3 Add Clipbrd to the uses clause below implementation.

• If there is already a uses clause in the implementation part, add Clipbrd to the end
of it.

• If there is not already a uses clause, add one that says

uses Clipbrd;

For example, in an application with a child window, the uses clause in the unit's
implementation part might look like this:

uses
MDIFrame, Clipbrd;

W o r k i n g w i t h c o n t r o l s 7-9

W o r k i n g w i t h t e x t i n c o n t r o l s

Selecting text

For text in an edit control, before you can send any text to the clipboard, that text
must be selected. Highlighting of selected text is built into the edit components.
When the user selects text, it appears highlighted.

Table 7.1 lists properties commonly used to handle selected text.

For example, the following OnFind event handler searches a Memo component for
the text specified in the FindText property of a find dialog component. If found, the
first occurrence of the text in Memo1 is selected.

procedure TForm1.FindDialog1Find(Sender: TObject);
var
 I, J, PosReturn, SkipChars: Integer;
begin
 for I := 0 to Memo1.Lines.Count do
 begin
 PosReturn := Pos(FindDialog1.FindText,Memo1.Lines[I]);
 if PosReturn <> 0 then {found!}
 begin
 Skipchars := 0;
 for J := 0 to I - 1 do
 Skipchars := Skipchars + Length(Memo1.Lines[J]);
 SkipChars := SkipChars + (I*2);
 SkipChars := SkipChars + PosReturn - 1;

Memo1.SetFocus;
 Memo1.SelStart := SkipChars;
 Memo1.SelLength := Length(FindDialog1.FindText);
 Break;
 end;
 end;
end;

Selecting all text

The SelectAll method selects the entire contents of an edit control, such as a rich edit
or memo component. This is especially useful when the component’s contents exceed
the visible area of the component. In most other cases, users select text with either
keystrokes or mouse dragging.

Table 7.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of an edit control’s
text buffer.

7-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example:

procedure TMainForm.SelectAll(Sender: TObject);
begin

RichEdit1.SelectAll; { select all text in RichEdit }
end;

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 12-21 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit|Cut, Edit|Copy, and Edit|Paste commands, respectively:

procedure TEditForm.CutToClipboard(Sender: TObject);
begin

Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin

Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin

Editor.PasteFromClipboard;
end;

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

procedure TEditForm.Delete(Sender: TObject);
begin

RichEdit1.ClearSelection;
end;

W o r k i n g w i t h c o n t r o l s 7-11

W o r k i n g w i t h t e x t i n c o n t r o l s

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to False.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

procedure TEditForm.Edit1Click(Sender: TObject);
var

HasSelection: Boolean; { declare a temporary variable }
begin

Paste1.Enabled := Clipboard.HasFormat(CF_TEXT); {enable or disable the Paste menu item}
HasSelection := Editor.SelLength > 0; { True if text is selected }
Cut1.Enabled := HasSelection; { enable menu items if HasSelection is True }
Copy1.Enabled := HasSelection;
Delete1.Enabled := HasSelection;

end;

The HasFormat method (Provides method in CLX applications) of the clipboard
returns a Boolean value based on whether the clipboard contains objects, text, or
images of a particular format. By calling HasFormat with the parameter CF_TEXT,
you can determine whether the clipboard contains any text, and enable or disable the
Paste item as appropriate.

Note In CLX applications, use the Provides method. In this case, the text is generic. You can
specify the type of text using a subtype such as text/plain for plain text or text/html
for html.

Chapter 12, “Working with graphics and multimedia” provides more information
about using the clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

7-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form:

1 Place a pop-up menu component on the form.

2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 7-11.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them:

1 Select the pop-up menu component.

2 Attach an event handler to its OnPopup event.

3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 7-11 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

procedure TEditForm.Edit1Click(Sender: TObject);
var

HasSelection: Boolean;
begin

Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
Paste2.Enabled := Paste1.Enabled;{Add this line}
HasSelection := Editor.SelLength <> 0;
Cut1.Enabled := HasSelection;
Cut2.Enabled := HasSelection;{Add this line}
Copy1.Enabled := HasSelection;
Copy2.Enabled := HasSelection;{Add this line}
Delete1.Enabled := HasSelection;

end;

W o r k i n g w i t h c o n t r o l s 7-13

A d d i n g g r a p h i c s t o c o n t r o l s

Adding graphics to controls
Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 9-38.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in the list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control involves these steps:

1 Indicating that a control is owner-drawn.

2 Adding graphical objects to a string list.

3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and toolbars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as OnCustomDraw or OnAdvancedCustomDraw.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 7.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Table 7.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height
determined by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

7-14 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.
You can also add graphical objects of varying sizes to a string list.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Note that you can also organize graphical objects using an image list by creating a
TImageList. However, these images must all be the same size. See “Adding images to
menu items” on page 9-38 for an example of setting up an image list.

Adding images to an application
An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you’ll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.

2 Set their Name properties.

3 Set the Visible property for each image control to False.

4 Set the Picture property of each image to the desired bitmap using the Picture
editor from the Object Inspector.

The image controls are invisible when you run the application. The image is stored
with the form so it doesn’t have to be loaded from a file at runtime.

Adding images to a string list
Once you have graphical images in an application, you can associate them with the
strings in a string list. You can either add the objects at the same time as the strings,
or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

W o r k i n g w i t h c o n t r o l s 7-15

A d d i n g g r a p h i c s t o c o n t r o l s

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid
drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

procedure TFMForm.FormCreate(Sender: TObject);
var

Drive: Char;
AddedIndex: Integer;

begin
for Drive := 'A' to 'Z' do { iterate through all possible drives }
begin

case GetDriveType(Drive + ':/') of { positive values mean valid drives }
DRIVE_REMOVABLE: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Floppy.Picture.Graphic);
DRIVE_FIXED: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Fixed.Picture.Graphic);
DRIVE_REMOTE: { add a tab }

AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Network.Picture.Graphic);
end;
if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
DriveTabSet.TabIndex := AddedIndex; { then make that current tab }

end;
end;

Drawing owner-drawn items
When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, the control is no longer drawn on the
screen. Instead, the operating system generates events for each visible item in the
control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

7-16 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, the control receives a measure-item event, which is of type
TMeasureItemEvent. TMeasureItemEvent tells the application where the item appears
on the control.

Delphi determines the size of the item (generally, it is just large enough to display the
item’s text in the current font). Your application can handle the event and change the
rectangle chosen. For example, if you plan to substitute a bitmap for the item’s text,
change the rectangle to the size of the bitmap. If you want a bitmap and text, adjust the
rectangle to be large enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureItem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
height of that item. The height is variable: the application can make it either smaller
or larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

procedure TFMForm.ListBox1MeasureItem(Control: TWinControl; Index: Integer;
var Height: Integer); { note that Height is a var parameter}

var
BitmapHeight: Integer;

begin
BitmapHeight := TBitmap(ListBox1.Items.Objects[Index]).Height;
{ make sure the item height has enough room, plus two }
Height := Max(Height, Bitmap Height +2);

end;

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

W o r k i n g w i t h c o n t r o l s 7-17

A d d i n g g r a p h i c s t o c o n t r o l s

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a part of the item.

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following:

• OnDraw, such as OnDrawItem or OnDrawCell
• OnCustomDraw, such as OnCustomDrawItem
• OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawItem event
for the list box:

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);

var
Bitmap: TBitmap;

begin
Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
TextOut(R.Left + 2 + Bitmap.Width, { position text }

R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }

end;
end;

7-18 D e v e l o p e r ’ s G u i d e

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-1

C h a p t e r

8
Chapter8Building applications, components,

and libraries
This chapter provides an overview of how to create applications, components, and
libraries.

Creating applications
The most common types of applications you can design and build are:

• GUI applications
• Console applications
• Service applications
• Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run
from a console window. Service applications are run as Windows services. These
types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in
creating packages or dynamically linkable libraries. These applications produce
executable code without start-up code. Refer to “Creating packages and DLLs” on
page 8-11.

8-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of
your program, and simple programs often consist of only an executable file. You can
extend the application by calling DLLs, packages, and other support files from the
executable.

The IDE offers two application UI models:

• Single document interface (SDI)
• Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

User interface models
Any form can be implemented as a single document interface (SDI) or multiple
document interface (MDI) form. An SDI application normally contains a single
document view. In an MDI application, more than one document or child window
can be opened within a single parent window. This is common in applications such
as spreadsheets or word processors.

For more information on developing the UI for an application, see Chapter 9,
“Developing the application user interface.”

SDI applications
To create a new SDI application:

1 Choose File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and double-click SDI Application.

3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so that the
IDE assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application using a wizard:

1 Choose File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and double-click MDI Application.

3 Click OK.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-3

C r e a t i n g a p p l i c a t i o n s

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

MDI applications often include a Window pop-up on the main menu that has items
such as Cascade and Tile for viewing multiple windows in various styles. When a
child window is minimized, its icon is located in the MDI parent form.

To create a new MDI application without using a wizard:

1 Create the main window form or MDI parent window. Set its FormStyle property
to fsMDIForm.

2 Create a menu for the main window that includes File|Open, File|Save, and
Window which has Cascade, Tile, and Arrange All items.

3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, project, and compiler options
In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE. To specify various options for
your project, choose Project|Options.

Setting default project options
To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

For more information, see the online Help.

Programming templates

Programming templates are commonly used skeleton structures that you can add to
your source code and then fill in. You can also use standard code templates such as
those for array, class, and function declarations, and many statements.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

for := to do
begin

end;

8-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Choose Tools|Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.

4 Type a name for the template after Shortcut name, enter a brief description of the
new template, and click OK.

5 Add the template code to the Code text box.

6 Click OK.

Console applications

Console applications are 32-bit programs that run without a graphical interface, in a
console window. These applications typically don’t require much user input and
perform a limited set of functions. Any application that contains:

{$APPTYPE CONSOLE}

in the code opens a console window of its own.

To create a new console application, choose File|New|Other and double-click
Console Application from the New Items dialog box.

The IDE then creates a project file for this type of source file and displays the Code
editor.

Console applications should make sure that no exceptions escape from the program
scope. Otherwise, when the program terminates, the Windows operating system
displays a modal dialog with exception information. For example, your application
should include exception handling such as shown in the following code:

program ConsoleExceptionHandling;

{$APPTYPE CONSOLE}

uses
 SysUtils;

procedure ExecuteProgram;
begin

//Program does something

raise Exception.Create('Unforeseen exception');
end;

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-5

C r e a t i n g a p p l i c a t i o n s

begin
try

ExecuteProgram;
except

 //Handle error condition
WriteIn(‘Program terminated due to an exception’);

//Set ExitCode <> 0 to flag error condition (by convention)
ExitCode := 1;

end;
end.

Users can terminate console applications in one of the following ways:

• Click the Close (X) button.
• Press Ctrl+C.
• Press Ctrl+Break.
• Log off.

Depending on which way the user chooses, the application is terminated forcefully,
the process is not shut down cleanly, and the finalization section isn’t run. Use the
Windows API SetConsoleCtrlHandler function for options for handling these user
termination requests.

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A Web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service:

1 Choose File|New|Other, and double-click Service Application in the New Items
dialog box. This adds a global variable named Application to your project, which is
of type TServiceApplication.

2 A Service window appears that corresponds to a service (TService). Implement the
service by setting its properties and event handlers in the Object Inspector.

3 You can add additional services to your service application by choosing File|
New|Other, and double-click Service in the New Items dialog box. Do not add
services to an application that is not a service application. While a TService object
can be added, the application will not generate the requisite events or make the
appropriate Windows calls on behalf of the service.

4 Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

8-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

Example This service has a TServerSocket whose port is set to 80. This is the default port for
Web browsers to make requests to Web servers and for Web servers to make
responses to Web browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one server listening on any given port, so if you have a Web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a Web browser on the local machine and for the address,
type 'localhost' (with no quotes). The browser will time out eventually, but you
should now have a file called Weblogxxx.log in the C:\Temp directory.

1 To create the example, choose File|New|Other and select Service Application
from the New Items dialog box. The Service1 window appears.

2 From the Internet page of the Component palette, add a ServerSocket component
to the service window (Service1).

3 Add a private data member of type TMemoryStream to the TService1 class. The
interface section of your unit should now look like this:

interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
 ScktComp;
type
 TService1 = class(TService)
 ServerSocket1: TServerSocket;
 procedure ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
 procedure Service1Execute(Sender: TService);
 private
 { Private declarations }
 Stream: TMemoryStream; // Add this line here
 public
 function GetServiceController: PServiceController; override;
 { Public declarations }
 end;
var
 Service1: TService1;

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-7

C r e a t i n g a p p l i c a t i o n s

4 Select ServerSocket1, the component you added in step 1. In the Object Inspector,
double-click the OnClientRead event and add the following event handler:

procedure TService1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
var
 Buffer: PChar;
begin
 Buffer := nil;
while Socket.ReceiveLength > 0 do begin

Buffer := AllocMem(Socket.ReceiveLength);
try

Socket.ReceiveBuf(Buffer^, Socket.ReceiveLength);
 Stream.Write(Buffer^, StrLen(Buffer));

finally
 FreeMem(Buffer);

end;
Stream.Seek(0, soFromBeginning);
Stream.SaveToFile('c:\Temp\Weblog' + IntToStr(ServiceThread.ThreadID) + '.log');

 end;
end;

5 Finally, select Service1 by clicking in the window’s client area (but not on the
ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

procedure TService1.Service1Execute(Sender: TService);
begin
 Stream := TMemoryStream.Create;

try
 ServerSocket1.Port := 80; // WWW port
 ServerSocket1.Active := True;

while not Terminated do begin
 ServiceThread.ProcessRequests(True);
 end;

ServerSocket1.Active := False;
 finally
 Stream.Free;
 end;
end;

When writing your service application, you should be aware of:

• Service threads
• Service name properties
• Debugging service applications

Note Service applications are not available for cross-platform applications.

8-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

Service threads
Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

Example This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File|New|Other and double-click Service Application in the New Items
dialog. The Service1 window appears.

2 In the interface section of your unit, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

TSparkyThread = class(TThread)
 public
 procedure Execute; override;
 end;

3 In the implementation section of your unit, create a global variable for a
TSparkyThread instance:

var
 SparkyThread: TSparkyThread;

4 In the implementation section for the TSparkyThread Execute method (the thread
function), add the following code:

procedure TSparkyThread.Execute;
begin
 while not Terminated do
 begin
 Beep;
 Sleep(500);
 end;
end;

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-9

C r e a t i n g a p p l i c a t i o n s

5 Select the Service window (Service1), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

procedure TService1.Service1Start(Sender: TService; var Started: Boolean);
begin
 SparkyThread := TSparkyThread.Create(False);
 Started := True;
end;

6 Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

procedure TService1.Service1Continue(Sender: TService; var Continued: Boolean);
begin
 SparkyThread.Resume;
 Continued := True;
end;

7 Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

procedure TService1.Service1Pause(Sender: TService; var Paused: Boolean);
begin
 SparkyThread.Suspend;
 Paused := True;
end;

8 Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

procedure TService1.Service1Stop(Sender: TService; var Stopped: Boolean);
begin
 SparkyThread.Terminate;
 Stopped := True;
end;

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties
The VCL provides classes for creating service applications on the Windows platform
(not available for cross-platform applications). These include TService and
TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And because service
objects are derived from TComponent, they inherit the Name property. The following
sections summarize the name properties.

8-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the
service. It is nearly always the same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the
component, and is also the name of the service. For dependencies that are services,
this property is the same as the TDependency Name and DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This
often differs from the actual service name (TService.Name, TDependency.DisplayName,
TDependency.Name). Note that the DisplayName for the Dependency and the
DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual
service names. A ServiceStartName is the user name input on the Start dialog selected
from the Service Control Manager.

Debugging service applications
You can debug service applications by attaching to the service application process
when it is already running (that is, by starting the service first, and then attaching to
the debugger). To attach to the service application process, choose Run|Attach To
Process, and select the service application in the resulting dialog.

In some cases, this approach may fail, due to insufficient rights. If that happens, you
can use the Service Control Manager to enable your service to work with the
debugger:

1 First create a key called Image File Execution Options in the following registry
location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE).
To this subkey, add a value of type REG_SZ, named Debugger. Use the full path to
Delphi32.exe as the string value.

3 In the Services control panel applet, select your service, click Startup and check
Allow Service to Interact with Desktop.

On Windows NT systems, you can use another approach for debugging service
applications. However, this approach can be tricky, because it requires short time
intervals:

1 First, launch the application in the debugger. Wait a few seconds until it has
finished loading.

2 Quickly start the service from the Control Panel or from the command line:

start MyServ

You must launch the service quickly (within 15-30 seconds of application startup)
because the application will terminate if no service is launched.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-11

C r e a t i n g p a c k a g e s a n d D L L s

Creating packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in
conjunction with an executable to provide functionality to an application. You can
create DLLs in cross-platform programs. However, on Linux, DLLs (and packages)
recompile as shared objects.

DLLs and libraries should handle all exceptions to prevent the display of errors and
warnings through Windows dialogs.

The following compiler directives can be placed in library project files:

Packages are special DLLs used by Delphi applications, the IDE, or both. There are
two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running. Design-
time packages extend the functionality of the IDE.

For more information on packages, see Chapter 16, “Working with packages and
components.”

When to use packages and DLLs

For most applications, packages provide greater flexibility and are easier to create
than DLLs. However, there are several situations where DLLs would be better suited
to your projects than packages:

• Your code module will be called from non-Delphi applications.
• You are extending the functionality of a Web server.
• You are creating a code module to be used by third-party developers.
• Your project is an OLE container.

However, if your application includes VisualCLX, you must use packages instead of
DLLs. Only packages can manage the startup and shut down of the Qt shared
libraries.

Table 8.1 Compiler directives for libraries

Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could
specify {$LIBPREFIX 'dcl'} for a design-time package, or use
{$LIBPREFIX ' '} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For
example, use {$LIBSUFFIX '-2.1.3'} in something.pas to generate
something-2.1.3.bpl.

{$LIBVERSION
'string'}

Adds a second extension to the output file name after the .bpl
extension. For example, use {$LIBVERSION '2.1.3'} in something.pas to
generate something.bpl.2.1.3.

8-12 D e v e l o p e r ’ s G u i d e

W r i t i n g d a t a b a s e a p p l i c a t i o n s

You cannot pass Delphi runtime type information (RTTI) across DLLs or from a DLL
to an executable. If you pass an object from one DLL to another DLL or an executable,
you will not be able to use the is or as operators with the passed object. This is
because the is and as operators need to compare RTTI. If you need to pass objects
from a library, use packages instead, as these can share RTTI. Similarly, you should
use packages instead of DLLs in Web Services because they are rely on Delphi RTTI.

Writing database applications
You can create advanced database applications using tools to connect to SQL servers
and databases such as Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix,
PostgreSQL, and DB2 while providing transparent data sharing between
applications.

The Component palette includes many components for accessing databases and
representing the information they contain. The database components are grouped
according to the data access mechanism and function.

Table 8.2 Database pages on the Component palette

Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for
interacting with databases. The BDE supports the broadest range of functions
and comes with the most supporting utilities including Database Desktop,
Database Explorer, SQL Monitor, and BDE Administrator. See Chapter 26,
“Using the Borland Database Engine” for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to
access database information. Many ADO drivers are available for connecting to
different database servers. ADO-based components let you integrate your
application into an ADO-based environment. See Chapter 27, “Working with
ADO components” for details.

dbExpress Cross-platform components that use dbExpress to access database information.
dbExpress drivers provide fast access to databases but need to be used with
TClientDataSet and TDataSetProvider to perform updates. See Chapter 28, “Using
unidirectional datasets” for details.

InterBase Components that access InterBase databases directly, without going through a
separate engine layer. For more information about using the InterBase
components, see the online Help.

Data Access Components that can be used with any data access mechanism such as
TClientDataSet and TDataSetProvider. See Chapter 29, “Using client datasets” for
information about client datasets. See Chapter 30, “Using provider
components”for information about providers.

Data Controls Data-aware controls that can access information from a data source. See
Chapter 20, “Using data controls” for details.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-13

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

When designing a database application, you must decide which data access
mechanism to use. Each data access mechanism differs in its range of functional
support, the ease of deployment, and the availability of drivers to support different
database servers.

See Part II, “Developing database applications,” for details on how to create both
database client applications and application servers. See “Deploying database
applications” on page 18-6 for deployment information.

Note Not all editions of Delphi include database support.

Distributing database applications

You can create distributed database applications using a coordinated set of
components. Distributed database applications can be built on a variety of
communications protocols, including DCOM, CORBA, TCP/IP, and SOAP.

For more information about building distributed database applications, see
Chapter 31, “Creating multi-tiered applications.”

Distributing database applications often requires you to distribute the Borland
Database Engine (BDE) in addition to the application files. For information on
deploying the BDE, see “Deploying database applications” on page 18-6.

Creating Web server applications
Web server applications are applications that run on servers that deliver Web content
such as HTML Web pages or XML documents over the Internet. Examples of Web
server applications include those which control access to a Web site, generate
purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following
technologies:

• Web Broker
• WebSnap
• IntraWeb
• Web Services

8-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Creating Web Broker applications

You can use Web Broker (also called NetCLX architecture) to create Web server
applications such as CGI applications or dynamic-link libraries (DLLs). These Web
server applications can contain any nonvisual component. Components on the
Internet page of the Component palette enable you to create event handlers,
programmatically construct HTML or XML documents, and transfer them to the
client.

To create a new Web server application using the Web Broker architecture, choose
File|New|Other and double-click the Web Server Application in the New Items
dialog box. Then select the Web server application type:

CGI applications use more system resources on the server, so complex applications
are better created as ISAPI, NSAPI, or Apache DLL applications. When writing cross-
platform applications, you should select CGI stand-alone or Apache Shared Module
(DLL) for Web server development. These are also the same options you see when
creating WebSnap and Web Service applications.

For more information on building Web server applications, see Chapter 33, “Creating
Internet server applications.”

Table 8.3 Web server applications

Web server
application type Description

ISAPI and NSAPI
Dynamic Link Library

ISAPI and NSAPI Web server applications are DLLs that are loaded by
the Web server. Client request information is passed to the DLL as a
structure and evaluated by TISAPIApplication. Each request message is
handled in a separate execution thread.
Selecting this type of application adds the library header of the project
files and required entries to the uses list and exports clause of the project
file.

CGI Stand-alone
executable

CGI Web server applications are console applications that receive
requests from clients on standard input, process those requests, and
sends back the results to the server on standard output to be sent to the
client.
Selecting this type of application adds the required entries to the uses
clause of the project file and adds the appropriate $APPTYPE directive
to the source.

Apache Shared
Module (DLL)

Selecting this type of application sets up your project as a DLL. Apache
Web server applications are DLLs loaded by the Web server. Information
is passed to the DLL, processed, and returned to the client by the Web
server.

Web App Debugger
stand-alone
executable

Selecting this type of application sets up an environment for developing
and testing Web server applications. Web App Debugger applications
are executable files loaded by the Web server. This type of application is
not intended for deployment.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-15

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Creating WebSnap applications

WebSnap provides a set of components and wizards for building advanced Web
servers that interact with Web browsers. WebSnap components generate HTML or
other MIME content for Web pages. WebSnap is for server-side development.

To create a new WebSnap application, select File|New|Other and select the
WebSnap tab in the New Items dialog box. Choose WebSnap Application. Then
select the Web server application type (ISAPI/NSAPI, CGI, Apache). See Table 8.3,
“Web server applications” for details.

If you want to do client-side scripting instead of server-side scripting, you can use the
InternetExpress technology. For more information on InternetExpress, see “Building
Web applications using InternetExpress” on page 31-33.

For more information on WebSnap, see Chapter 35, “Creating Web Server
applications using WebSnap.”

Creating Web Services applications

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided. You use Web Services to
produce or consume programmable services over the Internet using emerging
standards such as XML, XML Schema, SOAP (Simple Object Access Protocol), and
WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information
in a distributed environment. It uses HTTP as a communications protocol and XML
to encode remote procedure calls.

You can build servers to implement Web Services and clients that call on those
services. You can write clients for arbitrary servers to implement Web Services that
respond to SOAP messages, and servers to publish Web Services for use by arbitrary
clients.

Refer to Chapter 38, “Using Web Services” for more information on Web Services.

8-16 D e v e l o p e r ’ s G u i d e

W r i t i n g a p p l i c a t i o n s u s i n g C O M

Writing applications using COM
COM is the Component Object Model, a Windows-based distributed object
architecture designed to provide object interoperability using predefined routines
called interfaces. COM applications use objects that are implemented by a different
process or, if you use DCOM, on a separate machine. You can also use COM+,
ActiveX and Active Server Pages.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Using COM and DCOM

Various classes and wizards that make it easy to create COM, OLE, or ActiveX
applications. You can create COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms. COM also severs as the basis for other technologies such as
Automation, ActiveX controls, Active Documents, and Active Directories.

Using Delphi to create COM-based applications offers a wide range of possibilities,
from improving software design by using interfaces internally in an application, to
creating objects that can interact with other COM-based API objects on the system,
such as the Win9x Shell extensions and DirectX multimedia support. Applications
can access the interfaces of COM components that exist on the same computer as the
application or that exist on another computer on the network using a mechanism
called Distributed COM (DCOM).

For more information on COM and Active X controls, see Chapter 40, “Overview of
COM technologies,” Chapter 45, “Creating an ActiveX control,” and “Distributing a
client application as an ActiveX control” on page 31-32.

For more information on DCOM, see “Using DCOM connections” on page 31-9.

Using MTS and COM+

COM applications can be augmented with special services for managing objects in a
large distributed environment. These services include transaction services, security,
and resource management supplied by Microsoft Transaction Server (MTS) on
versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and
later).

For more information on MTS and COM+, see Chapter 46, “Creating MTS or COM+
objects” and “Using transactional data modules” on page 31-7.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-17

U s i n g d a t a m o d u l e s

Using data modules
A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules,
applet modules, and services, depending on which edition of Delphi you have. Each
type of data module serves a special purpose.

• Standard data modules are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating and editing standard data
modules” on page 8-17.

• Remote data modules form the basis of an application server in a multi-tiered
database application. They are not available in all editions. In addition to holding
the nonvisual components in the application server, remote data modules expose
the interface that clients use to communicate with the application server. For more
information about using them, see “Adding a remote data module to an
application server project” on page 8-21.

• Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 33, “Creating
Internet server applications” for more information about using Web modules.

• Applet modules form the basis of control panel applets. In addition to holding the
nonvisual controls that implement the control panel applet, they define the
properties that determine how the applet’s icon appears in the control panel and
include the events that are called when users execute the applet. For more
information about applet modules, see the online Help.

• Services encapsulate individual services in an NT service application. In addition
to holding any nonvisual controls used to implement a service, services include
the events that are called when the service is started or stopped. For more
information about services, see “Service applications” on page 8-5.

Creating and editing standard data modules

To create a standard data module for a project, choose File|New|Data Module. The
IDE opens a data module container on the desktop, displays the unit file for the new
module in the Code editor, and adds the module to the current project.

At design time, a data module looks like a standard form with a white background
and no alignment grid. As with forms, you can place nonvisual components from the
Component palette onto a module, and edit their properties in the Object Inspector.
You can resize a data module to accommodate the components you add to it.

8-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

You can also right-click a module to display a context menu for it. The following
table summarizes the context menu options for a data module.

For more information about data modules, see the online Help.

Naming a data module and its unit file
The title bar of a data module displays the module’s name. The default name for a
data module is “DataModuleN” where N is a number representing the lowest
unused unit number in a project. For example, if you start a new project, and add a
module to it before doing any other application building, the name of the module
defaults to “DataModule2.” The corresponding unit file for DataModule2 defaults to
“Unit2.”

You should rename your data modules and their corresponding unit files at design
time to make them more descriptive. You should especially rename data modules
you add to the Object Repository to avoid name conflicts with other data modules in
the Repository or in applications that use your modules.

To rename a data module:

1 Select the module.

2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the
Object Inspector no longer has focus.

Changing the name of a data module at design time changes its variable name in the
interface section of code. It also changes any use of the type name in procedure
declarations. You must manually change any references to the data module in code
you write.

To rename a unit file for a data module, select the unit file.

Table 8.4 Context menu options for data modules

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste, delete, and
select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid (Align To Grid)
or according to criteria you supply in the Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from component to
component when you press the tab key.

Creation Order Enables you to change the order that data access components are created at
start-up.

Revert to Inherited Discards changes made to a module inherited from another module in the
Object Repository, and reverts to the originally inherited module.

Add to Repository Stores a link to the data module in the Object Repository.

View as Text Displays the text representation of the data module’s properties.

Text DFM Toggles between the formats (binary or text) in which this particular form
file is saved.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-19

U s i n g d a t a m o d u l e s

Placing and naming components
You place nonvisual components in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the
Component palette, then click in the data module to place the component. You
cannot place visual controls, such as grids, on a data module. If you attempt it, you
receive an error message.

For ease of use, components are displayed with their names in a data module. When
you first place a component, the module assigns it a generic name that identifies
what kind of component it is, followed by a 1. For example, the TDataSource
component adopts the name DataSource1. This makes it easy to select specific
components whose properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of
component and what it is used for.

To change the name of a component in a data module:

1 Select the component.

2 Edit the component’s Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon
as the Name property in the Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To
access the table, you need a minimum of two data access components: a data source
component (TDataSource) and a table component (TClientDataSet). When you place
these components in your data module, the module assigns them the names
DataSource1 and ClientDataSet1. To reflect the type of component and the database
they access, CUSTOMER, you could change these names to CustomerSource and
CustomerTable.

Using component properties and events in a data module
Placing components in a data module centralizes their behavior for your entire
application. For example, you can use the properties of dataset components, such as
TClientDataSet, to control the data available to the data source components that use
those datasets. Setting the ReadOnly property to True for a dataset prevents users
from editing the data they see in a data-aware visual control on a form. You can also
invoke the Fields editor for a dataset, by double-clicking on ClientDataSet1, to restrict
the fields within a table or query that are available to a data source and therefore to
the data-aware controls on forms. The properties you set for components in a data
module apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example,
a TDataSource component has three possible events: OnDataChange, OnStateChange,
and OnUpdateData. A TClientDataSet component has over 20 potential events. You
can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

8-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

Creating business rules in a data module
Besides writing event handlers for the components in a data module, you can code
methods directly in the unit file for a data module. These methods can be applied to
the forms that use the data module as business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module.

The prototypes for the procedures and functions you write for a data module should
appear in the module’s type declaration:

type
TCustomerData = class(TDataModule)

Customers: TClientDataSet;
Orders: TClientDataSet;
ƒ

private
{ Private declarations }

public
{ Public declarations }
procedure LineItemsCalcFields(DataSet: TDataSet); { A procedure you add }

end;

var
CustomerData: TCustomerData;

The procedures and functions you write should follow in the implementation section
of the code for the module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module to the form’s uses clause. You can do this in several ways:

• In the Code editor, open the form’s unit file and add the name of the data module
to the uses clause in the interface section.

• Click the form’s unit file, choose File|Use Unit, and enter the name of the module
or pick it from the list box in the Use Unit dialog.

• For database components, in the data module click a dataset or query component
to open the Fields editor and drag any existing fields from the editor onto the
form. The IDE prompts you to confirm that you want to add the module to the
form’s uses clause, then creates controls (such as edit boxes) for the fields.

For example, if you’ve added the TClientDataSet component to your data module,
double-click it to open the Fields editor. Select a field and drag it to the form. An edit
box component appears.

Because the data source is not yet defined, Delphi adds a new data source
component, DataSource1, to the form and sets the edit box’s DataSource property to
DataSource1. The data source automatically sets its DataSet property to the dataset
component, ClientDataSet1, in the data module.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-21

U s i n g t h e O b j e c t R e p o s i t o r y

You can define the data source before you drag a field to the form by adding a
TDataSource component to the data module. Set the data source’s DataSet property to
ClientDataSet1. After you drag a field to the form, the edit box appears with its
TDataSource property already set to DataSource1. This method keeps your data access
model cleaner.

Adding a remote data module to an application server project

Some editions of Delphi allow you to add remote data modules to application server
projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks.

To add a remote data module to a project:

1 Choose File|New|Other.

2 Select the Multitier page in the New Items dialog box.

3 Double-click the Remote Data Module icon to open the Remote Data Module
wizard.

Once you add a remote data module to a project, use it just like a standard data
module.

For more information about multi-tiered database applications, see Chapter 31,
“Creating multi-tiered applications.”

Using the Object Repository
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The Repository is
maintained in DELPHI32.DRO (by default in the BIN directory), a text file that
contains references to the items that appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File|New|Other), you'll see a page tab
with the name of the current project. This page lists all the forms, dialog boxes, and
data modules in the project. You can derive a new item from an existing item and
customize it as needed.

8-22 D e v e l o p e r ’ s G u i d e

U s i n g t h e O b j e c t R e p o s i t o r y

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project|Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, the Object Repository creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.

6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools|Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the Repository, a DELPHI32.DRO file is created in
the Shared Repository directory if one doesn’t exist already.

Using an Object Repository item in a project

To access items in the Object Repository, choose File|New|Other. The New Items
dialog appears, showing all the items available. Depending on the type of item you
want to use, you have up to three options for adding the item to your project:

• Copy
• Inherit
• Use

Copying an item
Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-23

U s i n g t h e O b j e c t R e p o s i t o r y

Inheriting an item
Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template:

1 Choose File|New|Other to display the New Items dialog box.

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

The template files are copied to the specified directory, where you can modify them.
The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

• Copy the item and modify it in your current project only.

• Copy the item to the current project, modify it, then add it to the Repository under
a different name.

• Create a component, DLL, component template, or frame from the item. If you
create a component or DLL, you can share it with other developers.

8-24 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

Specifying a default project, new form, and main form

By default, when you choose File|New|Application or File|New|Form, a blank
form appears. You can change this behavior by reconfiguring the Repository:

1 Choose Tools|Repository.

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File|New|
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Enabling Help in applications
Both VCL and CLX applications support displaying Help using an object-based
mechanism that allows Help requests to be passed on to one of multiple external
Help viewers. To support this, an application must include a class that implements
the ICustomHelpViewer interface (and, optionally, one of several interfaces descended
from it), and registers itself with the global Help Manager.

VCL applications provide an instance of TWinHelpViewer, which implements all of
these interfaces and provides a link between applications and WinHelp. CLX
applications require that you provide your own implementation. On Windows, CLX
applications can use the WinHelpViewer unit provided as part of the VCL if they
bind to it statically—that is, by including that unit as part of your project instead of
linking it to the VCL package.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support.

If more than one viewer supports the keyword, as would be the case in an
application that had registered viewers for both WinHelp and HyperHelp on
Windows or Man and Info on Linux, the Help Manager can display a selection box
through which the user of the application can determine which Help viewer to
invoke. Otherwise, it displays the first responding Help system encountered.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-25

E n a b l i n g H e l p i n a p p l i c a t i o n s

Help system interfaces

The Help system allows communication between your application and Help viewers
through a series of interfaces. These interfaces are all defined in the HelpIntfs.pas,
which also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. IHelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

8-26 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

Communicating with the Help Manager

The ICustomHelpViewer provides four functions that can be used to communicate
system information with the Help Manager:

• GetViewerName
• NotifyID
• ShutDown
• SoftShutDown

The Help Manager calls through these functions in the following circumstances:

• ICustomHelpViewer.GetViewerName : String is called when the Help Manager wants
to know the name of the viewer (for example, if the application is asked to display
a list of all registered viewers). This information is returned via a string, and is
required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.

• ICustomHelpViewer.NotifyID(const ViewerID: Integer) is called immediately
following registration to provide the viewer with a unique cookie that identifies it.
This information must be stored off for later use; if the viewer shuts down on its
own (as opposed to in response to a notification from the Help Manager), it must
provide the Help Manager with the identifying cookie so that the Help Manager
can release all references to the viewer. (Failing to provide the cookie, or providing
the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

• ICustomHelpViewer.ShutDown is called by the Help Manager to notify the Help
viewer that the Manager is shutting down and that any resources the Help viewer
has allocated should be freed. It is recommended that all resource freeing be
delegated to this method.

• ICustomHelpViewer.SoftShutDown is called by the Help Manager to ask the Help
viewer to close any externally visible manifestations of the Help system (for
example, windows displaying Help information) without unloading the viewer.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. IHelpManager allows the Help viewer to communicate four things:

• A request for the window handle of the currently active control.

• A request for the name of the Help file which the Help Manager believes should
contain help for the currently active control.

• A request for the path to that Help file.

• A notification that the Help viewer is shutting itself down in response to
something other than a request from the Help Manager that it do so.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-27

E n a b l i n g H e l p i n a p p l i c a t i o n s

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the
handle of the currently active control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it needs to know the
name of the Help file which the currently active control believes contains its Help.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is
disconnecting. It should never be called in response to a request through
ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager of
unexpected disconnects.

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular
string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier.

Note Numeric Help contexts are the default form of Help requests in applications running
under Windows, which use the WinHelp system; while CLX supports them, they are
not recommended for use in CLX applications because most Linux Help systems do
not understand them.

ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

• UnderstandsKeyword
• GetHelpStrings
• ShowHelp

ICustomHelpViewer.UnderstandsKeyword(const HelpString: String): Integer

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the IDE, the HyperHelp viewer
maintains its own index and searches it. If the viewer does not support help on this
keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

ICustomHelpViewer.GetHelpStrings(const HelpString: String): TStringList

8-28 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

is called by the Help Manager if more than one viewer can provide Help on a topic.
The viewer is expected to return a TStringList, which is freed by the Help Manager.
The strings in the returned list should map to the pages available for that keyword,
but the characteristics of that mapping can be determined by the viewer. In the case
of the WinHelp viewer on Windows and the HyperHelp viewer on Linux, the string
list always contains exactly one entry. HyperHelp provides its own indexing, and
duplicating that elsewhere would be pointless duplication. In the case of the Man
page viewer (Linux), the string list consists of multiple strings, one for each section of
the manual which contains a page for that keyword.

ICustomHelpViewer.ShowHelp(const HelpString: String)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless the UnderstandsKeyword method is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

• CanShowTableOfContents
• ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling
ICustomHelpViewer.CanShowTableOfContents : Boolean and then invokes a particular
Help viewer by calling ICustomHelpViewer.ShowTableOfContents.

It is reasonable for a particular viewer to refuse to allow requests to support a table of
contents. The Man page viewer does this, for example, because the concept of a table
of contents does not map well to the way Man pages work; the HyperHelp viewer
supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to WinHelp on Windows and HyperHelp on Linux. It is not
reasonable, however, for an implementation of ICustomHelpViewer to respond to
queries through CanShowTableOfContents with the answer True, and then ignore
requests through ShowTableOfContents.

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-29

E n a b l i n g H e l p i n a p p l i c a t i o n s

Applications can talk to systems requiring context-based Help by extending the
object that implements ICustomHelpViewer to also implement IExtendedHelpViewer.
IExtendedHelpViewer also provides support for talking to Help systems that allow you
to jump directly to high-level topics instead of using keyword searches. The built-in
WinHelp viewer does this for you automatically.

IExtendedHelpViewer exposes four functions. Two of them—UnderstandsContext and
DisplayHelpByContext—are used to support context-based Help; the other two—
UnderstandsTopic and DisplayTopic—are used to support topics.

When an application user presses F1, the Help Manager calls

IExtendedHelpViewer.UnderstandsContext(const ContextID: Integer;
const HelpFileName: String): Boolean

and the currently activated control supports context-based, rather than keyword-
based Help. As with ICustomHelpViewer.UnderstandsKeyword, the Help Manager
queries all registered Help viewers iteratively. Unlike the case with
ICustomHelpViewer.UnderstandsKeyword, however, if more than one viewer supports
a specified context, the first registered viewer with support for a given context is
invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext(const ContextID: Integer;
const HelpFileName: String)

after it has polled the registered Help viewers.

The topic support functions work the same way:

IExtendedHelpViewer.UnderstandsTopic(const Topic: String): Boolean

is used to poll the Help viewers asking if they support a topic;

IExtendedHelpViewer.DisplayTopic(const Topic: String)

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

IHelpSelector is a companion to ICustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

8-30 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the TStringList) that represents the selected string; the
TStringList is then freed by the Help Manager.

Note The Help Manager may get confused if the strings are rearranged; it is recommended
that implementors of IHelpSelector refrain from doing this. The Help system only
supports one HelpSelector; when new selectors are registered, any previously
existing selectors are disconnected.

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to:

• Register the Help viewer.
• Register the Help Selector.

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable
and pass it to the function RegisterViewer. RegisterViewer is a flat function exported by
the HelpIntfs unit, which takes as an argument an ICustomHelpViewer and returns an
IHelpManager. The IHelpManager should be stored for future use.

Registering Help selectors
The unit that contains the object implementation must use either Forms in the VCL or
QForms in CLX. An instance of the object must be declared in the var section of the
implementing unit.

The initialization section of the implementing unit must register the Help selector
through the HelpSystem property of the global Application object:

Application.HelpSystem.AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-31

U s i n g H e l p i n a V C L a p p l i c a t i o n

Using Help in a VCL application
The following sections explain how to use Help within a VCL application.

• How TApplication processes VCL Help~
• How VCL controls process Help
• Calling a Help system directly~
• Using IHelpSystem

How TApplication processes VCL Help

TApplication in the VCL provides four methods that are accessible from application
code:

All four functions take the data passed to them and forward it through a data
member of TApplication, which represents the Help system. That data member is
directly accessible through the property HelpSystem.

How VCL controls process Help

All VCL controls that derive from TControl expose several properties that are used by
the Help system: HelpType, HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if
the control’s designer expects help to be provided via keyword-based Help or
context-based Help. If the HelpType is set to htKeyword, then the Help system expects
the control to use keyword-based Help, and the Help system only looks at the
contents of the HelpKeyword property. Conversely, if the HelpType is set to htContext,
the Help system expects the control to use context-based Help and only looks at the
contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be
called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of Help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWinControl calls InvokeHelp.

Table 8.5 Help methods in TApplication

Method Description

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to WinHelp.
Help requests forwarded through this mechanism are passed only to
implementations of IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.

HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.

HelpJump Requests the display of a particular topic.

8-32 D e v e l o p e r ’ s G u i d e

U s i n g H e l p i n a C L X a p p l i c a t i o n

Using Help in a CLX application
The following sections explain how to use Help within a CLX application.

• How TApplication processes CLX Help~
• How CLX controls process Help
• Calling a Help system directly~
• Using IHelpSystem

How TApplication processes CLX Help

TApplication in a CLX application provides two methods that are accessible from
application code:

• ContextHelp, which invokes the Help system with a request for context-based Help

• KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

How CLX controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 8-33

C a l l i n g a H e l p s y s t e m d i r e c t l y

Calling a Help system directly
For additional Help system functionality not provided by VCL or CLX applications,
TApplication provides a read-only property that allows direct access to the Help
system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but
one interface is used to allow the application to talk to the Help Manager, and one is
used to allow the Help viewers to talk to the Help Manager.

Using IHelpSystem
IHelpSystem allows an application to do three things:

• Provides path information to the Help Manager.
• Provides a new Help selector.
• Asks the Help Manager to display Help.

Providing path information is important because the Help Manager is platform-
independent and Help system-independent and so is not able to ascertain the
location of Help files. If an application expects Help to be provided by an external
Help system that is not able to ascertain file locations itself, it must provide this
information through the IHelpSystem’s ProvideHelpPath method, which allows the
information to become available through the IHelpManager’s GetHelpPath method.
(This information propagates outward only if the Help viewer asks for it.)

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide Help for the same keyword.
For more information, see the section “Implementing IHelpSelector” on page 8-29.

IHelpSystem exports four procedures and one function to request the Help Manager
to display Help:

• ShowHelp
• ShowContextHelp
• ShowTopicHelp
• ShowTableOfContents
• Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX
application; it allows processing of WM_HELP messages that cannot be mapped
directly onto requests for keyword-based, context-based, or topic-based Help. The
other methods each take two arguments: the keyword, context ID, or topic for which
help is being requested, and the Help file in which it is expected that help can be
found.

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

8-34 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e I D E H e l p s y s t e m

Customizing the IDE Help system
The IDE supports multiple Help viewers in exactly the same way that a VCL or CLX
application does: it delegates Help requests to the Help Manager, which forwards
them to registered Help viewers. The IDE makes use of the same WinHelpViewer
that the VCL uses.

The IDE comes with two Help viewers installed: the HyperHelp viewer, which
allows Help requests to be forwarded to HyperHelp, an external WinHelp emulator
under which the Kylix Help files are viewed, and the Man page viewer, which allows
you to access the Man system installed on most Unix machines. Because it is
necessary for Kylix Help to work, the HyperHelp viewer may not be removed; the
Man page viewer ships in a separate package whose source is available in the
examples directory.

To install a new Help viewer in the IDE, you do exactly what you would do in a VCL
or CLX application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE:

1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the initialization section of the unit, make sure that the instance is passed to the
RegisterHelpViewer function.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-1

C h a p t e r

9
Chapter9Developing the application

user interface
When you open the IDE or create a new project, a blank form is displayed on the
screen. You design your application’s user interface (UI) by placing and arranging
visual components, such as windows, menus, and dialog boxes, from the Component
palette onto the form.

Once a visual component is on the form, you can adjust its position, size, and other
design-time properties, and code its event handlers. The form takes care of the
underlying programming details.

The following sections describe some of the major interface tasks, such as working
with forms, creating component templates, adding dialog boxes, and organizing
actions for menus and toolbars.

Controlling application behavior
TApplication, TScreen, and TForm are the classes that form the backbone of all
applications by controlling the behavior of your project. The TApplication class forms
the foundation of an application by providing properties and methods that
encapsulate the behavior of a standard program. TScreen is used at runtime to keep
track of forms and data modules that have been loaded as well as maintaining
system-specific information such as screen resolution and available display fonts.
Instances of the TForm class are the building blocks of your application’s user
interface. The windows and dialog boxes in your application are based on TForm.

9-2 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a p p l i c a t i o n b e h a v i o r

Working at the application level

The global variable Application, of type TApplication, is in every VCL- or CLX-based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
handles how you call a Help file from the menu of your program. Understanding
how TApplication works is more important to a component writer than to developers
of stand-alone applications, but you should set the options that Application handles in
the Project|Options Application page when you create a project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the OnIdle event lets you perform background processes when the
application is not busy, the OnMessage event lets you intercept Windows messages
(on Windows only), the OnEvent event lets you intercept events, and so on. Although
you can’t use the IDE to examine the properties and events of the global Application
variable, another component, TApplicationEvents, intercepts the events and lets you
supply event-handlers using the IDE.

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying:

• The look of the cursor.
• The size of the window in which your application is running.
• A list of fonts available to the screen device.
• Multiple screen behavior (Windows only).

If your Windows application runs on multiple monitors, Screen maintains a list of
monitors and their dimensions so that you can effectively manage the layout of your
user interface.

For CLX applications, the default behavior is that applications create a screen
component based on information about the current screen device and assign it to
Screen.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-3

S e t t i n g u p f o r m s

Setting up forms
TForm is the key class for creating GUI applications. When you open a default project
or create a new project, a form appears on which you can begin your UI design.

Using the main form

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

To change the project main form:

1 Choose Project|Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Hiding the main form

You can prevent the main form from appearing when your application starts by
using the global Application variable (described in , “Working at the application
level,” on page 9-2).

To hide the main form at startup:

1 Choose Project|View Source to display the main project file.

2 Add the following code after the call to Application.CreateForm and before the call
to Application.Run.

Application.ShowMainForm := False;
Form1.Visible := False; { the name of your main form may differ }

Note You can set the form’s Visible property to False using the Object Inspector at design
time rather than setting it at runtime as in the previous example.

9-4 D e v e l o p e r ’ s G u i d e

S e t t i n g u p f o r m s

Adding forms

To add a form to your project, select File|New|Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View|Project
Manager) and you can display a list of the forms alone by choosing View|Forms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you’ll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.

2 Choose File|Use Unit.

3 Select the name of the form unit for the form to be referenced.

4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a
reference to the other’s form unit, meaning that the linked form and its components
are now in scope for the linking form.

Avoiding circular unit references
When two forms must reference each other, it’s possible to cause a “Circular
reference” error when you compile your program. To avoid such an error, do one of
the following:

• Place both uses clauses, with the unit identifiers, in the implementation parts of
the respective unit files. (This is what the File|Use Unit command does.)

• Place one uses clause in an interface part and the other in an implementation
part. (You rarely need to place another form’s unit identifier in this unit’s interface
part.)

Do not place both uses clauses in the interface parts of their respective unit files. This
generates the “Circular reference” error at compile time.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-5

S e t t i n g u p f o r m s

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight, MaxWidth,
MaxHeight: Integer) of object;

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

9-6 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

Using forms
When you create a form from the IDE, Delphi automatically creates the form in
memory by including code in the main entry point of your application function.
Usually, this is the desired behavior and you don’t have to do anything to change it.
That is, the main window persists through the duration of your program, so you
would likely not change the default behavior when creating the form for your main
window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user
input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, Delphi automatically creates the application’s main form in memory by
including the following code in the application’s main entry point:

Application.CreateForm(TForm1, Form1);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any unit that includes the form’s unit in its uses clause can access the
form via this variable.

All forms created in this way in the project unit appear when the program is invoked
and exist in memory for the duration of the application.

Displaying an auto-created form
If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

procedure TMainForm.Button1Click(Sender: TObject);
begin

ResultsForm.ShowModal;
end;

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-7

U s i n g f o r m s

Creating forms dynamically
You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:

1 Select the File|New|Form from the main menu to display the new form.

2 Remove the form from the Auto-create forms list of the Project|Options|Forms
page.

This removes the form’s invocation at startup. As an alternative, you can manually
remove the following line from program’s main entry point:

Application.CreateForm(TResultsForm, ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

procedure TMainForm.Button1Click(Sender: TObject);
begin

ResultsForm := TResultForm.Create(self);
try

ResultsForm.ShowModal;
finally

ResultsForm.Free;
end;

end;

In the above example, note the use of try..finally. Putting in the line ResultsForm.Free; in
the finally clause ensures that the memory for the form is freed even if the form
raises an exception.

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated if you needed to use ResultsForm elsewhere in the
application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

Note If you create a form using its constructor, be sure to check that the form is not in the
Auto-create forms list on the Project Options|Forms page. Specifically, if you create
the new form without deleting the form of the same name from the list, Delphi
creates the form at startup and this event-handler creates a new instance of the form,
overwriting the reference to the auto-created instance. The auto-created instance still
exists, but the application can no longer access it. After the event-handler terminates,
the global variable no longer points to a valid form. Any attempt to use the global
variable will likely crash the application.

9-8 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

Creating modeless forms such as windows
You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables for each instance.

Creating a form instance using a local variable
A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

procedure TMainForm.Button1Click(Sender: TObject);
var

RF:TResultForm;
begin

RF:=TResultForm.Create(self)
RF.ShowModal;
RF.Free;

end;

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is the
owner of the form being created. (The owner is the calling application object or form
object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using this new constructor. The example form class below shows an
additional constructor, with the extra argument whichButton. This new constructor is
added to the form class manually.

TResultsForm = class(TForm)
ResultsLabel: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-9

U s i n g f o r m s

private
public

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin

inherited Create(Owner);
case whichButton of

1: ResultsLabel.Caption := 'You picked the first button.';
2: ResultsLabel.Caption := 'You picked the second button.';
3: ResultsLabel.Caption := 'You picked the third button.';

end;
end;

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var

rf: TResultsForm;
begin

rf := TResultsForm.CreateWithButton(2, self);
rf.ShowModal;
rf.Free;

end;

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms
You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red,” “Green,” “Blue,” and so on). The selected
color name string in ColorListBox is automatically stored in a property called

9-10 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
procedure ColorListBoxClick(Sender: TObject);

private
FColor:String;

public
property CurColor:String read FColor write FColor;

end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the
actual value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var

Index: Integer;
begin

Index := ColorListBox.ItemIndex;
if Index >= 0 then

CurrentColor := ColorListBox.Items[Index]
else

CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

procedure TResultForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

if Assigned(ColorForm) then
begin

MainColor := ColorForm.CurrentColor;
{do something with the string MainColor}

end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It
then gets the value of ColorForm’s CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could
get the current color without using the CurrentColor property (for example, MainColor
:= ColorForm.GetColor;). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do
MainColor := Items[ItemIndex];

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-11

U s i n g f o r m s

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms
Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is when form A launches modal form B. When
form B is closed, form A needs to know what the user did with form B to decide how
to proceed with the processing of form A. If form B is still in memory, it can be
queried through properties or member functions just as in the modeless forms
example above. But how do you handle situations where form B is deleted from
memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

TColorForm = class(TForm)
ColorListBox:TListBox;
SelectButton: TButton;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure SelectButtonClick(Sender: TObject);

private
FColor: Pointer;

public
constructor CreateWithColor(Value: Pointer; Owner: TComponent);

end;

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a Pointer
argument. Presumably, this Pointer points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin

FColor := Value;
String(FColor^) := '';

end;

The constructor saves the pointer to a private data member FColor and initializes the
string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 9-6.

9-12 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin

with ColorListBox do
if ItemIndex >= 0 then

String(FColor^) := ColorListBox.Items[ItemIndex];
end;
Close;

end;

Notice that the event handler stores the selected color name in the string referenced
by the pointer that was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to
an existing string. For example, assume ColorForm was instantiated by a form called
ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;
begin

GetColor(Addr(MainColor));
if MainColor <> '' then

{do something with the MainColor string}
else

{do something else because no color was picked}
end;

procedure GetColor(PColor: Pointer);
begin

ColorForm := TColorForm.CreateWithColor(PColor, Self);
ColorForm.ShowModal;
ColorForm.Free;

end;

UpdateButtonClick creates a String called MainColor. The address of MainColor is
passed to the GetColor function which creates ColorForm, passing the pointer to
MainColor as an argument to the constructor. As soon as ColorForm is closed it is
deleted, but the color name that was selected is still preserved in MainColor,
assuming that a color was selected. Otherwise, MainColor contains an empty string
which is a clear indication that the user exited ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having MainColor default
to an empty string).

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-13

R e u s i n g c o m p o n e n t s a n d g r o u p s o f c o m p o n e n t s

Reusing components and groups of components
You can save and reuse work you’ve done with components using several tools:

• Configure and save groups of components in component templates. See “Creating
and using component templates” on page 9-13.

• Save forms, data modules, and projects in the Object Repository. The Repository
gives you a central database of reusable elements and lets you use form
inheritance to propagate changes. See “Using the Object Repository” on page 8-21.

• Save frames on the Component palette or in the Repository. Frames use form
inheritance and can be embedded into forms or other frames. See “Working with
frames” on page 9-14.

• Create a custom component, the most complicated but most flexible way of reusing
code. See Chapter 1, “Overview of component creation,” of the Component Writer’s
Guide.

Creating and using component templates
You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component|Create Component Template.

4 Specify a name for the component template in the Component Template
Information edit box. The default proposal is the component type of the first
component selected in step 2 followed by the word “Template.” For example, if
you select a label and then an edit box, the proposed name will be
“TLabelTemplate.” You can change this name, but be careful not to duplicate
existing component names.

9-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

5 In the Palette page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Next to Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component|Configure
Palette.

Working with frames
A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Creating frames

To create an empty frame, choose File|New|Frame, or choose File|New|Other and
double-click Frame. You can then drop components (including other frames) onto
your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File|New|
Application, close the new form and unit without saving them, then choose File|
New|Frame and save the project.

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-15

W o r k i n g w i t h f r a m e s

At design time, you can display any frame included in the current project by
choosing View|Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

Adding frames to the Component palette

Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click the frame, and
choose Add to Palette. When the Component Template Information dialog opens,
select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

• Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

• Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, Delphi declares a new class
that descends from the frame you selected. (Similarly, when you add a new form to a
project, Delphi declares a new class that descends from TForm.) This means that
changes made later to the original (ancestor) frame propagate to the embedded
frame, but changes to the embedded frame do not propagate backward to the
ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

9-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

Figure 9.1 A frame with data-aware controls and a data source component

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage.Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

• Add the frame to the Object Repository.
• Distribute the frame’s unit (.pas) and form (.dfm or .xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository. For more information, see
“Using the Object Repository” on page 8-21.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it,
they will have to open it as part of a project.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-17

D e v e l o p i n g d i a l o g b o x e s

Developing dialog boxes
The dialog box components on the Dialogs page of the Component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening, saving, and printing files. Dialog boxes
display and/or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns True; if the user chooses Cancel to escape from the dialog box without
making or saving changes, Execute returns False.

Note For CLX applications, you can use the dialogs provided in the QDialogs unit. For
operating systems that have native dialog box types for common tasks, such as for
opening or saving a file or for changing font or color, you can use the UseNativeDialog
property. Set UseNativeDialog to True if your application will run in such an
environment, and if you want it to use the native dialogs instead of the Qt dialogs.

Using open dialog boxes

One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code can be placed in an Action and linked to the Action property of a
TMainMenu subitem or be placed in the subitem’s OnClick event:

if OpenDialog1.Execute then
filename := OpenDialog1.FileName;

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

9-18 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

Organizing actions for toolbars and menus
Several features simplify the work of creating, customizing, and maintaining menus
and toolbars. These features allow you to organize lists of actions that users of your
application can initiate by pressing a button on a toolbar, choosing a command on a
menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example,
the Cut, Copy, and Paste commands often appear on both an Edit menu and on a
toolbar. You only need to add the action once to use it in multiple UI elements in
your application.

On the Windows platform, tools are provided to make it easy to define and group
actions, create different layouts, and customize menus at design time or runtime.
These tools are known collectively as ActionBand tools, and the menus and toolbars
you create with them are known as action bands. In general, you can create an
ActionBand user interface as follows:

• Build the action list to create a set of actions that will be available for your
application (use the Action Manager, TActionManager)

• Add the user interface elements to the application (use ActionBand components
such as TActionMainMenuBar and TActionToolBar)

• Drag-and-drop actions from the Action Manager onto the user interface elements

The following table defines the terminology related to setting up menus and toolbars:

Table 9.1 Action setup terminology

Term Definition

Action A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use in
your applications as is. For example, file operations such as File Open, File
SaveAs, File Run, and File Exit are included along with many others for editing,
formatting, searches, help, dialogs, and window actions. You can also program
custom actions and access them using action lists and the Action Manager.

Action band A container for a set of actions associated with a customizable menu or toolbar.
The ActionBand components for main menus and toolbars
(TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar. For
example, one of the standard action categories is Search which includes Find,
FindFirst, FindNext, and Replace actions all at once.

Action classes Classes that perform the actions used in your application. All of the standard
actions are defined in action classes such as TEditCopy, TEditCut, and
TEditUndo. You can use these classes by dragging and dropping them from the
Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification to
initiate an action. When the client receives a user command (such as a mouse
click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to
something a user does.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-19

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

If you are doing cross-platform development, refer to “Using action lists” on
page 9-26.

What is an action?

As you are developing your application, you can create a set of actions that you can
use on various UI elements. You can organize them into categories that can be
dropped onto a menu as a set (for example, Cut, Copy, and Paste) or one at a time
(for example, Tools|Customize).

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item. You can create a repertoire
of actions that are available to your application through menus, through buttons,
through toolbars, context menus, and so on.

Actions are associated with other components:

• Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenuItem,
TButton, TCheckBox, TRadioButton, and so on). Actions also reside on ActionBand
components such as TActionMainMenuBar and TActionToolBar. When the client
receives a user command (such as a mouse click), it initiates an associated action.
Typically, a client’s OnClick event is associated with its action’s OnExecute event.

• Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

Action Manager Groups and organizes logical sets of actions that can be reused on ActionBand
components. See TActionManager.

Menu Lists commands that the user of the application can execute by clicking on
them. You can create menus by using the ActionBand menu class
TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a control,
such as a memo or a data control. Not all actions require a target. For example,
the standard help actions ignore the target and simply launch the help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the program
to perform some action, such as printing the current document. You can create
toolbars by using the ActionBand toolbar component TActionToolBar, or by
using the cross-platform component TToolBar.

Table 9.1 Action setup terminology (continued)

Term Definition

9-20 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to False), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action
List editor (displayed by double-clicking an action list object, TActionList). These
actions are later connected to client controls.

Setting up action bands

Because actions do not maintain any “layout” (either appearance or positional)
information, Delphi provides action bands which are capable of storing this data.
Action bands provide a mechanism that allows you to specify layout information and
a set of controls. You can render actions as UI elements such as toolbars and menus.

You organize sets of actions using the Action Manager (TActionManager). You can
use standard actions provided or create new actions of your own.

You then create the action bands:

• Use TActionMainMenuBar to create a main menu.
• Use TActionToolBar to create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag
and drop items from the Action Manager editor onto the action band at design time.
At runtime, application users can also customize the application’s menus or toolbars
using a dialog box similar to the Action Manager editor.

Creating toolbars and menus

Note This section describes the recommended method for creating menus and toolbars in
Windows applications. For cross-platform development, you need to use TToolBar
and the menu components, such as TMainMenu, organizing them using action lists
(TActionList). See “Setting up action lists” on page 9-26.

You use the Action Manager to automatically generate toolbars and main menus
based on the actions contained in your application. The Action Manager manages
standard actions and any custom actions that you have written. You then create UI
elements based on these actions and use action bands to render the actions items as
either menu items or as buttons on a toolbar.

The general procedure for creating menus, toolbars, and other action bands involves
these steps:

• Drop an Action Manager onto a form.

• Add actions to the Action Manager, which organizes them into appropriate action
lists.

• Create the action bands (that is, the menu or the toolbar) for the user interface.

• Drag and drop the actions into the application interface.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-21

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:

1 From the Additional page of the Component palette, drop an Action Manager
component (TActionManager) onto the form where you want to create the toolbar
or menu.

2 If you want images on the menu or toolbar, drop an ImageList component from
the Win32 page of the Component palette onto a form. (You need to add the
images you want to use to the ImageList or use the one provided.)

3 From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager: with focus on the Action Manager
and in the Object Inspector, select the name of the ImageList from the Images
property.

5 Add actions to the Action Manager editor’s action pane:

• Double-click the Action Manager to display the Action Manager editor.

• Click the drop-down arrow next to the New Action button (the leftmost button
at the top right corner of the Actions tab, as shown in Figure 9.2) and select New
Action or New Standard Action. A tree view is displayed. Add one or more
actions or categories of actions to the Action Manager’s actions pane. The
Action Manager adds the actions to its action lists.

Figure 9.2 Action Manager editor

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar you are designing.

New Action button &
drop-down button.

9-22 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

To add user-defined actions, create a new TAction by pressing the New Action button
and writing an event handler that defines how it will respond when fired. See “What
happens when an action fires” on page 9-27 for details. Once you’ve defined the
actions, you can drag and drop them onto menus or toolbars like the standard
actions.

Adding color, patterns, or pictures to menus, buttons, and toolbars
You can use the Background and BackgroundLayout properties to specify a color,
pattern, or bitmap to use on a menu item or button. These properties also let you set
up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If
you want to set the background of the items in a menu, in the form designer click on
the menu item that contains the items. For example, selecting File lets you change the
background of items appearing on the File menu. You can assign a color, pattern, or
bitmap in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the
element. Colors or images can be placed behind the caption normally, stretched to fit
the item area, or tiled in small squares to cover the area.

Items with normal (blNormal), stretched (blStretch), or tiled (blTile) backgrounds are
rendered with a transparent background. If you create a banner, the full image is
placed on the left (blLeftBanner) or the right (blRightBanner) of the item. You need to
make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar),
select the action band and choose the TActionClientBar through the action band
collection editor. You can set Background and BackgroundLayout properties to specify a
color, pattern, or bitmap to use on the entire toolbar or menu.

Adding icons to menus and toolbars
You can add icons next to menu items or replace captions on toolbars with icons. You
organize bitmaps or icons using an ImageList component.

1 Drop an ImageList component from the Win32 page of the Component palette onto
a form.

2 Add the images you want to use to the image list: Double-click the ImageList icon.
Click Add and navigate to the images you want to use and click OK when done.
Some sample images are included in Program Files\Common Files\Borland
Shared\Images. (The buttons images include two views of each for active and
inactive buttons.)

3 From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the image list to the Action Manager. First, set the focus on the Action
Manager. Next, in the Object Inspector, select the name of the image list from the
Images property, such as ImageList1.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-23

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

5 Use the Action Manager editor to add actions to the Action Manager. You can
associate an image with an action by setting its ImageIndex property to its number
in the image list.

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar.

7 For toolbars where you only want to display the icon and no caption: select the
Toolbar action band and double-click its Items property. In the collection editor,
you can select one or more items and set their Caption properties.

8 The images automatically appear on the menu or toolbar.

Selecting menu and toolbar styles
Just as you can add different colors and icons to individual menus and toolbars, you
can select different menu and toolbar styles to give your application a comprehensive
look and feel. In addition to the standard style, your application can take on the look
of Windows XP, Encarta™, or a custom presentation using a coordinated color
scheme. To give your application a coherent look and feel, the IDE uses colormaps.

A colormap can be simple, merely adding the appropriate colors to existing menus
and toolbars. Or, a colormap can be complex, altering numerous subtle details of a
menu’s or toolbar’s look and feel, including the smallest button edges or menu
shadows. The XP colormap, for example, has numerous subtle refinements for menu
and toolbar classes. The IDE handles the details for you, automatically using the
appropriate colormaps.

By default, the component library uses the XP style. To centrally select an alternate
style for all your application’s menus and toolbars, use the Style property on the
ActionManager component.

1 From the Additional page of the Component palette, drop an ActionManager
component onto a form.

2 In the Object Inspector, select the Style property. You can choose from a number of
different styles.

3 Once you’ve selected a style, your application’s menus and toolbars will take on
the look of the new colormap.

You can customize the look and feel of a style using colormap components. To
customize the look and feel of a colormap:

1 From the Additional page of the Component palette, drop the appropriate
colormap component onto a form (for example, XPColorMap or StandardColorMap).
In the Object Inspector, you will see numerous properties to adjust appearance,
many with drop downs from which you can select alternate values.

2 Change each ToolBar or menu’s ColorMap property to point to the colormap object
that you dropped on the form.

3 In the Object Inspector, adjust the colormap’s properties to change the appearance
of your toolbars and menus as desired.

9-24 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

Note Be careful when customizing a colormap. When you select a new, alternate colormap,
your old settings will be lost. You may want to save a copy of your application if you
want to experiment with alternate settings and possibly return to a previous
customization.

Creating dynamic menus
Dynamic menus and toolbars allow users to modify the application in various ways
at run time. Some examples of dynamic usage include customizing the appearance of
toolbars and menus, hiding unused items, and responding to most recently used lists
(MRUs).

Creating toolbars and menus that users can customize
You can use action bands with the Action Manager to create customizable toolbars
and menus. At runtime, users of your application can customize the toolbars and
menus (action bands) in the application user interface using a customization dialog
similar to the Action Manager editor.

To allow the user of your application to customize an action band in your
application:

1 Drop an Action Manager component onto a form.

2 Drop your action band components (TActionMainMenuBar, TActionToolBar).

3 Double-click the Action Manager to display the Action Manager editor:

• Add the actions you want to use in your application. Also add the Customize
action, which appears at the bottom of the standard actions list.

• Drop a TCustomizeDlg component from the Additional tab onto the form, and
connect it to the Action Manager using its ActionManager property. You
specify a filename for where to stream customizations made by users.

• Drag and drop the actions onto the action band components. (Make sure you
add the Customize action to the toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command
that displays a customization dialog box similar to the Action Manager editor. They
can drag and drop menu items and create toolbars using the same actions you
supplied in the Action Manager.

Hiding unused items and categories in action bands
One benefit of using ActionBands is that unused items and categories can be hidden
from the user. Over time, the action bands become customized for the application
users, showing only the items that they use and hiding the rest from view. Hidden
items can become visible again when the user presses a drop-down button. Also, the
user can restore the visibility of all action band items by resetting the usage statistics
from the customization dialog. Item hiding is the default behavior of action bands,
but that behavior can be changed to prevent hiding of individual items, all the items

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-25

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

in a particular collection (like the File menu), or all of the items in a given action
band.

The action manager keeps track of the number of times an action has been called by
the user, which is stored in the associated TActionClientItem’s UsageCount field. The
action manager also records the number of times the application has been run, which
we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of
sessions the item can go unused before it becomes hidden, which is then compared
with the difference between the current session number and the session number of
the last use of the item. If that difference is greater than the number determined in
PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown
in the table below:

It is possible to disable item hiding at design time. To prevent a specific action (and
all the collections containing it) from becoming hidden, find its TActionClientItem
object and set its UsageCount to -1. To prevent hiding for an entire collection of items,
such as the File menu or even the main menu bar, find the TActionClients object
associated with the collection and set its HideUnused property to False.

Creating most recently used (MRU) lists
A most recently used list (MRU) reflects the user’s most recently accessed files in a
specific application. Using action bands, you can code MRU lists in your
applications.

When building MRUs for your applications, it is important not to hard code
references to specific numerical indexes into the Action Manager’s ActionBars
property. At runtime, the user may change the order of items or even delete them
from the action bands, which in turn will change the numerical ordering of the index.
Instead of referring to index numbering, TActionManager includes methods that
facilitate finding items by action or by caption.

For more information about MRU lists, sample code, and methods for finding actions
in lists, see FindItemByAction and FindItemByCaption in the online Help.

Table 9.2 Default values of the action manager’s PrioritySchedule property

Number of sessions in which
an action band item was used

Number of sessions an item will
remain unhidden after its last use

0, 1 3

2 6

3 9

4, 5 12

6-8 17

9-13 23

14-24 29

25 or more 31

9-26 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Using action lists
Note The contents of this section apply to setting up toolbars and menus for cross-platform

development. For Windows development you can also use the methods described
here. However, using action bands instead is simpler and offers more options. The
action lists will be handled automatically by the Action Manager. See “Organizing
actions for toolbars and menus” on page 9-18 for information on using action bands
and the Action Manager.

Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:

• Create the action list.
• Add actions to the action list.
• Set properties on the actions.
• Attach clients to the action.

Here are the steps in more detail:

1 Drop a TActionList object onto your form or data module. (ActionList is on the
Standard page of the Component palette.)

2 Double-click the TActionList object to display the Action List editor.

a Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

b The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Action Classes dialog box. Select all the
standard actions you want to add to the action list and click OK.

or

c Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, ImageIndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-27

U s i n g a c t i o n l i s t s

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 9-27 for details.

5 Attach the actions in the action list to the clients that require them:

• Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

• Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you’ll need to
understand more about what happens when the action is fired.

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events
When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates
the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

procedure TForm1.Action1Execute(Sender: TObject);
begin

{ Toggle Toolbar1’s visibility }
ToolBar1.Visible := not ToolBar1.Visible;

end;

Note For general information about events and event handlers, see “Working with events
and event handlers” on page 6-3.

You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

• Action list
• Application
• Action

9-28 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

When the user clicks on a client control, Delphi calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail, Delphi
follows this dispatching sequence when looking for a way to respond to the user
action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

The action list’s event handler has a parameter called Handled, that returns False by
default. If the handler is assigned and it handles the event, it returns True, and the
processing sequence ends here. For example:

procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

Handled := True;
end;

If you don’t set Handled to True in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list’s OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns False
by default. If an event handler is assigned and handles the event, it returns True,
and the processing sequence ends here. For example:

procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin
 { Prevent execution of all actions in Application }
 Handled := True;
end;

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is
found at any level, the application next tries to find a target on which to execute the
action. When the application locates a target that the action knows how to address, it
invokes the action. See the next section for details on how the application locates a
target that can respond to a predefined action class.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-29

U s i n g a c t i o n l i s t s

How actions find their targets
“What happens when an action fires” on page 9-27 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:

1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the OnUpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnUpdate
event handler for an action that is “checked” when the toolbar is visible:

procedure TForm1.Action1Update(Sender: TObject);
begin

{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;

end;

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

9-30 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Predefined action classes

You can add predefined actions to your application by right-clicking on the Action
Manager and choosing New Standard Action. The New Standard Action Classes
dialog box is displayed listing the predefined action classes and the associated
standard actions. These are actions that are included with Delphi and they are objects
that automatically perform actions. The predefined actions are organized within the
following classes:

All of the action objects are described under the action object names in the online
Help.

Table 9.3 Action classes

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the base class for
descendants that each override the ExecuteTarget method to implement copy, cut, and
paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting options such
as bold, italic, underline, strikeout, and so on. TRichEditAction is the base class for
descendants that each override the ExecuteTarget and UpdateTarget methods to
implement formatting of the target.

Help Standard Help actions: Used with any target. THelpAction is the base class for
descendants that each override the ExecuteTarget method to pass the command onto a
Help system.

Window Standard window actions: Used with forms as targets in an MDI application.
TWindowAction is the base class for descendants that each override the ExecuteTarget
method to implement arranging, cascading, closing, tiling, and minimizing MDI child
forms.

File File actions: Used with operations on files such as File Open, File Run, or File Exit.

Search Search actions: Used with search options. TSearchAction implements the common
behavior for actions that display a modeless dialog where the user can enter a search
string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as the Prev and
Next buttons on a wizard.

List List control actions: Used for managing items in a list view.

Dialog Dialog actions: Used with dialog components. TDialogAction implements the common
behavior for actions that display a dialog when executed. Each descendant class
represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing, downloading, and
sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is the base class
for descendants that each override the ExecuteTarget and UpdateTarget methods to
implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are performed on
that dataset. If DataSource is nil, the currently focused data-aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically displaying the
customization dialog for action bands.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-31

U s i n g a c t i o n l i s t s

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of
objects. Then, you can use your custom actions in the same way you use predefined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of
objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);

procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

Table 9.4 Methods overriden by base classes of specific actions

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a tool button or
menu item) that is linked to the action. The HandlesTarget method lets the action
object indicate whether it is appropriate to execute at this time with the object
specified by the Target parameter as a “target”. See “How actions find their
targets” on page 9-29 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction. See
“Updating actions” on page 9-29 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in place of
OnExecute (for example, when the user selects a menu item or presses a tool
button that is linked to this action). See “What happens when an action fires” on
page 9-27 for details.

9-32 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

For example, the following code registers the standard actions with the IDE:

{ Standard action registration }

RegisterActions('', [TAction], nil);

RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);

RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Creating and managing menus
Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

• Opening the Menu Designer.
• Building menus.
• Editing menu items in the Object Inspector.
• Using the Menu Designer context menu.
• Using menu templates.
• Saving a menu as a template.
• Adding images to menu items.

Figure 9.3 Menu terminology

For information about hooking up menu items to the code that executes when they
are selected, see “Associating menu events with event handlers” on page 6-6.

Accelerator key

Separator bar

Menu items on the menu bar

Menu items in a menu list

Keyboard shortcut

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-33

C r e a t i n g a n d m a n a g i n g m e n u s

Opening the Menu Designer

You design menus for your application using the Menu Designer. Before you can
start using the Menu Designer, first add either a TMainMenu or TPopupMenu
component to your form. Both menu components are located on the Standard page of
the Component palette.

Figure 9.4 MainMenu and PopupMenu components

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:

• Double-click the menu component.

or

• From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Figure 9.5 Menu Designer for a main menu

MainMenu component

PopupMenu component

Placeholder for first
menu item

9-34 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 9-41.

Naming menus
As with all components, when you add a menu component to the form, the form
gives it a default name; for example, MainMenu1. You can give the menu a more
meaningful name that follows language naming conventions.

he menu name is added to the form’s type declaration, and the menu name then
appears in the Component list.

Naming the menu items
In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

• Directly type the value for the Name property.

• Type the value for the Caption property first, and let Delphi derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, Delphi
assigns the menu item a Name property of File1. If you fill in the Name property
before filling in the Caption property, Delphi leaves the Caption property blank
until you type a value.

Note If you enter characters in the Caption property that are not valid for Delphi
identifiers, Delphi modifies the Name property accordingly. For example, if you
want the caption to start with a number, Delphi precedes the number with a
character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

Table 9.5 Sample captions and their derived names

Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding preceding
letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of caption
with no standard characters

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-35

C r e a t i n g a n d m a n a g i n g m e n u s

As with the menu component, Delphi adds any menu item names to the form’s type
declaration, and those names then appear in the Component list.

Adding, inserting, and deleting menu items
The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,

1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.

The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You’ll see that Delphi has filled in the Name property based
on the value you entered for the caption. (See “Naming the menu items” on
page 9-34.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.

2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.

2 Press Del.

Note You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

9-36 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 9.6 Adding menu items to a main menu

Adding separator bars
Separator bars insert a line between menu items and items on a toolbar. You can use
separator bars to indicate groupings within the menu list or toolbar, or simply to
provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (-) for the caption or press the
hyphen (-) key while the cursor is positioned on the menu where you want a
separator to appear.

To add a separator onto a TActionToolBar, press the insert key and set the new item's
caption to a separator bar (|) or a hyphen (-).

Specifying accelerator keys and keyboard shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

Delphi automatically checks for duplicate accelerators and adjusts them at runtime.
This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator, add an ampersand in front of the appropriate letter. For
example, to add a Save menu command with the S as an accelerator key, type &Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut, use the Object Inspector to enter a value for the
ShortCut property, or select a key combination from the drop-down list. This list is
only a subset of the valid combinations you can type in.

Menu Designer displays WYSIWYG
menu items as you build the menu.

A TMenuItem object is created and the
Name property set to the menu item
Caption you specify (minus any illegal
characters and plus a numeric suffix).

Placeholder for
menu item

Menu bar

Title bar (shows Name property
for Menu component)

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-37

C r e a t i n g a n d m a n a g i n g m e n u s

When you add a shortcut, it appears next to the menu item caption.

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus

Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. Delphi supports as many levels of such submenus as you
want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

Figure 9.7 Nested menu structures

To create a submenu,

1 Select the menu item under which you want to create a submenu.

2 Press Ctrl→ to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or ↓, to create the next placeholder.

5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well. Moving a menu item into an existing submenu
just creates one more level of nesting.

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

9-38 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Moving menu items
During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items
Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you’re using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

To add an image to a menu item using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-39

C r e a t i n g a n d m a n a g i n g m e n u s

4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

7 Select the menu item you want to have an image in the Object Inspector and set the
ImageIndex property to the corresponding number of the image in the ImageList
(the default value for ImageIndex is -1, which doesn’t display an image).

Note Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu
You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

9-40 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 9-41.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Table 9.6 Menu Designer context menu commands

Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Select Menu Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for
future reuse.

Insert From
Template

Opens the Insert Template dialog box, where you can select a template to
reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Insert From
Resource

Opens the Insert Menu from Resource file dialog box, where you can
choose a .rc or .mnu file to open in the current form.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-41

C r e a t i n g a n d m a n a g i n g m e n u s

Switching between menus at design time
If you’re designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.

Figure 9.8 Select Menu dialog box

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,

1 Give focus to the form whose menus you want to choose from.

2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

Several predesigned menus, or menu templates, contain frequently used commands.
You can use these menus in your applications without modifying them (except to
write code), or you can use them as a starting point, customizing them as you would
a menu you originally designed yourself. Menu templates do not contain any event
handler code.

The menu templates are stored in the BIN subdirectory in a default installation and
have a .dmt extension.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

9-42 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

To add a menu template to your application,

1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

The Insert Template dialog box opens, displaying a list of available menu
templates.

Figure 9.9 Sample Insert Template dialog box for menus

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.

Delphi deletes the template from the templates list and from your hard disk.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-43

C r e a t i n g a n d m a n a g i n g m e n u s

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .dmt files.

To save a menu as a template,

1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

2 Right-click in the Menu Designer and choose Save As Template.

The Save Template dialog box appears.

Figure 9.10 Save Template dialog box for menus

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

9-44 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Naming conventions for template menu items and event handlers
When you save a menu as a template, Delphi does not save its Name property, since
every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, Delphi then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, Delphi names it File1. If
you insert it into a menu with an existing menu item named File1, Delphi names it
File2.

Delphi also does not save any OnClick event handlers associated with a menu saved
as a template, since there is no way to test whether the code would be applicable in
the new form. When you generate a new event handler for the menu template item,
Delphi still generates the event handler name. You can easily associate items in the
menu template with existing OnClick event handlers in the form.

For more information, see “Associating menu events with event handlers” on
page 6-6.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can
insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 7-11.

In multiple document interface (MDI) and Object Linking and Embedding (OLE)
applications, you can also merge menu items into an existing menu bar. The
following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, and for OLE client
applications, your application’s main menu needs to be able to receive menu items
either from another form or from the OLE server object. This is often called merging
menus. Note that OLE technology is limited to Windows applications only and is not
available for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

• Menu, a property of the form
• GroupIndex, a property of menu items in the menu

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-45

C r e a t i n g a n d m a n a g i n g m e n u s

Specifying the active menu: Menu property
The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Form1.Menu := SecondMenu;

Determining the order of merged menu items: GroupIndex property
The GroupIndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for GroupIndex is 0. Several rules apply when specifying a value for
GroupIndex:

• Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

• To replace items in the main menu, give items on the child menu the same
GroupIndex value.

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or
more items from the child form's menu by giving them a GroupIndex value of 1 as
well.

Giving multiple items in the child menu the same GroupIndex value keeps their
order intact when they merge into the main menu.

• To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Importing resource files

You can build menus with other applications, so long as the menus are in the
standard Windows resource (.RC) file format. You can import such menus directly
into your project, saving you the time and effort of rebuilding menus that you
created elsewhere.

9-46 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

To load existing .RC menu files,

1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in
itself.

2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.

Note If your resource file contains more than one menu, you first need to save each menu
as a separate resource file before importing it.

Designing toolbars and cool bars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. A cool bar (also called a rebar) is a kind of toolbar that
displays controls on movable, resizable bands. If you have multiple panels aligned to
the top of the form, they stack vertically in the order added.

Note Cool bars are not available in CLX applications.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to
put use color grids, scroll bars, labels, and so on.

You can add a toolbar to a form in several ways:

• Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

• Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

• Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays
controls on independently movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar and cool bar components, you are ensuring that your
application has the look and feel of a Windows application because you are using the
native Windows controls. If these operating system controls change in the future,
your application could change as well. Also, since the toolbar and cool bar rely on
common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-47

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

The following sections describe how to:

• Add a toolbar and corresponding speed button controls using the panel
component.

• Add a toolbar and corresponding tool button controls using the Toolbar
component.

• Add a cool bar using the cool bar component.

• Respond to clicks.

• Add hidden toolbars and cool bars.

• Hide and show toolbars and cool bars.

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

• Add a speed button to a toolbar panel.
• Assign a speed button’s glyph.
• Set the initial condition of a speed button.
• Create a group of speed buttons.
• Allow toggle buttons.

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

9-48 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Assigning a speed button’s glyph
Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,

1 Select the speed button.

2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button
Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 9.7 lists some actions you can set to change a speed button’s appearance:

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its GroupIndex property to a value
other than zero and its Down property to True.

Creating a group of speed buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set GroupIndex to a unique value.

Table 9.7 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-49

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Allowing toggle buttons
Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form (from the Win32/Common Controls page of
the Component palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can:

• Act like regular pushbuttons.
• Toggle on and off when clicked.
• Act like a set of radio buttons.

To implement tool buttons on a toolbar, do the following:

• Add a tool button
• Assign images to tool buttons
• Set the tool buttons’ appearance
• Create a group of tool buttons
• Allow toggled tool buttons

Adding a tool button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

9-50 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Assigning images to tool buttons
Each tool button has an ImageIndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

Setting tool button appearance and initial conditions
Table 9.8 lists some actions you can set to change a tool button’s appearance:

Note Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
False.

Table 9.8 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and
Down property to True.

Appear disabled Enabled property to False.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders, thus making
the toolbar appear transparent

Flat property to True.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-51

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Creating groups of tool buttons
To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to True. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to True forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

• A tool button whose Grouped property is False.

• A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

• Another control besides a tool button.

Allowing toggled tool buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group
automatically sets the same property value for all buttons in the group.

Adding a cool bar component

Note The TCoolBar component requires version 4.70 or later of COMCTL32.DLL and is not
available in CLX applications.

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls
on independently movable, resizable bands. The user can position the bands by
dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a VCL application:

1 Add a cool bar component to the form (from the Win32 page of the Component
palette). The cool bar automatically aligns to the top of the form.

2 Add windowed controls from the Component palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You
can add graphic controls—such as labels or speed buttons—to a cool bar, but they
will not appear on separate bands.

9-52 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Setting the appearance of the cool bar
The cool bar component offers several useful configuration options. Table 9.9 lists
some actions you can set to change a tool button’s appearance:

To assign images to individual bands, select the cool bar and double-click on the
Bands property in the Object Inspector. Then select a band and assign a value to its
ImageIndex property.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time. For general information about
events and event handlers, see “Working with events and event handlers” on
page 6-3 and “Generating a handler for a component’s default event” on page 6-4.

Assigning a menu to a tool button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to True, it will appear automatically when the
button is pressed.

Table 9.9 Setting a cool button’s appearance

To make the cool bar: Set the toolbar’s:

Resize automatically to accommodate the bands it
contains

AutoSize property to True.

Bands maintain a uniform height FixedSize property to True.

Reorient to vertical rather than horizontal Vertical property to True. This changes
the effect of the FixedSize property.

Prevent the Text properties of the bands from
displaying at runtime

ShowText property to False. Each band in
a cool bar has its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the bands’ order at
runtime. (The user can still move and resize the
bands.)

FixedOrder to True.

Create a background image for the cool bar Bitmap property to TBitmap object.

Choose a list of images to appear on the left of any
band

Images property to TImageList object.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 9-53

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar:

1 Add a toolbar, cool bar, or panel component to the form.

2 Set the component’s Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To show or hide a toolbar at runtime, set its Visible property to False or True,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

procedure TForm1.PenButtonClick(Sender: TObject);
begin

PenBar.Visible := PenButton.Down;
end;

Demo programs

For examples of Windows applications that use actions, action lists, menus, and
toolbars, refer to Program Files\Borland\Delphi7\Demos\RichEdit. In addition, the
Application wizard (File|New|Other Projects page), MDI Application, SDI
Application, and Winx Logo Applications can use the action and action list objects.
For examples of cross-platform applications, refer to Demos\CLX.

9-54 D e v e l o p e r ’ s G u i d e

C o m m o n c o n t r o l s a n d X P t h e m e s

Common controls and XP themes
Microsoft has forked Windows common controls into two separate versions. Version
5 is available on all Windows versions from Windows 95 or later; it displays controls
using a “3D chiseled” look. Version 6 became available with Windows XP. Under
version 6, controls are rendered by a theme engine which matches the current
Windows XP theme. If the user changes the theme, version 6 common controls will
match the new theme automatically. You don’t need to recompile the application.

The VCL can now accommodate both types of common controls. Borland has added
a number of components to the VCL to handle common control issues automatically
and transparently. These components will be present in any VCL application you
build. By default, any VCL applications will display version 5 common controls. To
display version 6 controls, you (or your application’s users) must add a manifest file
to your application.

A manifest file contains an XML list of dependencies for your application. The file
itself shares the name of your application, with “.manifest” appended to the end. For
example, if your project creates Project1.exe as its executable, its manifest file should
be named Project1.exe.manifest. Here is an example of a manifest file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">

<assemblyIdentity
version="1.0.0.0"
processorArchitecture="X86"
name="CompanyName.ProductName.YourApp"
type="win32"

/>
<description>Your application description here.</description>
<dependency>

<dependentAssembly>
<assemblyIdentity

type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="X86"
publicKeyToken="6595b64144ccf1df"
language="*"

/>
</dependentAssembly>

</dependency>
</assembly>

Use the example above to create a manifest file for your application. If you place your
manifest file in the same directory as your application, its controls will be rendered
using the common controls version 6 theme engine. Your application now supports
Windows XP themes.

For more information on Windows XP common controls, themes, and manifest files,
consult Microsoft’s online documentation.

T y p e s o f c o n t r o l s 10-1

C h a p t e r

10
Chapter10Types of controls

Controls are visual components that help you design your user interface.

This chapter describes the different controls you can use, including text controls,
input controls, buttons, list controls, grouping controls, display controls, grids, value
list editors, and graphic controls. To implement drag and drop in these controls, see
Chapter 7, “Working with controls.”

Text controls
Many applications use text controls to display text to the user. You can use:

• Edit controls, which allow the user to add text.
• Text viewing controls and labels, which do not allow user to add text.

Edit controls

Edit controls display text to the user and allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

TEdit and TMaskEdit are simple edit controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

Use this component: When you want users to do this:

TEdit Edit a single line of text.

TMemo Edit multiple lines of text.

TMaskEdit Adhere to a particular format, such as a postal code or phone number.

TRichEdit Edit multiple lines of text using rich text format (VCL only).

10-2 D e v e l o p e r ’ s G u i d e

T e x t c o n t r o l s

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to True. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength
property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo and TRichEdit controls allow the user to add several lines of text.

Edit controls have some of the following important properties:

Memo and rich edit controls
Both the TMemo and TRichEdit controls handle multiple lines of text.

TMemo is another type of edit box that handles multiple lines of text. The lines in a
memo control can extend beyond the right boundary of the edit box, or they can
wrap onto the next line. You control whether the lines wrap using the WordWrap
property.

TRichEdit is a memo control that supports rich text formatting, printing, searching,
and drag-and-drop of text. It allows you to specify font properties, alignment, tabs,
indentation, and numbering.

Note The rich edit control is available for VCL applications only.

In addition to the properties that all edit controls have, memo and rich edit controls
include other properties, such as the following:

• Alignment specifies how text is aligned (left, right, or center) in the component.

• The Text property contains the text in the control. Your application can tell if the
text changes by checking the Modified property.

• Lines contains the text as a list of strings.

Table 10.1 Edit control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple edit controls.

SelText Contains the currently selected (highlighted) part of the text.

SelStart, SelLength Indicate the position and length of the selected part of the text.

T y p e s o f c o n t r o l s 10-3

T e x t c o n t r o l s

• OEMConvert determines whether the text is temporarily converted from ANSI to
OEM as it is entered. This is useful for validating file names (VCL only).

• WordWrap determines whether the text will wrap at the right margin.

• WantReturns determines whether the user can insert hard returns in the text.

• WantTabs determines whether the user can insert tabs in the text.

• AutoSelect determines whether the text is automatically selected (highlighted)
when the control becomes active.

At runtime, you can select all the text in the memo with the SelectAll method.

Text viewing controls

In CLX applications only, the text viewing controls display text but are read-only.

TTextViewer acts as a simple viewer so that users can read and scroll through
documents. With TTextBrowser, users can also click links to navigate to other
documents and other parts of the same document. Documents visited are stored in a
history list, which can be navigated using the Backward, Forward, and Home methods.
TTextViewer and TTextBrowser are best used to display HTML-based text or to
implement an HTML-based Help system.

TTextBrowser has the same properties as TTextViewer plus Factory. Factory determines
the MIME factory object used to determine file types for embedded images. For
example, you can associate filename extensions—such as .txt, .html, and .xml—with
MIME types and have the factory load this data into the control.

Use the FileName property to add a text file, such as .html, to appear in the control at
runtime.

To see an application using the text browser control, see ..\Delphi7\Demos\Clx\
TextBrowser.

Labels

Labels display text and are usually placed next to other controls.

Use this component: When you want users to do this:

TTextBrowser Display a text file or simple HTML page that users can scroll through.

TTextViewer Display a text file or simple HTML page. Users can scroll through the
page or click links to view other pages and images.

TLCDNumber~ Display numeric information in a digital display form.

Use this component: When you want users to do this:

TLabel Display text on a nonwindowed control.
TStaticText Display text on a windowed control.

10-4 D e v e l o p e r ’ s G u i d e

S p e c i a l i z e d i n p u t c o n t r o l s

You place a label on a form when you need to identify or annotate another
component such as an edit box or when you want to include text on a form. The
standard label component, TLabel, is a non-windowed control (widget-based control
in CLX applications), so it cannot receive focus; when you need a label with a
window handle, use TStaticText instead.

Label properties include the following:

• Caption contains the text string for the label.

• Font, Color, and other properties determine the appearance of the label. Each label
can use only one typeface, size, and color.

• FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

• ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is True, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

• Transparent determines whether items under the label (such as graphics) are
visible.

Labels usually display read-only static text that cannot be changed by the application
user. The application can change the text while it is executing by assigning a new
value to the Caption property. To add a text object to a form that a user can scroll or
edit, use TEdit.

Specialized input controls
The following components provide additional ways of capturing input.

Scroll bars

The scroll bar component creates a scroll bar that you can use to scroll the contents of
a window, form, or other control. In the OnScroll event handler, you write code that
determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, because many visual components
include scroll bars of their own and thus don’t require additional coding. For

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range

TTrackBar Select values on a continuous range (more visually effective than a scroll
bar)

TUpDown Select a value from a spinner attached to an edit component (VCL
applications only)

THotKey Enter Ctrl/Shift/Alt keyboard sequences (VCL applications only)

TSpinEdit Select a value from a spinner widget (CLX applications only)

T y p e s o f c o n t r o l s 10-5

S p e c i a l i z e d i n p u t c o n t r o l s

example, TForm has VertScrollBar and HorzScrollBar properties that automatically
configure scroll bars on the form. To create a scrollable region within a form, use
TScrollBox.

Track bars

A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

• Use the Max and Min properties to set the upper and lower range of the track bar.

• Use SelEnd and SelStart to highlight a selection range. See Figure 10.1.

• The Orientation property determines whether the track bar is vertical or horizontal.

• By default, a track bar has one row of ticks along the bottom. Use the TickMarks
property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTick method.

Figure 10.1 Three views of the track bar component

• Position sets a default position for the track bar and tracks the position at runtime.

• By default, users can move one tick up or down by pressing the up and down
arrow keys. Set LineSize to change that increment.

• Set PageSize to determine the number of ticks moved when the user presses Page Up
and Page Down.

Up-down controls

In VCL applications only, an up-down control (TUpDown) consists of a pair of arrow
buttons that allow users to change an integer value in fixed increments. The current
value is given by the Position property; the increment, which defaults to 1, is specified
by the Increment property. Use the Associate property to attach another component
(such as an edit control) to the up-down control.

Spin edit controls (CLX only)

A spin edit control (TSpinEdit) is also called an up-down widget, little arrows widget,
or spin button. This control lets the application user change an integer value in fixed
increments, either by clicking the up or down arrow buttons to increase or decrease
the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1,
is specified by the Increment property.

10-6 D e v e l o p e r ’ s G u i d e

B u t t o n s a n d s i m i l a r c o n t r o l s

Hot key controls (VCL only)

Use the hot key component (THotKey) to assign a keyboard shortcut that transfers
focus to any control. The HotKey property contains the current key combination and
the Modifiers property determines which keys are available for HotKey.

The hot key component can be assigned as the ShortCut property of a menu item.
Then, when a user enters the key combination specified by the HotKey and Modifiers
properties, Windows activates the menu item.

Splitter controls

A splitter (TSplitter) placed between aligned controls allows users to resize the
controls. Used with components like panels and group boxes, splitters let you divide
a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to True to give the splitter’s edge a 3D look.

Buttons and similar controls
Aside from menus, buttons provide the most common way to initiate an action or
command in an application. Button-like controls include:

Use this component: To do this:

TButton Present command choices on buttons with text

TBitBtn Present command choices on buttons with text and glyphs

TSpeedButton Create grouped toolbar buttons

TCheckBox Present on/off options

TRadioButton Present a set of mutually exclusive choices

TToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

TCoolBar Display a collection of windowed controls within movable, resizable
bands (VCL only)

T y p e s o f c o n t r o l s 10-7

B u t t o n s a n d s i m i l a r c o n t r o l s

Action lists let you centralize responses to user commands (actions) for objects such
as menus and buttons that respond to those commands. See “Using action lists” on
page 9-26 for details on how to use action lists with buttons, toolbars, and menus.

You can custom draw buttons individually or application wide. See Chapter 9,
“Developing the application user interface.”

Button controls

Users click button controls with the mouse to initiate actions. Buttons are labeled
with text that represent the action. The text is specified by assigning a string value to
the Caption property. Most buttons can also be selected by pressing a key on the
keyboard as a keyboard shortcut. The shortcut is shown as an underlined letter on
the button.

Users click button controls to initiate actions. You can assign an action to a TButton
component by creating an OnClick event handler for it. Double-clicking a button at
design time takes you to the button’s OnClick event handler in the Code editor.

• Set Cancel to True if you want the button to trigger its OnClick event when the user
presses Esc.

• Set Default to True if you want the Enter key to trigger the button’s OnClick event.

Bitmap buttons

A bitmap button (TBitBtn) is a button control that presents a bitmap image on its face.

• To choose a bitmap for your button, set the Glyph property.

• Use Kind to automatically configure a button with a glyph and default behavior.

• By default, the glyph appears to the left of any text. To move it, use the Layout
property.

• The glyph and text are automatically centered on the button. To move their
position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

• By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

10-8 D e v e l o p e r ’ s G u i d e

B u t t o n s a n d s i m i l a r c o n t r o l s

Speed buttons

Speed buttons (TSpeedButton), which usually have images on their faces, can function
in groups. They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to True.

• If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set
AllowAllUp to False if you want a group of buttons to act like a radio group.

For more information on speed buttons, refer to the section “Adding a toolbar using
a panel component” on page 9-47 and “Organizing actions for toolbars and menus”
on page 9-18.

Check boxes

A check box is a toggle that lets the user select an on or off state. When the choice is
turned on, the check box is checked. Otherwise, the check box is blank. You create
check boxes using TCheckBox.

• Set Checked to True to make the box appear checked by default.

• Set AllowGrayed to True to give the check box three possible states: checked,
unchecked, and grayed.

• The State property indicates whether the check box is checked (cbChecked),
unchecked (cbUnchecked), or grayed (cbGrayed).

Note Check box controls display one of two binary states. The indeterminate state is used
when other settings make it impossible to determine the current value for the check
box.

Radio buttons

Radio buttons, also called option buttons, present a set of mutually exclusive choices.
You can create individual radio buttons using TRadioButton or use the radio group
component (TRadioGroup) to arrange radio buttons into groups automatically. You
can group radio buttons to let the user select one from a limited set of choices. See
“Grouping controls” on page 10-12 for more information.

A selected radio button is displayed as a circle filled in the middle. When not
selected, the radio button shows an empty circle. Assign the value True or False to the
Checked property to change the radio button’s visual state.

T y p e s o f c o n t r o l s 10-9

L i s t c o n t r o l s

Toolbars

Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the TToolBar
component, then right-click and choose New Button to add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically
maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and TToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or
action bands. See “Using action lists” on page 9-26 for details on how to use action lists
with buttons and toolbars.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Cool bars (VCL only)

A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime. Cool bars cannot be used in cross-platform applications.

• The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

• The FixedOrder property determines whether users can reorder the bands.

• The FixedSize property determines whether the bands maintain a uniform height.

List controls
Lists present the user with a collection of items to select from. Several components
display lists:

Use this component: To display:

TListBox A list of text strings

TCheckListBox A list with a check box in front of each item

TComboBox An edit box with a scrollable drop-down list

TTreeView A hierarchical list

TListView A list of (draggable) items with optional icons, columns, and headings

10-10 D e v e l o p e r ’ s G u i d e

L i s t c o n t r o l s

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 5-17.

List boxes and check-list boxes

List boxes (TListBox) and check-list boxes display lists from which users can select
one or more choices from a list of possible options. The choices are represented using
text, graphics, or both.

• Items uses a TStrings object to fill the control with values.

• ItemIndex indicates which item in the list is selected.

• MultiSelect specifies whether a user can select more than one item at a time.

• Sorted determines whether the list is arranged alphabetically.

• Columns specifies the number of columns in the list control.

• IntegralHeight specifies whether the list box shows only entries that fit completely
in the vertical space (VCL only).

• ItemHeight specifies the height of each item in pixels. The Style property can cause
ItemHeight to be ignored.

• The Style property determines how a list control displays its items. By default,
items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 7-13.

To create a simple list box,

1 Within your project, drop a list box component from the Component palette onto a
form.

2 Size the list box and set its alignment as needed.

3 Double-click the right side of the Items property or choose the ellipsis button to
display the String List Editor.

4 Use the editor to enter free form text arranged in lines for the contents of the list
box.

5 Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and
MultiSelect properties.

TIconView~ A list of items or data in rows and columns displayed as either small or
large icons (CLX applications only)

TDateTimePicker A list box for entering dates or times (VCL applications only)

TMonthCalendar A calendar for selecting dates (VCL applications only)

Use this component: To display:

T y p e s o f c o n t r o l s 10-11

L i s t c o n t r o l s

Combo boxes

A combo box (TComboBox) combines an edit box with a scrollable list. When users
enter data into the control—by typing or selecting from the list—the value of the Text
property changes. If AutoComplete is enabled, the application looks for and displays
the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down
list.

1 Set the Style property to select the type of combo box you need:

• Use csDropDown to create an edit box with a drop-down list. Use
csDropDownList to make the edit box read-only (forcing users to choose from
the list).

• Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo
boxes that display items graphically or in varying heights. For information on
owner-draw controls, see “Adding graphics to controls” on page 7-13.

• Use csSimple to create a combo box with a fixed list that does not close. Be sure
to resize the combo box so that the list items are displayed (VCL only).

2 Set the DropDownCount property to change the number of items displayed in the
list.

At runtime, CLX combo boxes work differently than VCL combo boxes. With the
CLX combo box, you can add an item to a drop-down list by entering text and
pressing Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

Tree views

A tree view (TTreeView) displays items in an indented outline. The control provides
buttons that allow nodes to be expanded and collapsed. You can include icons with
items’ text labels and display different icons to indicate whether a node is expanded
or collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

• Indent sets the number of pixels horizontally separating items from their parents.

• ShowButtons enables the display of '+' and '–' buttons to indicate whether an item
can be expanded.

• ShowLines enables display of connecting lines to show hierarchical relationships
(VCL only).

• ShowRoot determines whether lines connecting the top-level items are displayed
(VCL only).

10-12 D e v e l o p e r ’ s G u i d e

G r o u p i n g c o n t r o l s

To add items to a tree view control at design time, double-click on the control to
display the TreeView Items editor. The items you add become the value of the Items
property. You can change the items at runtime by using the methods of the Items
property, which is an object of type TTreeNodes. TTreeNodes has methods for adding,
deleting, and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

List views

List views, created using TListView, display lists in various formats. Use the
ViewStyle property to choose the kind of list you want:

• vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag
items within the list view window (VCL only).

• vsList displays items as labeled icons that cannot be dragged.

• vsReport displays items on separate lines with information arranged in columns.
The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Icon views (CLX only)

The icon view, created using TIconView, displays a list of items or data in rows and
columns as either small or large icons.

Date-time pickers and month calendars

In CLX applications, the DateTimePicker component displays a list box for entering
dates or times, while the MonthCalendar component presents a calendar for entering
dates or ranges of dates. To use these components, you must have version 4.70 or
later of COMCTL32.DLL (usually located in the Windows\System or Windows\
System32 directory) at both design time and runtime. They are not available for use in
cross-platform applications.

Grouping controls
A graphical interface is easier to use when related controls and information are
presented in groups. Components for grouping components include:

Use this component: When you want this:

TGroupBox A standard group box with a title

TRadioGroup A simple group of radio buttons

TPanel A more visually flexible group of controls

T y p e s o f c o n t r o l s 10-13

G r o u p i n g c o n t r o l s

Group boxes and radio groups

A group box (TGroupBox) arranges related controls on a form. The most commonly
grouped controls are radio buttons. After placing a group box on a form, select
components from the Component palette and place them in the group box. The
Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio
buttons and making them work together. To add radio buttons to a radio group, edit
the Items property in the Object Inspector; each string in Items makes a radio button
appear in the group box with the string as its caption. The value of the ItemIndex
property determines which radio button is currently selected. Display the radio
buttons in a single column or in multiple columns by setting the value of the Columns
property. To respace the buttons, resize the radio group component.

Panels

The TPanel component provides a generic container for other controls. Panels are
typically used to visually group components together on a form. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

You can also place other controls onto a panel and use the Align property to ensure
proper positioning of all the controls in the group on the form. You can make a panel
alTop aligned so that its position will remain in place even if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the
BevelOuter and BevelInner properties. You can vary the values of these properties to
create different visual 3-D effects. Note that if you merely want a raised or lowered
bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information
display areas.

Scroll boxes

Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to
display more information than will fit in a particular area. Some controls—such as
list boxes, memos, and forms themselves—can automatically scroll their contents.

TScrollBox A scrollable region containing controls

TTabControl A set of mutually exclusive notebook-style tabs

TPageControl A set of mutually exclusive notebook-style tabs with corresponding pages,
each of which may contain other controls

THeaderControl Resizable column headers

Use this component: When you want this:

10-14 D e v e l o p e r ’ s G u i d e

G r o u p i n g c o n t r o l s

Another use of scroll boxes is to create multiple scrolling areas (views) in a window.
Views are common in commercial word-processor, spreadsheet, and project
management applications. Scroll boxes give you the additional flexibility to define
arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and
TCheckBox objects. But a scroll box is normally invisible. If the controls in the scroll
box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a
toolbar or status bar (TPanel components). To prevent a toolbar and status bar from
scrolling, hide the scroll bars, and then position a scroll box in the client area of the
window between the toolbar and status bar. The scroll bars associated with the scroll
box will appear to belong to the window, but will scroll only the area inside the scroll
box.

Tab controls

The tab control component (TTabControl) creates a set of tabs that look like notebook
dividers. You can create tabs by editing the Tabs property in the Object Inspector;
each string in Tabs represents a tab. The tab control is a single panel with one set of
components on it. To change the appearance of the control when the tabs are clicked,
you need to write an OnChange event handler. To create a multipage dialog box, use a
page control instead.

Page controls

The page control component (TPageControl) is a page set suitable for multipage
dialog boxes. A page control displays multiple overlapping pages that are TTabSheet
objects. A page is selected in the user interface by clicking a tab on top of the control.

To create a new page in a page control at design time, right-click the control and
choose New Page. At runtime, you add new pages by creating the object for the page
and setting its PageControl property:

NewTabSheet = TTabSheet.Create(PageControl1);
NewTabSheet.PageControl := PageControl1;

To access the active page, use the ActivePage property. To change the active page, you
can set either the ActivePage or the ActivePageIndex property.

Header controls

A header control (THeaderControl) is a is a set of column headers that the user can
select or resize at runtime. Edit the control’s Sections property to add or modify
headers. You can place the header sections above columns or fields. For example,
header sections might be placed over a list box (TListBox).

T y p e s o f c o n t r o l s 10-15

D i s p l a y c o n t r o l s

Display controls
There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime to identify the object.

Status bars

Although you can use a panel to make a status bar, it is simpler to use the TStatusBar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

If you only want to display one text string at a time in the status bar, set its
SimplePanel property to True and use the SimpleText property to control the text
displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create
panels, edit the Panels property in the Object Inspector, setting each panel’s Width,
Alignment, and Text properties from the Panels editor. Each panel’s Text property
contains the text displayed in the panel.

Progress bars

When your application performs a time-consuming operation, you can use a
progress bar (TProgressBar) to show how much of the task is completed. A progress
bar displays a dotted line that grows from left to right.

Figure 10.2 A progress bar

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
StepIt method. The Step property determines the increment used by StepIt.

Use this component
or property: To do this:

TStatusBar Display a status region (usually at the bottom of a window)

TProgressBar Show the amount of work completed for a particular task

Hint and ShowHint Activate fly-by or “tooltip” Help

HelpContext and HelpFile Link context-sensitive online Help

10-16 D e v e l o p e r ’ s G u i d e

G r i d s

Help and hint properties

Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to True;
setting ParentShowHint to True causes the control’s ShowHint property to have the
same value as its parent’s.

Grids
Grids display information in rows and columns. If you’re writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 20,
“Using data controls.” Otherwise, use a standard draw grid or string grid.

Draw grids

A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

• The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

• The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

• You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

• You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

• The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids

The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

T y p e s o f c o n t r o l s 10-17

V a l u e l i s t e d i t o r s (V C L o n l y)

Value list editors (VCL only)
TValueListEditor is a specialized grid for editing string lists that contain name/value
pairs in the form Name=Value. The names and values are stored as a TStrings
descendant that is the value of the Strings property. You can look up the value for
any name using the Values property. TValueListEditor is not available for cross-
platform programming.

The grid contains two columns, one for the names and one for the values. By default,
the Name column is named “Key” and the Value column is named “Value”. You can
change these defaults by setting the TitleCaptions property. You can omit these titles
using the DisplayOptions property (which also controls resize when you resize the
control.)

You can control whether users can edit the Name column using the KeyOptions
property. KeyOptions contains separate options to allow editing, adding new names,
deleting names, and controlling whether new names must be unique.

You can control how users edit the entries in the Value column using the ItemProps
property. Each item has a separate TItemProp object that lets you

• Supply an edit mask to limit the valid input.

• Specify a maximum length for values.

• Mark the value as read-only.

• Specify that the value list editor displays a drop-down arrow that opens a pick list
of values from which the user can choose or an ellipsis button that triggers an
event you can use for displaying a dialog in which users enter values.

If you specify that there is a drop-down arrow, you must supply the list of values
from which the user chooses. These can be a static list (the PickList property of the
TItemProp object) or they can be dynamically added at runtime using the value list
editor’s OnGetPickList event. You can also combine these approaches and have a
static list that the OnGetPickList event handler modifies.

If you specify that there is an ellipsis button, you must supply the response that
occurs when the user clicks that button (including the setting of a value, if
appropriate). You provide this response by writing an OnEditButtonClick event
handler.

10-18 D e v e l o p e r ’ s G u i d e

G r a p h i c c o n t r o l s

Graphic controls
The following components make it easy to incorporate graphics into an application.

Notice that these include common paint routines (Repaint, Invalidate, and so on) that
never need to receive focus.

To create a graphic control, see Chapter 10, “Creating a graphic control,” in the
Component Writer’s Guide.

Images

The image component (TImage) displays a graphical image, like a bitmap, icon, or
metafile. The Picture property determines the graphic to be displayed. Use Center,
AutoSize, Stretch, and Transparent to set display options. For more information, see
“Overview of graphics programming” on page 12-1.

Shapes

The shape component displays a geometric shape. It is a nonwindowed control (a
widget-based control in CLX applications) and therefore, cannot receive user input.
The Shape property determines which shape the control assumes. To change the
shape’s color or add a pattern, use the Brush property, which holds a TBrush object.
How the shape is painted depends on the Color and Style properties of TBrush.

Bevels

The bevel component (TBevel) is a line that can appear raised or lowered. Some
components, such as TPanel, have built-in properties to create beveled borders. When
such properties are unavailable, use TBevel to create beveled outlines, boxes, or
frames.

Use this component: To display:

TImage Graphics files

TShape Geometric shapes

TBevel 3-D lines and frames

TPaintBox Graphics drawn by your program at runtime

TAnimate AVI files (VCL applications only); GIF files (CLX applications only)

T y p e s o f c o n t r o l s 10-19

G r a p h i c c o n t r o l s

Paint boxes

The paint box (TPaintBox) allows your application to draw on a form. Write an
OnPaint event handler to render an image directly on the paint box's Canvas.
Drawing outside the boundaries of the paint box is prevented. For more information,
see “Overview of graphics programming” on page 12-1.

Animation control

The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip (VCL applications) or a GIF clip (CLX applications). An AVI
clip is a series of bitmap frames, like a movie. Although AVI clips can have sound,
animation controls work only with silent AVI clips. The files you use must be either
uncompressed AVI files or AVI clips compressed using run-length encoding (RLE).

Following are some of the properties of an animation component:

• ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the
ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

• Set AutoSize to True to have the animation control adjust its size to the size of the
frames in the AVI clip.

• StartFrame and StopFrame specify in which frames to start and stop the clip.

• Set CommonAVI to display one of the common Windows AVI clips provided in
Shell32.DLL.

• Specify when to start and interrupt the animation by setting the Active property to
True and False, respectively, and how many repetitions to play by setting the
Repetitions property.

• The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

10-20 D e v e l o p e r ’ s G u i d e

D e s i g n i n g c l a s s e s a n d c o m p o n e n t s w i t h M o d e l M a k e r 11-1

C h a p t e r

11
Chapter11Designing classes and components

with ModelMaker
ModelMaker is a computer assisted software engineering (CASE) tool designed to
make class, interface, and unit development simpler. ModelMaker lets you focus on
defining the members and relationships of your objects. Instead of just writing code,
you can use ModelMaker to create a model that is later converted into Delphi code
automatically. ModelMaker can help you minimize the more tedious aspects of class
and interface development.

ModelMaker’s tools include:

• an active modeling engine, which stores and maintains relationships between
classes and their members

• model import and export tools, which convert source code to ModelMaker models
and vice versa

• Unified modeling language (UML) diagram generators, to help you visualize your
designs more effectively

• specialized editors for modifying units, classes, UML diagrams, source code
implementations, and other design features

• documentation tools, which simplify the development of online help files
compatible with Microsoft WinHelp

11-2 D e v e l o p e r ’ s G u i d e

M o d e l M a k e r f u n d a m e n t a l s

ModelMaker fundamentals
ModelMaker simplifies source code generation and maintenance. To use it
effectively, you must first understand how ModelMaker works, and how it relates to
traditional IDE-based projects.

ModelMaker models

Although ModelMaker ultimately produces source code, it does not manipulate
source code directly for most of its operations. Instead, ModelMaker operates on its
own file sets, known as models. When you are working on a project in ModelMaker,
you are manipulating the structure of the model. ModelMaker converts its model to
source code periodically, either automatically or in response to a user commands.
You use the generated source code to build applications and packages.

Models are not merely a compressed representation of the source code. They can also
contain external information (such as UML diagram data) which isn’t stored in the
generated unit files. Also, models can manage an arbitrary number of source code
units. More often than not, a model doesn’t contain an entire project or package, just
a subset of its units.

Note Since models contain unique information not found in unit code, it is important to
include your model file sets in your storage and version control processes along with
your unit files.

For more information on models and model files, see the ModelMaker User’s Guide.

Using ModelMaker with the IDE

ModelMaker is a separate application from the IDE, although it has been integrated
into the IDE through the ModelMaker menu. To run ModelMaker, select
ModelMaker|Run ModelMaker. You can also use the Windows Start Menu to start
ModelMaker.

Many developers prefer to use ModelMaker instead of the IDE whenever possible.
ModelMaker is not intended to replace the IDE, however. You still need the IDE for
many common programming tasks, including form design and executable
compilation.

D e s i g n i n g c l a s s e s a n d c o m p o n e n t s w i t h M o d e l M a k e r 11-3

M o d e l M a k e r f u n d a m e n t a l s

When you use ModelMaker with the IDE, keep in mind that the IDE cannot change
ModelMaker model files. Any source code changes you make with the IDE editors
will not propagate into the model automatically. Your changes will be destroyed the
next time ModelMaker updates the generated unit code. If you need to make changes
when a model exists, use ModelMaker instead of the IDE to guarantee model-source
synchronization. If that isn’t possible, be sure to reimport the unit into the model
when you’ve finished your changes.

Creating models

There are many ways to create models in ModelMaker. If you are creating entirely
new code, you can start with a new model and design your code (aside from forms)
using ModelMaker. To create a new model, select File|New or click the New model
button on the ModelMaker toolbar. (The New model button is the leftmost button on
the toolbar.)

Figure 11.1 Part of the ModelMaker toolbar

More often, you will need to make a model from units created outside ModelMaker.
There are two buttons on the toolbar which allow you to import source code into
your model. One button (the second from the left) imports the source file into a new
model, the other (fifth from the left) uses the current model. Once you have imported
your source code, you can use any of ModelMaker’s tools on your model.

New model

Import source in new model

Import source

11-4 D e v e l o p e r ’ s G u i d e

U s i n g M o d e l M a k e r v i e w s

Using ModelMaker views
ModelMaker has many views and editors, contained in panes of the ModelMaker
window, which can help you visualize and edit your model. The following picture
contains a sample ModelMaker window:

Figure 11.2 ModelMaker showing a sample model

ModelMaker is always divided into three panes. The collections pane (the top-left
pane by default) can display the Classes view, the Units view, or the Diagrams view.
The members pane (bottom-left by default) always displays the Members view. The
editors pane (rightmost by default) can display the Implementation Editor, Unit
Code Editor, Diagram Editor, Macros view, Patterns view, Unit Difference view,
Documentation view, or Events view.

You can choose particular views through items in the Views menu, or through
buttons on the toolbar. You can also change the view layout using toolbar buttons.

Collections
pane

Methods
pane

Editors
pane

D e s i g n i n g c l a s s e s a n d c o m p o n e n t s w i t h M o d e l M a k e r 11-5

U s i n g M o d e l M a k e r v i e w s

Collections pane

The collections pane displays collections of items used in ModelMaker models.
Models often contain multiple classes, units, and diagrams. The collections pane
shows logical groups of these items.

Classes view
The Classes view displays a hierarchical listing of all the classes and interfaces in
your model. It also shows the ancestry for classes and interfaces in the model.
Ancestors contained in the current model have icons surrounded by solid lines.
Those not contained in the model have icons bordered by dashed lines.

Figure 11.3 The Classes view

Note If both an object and its ancestor are not included in a model, then the hierarchy
between them might not be complete.

You can fold the hierarchies to hide branches you’re not interested in. You can also
add new classes and interfaces to your model through the Classes view.

Units view
The Units view displays a tree or list of all the units contained in the project. The
view also shows all the objects, interfaces, and events contained in each unit.

Figure 11.4 The Units view

You can use buttons in the Units view (above the tree) to change the contents of the
view, add or edit units, or change code generation behavior.

11-6 D e v e l o p e r ’ s G u i d e

U s i n g M o d e l M a k e r v i e w s

Diagrams view
The Diagrams view shows a list of all the UML-style diagrams contained in the
model. You can modify these diagrams using the Diagram Editor view of the editors
pane.

Figure 11.5 The Diagrams view

Diagrams are often used as a class design tool. You can add properties, methods, and
events to a diagram, which changes your model and, eventually, your source code.
After the diagram design phase, you can use tools in the editors pane (such as the
Implementation view) to fill in the implementations for your new class. You can also
create diagrams for classes designed without UML or ModelMaker.

You can use buttons in the Diagrams view to create many different types of UML-
style diagrams, including:

• Class diagrams
• Sequence diagrams
• Collaboration diagrams
• Use case diagrams
• Robustness diagrams
• Statechart (or state) diagrams
• Activity diagrams
• Implementation diagrams
• Mind map diagrams
• Unit dependency diagrams

Other buttons let you clone or delete an existing diagram.

Note Classes and diagrams are distinct entities in ModelMaker models. The existence of a
class does not infer the existence of a diagram for that class; you must create
diagrams explicitly. Also, deleting a diagram will not delete any classes or interfaces
from your model, or from the source code generated by your model.

D e s i g n i n g c l a s s e s a n d c o m p o n e n t s w i t h M o d e l M a k e r 11-7

U s i n g M o d e l M a k e r v i e w s

Members pane

The members pane contains the Members view. It displays members (fields,
properties, methods, or events) for the class or interface currently selected in the
Class view. Selecting items in the Members view can display their contents in the
editors pane if an appropriate editor is displayed there.

Figure 11.6 The Members view

You can use the Members view to change member names, or to display members in
the Implementation view for editing. You can use some of the buttons in the
Members view to add fields, properties, methods, and events. Other buttons let you
select which members are displayed in the view based on visibility or member type.

Editors pane

The editors pane contains views that you can use to make changes to method
implementations, unit source code, UML diagrams, macros, and design patterns.
You can also use the editors pane to view differences between one of your model’s
unit files before and after changes have been made to the model.

Implementation Editor
The Implementation Editor lets you edit method source code in your model without
using the IDE. After you add methods to your classes and interfaces using the
Members view or UML diagrams, you can write your implementations into your
model using the Implementation Editor. These implementations will appear in
generated source code.

11-8 D e v e l o p e r ’ s G u i d e

U s i n g M o d e l M a k e r v i e w s

Figure 11.7 The Implementation Editor view

The Implementation Editor can help you modify the method’s interface, add a one-
line description to generated documentation, add local variables or methods, and
edit the method source itself. It includes views which show the local variables and
methods, as well as a view of the final method source code.

Unit Code Editor
The Unit Code Editor manages a template for an entire unit. ModelMaker
periodically uses the template to generate the unit source code file. Use the Unit Code
Editor to make changes to the template file.

Figure 11.8 The Unit Code Editor

Many features of a unit file, such as class implementations, are managed using
separate editors. Such content is denoted in the template by tag lines, which start
with MMWIN. These tag lines must be left alone in the Unit Code Editor (although
they can be moved within the file if they are left intact). You can edit non-tag lines,
such as unit uses clauses and non-class methods, in the Unit Code Editor.

D e s i g n i n g c l a s s e s a n d c o m p o n e n t s w i t h M o d e l M a k e r 11-9

U s i n g M o d e l M a k e r v i e w s

Diagram Editor
The Diagram Editor is used to modify UML diagrams created from the Diagrams
view of the collections pane. It offers a rich collection of tools for making visual
changes to your UML diagrams. You can also expand your ModelMaker model by
adding features (such as properties and methods) to your UML diagrams. Model
changes you make through diagrams will propagate to your source code.

Figure 11.9 The Diagram Editor

ModelMaker diagrams can be exported to formats such as image and XML/XMI. For
more information about using UML diagrams in ModelMaker, see the ModelMaker
User’s Guide.

Other Editors
ModelMaker includes several other editor views, including:

• the Macros view, which helps you manage and manipulate ModelMaker macros

• the Patterns view, which enables you to define code elements using ModelMaker’s
design pattern tools

• the Unit Difference view, which lets you track differences between unit files in
different sources (including ModelMaker models and saved unit files)

• the Documentation view, which you can use to write documentation into your
model for units, classes, and class members

• the Events view, which you can use to manage the events in your project

The ModelMaker User’s Guide contains in-depth information about these other editor
views.

11-10 D e v e l o p e r ’ s G u i d e

F o r m o r e i n f o r m a t i o n

For more information
This chapter is not intended to be a complete ModelMaker reference. For more
information about ModelMaker, refer to the following documents:

• the ModelMaker User Manual

• ModelMaker’s help files

If you need help locating any of these documents, refer to the product readme file.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-1

C h a p t e r

12
Chapter12Working with graphics and

multimedia
Graphics and multimedia elements can add polish to your applications. You can
introduce these features into your application in a variety of ways. To add graphical
elements, you can insert pre-drawn pictures at design time, create them using
graphical controls at design time, or draw them dynamically at runtime. To add
multimedia capabilities, you can use special components that can play audio and
video clips.

Overview of graphics programming
In VCL applications, the graphics components defined in the Graphics unit
encapsulate the Windows Graphics Device Interface (GDI), making it easy to add
graphics to your Windows applications. CLX graphics components defined in the
QGraphics unit encapsulate the Qt graphics widgets for adding graphics to cross-
platform applications.

To draw graphics in an application, you draw on an object’s canvas, rather than
directly on the object. The canvas is a property of the object, and is itself an object. A
main advantage of the canvas object is that it handles resources effectively and it
manages the device context for you, so your programs can use the same methods
regardless of whether you are drawing on the screen, to a printer, or on bitmaps or
metafiles (drawings in CLX applications). Canvases are available only at runtime, so
you do all your work with canvases by writing code.

Note Since TCanvas is a wrapper resource manager around the Windows device context,
you can also use all Windows GDI functions on the canvas. The Handle property of
the canvas is the device context Handle.

12-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

In CLX applications, TCanvas is a wrapper resource manager around a Qt painter.
The Handle property of the canvas is a typed pointer to an instance of a Qt painter
object. Having this instance pointer exposed allows you to use low-level Qt graphics
library functions that require an instance pointer to a painter object QPainterH.

How graphic images appear in your application depends on the type of object whose
canvas you draw on. If you are drawing directly onto the canvas of a control, the
picture is displayed immediately. However, if you draw on an offscreen image such
as a TBitmap canvas, the image is not displayed until a control copies from the bitmap
onto the control’s canvas. That is, when drawing bitmaps and assigning them to an
image control, the image appears only when the control has an opportunity to
process its OnPaint message (VCL applications) or event (CLX applications).

When working with graphics, you often encounter the terms drawing and painting:

• Drawing is the creation of a single, specific graphic element, such as a line or a
shape, with code. In your code, you tell an object to draw a specific graphic in a
specific place on its canvas by calling a drawing method of the canvas.

• Painting is the creation of the entire appearance of an object. Painting usually
involves drawing. That is, in response to OnPaint events, an object generally
draws some graphics. An edit box, for example, paints itself by drawing a
rectangle and then drawing some text inside. A shape control, on the other hand,
paints itself by drawing a single graphic.

The examples in the beginning of this chapter demonstrate how to draw various
graphics, but they do so in response to OnPaint events. Later sections show how to do
the same kind of drawing in response to other events.

Refreshing the screen

At certain times, the operating system determines that objects onscreen need to
refresh their appearance, so it generates WM_PAINT messages on Windows, which
the VCL routes to OnPaint events. (In CLX applications, a paint event is generated,
and routed to OnPaint events.) If you have written an OnPaint event handler for that
object, it is called when you use the Refresh method. The default name generated for
the OnPaint event handler in a form is FormPaint. You may want to use the Refresh
method at times to refresh a component or form. For example, you might call Refresh
in the form’s OnResize event handler to redisplay any graphics or if using the VCL,
you want to paint a background on a form.

While some operating systems automatically handle the redrawing of the client area
of a window that has been invalidated, Windows does not. In the Windows
operating system anything drawn on the screen is permanent. When a form or
control is temporarily obscured, for example during window dragging, the form or
control must repaint the obscured area when it is re-exposed. For more information
about the WM_PAINT message, see the Windows online Help.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-3

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

If you use the TImage control to display a graphical image on a form, the painting and
refreshing of the graphic contained in the TImage is handled automatically. The
Picture property specifies the actual bitmap, drawing, or other graphic object that
TImage displays. You can also set the Proportional property to ensure that the image
can be fully displayed in the image control without any distortion. Drawing on a
TImage creates a persistent image. Consequently, you do not need to do anything to
redraw the contained image. In contrast, TPaintBox’s canvas maps directly onto the
screen device (VCL applications) or the painter (CLX applications), so that anything
drawn to the PaintBox’s canvas is transitory. This is true of nearly all controls,
including the form itself. Therefore, if you draw or paint on a TPaintBox in its
constructor, you will need to add that code to your OnPaint event handler in order
for the image to be repainted each time the client area is invalidated.

Types of graphic objects

The component library provides the graphic objects shown in Table 12.1. These
objects have methods to draw on the canvas, which are described in “Using Canvas
methods to draw graphic objects” on page 12-10 and to load and save to graphics
files, as described in “Loading and saving graphics files” on page 12-19.

Table 12.1 Graphic object types

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats,
use the Picture Register method. Use this to handle arbitrary files such as
displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk. Creating copies of a
bitmap is fast since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or
pasted from or to an application. With the clipboard, you can get and
retrieve data according to the appropriate format; handle reference
counting, and opening and closing the clipboard; manage and
manipulate formats for objects in the clipboard.

Icon Represents the value loaded from an icon file (::ICO file).

Metafile (VCL
applications only)
Drawing (CLX
applications only)

Contains a file that records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image.
Metafiles or drawings are extremely scalable without the loss of image
detail and often require much less memory than bitmaps, particularly
for high-resolution devices, such as printers. However, metafiles and
drawings do not display as fast as bitmaps. Use a metafile or drawing
when versatility or precision is more important than performance.

12-4 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Common properties and methods of Canvas

Table 12.2 lists the commonly used properties of the Canvas object. For a complete
list of properties and methods, see the TCanvas component in online Help.

These properties are described in more detail in “Using the properties of the Canvas
object” on page 12-5.

Table 12.3 is a list of several methods you can use:

Table 12.2 Common properties of the Canvas object

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the properties of the
TFont object to specify the font face, color, size, and style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical shapes and
backgrounds. Set the properties of the TBrush object to specify the color and pattern
or bitmap to use when filling in spaces on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and outlining shapes. Set
the properties of the TPen object to specify the color, style, width, and mode of the
pen.

PenPos Specifies the current drawing position of the pen.

Pixels Specifies the color of the area of pixels within the current ClipRect.

Table 12.3 Common methods of the Canvas object

Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse bounded
by the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an
ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter on the
canvas at the location given by the coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current brush.

FloodFill (VCL only) Fills an area of the canvas using the current brush.

FrameRect (VCL only) Draws a rectangle using the Brush of the canvas to draw the border.

LineTo Draws a line on the canvas from PenPos to the point specified by X and
Y, and sets the pen position to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the rectangle
(X1, Y1) and (X2, Y2) on the canvas.

Polygon Draws a series of lines on the canvas connecting the points passed in
and closing the shape by drawing a line from the last point to the first
point.

Polyline Draws a series of lines on the canvas with the current pen, connecting
each of the points passed to it in Points.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-5

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

These methods are described in more detail in “Using Canvas methods to draw
graphic objects” on page 12-10.

Using the properties of the Canvas object

With the Canvas object, you can set the properties of a pen for drawing lines, a brush
for filling shapes, a font for writing text, and an array of pixels to represent the image.

This section describes:

• Using pens.
• Using brushes.
• Reading and setting pixels.

Using pens
The Pen property of a canvas controls the way lines appear, including lines drawn as
the outlines of shapes. Drawing a straight line is really just changing a group of pixels
that lie between two points.

The pen itself has four properties you can change:

• Color property changes the pen color.
• Width property changes the pen width.
• Style property changes the pen style.
• Mode property changes the pen mode.

The values of these properties determine how the pen changes the pixels in the line.
By default, every pen starts out black, with a width of 1 pixel, a solid style, and a
mode called copy that overwrites anything already on the canvas.

You can use TPenRecall for quick saving off and restoring the properties of pens.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point
(X1, Y1) and its lower right corner at the point (X2, Y2). Use Rectangle to
draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the specified
rectangle. The graphic image may need to change its magnitude or
aspect ratio to fit.

TextHeight, TextWidth Returns the height and width, respectively, of a string in the current
font. Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then
updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall outside
the region do not appear.

Table 12.3 Common methods of the Canvas object (continued)

Method Descriptions

12-6 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Changing the pen color
You can set the color of a pen as you would any other Color property at runtime. A
pen’s color determines the color of the lines the pen draws, including lines drawn as
the boundaries of shapes, as well as other lines and polylines. To change the pen
color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A
color grid can set both foreground and background colors. For a non-grid pen style,
you must consider the background color, which is drawn in the gaps between line
segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s
color in response to the OnClick event:

procedure TForm1.PenColorClick(Sender: TObject);
begin
 Canvas.Pen.Color := PenColor.ForegroundColor;
end;

Changing the pen width
A pen’s width determines the thickness, in pixels, of the lines it draws.

Note When the thickness is greater than 1, Windows always draws solid lines, regardless
of the value of the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen.
And suppose you want to update the label next to the scroll bar to provide feedback
to the user. Using the scroll bar’s position to determine the pen width, you update the
pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

procedure TForm1.PenWidthChange(Sender: TObject);
begin
 Canvas.Pen.Width := PenWidth.Position;{ set the pen width directly }
 PenSize.Caption := IntToStr(PenWidth.Position);{ convert to string for caption }
end;

Changing the pen style
A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so
on.

Note For CLX applications deployed under Windows, Windows does not support dashed
or dotted line styles for pens wider than one pixel and makes all larger pens solid, no
matter what style you specify.

The task of setting the properties of pen is an ideal case for having different controls
share same event handler to handle events. To determine which control actually got
the event, you check the Sender parameter.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-7

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the
following:

1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick
event and in the Handler column, type SetPenStyle.

The Code editor generates an empty click-event handler called SetPenStyle and
attaches it to the OnClick events of all six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of
Sender, which is the control that sent the click event:

procedure TForm1.SetPenStyle(Sender: TObject);
begin
 with Canvas.Pen do
 begin
 if Sender = SolidPen then Style := psSolid
 else if Sender = DashPen then Style := psDash
 else if Sender = DotPen then Style := psDot
 else if Sender = DashDotPen then Style := psDashDot
 else if Sender = DashDotDotPen then Style := psDashDotDot
 else if Sender = ClearPen then Style := psClear;
 end;
end;

Changing the pen mode
A pen’s Mode property lets you specify various ways to combine the pen’s color with
the color on the canvas. For example, the pen could always be black, be an inverse of
the canvas background color, inverse of the pen color, and so on. See TPen in online
Help for details.

Getting the pen position
The current drawing position—the position from which the pen begins drawing its
next line—is called the pen position. The canvas stores its pen position in its PenPos
property. Pen position affects the drawing of lines only; for shapes and text, you
specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the
following code moves the pen position to the upper left corner of the canvas:

Canvas.MoveTo(0, 0);

Note Drawing a line with the LineTo method also moves the current position to the
endpoint of the line.

12-8 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Using brushes
The Brush property of a canvas controls the way you fill areas, including the interior
of shapes. Filling an area with a brush is a way of changing a large number of
adjacent pixels in a specified way.

The brush has three properties you can manipulate:

• Color property changes the fill color.
• Style property changes the brush style.
• Bitmap property uses a bitmap as a brush pattern.

The values of these properties determine the way the canvas fills shapes or other
areas. By default, every brush starts out white, with a solid style and no pattern
bitmap.

You can use TBrushRecall for quick saving off and restoring the properties of brushes.

Changing the brush color
A brush’s color determines what color the canvas uses to fill shapes. To change the
fill color, assign a value to the brush’s Color property. Brush is used for background
color in text and line drawing so you typically set the background color property.

You can set the brush color just as you do the pen color, in response to a click on a
color grid on the brush’s toolbar (see “Changing the pen color” on page 12-6):

procedure TForm1.BrushColorClick(Sender: TObject);
begin
 Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

Changing the brush style
A brush style determines what pattern the canvas uses to fill shapes. It lets you
specify various ways to combine the brush’s color with any colors already on the
canvas. The predefined styles include solid color, no color, and various line and
hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values:
bsBDiagonal, bsClear, bsCross, bsDiagCross, bsFDiagonal, bsHorizontal, bsSolid, or
bsVertical. Cross-platform applications include the predefined values of bsDense1
through bsDense7.

This example sets brush styles by sharing a click-event handler for a set of eight
brush-style buttons. All eight buttons are selected, the Object Inspector|Events|
OnClick is set, and the OnClick handler is named SetBrushStyle. Here is the handler
code:

procedure TForm1.SetBrushStyle(Sender: TObject);
begin
 with Canvas.Brush do
 begin
 if Sender = SolidBrush then Style := bsSolid

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-9

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 else if Sender = ClearBrush then Style := bsClear
 else if Sender = HorizontalBrush then Style := bsHorizontal
 else if Sender = VerticalBrush then Style := bsVertical
 else if Sender = FDiagonalBrush then Style := bsFDiagonal
 else if Sender = BDiagonalBrush then Style := bsBDiagonal
 else if Sender = CrossBrush then Style := bsCross
 else if Sender = DiagCrossBrush then Style := bsDiagCross;
 end;
end;

Setting the Brush Bitmap property
A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a
pattern for filling shapes and other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the
Canvas of Form1:

var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyBitmap.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,100,100));
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;
end;

Note The brush does not assume ownership of a bitmap object assigned to its Bitmap
property. You must ensure that the Bitmap object remains valid for the lifetime of the
Brush, and you must free the Bitmap object yourself afterwards.

Reading and setting pixels
You will notice that every canvas has an indexed Pixels property that represents the
individual colored points that make up the image on the canvas. You rarely need to
access Pixels directly, it is available only for convenience to perform small actions
such as finding or setting a pixel’s color.

Note Setting and getting individual pixels is thousands of times slower than performing
graphics operations on regions. Do not use the Pixel array property to access the
image pixels of a general array. For high-performance access to image pixels, see the
TBitmap.ScanLine property.

12-10 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Using Canvas methods to draw graphic objects

This section shows how to use some common methods to draw graphic objects. It
covers:

• Drawing lines and polylines.
• Drawing shapes.
• Drawing rounded rectangles.
• Drawing polygons.

Drawing lines and polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels
connecting two points. A polyline is a series of straight lines, connected end-to-end.
The canvas draws all lines using its pen.

Drawing lines
To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes
the endpoint of the line the current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form
whenever the form is painted:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 MoveTo(0, 0);
 LineTo(ClientWidth, ClientHeight);
 MoveTo(0, ClientHeight);
 LineTo(ClientWidth, 0);
 end;
end;

Drawing polylines
In addition to individual lines, the canvas can also draw polylines, which are groups
of any number of connected line segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the Polyline method is an array of points. You can think of a
polyline as performing a MoveTo on the first point and LineTo on each successive
point. For drawing multiple lines, Polyline is faster than using the MoveTo method
and the LineTo method because it eliminates a lot of call overhead.

The following method, for example, draws a rhombus in a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 Polyline([Point(0, 0), Point(50, 0), Point(75, 50), Point(25, 50), Point(0, 0)]);
end;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-11

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

This example takes advantage of Delphi's ability to create an open-array parameter
on-the-fly. You can pass any array of points, but an easy way to construct an array
quickly is to put its elements in brackets and pass the whole thing as a parameter. For
more information, see online Help.

Drawing shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the
outline of a shape with its pen, then fills the interior with its brush. The line that
forms the border for the shape is controlled by the current Pen object.

This section covers:

• Drawing rectangles and ellipses.
• Drawing rounded rectangles.
• Drawing polygons.

Drawing rectangles and ellipses
To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or
Ellipse method, passing the coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that
touches all sides of the rectangle.

The following method draws a rectangle filling a form’s upper left quadrant, then
draws an ellipse in the same area:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle(0, 0, ClientWidth div 2, ClientHeight div 2);
 Canvas.Ellipse(0, 0, ClientWidth div 2, ClientHeight div 2);
end;

Drawing rounded rectangles
To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for
the Rectangle method or the Ellipse method. RoundRect takes two more parameters
that indicate how to draw the rounded corners.

The following method, for example, draws a rounded rectangle in a form’s upper left
quadrant, rounding the corners as sections of a circle with a diameter of 10 pixels:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.RoundRect(0, 0, ClientWidth div 2, ClientHeight div 2, 10, 10);
end;

12-12 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Drawing polygons
To draw a polygon with any number of sides on a canvas, call the Polygon method of
the canvas.

Polygon takes an array of points as its only parameter and connects the points with
the pen, then connects the last point to the first to close the polygon. After drawing
the lines, Polygon uses the brush to fill the area inside the polygon.

For example, the following code draws a right triangle in the lower left half of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Polygon([Point(0, 0), Point(0, ClientHeight),
 Point(ClientWidth, ClientHeight)]);
end;

Handling multiple drawing objects in your application

Various drawing methods (rectangle, shape, line, and so on) are typically available
on the toolbar and button panel. Applications can respond to clicks on speed buttons
to set the desired drawing objects. This section describes how to:

• Keep track of which drawing tool to use.
• Change the tool with speed buttons.
• Use drawing tools.

Keeping track of which drawing tool to use
A graphics program needs to keep track of what kind of drawing tool (such as a line,
rectangle, ellipse, or rounded rectangle) a user might want to use at any given time.
You could assign numbers to each kind of tool, but then you would have to
remember what each number stands for. You can do that more easily by assigning
mnemonic constant names to each number, but your code won't be able to
distinguish which numbers are in the proper range and of the right type. Fortunately,
Delphi provides a means to handle both of these shortcomings. You can declare an
enumerated type.

An enumerated type is really just a shorthand way of assigning sequential values to
constants. Since it's also a type declaration, you can use Delphi's type-checking to
ensure that you assign only those specific values.

To declare an enumerated type, use the reserved work type, followed by an identifier
for the type, then an equal sign, and the identifiers for the values in the type in
parentheses, separated by commas.

For example, the following code declares an enumerated type for each drawing tool
available in a graphics application:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

By convention, type identifiers begin with the letter T, and groups of similar
constants (such as those making up an enumerated type) begin with a 2-letter prefix
(such as dt for “drawing tool”).

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-13

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The declaration of the TDrawingTool type is equivalent to declaring a group of
constants:

const
dtLine = 0;
dtRectangle = 1;
dtEllipse = 2;
dtRoundRect = 3;

The main difference is that by declaring the enumerated type, you give the constants
not just a value, but also a type, which enables you to use the Delphi language's type-
checking to prevent many errors. A variable of type TDrawingTool can be assigned
only one of the constants dtLine..dtRoundRect. Attempting to assign some other
number (even one in the range 0..3) generates a compile-time error.

In the following code, a field added to a form keeps track of the form’s drawing tool:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);
 TForm1 = class(TForm)
 ƒ{ method declarations }
 public
 Drawing: Boolean;
 Origin, MovePt: TPoint;
 DrawingTool: TDrawingTool;{ field to hold current tool }
 end;

Changing the tool with speed buttons
Each drawing tool needs an associated OnClick event handler. Suppose your
application had a toolbar button for each of four drawing tools: line, rectangle,
ellipse, and rounded rectangle. You would attach the following event handlers to the
OnClick events of the four drawing-tool buttons, setting DrawingTool to the
appropriate value for each:

procedure TForm1.LineButtonClick(Sender: TObject);{ LineButton }
begin
 DrawingTool := dtLine;
end;

procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin
 DrawingTool := dtRectangle;
end;

procedure TForm1.EllipseButtonClick(Sender: TObject);{ EllipseButton }
begin
 DrawingTool := dtEllipse;
end;

procedure TForm1.RoundedRectButtonClick(Sender: TObject);{ RoundRectButton }
begin
 DrawingTool := dtRoundRect;
end;

12-14 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Using drawing tools
Now that you can tell what tool to use, you must indicate how to draw the different
shapes. The only methods that perform any drawing are the mouse-move and
mouse-up handlers, and the only drawing code draws lines, no matter what tool is
selected.

To use different drawing tools, your code needs to specify how to draw, based on the
selected tool. You add this instruction to each tool’s event handler.

This section describes:

• Drawing shapes.
• Sharing code among event handlers.

Drawing shapes
Drawing shapes is just as easy as drawing lines. Each one takes a single statement;
you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

procedure TForm1.FormMouseUp(Sender: TObject; Button TMouseButton; Shift: TShiftState;
X,Y: Integer);

begin
 case DrawingTool of
 dtLine:
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y)
 end;
 dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 Drawing := False;
end;

Of course, you also need to update the OnMouseMove handler to draw shapes:

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;
 case DrawingTool of
 dtLine: begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(MovePt.X, MovePt.Y);
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y);
 end;
 dtRectangle: begin
 Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);
 Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 end;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-15

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 dtEllipse: begin
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 end;
 dtRoundRect: begin
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 end;
 MovePt := Point(X, Y);
 end;
 Canvas.Pen.Mode := pmCopy;
end;

Typically, all the repetitious code that is in the above example would be in a separate
routine. The next section shows all the shape-drawing code in a single routine that all
mouse-event handlers can call.

Sharing code among event handlers
Any time you find that many your event handlers use the same code, you can make
your application more efficient by moving the repeated code into a routine that all
event handlers can share.

To add a method to a form:

1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the
form object’s declaration. If the code is just sharing the details of handling some
events, it’s probably safest to make the shared method private.

2 Write the method implementation in the implementation part of the form unit.

The header for the method implementation must match the declaration exactly, with
the same parameters in the same order.

The following code adds a method to the form called DrawShape and calls it from
each of the handlers. First, the declaration of DrawShape is added to the form object’s
declaration:

type
 TForm1 = class(TForm)
 ƒ{ fields and methods declared here}
 public
 { Public declarations }
 procedure DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
 end;

12-16 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Then, the implementation of DrawShape is written in the implementation part of the
unit:

implementation
{$R *.FRM}
ƒ { other method implementations omitted for brevity }
procedure TForm1.DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
begin
 with Canvas do
 begin
 Pen.Mode := AMode;
 case DrawingTool of
 dtLine:
 begin
 MoveTo(TopLeft.X, TopLeft.Y);
 LineTo(BottomRight.X, BottomRight.Y);
 end;
 dtRectangle: Rectangle(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtEllipse: Ellipse(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtRoundRect: RoundRect(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y,
 (TopLeft.X - BottomRight.X) div 2, (TopLeft.Y - BottomRight.Y) div 2);
 end;
 end;
end;

The other event handlers are modified to call DrawShape.

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 DrawShape(Origin, Point(X, Y), pmCopy);{ draw the final shape }
 Drawing := False;
end;
procedure TForm1.FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 DrawShape(Origin, MovePt, pmNotXor);{ erase the previous shape }
 MovePt := Point(X, Y);{ record the current point }
 DrawShape(Origin, MovePt, pmNotXor);{ draw the current shape }
 end;
end;

Drawing on a graphic

You don’t need any components to manipulate your application’s graphic objects.
You can construct, draw on, save, and destroy graphic objects without ever drawing
anything on screen. In fact, your applications rarely draw directly on a form. More
often, an application operates on graphics and then uses an image control component
to display the graphic on a form.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-17

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Once you move the application’s drawing to the graphic in the image control, it is
easy to add printing, clipboard, and loading and saving operations for any graphic
objects. graphic objects can be bitmap files, drawings, icons or whatever other
graphics classes that have been installed such as jpeg graphics.

Note Because you are drawing on an offscreen image such as a TBitmap canvas, the image
is not displayed until a control copies from a bitmap onto the control’s canvas. That
is, when drawing bitmaps and assigning them to an image control, the image
appears only when the control has an opportunity to process its paint message. But if
you are drawing directly onto the canvas property of a control, the picture object is
displayed immediately.

Making scrollable graphics
The graphic need not be the same size as the form: it can be either smaller or larger.
By adding a scroll box control to the form and placing the graphic image inside it,
you can display graphics that are much larger than the form or even larger than the
screen. To add a scrollable graphic first you add a TScrollBox component and then
you add the image control.

Adding an image control
An image control is a container component that allows you to display your bitmap
objects. You use an image control to hold a bitmap that is not necessarily displayed
all the time, or which an application needs to use to generate other pictures.

Note “Adding graphics to controls” on page 7-13 shows how to use graphics in controls.

Placing the control
You can place an image control anywhere on a form. If you take advantage of the
image control’s ability to size itself to its picture, you need to set the top left corner
only. If the image control is a nonvisible holder for a bitmap, you can place it
anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area,
this assures that the scroll box adds any scroll bars necessary to access offscreen
portions of the image’s picture. Then set the image control’s properties.

Setting the initial bitmap size
When you place an image control, it is simply a container. However, you can set the
image control’s Picture property at design time to contain a static graphic. The control
can also load its picture from a file at runtime, as described in “Loading and saving
graphics files” on page 12-19.

To create a blank bitmap when the application starts,

1 Attach a handler to the OnCreate event for the form that contains the image.

2 Create a bitmap object, and assign it to the image control’s Picture.Graphic
property.

12-18 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

In this example, the image is in the application’s main form, Form1, so the code
attaches a handler to Form1’s OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 Bitmap: TBitmap;{ temporary variable to hold the bitmap }
begin
 Bitmap := TBitmap.Create;{ construct the bitmap object }

Bitmap.Width := 200;{ assign the initial width... }
Bitmap.Height := 200;{ ...and the initial height }
Image.Picture.Graphic := Bitmap;{ assign the bitmap to the image control }
Bitmap.Free; {We are done with the bitmap, so free it }

end;

Assigning the bitmap to the picture’s Graphic property copies the bitmap to the
picture object. However, the picture object does not take ownership of the bitmap, so
after making the assignment, you must free it.

If you run the application now, you see that client area of the form has a white region,
representing the bitmap. If you size the window so that the client area cannot display
the entire image, you’ll see that the scroll box automatically shows scroll bars to
allow display of the rest of the image. But if you try to draw on the image, you don’t
get any graphics, because the application is still drawing on the form, which is now
behind the image and the scroll box.

Drawing on the bitmap
To draw on a bitmap, use the image control’s canvas and attach the mouse-event
handlers to the appropriate events in the image control. Typically, you would use
region operations (fills, rectangles, polylines, and so on). These are fast and efficient
methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use
the bitmap ScanLine property. For general-purpose usage, you can set up the bitmap
pixel format to 24 bits and then treat the pointer returned from ScanLine as an array
of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var
 x,y : integer;
 Bitmap : TBitmap;
 P : PByteArray;
begin
 Bitmap := TBitmap.create;
 try
 Bitmap.LoadFromFile('C:\Program Files\Borland\Delphi 4\Images\Splash\256color\
factory.bmp');
 for y := 0 to Bitmap.height -1 do
 begin
 P := Bitmap.ScanLine[y];
 for x := 0 to Bitmap.width -1 do
 P[x] := y;
 end;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-19

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 canvas.draw(0,0,Bitmap);
 finally
 Bitmap.free;
 end;
end;

Note For CLX applications, change Windows- and VCL-specific code so that your
application can run on Linux. For example, the pathnames in Linux use a forward
slash / as a delimiter. For more information on CLX applications, see Chapter 15,
“Developing cross-platform applications.”

Loading and saving graphics files

Graphic images that exist only for the duration of one running of an application are
of very limited value. Often, you either want to use the same picture every time, or
you want to save a created picture for later use. The image component makes it easy
to load pictures from a file and save them again.

The components you use to load, save, and replace graphic images support many
graphic formats including bitmap files, metafiles, glyphs, (pngs and xpms in CLX
applications) and so on. They also support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is
described in the following sections:

• Loading a picture from a file.
• Saving a picture to a file.
• Replacing the picture.

Loading a picture from a file
Your application should provide the ability to load a picture from a file if your
application needs to modify the picture or if you want to store the picture outside the
application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the
image control’s Picture object.

The following code gets a file name from an open picture file dialog box, and then
loads that file into an image control named Image:

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenPictureDialog1.Execute then
 begin
 CurrentFile := OpenPictureDialog1.FileName;
 Image.Picture.LoadFromFile(CurrentFile);
 end;
end;

12-20 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Saving a picture to a file
The picture object can load and save graphics in several formats, and you can create
and register your own graphic-file formats so that picture objects can load and store
them as well.

To save the contents of an image control in a file, call the SaveToFile method of the
image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is
newly created, it might not have a file name, or a user might want to save an existing
picture in a different file. In either case, the application needs to get a file name from
the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As
menu items, respectively, handle the resaving of named files, saving of unnamed
files, and saving existing files under new names.

procedure TForm1.Save1Click(Sender: TObject);
begin
 if CurrentFile <> '' then
 Image.Picture.SaveToFile(CurrentFile){ save if already named }
 else SaveAs1Click(Sender);{ otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin
 if SaveDialog1.Execute then{ get a file name }
 begin
 CurrentFile := SaveDialog1.FileName;{ save the user-specified name }
 Save1Click(Sender);{ then save normally }
 end;
end;

Replacing the picture
You can replace the picture in an image control at any time. If you assign a new
graphic to a picture that already has a graphic, the new graphic replaces the existing
one.

To replace the picture in an image control, assign a new graphic to the image
control’s Picture object.

Creating the new graphic is the same process you used to create the initial graphic
(see “Setting the initial bitmap size” on page 12-17), but you should also provide a
way for the user to choose a size other than the default size used for the initial
graphic. An easy way to provide that option is to present a dialog box, such as the
one in Figure 12.1.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-21

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Figure 12.1 Bitmap-dimension dialog box from the BMPDlg unit

This particular dialog box is created in the BMPDlg unit included with the GraphEx
project (in the demos\doc\graphex directory).

With such a dialog box in your project, add it to the uses clause in the unit for your
main form. You can then attach an event handler to the File|New menu item’s
OnClick event. Here’s an example:

procedure TForm1.New1Click(Sender: TObject);
var
 Bitmap: TBitmap;{ temporary variable for the new bitmap }
begin
 with NewBMPForm do
 begin
 ActiveControl := WidthEdit;{ make sure focus is on width field }
 WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width);{ use current dimensions... }
 HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height);{ ...as default }
 if ShowModal <> idCancel then{ continue if user doesn't cancel dialog box }
 begin
 Bitmap := TBitmap.Create;{ create fresh bitmap object }
 Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
 Bitmap.Height := StrToInt(HeightEdit.Text);{ use specified height }
 Image.Picture.Graphic := Bitmap;{ replace graphic with new bitmap }
 CurrentFile := '';{ indicate unnamed file }

Bitmap.Free;
 end;
 end;
end;

Note Assigning a new bitmap to the picture object’s Graphic property causes the picture
object to copy the new graphic, but it does not take ownership of it. The picture object
maintains its own internal graphic object. Because of this, the previous code frees the
bitmap object after making the assignment.

Using the clipboard with graphics

You can use the Windows clipboard to copy and paste graphics within your
applications or to exchange graphics with other applications. The VCL’s clipboard
object makes it easy to handle different kinds of information, including graphics.

Before you can use the clipboard object in your application, you must add the
Clipbrd (QClipbrd in CLX applications) unit to the uses clause of any unit that needs
to access clipboard data.

WidthEdit

HeightEdit

12-22 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

For CLX applications, data that is stored on the clipboard is stored as a MIME type
with an associated TStream object. CLX applications provide predefined constants for
the following MIME types.

Copying graphics to the clipboard
You can copy any picture, including the contents of image controls, to the clipboard.
Once on the clipboard, the picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the c7lipboard object using
the Assign method.

This code shows how to copy the picture from an image control named Image to the
clipboard in response to a click on an Edit|Copy menu item:

procedure TForm1.Copy1Click(Sender: TObject);
begin

Clipboard.Assign(Image.Picture)
end.

Cutting graphics to the clipboard
Cutting a graphic to the clipboard is exactly like copying it, but you also erase the
graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then
erase the original.

In most cases, the only issue with cutting is how to show that the original image is
erased. Setting the area to white is a common solution, as shown in the following
code that attaches an event handler to the OnClick event of the Edit|Cut menu item:

procedure TForm1.Cut1Click(Sender: TObject);
var
 ARect: TRect;
begin
 Copy1Click(Sender);{ copy picture to clipboard }
 with Image.Canvas do
 begin
 CopyMode := cmWhiteness;{ copy everything as white }
 ARect := Rect(0, 0, Image.Width, Image.Height);{ get bitmap rectangle }
 CopyRect(ARect, Image.Canvas, ARect);{ copy bitmap over itself }
 CopyMode := cmSrcCopy;{ restore normal mode }
 end;
end;

Table 12.4 CLX MIME types and constants

MIME type CLX constant

‘image/delphi.bitmap’ SDelphiBitmap

‘image/delphi.component’ SDelphiComponent

‘image/delphi.picture’ SDelphiPicture

‘image/delphi.drawing’ SDelphiDrawing

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-23

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Pasting graphics from the clipboard
If the clipboard contains a bitmapped graphic, you can paste it into any image object,
including image controls and the surface of a form.

To paste a graphic from the clipboard:

1 Call the clipboard’s HasFormat method (VCL applications) or Provides method
(CLX applications) to see whether the clipboard contains a graphic.

HasFormat (or Provides in CLX applications) is a Boolean function. It returns True if
the clipboard contains an item of the type specified in the parameter. To test for
graphics on the Windows platform, you pass CF_BITMAP. In CLX applications,
you pass SDelphiBitmap.

2 Assign the clipboard to the destination.

Note The following VCL code shows how to paste a picture from the clipboard into an
image control in response to a click on an Edit|Paste menu item:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.HasFormat(CF_BITMAP) then { is there a bitmap on the Windows clipboard?)
 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
end;

end;

Note The same example in a CLX application would look as follows:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.Provides(SDelphiBitmap) then { is there a bitmap on the clipboard?)
 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
end;

end;

The graphic on the clipboard could come from this application, or it could have been
copied from another application, such as Microsoft Paint. You do not need to check
the clipboard format in this case because the paste menu should be disabled when
the clipboard does not contain a supported format.

12-24 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Rubber banding example

This example describes the details of implementing the “rubber banding” effect in an
graphics application that tracks mouse movements as the user draws a graphic at
runtime. The example code in this section is taken from a sample application located
in the Demos\Doc\Graphexdirectory. The application draws lines and shapes on a
window’s canvas in response to clicks and drags: pressing a mouse button starts
drawing, and releasing the button ends the drawing.

To start with, the example code shows how to draw on the surface of the main form.
Later examples demonstrate drawing on a bitmap.

The following topics describe the example:

• Responding to the mouse.
• Adding a field to a form object to track mouse actions.
• Refining line drawing.

Responding to the mouse
Your application can respond to the mouse actions: mouse-button down, mouse
moved, and mouse-button up. It can also respond to a click (a complete press-and-
release, all in one place) that can be generated by some kinds of keystrokes (such as
pressing Enter in a modal dialog box).

This section covers:

• What’s in a mouse event.
• Responding to a mouse-down action.
• Responding to a mouse-up action.
• Responding to a mouse move.

What’s in a mouse event?
A mouse event occurs when a user moves the mouse in the user interface of an
application. The VCL has three mouse events.

Table 12.5 Mouse events

Event Description

OnMouseDown event Occurs when the user presses a mouse button with the mouse pointer
over a control.

OnMouseMove event Occurs when the user moves the mouse while the mouse pointer is over a
control.

OnMouseUp event Occurs when the user releases a mouse button that was pressed with the
mouse pointer over a component.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-25

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

When an application detects a mouse action, it calls whatever event handler you’ve
defined for the corresponding event, passing five parameters. Use the information in
those parameters to customize your responses to the events. The five parameters are as
follows:

Most of the time, you need the coordinates returned in a mouse-event handler, but
sometimes you also need to check Button to determine which mouse button caused
the event.

Note Delphi uses the same criteria as Microsoft Windows in determining which mouse
button has been pressed. Thus, if you have switched the default “primary” and
“secondary” mouse buttons (so that the right mouse button is now the primary
button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

Responding to a mouse-down action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to
the object the pointer is over. The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown
event.

The Code editor generates an empty handler for a mouse-down event on the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
end;

Responding to a mouse-down action
The following code displays the string 'Here!' at the location on a form clicked with
the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.TextOut(X, Y, 'Here!');{ write text at (X, Y) }
end;

Table 12.6 Mouse-event parameters

Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action

X, Y The coordinates where the event occurred

12-26 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

When the application runs, you can press the mouse button down with the mouse
cursor on the form and have the string, “Here!” appear at the point clicked. This code
sets the current drawing position to the coordinates where the user presses the
button:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(X, Y);{ set pen position }
end;

Pressing the mouse button now sets the pen position, setting the line’s starting point.
To draw a line to the point where the user releases the button, you need to respond to
a mouse-up event.

Responding to a mouse-up action
An OnMouseUp event occurs whenever the user releases a mouse button. The event
usually goes to the object the mouse cursor is over when the user presses the button,
which is not necessarily the same object the cursor is over when the button is
released. This enables you, for example, to draw a line as if it extended beyond the
border of the form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Here’s a simple OnMouseUp event handler that draws a line to the point of the
mouse-button release:

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);{ draw line from PenPos to (X, Y) }
end;

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the
user cannot see the line until the mouse button is released.

Responding to a mouse move
An OnMouseMove event occurs periodically when the user moves the mouse. The
event goes to the object that was under the mouse pointer when the user pressed the
button. This allows you to give the user some intermediate feedback by drawing
temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove
event. This example uses mouse-move events to draw intermediate shapes on a form
while the user holds down the mouse button, thus providing some feedback to the
user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);{ draw line to current position }
end;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-27

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

With this code, moving the mouse over the form causes drawing to follow the mouse,
even before the mouse button is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an
object field to the form object.

Adding a field to a form object to track mouse actions
To track whether a mouse button was pressed, you must add an object field to the
form object. When you add a component to a form, Delphi adds a field that
represents that component to the form object, so that you can refer to the component
by the name of its field. You can also add your own fields to forms by editing the
type declaration in the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a
mouse button. To do that, it adds a Boolean field and sets its value when the user
presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field
identifier and type after the public directive at the bottom of the declaration.

Delphi “owns” any declarations before the public directive: that’s where it puts the
fields that represent controls and the methods that respond to events.

The following code gives a form a field called Drawing of type Boolean, in the form
object’s declaration. It also adds two fields to store points Origin and MovePt of
typeTPoint.

type
 TForm1 = class(TForm)
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 public
 Drawing: Boolean;{ field to track whether button was pressed }
 Origin, MovePt: TPoint;{ fields to store points }
 end;

When you have a Drawing field to track whether to draw, set it to True when the user
presses the mouse button, and False when the user releases it:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;{ set the Drawing flag }
 Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);

12-28 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

begin
 Canvas.LineTo(X, Y);
 Drawing := False;{ clear the Drawing flag }
end;

Then you can modify the OnMouseMove event handler to draw only when Drawing is
True:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then{ only draw if Drawing flag is set }
 Canvas.LineTo(X, Y);
end;

This results in drawing only between the mouse-down and mouse-up events, but
you still get a scribbled line that tracks the mouse movements instead of a straight
line.

The problem is that each time you move the mouse, the mouse-move event handler
calls LineTo, which moves the pen position, so by the time you release the button,
you’ve lost the point where the straight line was supposed to start.

Refining line drawing
With fields in place to track various points, you can refine an application’s line
drawing.

Tracking the origin point
When drawing lines, track the point where the line starts with the Origin field. Origin
must be set to the point where the mouse-down event occurs, so the mouse-up event
handler can use Origin to place the beginning of the line, as in this code:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);{ record where the line starts }
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
 Canvas.LineTo(X, Y);
 Drawing := False;
end;

Those changes get the application to draw the final line again, but they do not draw
any intermediate actions—the application does not yet support “rubber banding.”

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-29

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Tracking movement
The problem with this example as the OnMouseMove event handler is currently
written is that it draws the line to the current mouse position from the last mouse
position, not from the original position. You can correct this by moving the drawing
position to the origin point, then drawing to the current point:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen to starting point }
 Canvas.LineTo(X, Y);
 end;
end;

The above tracks the current mouse position, but the intermediate lines do not go
away, so you can hardly see the final line. The example needs to erase each line
before drawing the next one, by keeping track of where the previous one was. The
MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt
and Origin to erase that line the next time a line is drawn:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);
 MovePt := Point(X, Y);{ keep track of where this move was }
end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;{ use XOR mode to draw/erase }
 Canvas.MoveTo(Origin.X, Origin.Y);{ move pen back to origin }
 Canvas.LineTo(MovePt.X, MovePt.Y);{ erase the old line }
 Canvas.MoveTo(Origin.X, Origin.Y);{ start at origin again }
 Canvas.LineTo(X, Y);{ draw the new line }
 end;
 MovePt := Point(X, Y);{ record point for next move }
 Canvas.Pen.Mode := pmCopy;
end;

Now you get a “rubber band” effect when you draw the line. By changing the pen’s
mode to pmNotXor, you have it combine your line with the background pixels. When
you go to erase the line, you’re actually setting the pixels back to the way they were.
By changing the pen mode back to pmCopy (its default value) after drawing the lines,
you ensure that the pen is ready to do its final drawing when you release the mouse
button.

12-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

Working with multimedia
You can add multimedia components to your applications. To do this, you can use
either the TAnimate component on the Win32 (Common Controls in CLX
applications) page or the TMediaPlayer component (not available in CLX
applications) on the System page of the Component palette. Use the animate
component when you want to add silent video clips to your application. Use the
media player component when you want to add audio and/or video clips to an
application.

For more information on the TAnimate and TMediaPlayer components, see the online
Help.

The following topics are discussed in this section:

• Adding silent video clips to an application
• Adding audio and/or video clips to an application

Adding silent video clips to an application

With the animation control, you can add silent video clips to your application:

1 Double-click the TAnimate icon on the Win32 (Common Control in CLX
applications) page of the Component palette. This automatically puts an
animation control on the form window in which you want to display the video
clip.

2 Using the Object Inspector, select the Name property and enter a new name for
your animation control. You will use this name when you call the animation
control. (Follow the standard rules for naming Delphi identifiers).

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Do one of the following:

• Select the Common AVI property and choose one of the AVIs available from the
drop-down list; or

• Select the resource of an AVI using the ResName or ResID properties. Use
ResHandle to indicate the module that contains the resource identified by
ResName or ResID; or

• Select the FileName property and click the ellipsis (…) button, choose an AVI file
(GIF in CLX applications) from any available local or network directories and
click Open in the Open AVI or Open GIF dialog (Windows and cross-platform
applications).

This loads the AVI or GIF file into memory. If you want to display the first frame
of the AVI or GIF clip on-screen until it is played using the Active property or the
Play method, then set the Open property to True.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-31

W o r k i n g w i t h m u l t i m e d i a

4 Set the Repetitions property to the number of times you want to the AVI or GIF clip
to play. If this value is 0, then the sequence is repeated until the Stop method is
called.

5 Make any other changes to the animation control settings. For example, if you
want to change the first frame displayed when animation control opens, then set
the StartFrame property to the desired frame value.

6 Set the Active property to True using the drop-down list or write an event handler
to run the AVI or GIF clip when a specific event takes place at runtime. For
example, to activate the AVI or GIF clip when a button object is clicked, write the
button’s OnClick event specifying that. You may also call the Play method to
specify when to play the AVI (VCL only).

Note If you make any changes to the form or any of the components on the form after
setting Active to True, the Active property becomes False and you have to reset it to
True. Do this either just before runtime or at runtime.

Example of adding silent video clips
Suppose you want to display an animated logo as the first screen that appears when
your application starts. After the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas
and save the Project1.dpr file as Logo.dpr. Then:

1 Double-click the animate icon from the Win32 page of the Component palette.

2 Using the Object Inspector, set its Name property to Logo1.

3 Select its FileName property, click the ellipsis (…) button, choose the cool.avi file
from your ..\Demos\Coolstuf directory. Then click Open in the Open AVI dialog.

This loads the cool.avi file into memory.

4 Position the animation control box on the form by clicking and dragging it to the
top right hand side of the form.

5 Set its Repetitions property to 5.

6 Click the form to bring focus to it and set its Name property to LogoForm1 and its
Caption property to Logo Window. Now decrease the height of the form to right-
center the animation control on it.

7 Double-click the form’s OnActivate event and write the following code to run the
AVI clip when the form is in focus at runtime:

Logo1.Active := True;

8 Double-click the Label icon on the Standard page of the Component palette. Select
its Caption property and enter Welcome to Cool Images 4.0. Now select its Font
property, click the ellipsis (…) button and choose Font Style: Bold, Size: 18, Color:
Navy from the Font dialog and click OK. Click and drag the label control to center
it on the form.

12-32 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

9 Click the animation control to bring focus back to it. Double-click its OnStop event
and write the following code to close the form when the AVI file stops:

LogoForm1.Close;

10 Select Run|Run to execute the animated logo window.

Adding audio and/or video clips to an application

With the media player component, you can add audio and/or video clips to your
application. It opens a media device and plays, stops, pauses, records, etc., the audio
and/or video clips used by the media device. The media device may be hardware or
software.

Note Audio support is not available in cross-platform applications.

 To add an audio and/or video clip to an application:

1 Double-click the media player icon on the System page of the Component palette.
This automatically put a media player control on the form window in which you
want the media feature.

2 Using the Object Inspector, select the Name property and enter a new name for your
media player control. You will use this when you call the media player control.
(Follow the standard rules for naming Delphi identifiers.)

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Select the DeviceType property and choose the appropriate device type to open
using the AutoOpen property or the Open method. (If DeviceType is dtAutoSelect
the device type is selected based on the file extension of the media file specified by
the FileName property.) For more information on device types and their functions,
see Table 12.7.

4 If the device stores its media in a file, specify the name of the media file using the
FileName property. Select the FileName property, click the ellipsis (…) button, and
choose a media file from any available local or network directories and click Open
in the Open dialog. Otherwise, insert the hardware the media is stored in (disk,
cassette, and so on) for the selected media device, at runtime.

5 Set the AutoOpen property to True. This way the media player automatically opens
the specified device when the form containing the media player control is created
at runtime. If AutoOpen is False, the device must be opened with a call to the Open
method.

6 Set the AutoEnable property to True to automatically enable or disable the media
player buttons as required at runtime; or, double-click the EnabledButtons property
to set each button to True or False depending on which ones you want to enable or
disable.

The multimedia device is played, paused, stopped, and so on when the user clicks
the corresponding button on the media player component. The device can also be
controlled by the methods that correspond to the buttons (Play, Pause, Stop, Next,
Previous, and so on).

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 12-33

W o r k i n g w i t h m u l t i m e d i a

7 Position the media player control bar on the form by either clicking and dragging
it to the appropriate place on the form or by selecting the Align property and
choosing the appropriate align position from the drop down list.

If you want the media player to be invisible at runtime, set the Visible property to
False and control the device by calling the appropriate methods (Play, Pause, Stop,
Next, Previous, Step, Back, Start Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the
media requires a display window, set the Display property to the control that
displays the media. If the device uses multiple tracks, set the Tracks property to the
desired track.

Example of adding audio and/or video clips (VCL only)
This example runs an AVI video clip of a multimedia advertisement. To run this
example, create a new project and save the Unit1.pas file to FrmAd.pas and save the
Project1.dpr file to DelphiAd.dpr. Then:

1 Double-click the media player icon on the System page of the Component palette.

2 Using the Object Inspector, set the Name property of the media player to
VideoPlayer1.

3 Select its DeviceType property and choose dtAVIVideo from the drop-down list.

4 Select its FileName property, click the ellipsis (…) button, choose the speedis.avi
file from your ..\Demos\Coolstuf directory. Click Open in the Open dialog.

5 Set its AutoOpen property to True and its Visible property to False.

Table 12.7 Multimedia device types and their functions

Device Type Software/Hardware used Plays
Uses
Tracks

Uses a
Display
Window

dtAVIVideo AVI Video Player for
Windows

 AVI Video files No Yes

dtCDAudio CD Audio Player for
Windows or a CD Audio
Player

CD Audio Disks Yes No

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes No

dtDigitalVideo Digital Video Player for
Windows

AVI, MPG, MOV files No Yes

dtMMMovie MM Movie Player MM film No Yes

dtOverlay Overlay device Analog Video No Yes

dtScanner Image Scanner N/A for Play (scans
images on Record)

No No

dtSequencer MIDI Sequencer for
Windows

MIDI files Yes No

dtVCR Video Cassette Recorder Video Cassettes No Yes

dtWaveAudio Wave Audio Player for
Windows

WAV files No No

12-34 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

6 Double-click the Animate icon from the Win32 page of the Component palette. Set
its AutoSize property to False, its Height property to 175 and Width property to
200. Click and drag the animation control to the top left corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and
choose Animate1 from the drop down list.

8 Click the form to bring focus to it and select its Name property and enter
Delphi_Ad. Now resize the form to the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the
AVI video when the form is in focus:

VideoPlayer1.Play;

10 Choose Run|Run to execute the AVI video.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-1

C h a p t e r

13
Chapter13Writing multi-threaded applications

Several objects make writing multi-threaded applications easier. Multi-threaded
applications are applications that include several simultaneous paths of execution.
While using multiple threads requires careful thought, it can enhance your programs
by:

• Avoiding bottlenecks. With only one thread, a program must stop all execution
when waiting for slow processes such as accessing files on disk, communicating
with other machines, or displaying multimedia content. The CPU sits idle until the
process completes. With multiple threads, your application can continue execution
in separate threads while one thread waits for the results of a slow process.

• Organizing program behavior. Often, a program’s behavior can be organized into
several parallel processes that function independently. Use threads to launch a
single section of code simultaneously for each of these parallel cases. Use threads
to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.

• Multiprocessing. If the system running your program has multiple processors,
you can improve performance by dividing the work into several threads and
letting them run simultaneously on separate processors.

Note Not all operating systems implement true multi-processing, even when it is
supported by the underlying hardware. For example, Windows 9x only simulates
multiprocessing, even if the underlying hardware supports it.

13-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Defining thread objects
For most applications, you can use a thread object to represent an execution thread in
your application. Thread objects simplify writing multi-threaded applications by
encapsulating the most commonly needed uses of threads.

Note Thread objects do not allow you to control the security attributes or stack size of your
threads. If you need to control these, you must use the BeginThread function. Even
when using BeginThread, you can still benefit from some of the thread
synchronization objects and methods described in “Coordinating threads” on
page 13-7. For more information on using BeginThread, see the online Help.

To use a thread object in your application, you must create a new descendant of
TThread. To create a descendant of TThread, choose File|New|Other from the main
menu. In the New Items dialog box, double-click Thread Object and enter a class
name, such as TMyThread. To name this new thread, check the Named Thread check
box and enter a thread name (VCL applications only). Naming your thread makes it
easier to track the thread while debugging. After you click OK, the Code editor
creates a new unit file to implement the thread. For more information on naming
threads, see “Naming a thread” on page 13-13.

Note Unlike most dialog boxes in the IDE that require a class name, the New Thread
Object dialog box does not automatically prepend a ‘T’ to the front of the class name
you provide.

The automatically generated unit file contains the skeleton code for your new thread
class. If you named your thread TMyThread, it would look like the following:

unit Unit2;
interface
uses
 Classes;
type
 TMyThread = class(TThread)
 private
 { Private declarations }
 protected
 procedure Execute; override;
 end;
implementation
{ TMyThread }
procedure TMyThread.Execute;
begin
 { Place thread code here }
end;
end.

You must fill in the code for the Execute method. These steps are described in the
following sections.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-3

D e f i n i n g t h r e a d o b j e c t s

Initializing the thread

If you want to write initialization code for your new thread class, you must override
the Create method. Add a new constructor to the declaration of your thread class and
write the initialization code as its implementation. This is where you can assign a
default priority for your thread and indicate whether it should be freed automatically
when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system
schedules CPU time among all the threads in your application. Use a high priority
thread to handle time critical tasks, and a low priority thread to perform other tasks.
To indicate the priority of your thread object, set the Priority property.

If writing a Windows-only application, Priority values fall along a scale, as described
in Table 13.1:

Note For CLX applications, you must use separate code for assigning priorities on
Windows and Linux. On Linux, Priority is a numeric value that depends on the
threading policy which can only be changed by root. See the CLX version of TThread
and Priority online Help for details.

Warning Boosting the thread priority of a CPU intensive operation may “starve” other threads
in the application. Only apply priority boosts to threads that spend most of their time
waiting for external events.

The following code shows the constructor of a low-priority thread that performs
background tasks which should not interfere with the rest of the application’s
performance:

constructor TMyThread.Create(CreateSuspended: Boolean);
begin
 inherited Create(CreateSuspended);
 Priority := tpIdle;
end;

Table 13.1 Thread priorities

Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt other
threads to execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

13-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it
is easiest to let the thread object free itself. To do this, set the FreeOnTerminate
property to True.

There are times, however, when the termination of a thread must be coordinated
with other threads. For example, you may be waiting for one thread to return a value
before performing an action in another thread. To do this, you do not want to free the
first thread until the second has received the return value. You can handle this
situation by setting FreeOnTerminate to False and then explicitly freeing the first
thread from the second.

Writing the thread function

The Execute method is your thread function. You can think of it as a program that is
launched by your application, except that it shares the same process space. Writing
the thread function is a little trickier than writing a separate program because you
must make sure that you don’t overwrite memory that is used by other threads in
your application. On the other hand, because the thread shares the same process
space with other threads, you can use the shared memory to communicate between
threads.

Using the main VCL/CLX thread
When you use objects from the class hierarchy, their properties and methods are not
guaranteed to be thread-safe. That is, accessing properties or executing methods may
perform some actions that use memory which is not protected from the actions of
other threads. Because of this, a main thread is set aside to access VCL and CLX
objects. This is the thread that handles all Windows messages received by
components in your application.

If all objects access their properties and execute their methods within this single
thread, you need not worry about your objects interfering with each other. To use the
main thread, create a separate routine that performs the required actions. Call this
separate routine from within your thread’s Synchronize method. For example:

procedure TMyThread.PushTheButton;
begin
 Button1.Click;
end;
ƒ
procedure TMyThread.Execute;
begin
 ƒ
 Synchronize(PushTheButton);
 ƒ
end;

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-5

D e f i n i n g t h r e a d o b j e c t s

Synchronize waits for the main thread to enter the message loop and then executes the
passed method.

Note Because Synchronize uses the message loop, it does not work in console applications.
You must use other mechanisms, such as critical sections, to protect access to VCL or
CLX objects in console applications.

You do not always need to use the main thread. Some objects are thread-aware.
Omitting the use of the Synchronize method when you know an object’s methods are
thread-safe will improve performance because you don’t need to wait for the VCL or
CLX thread to enter its message loop. You do not need to use the Synchronize method
for the following objects:

• Data access components are thread-safe as follows: For BDE-enabled datasets,
each thread must have its own database session component. The one exception to
this is when you are using Microsoft Access drivers, which are built using a
Microsoft library that is not thread-safe. For dbExpress, as long as the vendor
client library is thread-safe, the dbExpress components will be thread-safe. ADO
and InterBaseExpress components are thread-safe.

When using data access components, you must still wrap all calls that involve
data-aware controls in the Synchronize method. Thus, for example, you need to
synchronize calls that link a data control to a dataset by setting the DataSet
property of the data source object, but you don’t need to synchronize to access the
data in a field of the dataset.

For more information about using database sessions with threads in BDE-enabled
applications, see “Managing multiple sessions” on page 26-29.

• Controls are not thread-safe.

• Graphics objects are thread-safe. You do not need to use the main VCL or CLX
thread to access TFont, TPen, TBrush, TBitmap, TMetafile (VCL only), TDrawing
(CLX only), or TIcon. Canvas objects can be used outside the Synchronize method
by locking them (see “Locking objects” on page 13-8).

• While list objects are not thread-safe, you can use a thread-safe version,
TThreadList, instead of TList.

Call the CheckSynchronize routine periodically within the main thread of your
application so that background threads can synchronize their execution with the
main thread. The best place to call CheckSynchronize is when the application is idle
(for example, from an OnIdle event handler). This ensures that it is safe to make
method calls in the background thread.

13-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Using thread-local variables
Your Execute method and any of the routines it calls have their own local variables,
just like any other Dephi language routines. These routines also can access any global
variables. In fact, global variables provide a powerful mechanism for communicating
between threads.

Sometimes, however, you may want to use variables that are global to all the routines
running in your thread, but not shared with other instances of the same thread class.
You can do this by declaring thread-local variables. Make a variable thread-local by
declaring it in a threadvar section. For example,

threadvar
 x : integer;

declares an integer type variable that is private to each thread in the application, but
global within each thread.

The threadvar section can only be used for global variables. Pointer and Function
variables can’t be thread variables. Types that use copy-on-write semantics, such as
long strings don’t work as thread variables either.

Checking for termination by other threads
Your thread begins running when the Execute method is called (see “Executing
thread objects” on page 13-12) and continues until Execute finishes. This reflects the
model that the thread performs a specific task, and then stops when it is finished.
Sometimes, however, an application needs a thread to execute until some external
criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish
executing by checking the Terminated property. When another thread tries to
terminate your thread, it calls the Terminate method. Terminate sets your thread’s
Terminated property to True. It is up to your Execute method to implement the
Terminate method by checking and responding to the Terminated property. The
following example shows one way to do this:

procedure TMyThread.Execute;
begin
 while not Terminated do
 PerformSomeTask;
end;

Handling exceptions in the thread function
The Execute method must catch all exceptions that occur in the thread. If you fail to
catch an exception in your thread function, your application can cause access
violations. This may not be obvious when you are developing your application,
because the IDE catches the exception, but when you run your application outside of
the debugger, the exception will cause a runtime error and the application will stop
running.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-7

C o o r d i n a t i n g t h r e a d s

To catch the exceptions that occur inside your thread function, add a try...except
block to the implementation of the Execute method:

procedure TMyThread.Execute;
begin

try
while not Terminated do

 PerformSomeTask;
except

{ do something with exceptions }
end;

end;

Writing clean-up code

You can centralize the code that cleans up when your thread finishes executing. Just
before a thread shuts down, an OnTerminate event occurs. Put any clean-up code in
the OnTerminate event handler to ensure that it is always executed, no matter what
execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in
the context of the main VCL or CLX thread of your application. This has two
implications:

• You can’t use any thread-local variables in an OnTerminate event handler (unless
you want the main VCL or CLX thread values).

• You can safely access any objects from the OnTerminate event handler without
worrying about clashing with other threads.

For more information about the main VCL or CLX thread, see “Using the main VCL/
CLX thread” on page 13-4.

Coordinating threads
When writing the code that runs when your thread is executed, you must consider
the behavior of other threads that may be executing simultaneously. In particular,
care must be taken to avoid two threads trying to use the same global object or
variable at the same time. In addition, the code in one thread can depend on the
results of tasks performed by other threads.

Avoiding simultaneous access

To avoid clashing with other threads when accessing global objects or variables, you
may need to block the execution of other threads until your thread code has finished
an operation. Be careful not to block other execution threads unnecessarily. Doing so
can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

13-8 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Locking objects
Some objects have built-in locking that prevents the execution of other threads from
using that object instance.

For example, canvas objects (TCanvas and descendants) have a Lock method that
prevents other threads from accessing the canvas until the Unlock method is called.

VCL and CLX applications also include a thread-safe list object, TThreadList. Calling
TThreadList.LockList returns the list object while also blocking other execution threads
from using the list until the UnlockList method is called. Calls to TCanvas.Lock or
TThreadList.LockList can be safely nested. The lock is not released until the last locking
call is matched with a corresponding unlock call in the same thread.

Using critical sections
If objects do not provide built-in locking, you can use a critical section. Critical
sections work like gates that allow only a single thread to enter at a time. To use a
critical section, create a global instance of TCriticalSection. TCriticalSection has two
methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every
thread that accesses that global memory should first use the Acquire method to
ensure that no other thread is using it. When finished, threads call the Release method
so that other threads can access the global memory by calling Acquire.

Warning Critical sections only work if every thread uses them to access the associated global
memory. Threads that ignore the critical section and access the global memory
without calling Acquire can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable,
LockXY, that blocks access to global variables X and Y. Any thread that uses X or Y
must surround that use with calls to the critical section such as the following:

LockXY.Acquire; { lock out other threads }
try
 Y := sin(X);
finally
 LockXY.Release;
end;

Using the multi-read exclusive-write synchronizer
When you use critical sections to protect global memory, only one thread can use the
memory at a time. This can be more protection than you need, especially if you have
an object or variable that must be read often but to which you very seldom write.
There is no danger in multiple threads reading the same memory simultaneously, as
long as no thread is writing to it.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-9

C o o r d i n a t i n g t h r e a d s

When you have some global memory that is read often, but to which threads
occasionally write, you can protect it using TMultiReadExclusiveWriteSynchronizer.
This object acts like a critical section, but allows multiple threads to read the memory
it protects as long as no thread is writing to it. Threads must have exclusive access to
write to memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you
want to protect. Every thread that reads from this memory must first call the
BeginRead method. BeginRead ensures that no other thread is currently writing to the
memory. When a thread finishes reading the protected memory, it calls the EndRead
method. Any thread that writes to the protected memory must call BeginWrite first.
BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

Warning Like critical sections, the multi-read exclusive-write synchronizer only works if every
thread uses it to access the associated global memory. Threads that ignore the
synchronizer and access the global memory without calling BeginRead or BeginWrite
introduce problems of simultaneous access.

Other techniques for sharing memory
When using VCL or CLX objects, use the main thread to execute your code. Using the
main thread ensures that the object does not indirectly access any memory that is also
used by VCL or CLX objects in other threads. See “Using the main VCL/CLX thread”
on page 13-4 for more information on the main thread.

If the global memory does not need to be shared by multiple threads, consider using
thread-local variables instead of global variables. By using thread-local variables,
your thread does not need to wait for or lock out any other threads. See “Using
thread-local variables” on page 13-6 for more information about thread-local
variables.

Waiting for other threads

If your thread must wait for another thread to finish some task, you can tell your
thread to temporarily suspend execution. You can either wait for another thread to
completely finish executing, or you can wait for another thread to signal that it has
completed a task.

13-10 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Waiting for a thread to finish executing
To wait for another thread to finish executing, use the WaitFor method of that other
thread. WaitFor doesn’t return until the other thread terminates, either by finishing
its own Execute method or by terminating due to an exception. For example, the
following code waits until another thread fills a thread list object before accessing the
objects in the list:

if ListFillingThread.WaitFor then
begin
 with ThreadList1.LockList do
 begin
 for I := 0 to Count - 1 do
 ProcessItem(Items[I]);
 end;
 ThreadList1.UnlockList;
end;

In the previous example, the list items were only accessed when the WaitFor method
indicated that the list was successfully filled. This return value must be assigned by
the Execute method of the thread that was waited for. However, because threads that
call WaitFor want to know the result of thread execution, not code that calls Execute,
the Execute method does not return any value. Instead, the Execute method sets the
ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their
meaning.

Waiting for a task to be completed
Sometimes, you need to wait for a thread to finish some operation rather than
waiting for a particular thread to complete execution. To do this, use an event object.
Event objects (TEvent) should be created with global scope so that they can act like
signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls
TEvent.SetEvent. SetEvent turns on the signal, so any other thread that checks will
know that the operation has completed. To turn off the signal, use the ResetEvent
method.

For example, consider a situation where you must wait for several threads to
complete their execution rather than a single thread. Because you don’t know which
thread will finish last, you can’t simply use the WaitFor method of one of the threads.
Instead, you can have each thread increment a counter when it is finished, and have
the last thread signal that they are all done by setting an event.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-11

C o o r d i n a t i n g t h r e a d s

The following code shows the end of the OnTerminate event handler for all of the
threads that must complete. CounterGuard is a global critical section object that
prevents multiple threads from using the counter at the same time. Counter is a global
variable that counts the number of threads that have completed.

procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin
 ƒ
 CounterGuard.Acquire; { obtain a lock on the counter }
 Dec(Counter); { decrement the global counter variable }
 if Counter = 0 then
 Event1.SetEvent; { signal if this is the last thread }
 CounterGuard.Release; { release the lock on the counter }
 ƒ
end;

The main thread initializes the Counter variable, launches the task threads, and waits
for the signal that they are all done by calling the WaitFor method. WaitFor waits for a
specified time period for the signal to be set, and returns one of the values from Table
13.2.

The following shows how the main thread launches the task threads and then
resumes when they have all completed:

Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do
 TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) <> wrSignaled then
 raise Exception;
{ now continue with the main thread. All task threads have finished }

Note If you do not want to stop waiting for an event after a specified time period, pass the
WaitFor method a parameter value of INFINITE. Be careful when using INFINITE,
because your thread will hang if the anticipated signal is never received.

Table 13.2 WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the time-out period elapsed.

wrError An error occurred while waiting.

13-12 D e v e l o p e r ’ s G u i d e

E x e c u t i n g t h r e a d o b j e c t s

Executing thread objects
Once you have implemented a thread class by giving it an Execute method, you can
use it in your application to launch the code in the Execute method. To use a thread,
first create an instance of the thread class. You can create a thread instance that starts
running immediately, or you can create your thread in a suspended state so that it
only begins when you call the Resume method. To create a thread so that it starts up
immediately, set the constructor’s CreateSuspended parameter to False. For example,
the following line creates a thread and starts its execution:

SecondThread := TMyThread.Create(false); {create and run the thread }

Warning Do not create too many threads in your application. The overhead in managing
multiple threads can impact performance. The recommended limit is 16 threads per
process on single processor systems. This limit assumes that most of those threads
are waiting for external events. If all threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code.
For example, you can launch a new instance of a thread in response to some user
action, allowing each thread to perform the expected response.

Overriding the default priority

When the amount of CPU time the thread should receive is implicit in the thread’s
task, its priority is set in the constructor. This is described in “Initializing the thread”
on page 13-3. However, if the thread priority varies depending on when the thread is
executed, create the thread in a suspended state, set the priority, and then start the
thread running:

SecondThread := TMyThread.Create(True); { create but don’t run }
SecondThread.Priority := tpLower; { set the priority lower than normal }
SecondThread.Resume; { now run the thread }

Note If writing a cross-platform application, you must use separate code for assigning
priorities on Windows and Linux. On Linux, Priority is a numeric value that depends
on the threading policy which can only be changed by root. See the CLX version of
TThread and Priority in online Help for details.

Starting and stopping threads

A thread can be started and stopped any number of times before it finishes executing.
To stop a thread temporarily, call its Suspend method. When it is safe for the thread to
resume, call its Resume method. Suspend increases an internal counter, so you can nest
calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate
method. Terminate sets the thread’s Terminated property to True. If you have
implemented the Execute method properly, it checks the Terminated property
periodically, and stops execution when Terminated is True.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-13

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

Debugging multi-threaded applications
When debugging multi-threaded applications, it can be confusing trying to keep
track of the status of all the threads that are executing simultaneously, or even to
determine which thread is executing when you stop at a breakpoint. You can use the
Thread Status box to help you keep track of and manipulate all the threads in your
application. To display the Thread status box, choose View|Debug Windows|
Threads from the main menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view
indicates the status of each thread. Right-click the Thread Status box to access
commands that locate the corresponding source location or make a different thread
current. When a thread is marked as current, the next step or run operation is relative
to that thread.

The Thread Status box lists all your application’s execution threads by their thread
ID. If you are using thread objects, the thread ID is the value of the ThreadID
property. If you are not using thread objects, the thread ID for each thread is returned
by the call to BeginThread.

For additional details on the Thread Status box, see online Help.

Naming a thread

Because it is difficult to tell which thread ID refers to which thread in the Thread
Status box, you can name your thread classes. When you are creating a thread class in
the Thread Object dialog box, besides entering a class name, also check the Named
Thread check box, enter a thread name, and click OK.

Naming the thread class adds a method to your thread class called SetName. When
the thread starts running, it calls the SetName method first.

Note You can name threads in VCL applications only.

Converting an unnamed thread to a named thread
You can convert an unnamed thread to a named thread. For example, if you have a
thread class that was created using Delphi 6 or earlier, convert it into a named thread
using the following steps.

1 Add the Windows unit to the uses clause of the unit your thread is declared in:

//---
uses
 Classes {$IFDEF MSWINDOWS} , Windows {$ENDIF};
//---

13-14 D e v e l o p e r ’ s G u i d e

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

2 Add the SetName method to your thread class in the interface section:

//---
type
 TMyThread = class(TThread)
 private
 procedure SetName;
 protected
 procedure Execute; override;
 end;
//---

3 Add the TThreadNameInfo record and SetName method in the implementation
section:

//---
{$IFDEF MSWINDOWS}
type
 TThreadNameInfo = record
 FType: LongWord; // must be 0x1000
 FName: PChar; // pointer to name (in user address space)
 FThreadID: LongWord; // thread ID (-1 indicates caller thread)
 FFlags: LongWord; // reserved for future use, must be zero
 end;
{$ENDIF}

{ TMyThread }

procedure TMyThread.SetName;
{$IFDEF MSWINDOWS}
var
 ThreadNameInfo: TThreadNameInfo;
{$ENDIF}
begin
{$IFDEF MSWINDOWS}
 ThreadNameInfo.FType := $1000;
 ThreadNameInfo.FName := 'MyThreadName';
 ThreadNameInfo.FThreadID := $FFFFFFFF;
 ThreadNameInfo.FFlags := 0;

try
 RaiseException($406D1388, 0, sizeof(ThreadNameInfo) div sizeof(LongWord),
@ThreadNameInfo);
 except
 end;
{$ENDIF}
end;
//---

Note Set TThreadNameInfo to the name of your thread class.

The debugger sees the exception and looks up the thread name in the structure
you pass in. When debugging, the debugger displays the name of the thread in the
Thread Status box’s thread ID field.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 13-15

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

4 Add a call to the new SetName method at the beginning of your thread’s Execute
method:

//---
procedure TMyThread.Execute;
begin
 SetName;
 { Place thread code here }
end;
//---

Assigning separate names to similar threads
All thread instances from the same thread class have the same name. However, you
can assign a different name for each thread instance at runtime using the following
steps.

1 Add a ThreadName property to the thread class by adding the following in the class
definition:

property ThreadName: string read FName write FName;

2 In the SetName method, change where it says:

ThreadNameInfo.FName := 'MyThreadName';

to:

ThreadNameInfo.FName := ThreadName;

3 When you create the thread object:

a Create it suspended. See “Executing thread objects” on page 13-12.

b Assign a name, such as MyThread.ThreadName := 'SearchForFiles';

c Resume the thread. See “Starting and stopping threads” on page 13-12.

13-16 D e v e l o p e r ’ s G u i d e

E x c e p t i o n h a n d l i n g 14-1

C h a p t e r

14
Chapter14Exception handling

Exceptions are exceptional conditions that require special handling. They include
errors that occur at runtime, such as divide by zero, and the exhaustion of free store.
Exception handling provides a standard way of dealing with errors, discovering both
anticipated and unanticipated problems, and enables developers to recognize, track
down, and fix bugs.

When an error occurs, the program raises an exception, meaning it creates an
exception object and rolls back the stack to the first point it finds where you have
code to handle the exception. The exception object usually contains information
about what happened. This allows another part of the program to diagnose the cause
of the exception.

To make your applications robust, your code needs to recognize exceptions when
they occur and respond to them. If you don't specify a response, the application
presents a message box describing the error. Your job, then, is to recognize places
where errors might happen, and define responses, particularly in areas where errors
could cause the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you
have a series of statements that all require the same kind of response to errors, you
can group them into a block and define error responses that apply to the whole block.

Blocks with specific responses to exceptions are called protected blocks because they
can guard against errors that might otherwise either terminate the application or
damage data.

14-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o t e c t e d b l o c k s

Defining protected blocks
To prepare for exceptions, you place statements that might raise them in a try block. If
one of these statements does raise an exception, control is transferred to an exception
handler that handles that type of exception, then leaves the block. The exception
handler is said to catch the exception and specifies the actions to take. By using try
blocks and exception handlers, you can move error checking and error handling out
of the main flow of your algorithms, resulting in simpler, more readable code.

You start a protected block using the keyword try. The exception handler must
immediately follow the try block. It is introduced by the keyword except, and signals
the end of the try block This syntax is illustrated in the following code. If the
SetFieldValue method fails and raises an EIntegerRange exception, execution jumps to
the exception-handling part, which displays an error message. Execution resumes
outside the block.

try
SetFieldValue(dataField, userValue);

except
on E: EIntegerRange do

ShowMessage(Format('Expected value between %d and %d, but got %d',
E.Min, E.Max, E.Value));

end;
ƒ { execution resumes here, outside the protected block }

You must have an exception handling block (described in “Writing exception handlers”
on page 14-4) or a finally block (described in “Writing finally blocks” on page 14-8)
immediately after the try block. An exception handling block should include a
handler for each exception that the statements in the try block can generate.

Writing the try block

The first part of a protected block is the try block. The try block contains code that can
potentially raise an exception. The exception can be raised either directly in the try
block, or by code that is called by statements in the try block. That is, if code in a try
block calls a routine that doesn't define its own exception handler, then any
exceptions raised inside that routine cause execution to pass to the exception-handler
associated with the try block. Keep in mind that exceptions don't come just from your
code. A call to an RTL routine or another component in your application can also
raise an exception.

E x c e p t i o n h a n d l i n g 14-3

D e f i n i n g p r o t e c t e d b l o c k s

The following example demonstrates catching an exception thrown from a
TFileStream object.

procedure TForm1.Button1Click(Sender: TObject);
var
 fileStream: TFileStream;
begin

 try
 (* Attempt to open a non-existant file *)

 fileStream := TFileStream.Create('NOT_THERE.FILE', fmOpenRead);
 (* Process the file contents... *)

 fileStream.Free;
 except
 on EFOpenError do ShowMessage('EFOpenError Raised');
 else
 ShowMessage('Exception Raised');
 end;
end;

Using a try block makes your code easier to read. Instead of sprinkling error-
handling code throughout your program, you isolate it in exception handlers so that
the flow of your algorithms is more obvious.

This is especially true when performing complex calculations involving hundreds of
steps, any one of which could fail if one of dozens of inputs were invalid. By using
exceptions, you can spell out the normal expression of your algorithm, then provide
for those exceptional cases when it doesn’t apply. Without exceptions, you have to
test every time to make sure you can proceed with each step in the calculation.

Raising an exception
To indicate a disruptive error condition, you can raise an exception by constructing
an instance of an exception object that describes the error condition and calling the
reserved word raise.

To raise an exception, call the reserved word raise, followed by an instance of an
exception object. This establishes the exception as coming from a particular address.
When an exception handler actually handles the exception, it finishes by destroying
the exception instance, so you never need to do that yourself.

For example, given the following declaration,

type
EPasswordInvalid = class(Exception);

you can raise a “password invalid” exception at any time by calling raise with an
instance of EPasswordInvalid, like this:

if Password <> CorrectPassword then
raise EPasswordInvalid.Create('Incorrect password entered');

14-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o t e c t e d b l o c k s

Raising an exception sets the ErrorAddr variable in the System unit to the address
where the application raised the exception. You can refer to ErrorAddr in your
exception handlers, for example, to notify the user where the error occurred. You can
also specify a value in the raise clause that appears in ErrorAddr when an exception
occurs.

Warning Do not assign a value to ErrorAddr yourself. It is intended as read-only.

To specify an error address for an exception, add the reserved word at after the
exception instance, followed by an address expression such as an identifier.

Writing exception handlers

The exception handling block appears immediately after the try block. This block
incudes one or more exception handlers. An exception handler provides a specific
response to a specific kind of exception. Handling an exception clears the error
condition and destroys the exception object, which allows the application to continue
execution. You typically define exception handlers to allow your applications to
recover from errors and continue running. Types of exceptions you might handle
include attempts to open files that don't exist, writing to full disks, or calculations
that exceed legal bounds. Some of these, such as “File not found,” are easy to correct
and retry, while others, such as running out of memory, can be more difficult for the
application or the user to correct.

The application executes the statements in and exception handler only if an exception
occurs during execution of the statements in the preceding try block. When a
statement in the try block raises an exception, execution immediately jumps to the
exception handler, where it steps through the specified exception-handling
statements, until it finds a handler that applies to the current exception.

Once the application locates an exception handler that handles the exception, it
executes the statement, then automatically destroys the exception object. Execution
continues at the end of the current block.

Exception-handling statements
The exception handling block starts with the except keyword and ends with the
keyword end. These two keywords are actually part of the same statement as the try
block. That is, both the try block and the exception handling block are considered
part of a single try...except statement.

Inside the exception handling block, you include one or more exception handlers. An
exception handler is a statement of the form

on <type of exception> do <statement>;

E x c e p t i o n h a n d l i n g 14-5

D e f i n i n g p r o t e c t e d b l o c k s

For example, the following exception handling block includes multiple exception
handlers for different exceptions that can arise from an arithmetic computation:

try
 { calculation statements }
except

on EZeroDivide do Value := MAXINT;
on EIntOverflow do Value := 0;
on EIntUnderflow do Value := 0;

end;

Much of the time, as in the previous example, the exception handler doesn't need any
information about an exception other than its type, so the statements following
on..do are specific only to the type of exception. In some cases, however, you might
need some of the information contained in the exception instance.

To read specific information about an exception instance in an exception handler,
you use a special variation of on..do that gives you access to the exception instance.
The special form requires that you provide a temporary variable to hold the instance.
For example:

on E: EIntegerRange do
ShowMessage(Format('Expected value between %d and %d', E.Min, E.Max));

The temporary variable (E in this example) is of the type specified after the colon
(EIntegerRange in this example). You can use the as operator to typecast the exception
into a more specific type if needed.

Warming Never destroy the temporary exception object. Handling an exception automatically
destroys the exception object. If you destroy the object yourself, the application
attempts to destroy the object again, generating an access violation.

You can provide a single default exception handler to handle any exceptions for
which you haven't provided specific handlers. To do that, add an else part to the
exception-handling block:

try
 { statements }
except

on ESomething do
{ specific exception-handling code };

else
{ default exception-handling code };

end;

Adding default exception handling to a block guarantees that the block handles
every exception in some way, thereby overriding all handling from any containing
block.

Warning It is not advisable to use this all-encompassing default exception handler. The else
clause handles all exceptions, including those you know nothing about. In general,
your code should handle only exceptions you actually know how to handle. If you
want to handle cleanup and leave the exception handling to code that has more
information about the exception and how to handle it, then you can do so using a
finally block. For details about finally blocks, see “Writing finally blocks” on
page 14-8.

14-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o t e c t e d b l o c k s

Handling classes of exceptions
Exceptions are always represented by classes. As such, you usually work with a
hierarchy of exception classes. For example, VCL defines the ERangeError exception
as a descendant of EIntError.

When you provide an exception handler for a base exception class, it catches not only
direct instances of that class, but instances of any of its descendants as well. For
example, the following exception handler handles all integer math exceptions,
including ERangeError, EDivByZero, and EIntOverflow:

try
 { statements that perform integer math operations }
except

on EIntError do { special handling for integer math errors };
end;

You can combine error handlers for the base class with specific handlers for more
specific (derived) exceptions. You do this by placing the catch statements in the order
that you want them to be searched when an exception is thrown. For example, this
block provides special handling for range errors, and other handling for all other
integer math errors:

try
 { statements performing integer math }
except

on ERangeError do { out-of-range handling };
on EIntError do { handling for other integer math errors };

end;

Note that if the handler for EIntError came before the handler for ERangeError,
execution would never reach the specific handler for ERangeError.

Scope of exception handlers
You do not need to provide handlers for every kind of exception in every block. You
only need handlers for exceptions that you want to handle specially within a
particular block.

If a block does not handle a particular exception, execution leaves that block and
returns to the block that contains it (or returns to the code that called the block), with
the exception still raised. This process repeats with increasingly broad scope until
either execution reaches the outermost scope of the application or a block at some
level handles the exception.

E x c e p t i o n h a n d l i n g 14-7

D e f i n i n g p r o t e c t e d b l o c k s

Thus, you can nest your exception handling code. That is, you can use nested blocks
to define local handling for specific exceptions that overrides the handling in the
surrounding block. For example:

try
 { statements }

try
 { special statements }

except
on ESomething do
begin

 { handling for only the special statements }
end;

end;
{ more statements }

except
on ESomething do
begin

{handling for statements and more statements, but not special statements}
end;

end;

Note This type of nesting is not limited to exception-handling blocks. You can also use it
with finally blocks (described in “Writing finally blocks” on page 14-8) or a mix of
exception-handling and finally blocks.

Reraising exceptions
Sometimes when you handle an exception locally, you want to augment the handling
in the enclosing block, rather than replace it. Of course, when your local handler
finishes its handling, it destroys the exception instance, so the enclosing block's
handler never gets to act. You can, however, prevent the handler from destroying the
exception, giving the enclosing handler a chance to respond. You do this by using the
raise command with no arguments. This is called reraising or rethrowing the
exception. The following example illustrates this technique:

try
 { statements }

try
 { special statements }

except
on ESomething do
begin

 { handling for only the special statements }
raise;{ reraise the exception }

end;
end;

except
on ESomething do ...;{ handling you want in all cases }

end;

14-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o t e c t e d b l o c k s

If code in the statements part raises an ESomething exception, only the handler in the
outer exception-handling block executes. However, if code in the special statements
part raises ESomething, the handling in the inner exception-handling block executes,
followed by the more general handling in the outer exception-handling block. By
reraising exceptions, you can easily provide special handling for exceptions in special
cases without losing (or duplicating) the existing handlers.

If the handler wants to throw a different exception, it can use the raise or throw
statement in the normal way, as described in “Raising an exception” on page 14-3.

Writing finally blocks

An exception handler is code that handles a specific exception or exceptions that
occur within a protected block of code. However, there are times when you do not
need to handle the exception, but you do have code that you want to execute after the
protected block, even if an exception occurs. Typically, such code handles cleanup
issues, such as freeing resources that were allocated before the protected block.

By using finally blocks, you can ensure that if your application allocates resources, it
also releases them, even if an exception occurs. Thus, if your application allocates
memory, you can make sure it eventually releases the memory, too. If it opens a file,
you can make sure it closes the file later. Under normal circumstances, you can
ensure that an application frees allocated resources by including code for both
allocating and freeing. When exceptions occur, however, you need to ensure that the
application still executes the resource-freeing code.

Some common resources that you should always be sure to release are:

• Files
• Memory
• Windows resources or widget library resources (Qt objects)
• Objects (instances of classes in your application)

The following event handler illustrates how an exception can prevent an application
from freeing memory that it allocates:

procedure TForm1.Button1Click(Sender: TObject);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin

ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
AnInteger := 10 div ADividend;{ this generates an exception }
FreeMem(APointer, 1024);{ this never gets called because of the exception}

end;

Although most errors are not that obvious, the example illustrates an important
point: When an exception occurs, execution jumps out of the block, so the statement
that frees the memory never gets called.

To ensure that the memory is freed, you can use a try block with a finally block.

E x c e p t i o n h a n d l i n g 14-9

H a n d l i n g e x c e p t i o n s i n V C L a p p l i c a t i o n s

Writing a finally block
Finally blocks are introduced by the keyword finally. They are part of a try..finally
statement, which has the following form:

try
 { statements that may raise an exception}
finally
 { statements that are called even if there is an exception in the try block}
end;

In a try..finally statement, the application always executes any statements in the
finally part, even if an exception occurs in the try block. When any code in the try
block (or any routine called by code in the try block) raises an exception, execution
halts at that point. Once an exception handler is found, execution jumps to the finally
part, which is called the cleanup code. After the finally part executes, the exception
handler is called. If no exception occurs, the cleanup code is executed in the normal
order, after all the statements in the try block.

The following code illustrates an event handler that uses a finally block so that when
it allocates memory and generates an error, it still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TObject);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;

begin
ADividend := 0;
GetMem(APointer, 1024);{ allocate 1K of memory }
try

AnInteger := 10 div ADividend;{ this generates an exception }
finally

FreeMem(APointer, 1024);{ execution resumes here, despite the exception }
end;

end;

The statements in the finally block do not depend on an exception occurring. If no
statement in the try part raises an exception, execution continues through the finally
block.

Handling exceptions in VCL applications
If you use VCL components or the VCL runtime library in your applications, you
need to understand the VCL exception handling mechanism. Exceptions are built
into many VCL classes and routines and they are thrown automatically when
something unexpected occurs. Typically, these exceptions indicate programming
errors that would otherwise generate a runtime error.

The mechanics of handling component exceptions are no different than handling any
other type of exception.

14-10 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s i n V C L a p p l i c a t i o n s

If you do not handle the exception, VCL handles it in a default manner. Typically, a
message displays describing the type of error that occurred. While debugging your
application, you can look up the exception class in online Help. The information
provided will often help you to determine where the error occurred and its cause.

A common source of errors in components is range errors in indexed properties. For
example, if a list box has three items in its list (0..2) and your application attempts to
access item number 3, the list box raises a “List index out of bounds” exception.

The following event handler contains an exception handler to notify the user of
invalid index access in a list box:

procedure TForm1.Button1Click(Sender: TObject);
begin

ListBox1.Items.Add('a string');{ add a string to list box }
ListBox1.Items.Add('another string');{ add another string... }
ListBox1.Items.Add('still another string');{ ...and a third string }
try

Caption := ListBox1.Items[3];{ set form caption to fourth string }
except

on EStringListError do
ShowMessage('List box contains fewer than four strings');

end;
end;

If you click the button once, the list box has only three strings, so accessing the fourth
string raises an exception. Clicking a second time adds more strings to the list, so it
no longer causes the exception.

VCL exception classes

VCL includes a large set of built-in exception classes for automatically handling
divide-by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions. All VCL exception classes descend from one root object called Exception.
Exception provides a consistent interface for applications to handle exceptions. It
provides the string for the message that VCL exceptions display by default.

Table 14.1 lists a selection of the exception classes defined in VCL:

Table 14.1 Selected exception classes

Exception class Description

EAbort Stops a sequence of events without displaying an error message dialog box.

EAccessViolation Checks for invalid memory access errors.

EBitsError Prevents invalid attempts to access a Boolean array.

EComponentError Signals an invalid attempt to register or rename a component.

EConvertError Indicates string or object conversion errors.

EDatabaseError Specifies a database access error.

E x c e p t i o n h a n d l i n g 14-11

H a n d l i n g e x c e p t i o n s i n V C L a p p l i c a t i o n s

There are other times when you will need to create your own exception classes to
handle unique situations. You can declare a new exception class by making it a
descendant of type Exception and creating as many constructors as you need (or copy
the constructors from an existing class in the SysUtils unit).

Default exception handling in VCL

If your application code does not catch and handle the exceptions that are raised, the
exceptions are ultimately caught and handled by the HandleException method of the
global Application object. For all exceptions but EAbort, HandleException calls the
OnException event handler, if one exists. If there is no OnException event handler (and
the exception is not EAbort), HandleException displays a message box with the error
message associated with the exception.

EDBEditError Catches data incompatible with a specified mask.

EDivByZero Catches integer divide-by-zero errors.

EExternalException Signifies an unrecognized exception code.

EInOutError Represents a file I/O error.

EIntOverflow Specifies integer calculations whose results are too large for the allocated
register.

EInvalidCast Checks for illegal typecasting.

EInvalidGraphic Indicates an attempt to work with an unrecognized graphic file format.

EInvalidOperation Occurs when invalid operations are attempted on a component.

EInvalidPointer Results from invalid pointer operations.

EMenuError Involves a problem with menu item.

EOleCtrlError Detects problems with linking to ActiveX controls.

EOleError Specifies OLE automation errors.

EPrinterError Signals a printing error.

EPropertyError Occurs on unsuccessful attempts to set the value of a property.

ERangeError Indicates an integer value that is too large for the declared type to which it is
assigned.

ERegistryException Specifies registry errors.

EZeroDivide Catches floating-point divide-by-zero errors.

Table 14.1 Selected exception classes (continued)

Exception class Description

14-12 D e v e l o p e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s i n V C L a p p l i c a t i o n s

There are certain circumstances where HandleException does not get called.
Exceptions that occur before or after the execution of the application’s Run method
are not caught and handled by HandleException. When you write a callback function
or a library (.dll or shared object) with functions that can be called by an external
application, exceptions can escape the Application object. To prevent exceptions from
escaping in this manner, you can insert your own call to the HandleException method:

try
 { special statements }
except

on Exception do
begin

Application.HandleException(Self);{ call HandleException }
end;

end;

Warning Do not call HandleException from a thread’s exception handling code.

Silent exceptions

VCL applications handle most exceptions that your code doesn't specifically handle
by displaying a message box that shows the message string from the exception object.
You can also define “silent” exceptions that do not, by default, cause the application
to show the error message.

Silent exceptions are useful when you don't intend to report an exception to the user,
but you want to abort an operation. Aborting an operation is similar to using the
Break or Exit procedures to break out of a block, but can break out of several nested
levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default
exception handler for VCL applications displays the error-message dialog box for all
exceptions that reach it except those descended from EAbort.

Note For console applications, an error-message dialog is displayed on any unhandled
EAbort exceptions.

There is a shortcut for raising silent exceptions. Instead of manually constructing the
object, you can call the Abort procedure. Abort automatically raises an EAbort
exception, which breaks out of the current operation without displaying an error
message.

Note There is a distinction between Abort and abort. abort kills the application.

E x c e p t i o n h a n d l i n g 14-13

H a n d l i n g e x c e p t i o n s i n V C L a p p l i c a t i o n s

The following code shows a simple example of aborting an operation. On a form
containing an empty list box and a button, attach the following code to the button's
OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 I, J: Integer;
begin

for I := 1 to 10 do{ loop ten times }
for J := 1 to 10 do {loop ten times }
begin

ListBox1.Items.Add(IntToStr(I) + IntToStr(J));
if I = 7 then Abort;{ abort after the 7th iteration of outer loop}

end;
end;

Note that in this example, Abort causes the flow of execution to break out of both the
inner and outer loops, not just the inner loop.

Defining your own VCL exceptions

Because VCL exceptions are classes, defining a new kind of exception is as simple as
declaring a new class type. Although you can raise any object instance as an
exception, the standard VCL exception handlers handle only exceptions that descend
from Exception.

New exception classes should be derived from Exception or one of the other standard
exceptions. That way, if you raise your new exception in a block of code that isn't
protected by an exception handler specific to that exception, one of the standard
handlers will handle it instead.

For example, consider the following declaration:

type
EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for it, a handler for
Exception (or a default exception handler) will still handle it. Because the standard
handling for Exception displays the name of the exception raised, you can see that it is
your new exception that is raised.

.

14-14 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-1

C h a p t e r

15
Chapter15Developing cross-platform

applications
You can develop cross-platform 32-bit applications that run on both the Windows
and Linux operating systems. Cross-platform applications use CLX components
from the Borland Component Library for Cross-Platform (CLX) and don’t make any
operating system-specific API calls.

This chapter describes how to change Delphi applications so they can compile on
Windows or Linux and how to write code that is platform-independent and portable
between the two environments. It also includes information on the differences
between developing applications on Windows and Linux.

To develop a cross-platform application, either:

• Create a new CLX application.
• Modify an existing VCL application.

Then compile, test, and deploy it on the platform you are running it on. For Windows
cross-platform applications, use Delphi. For Linux cross-platform applications, use
Kylix. Kylix is Borland’s Delphi and C++ software that allows you to develop and
deploy applications on Linux.

You can also develop a cross-platform application by starting on Kylix instead of
Windows and transfer it to Windows

Note CLX applications are not available in all editions of Delphi.

15-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g C L X a p p l i c a t i o n s

Creating CLX applications
You create CLX applications in nearly the same way as you create any Delphi
application.

1 In the IDE, choose File|New|CLX application.
The Component palette displays the pages and components that can be used in
CLX applications.

2 Develop your application within the IDE. Remember to use only CLX components
in your application.

3 Compile and test the application on each platform on which you want to run the
application. Review any error messages to see where additional changes need to
be made.

To compile the application on Kylix, you must first transfer your application to
your Linux computer.

To modify a VCL application as a cross-platform application, see Modifying VCL
applications. For tips on writing cross-platform application, see “Writing portable
code” on page 15-12. For information on writing platform-independent database or
Internet applications, see “Cross-platform database applications” on page 15-21 and
“Cross-platform Internet applications” on page 15-28.

Porting VCL applications
If you have Borland RAD applications that were written for the Windows
environment, you can port them to the Linux environment. How easy it will be
depends on the nature and complexity of the application and how many Windows
dependencies there are.

The following sections describe some of the major differences between the Windows
and Linux environments and provide guidelines on how to get started porting an
application.

Porting techniques

The following are different approaches you can take to port an application from one
platform to another:

Table 15.1 Porting techniques

Technique Description

Platform-specific port Targets an operating system and underlying APIs.

Cross-platform port Targets a cross-platform API.

Windows emulation Leaves the code alone and ports the API it uses.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-3

P o r t i n g V C L a p p l i c a t i o n s

Platform-specific ports
Platform-specific ports tend to be time-consuming, expensive, and only produce a
single targeted result. They create different code bases, which makes them
particularly difficult to maintain. However, each port is designed for a specific
operating system and can take advantage of platform-specific functionality. Thus, the
application typically runs faster.

Cross-platform ports
Cross-platform ports tend to be time-saving because the ported applications target
multiple platforms. However, the amount of work involved in developing cross-
platform applications is highly dependent on the existing code. If code has been
developed without regard for platform independence, you may run into scenarios
where platform-independent logic and platform-dependent implementation are
mixed together.

The cross-platform approach is the preferable approach because business logic is
expressed in platform-independent terms. Some services are abstracted behind an
internal interface that looks the same on all platforms, but has a specific
implementation on each. The runtime library is an example of this. The interface is
very similar on both platforms, although the implementation may be vastly different.
You should separate cross-platform parts, then implement specific services on top. In
the end, this approach is the least expensive solution, because of reduced
maintenance costs due to a largely shared source base and an improved application
architecture.

Windows emulation ports
Windows emulation is the most complex method and it can be very costly, but the
resulting Linux application will look most similar to an existing Windows
application. This approach involves implementing Windows functionality on Linux.
From an engineering point of view, this solution is very hard to maintain.

Where you want to emulate Windows APIs, you can include two distinct sections
using conditional compiler directives (such as $IFDEFs) to indicate sections of the
code that apply specifically to Windows or Linux.

15-4 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

Modifying VCL applications

If you are porting a VCL application to Linux that you want to run on both Windows
and Linux, you may need to modify your code or use conditional compiler directives
to indicate sections of the code that apply specifically to Windows or Linux.

To modify your VCL application so that it can run on Linux, follow these general
steps:

1 In Windows, open the project containing the VCL application you want to change.

2 Rename your form files (.dfm) to cross-platform form files (.xfm). For example,
rename unit1.dfm to unit1.xfm. Or add an $IFDEF compiler directive. An .xfm
form file works on both Windows or Linux but a .dfm form only works on
Windows.

Change {$R *.dfm} to {$R *.xfm} in the implementation section.

3 Change all uses clauses in your source file so they refer to the correct units in
VisualCLX. (See “Comparing WinCLX and VisualCLX units” on page 15-8 for
information.)

For example, change the following uses clause:

uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

to the following:

uses SysUtils, Types, Classes, QGraphics, QControls, QForms, QDialogs, QStdCtrls;

4 Save the project and reopen it. Now the Component palette shows components
that can be used in CLX applications.

Note Some Windows-only nonvisual components can be used in cross-platform
applications but only work in Windows cross-platforms applications. If you plan
to compile your application on Linux as well, either do not use the nonvisual
WinCLX components in your applications or use $IFDEFs to mark these sections
of the code as Windows only. You cannot use the visual part of WinCLX with
VisualCLX in the same application.

5 Rewrite any code that requires Windows dependencies by making the code more
platform-independent. Do this using the runtime library routines and constants.
(See “Cross-platform database applications” on page 15-21 for information.)

6 Find equivalent functionality for features that are different on Linux. Use
conditional compiler directives such as $IFDEFs (sparingly) to delimit Windows-
specific information. (See “Using conditional directives” on page 15-13 for
information.)

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-5

P o r t i n g V C L a p p l i c a t i o n s

For example, you can use conditional compiler directives for platform-specific
code in your source files:

{$IFDEF MSWINDOWS}
IniFile.LoadfromFile(‘c:\x.txt’);

{$ENDIF}
{$IFDEF LINUX}

IniFile.LoadfromFile(‘/home/name/x.txt’);
{$ENDIF}

7 Search for references to pathnames in all the project files.

• Pathnames in Linux use a forward slash / as a delimiter (such as /usr/lib) and
files may be located in different directories on the Linux system. Use the
PathDelim constant (in SysUtils) to specify the path delimiter that is
appropriate for the system. Determine the correct location for any files on
Linux.

• Change references to drive letters (for example, C:\) and code that looks for
drive letters by looking for a colon at position 2 in the string. Use the
DriveDelim constant (in SysUtils) to specify the location in terms that are
appropriate for the system.

• In places where you specify multiple paths, change the path separator from
semicolon (;) to colon (:). Use the PathSep constant (in SysUtils) to specify the
path separator that is appropriate for the system.

• Because file names are case-sensitive in Linux, make sure that your application
doesn’t change the case of file names or assume a certain case.

See “Programming differences on Linux” on page 15-16.

WinCLX versus VisualCLX

CLX applications use the Borland Component Library for Cross-Platform (CLX) in
place of the Visual Component Library (VCL). Both the VCL and CLX include the
same four out of five sublibraries, as described in “Understanding the component
library” on page 3-1. The classes and properties in these sublibraries have the same
names. The only differences between the VCL and CLX are the classes in the WinCLX
and VisualCLX sublibraries. VCL applications use WinCLX whereas CLX
applications use VisualCLX.

Within WinCLX, many controls access Windows controls by making calls into the
Windows API libraries. Similarly, in the VisualCLX the controls provide access to Qt
widgets by making calls into the Qt shared libraries.

Widgets in VisualCLX replace Windows controls. For example, TWidgetControl in
CLX replaces TWinControl in WinCLX. Other WinCLX components (such as
TScrollingWinControl) have corresponding names in VisualCLX (such as
TScrollingWidget). However, you do not need to change occurrences of TWinControl
to TWidgetControl. Class declarations, such as the following:

TWinControl = TWidgetControl;

15-6 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

appear in the QControls unit file to simplify sharing of source code. TWidgetControl
and all its descendants have a Handle property that references the Qt object and a
Hooks property that references the hook object that handles the event mechanism.

Unit names and locations of some classes are different in CLX. You will need to
modify the uses clauses you include in your source files to eliminate references to
units that don’t exist in VisualCLX and to change the names to CLX units. Most
project files and the interface sections of most units contain a uses clauses. The
implementation section of a unit can also contain its own uses clause.

What VisualCLX does differently
Although much of VisualCLX is implemented so that it is consistent with WinCLX,
some components are implemented differently. This section describes some of those
differences to be aware of when writing CLX applications.

• The VisualCLX TButton control has a ToggleButton property that the equivalent
WinCLX control doesn’t have.

• In VisualCLX, TColorDialog does not have an Options property. Therefore, you
cannot customize the appearance and functionality of the color selection dialog.
Also, depending on which window manager you are using in Linux, TColorDialog
is not always modal or nonresizable. On Windows, TColorDialog is always modal
and nonresizable.

• At runtime, combo boxes work differently in VisualCLX than they do in WinCLX.
In VisualCLX (but not in WinCLX), you can add an item to a drop-down list by
entering text and pressing Enter in the edit field of a combo box. You can turn this
feature off by setting InsertMode to ciNone. It is also possible to add empty (no
string) items to the list in the combo box. Also, if you keep pressing the down
arrow key when the edit box is closed, it does not stop at the last item of the combo
box list. It cycles around to the top again.

• The key values used in events can be different between WinCLX and VisualCLX.
For example, the Enter key has a value of 13 on WinCLX and a value of 4100 on
VisualCLX. If you hard code key values in your VisualCLX applications, you need
to change these values when porting from Windows to Linux or vice versa.

• Application-wide styles can be used in addition to the OwnerDraw properties. You
can use TApplication’s Style property to specify the look and feel of an application's
graphical elements. Using styles, a widget or an application can take on a whole
new look. You can still use owner draw on Linux but using styles is
recommended.

Some VisualCLX classes are missing certain properties, methods, or events:

• Bi-directional properties (BidiMode) for right-to-left text output or input.

• Generic bevel properties on common controls (note that some objects still have
bevel properties).

• Docking properties and methods.

• Backward compatibility components such as those on the Win3.1 tab and Ctl3D.

• DragCursor and DragKind (but drag and drop is included).

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-7

P o r t i n g V C L a p p l i c a t i o n s

Additional differences exist. Refer to the CLX online documentation for details on all
of the CLX objects or in editions of Delphi that include the source code, located in
{install directory}\Delphi\Source\Clx.

Features that do not port directly or are missing

In general, the functionality between VCL and CLX applications is the same.
However, some Windows-specific features do not port directly to Linux
environments. For example, ActiveX, ADO, BDE, COM, and OLE are dependent on
Windows technology and not available in Kylix. The following table lists features
that are different on the two platforms and lists the equivalent Linux or VisualCLX
feature, if one is available.

Other features not supported or supported differently on Kylix include:

• The Linux equivalent of Windows DLLs are shared object libraries (.so files),
which contain position-independent code (PIC). Thus, global memory references
and calls to external functions are made relative to the EBX register, which must be
preserved across calls. This means that variables referring to an absolute address
in memory (using the absolute directive) are not allowed on Linux. You only need
to worry about global memory references and calls to external functions if using
assembler—Delphi generates the correct code. (For information, see “Including
inline assembler code” on page 15-15.)

• Absolute addresses are used in variable declarations. You can use the absolute
directive to refer to the name of another variable; for example:

var Var2: Byte absolute Var1;

• Library modules and packages, which are implemented using .so files.

Table 15.2 Changed or different features

Windows/VCL feature Linux/CLX feature

ADO components Regular database components

Automation Servers Not available

BDE dbExpress and regular database components

COM+ components (including ActiveX) Not available

DataSnap Functionality for Web Services only

FastNet Not available

Legacy components (such as items on the Win 3.1
Component palette tab)

Not available

Messaging Application Programming Interface
(MAPI) includes a standard library of Windows
messaging functions

SMTP and POP3 let you send, receive, and
save e-mail messages

Windows API calls VisualCLX methods, Qt calls, libc calls, or
calls to other system libraries

Windows messaging Qt events

Winsock BSD sockets

15-8 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

• Borland's make utility. Use the GNU make utility instead.

• TASM is not supported. You cannot import external assembler routines unless
they use syntax supported by an assembler such as NASM, the Netwide
Assembler, one of the free, portable x86 assemblers supported by Kylix.

• Resource introspection is not supported. Applications must know at compile time
the names of all resources they will use. Resources cannot be browsed
dynamically.

Comparing WinCLX and VisualCLX units

All of the objects in the component library are defined in unit files. For example, you
can find the implementation of TObject in the System unit and the base TComponent
class defined in the Classes unit. When you drop an object onto a form or use an
object within your application, the name of the unit is added to the uses clause,
which tells the compiler which units to link into the project.

Some of the units that are in VCL applications are also in CLX applications, such as
Classes, DateUtils, DB, System, SysUtils and many more units such as those in the
runtime library (RTL). However, the CLX units in the VisualCLX sublibrary are
different from those in the WinCLX sublibrary. If you are porting VCL applications
from Windows to Linux, you’ll have to change the names of these units in the uses
clause of your application. The most common name change is made by adding a Q to
the beginning of the unit or header file name.

This section provides three tables that list the WinCLX-only and equivalent
VisualCLX units; VisualCLX-only units; and WinCLX-only units.

Table 15.3 lists the names of WinCLX units that have different names than the
VisualCLX units. Units that are either the same in both VCL and CLX applications or
are third-party units are not listed.

Table 15.3 WinCLX-only and equivalent VisualCLX units

WinCLX units VisualCLX units

ActnList QActnList

Buttons QButtons

CheckLst QCheckLst

Clipbrd QClipbrd

ComCtrls QComCtrls

Controls QControls

DBActns QDBActns

DBCtrls QDBCtrls

DBGrids QDBGrids

Dialogs QDialogs

ExtCtrls QExtCtrls

Forms QForms

Graphics QGraphics

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-9

P o r t i n g V C L a p p l i c a t i o n s

The following units are VisualCLX-only units:

The following Windows-only units are not included in CLX applications mostly
because they concern Windows-specific features that are not available on Linux. For
example, CLX applications do not use ADO units, BDE units, COM units, or
Windows units such as CtlPanel, Messages, Registry, and Windows.

Grids QGrids

ImgList QImgList

Mask QMask

Menus QMenus

Printers QPrinters

Search QSearch

StdActns QStdActns

StdCtrls QStdCtrls

VclEditors ClxEditors

Table 15.4 VisualCLX-only units

Unit Description

DirSel Directory selection

QStyle GUI look and feel

Qt Interface to Qt library

Table 15.5 WinCLX-only units

Unit Reason for exclusion

ADOConst No ADO feature

ADODB No ADO feature

AppEvnts No TApplicationEvent object

AxCtrls No COM feature

BdeConst No BDE feature

Calendar Not currently supported

Chart Not currently supported

CmAdmCtl No COM feature

ColorGrd Not currently supported

ComStrs No COM feature

ConvUtils Not available

CorbaCon No Corba feature

CorbaStd No Corba feature

CorbaVCL No Corba feature

CtlPanel No Windows Control Panel

CustomizeDlg Not currently supported

Table 15.3 WinCLX-only and equivalent VisualCLX units (continued)

WinCLX units VisualCLX units

15-10 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

DataBkr Not currently supported

DBCGrids No BDE feature

DBExcept No BDE feature

DBInpReq No BDE feature

DBLookup Obsolete

DbOleCtl No COM feature

DBPWDlg No BDE feature

DBTables No BDE feature

DdeMan No DDE feature

DRTable No BDE feature

ExtActns Not currently supported

ExtDlgs No picture dialogs feature

FileCtrl Obsolete

ListActns Not currently supported

MConnect No COM feature

Messages No Windows messaging

MidasCon Obsolete

MPlayer No Windows media player

Mtsobj No COM feature

MtsRdm No COM feature

Mtx No COM feature

mxConsts No COM feature

ObjBrkr Not currently supported

OleConstMay No COM feature

OleCtnrs No COM feature

OleCtrls No COM feature

OLEDB No COM feature

OleServer No COM feature

Outline Obsolete

Registry No Windows registry feature

ScktCnst Replaced by Sockets

ScktComp Replaced by Sockets

SConnect No supported connection protocols

SHDocVw_ocx No ActiveX feature

StdConvs Not currently supported

SvcMgr No Windows NT Services feature

TabNotbk Obsolete

Tabs Obsolete

ToolWin No docking feature

ValEdit Not currently supported

Table 15.5 WinCLX-only units (continued)

Unit Reason for exclusion

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-11

P o r t i n g V C L a p p l i c a t i o n s

References to these units and the classes within these units must be eliminated from
applications you want to run on Linux. If you try to compile a program with units
that do not exist in a cross-platform application, you will receive the following error
message:

File not found: ‘unitname.dcu’

Delete that unit from the uses clause and try again.

Differences in CLX object constructors

A CLX object is created either implicitly by placing that object on the form or
explicitly in code by using the object’s Create method. When the CLX object is created,
an instance of the underlying associated widget is also created (as long as the widget
is parented or its handle referenced). The CLX object owns this instance of the
widget. When the CLX object is deleted, the underlying widget is also deleted. The
object is deleted by calling the Free method or automatically deleted by the CLX
object's parent container. This is the same type of functionality that you see in the
component library in Windows-only applications.

When you explicitly create a CLX object in your code by calling into the Qt interface
library such as QWidget_Create(), you are creating an instance of a Qt widget that is
not owned by a CLX object. This passes the instance of an existing Qt widget to the
CLX object to use during its construction. This CLX object does not own the Qt
widget that is passed to it. Therefore, when you call the Free method after creating the
object in this manner, only the CLX object is destroyed and not the underlying Qt
widget instance. This is different from a VCL application.

A few CLX graphics objects, such as TBrush and TPen, let you assume ownership of
the underlying widget using the OwnHandle method. After calling OwnHandle, if you
delete the CLX object, the underlying widget is destroyed as well.

Some property assignments in CLX have moved from the Create method to
InitWidget. This allows delayed construction of the Qt object until it's really needed.
For example, say you have a property named Color. In SetColor, you can check with
HandleAllocated to see if you have a Qt handle. If the handle is allocated, you can
make the proper call to Qt to set the color. If not, you can store the value in a private
field variable, and, in InitWidget, you set the property.

VarCmplx Not currently supported

VarConv Not currently supported

VCLCom No COM feature

WebConst No Windows constants

Windows No Windows API calls

Table 15.5 WinCLX-only units (continued)

Unit Reason for exclusion

15-12 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

Handling system and widget events

System and widget events, which are mainly of concern when writing components,
are handled differently by the VCL and CLX. The most important difference is that
VisualCLX controls do not respond directly to Windows messages, even when
running on Windows (see Chapter 7, “Handling messages and system notifications,”
in the Component Writer’s Guide.) Instead, they respond to notifications from the
underlying widget layer. Because the notifications use a different system, the order
and timing of events can sometimes differ between corresponding the VCL and CLX
objects. This difference occurs even if your CLX application is running on Windows
rather than Linux. If you are porting a VCL application to Linux, you may need to
change the way your event handlers respond to accommodate these differences.

For information on writing components that respond to system and widget events
(other than those that are reflected in the published events of CLX components), see
“Responding to system notifications using CLX” on page 7-18 of the Component
Writer’s Guide.

Writing portable code

If you are writing cross-platform applications that are meant to run on both
Windows and Linux, you can write code that compiles under different conditions.
Using conditional compilation, you can maintain your Windows coding, yet also
make allowances for Linux operating system differences.

To create applications that are easily portable between Windows and Linux,
remember to:

• Reduce or isolate calls to platform-specific (Win32 or Linux) APIs; use CLX
methods or calls to the Qt library.

• Eliminate Windows messaging (PostMessage, SendMessage) constructs within an
application. In CLX, call the QApplication_postEvent and QApplication_sendEvent
methods instead. For information on writing components that respond to system
and widget events, see “Responding to system notifications using CLX” on
page 7-18 of the Component Writer’s Guide.

• Use TMemIniFile instead of TRegIniFile.

• Observe and preserve case-sensitivity in file and directory names.

• Port any external assembler TASM code. The GNU assembler, “as,” does not
support the TASM syntax. (See “Including inline assembler code” on page 15-15.)

Try to write the code to use platform-independent runtime library routines and use
constants found in System, SysUtils, and other runtime library units. For example,
use the PathDelim constant to insulate your code from ‘/’ versus ‘\’ platform
differences.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-13

P o r t i n g V C L a p p l i c a t i o n s

Another example involves the use of multibyte characters on both platforms.
Windows code traditionally expects only two bytes per multibyte character. In Linux,
multibyte character encoding can have many more bytes per char (up to six bytes for
UTF-8). Both platforms can be accommodated using the StrNextChar function in
SysUtils.

Code such as:

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 inc(p);
 inc(p);
end;

can be replaced with platform-independent code such as this:

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 p := StrNextChar(p)
 else
 inc(p);
end;

The previous example is platform-portable but still avoids the performance cost of a
procedure call for non-multibyte locales.

If using runtime library functions is not a workable solution, try to isolate the
platform-specific code in your routine into one chunk or into a subroutine. Try to
limit the number of conditional compiler directive ($IFDEF) blocks to maintain
source code readability and portability. The conditional symbol WIN32 is not defined
on Linux. The conditional symbol LINUX is defined, indicating the source code is
being compiled for the Linux platform.

Using conditional directives
Using conditional compiler directives such as $IFDEF is a reasonable way to
conditionalize your code for the Windows and Linux platforms. However, because
conditional compiler directives make source code harder to understand and
maintain, you need to understand when it is reasonable to use them. When
considering the use of conditional compiler directive, think about whether the code
requires a conditional compiler directive and whether it can be written without a
conditional compiler directive.

15-14 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

Follow these guidelines for using conditional compiler directives within cross-
platform applications:

• Try not to use $IFDEFs unless absolutely necessary. $IFDEFs in a source file are
only evaluated when source code is compiled. Delphi does not require unit
sources to compile a project. Full rebuilds of all source code is an uncommon event
for most Delphi projects.

• Do not use $IFDEFs in package (.dpk) files. Limit their use to source files.
Component writers need to create two design-time packages when doing cross-
platform development, not one package using $IFDEFs.

• In general, use $IFDEF MSWINDOWS to test for any Windows platform
including WIN32. Reserve the use of $IFDEF WIN32 for distinguishing between
specific Windows platforms, such as 32-bit versus 64-bit Windows. Don’t limit
your code to WIN32 unless you know for sure that it will not work in WIN64.

• Avoid negative tests like $IFNDEF unless absolutely required. $IFNDEF LINUX
is not equivalent to $IFDEF MSWINDOWS.

• Avoid $IFNDEF/$ELSE combinations. Use a positive test instead ($IFDEF) for
better readability.

• Avoid $ELSE clauses on platform-sensitive $IFDEFs. Use separate $IFDEF blocks
for Linux- and Windows-specific code instead of $IFDEF LINUX/$ELSE or
$IFDEF MSWINDOWS/$ELSE.

For example, old code may contain:

{$IFDEF WIN32}
 (32-bit Wi1ndows code)
{$ELSE}
 (16-bit Windows code) //!! By mistake, Linux could fall into this code.
{$ENDIF}

For any non-portable code in $IFDEFs, it is better for the source code to fail to
compile than to have the platform fall into an $ELSE clause and fail mysteriously
at runtime. Compile failures are easier to find than runtime failures.

• Use the $IF syntax for complicated tests. Replace nested $IFDEFs with a boolean
expression in an $IF directive. You should terminate the $IF directive using
$IFEND, not $ENDIF. This allows you to place $IF expressions within $IFDEFs to
hide the new $IF syntax from previous compilers.

All of the conditional directives are documented in the online Help. Also, see the
topic “conditional directives” in Help for more information.

Terminating conditional directives
Use the $IFEND directive to terminate $IF and $ELSEIF conditional directives. This
allows $IF/$IFEND blocks to be hidden from older compilers inside of using $IFDEF/
$ENDIF. Older compilers won't recognize the $IFEND directive. $IF can only be
terminated with $IFEND. You can only terminate old-style directives ($IFDEF,
$IFNDEF, $IFOPT) with $ENDIF.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-15

P o r t i n g V C L a p p l i c a t i o n s

Note When nesting an $IF inside of $IFDEF/$ENDIF, do not use $ELSE with the $IF.
Older compilers will see the $ELSE and think it is part of the $IFDEF, producing a
compile error down the line. You can use {$ELSE True} as a substitute for {$ELSE} in
this situation, since the $ELSE won't be taken if the $IF is taken first, and the older
compilers won't know $ELSEIF. Hiding $IF for backwards compatibility is primarily
an issue for third party vendors and application developers who want their code to
run on several different versions.

$ELSEIF is a combination of $ELSE and $IF. The $ELSEIF directive allows you to
write multi-part conditional blocks where only one of the conditional blocks will be
taken. For example:

{$IFDEF doit}
 do_doit
{$ELSEIF RTLVersion >= 14}
 goforit
{$ELSEIF somestring = 'yes'}
 beep
{$ELSE}
 last chance
{$IFEND}

Of these four cases, only one is taken. If none of the first three conditions is true, the
$ELSE clause is taken. $ELSEIF must be terminated by $IFEND. $ELSEIF cannot
appear after $ELSE. Conditions are evaluated top to bottom like a normal
$IF...$ELSE sequence. In the example, if doit is not defined, then RTLVersion is 15
and somestring is 'yes.' Only the “goforit” block is taken and not the “beep” block,
even though the conditions for both are true.

If you forget to use an $ENDIF to end one of your $IFDEFs, the compiler reports the
following error message at the end of the source file:

Missing ENDIF

If you have more than a few $IF/$IFDEF directives in your source file, it can be
difficult to determine which one is causing the problem. The following error message
appears on the source line of the last $IF/$IFDEF compiler directive with no
matching $ENDIF/$IFEND:

Unterminated conditional directive

You can start looking for the problem at that location.

Including inline assembler code
If you include inline assembler code in your Windows applications, you may not be
able to use the same code on Linux because of position-independent code (PIC)
requirements on Linux. Linux shared object libraries (DLL equivalents) require that
all code be relocatable in memory without modification. This primarily affects inline
assembler routines that use global variables or other absolute addresses, or that call
external functions.

For units that contain only Delphi code, the compiler automatically generates PIC
when required. It's a good idea to compile every unit into both PIC and non-PIC
formats; use the -p compiler switch to generate PIC.

15-16 D e v e l o p e r ’ s G u i d e

P o r t i n g V C L a p p l i c a t i o n s

Precompiled units are available in both PIC and non-PIC formats. PIC units have a
.dpu extension (instead of .dcu).

You may want to code assembler routines differently depending on whether you'll
be compiling to an executable or a shared library; use {$IFDEF PIC} to branch the two
versions of your assembler code. Or you can consider rewriting the routine in the
Delphi language to avoid the issue.

Following are the PIC rules for inline assembler code:

• PIC requires all memory references be made relative to the EBX register, which
contains the current module's base address pointer (in Linux called the Global
Offset Table or GOT). So, instead of

MOV EAX,GlobalVar

use

MOV EAX,[EBX].GlobalVar

• PIC requires that you preserve the EBX register across calls into your assembly
code (same as on Win32), and also that you restore the EBX register before making
calls to external functions (different from Win32).

• While PIC code will work in base executables, it may slow the performance and
generate more code. You don't have any choice in shared objects, but in
executables you probably still want to get the highest level of performance that
you can.

Programming differences on Linux

The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard
that forms the basis of the WideString type is a subset of the 32-bit UCS standard
supported by Linux and the GNU libraries. References to WideString must be
widened to 32 bits per character before they can be passed to an OS function as
wchar_t. In Linux, WideStrings are reference counted like long strings (in Windows,
they're not).

In Windows, multibyte characters (MBCS) are represented as one- and two-byte char
codes. In Linux, they are represented as one to six bytes.

The Delphi language string type (long strings) can carry multibyte character
sequences, depending upon the user's locale settings. The Linux encoding for
multibyte characters such as Japanese, Chinese, Hebrew, and Arabic may not be
compatible with the Windows encoding for the same locale. Unicode is portable,
whereas multibyte is not. See “Enabling application code” on page 17-2 for details on
handling strings for various locales in international applications.

In Linux, you cannot use variables on absolute addresses. The syntax:

var X: Integer absolute $1234;

is not supported in PIC and is not allowed in a CLX application.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-17

T r a n s f e r r i n g a p p l i c a t i o n s b e t w e e n W i n d o w s a n d L i n u x

Transferring applications between Windows and Linux
If you’ve created a new CLX application or modified an existing VCL application on
Delphi and are porting it to Kylix, or you have created a CLX application on Kylix
and are porting it to Delphi, you transfer your files in the same way.

1 Move your application source files and other project-related files from one
platform to the other. You can share source files between Linux and Windows if
you want the program to run on both platforms. Or you can transfer the files using
a tool such as ftp using the ASCII mode.

Source files should include your unit files (.pas files), project files (.dpr), and any
package files (.dpk files). Project-related files include form files (.dfm or .xfm files),
resource files (.res files), and project options file (.dof in Delphi and .kof in Kylix).
If you want to compile your application from the command line only (rather than
using the IDE), you’ll need the configuration file (.cfg file in Delphi and .conf in
Kylix). You may need to change the paths of the units in your main project.

2 Open the project on the platform to which you are porting.

3 Reset your project options.

The file that stores the default project options is recreated on Kylix with a .kof
extension and recreated on Windows with a .dof extension. In the Delphi IDE, you
can also store many of the compiler options with the application by typing
Ctrl+O+O. The options are placed at the beginning of the currently open file.

4 Compile, test, and debug your application.

For VCL applications you transfer to Kylix, you will receive warnings on
Windows-specific features in the application.

Sharing source files between Windows and Linux

If you want your application to run on both Windows and Linux, you can share the
source files making them accessible to both operating systems. You can do this in
several ways, such as placing the source files on a server that is accessible to both
computers or by using Samba on the Linux machine to provide access to files
through Microsoft network file sharing for both Linux and Windows. You can choose
to keep the source on Linux and create a shared drive on Linux. Or you can keep the
source on Windows and create a share on Windows for the Linux machine to access.

You can continue to develop and compile the file on Kylix using objects that are
supported by CLX. When you are finished, you can compile on both Linux and
Windows.

If you create a new CLX application in Delphi, the IDE creates an .xfm form file
instead of a .dfm file. If you want to single-source your code, you should copy the
.dfm from Windows as well as the .xfm to Linux, maintaining both files. Otherwise,
the .dfm file will be modified on Linux and may no longer work on Windows. If you
plan to write cross-platform applications, the .xfm will work on Delphi editions that
support CLX.

15-18 D e v e l o p e r ’ s G u i d e

T r a n s f e r r i n g a p p l i c a t i o n s b e t w e e n W i n d o w s a n d L i n u x

Environmental differences between Windows and Linux

Currently, cross-platform means an application that can compile virtually
unchanged on both the Windows and Linux operating systems. However, there are
many differences between Linux and the Windows operating environments.

Table 15.6 Differences in the Linux and Windows operating environments

Difference Description

File name case sensitivity In Linux, file names are case sensitive. The file Test.txt is not the same
file as test.txt. You need to pay close attention to capitalization of file
names on Linux.

Line ending characters On Windows, lines of text are terminated by CR/LF (that is, ASCII 13
+ ASCII 10), but on Linux it is LF. While the Code editor can handle
the difference, you should be aware of this when importing code from
Windows.

End of file character In MS-DOS and Windows, the character value #26 (Ctrl-Z) is treated as
the end of the text file, even if there is data in the file after that
character. Linux uses Ctrl+D as the end-of-file character.

Batch files/shell scripts The Linux equivalent of .bat files are shell scripts. A script is a text file
containing instructions, saved and made executable with the
command, chmod +x <scriptfile>. The scripting language depends on
the shell you are using on Linux. Bash is commonly used.

Command confirmation In MS-DOS or Windows, if you try to delete a file or folder, it asks for
confirmation (“Are you sure you want to do that?”). Generally, Linux
won't ask; it will just do it. This makes it easy to accidentally destroy a
file or the entire file system. There is no way to undo a deletion on
Linux unless a file is backed up on another media.

Command feedback If a command succeeds on Linux, it redisplays the command prompt
without a status message.

Command switches Linux uses a dash (-) to indicate command switches or a double dash
(--) for multiple character options where DOS uses a slash (/) or dash
(-).

Configuration files On Windows, configuration is done in the registry or in files such as
autoexec.bat.
On Linux, configuration files are created as hidden files in the user’s
home directory. Configuration files in the /etc directory are usually
not hidden files.
Linux also uses environment variables such as LD_LIBRARY_PATH
(search path for libraries). Other important environment variables:
• HOME Your home directory (/home/sam)
• TERM Terminal type (xterm, vt100, console)
• SHELL Path to your shell (/bin/bash)
• USER Your login name (sfuller)
• PATH List to search for programs
They are specified in the shell or in files such as .bashrc.

DLLs/Shared object files On Linux, you use shared object files (.so). In Windows, these are
dynamic link libraries (DLLs).

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-19

T r a n s f e r r i n g a p p l i c a t i o n s b e t w e e n W i n d o w s a n d L i n u x

Drive letters Linux doesn't have drive letters. An example Linux pathname is
/lib/security. See DriveDelim in the runtime library.

Exceptions Operating system exceptions are called signals on Linux.

Executable files On Linux, executable files require no extension. On Windows,
executable files have an exe extension.

File name extensions Linux does not use file name extensions to identify file types or to
associate files with applications.

File permissions On Linux, files (and directories) are assigned read, write, and execute
permissions for the file owner, group, and others. For example,
-rwxr-xr-x means, from left to right:
• - is the file type (- = ordinary file, d = directory, l = link)
• rwx are the permissions for the file owner (read, write, execute)
• r-x are the permissions for the group of the file owner (read,

execute)
• r-x are the permissions for all other users (read, execute)
The root user (superuser) can override these permissions.
You need to make sure that your application runs under the correct
user and has proper access to required files.

Make utility Borland's make utility is not available on the Linux platform. Instead,
you can use Linux's GNU make utility.

Multitasking Linux fully supports multitasking. You can run several programs (in
Linux, called processes) at the same time. You can launch processes in
the background (using & after the command) and continue working
straight away. Linux also lets you have several sessions.

Pathnames Linux uses a forward slash (/) wherever DOS uses a backslash (\). A
PathDelim constant can be used to specify the appropriate character
for the platform. See PathDelim in the runtime library. See “Directory
structure on Linux” on page 15-20.

Search path When executing programs, Windows always checks the current
directory first, then looks at the PATH environment variable. Linux
never looks in the current directory but searches only the directories
listed in PATH. To run a program in the current directory, you
usually have to type ./ before it.
You can also modify your PATH to include ./ as the first path to
search.

Search path separator Windows uses the semicolon as a search path separator. Linux uses a
colon. See PathDelim in the runtime library.

Symbolic links On Linux, a symbolic link is a special file that points to another file on
disk. Place symbolic links in the global bin directory that points to
your application's main files and you don't have to modify the system
search path. A symbolic link is created with the ln (link) command.
Windows has shortcuts for the GUI desktop. To make a program
available at the command line, Windows install programs typically
modify the system search path.

Table 15.6 Differences in the Linux and Windows operating environments (continued)

Difference Description

15-20 D e v e l o p e r ’ s G u i d e

T r a n s f e r r i n g a p p l i c a t i o n s b e t w e e n W i n d o w s a n d L i n u x

Registry
Linux does not use a registry to store configuration information. Instead, you use text
configuration files and environment variables rather than the registry. System
configuration files on Linux are often located in /etc, such as /etc/hosts. Other user
profiles are located in hidden files (preceded with a dot), such as .bashrc, which
holds bash shell settings or .XDefaults, which is used to set defaults for X programs.

Registry-dependent code may be changed to using a local configuration text file
instead. Settings that users can change must be saved in their home directory so that
they have permission to write to it. Configuration options that need to be set by the
root are stored in /etc. Writing a unit containing all the registry functions but
diverting all output to a local configuration file is one way you could handle a former
dependency on the registry.

To place information in a global location on Linux, you can store a global
configuration file in the /etc directory or the user’s home directory as a hidden file.
Therefore, all of your applications can access the same configuration file. However,
you must be sure that the file permissions and access rights are set up correctly.

You can also use .ini files in cross-platform applications. However, in CLX, you need
to use TMemIniFile instead of TRegIniFile.

Look and feel
The visual environment in Linux looks somewhat different than it does in Windows.
The look of dialogs may differ depending on which window manager you are using,
such as KDE or Gnome.

Directory structure on Linux

In Linux, any file or device can be mounted anywhere on the file system. Linux
pathnames use forward slashes whereas Windows pathnames use backslashes. The
initial slash stands for the root directory.

Following are some of the commonly used directories in Linux.

Table 15.7 Common Linux directories

Directory Contents

/ The root or top directory of the entire Linux file system

/root The root file system; the Superuser's home directory

/bin Commands, utilities

/sbin System utilities

/dev Devices shown as files

/lib Libraries

/home/username Files owned by the user where username is the user's login name.

/opt Optional

/boot Kernel that gets called when the system starts up

/etc Configuration files

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-21

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

Note Different distributions of Linux sometimes place files in different locations. A utility
program may be placed in /bin in a Red Hat distribution but in /usr/local/bin in a
Debian distribution.

Refer to www.pathname.com for additional details on the organization of the UNIX/
Linux hierarchical file system and to read the Filesystem Hierarchy Standard.

Cross-platform database applications
On Windows, you can access database information by using ADO, BDE, and
InterBase Express. However, these three choices are not available on Kylix. Instead,
on both Windows and Linux, you can use dbExpress, a cross-platform data access
technology, depending on which edition of Delphi you have.

Before you port a database application to dbExpress so that it will run on Linux, you
should understand the differences between using dbExpress and the data access
mechanism you were using. These differences occur at different levels.

• At the lowest level, there is a layer that communicates between your application
and the database server. This could be ADO, the BDE, or the InterBase client
software. This layer is replaced by dbExpress, which is a set of lightweight drivers
for dynamic SQL processing.

• The low-level data access is wrapped in a set of components that you add to data
modules or forms. These components include database connection components,
which represent the connection to a database server, and datasets, which represent
the data fetched from the server. Although there are some very important
differences, due to the unidirectional nature of dbExpress cursors, the differences
are less pronounced at this level, because datasets all share a common ancestor, as
do database connection components.

• At the user-interface level, there are the fewest differences. CLX data-aware
controls are designed to be as similar as possible to the corresponding Windows
controls. The major differences at the user interface level arise from changes
needed to accommodate the use of cached updates.

For information on porting existing database applications to dbExpress, see “Porting
database applications to Linux” on page 15-24. For information on designing new
dbExpress applications, see Chapter 19, “Designing database applications.”

/usr Applications, programs. Usually includes directories like /usr/spool, /usr/
man, /usr/include, /usr/local

/mnt Other media mounted on the system such as a CD or a floppy disk drive

/var Logs, messages, spool files

/proc Virtual file system and reporting system statistics

/tmp Temporary files

Table 15.7 Common Linux directories (continued)

Directory Contents

15-22 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

dbExpress differences

On Linux, dbExpress manages the communication with database servers. dbExpress
consists of a set of lightweight drivers that implement a set of common interfaces.
Each driver is a shared object (.so file) that must be linked to your application.
Because dbExpress is designed to be cross-platform, it is also available on Windows
as a set of dynamic-link libraries (.dlls).

As with any data-access layer, dbExpress requires the client-side software provided
by the database vendor. In addition, it uses a database-specific driver, plus two
configuration files, dbxconnections and dbxdrivers. This is markedly less than you
need for, say, the BDE, which requires the main Borland Database Engine library
(Idapi32.dll) plus a database-specific driver and a number of other supporting
libraries.

There are other differences between dbExpress and the other data-access layers from
which you need to port your application. For example, dbExpress:

• Allows for a simpler and faster path to remote databases. As a result, you can
expect a noticeable performance increase for simple, straight-through data access.

• Processes queries and stored procedures, but does not support the concept of
opening tables.

• Returns only unidirectional cursors.

• Has no built-in update support other than the ability to execute an INSERT,
DELETE, or UPDATE query.

• Does no metadata caching; the design time metadata access interface is
implemented using the core data-access interface.

• Executes only queries requested by the user, thereby optimizing database access
by not introducing any extra queries.

• Manages a record buffer or a block of record buffers internally. This differs from
the BDE, where clients are required to allocate the memory used to buffer records.

• Supports only local tables that are SQL-based, such as InterBase and Oracle.

• Uses drivers for DB2, Informix, InterBase, MSSQL, MySQL, and Oracle. If you are
using a different database server, you must either convert your data to one of
these databases, write a dbExpress driver for the database server you are using, or
obtain a third-party dbExpress driver for your database server.

Component-level differences

When you write a dbExpress application, it requires a different set of data access
components than those used in your existing database applications. The dbExpress
components share the same base classes as other data access components (TDataSet
and TCustomConnection), which means that many of the properties, methods, and
events are the same as the components used in your existing applications.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-23

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

Table 15.8 lists some of the important database components used in InterBase
Express, BDE, and ADO in the Windows environment and shows the comparable
dbExpress components for use on Linux and in cross-platform applications.

The dbExpress datasets (TSQLTable, TSQLQuery, TSQLStoredProc, and TSQLDataSet)
are more limited than their counterparts, however, because they do not support
editing and only allow forward navigation. For details on the differences between the
dbExpress datasets and the other datasets that are available on Windows, see
Chapter 28, “Using unidirectional datasets.”

Because of the lack of support for editing and navigation, most dbExpress
applications do not work directly with the dbExpress datasets. Rather, they connect
the dbExpress dataset to a client dataset, which buffers records in memory and
provides support for editing and navigation. For more information about this
architecture, see “Database architecture” on page 19-6.

Note For very simple applications, you can use TSimpleDataSet instead of a dbExpress
dataset connected to a client dataset. This has the benefit of simplicity, because there
is a 1:1 correspondence between the dataset in the application you are porting and
the dataset in the ported application, but it is less flexible than explicitly connecting a
dbExpress dataset to a client dataset. For most applications, it is recommended that
you use a dbExpress dataset connected to a TClientDataSet component.

User interface-level differences

CLX data-aware controls are designed to be as similar as possible to the
corresponding Windows controls. As a result, porting the user interface portion of
your database applications introduces few additional considerations beyond those
involved in porting any Windows application to CLX.

The major differences at the user interface level arise from differences in the way
dbExpress datasets or client datasets supply data.

If you are using only dbExpress datasets, then you must adjust your user interface to
accommodate the fact that the datasets do not support editing and only support
forward navigation. Thus, for example, you may need to remove controls that allow
users to move to a previous record. Because dbExpress datasets do not buffer data,
you can’t display data in a data-aware grid: only one record can be displayed at a
time.

Table 15.8 Comparable data-access components

InterBase Express
components BDE components ADO components

dbExpress
components

TIBDatabase TDatabase TADOConnection TSQLConnection

TIBTable TTable TADOTable TSQLTable

TIBQuery TQuery TADOQuery TSQLQuery

TIBStoredProc TStoredProc TADOStoredProc TSQLStoredProc

TIBDataSet TADODataSet TSQLDataSet

15-24 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

If you have connected the dbExpress dataset to a client dataset, then the user
interface elements associated with editing and navigation should still work. You
need only reconnect them to the client dataset. The main consideration in this case is
handling how updates are written to the database. By default, most datasets on
Windows write updates to the database server automatically when they are posted
(for example, when the user moves to a new record). Client datasets, on the other
hand, always cache updates in memory. For information on how to accommodate
this difference, see “Updating data in dbExpress applications” on page 15-26.

Porting database applications to Linux

Porting your database application to dbExpress allows you to create a cross-platform
application that runs on both Windows and Linux. The porting process involves
making changes to your application because the technology is different. How
difficult it is to port depends on the type of application it is, how complex it is, and
what it needs to accomplish. An application that heavily uses Windows-specific
technologies such as ADO will be more difficult to port than one that uses Delphi
database technology.

Follow these general steps to port your Windows database application to Kylix/CLX:

1 Make sure your data is stored in a database that is supported by dbExpress, such
as DB2, Informix, InterBase, MSSQL, MySQL, and Oracle. The data needs to reside
on one of these SQL servers. If your data is not already stored in one of these
databases, find a utility to transfer it.

For example, you can use the IDE’s Data Pump utility (not available in all editions)
to convert certain databases (such as dBase, FoxPro, and Paradox) to a dbExpress-
supported database. (See the datapump.hlp file in Program Files\Common Files\
Borland\Shared\BDE for information on using the utility.)

2 Create data modules containing the datasets and connection components so they
are separate from your user interface forms and components. That way, you
isolate the portions of your application that require a completely new set of
components into data modules. Forms that represent the user interface can then be
ported like any other application. For details, see “Modifying VCL applications”
on page 15-4.

The remaining steps assume that your datasets and connection components are
isolated in their own data modules.

3 Create a new data module to hold the CLX versions of your datasets and
connection components.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-25

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

4 For each dataset in the original application, add a dbExpress dataset,
TDataSetProvider component, and TClientDataSet component. Use the
correspondences in Table 15.8 to decide which dbExpress dataset to use. Give
these components meaningful names.

• Set the ProviderName property of the TClientDataSet component to the name of
the TDataSetProvider component.

• Set the DataSet property of the TDataSetProvider component to the dbExpress
dataset.

• Change the DataSet property of any data source components that referred to the
original dataset so that it now refers to the client dataset.

5 Set properties on the new dataset to match the original dataset:

• If the original dataset was a TTable, TADOTable, or TIBTable component, set the
new TSQLTable’s TableName property to the original dataset’s TableName. Also
copy any properties used to set up master/detail relationships or specify
indexes. Properties specifying ranges and filters should be set on the client
dataset rather than the new TSQLTable component.

• If the original dataset was a TQuery, TADOQuery, or TIBQuery component, set
the new TSQLQuery component’s SQL property to the original dataset’s SQL
property. Set the Params property of the new TSQLQuery to match the value of
the original dataset’s Params or Parameters property. If you have set the
DataSource property to establish a master/detail relationship, copy this as well.

• If the original dataset was a TStoredProc, TADOStoredProc, or TIBStoredProc
component, set the new TSQLStoredProc component’s StoredProcName to the
StoredProcName or ProcedureName property of the original dataset. Set the
Params property of the new TSQLStoredProc to match the value of the original
dataset’s Params or Parameters property.

6 For any database connection components in the original application (TDatabase,
TIBDatabase, or TADOConnection), add a TSQLConnection component to the new
data module. You must also add a TSQLConnection component for every database
server to which you connected without a connection component (for example, by
using the ConnectionString property on an ADO dataset or by setting the
DatabaseName property of a BDE dataset to a BDE alias).

7 For each dbExpress dataset placed in step 4, set its SQLConnection property to the
TSQLConnection component that corresponds to the appropriate database
connection.

15-26 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

8 On each TSQLConnection component, specify the information needed to establish a
database connection. To do so, double-click the TSQLConnection component to
display the Connection Editor and set parameter values to indicate the
appropriate settings. If you had to transfer data to a new database server in step 1,
then specify settings appropriate to the new server. If you are using the same
server as before, you can look up some of this information on the original
connection component:

• If the original application used TDatabase, you must transfer the information
that appears in the Params and TransIsolation properties.

• If the original application used TADOConnection, you must transfer the
information that appears in the ConnectionString and IsolationLevel properties.

• If the original application used TIBDatabase, you must transfer the information
that appears in the DatabaseName and Params properties.

• If there was no original connection component, you must transfer the
information associated with the BDE alias or that appeared in the dataset’s
ConnectionString property.

You may want to save this set of parameters under a new connection name. For
more details on this process, see “Controlling connections” on page 23-3.

Updating data in dbExpress applications

dbExpress applications use client datasets to support editing. When you post edits to a
client dataset, the changes are written to the client dataset’s in-memory snapshot of
the data, but are not automatically written to the database server. If your original
application used a client dataset for caching updates, then you do not need to change
anything to support editing on Linux. However, if you relied on the default behavior
of most datasets on Windows, which is to write edits to the database server when
you post records, you must make changes to accommodate the use of a client dataset.

There are two ways to convert an application that did not previously cache updates:

• You can mimic the behavior of the dataset on Windows by writing code to apply
each updated record to the database server as soon as it is posted. To do this,
supply the client dataset with an AfterPost event handler that applies update to the
database server:

procedure TForm1.ClientDataSet1AfterPost(DataSet: TDataSet);
begin

with DataSet as TClientDataSet do
ApplyUpdates(1);

end;

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 15-27

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

• You can adjust your user interface to deal with cached updates. This approach has
certain advantages, such as reducing the amount of network traffic and
minimizing transaction times. However, if you switch to using cached updates,
you must decide when to apply those updates back to the database server, and
probably make user interface changes to let users initiate the application of
updates or inform them about whether their edits have been written to the
database. Further, because update errors are not detected when the user posts a
record, you will need to change the way you report such errors to the user, so that
they can see which update caused a problem as well as what type of problem
occurred.

If your original application used the support provided by the BDE or ADO for
caching updates, you will need to make some adjustments in your code to switch to
using a client dataset. The following table lists the properties, events, and methods
that support cached updates on BDE and ADO datasets, and the corresponding
properties, methods and events on TClientDataSet:

Table 15.9 Properties, methods, and events for cached updates

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

CachedUpdates LockType Not needed, client
datasets always
cache updates.

Determines whether cached
updates are in effect.

Not supported CursorType Not supported. Specifies how isolated the dataset
is from changes on the server.

UpdatesPending Not supported ChangeCount Indicates whether the local cache
contains updated records that
need to be applied to the
database.

UpdateRecordTypes FilterGroup StatusFilter Indicates the kind of updated
records to make visible when
applying cached updates.

UpdateStatus RecordStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError Not supported OnReconcileError An event for handling update
errors on a record-by-record basis.

ApplyUpdates (on
dataset or
database)

UpdateBatch ApplyUpdates Applies records in the local cache
to the database.

CancelUpdates CancelUpdates or
CancelBatch

CancelUpdates Removes pending updates from
the local cache without applying
them.

CommitUpdates Handled
automatically

Reconcile Clears the update cache following
successful application of updates.

FetchAll Not supported GetNextPacket
(and PacketRecords)

Copies database records to the
local cache for editing and
updating.

RevertRecord CancelBatch RevertRecord Undoes updates to the current
record if updates are not yet
applied.

15-28 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m I n t e r n e t a p p l i c a t i o n s

Cross-platform Internet applications
An Internet application is a client/server application that uses standard Internet
protocols for connecting the client to the server. Because your applications use
standard Internet protocols for client/server communications, you can make your
applications cross-platform. For example, a server-side program for an Internet
application communicates with the client through the Web server software for the
machine. The server application is typically written for Linux or Windows, but can
also be cross-platform. The clients can be on either platform.

You can use Delphi or to create Web server applications as CGI or Apache
applications to deploy on Linux. On Windows, you can create other types of Web
servers such as Microsoft Server DLLs (ISAPI), Netscape Server DLLs (NSAPI), and
Windows CGI applications. Only straight CGI applications and some applications
that use Web Broker will run on both Windows and Linux.

Porting Internet applications to Linux

If you have existing Windows Internet applications that you want to make cross-
platform, you can either port your Web server application to Kylix or create a new
application on Kylix. See Chapter 33, “Creating Internet server applications” for
information on writing Web servers. If your application uses Web Broker, writes to
the Web Broker interface, and does not use native API calls, it is not as difficult to
port it to Linux.

If your application writes to ISAPI, NSAPI, Windows CGI, or other Web APIs, it is
more difficult to port. You need to search through your source files and translate
these API calls into Apache (see ..\Source\Internet\httpd.pas for function
prototypes for Apache APIs) or CGI calls. You also need to make all other suggested
changes described in “Porting VCL applications” on page 15-2.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-1

C h a p t e r

16
Chapter16Working with packages and

components
A package is a special dynamic-link library used by applications, the IDE, or both.
Runtime packages provide functionality when a user runs an application. Design-time
packages are used to install components in the IDE and to create special property
editors for custom components. A single package can function at both design time
and runtime, and design-time packages frequently work by calling runtime
packages. To distinguish them from other DLLs, package libraries are stored in files
that end with the .bpl (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, the most frequently used VCL components reside in a
package called vcl (visualclx in CLX applications). Each time you create a new
default application, it automatically uses vcl. When you compile an application
created this way, the application’s executable image contains only the code and data
unique to it; the common code is in the runtime package called vcl70.bpl. A computer
with several package-enabled applications installed on it needs only a single copy of
vcl70.bpl, which is shared by all the applications and the IDE itself.

Several runtime packages encapsulate VCL and CLX components while several
design-time packages manipulate components in the IDE.

You can build applications with or without packages. However, if you want to add
custom components to the IDE, you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write
Delphi components, you can compile your components into design-time packages
before installing them.

16-2 D e v e l o p e r ’ s G u i d e

W h y u s e p a c k a g e s ?

Why use packages?
Design-time packages simplify the tasks of distributing and installing custom
components. Runtime packages, which are optional, offer several advantages over
conventional programming. By compiling reused code into a runtime library, you
can share it among applications. For example, all of your applications—including
Delphi itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their
executables, the executables are much smaller, saving both system resources and
hard disk storage. Moreover, packages allow faster compilation because only code
unique to the application is compiled with each build.

Packages and standard DLLs

Create a package when you want to make a custom component that’s available
through the IDE. Create a standard DLL when you want to build a library that can be
called from any application, regardless of the development tool used to build the
application.

The following table lists the file types associated with packages:

You can include VCL and CLX components in a package. Packages meant to be cross-
platform should include CLX components only.

Note Packages share their global data with other modules in an application.

For more information about DLLs and packages, see the Delphi Language Guide.

Table 16.1 Package files

File extension Contents

bpl The runtime package. This file is a Windows .dll with special Delphi-specific
features. The base name for the .bpl is the base name of the of the .dpk or
.dpkwsource file.

dcp A binary image containing a package header and the concatenation of all .dcu
files in the package, including all symbol information required by the compiler.
A single dcp file is created for each package. The base name for the dcp is the
base name of the .dpk source file. You must have a .dcp file to build an
application with packages.

dcu and pas The binary images for a unit file contained in a package. One .dcu is created,
when necessary, for each unit file.

dpk and dpkw The source files listing the units contained in the package. .dpk and .dpkw
packages are identical, but use the .dpkw extension for packages that you want
to use in cross-platform applications.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-3

R u n t i m e p a c k a g e s

Runtime packages
Runtime packages are deployed with your applications. They provide functionality
when a user runs the application.

To run an application that uses packages, a computer must have both the
application’s executable file and all the packages (.bpl files) that the application uses.
The .bpl files must be on the system path for an application to use them. When you
deploy an application, you must make sure that users have correct versions of any
required .bpls.

Loading packages in an application

You can dynamically load packages by either:

• Choosing Project Options dialog box in the IDE; or
• Using the LoadPackage function.

To load packages using the Project|Options dialog box:

1 Load or create a project in the IDE.

2 Choose Project|Options.

3 Choose the Packages tab.

4 Select the Build with Runtime Packages check box, and enter one or more package
names in the edit box underneath. Each package is loaded implicitly only when it
is needed (that is, when you refer to an object defined in one of the units in that
package). (Runtime packages associated with installed design-time packages are
already listed in the edit box.)

5 To add a package to an existing list, click the Add button and enter the name of the
new package in the Add Runtime Package dialog. To browse from a list of
available packages, click the Add button, then click the Browse button next to the
Package Name edit box in the Add Runtime Package dialog.

If you edit the Search Path edit box in the Add Runtime Package dialog, you can
change the global Library Path.

You do not need to include file extensions with package names (or the version
number representing the Delphi release); that is, vcl70.bpl is written as vcl. If you
type directly into the Runtime Package edit box, be sure to separate multiple
names with semicolons. For example:

rtl;vcl;vcldb;vclado;vclx;vclbde;

16-4 D e v e l o p e r ’ s G u i d e

R u n t i m e p a c k a g e s

Packages listed in the Runtime Packages edit box are automatically linked to your
application when you compile. Duplicate package names are ignored, and if the
Build with runtime packages check box is unchecked, the application is compiled
without packages.

Runtime packages are selected for the current project only. To make the current
choices into automatic defaults for new projects, select the Defaults check box at the
bottom of the dialog.

Note When you create an application with packages, you must include the names of the
original Delphi units in the uses clause of your source files. For example, the source
file for your main form might begin like this:

unit MainForm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs; //Some units in CLX applications differ.

The units referenced in this example are contained in the vcl and rtl packages.
Nonetheless, you must keep these references in the uses clause, even if you use vcl
and rtl in your application, or you will get compiler errors. In generated source files,
the Form Designer adds these units to the uses clause automatically.

Loading packages with the LoadPackage function
You can also load a package at runtime by calling the LoadPackage function.
LoadPackage loads the package specified by its name parameter, checks for duplicate
units, and calls the initialization blocks of all units contained in the package. For
example, the following code could be executed when a file is chosen in a file-selection
dialog.

with OpenDialog1 do
if Execute then

with PackageList.Items do
AddObject(FileName, Pointer(LoadPackage(FileName)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any
instances of classes defined in the package and to unregister classes that were
registered by it.

Deciding which runtime packages to use

Several runtime packages, including rtl and vcl, supply basic language and
component support. The vcl package contains the most commonly used components;
the rtl package includes all the non-component system functions and Windows
interface elements. It does not include database or other special components, which
are available in separate packages.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-5

D e s i g n - t i m e p a c k a g e s

To create a client/server database application that uses packages, you need several
runtime packages, including vcl, vcldb, rtl, and dbrtl. If you want to use visual
components in your application, you also need vclx. To use these packages, choose
Project|Options, select the Packages tab, and make sure the following list is included
in the Runtime Packages edit box. You need netclx for Web server applications, as
well as baseclx and probably visualclx.

vcl;rtl;vcldb;vclx;

Note You don’t have to include vcl and rtl, because they are referenced in the Requires
clause of vcldb. (See “Requires clause” on page 16-9.) Your application compiles just
the same whether or not vcl and rtl are included in the Runtime Packages edit box.

Another way you can determine which packages are called by an application is to
run it then review the event log (choose View|Debug Windows|Event Log). The
event log displays every module that is loaded including all packages. The full
package names are listed. So, for example, for vcl70.bpl, you would see a line similar
to the following:

Module Load: vcl70.bpl Has Debug Info. Base Address $400B0000. Process Project1.exe ($22C)

Custom packages

A custom package is either a .bpl you code and compile yourself or an existing
package from a third-party vendor. To use a custom runtime package with an
application, choose Project|Options and add the name of the package to the Runtime
Packages edit box on the Packages page.

For example, suppose you have a statistical package called stats.bpl. To use it in an
application, the line you enter in the Runtime Packages edit box might look like this:

vcl;rtl;vcldb;stats

If you create your own packages, add them to the list as needed.

Design-time packages
Design-time packages are used to install components on the IDE’s Component
palette and to create special property editors for custom components. Which ones are
installed depends on which edition of Delphi you are using and whether or not you
have customized it. You can view a list of what packages are installed on your system
by choosing Component|Install Packages.

The design-time packages work by calling runtime packages, which they reference in
their Requires clause. (See “Requires clause” on page 16-9.) For example, dclstd
references vcl. The dclstd itself contains additional functionality that makes many of
the standard components available on the Component palette.

In addition to preinstalled packages, you can install your own component packages,
or component packages from third-party developers, in the IDE. The dclusr design-
time package is provided as a default container for new components.

16-6 D e v e l o p e r ’ s G u i d e

D e s i g n - t i m e p a c k a g e s

Installing component packages

All components are installed in the IDE as packages. If you’ve written your own
components, create and compile a package that contains them. (See “Creating and
editing packages” on page 16-7.) Your component source code must follow the
model described in the Component Writer’s Guide.

To install or uninstall your own components, or components from a third-party
vendor, follow these steps:

1 If you are installing a new package, copy or move the package files to a local
directory. If the package is shipped with .bpl, .dcp, and .dcu files, be sure to copy
all of them. (For information about these files, see “Packages and standard DLLs.”)

The directory where you store the .dcp file—and the .dcu files, if they are included
with the distribution—must be in the Delphi Library Path.

If the package is shipped as a .dpc (package collection) file, only the one file needs
to be copied; the .dpc file contains the other files. (For more information about
package collection files, see “Package collection files” on page 16-14.)

2 Choose Component|Install Packages from the IDE menu, or choose Project|
Options and click the Packages tab. A list of available packages appears in the
Design packages list box.

• To install a package in the IDE, select the check box next to it.

• To uninstall a package, uncheck its check box.

• To see a list of components included in an installed package, select the package
and click Components.

• To add a package to the list, click Add and browse in the Add Design Package
dialog for the directory where the .bpl file resides (see step 1). Select the .bpl or
.dpc file and click Open. If you select a .dpc file, a new dialog box appears to
handle the extraction of the .bpl and other files from the package collection.

• To remove a package from the list, select the package and click Remove.

3 Click OK.

The components in the package are installed on the Component palette pages
specified in the components’ RegisterComponents procedure, with the names they
were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the
default settings. To make the current installation choices into the automatic default
for new projects, check the Default check box at the bottom of the Packages tab of the
Project Options dialog box.

To remove components from the Component palette without uninstalling a package,
select Component|Configure Palette, or select Tools|Environment Options and click
the Palette tab. The Palette options tab lists each installed component along with the
name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-7

C r e a t i n g a n d e d i t i n g p a c k a g e s

Creating and editing packages
Creating a package involves specifying:

• A name for the package.

• A list of other packages to be required by, or linked to, the new package.

• A list of unit files to be contained by, or bound into, the package when it is
compiled. The package is essentially a wrapper for these source-code units. The
Contains clause is where you put the source-code units for custom components
that you want to compile into a package.

The Package editor generates a package source file (.dpk).

Creating a package

To create a package, follow the procedure below. Refer to “Understanding the
structure of a package” on page 16-8 for more information about the steps outlined
here.

1 Choose File|New|Other, select the Package icon, and click OK. The generated
package appears in the Package editor. The Package editor displays a Requires
node and a Contains node for the new package.

2 To add a unit to the contains clause, click the Package editor’s Add button. In the
Add Unit page, type a .pas file name in the Unit file name edit box, or click Browse
to browse for the file, and then click OK. The unit you’ve selected appears under
the Contains node in the Package editor. You can add additional units by
repeating this step.

3 To add a package to the requires clause, click the Add button. In the Requires
page, type a .dcp file name in the Package name edit box, or click Browse to
browse for the file, and then click OK.The package you’ve selected appears under
the Requires node in the Package editor. You can add additional packages by
repeating this step.

4 Click the Options button, and decide what kind of package you want to build.

• To create a design-time only package (a package that cannot be used at
runtime), check the Designtime only radio button. (Or add the
{$DESIGNONLY} compiler directive to your dpk file.)

• To create a runtime-only package (a package that cannot be installed), select the
Runtime only radio button. (Or add the {$RUNONLY} compiler directive to the
dpk file.)

• To create a package that is available at both design time and runtime, select the
Designtime and runtime radio button.

5 In the Package editor, click the Compile button to compile your package.

Note You can also click the Install button to force a make.

16-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Do not use IFDEFs in a package file (.dpk) when writing cross-platform applications.
You can use them in the source code, however.

Editing an existing package

You can open an existing package for editing in several ways:

• Choose File|Open (or File|Reopen) and select a dpk file.

• Choose Component|Install Packages, select a package from the Design packages
list, and click the Edit button.

• When the Package editor is open, select one of the packages in the Requires node,
right-click, and choose Open.

To edit a package’s description or set usage options, click the Options button in the
Package editor and select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you
click OK when this box is checked, the options you’ve chosen are saved as default
settings for new projects. To restore the original defaults, delete or rename the
defproj.dof file.

Understanding the structure of a package

Packages include the following parts:

• Package name
• Requires clause
• Contains clause

Naming packages
Package names must be unique within a project. If you name a package Stats, the
Package editor generates a source file for it called Stats.dpk; the compiler generates
an executable and a binary image called Stats.bpl and Stats.dcp, respectively. Use
Stats to refer to the package in the requires clause of another package, or when using
the package in an application.

You can also add a prefix, suffix, and version number to your package name. While
the Package editor is open, click the Options button. On the Description page of the
Project Options dialog box, enter text or a value for LIB Suffix, LIB Prefix, or LIB
Version. For example, to add a version number to your package project, enter 7 after
LIB Version so that Package1 generates Package1.bpl.7.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-9

C r e a t i n g a n d e d i t i n g p a c k a g e s

Requires clause
The requires clause specifies other, external packages that are used by the current
package. An external package included in the requires clause is automatically linked
at compile time into any application that uses both the current package and one of
the units contained in the external package.

If the unit files contained in your package make references to other packaged units,
the other packages should appear in your package’s requires clause or you should
add them. If the other packages are omitted from the requires clause, the compiler
will import them into your package ‘implicitly contained units.’

Note Most packages that you create require rtl. If using VCL components, you’ll also need
to include the vcl package. If using CLX components for cross-platform
programming, you need to include VisualCLX.

Avoiding circular package references
Packages cannot contain circular references in their requires clause. This means that:

• A package cannot reference itself in its own requires clause.

• A chain of references must terminate without rereferencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

Handling duplicate package references
Duplicate references in a package’s requires clause—or in the Runtime Packages edit
box—are ignored by the compiler. For programming clarity and readability,
however, you should catch and remove duplicate package references.

Contains clause
The contains clause identifies the unit files to be bound into the package. If you are
writing your own package, put your source code in pas files and include them in the
contains clause.

Avoiding redundant source code uses
A package cannot appear in the contains clause of another package.

All units included directly in a package’s contains clause, or included indirectly in
any of those units, are bound into the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application, including the IDE. This means that if you create a package that
contains one of the units in vcl you won’t be able to install your package in the IDE.
To use an already-packaged unit file in another package, put the first package in the
second package’s requires clause.

16-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Editing package source files manually

Package source files, like project files, are generated by Delphi from information you
supply. Like project files, they can also be edited manually. A package source file
should be saved with the .dpk (Delphi package) extension to avoid confusion with
other files containing Del source code.

To open a package source file in the Code editor,

1 Open the package in the Package editor.

2 Right-click in the Package editor and select View Source.

• The package heading specifies the name for the package.

• The requires clause lists other, external packages used by the current package.
If a package does not contain any units that use units in another package, then it
doesn’t need a requires clause.

• The contains clause identifies the unit files to be compiled and bound into the
package. All units used by contained units which do not exist in required
packages will also be bound into the package, although they won’t be listed in
the contains clause (the compiler will give a warning).

For example, the following code declares the vcldb package (in the source file
vcldb70.bpl):

package MyPack;
{$R *.res}

ƒ{compiler directives omitted}
requires
rtl,
vcl;
contains
Db,
NewComponent1 in 'NewComponent1.pas';

end.

Compiling packages

You can compile a package from the IDE or from the command line. To recompile a
package by itself from the IDE:

1 Choose File|Open and select a package (.dpk).

2 Click Open.

3 When the Package editor opens:

• Click the Package editor’s Compile button.
• In the IDE, choose Project|Build.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-11

C r e a t i n g a n d e d i t i n g p a c k a g e s

Note You can also choose File|New|Other and double-click the Package icon. Click the
Install button to make the package project. Right-click the package project nodes
for options to install, compile, or build.

You can insert compiler directives into your package source code. For more
information, see “Package-specific compiler directives” below.

If you compile from the command line, you can use several package-specific
switches. For more information, see “Compiling and linking from the command line”
on page 16-13.

Package-specific compiler directives
The following table lists package-specific compiler directives that you can insert into
your source code.

Note Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file
from being packaged. Including {$G-} or {$IMPORTEDDATA OFF} may prevent a
package from being used in the same application with other packages. Packages
compiled with the {$DESIGNONLY ON} directive should not ordinarily be used in
applications, since they contain extra code required by the IDE. Other compiler
directives may be included, if appropriate, in package source code. See Compiler
directives in the online Help for information on compiler directives not discussed
here.

See Chapter 9, “Libraries and packages,” in the Delphi Language Guide for more
information on package-specific compiler directives.

Refer to “Creating packages and DLLs” on page 8-11 for additional directives that
can be used in all libraries.

Table 16.2 Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later.
Use in .dpk files when compiling packages that provide low-
level functionality, that change infrequently between builds,
or whose source code will not be distributed.

{$G-} or {IMPORTEDDATA OFF} Disables creation of imported data references. This directive
increases memory-access efficiency, but prevents the unit
where it occurs from referencing variables in other packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly.” See “Weak packaging” on
page 16-12 below.

{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in .dpk
file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

16-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Weak packaging
The $WEAKPACKAGEUNITdirective affects the way a .dcu file is stored in a
package’s .dcp and .bpl files. (For information about files generated by the compiler,
see “Package files created when compiling” on page 16-13.) If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit
from bpls when possible, and creates a non-packaged local copy of the unit when it is
required by another application or package. A unit compiled with this directive is
said to be weakly packaged.

For example, suppose you’ve created a package called pack1 that contains only one
unit, unit1. Suppose unit1 does not use any additional units, but it makes calls to
rare.dll. If you put the {$WEAKPACKAGEUNIT ON} directive in unit1.pas (Delphi)
or unit1.cpp (C++) when you compile your package, unit1 will not be included in
pack1.bpl; you will not have to distribute copies of rare.dll with pack1. However,
unit1 will still be included in pack1.dcp. If unit1 is referenced by another package or
application that uses pack1, it will be copied from pack1.dcp and compiled directly
into the project.

Now suppose you add a second unit, unit2, to pack1. Suppose that unit2 uses unit1.
This time, even if you compile pack1 with {$WEAKPACKAGEUNIT ON} in
unit1.pas, the compiler will include unit1 in pack1.bpl. But other packages or
applications that reference unit1 will use the (non-packaged) copy taken from
pack1.dcp.

Note Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have
global variables, initialization sections, or finalization sections.

The {$WEAKPACKAGEUNIT ON} directive is an advanced feature intended for
developers who distribute their packages to other programmers. It can help you to
avoid distribution of infrequently used DLLs, and to eliminate conflicts among
packages that may depend on the same external library.

For example, the PenWin unit references PenWin.dll. Most projects don’t use
PenWin, and most computers don’t have PenWin.dll installed on them. For this
reason, the PenWin unit is weakly packaged in vcl. When you compile a project that
uses PenWin and the vcl package, PenWin is copied from vcl70.dcp and bound
directly into your project; the resulting executable is statically linked to PenWin.dll.

If PenWin were not weakly packaged, two problems would arise. First, vcl itself
would be statically linked to PenWin.dll, and so you could not load it on any
computer which didn’t have PenWin.dll installed. Second, if you tried to create a
package that contained PenWin, a compiler error would result because the PenWin
unit would be contained in both vcl and your package. Thus, without weak
packaging, PenWin could not be included in standard distributions of vcl.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-13

C r e a t i n g a n d e d i t i n g p a c k a g e s

Compiling and linking from the command line
When you compile from the command line, you can use the package-specific
switches listed in the following table.

Note Using the -$G- switch may prevent a package from being used in the same
application with other packages. Other command-line options may be used, if
appropriate, when compiling packages. See “The Command-line compiler” in the
online Help for information on command-line options not discussed here.

 Package files created when compiling
To create a package, you compile a source file that has a .dpk extension. The base
name of the .dpk file becomes the base name of the files generated by the compiler.
For example, if you compile a package source file called traypak.dpk, the compiler
creates a package called traypak.bpl.

A successfully compiled package includes .dcp, .dcu and bpl files. For a detailed
description of these files, see “Packages and standard DLLs” on page 16-2.

These files are generated by default in the directories specified in Library page of the
Tools|Environment Options dialog. You can override the default settings by clicking
the Options button in the Package editor to display the Project Options dialog; make
any changes on the Directories/Conditionals page.

Table 16.3 Package-specific command-line compiler switches

Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases
memory-access efficiency, but prevents packages compiled with it from
referencing variables in other packages.

-LEpath Specifies the directory where the package file (.bpl) will be placed.

-LNpath Specifies the directory where the package file (.dcp) will be placed.

-LUpackage Use packages.

-Z Prevents a package from being implicitly recompiled later. Use when compiling
packages that provide low-level functionality, that change infrequently between
builds, or whose source code will not be distributed.

16-14 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

Deploying packages
You deploy packages much like you deploy other applications. The files you
distribute with a deployed package may vary. The bpl and any packages or dlls
required by the bpl must be distributed.

For general deployment information, refer to Chapter 18, “Deploying applications.”

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your
users have the application’s .exe file as well as all the library (.bpl or .dll) files that the
application calls. If the library files are in a different directory from the .exe file, they
must be accessible through the user’s Path. You may want to follow the convention of
putting library files in the Windows\System directory. If you use InstallShield
Express, your installation script can check the user’s system for any packages it
requires before blindly reinstalling them.

Distributing packages to other developers

If you distribute runtime or design-time packages to other Delphi developers, be sure
to supply both .dcp and .bpl files. You will probably want to include .dcu files as
well.

Package collection files

Package collections (.dpc files) offer a convenient way to distribute packages to other
developers. Each package collection contains one or more packages, including bpls
and any additional files you want to distribute with them. When a package collection
is selected for IDE installation, its constituent files are automatically extracted from
their .pce container; the Installation dialog box offers a choice of installing all
packages in the collection or installing packages selectively.

To create a package collection:

1 Choose Tools|Package Collection Editor to open the Package Collection editor.

2 Either choose Edit|Add Package or click the Add a package button, then select a
bpl in the Select Package dialog and click Open. To add more bpls to the collection,
click the Add a package button again. A tree diagram on the left side of the
Package editor displays the bpls as you add them. To remove a package, select it
and either choose Edit|Remove Package or click the Remove the selected package
button.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 16-15

D e p l o y i n g p a c k a g e s

3 Select the Collection node at the top of the tree diagram. On the right side of the
Package Collection editor, two fields appear:

• In the Author/Vendor Name edit box, you can enter optional information
about your package collection that appear in the Installation dialog when users
install packages.

• Under Directory list, list the default directories where you want the files in your
package collection to be installed. Use the Add, Edit, and Delete buttons to edit
this list. For example, suppose you want all source code files to be copied to the
same directory. In this case, you might enter Source as a Directory name with C:\
MyPackage\Source as the Suggested path. The Installation dialog box will display
C:\MyPackage\Source as the suggested path for the directory.

4 In addition to bpls, your package collection can contain .dcp, .dcu, and .pas (unit)
files, documentation, and any other files you want to include with the distribution.
Ancillary files are placed in file groups associated with specific packages (bpls);
the files in a group are installed only when their associated bpl is installed. To
place ancillary files in your package collection, select a bpl in the tree diagram and
click the Add a file group button; type a name for the file group. Add more file
groups, if desired, in the same way. When you select a file group, new fields will
appear on the right in the Package Collection editor.

• In the Install Directory list box, select the directory where you want files in this
group to be installed. The drop-down list includes the directories you entered
under Directory list in step 3, above.

• Check the Optional Group check box if you want installation of the files in this
group to be optional.

• Under Include Files, list the files you want to include in this group. Use the
Add, Delete, and Auto buttons to edit the list. The Auto button allows you to
select all files with specified extensions that are listed in the contains clause of
the package; the Package Collection editor uses the global Library Path to
search for these files.

5 You can select installation directories for the packages listed in the requires clause
of any package in your collection. When you select a bpl in the tree diagram, four
new fields appear on the right side of the Package Collection editor:

• In the Required Executables list box, select the directory where you want the
.bpl files for packages listed in the requires clause to be installed. (The drop-
down list includes the directories you entered under Directory list in step 3,
above.) The Package Collection editor searches for these files using Delphi’s
global Library Path and lists them under Required Executable Files.

• In the Required Libraries list box, select the directory where you want the .dcp
files for packages listed in the requires clause to be installed. (The drop-down
list includes the directories you entered under Directory List in step 3, above.)
The Package Collection editor searches for these files using the global Library
Path and lists them under Required Library Files.

16-16 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

6 To save your package collection source file, choose File|Save. Package collection
source files should be saved with the .pce extension.

7 To build your package collection, click the Compile button. The Package
Collection editor generates a .dpc file with the same name as your source (.pce)
file. If you have not yet saved the source file, the editor queries you for a file name
before compiling.

To edit or recompile an existing .pce file, select File|Open in the Package Collection
editor and locate the file you want to work with.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-1

C h a p t e r

17
Chapter17Creating international applications

This chapter discusses guidelines for writing applications that you plan to distribute
to an international market. By planning ahead, you can reduce the amount of time
and code necessary to make your application function in its foreign market as well as
in its domestic market.

Internationalization and localization
To create an application that you can distribute to foreign markets, there are two
major steps that need to be performed:

• Internationalization
• Localization

If your edition includes the Translation Tools, you can use the them to manage
localization. For more information, see the online Help for the Translation Tools
(ETM.hlp).

Internationalization

Internationalization is the process of enabling your program to work in multiple
locales. A locale is the user’s environment, which includes the cultural conventions of
the target country as well as the language. Windows supports many locales, each of
which is described by a language and country pair.

17-2 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Localization

Localization is the process of translating an application so that it functions in a
specific locale. In addition to translating the user interface, localization may include
functionality customization. For example, a financial application may be modified for
the tax laws in different countries.

Internationalizing applications
You need to complete the following steps to create internationalized applications:

• Enable your code to handle strings from international character sets.

• Design your user interface to accommodate the changes that result from
localization.

• Isolate all resources that need to be localized.

Enabling application code

You must make sure that the code in your application can handle the strings it will
encounter in the various target locales.

~Character sets
The Western editions (including English, French, and German) of Windows use the
ANSI Latin-1 (1252) character set. However, other editions of Windows use different
character sets. For example, the Japanese version of Windows uses the Shift-JIS
character set (code page 932), which represents Japanese characters as multibyte
character codes.

There are generally three types of characters sets:

• Single-byte
• Multibyte
• Wide characters

Windows and Linux both support single-byte and multibyte character sets as well as
Unicode. With a single-byte character set, each byte in a string represents one
character. The ANSI character set used by many western operating systems is a
single-byte character set.

In a multibyte character set, some characters are represented by one byte and others
by more than one byte. The first byte of a multibyte character is called the lead byte.
In general, the lower 128 characters of a multibyte character set map to the 7-bit
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are
widely used for Asian languages.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-3

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

OEM and ANSI character sets
It is sometimes necessary to convert between the Windows character set (ANSI) and
the character set specified by the code page of the user’s machine (called the OEM
character set).

Multibyte character sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping
between characters in the language and the one byte (8-bit) char type. These
languages have too many characters to be represented using the single-byte char.
Instead, a multibyte string can contain one or more bytes per character. AnsiStrings
can contain a mix of single-byte and multibyte characters.

The lead byte of every multibyte character code is taken from a reserved range that
depends on the specific character set. The second and subsequent bytes can
sometimes be the same as the character code for a separate one-byte character, or it
can fall in the range reserved for the first byte of multibyte characters. Thus, the only
way to tell whether a particular byte in a string represents a single character or is part
of a multibyte character is to read the string, starting at the beginning, parsing it into
two or more byte characters when a lead byte from the reserved range is
encountered.

When writing code for Asian locales, you must be sure to handle all string
manipulation using functions that are enabled to parse strings into multibyte
characters. See “MBCS utilities” in the online Help for a list of the RTL functions that
are enabled to work with multibyte characters.

Delphi provides you with many of these runtime library functions, as listed in the
following table:

Remember that the length of the strings in bytes does not necessarily correspond to
the length of the string in characters. Be careful not to truncate strings by cutting a
multibyte character in half. Do not pass characters as a parameter to a function or
procedure, since the size of a character can’t be known up front. Instead, always pass
a pointer to a character or a string.

Table 17.1 Runtime library functions

AdjustLineBreaks
AnsiCompareFileName
AnsiExtractQuotedStr
AnsiLastChar
AnsiLowerCase
AnsiLowerCaseFileName
AnsiPos
AnsiQuotedStr
AnsiStrComp
AnsiStrIComp
AnsiStrLastChar
AnsiStrLComp
AnsiStrLIComp

AnsiStrLower
AnsiStrPos
AnsiStrRScan
AnsiStrScan
AnsiStrUpper
AnsiUpperCase
AnsiUpperCaseFileName
ByteToCharIndex
ByteToCharLen
ByteType
ChangeFileExt
CharToByteIndex
CharToByteLen

ExtractFileDir
ExtractFileExt
ExtractFileName
ExtractFilePath
ExtractRelativePath
FileSearch
IsDelimiter
IsPathDelimiter
LastDelimiter
StrByteType
StringReplace
WrapText

17-4 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Wide characters
Another approach to working with ideographic character sets is to convert all
characters to a wide character encoding scheme such as Unicode. Unicode characters
and strings are also called wide characters and wide character strings. In the Unicode
character set, each character is represented by two bytes. Thus a Unicode string is a
sequence not of individual bytes but of two-byte words.

The first 256 Unicode characters map to the ANSI character set. The Windows
operating system supports Unicode (UCS-2). The Linux operating system supports
UCS-4, a superset of UCS-2. Delphi supports UCS-2 on both platforms. Because wide
characters are two bytes instead of one, the character set can represent many more
different characters.

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

The biggest disadvantage of working with wide characters is that Windows supports
a few wide character API function calls. Because of this, the VCL components
represent all string values as single byte or MBCS strings. Translating between the
wide character system and the MBCS system every time you set a string property or
read its value would require additional code and slow your application down.
However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between
characters and WideChars.

Including bi-directional functionality in applications
Some languages do not follow the left to right reading order commonly found in
western languages, but rather read words right to left and numbers left to right.
These languages are termed bi-directional (BiDi) because of this separation. The most
common bi-directional languages are Arabic and Hebrew, although other Middle
East languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you
to specify the keyboard layout. In addition, the VCL supports bi-directional
localization through the BiDiMode and ParentBiDiMode properties.

Note Bi-directional properties are not available for cross-platform applications.

BiDiMode property
The BiDiMode property controls the reading order for the text, the placement of the
vertical scrollbar, and whether the alignment is changed. Controls that have a text
property, such as Name, display the BiDiMode property on the Object Inspector.

The BiDiMode property is a new enumerated type, TBiDiMode, with four states:
bdLeftToRight, bdRightToLeft, bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

Note THintWindow picks up the BiDiMode of the control that activated the hint.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-5

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

bdLeftToRight
bdLeftToRight draws text using left to right reading order. The alignment and scroll
bars are not changed. For instance, when entering right to left text, such as Arabic or
Hebrew, the cursor goes into push mode and the text is entered right to left. Latin
text, such as English or French, is entered left to right. bdLeftToRight is the default
value.

Figure 17.1 TListBox set to bdLeftToRight

bdRightToLeft
bdRightToLeft draws text using right to left reading order, the alignment is changed
and the scroll bar is moved. Text is entered as normal for right-to-left languages such
as Arabic or Hebrew. When the keyboard is changed to a Latin language, the cursor
goes into push mode and the text is entered left to right.

Figure 17.2 TListBox set to bdRightToLeft

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is
not changed, and the scroll bar is moved.

Figure 17.3 TListBox set to bdRightToLeftNoAlign

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the
alignment and scroll bars are not changed.

Figure 17.4 TListBox set to bdRightToLeftReadingOnly

ParentBiDiMode property
ParentBiDiMode is a Boolean property. When True (the default) the control looks to its
parent to determine what BiDiMode to use. If the control is a TForm object, the form
uses the BiDiMode setting from Application. If all the ParentBiDiMode properties are
True, when you change Application’s BiDiMode property, all forms and controls in the
project are updated with the new setting.

17-6 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

FlipChildren method
The FlipChildren method allows you to flip the position of a container control’s
children. Container controls are controls that can accept other controls, such as
TForm, TPanel, and TGroupBox. FlipChildren has a single boolean parameter, AllLevels.
When False, only the immediate children of the container control are flipped. When
True, all the levels of children in the container control are flipped.

Delphi flips the controls by changing the Left property and the alignment of the
control. If a control’s left side is five pixels from the left edge of its parent control,
after it is flipped the edit control’s right side is five pixels from the right edge of the
parent control. If the edit control is left aligned, calling FlipChildren will make the
control right aligned.

To flip a control at design-time select Edit|Flip Children and select either All or
Selected, depending on whether you want to flip all the controls, or just the children
of the selected control. You can also flip a control by selecting the control on the form,
right-clicking, and selecting Flip Children from the context menu.

Note Selecting an edit control and issuing a Flip Children|Selected command does
nothing. This is because edit controls are not containers.

Additional methods
There are several other methods useful for developing applications for bi-directional
users.

Table 17.2 VCL methods that support BiDi

Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the
alignment of a control can be changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking
alignment.

ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check
is done for BiDiMode setting, it just converts left
alignment into right alignment and vice versa, leaving
center-aligned controls alone.

IsRightToLeft Returns True if any of the right to left options are
selected. If it returns False the control is in left to right
mode.

UseRightToLeftReading Returns True if the control is using right to left reading.

UseRightToLeftAlignment Returns True if the control is using right to left
alignment. It can be overridden for customization.

UseRightToLeftScrollBar Returns True if the control is using a left scroll bar.

DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of
the control.

DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of
the control, limiting the flag to its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is
being created.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-7

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Locale-specific features
You can add extra features to your application for specific locales. In particular, for
Asian language environments, you may want your application to control the input
method editor (IME) that is used to convert the keystrokes typed by the user into
character strings.

Controls offer support in programming the IME. Most windowed controls that work
directly with text input have an ImeName property that allows you to specify a
particular IME that should be used when the control has input focus. They also
provide an ImeMode property that specifies how the IME should convert keyboard
input. TWinControl introduces several protected methods that you can use to control
the IME from classes you define. In addition, the global Screen variable provides
information about the IMEs available on the user’s system.

The global Screen variable also provides information about the keyboard mapping
installed on the user’s system. You can use this to obtain locale-specific information
about the environment in which your application is running.

The IME is available in VCL applications only.

Designing the user interface

When creating an application for several foreign markets, it is important to design
your user interface so that it can accommodate the changes that occur during
translation.

Text
All text that appears in the user interface must be translated. English text is almost
always shorter than its translations. Design the elements of your user interface that
display text so that there is room for the text strings to grow. Create dialogs, menus,
status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use
ideographic characters.

Short strings tend to grow in translation more than long phrases. Table 17.3 provides
a rough estimate of how much expansion you should plan for given the length of
your English strings:

Table 17.3 Estimating string lengths

Length of English string (in characters) Expected increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

17-8 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Graphic images
Ideally, you will want to use images that do not require translation. Most obviously,
this means that graphic images should not include text, which will always require
translation. If you must include text in your images, it is a good idea to use a label
object with a transparent background over an image rather than including the text as
part of the image.

There are other considerations when creating graphic images. Try to avoid images
that are specific to a particular culture. For example, mailboxes in different countries
look very different from each other. Religious symbols are not appropriate if your
application is intended for countries that have different dominant religions. Even
color can have different symbolic connotations in different cultures.

Formats and sort order
The date, time, number, and currency formats used in your application should be
localized for the target locale. If you use only the Windows formats, there is no need
to translate formats, as these are taken from the user’s Windows Registry. However,
if you specify any of your own format strings, be sure to declare them as resourced
constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many
European languages include diacritical marks that are sorted differently, depending
on the locale. In addition, in some countries, two-character combinations are treated
as a single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is
sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Be careful with key-combinations shortcut assignments. Not all the characters
available on the US keyboard are easily reproduced on all international keyboards.
Where possible, use number keys and function keys for shortcuts, as these are
available on virtually all keyboards.

Isolating resources

The most obvious task in localizing an application is translating the strings that
appear in the user interface. To create an application that can be translated without
altering code everywhere, the strings in the user interface should be isolated into a
single module. Delphi automatically creates a .dfm (.xfm in CLX applications) file
that contains the resources for your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any
strings, such as error messages, that you present to the user. String resources are not
included in the form file. You can isolate them by declaring constants for them using
the resourcestring keyword. For more information about resource string constants,
see the Delphi Language Guide. It is best to include all resource strings in a single,
separate unit.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-9

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Creating resource DLLs

Isolating resources simplifies the translation process. The next level of resource
separation is the creation of a resource DLL. A resource DLL contains all the
resources and only the resources for a program. Resource DLLs allow you to create a
program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The
Resource DLL wizard requires an open, saved, compiled project. It will create an RC
file that contains the string tables from used RC files and resourcestring strings of the
project, and generate a project for a resource only DLL that contains the relevant
forms and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each
resource DLL should have a file name extension specific to the target locale. The first
two characters indicate the target language, and the third character indicates the
country of the locale. If you use the Resource DLL wizard, this is handled for you.
Otherwise, use the following code to obtain the locale code for the target translation:

unit locales;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
LocaleList: TListBox;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

function GetLocaleData(ID: LCID; Flag: DWORD): string;
var

BufSize: Integer;
begin

BufSize := GetLocaleInfo(ID, Flag, nil, 0);
SetLength(Result, BufSize);
GetLocaleinfo(ID, Flag, PChar(Result), BufSize);
SetLength(Result, BufSize - 1);

end;

{ Called for each supported locale. }
function LocalesCallback(Name: PChar): Bool; stdcall;

17-10 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

var
LCID: Integer;

begin
LCID := StrToInt('$' + Copy(Name, 5, 4));
Form1.LocaleList.Items.Add(GetLocaleData(LCID, LOCALE_SLANGUAGE));
Result := Bool(1);

end;

procedure TForm1.Button1Click(Sender: TObject);
var

I: Integer;
begin
 with Languages do
 begin
 for I := 0 to Count - 1 do
 begin
 ListBox1.Items.Add(Name[I]);
 end;
 end;
end;

Using resource DLLs

The executable, DLLs, and packages (bpls) that make up your application contain all
the necessary resources. However, to replace those resources by localized versions,
you need only ship your application with localized resource DLLs that have the same
name as your executable, DLL, or package files.

When your application starts up, it checks the locale of the local system. If it finds any
resource DLLs with the same name as the EXE, DLL, or BPL files it is using, it checks
the extension on those DLLs. If the extension of the resource module matches the
language and country of the system locale, your application will use the resources in
that resource module instead of the resources in the executable, DLL, or package. If
there is not a resource module that matches both the language and the country, your
application will try to locate a resource module that matches just the language. If
there is no resource module that matches the language, your application will use the
resources compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that
matches the locale of the local system, you can set a locale override entry in the
Windows registry. Under the HKEY_CURRENT_USER\Software\Borland\Locales
key, add your application’s path and file name as a string value and set the data
value to the extension of your resource DLLs. At startup, the application will look for
resource DLLs with this extension before trying the system locale. Setting this
registry entry allows you to test localized versions of your application without
changing the locale on your system.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 17-11

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

For example, the following procedure can be used in an install or setup program to
set the registry key value that indicates the locale to use when loading applications:

procedure SetLocalOverrides(FileName: string, LocaleOverride: string);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 if Reg.OpenKey(‘Software\Borland\Locales’, True) then
 Reg.WriteString(LocalOverride, FileName);
 finally
 Reg.Free;

end;
end;

Within your application, use the global FindResourceHInstance function to obtain the
handle of the current resource module. For example:

LoadStr(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, SizeOf(szQuery));

You can ship a single application that adapts itself automatically to the locale of the
system it is running on, simply by providing the appropriate resource DLLs.

Dynamic switching of resource DLLs

In addition to locating a resource DLL at application startup, it is possible to switch
resource DLLs dynamically at runtime. To add this functionality to your own
applications, you need to include the ReInit unit in your uses statement. (ReInit is
located in the Richedit sample in the Demos directory.) To switch languages, you
should call LoadResourceModule, passing the LCID for the new language, and then call
ReinitializeForms.

For example, the following code switches the interface language to French:

const
FRENCH = (SUBLANG_FRENCH shl 10) or LANG_FRENCH;

if LoadNewResourceModule(FRENCH) <> 0 then
ReinitializeForms;

The advantage of this technique is that the current instance of the application and all
of its forms are used. It is not necessary to update the registry settings and restart the
application or re-acquire resources required by the application, such as logging in to
database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite
the properties in the running instances of the forms.

Note Any changes made to the form properties at runtime will be lost. Once the new DLL
is loaded, default values are not reset. Avoid code that assumes that the form objects
are reinitialized to the their startup state, apart from differences due to localization.

17-12 D e v e l o p e r ’ s G u i d e

L o c a l i z i n g a p p l i c a t i o n s

Localizing applications
Once your application is internationalized, you can create localized versions for the
different foreign markets in which you want to distribute it.

Localizing resources

Ideally, your resources have been isolated into a resource DLL that contains form
files (.dfm in VCL applications or .xfm in CLX applications) and a resource file. You
can open your forms in the IDE and translate the relevant properties.

Note In a resource DLL project, you cannot add or delete components. It is possible,
however, to change properties in ways that could cause runtime errors, so be careful
to modify only those properties that require translation. To avoid mistakes, you can
configure the Object Inspector to display only Localizable properties; to do so, right-
click in the Object Inspector and use the View menu to filter out unwanted property
categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by
opening the RC file from the Project Manager.

D e p l o y i n g a p p l i c a t i o n s 18-1

C h a p t e r

18
Chapter18Deploying applications

Once your application is up and running, you can deploy it. That is, you can make it
available for others to run. A number of steps must be taken to deploy an application
to another computer so that the application is completely functional. The steps
required by a given application vary, depending on the type of application. The
following sections describe these steps when deploying the following applications:

• Deploying general applications
• Deploying CLX applications
• Deploying database applications
• Deploying Web applications
• Programming for varying host environments
• Software license requirements

Note Information included in these sections is for deploying applications on Windows. To
deploy a cross-platform applications on Linux, refer to your Kylix documentation.

Deploying general applications
Beyond the executable file, an application may require a number of supporting files,
such as DLLs, package files, and helper applications. In addition, the Windows
registry may need to contain entries for an application, from specifying the location
of supporting files to simple program settings. The process of copying an
application’s files to a computer and making any needed registry settings can be
automated by an installation program, such as InstallShield Express. Nearly all types
of applications include the following issues:

• Using installation programs
• Identifying application files
• Helper applications
• DLL locations

18-2 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Database and Web applications require additional installation steps. For additional
information on installing database applications, see “Deploying database
applications” on page 18-6. For more information on installing Web applications, see
“Deploying Web applications” on page 18-9. For more information on installing
ActiveX controls, see “Deploying an ActiveX control on the Web” on page 45-15.

Using installation programs

Simple applications that consist of only an executable file are easy to install on a
target computer. Just copy the executable file onto the computer. However, more
complex applications that comprise multiple files require more extensive installation
procedures. These applications require dedicated installation programs.

Setup toolkits automate the process of creating installation programs, often without
needing to write any code. Installation programs created with Setup toolkits perform
various tasks inherent to installing Delphi applications, including: copying the
executable and supporting files to the host computer, making Windows registry
entries, and installing the Borland Database Engine for BDE database applications.

InstallShield Express is a setup toolkit that is bundled with Delphi. InstallShield
Express is certified for use with Delphi and the Borland Database Engine. It is based
on Windows Installer (MSI) technology.

InstallShield Express is not automatically installed when Delphi is installed, so it
must be manually installed if you want to use it to create installation programs. Run
the installation program from the Delphi CD to install InstallShield Express. For
more information on using InstallShield Express to create installation programs, see
the InstallShield Express online help.

Other setup toolkits are available. However, if deploying BDE database applications,
you should only use toolkits based on MSI technology and those which are certified
to deploy the Borland Database Engine.

Identifying application files
Besides the executable file, a number of other files may need to be distributed with an
application.

• Application files
• Package files
• Merge modules
• ActiveX controls

D e p l o y i n g a p p l i c a t i o n s 18-3

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Application files
The following types of files may need to be distributed with an application.

Package files
If the application uses runtime packages, those package files need to be distributed
with the application. InstallShield Express handles the installation of package files
the same as DLLs, copying the files and making necessary entries in the Windows
registry. You can also use merge modules for deploying runtime packages with MSI-
based setup tools including InstallShield Express. See the next section for details.

Borland recommends installing the runtime package files supplied by Borland in the
Windows\System directory. This serves as a common location so that multiple
applications would have access to a single instance of the files. For packages you
created, it is recommended that you install them in the same directory as the
application. Only the .bpl files need to be distributed.

Note If deploying packages with CLX applications, you need to include clx70.bpl rather
than vcl70.bpl.

If you are distributing packages to other developers, supply the .bpl and .dcp files.

Merge modules
InstallShield Express 3.0 is based on Windows Installer (MSI) technology. With MSI-
based setup tools such as InstallShield Express, you can use merge modules for
deploying runtime packages. Merge modules provide a standard method that you
can use to deliver shared code, files, resources, Registry entries, and setup logic to
applications as a single compound file.

The runtime libraries have some interdependencies because of the way they are
grouped together. The result of this is that when one package is added to an install
project, the install tool automatically adds or reports a dependency on one or more
other packages. For example, if you add the VCLInternet merge module to an install
project, the install tool should also automatically add or report a dependency on the
VCLDatabase and StandardVCL modules.

Table 18.1 Application files

Type File name extension

Program files .exe and .dll

Package files .bpl and .dcp

Help files .hlp, .cnt, and .toc (if used) or any other Help files your application supports

ActiveX files .ocx (sometimes supported by a DLL)

Local table files .dbf, .mdx, .dbt, .ndx, .db, .px, .y*, .x*, .mb, .val, .qbe, .gd*

18-4 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

The dependencies for each merge module are listed in the table below. The various
install tools may react to these dependencies differently. The InstallShield for
Windows Installer automatically adds the required modules if it can find them.
Other tools may simply report a dependency or may generate a build failure if all
required modules are not included in the project.

Table 18.2 Merge modules and their dependencies

Merge module BPLs included Dependencies

ADO adortl70.bpl DatabaseRTL, BaseRTL

BaseClientDataSet cds70.bpl DatabaseRTL, BaseRTL, DataSnap,
dbExpress

BaseRTL rtl70.bpl No dependencies

BaseVCL vcl70.bpl, vclx70.bpl BaseRTL

BDEClientDataSet bdecds70.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress, BDERTL

BDEInternet inetdbbde70.bpl Internet, DatabaseRTL, BaseRTL, BDERTL

BDERTL bdertl70.bpl DatabaseRTL, BaseRTL

DatabaseRTL dbrtl70.bpl BaseRTL

DatabaseVCL vcldb70.bpl BaseVCL, DatabaseRTL, BaseRTL

DataSnap dsnap70.bpl DatabaseRTL, BaseRTL

DataSnapConnection dsnapcon70.bpl DataSnap, DatabaseRTL, BaseRTL

DataSnapCorba dsnapcrba70.bpl DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

DataSnapEntera dsnapent70.bpl DataSnap, DatabaseRTL, BaseRTL,
BaseVCL

DBCompatVCL vcldbx70.bpl DatabaseVCL, BaseVCL, BaseRTL,
DatabaseRTL

dbExpress dbexpress70.bpl DatabaseRTL, BaseRTL

dbExpressClientDataSet dbxcds70.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress

DBXInternet inetdbxpress70.bpl Internet, DatabaseRTL, BaseRTL,
dbExpress, DatabaseVCL, BaseVCL

DecisionCube dss70.bpl TeeChart, BaseVCL, BaseRTL,
DatabaseVCL, DatabaseRTL, BDERTL

InterbaseVCL ibxpress70.bpl BaseClientDataSet, BaseRTL, BaseVCL,
DatabaseRTL, DatabaseVCL, DataSnap,
dbExpress

Internet inet70.bpl, inetdb70.bpl DatabaseRTL, BaseRTL

InternetDirect indy70.bpl BaseVCL, BaseRTL

Office2000Components dcloffice2k70.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

OfficeXPComponents dclofficexp70.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

QuickReport qrpt70.bpl BaseVCL, BaseRTL, BDERTL, DatabaseRTL

SampleVCL vclsmp70.bpl BaseVCL, BaseRTL

D e p l o y i n g a p p l i c a t i o n s 18-5

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

ActiveX controls
Certain components bundled with Delphi are ActiveX controls. The component
wrapper is linked into the application’s executable file (or a runtime package), but
the .ocx file for the component also needs to be deployed with the application. These
components include:

• Chart FX, copyright SoftwareFX Inc.
• VisualSpeller Control, copyright Visual Components, Inc.
• Formula One (spreadsheet), copyright Visual Components, Inc.
• First Impression (VtChart), copyright Visual Components, Inc.
• Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls that you create need to be registered on the deployment computer
before use. Installation programs such as InstallShield Express automate this
registration process. To manually register an ActiveX control, choose Run|ActiveX
Server in the IDE, use the TRegSvr demo application in \Demos\ActiveX or use the
Microsoft utility REGSRV32.EXE (not included with Windows 9x versions).

DLLs that support an ActiveX control also need to be distributed with an application.

Helper applications
Helper applications are separate programs without which your application would be
partially or completely unable to function. Helper applications may be those
supplied with the operating system, by Borland, or by third-party products. An
example of a helper application is the InterBase utility program Server Manager,
which administers InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your
application, where possible. Distribution of helper programs may be governed by
redistribution license agreements. Consult the helper program documentation for
specific information.

SOAPRTL soaprtl70.bpl BaseRTL, XMLRTL, DatabaseRTL,
DataSnap, Internet

TeeChart tee70.bpl, teedb70.bpl,
teeqr70.bpl, teeui70.bpl

BaseVCL, BaseRTL

VCLActionBands vclactnband70.bpl BaseVCL, BaseRTL

VCLIE vclie70.bpl BaseVCL, BaseRTL

VisualCLX visualclx70.bpl BaseRTL

VisualDBCLX visualdbclx70.bpl BaseRTL, DatabaseRTL, VisualCLX

WebDataSnap webdsnap70.bpl XMLRTL, Internet, DataSnapConnection,
DataSnap, DatabaseRTL, BaseRTL

WebSnap websnap71.bpl,
vcljpg70.bpl

WebDataSnap, XMLRTL, Internet,
DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

XMLRTL xmlrtl70.bpl Internet, DatabaseRTL, BaseRTL

Table 18.2 Merge modules and their dependencies (continued)

Merge module BPLs included Dependencies

18-6 D e v e l o p e r ’ s G u i d e

D e p l o y i n g C L X a p p l i c a t i o n s

DLL locations
You can install DLL files used only by a single application in the same directory as
the application. DLLs that will be used by a number of applications should be
installed in a location accessible to all of those applications. A common convention
for locating such community DLLs is to place them either in the Windows or the
Windows\System directory. A better way is to create a dedicated directory for the
common .DLL files, similar to the way the Borland Database Engine is installed.

Deploying CLX applications
If you are writing cross-platform applications that will be deployed on both
Windows and Linux, you need to compile and deploy the applications on both
platforms. To deploy a CLX application on Windows, follow the same steps as those
for general applications. You need to include qtintf.dll with the application to include
the runtime library. To deploy packages with CLX applications, you need to include
clx70.bpl rather than vcl70.bpl.

See Chapter 15, “Developing cross-platform applications” for information on writing
CLX applications.

Deploying database applications
Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the host computer. Database access is
most often handled by a separate database engine, the files of which cannot be linked
into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require
additional handling on installation, because the files that make up the application are
typically located on multiple computers.

Since several different database technologies (ADO, BDE, dbExpress, and InterBase
Express) are supported, deployment requirements differ for each. Regardless of
which you are using, you need to make sure that the client-side software is installed
on the system where you plan to run the database application. ADO, BDE,
dbExpress, and InterBase Express also require drivers to interact with the client-side
software of the database.

Specific information on how to deploy dbExpress, BDE, and multi-tiered database
applications is described in the following sections:

• Deploying dbExpress database applications.
• Deploying BDE applications.
• Deploying multi-tiered database applications (DataSnap).

D e p l o y i n g a p p l i c a t i o n s 18-7

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

Database applications that use client datasets such as TClientDataSet or dataset
providers require you to include midaslib.dcu and crtl.dcu (for static linking when
providing a stand-alone executable); if you are packaging your application (with the
executable and any needed DLLs), you need to include Midas.dll.

If deploying database applications that use ADO, you need to be sure that MDAC
version 2.1 or later is installed on the system where you plan to run the application.
MDAC is automatically installed with software such as Windows 2000 and Internet
Explorer version 5 or later. You also need to be sure the drivers for the database
server you want to connect to are installed on the client. No other deployment steps
are required.

If deploying database applications that use InterBase Express, you need to be sure
that the InterBase client is installed on the system where you plan to run the
application. InterBase requires gd32.dll and interbase.msg to be located in an
accessible directory. No other deployment steps are required. InterBase Express
components communicate directly with the InterBase Client API and do not require
additional drivers. For more information, refer to the Embedded Installation Guide
posted on the Borland Web site.

In addition to the technologies described here, you can also use third-party database
engines to provide database access. Consult the documentation or vendor for the
database engine regarding redistribution rights, installation, and configuration.

Deploying dbExpress database applications

dbExpress is a set of thin, native drivers that provide fast access to database
information. dbExpress support cross-platform development because they are also
available on Linux.

You can deploy dbExpress applications either as a stand-alone executable file or as
an executable file that includes associated dbExpress driver DLLs.

To deploy dbExpress applications as stand-alone executable files, the dbExpress
object files must be statically linked into your executable. You do this by including
the following DCUs, located in the lib directory:

Table 18.3 dbExpress deployment as stand-alone executable

Database unit When to include

dbExpINT Applications connecting to InterBase databases

dbExpORA Applications connecting to Oracle databases

dbExpDB2 Applications connecting to DB2 databases

dbExpMYS Applications connecting to MySQL 3.22.x databases

dbExpMYSQL Applications connecting to MySQL 3.23.x databases

crtl Required by all executables that use dbExpress

MidasLib Required by dbExpress executables that use client datasets such as
TClientDataSet

18-8 D e v e l o p e r ’ s G u i d e

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

Note For database applications using Informix or MSSQL, you cannot deploy a stand-
alone executable. Instead, deploy an executable file with the driver DLL (listed in the
table following).

If you are not deploying a stand-alone executable, you can deploy associated
dbExpress drivers and DataSnap DLLs with your executable. The following table
lists the appropriate DLLs and when to include them:

See Chapter 28, “Using unidirectional datasets” for more information about using the
dbExpress components.

Deploying BDE applications

The Borland Database Engine (BDE) defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range of
functions and comes with the most supporting utilities. It is the best way to work
with data in Paradox or dBASE tables.

Database access for an application is provided by various database engines. An
application can use the BDE or a third-party database engine. The following section
describes installation of the database access elements of an application.

Borland Database Engine
You can use the Borland Database Engine (BDE) to provide database access for
standard Delphi data components. See the BDEDEPLOY document for specific rights
and limitations on redistributing the BDE.

Table 18.4 dbExpress deployment with driver DLLs

Database DLL When to deploy

dbexpinf.dll Applications connecting to Informix databases

dbexpint.dll Applications connecting to InterBase databases

dbexpora.dll Applications connecting to Oracle databases

dbexpdb2.dll. Applications connecting to DB2 databases

dbexpmss.dll Applications connecting to MSSQL databases

dbexpmys.dll Applications connecting to MySQL 3.22.xdatabases

dbexpmysql.dll Applications connecting to MySQL 3.23.x databases

Midas.dll Required by database applications that use client datasets

D e p l o y i n g a p p l i c a t i o n s 18-9

D e p l o y i n g W e b a p p l i c a t i o n s

You should use InstallShield Express (or other certified installation program) for
installing the BDE. InstallShield Express creates the necessary registry entries and
defines any aliases the application may require. Using a certified installation
program to deploy the BDE files and subsets is important because:

• Improper installation of the BDE or BDE subsets can cause other applications
using the BDE to fail. Such applications include not only Borland products, but
many third-party programs that use the BDE.

• Under 32-bit Windows 95/NT and later, BDE configuration information is stored
in the Windows registry instead of .ini files, as was the case under 16-bit
Windows. Making the correct entries and deletions for install and uninstall is a
complex task.

It is possible to install only as much of the BDE as an application actually needs. For
instance, if an application only uses Paradox tables, it is only necessary to install that
portion of the BDE required to access Paradox tables. This reduces the disk space
needed for an application. Certified installation programs, like InstallShield Express,
are capable of performing partial BDE installations. Be sure to leave BDE system files
that are not used by the deployed application, but that are needed by other
programs.

Deploying multi-tiered database applications (DataSnap)

DataSnap provides multi-tier database capability to Delphi applications by allowing
client applications to connect to providers in an application server.

Install DataSnap along with a multi-tier application using InstallShield Express (or
other Borland-certified installation scripting utility). See the DEPLOY document
(found in the main Delphi directory) for details on the files that need to be
redistributed with an application. Also see the REMOTE document for related
information on what DataSnap files can be redistributed and how.

Deploying Web applications
Some Delphi applications are designed to be run over the World Wide Web, such as
those in the form of Server-side Extension DLLs (ISAPI and Apache), CGI
applications, and ActiveForms.

The steps for deploying Web applications are the same as those for general
applications, except the application’s files are deployed on the Web server.

Here are some special considerations for deploying Web applications:

• For BDE database applications, the Borland Database Engine (or alternate
database engine) is installed with the application files on the Web server.

• For dbExpress applications, the dbExpress DLLs must be included in the path. If
included, the dbExpress driver is installed with the application files on the Web
server.

18-10 D e v e l o p e r ’ s G u i d e

D e p l o y i n g W e b a p p l i c a t i o n s

• Security for the directories should be set so that the application can access all
needed database files.

• The directory containing an application must have read and execute attributes.

• The application should not use hard-coded paths for accessing database or other
files.

• The location of an ActiveX control is indicated by the CODEBASE parameter of
the <OBJECT> HTML tag.

For information on deploying database Web applications, see “Deploying database
applications” on page 18-6.

 Deploying on Apache servers

WebBroker supports Apache version 1.3.9 and later for DLLs and CGI applications.

Modules and applications are enabled and configured by modifying Apache’s
httpd.conf file (normally located in your Apache installation's \conf directory).

Enabling modules
Your DLLs should be physically located in the Apache Modules subdirectory.

Two modifications to httpd.conf are required to enable a module.

1 Add a LoadModule entry to let Apache locate and load your DLL. For example:

LoadModule MyApache_module modules/Project1.dll

Replace MyApache_module with the exported module name from your DLL. To find the
module name, in your project source, look for the exports line. For example:

exports
apache_module name ‘MyApache_module’;

2 Add a resource locator entry (may be added anywhere in httpd.conf after the
LoadModule entry). For example:

Sample location specification for a project named project1.
<Location /project1>

SetHandler project1-handler
</Location>

This allows all requests to http://www.somedomain.com/project1 to be passed on
to the Apache module.

The SetHandler directive specifies the Web server application that handles the
request. The SetHandler argument should be set to the value of the ContentType
global variable.

D e p l o y i n g a p p l i c a t i o n s 18-11

D e p l o y i n g W e b a p p l i c a t i o n s

CGI applications
When creating CGI applications, the physical directory (specified in the Directory
directive of the httpd.conf file) must have the ExecCGI option and the SetHandler
clause set to allow execution of programs so the CGI script can be executed. To
ensure that permissions are set up properly, use the Alias directive with both
Options ExecCGI and SetHandler enabled.

Note An alternative approach is to use the ScriptAlias directive (without Options
ExecCGI), but using this approach can prevent your CGI application from reading
any files in the ScriptAlias directory.

The following httpd.conf line is an example of using the Alias directive to create a
virtual directory on your server and mark the exact location of your CGI script:

Alias/MyWeb/"c:/httpd/docs/MyWeb/"

This would allow requests such as /MyWeb/mycgi.exe to be satisfied by running the
script c:\httpd\docs\MyWeb\mycgi.exe.

You can also set Options to All or to ExecCGI using the Directory directive in
httpd.conf. The Options directive controls which server features are available in a
particular directory.

Directory directives are used to enclose a set of directives that apply to the named
directory and its subdirectories. An example of the Directory directive is shown
below:

<Directory "c:/httpd/docs/MyWeb">
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
 AddHandler cgi-script exe cgi
</Directory>

In this example, Options is set to ExecCGI permitting execution of CGI scripts in the
directory MyWeb. The AddHandler clause lets Apache know that files with
extensions such as exe and cgi are CGI scripts (executables).

Note Apache executes locally on the server within the account specified in the User
directive in the httpd.conf file. Make sure that the user has the appropriate rights to
access the resources needed by the application.

See the Apache LICENSE file, included with your Apache distribution, for additional
deployment information. For additional Apache configuration information, see
http://www.apache.org.

18-12 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Programming for varying host environments
Due to the nature of various operating system environments, there are a number of
factors that vary with user preference or configuration. The following factors can
affect an application deployed to another computer:

• Screen resolutions and color depths
• Fonts
• Operating system versions
• Helper applications
• DLL locations

Screen resolutions and color depths

The size of the desktop and number of available colors on a computer is configurable
and dependent on the hardware installed. These attributes are also likely to differ on
the deployment computer compared to those on the development computer.

An application’s appearance (window, object, and font sizes) on computers
configured for different screen resolutions can be handled in various ways:

• Design the application for the lowest resolution users will have (typically,
640x480). Take no special actions to dynamically resize objects to make them
proportional to the host computer’s screen display. Visually, objects will appear
smaller the higher the resolution is set.

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize all forms and objects proportional to the difference between
the screen resolutions for the development and deployment computers (a screen
resolution difference ratio).

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize only the application’s forms. Depending on the location of
visual controls on the forms, this may require the forms be scrollable for the user
to be able to access all controls on the forms.

Considerations when not dynamically resizing
If the forms and visual controls that make up an application are not dynamically
resized at runtime, design the application’s elements for the lowest resolution.
Otherwise, the forms of an application run on a computer configured for a lower
screen resolution than the development computer may overlap the boundaries of the
screen.

For example, if the development computer is set up for a screen resolution of
1024x768 and a form is designed with a width of 700 pixels, not all of that form will
be visible within the desktop on a computer configured for a 640x480 screen
resolution.

D e p l o y i n g a p p l i c a t i o n s 18-13

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Considerations when dynamically resizing forms and controls
If the forms and visual controls for an application are dynamically resized,
accommodate all aspects of the resizing process to ensure optimal appearance of the
application under all possible screen resolutions. Here are some factors to consider
when dynamically resizing the visual elements of an application:

• The resizing of forms and visual controls is done at a ratio calculated by
comparing the screen resolution of the development computer to that of the
computer onto which the application installed. Use a constant to represent one
dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer
at runtime using the TScreen.Height or the TScreen.Width property. Divide the
value for the development computer by the value for the user’s computer to derive
the difference ratio between the two computers’ screen resolutions.

• Resize the visual elements of the application (forms and controls) by reducing or
increasing the size of the elements and their positions on forms. This resizing is
proportional to the difference between the screen resolutions on the development
and user computers. Resize and reposition visual controls on forms automatically
by setting the CustomForm.Scaled property to True and calling the
TWinControl.ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications). The ScaleBy method does not change the form’s height and width,
though. Do this manually by multiplying the current values for the Height and
Width properties by the screen resolution difference ratio.

• The controls on a form can be resized manually, instead of automatically with the
TWinControl.ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications), by referencing each visual control in a loop and setting its
dimensions and position. The Height and Width property values for visual controls
are multiplied by the screen resolution difference ratio. Reposition visual controls
proportional to screen resolution differences by multiplying the Top and Left
property values by the same ratio.

• If an application is designed on a computer configured for a higher screen
resolution than that on the user’s computer, font sizes will be reduced in the
process of proportionally resizing visual controls. If the size of the font at design
time is too small, the font as resized at runtime may be unreadable. For example,
the default font size for a form is 8. If the development computer has a screen
resolution of 1024x768 and the user’s computer 640x480, visual control dimensions
will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8
is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and
unreadable as it is displayed in the reduced font size.

18-14 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

• Some visual controls, such as TLabel and TEdit, dynamically resize when the size
of the font for the control changes. This can affect deployed applications when
forms and controls are dynamically resized. The resizing of the control due to font
size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to
False.

• Avoid making use of explicit pixel coordinates, such as when drawing directly to a
canvas. Instead, modify the coordinates by a ratio proportionate to the screen
resolution difference ratio between the development and user computers. For
example, if the application draws a rectangle to a canvas ten pixels high by twenty
wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different
screen resolutions.

Accommodating varying color depths
To account for all deployment computers not being configured with the same color
availability, the safest way is to use graphics with the least possible number of colors.
This is especially true for control glyphs, which should typically use 16-color
graphics. For displaying pictures, either provide multiple copies of the images in
different resolutions and color depths or explain in the application the minimum
resolution and color requirements for the application.

Fonts

Windows comes with a standard set of TrueType and raster fonts. Linux comes with
a standard set of fonts, depending on the distribution. When designing an
application to be deployed on other computers, realize that not all computers have
fonts outside the standard sets.

Text components used in the application should all use fonts that are likely to be
available on all deployment computers.

When use of a nonstandard font is absolutely necessary in an application, you need
to distribute that font with the application. Either the installation program or the
application itself must install the font on the deployment computer. Distribution of
third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not
exist on the computer. It substitutes another, existing font that it considers the closest
match. While this may circumvent errors concerning missing fonts, the end result
may be a degradation of the visual appearance of the application. It is better to
prepare for this eventuality at design time.

To make a nonstandard font available to a Windows application, use the Windows
API functions AddFontResource and DeleteFontResource. Deploy the .fot file for the
nonstandard font with the application.

D e p l o y i n g a p p l i c a t i o n s 18-15

S o f t w a r e l i c e n s e r e q u i r e m e n t s

Operating systems versions

When using operating system APIs or accessing areas of the operating system from
an application, there is the possibility that the function, operation, or area may not be
available on computers with different operating system versions.

To account for this possibility, you have a few options:

• Specify in the application’s system requirements the versions of the operating
system on which the application can run. It is the user’s responsibility to install
and use the application only under compatible operating system versions.

• Check the version of the operating system as the application is installed. If an
incompatible version of the operating system is present, either halt the installation
process or at least warn the installer of the problem.

• Check the operating system version at runtime, just prior to executing an
operation not applicable to all versions. If an incompatible version of the operating
system is present, abort the process and alert the user. Alternately, provide
different code to run dependent on different operating system versions.

Note Some operations are performed differently on Windows 95/98 than on Windows
NT/2000/XP. Use the Windows API function GetVersionEx to determine the
Windows version.

Software license requirements
The distribution of some files associated with Delphi applications is subject to
limitations or cannot be redistributed at all. The following documents describe the
legal stipulations regarding the distribution of these files:

DEPLOY

The DEPLOY document covers the some of the legal aspects of distributing of
various components and utilities, and other product areas that can be part of or
associated with a Delphi application. The DEPLOY document is installed in the main
Delphi directory. The topics covered include:

• .exe, .dll, and .bpl files
• Components and design-time packages
• Borland Database Engine (BDE)
• ActiveX controls
• Sample images

18-16 D e v e l o p e r ’ s G u i d e

S o f t w a r e l i c e n s e r e q u i r e m e n t s

README

The README document contains last minute information about Delphi, possibly
including information that could affect the redistribution rights for components, or
utilities, or other product areas. The README document is installed in the main
Delphi directory.

No-nonsense license agreement

The Delphi no-nonsense license agreement, a printed document, covers other legal
rights and obligations concerning Delphi.

Third-party product documentation

Redistribution rights for third-party components, utilities, helper applications,
database engines, and other products are governed by the vendor supplying the
product. Consult the documentation for the product or the vendor for information
regarding the redistribution of the product with Delphi applications prior to
distribution.

D e v e l o p i n g d a t a b a s e a p p l i c a t i o n s

P a r t

II
Part IIDeveloping database applications

The chapters in “Developing Database Applications” present concepts and skills
necessary for creating Delphi database applications. Database components are not
available in all editions of Delphi.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-1

C h a p t e r

19
Chapter19Designing database applications

Database applications let users interact with information that is stored in databases.
Databases provide structure for the information, and allow it to be shared among
different applications.

Delphi provides support for relational database applications. Relational databases
organize information into tables, which contain rows (records) and columns (fields).
These tables can be manipulated by simple operations known as the relational
calculus.

When designing a database application, you must understand how the data is
structured. Based on that structure, you can then design a user interface to display
data to the user and allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database
application and the decisions involved in designing a user interface.

Using databases
Delphi includes many components for accessing databases and representing the
information they contain. They are grouped according to the data access mechanism:

• The BDE page of the Component palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range
of functions and comes with the most supporting utilities. It is the best way to
work with data in Paradox or dBASE tables. However, it is also the most
complicated mechanism to deploy. For more information about using the BDE
components, see Chapter 26, “Using the Borland Database Engine.”

• The ADO page of the Component palette contains components that use ActiveX
Data Objects (ADO) to access database information through OLEDB. ADO is a
Microsoft Standard. There is a broad range of ADO drivers available for
connecting to different database servers. Using ADO-based components lets you

19-2 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

integrate your application into an ADO-based environment (for example, making
use of ADO-based application servers). For more information about using the
ADO components, see Chapter 27, “Working with ADO components.”

• The dbExpress page of the Component palette contains components that use
dbExpress to access database information. dbExpress is a lightweight set of drivers
that provide the fastest access to database information. In addition, dbExpress
components support cross-platform development because they are also available
on Linux. However, dbExpress database components also support the narrowest
range of data manipulation functions. For more information about using the
dbExpress components, see Chapter 28, “Using unidirectional datasets.”

• The InterBase page of the Component palette contains components that access
InterBase databases directly, without going through a separate engine layer.

• The Data Access page of the Component palette contains components that can be
used with any data access mechanism. This page includes TClientDataset, which
can work with data stored on disk or, using the TDataSetProvider component also
on this page, with components from one of the other groups. For more information
about using client datasets, see Chapter 29, “Using client datasets.” For more
information about TDataSetProvider, see Chapter 30, “Using provider
components.”

Note Different versions of Delphi include different drivers for accessing database servers
using the BDE, ADO, or dbExpress.

When designing a database application, you must decide which set of components to
use. Each data access mechanism differs in its range of functional support, the ease of
deployment, and the availability of drivers to support different database servers.

In addition to choosing a data access mechanism, you must choose a database server.
There are different types of databases and you will want to consider the advantages
and disadvantages of each type before settling on a particular database server.

All types of databases contain tables which store information. In addition, most (but
not all) servers support additional features such as

• Database security
• Transactions
• Referential integrity, stored procedures, and triggers

Types of databases

Relational database servers vary in the way they store information and in the way
they allow multiple users to access that information simultaneously. Delphi provides
support for two types of relational database server:

• Remote database servers reside on a separate machine. Sometimes, the data from
a remote database server does not even reside on a single machine, but is
distributed over several servers. Although remote database servers vary in the
way they store information, they provide a common logical interface to clients.
This common interface is Structured Query Language (SQL). Because you access

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-3

U s i n g d a t a b a s e s

them using SQL, they are sometimes called SQL servers. (Another name is Remote
Database Management system, or RDBMS.) In addition to the common commands
that make up SQL, most remote database servers support a unique “dialect” of
SQL. Examples of SQL servers include InterBase, Oracle, Sybase, Informix,
Microsoft SQL server, and DB2.

• Local databases reside on your local drive or on a local area network. They often
have proprietary APIs for accessing the data. When they are shared by several
users, they use file-based locking mechanisms. Because of this, they are sometimes
called file-based databases. Examples of local databases include Paradox, dBASE,
FoxPro, and Access.

Applications that use local databases are called single-tiered applications because
the application and the database share a single file system. Applications that use
remote database servers are called two-tiered applications or multi-tiered
applications because the application and the database operate on independent
systems (or tiers).

Choosing the type of database to use depends on several factors. For example, your
data may already be stored in an existing database. If you are creating the database
tables your application uses, you may want to consider the following questions:

• How many users will be sharing these tables? Remote database servers are
designed for access by several users at the same time. They provide support for
multiple users through a mechanism called transactions. Some local databases
(such as Local InterBase) also provide transaction support, but many only provide
file-based locking mechanisms, and some (such as client dataset files) provide no
multi-user support at all.

• How much data will the tables hold? Remote database servers can hold more data
than local databases. Some remote database servers are designed for warehousing
large quantities of data while others are optimized for other criteria (such as fast
updates).

• What type of performance (speed) do you require from the database? Local
databases are usually faster than remote database servers because they reside on
the same system as the database application. Different remote database servers are
optimized to support different types of operations, so you may want to consider
performance when choosing a remote database server.

• What type of support will be available for database administration? Local
databases require less support than remote database servers. Typically, they are
less expensive to operate because they do not require separately installed servers
or expensive site licenses.

19-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Database security

Databases often contain sensitive information. Different databases provide security
schemes for protecting that information. Some databases, such as Paradox and
dBASE, only provide security at the table or field level. When users try to access
protected tables, they are required to provide a password. Once users have been
authenticated, they can see only those fields (columns) for which they have
permission.

Most SQL servers require a password and user name to use the database server at all.
Once the user has logged in to the database, that username and password determine
which tables can be used. For information on providing passwords to SQL servers,
see “Controlling server login” on page 23-4.

When designing database applications, you must consider what type of
authentication is required by your database server. Often, applications are designed
to hide the explicit database login from users, who need only log in to the application
itself. If you do not want to require your users to provide a database password, you
must either use a database that does not require one or you must provide the
password and username to the server programmatically. When providing the
password programmatically, care must be taken that security can’t be breached by
reading the password from the application.

If you require your user to supply a password, you must consider when the
password is required. If you are using a local database but intend to scale up to a
larger SQL server later, you may want to prompt for the password at the point when
you will eventually log in to the SQL database, rather than when opening individual
tables.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master
password that is used to access a table of passwords required by the protected
systems. The application then supplies passwords programmatically, without
requiring the user to provide multiple passwords.

In multi-tiered applications, you may want to use a different security model
altogether. You can use HTTPs, CORBA, or COM+ to control access to middle tiers,
and let the middle tiers handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If any of the
actions in the group fails, then all actions are rolled back (undone).

Transactions ensure that

• All updates in a single transaction are either committed or aborted and rolled back
to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-5

U s i n g d a t a b a s e s

• Concurrent transactions do not see each other's partial or uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation.

• Committed updates to records survive failures, including communication failures,
process failures, and server system failures. This is referred to as durability.

Thus, transactions protect against hardware failures that occur in the middle of a
database command or set of commands. Transactional logging allows you to recover
the durable state after disk media failures. Transactions also form the basis of multi-
user concurrency control on SQL servers. When each user interacts with the database
only through transactions, one user’s commands can’t disrupt the unity of another
user’s transaction. Instead, the SQL server schedules incoming transactions, which
either succeed as a whole or fail as a whole.

Transaction support is not part of most local databases, although it is provided by
local InterBase. In addition, the BDE drivers provide limited transaction support for
some local databases. Database transaction support is provided by the component
that represents the database connection. For details on managing transactions using a
database connection component, see “Managing transactions” on page 23-6.

In multi-tiered applications, you can create transactions that include actions other
than database operations or that span multiple databases. For details on using
transactions in multi-tiered applications, see “Managing transactions in multi-tiered
applications” on page 31-17.

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to
store and manipulate data. In addition, databases often provide other, database-
specific, features that can prove useful for ensuring consistent relationships between
the tables in a database. These include

• Referential integrity. Referential integrity provides a mechanism to prevent
master/detail relationships between tables from being broken. When the user
attempts to delete a field in a master table which would result in orphaned detail
records, referential integrity rules prevent the deletion or automatically delete the
orphaned detail records.

• Stored procedures. Stored procedures are sets of SQL statements that are named
and stored on an SQL server. Stored procedures usually perform common
database-related tasks on the server, and sometimes return sets of records
(datasets).

• Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

19-6 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Database architecture
Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect these to each
other and to the source of the database information. How you organize these pieces is
the architecture of your database application.

General structure

While there are many distinct ways to organize the components in a database
application, most follow the general scheme illustrated in Figure 19.1:

Figure 19.1 Generic Database Architecture

The user interface form
It is a good idea to isolate the user interface on a form that is completely separate
from the rest of the application. This has several advantages. By isolating the user
interface from the components that represent the database information itself, you
introduce a greater flexibility into your design: Changes to the way you manage the
database information do not require you to rewrite your user interface, and changes
to the user interface do not require you to change the portion of your application that
works with the database. In addition, this type of isolation lets you develop common
forms that you can share between multiple applications, thereby providing a
consistent user interface. By storing links to well-designed forms in the Object
Repository, you and other developers can build on existing foundations rather than
starting over from scratch for each new project. Sharing forms also makes it possible
for you to develop corporate standards for application interfaces. For more
information about creating the user interface for a database application, see
“Designing the user interface” on page 19-15.

The data module
If you have isolated your user interface into its own form, you can use a data module
to house the components that represent database information (datasets), and the
components that connect these datasets to the other parts of your application. Like
the user interface forms, you can share data modules in the Object Repository so that
they can be reused or shared between applications.

Data module

Dataset
UI

Data source Connection
to data

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-7

D a t a b a s e a r c h i t e c t u r e

The data source
The first item in the data module is a data source. The data source acts as a conduit
between the user interface and a dataset that represents information from a database.
Several data-aware controls on a form can share a single data source, in which case
the display in each control is synchronized so that as the user scrolls through records,
the corresponding value in the fields for the current record is displayed in each
control.

The dataset
The heart of your database application is the dataset. This component represents a set
of records from the underlying database. These records can be the data from a single
database table, a subset of the fields or records in a table, or information from more
than one table joined into a single view. By using datasets, your application logic is
buffered from restructuring of the physical tables in your databases. When the
underlying database changes, you might need to alter the way the dataset
component specifies the data it contains, but the rest of your application can continue
to work without alteration. For more information on the common properties and
methods of datasets, see Chapter 24, “Understanding datasets.”

The data connection
Different types of datasets use different mechanisms for connecting to the underlying
database information. These different mechanisms, in turn, make up the major
differences in the architecture of the database applications you can build. There are
four basic mechanisms for connecting to the data:

• Connecting directly to a database server. Most datasets use a descendant of
TCustomConnection to represent the connection to a database server.

• Using a dedicated file on disk. Client datasets support the ability to work with a
dedicated file on disk. No separate connection component is needed when
working with a dedicated file because the client dataset itself knows how to read
from and write to the file.

• Connecting to another dataset. Client datasets can work with data provided by
another dataset. A TDataSetProvider component serves as an intermediary between
the client dataset and its source dataset. This dataset provider can reside in the
same data module as the client dataset, or it can be part of an application server
running on another machine. If the provider is part of an application server, you
also need a special descendant of TCustomConnection to represent the connection
to the application server.

• Obtaining data from an RDS DataSpace object. ADO datasets can use a
TRDSConnection component to marshal data in multi-tier database applications
that are built using ADO-based application servers.

Sometimes, these mechanisms can be combined in a single application.

19-8 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Connecting directly to a database server

The most common database architecture is the one where the dataset uses a
connection component to establish a connection to a database server. The dataset
then fetches data directly from the server and posts edits directly to the server. This is
illustrated in Figure 19.2.

Figure 19.2 Connecting directly to the database server

Each type of dataset uses its own type of connection component, which represents a
single data access mechanism:

• If the dataset is a BDE dataset such as TTable, TQuery, or TStoredProc, the
connection component is a TDataBase object. You connect the dataset to the
database component by setting its Database property. You do not need to explicitly
add a database component when using BDE dataset. If you set the dataset’s
DatabaseName property, a database component is created for you automatically at
runtime.

• If the dataset is an ADO dataset such as TADODataSet, TADOTable, TADOQuery,
or TADOStoredProc, the connection component is a TADOConnection object. You
connect the dataset to the ADO connection component by setting its Connection
property. As with BDE datasets, you do not need to explicitly add the connection
component: instead you can set the dataset’s ConnectionString property.

Client application

Data module

Dataset
UI

Data source

Database server

Connection
component

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-9

D a t a b a s e a r c h i t e c t u r e

• If the dataset is a dbExpress dataset such as TSQLDataSet, TSQLTable, TSQLQuery,
or TSQLStoredProc, the connection component is a TSQLConnection object. You
connect the dataset to the SQL connection component by setting its SQLConnection
property. When using dbExpress datasets, you must explicitly add the connection
component. Another difference between dbExpress datasets and the other datasets
is that dbExpress datasets are always read-only and unidirectional: This means
you can only navigate by iterating through the records in order, and you can’t use
the dataset methods that support editing.

• If the dataset is an InterBase Express dataset such as TIBDataSet, TIBTable,
TIBQuery, or TIBStoredProc, the connection component is a TIBDatabase object. You
connect the dataset to the IB database component by setting its Database property.
As with dbExpress datasets, you must explicitly add the connection component.

In addition to the components listed above, you can use a specialized client dataset
such as TBDEClientDataSet, TSimpleDataSet, or TIBClientDataSet with a database
connection component. When using one of these client datasets, specify the
appropriate type of connection component as the value of the DBConnection
property.

Although each type of dataset uses a different connection component, they all
perform many of the same tasks and surface many of the same properties, methods,
and events. For more information on the commonalities among the various database
connection components, see Chapter 23, “Connecting to databases.”

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database such or a remote
database server. The logic that manipulates database information is in the same
application that implements the user interface, although isolated into a data module.

Note The connection components or drivers needed to create two-tiered applications are
not available in all version of Delphi.

Using a dedicated file on disk

The simplest form of database application you can write does not use a database
server at all. Instead, it uses MyBase, the ability of client datasets to save themselves
to a file and to load the data from a file. This architecture is illustrated in Figure 19.3:

Figure 19.3 A file-based database application

Data module

Client dataset
UI

Data source
File

19-10 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

When using this file-based approach, your application writes changes to disk using
the client dataset’s SaveToFile method. SaveToFile takes one parameter, the name of
the file which is created (or overwritten) containing the table. When you want to read
a table previously written using the SaveToFile method, use the LoadFromFile method.
LoadFromFile also takes one parameter, the name of the file containing the table.

If you always load to and save from the same file, you can use the FileName property
instead of the SaveToFile and LoadFromFile methods. When FileName is set to a valid
file name, the data is automatically loaded from the file when the client dataset is
opened and saved to the file when the client dataset is closed.

This simple file-based architecture is a single-tiered application. The logic that
manipulates database information is in the same application that implements the
user interface, although isolated into a data module.

The file-based approach has the benefit of simplicity. There is no database server to
install, configure, or deploy (If you do not statically link in midaslib.dcu, the client
dataset does require midas.dll). There is no need for site licenses or database
administration.

In addition, some versions of Delphi let you convert between arbitrary XML
documents and the data packets that are used by a client dataset. Thus, the file-based
approach can be used to work with XML documents as well as dedicated datasets.
For information about converting between XML documents and client dataset data
packets, see Chapter 32, “Using XML in database applications.”

The file-based approach offers no support for multiple users. The dataset should be
dedicated entirely to the application. Data is saved to files on disk, and loaded at a
later time, but there is no built-in protection to prevent multiple users from
overwriting each other’s data files.

For more information about using a client dataset with data stored on disk, see
“Using a client dataset with file-based data” on page 29-33.

Connecting to another dataset

There are specialized client datasets that use the BDE or dbExpress to connect to a
database server. These specialized client datasets are, in fact, composite components
that include another dataset internally to access the data and an internal provider
component to package the data from the source dataset and to apply updates back to
the database server. These composite components require some additional overhead,
but provide certain benefits:

• Client datasets provide the most robust way to work with cached updates. By
default, other types of datasets post edits directly to the database server. You can
reduce network traffic by using a dataset that caches updates locally and applies
them all later in a single transaction. For information on the advantages of using
client datasets to cache updates, see “Using a client dataset to cache updates” on
page 29-16.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-11

D a t a b a s e a r c h i t e c t u r e

• Client datasets can apply edits directly to a database server when the dataset is
read-only. When using dbExpress, this is the only way to edit the data in the dataset
(it is also the only way to navigate freely in the data when using dbExpress). Even
when not using dbExpress, the results of some queries and all stored procedures
are read-only. Using a client dataset provides a standard way to make such data
editable.

• Because client datasets can work directly with dedicated files on disk, using a
client dataset can be combined with a file-based model to allow for a flexible
“briefcase” application. For information on the briefcase model, see “Combining
approaches” on page 19-14.

In addition to these specialized client datasets, there is a generic client dataset
(TClientDataSet), which does not include an internal dataset and dataset provider.
Although TClientDataSet has no built-in database access mechanism, you can connect
it to another, external, dataset from which it fetches data and to which it sends
updates. Although this approach is a bit more complicated, there are times when it is
preferable:

• Because the source dataset and dataset provider are external, you have more
control over how they fetch data and apply updates. For example, the provider
component surfaces a number of events that are not available when using a
specialized client dataset to access data.

• When the source dataset is external, you can link it in a master/detail relationship
with another dataset. An external provider automatically converts this
arrangement into a single dataset with nested details. When the source dataset is
internal, you can’t create nested detail sets this way.

• Connecting a client dataset to an external dataset is an architecture that easily
scales up to multiple tiers. Because the development process can get more
involved and expensive as the number of tiers increases, you may want to start
developing your application as a single-tiered or two-tiered application. As the
amount of data, the number of users, and the number of different applications
accessing the data grows, you may later need to scale up to a multi-tiered
architecture. If you think you may eventually use a multi-tiered architecture, it can
be worthwhile to start by using a client dataset with an external source dataset.
This way, when you move the data access and manipulation logic to a middle tier,
you protect your development investment because the code can be reused as your
application grows.

• TClientDataSet can link to any source dataset. This means you can use custom
datasets (third-party components) for which there is no corresponding specialized
client dataset. Some versions of Delphi even include special provider components
that connect a client dataset to an XML document rather than another dataset.
(This works the same way as connecting a client dataset to another (source)
dataset, except that the XML provider uses an XML document rather than a
dataset. For information about these XML providers, see “Using an XML
document as the source for a provider” on page 32-8.)

19-12 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

There are two versions of the architecture that connects a client dataset to an external
dataset:

• Connecting a client dataset to another dataset in the same application.
• Using a multi-tiered architecture.

Connecting a client dataset to another dataset in the same application
By using a provider component, you can connect TClientDataSet to another (source)
dataset. The provider packages database information into transportable data packets
(which can be used by client datasets) and applies updates received in delta packets
(which client datasets create) back to a database server. The architecture for this is
illustrated in Figure 19.4.

Figure 19.4 Architecture combining a client dataset and another dataset

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database or a remote database
server. The logic that manipulates database information is in the same application
that implements the user interface, although isolated into a data module.

To link the client dataset to the provider, set its ProviderName property to the name of
the provider component. The provider must be in the same data module as the client
dataset. To link the provider to the source dataset, set its DataSet property.

Once the client dataset is linked to the provider and the provider is linked to the
source dataset, these components automatically handle all the details necessary for
fetching, displaying, and navigating through the database records (assuming the
source dataset is connected to a database). To apply user edits back to the database,
you need only call the client dataset’s ApplyUpdates method.

Client application

Data module

Client dataset

UI
Data source

DatasetConnection
component Provider

Database server

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-13

D a t a b a s e a r c h i t e c t u r e

For more information on using a client dataset with a provider, see “Using a client
dataset with a provider” on page 29-24.

Using a multi-tiered architecture
When the database information includes complicated relationships between several
tables, or when the number of clients grows, you may want to use a multi-tiered
application. Multi-tiered applications have middle tiers between the client
application and database server. The architecture for this is illustrated in Figure 19.5.

Figure 19.5 Multi-tiered database architecture

The preceding figure represents three-tiered application. The logic that manipulates
database information is on a separate system, or tier. This middle tier centralizes the
logic that governs your database interactions so there is centralized control over data
relationships. This allows different client applications to use the same data, while
ensuring consistent data logic. It also allows for smaller client applications because
much of the processing is off-loaded onto the middle tier. These smaller client
applications are easier to install, configure, and maintain. Multi-tiered applications
can also improve performance by spreading data-processing over several systems.

Client dataset

UI

Data source

Database server

Connection
component

Unidirectional
dataset

SQL
connectionProvider

Application server

19-14 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

The multi-tiered architecture is very similar to the previous model. It differs mainly
in that source dataset that connects to the database server and the provider that acts
as an intermediary between that source dataset and the client dataset have both
moved to a separate application. That separate application is called the application
server (or sometimes the “remote data broker”).

Because the provider has moved to a separate application, the client dataset can no
longer connect to the source dataset by simply setting its ProviderName property. In
addition, it must use some type of connection component to locate and connect to the
application server.

There are several types of connection components that can connect a client dataset to
an application server. They are all descendants of TCustomRemoteServer, and differ
primarily in the communication protocol they use (TCP/IP, HTTP, DCOM, SOAP, or
CORBA). Link the client dataset to its connection component by setting the
RemoteServer property.

The connection component establishes a connection to the application server and
returns an interface that the client dataset uses to call the provider specified by its
ProviderName property. Each time the client dataset calls the application server, it
passes the value of ProviderName, and the application server forwards the call to the
provider.

For more information about connecting a client dataset to an application server, see
Chapter 31, “Creating multi-tiered applications.”

Combining approaches

The previous sections describe several architectures you can use when writing
database applications. There is no reason, however, why you can’t combine two or
more of the available architectures in a single application. In fact, some combinations
can be extremely powerful.

For example, you can combine the disk-based architecture described in “Using a
dedicated file on disk” on page 19-9 with another approach such as those described
in “Connecting a client dataset to another dataset in the same application” on
page 19-12 or “Using a multi-tiered architecture” on page 19-13. These combinations
are easy because all models use a client dataset to represent the data that appears in
the user interface. The result is called the briefcase model (or sometimes the
disconnected model, or mobile computing).

The briefcase model is useful in a situation such as the following: An onsite company
database contains customer contact data that sales representatives can use and
update in the field. While onsite, sales representatives download information from
the database. Later, they work with it on their laptops as they fly across the country,
and even update records at existing or new customer sites. When the sales
representatives return onsite, they upload their data changes to the company
database for everyone to use.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 19-15

D e s i g n i n g t h e u s e r i n t e r f a c e

When operating on site, the client dataset in a briefcase model application fetches its
data from a provider. The client dataset is therefore connected to the database server
and can, through the provider, fetch server data and send updates back to the server.
Before disconnecting from the provider, the client dataset saves its snapshot of the
information to a file on disk. While offsite, the client dataset loads its data from the
file, and saves any changes back to that file. Finally, back onsite, the client dataset
reconnects to the provider so that it can apply its updates to the database server or
refresh its snapshot of the data.

Designing the user interface
The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and can permit users to
edit that data and post changes back to the database. Using data-aware controls, you
can build your database application’s user interface (UI) so that information is visible
and accessible to users. For more information on data-aware controls see Chapter 20,
“Using data controls.”

In addition to the basic data controls, you may also want to introduce other elements
into your user interface:

• You may want your application to analyze the data contained in a database.
Applications that analyze data do more than just display the data in a database,
they also summarize the information in useful formats to help users grasp the
impact of that data.

• You may want to print reports that provide a hard copy of the information
displayed in your user interface.

• You may want to create a user interface that can be viewed from Web browsers.
The simplest Web-based database applications are described in “Using database
information in responses” on page 34-18. In addition, you can combine the Web-
based approach with the multi-tiered architecture, as described in “Writing Web-
based client applications.”

Analyzing data

Some database applications do not present database information directly to the user.
Instead, they analyze and summarize information from databases so that users can
draw conclusions from the data.

The TDBChart component on the Data Controls page of the Component palette lets
you present database information in a graphical format that enables users to quickly
grasp the import of database information.

In addition, some versions of Delphi include a Decision Cube page on the
Component palette. It contains six components that let you perform data analysis
and cross-tabulations on data when building decision support applications. For more
information about using the Decision Cube components, see Chapter 22, “Using
decision support components.”

19-16 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t h e u s e r i n t e r f a c e

If you want to build your own components that display data summaries based on
various grouping criteria, you can use maintained aggregates with a client dataset.
For more information about using maintained aggregates, see “Using maintained
aggregates” on page 29-11.

Writing reports

If you want to let your users print database information from the datasets in your
application, you can use Rave Reports, as described in Chapter 21, “Creating reports
with Rave Reports.”

U s i n g d a t a c o n t r o l s 20-1

C h a p t e r

20
Chapter20Using data controls

The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and, if the dataset allows
it, enable users to edit that data and post changes back to the database. By placing
data controls onto the forms in your database application, you can build your
database application’s user interface (UI) so that information is visible and accessible
to users.

The data-aware controls you add to your user interface depend on several factors,
including the following:

• The type of data you are displaying. You can choose between controls that are
designed to display and edit plain text, controls that work with formatted text,
controls for graphics, multimedia elements, and so on. Controls that display
different types of information are described in “Displaying a single record” on
page 20-7.

• How you want to organize the information. You may choose to display
information from a single record on the screen, or list the information from
multiple records using a grid. “Choosing how to organize the data” on page 20-7
describes some of the possibilities.

• The type of dataset that supplies data to the controls. You want to use controls that
reflect the limitations of the underlying dataset. For example, you would not use a
grid with a unidirectional dataset because unidirectional datasets can only supply
a single record at a time.

• How (or if) you want to let users navigate through the records of datasets and add
or edit data. You may want to add your own controls or mechanisms to navigate
and edit, or you may want to use a built-in control such as a data navigator. For
more information about using a data navigator, see “Navigating and
manipulating records” on page 20-29.

Note More complex data-aware controls for decision support are discussed in Chapter 22,
“Using decision support components.”

20-2 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Regardless of the data-aware controls you choose to add to your interface, certain
common features apply. These are described below.

Using common data control features
The following tasks are common to most data controls:

• Associating a data control with a dataset
• Editing and updating data
• Disabling and enabling data display
• Refreshing data display
• Enabling mouse, keyboard, and timer events

Data controls let you display and edit fields of data associated with the current
record in a dataset. Table 20.1 summarizes the data controls that appear on the Data
Controls page of the Component palette.

Table 20.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in
the grid correspond to columns in the underlying table or query’s
dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting
records, deleting records, canceling edits to records, and refreshing data
display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.

TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit
box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data
record.

TDBComboBox Displays a list of items from which to update a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the
value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the
value of a field, and also permits direct text entry like a standard data-
aware edit box.

TDBCtrlGrid Displays a configurable, repeating set of data-aware controls within a
grid.

TDBRichEdit Displays formatted data from a field in an edit box.

U s i n g d a t a c o n t r o l s 20-3

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Data controls are data-aware at design time. When you associate the data control
with an active dataset while building an application, you can immediately see live
data in the control. You can use the Fields editor to scroll through a dataset at design
time to verify that your application displays data correctly without having to compile
and run the application. For more information about the Fields editor, see “Creating
persistent fields” on page 25-4.

At runtime, data controls display data and, if your application, the control, and the
dataset all permit it, a user can edit data through the control.

Associating a data control with a dataset

Data controls connect to datasets by using a data source. A data source component
(TDataSource) acts as a conduit between the control and a dataset containing data.
Each data-aware control must be associated with a data source component to have
data to display and manipulate. Similarly, all datasets must be associated with a data
source component in order for their data to be displayed and manipulated in data-
aware controls on a form.

Note Data source components are also required for linking unnested datasets in master-
detail relationships.

To associate a data control with a dataset,

1 Place a dataset in a data module (or on a form), and set its properties as
appropriate.

2 Place a data source in the same data module (or form). Using the Object Inspector,
set its DataSet property to the dataset you placed in step 1.

3 Place a data control from the Data Access page of the Component palette onto a
form.

4 Using the Object Inspector, set the DataSource property of the control to the data
source component you placed in step 2.

5 Set the DataField property of the control to the name of a field to display, or select a
field name from the drop-down list for the property. This step does not apply to
TDBGrid, TDBCtrlGrid, and TDBNavigator because they access all available fields
in the dataset.

6 Set the Active property of the dataset to True to display data in the control.

20-4 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Changing the associated dataset at runtime
In the preceding example, the datasource was associated with its dataset by setting
the DataSet property at design time. At runtime, you can switch the dataset for a data
source component as needed. For example, the following code swaps the dataset for
the CustSource data source component between the dataset components named
Customers and Orders:

with CustSource do begin
if (DataSet = Customers) then

DataSet := Orders
else

DataSet := Customers;
end;

You can also set the DataSet property to a dataset on another form to synchronize the
data controls on two forms. For example:

procedure TForm2.FormCreate (Sender : TObject);
begin

DataSource1.Dataset := Form1.Table1;
end;

Enabling and disabling the data source
The data source has an Enabled property that determines if it is connected to its
dataset. When Enabled is True, the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting
Enabled to False. When Enabled is False, all data controls attached to the data source
component go blank and become inactive until Enabled is set to True. It is
recommended, however, to control access to a dataset through a dataset component’s
DisableControls and EnableControls methods because they affect all attached data
sources.

Responding to changes mediated by the data source
Because the data source provides the link between the data control and its dataset, it
mediates all of the communication that occurs between the two. Typically, the data-
aware control automatically responds to changes in the dataset. However, if your
user interface is using controls that are not data-aware, you can use the events of a
data source component to manually provide the same sort of response.

The OnDataChange event occurs whenever the data in a record may have changed,
including field edits or when the cursor moves to a new record. This event is useful
for making sure the control reflects the current field values in the dataset, because it
is triggered by all changes. Typically, an OnDataChange event handler refreshes the
value of a non-data-aware control that displays field data.

The OnUpdateData event occurs when the data in the current record is about to be
posted. For instance, an OnUpdateData event occurs after Post is called, but before the
data is actually posted to the underlying database server or local cache.

U s i n g d a t a c o n t r o l s 20-5

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

The OnStateChange event occurs when the state of the dataset changes. When this
event occurs, you can examine the dataset’s State property to determine its current
state.

For example, the following OnStateChange event handler enables or disables buttons
or menu items based on the current state:

procedure Form1.DataSource1.StateChange(Sender: TObject);
begin

CustTableEditBtn.Enabled := (CustTable.State = dsBrowse);
CustTableCancelBtn.Enabled := CustTable.State in [dsInsert, dsEdit, dsSetKey];
CustTableActivateBtn.Enabled := CustTable.State in [dsInactive];
ƒ

end;

Note For more information about dataset states, see “Determining dataset states” on
page 24-3.

Editing and updating data

All data controls except the navigator display data from a database field. In addition,
you can use them to edit and update data as long as the underlying dataset allows it.

Note Unidirectional datasets never permit users to edit and update data.

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. If the data source’s
AutoEdit property is True (the default), the data control handles the task of putting
the dataset into dsEdit mode as soon as the user tries to edit its data.

If AutoEdit is False, you must provide an alternate mechanism for putting the dataset
into edit mode. One such mechanism is to use a TDBNavigator control with an Edit
button, which lets users explicitly put the dataset into edit mode. For more
information about TDBNavigator, see “Navigating and manipulating records” on
page 20-29. Alternately, you can write code that calls the dataset’s Edit method when
you want to put the dataset into edit mode.

Editing data in a control
A data control can only post edits to its associated dataset if the dataset’s CanModify
property is True. CanModify is always False for unidirectional datasets. Some datasets
have a ReadOnly property that lets you specify whether CanModify is True.

Note Whether a dataset can update data depends on whether the underlying database
table permits updates.

Even if the dataset’s CanModify property is True, the Enabled property of the data
source that connects the dataset to the control must be True as well before the control
can post updates back to the database table. The Enabled property of the data source
determines whether the control can display field values from the dataset, and
therefore also whether a user can edit and post values. If Enabled is True (the default),
controls can display field values.

20-6 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Finally, you can control whether the user can even enter edits to the data that is
displayed in the control. The ReadOnly property of the data control determines if a
user can edit the data displayed by the control. If False (the default), users can edit
data. Clearly, you will want to ensure that the control’s ReadOnly property is True
when the dataset’s CanModify property is False. Otherwise, you give users the false
impression that they can affect the data in the underlying database table.

In all data controls except TDBGrid, when you modify a field, the modification is
copied to the underlying dataset when you Tab from the control. If you press Esc
before you Tab from a field, the data control abandons the modifications, and the
value of the field reverts to the value it held before any modifications were made.

In TDBGrid, modifications are posted when you move to a different record; you can
press Esc in any record of a field before moving to another record to cancel all
changes to the record.

When a record is posted, Delphi checks all data-aware controls associated with the
dataset for a change in status. If there is a problem updating any fields that contain
modified data, Delphi raises an exception, and no modifications are made to the
record.

Note If your application caches updates (for example, using a client dataset), all
modifications are posted to an internal cache. These modifications are not applied to
the underlying database table until you call the dataset’s ApplyUpdates method.

Disabling and enabling data display

When your application iterates through a dataset or performs a search, you should
temporarily prevent refreshing of the values displayed in data-aware controls each
time the current record changes. Preventing refreshing of values speeds the iteration
or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls
linked to a dataset. As soon as the iteration or search is over, your application should
immediately call the dataset’s EnableControls method to re-enable display for the
controls.

Usually you disable controls before entering an iterative process. The iterative
process itself should take place inside a try...finally statement so that you can re-
enable controls even if an exception occurs during processing. The finally clause
should call EnableControls. The following code illustrates how you might use
DisableControls and EnableControls in this manner:

CustTable.DisableControls;
try
 CustTable.First; { Go to first record, which sets EOF False }
 while not CustTable.EOF do { Cycle until EOF is True }
 begin
 { Process each record here }

ƒ
 CustTable.Next; { EOF False on success; EOF True when Next fails on last record }
 end;

U s i n g d a t a c o n t r o l s 20-7

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

finally
 CustTable.EnableControls;
end;

Refreshing data display

The Refresh method for a dataset flushes local buffers and re-fetches data for an open
dataset. You can use this method to update the display in data-aware controls if you
think that the underlying data has changed because other applications have
simultaneous access to the data used in your application. If you are using cached
updates, before you refresh the dataset you must apply any updates the dataset has
currently cached.

Refreshing can sometimes lead to unexpected results. For example, if a user is
viewing a record deleted by another application, then the record disappears the
moment your application calls Refresh. Data can also appear to change if another user
changes a record after you originally fetched the data and before you call Refresh.

Enabling mouse, keyboard, and timer events

The Enabled property of a data control determines whether it responds to mouse,
keyboard, or timer events, and passes information to its data source. The default
setting for this property is True.

To prevent mouse, keyboard, or timer events from reaching a data control, set its
Enabled property to False. When Enabled is False, the data source that connects the
control to its dataset does not receive information from the data control. The data
control continues to display data, but the text displayed in the control is dimmed.

Choosing how to organize the data
When you build the user interface for your database application, you have choices to
make about how you want to organize the display of information and the controls
that manipulate that information.

One of the first decisions to make is whether you want to display a single record at a
time, or multiple records.

 In addition, you will want to add controls to navigate and manipulate records. The
TDBNavigator control provides built-in support for many of the functions you may
want to perform.

Displaying a single record

In many applications, you may only want to provide information about a single
record of data at a time. For example, an order-entry application may display the
information about a single order without indicating what other orders are currently
logged. This information probably comes from a single record in an orders dataset.

20-8 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Applications that display a single record are usually easy to read and understand,
because all database information is about the same thing (in the previous case, the
same order). The data-aware controls in these user interfaces represent a single field
from a database record. The Data Controls page of the Component palette provides a
wide selection of controls to represent different kinds of fields. These controls are
typically data-aware versions of other controls that are available on the Component
palette. For example, the TDBEdit control is a data-aware version of the standard
TEdit control which enables users to see and edit a text string.

Which control you use depends on the type of data (text, formatted text, graphics,
boolean information, and so on) contained in the field.

Displaying data as labels
TDBText is a read-only control similar to the TLabel component on the Standard page
of the Component palette. A TDBText control is useful when you want to provide
display-only data on a form that allows user input in other controls. For example,
suppose a form is created around the fields in a customer list table, and that once the
user enters a street address, city, and state or province information in the form, you
use a dynamic lookup to automatically determine the zip code field from a separate
table. A TDBText component tied to the zip code table could be used to display the
zip code field that matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a
dataset. Because TDBText gets its text from a dataset, the text it displays is dynamic—
the text changes as the user navigates the database table. Therefore you cannot
specify the display text of TDBText at design time as you can with TLabel.

Note When you place a TDBText component on a form, make sure its AutoSize property is
True (the default) to ensure that the control resizes itself as necessary to display data
of varying widths. If AutoSize is False, and the control is too small, data display is
clipped.

Displaying and editing fields in an edit box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the
current value of a data field to which it is linked and permits it to be edited using
standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and
linked to an open TClientDataSet called CustomersTable. You can then place a TDBEdit
component on a form and set its properties as follows:

• DataSource: CustomersSource
• DataField: CustNo

The data-aware edit box component immediately displays the value of the current
row of the CustNo column of the CustomersTable dataset, both at design time and at
runtime.

U s i n g d a t a c o n t r o l s 20-9

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Displaying and editing text in a memo control
TDBMemo is a data-aware component—similar to the standard TMemo component—
that can display lengthy text data. TDBMemo displays multi-line text, and permits a
user to enter multi-line text as well. You can use TDBMemo controls to display large
text fields or text data contained in binary large object (BLOB) fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the memo control to True. To display tabs and permit users to
enter them in a memo, set the WantTabs property to True. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered.
You can supply scroll bars in the memo with the ScrollBars property. To prevent
word wrap, set the WordWrap property to False. The Alignment property determines
how the text is aligned within the control. Possible choices are taLeftJustify (the
default), taCenter, and taRightJustify. To change the font of the text, use the Font
property.

At runtime, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes to scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data
should be displayed automatically. If you set AutoDisplay to False, TDBMemo
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing text in a rich edit memo control
TDBRichEdit is a data-aware component—similar to the standard TRichEdit
component—that can display formatted text stored in a binary large object (BLOB)
field. TDBRichEdit displays formatted, multi-line text, and permits a user to enter
formatted multi-line text as well.

Note While TDBRichEdit provides properties and methods to enter and work with rich
text, it does not provide any user interface components to make these formatting
options available to the user. Your application must implement the user interface to
surface rich text capabilities.

By default, TDBRichEdit permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the rich edit control to True. To display tabs and permit users to
enter them in a memo, set the WantTabs property to True. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

20-10 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Because the TDBRichEdit can display large amounts of data, it can take time to
populate the display at runtime. To reduce the time it takes to scroll through data
records, TDBRichEdit has an AutoDisplay property that controls whether the accessed
data should be displayed automatically. If you set AutoDisplay to False, TDBRichEdit
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing graphics fields in an image control
TDBImage is a data-aware control that displays graphics contained in BLOB fields.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting
to and from the Clipboard using the CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods. You can, instead, supply your own editing methods
attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control,
cropping the image if it is too big. You can set the Stretch property to True to resize
the graphic to fit within an image control as it is resized.

Because the TDBImage can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data
should automatically displayed. If you set AutoDisplay to False, TDBImage displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing data in list and combo boxes
There are four data controls that provide the user with a set of default data values to
choose from at runtime. These are data-aware versions of standard list and combo
box controls:

• TDBListBox, which displays a scrollable list of items from which a user can choose
to enter in a data field. A data-aware list box displays a default value for a field in
the current record and highlights its corresponding entry in the list. If the current
row’s field value is not in the list, no value is highlighted in the list box. When a
user selects a list item, the corresponding field value is changed in the underlying
dataset.

• TDBComboBox, which combines the functionality of a data-aware edit control and
a drop-down list. At runtime it can display a drop-down list from which a user can
pick from a predefined set of values, and it can permit a user to enter an entirely
different value.

• TDBLookupListBox, which behaves like TDBListBox except the list of display items
is looked up in another dataset.

• TDBLookupComboBox, which behaves like TDBComboBox except the list of display
items is looked up in another dataset.

U s i n g d a t a c o n t r o l s 20-11

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Note At runtime, users can use an incremental search to find list box items. When the
control has focus, for example, typing ‘ROB’ selects the first item in the list box
beginning with the letters ‘ROB’. Typing an additional ‘E’ selects the first item
starting with ‘ROBE’, such as ‘Robert Johnson’. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as
does a two second pause between keystrokes.

Using TDBListBox and TDBComboBox
When using TDBListBox or TDBComboBox, you must use the String List editor at
design time to create the list of items to display. To bring up the String List editor,
click the ellipsis button for the Items property in the Object Inspector. Then type in
the items that you want to have appear in the list. At runtime, use the methods of the
Items property to manipulate its string list.

When a TDBListBox or TDBComboBox control is linked to a field through its DataField
property, the field value appears selected in the list. If the current value is not in the
list, no item appears selected. However, TDBComboBox displays the current value for
the field in its edit box, regardless of whether it appears in the Items list.

For TDBListBox, the Height property determines how many items are visible in the
list box at one time. The IntegralHeight property controls how the last item can
appear. If IntegralHeight is False (the default), the bottom of the list box is determined
by the ItemHeight property, and the bottom item may not be completely displayed. If
IntegralHeight is True, the visible bottom item in the list box is fully displayed.

For TDBComboBox, the Style property determines user interaction with the control. By
default, Style is csDropDown, meaning a user can enter values from the keyboard, or
choose an item from the drop-down list. The following properties determine how the
Items list is displayed at runtime:

• Style determines the display style of the component:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csSimple: Combines an edit control with a fixed size list of items that is always
displayed. When setting Style to csSimple, be sure to increase the Height
property so that the list is displayed.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot
enter or change values that are not in the drop-down list at runtime.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display
values other than strings (for example, bitmaps) or to use different fonts for
individual items in the list.

• DropDownCount: the maximum number of items displayed in the list. If the
number of Items is greater than DropDownCount, the user can scroll the list. If the
number of Items is less than DropDownCount, the list will be just large enough to
display all the Items.

20-12 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If True, then the Items list is displayed in alphabetical order.

Displaying and editing data in lookup list and combo boxes
Lookup list boxes and lookup combo boxes (TDBLookupListBox and
TDBLookupComboBox) present the user with a restricted list of choices from which to
set a valid field value. When a user selects a list item, the corresponding field value is
changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable.
OrdersTable contains a CustNo field corresponding to a customer ID, but OrdersTable
does not have any other customer information. The CustomersTable, on the other
hand, contains a CustNo field corresponding to a customer ID, and also contains
additional information, such as the customer’s company and mailing address. It
would be convenient if the order form enabled a clerk to select a customer by
company name instead of customer ID when creating an invoice. A
TDBLookupListBox that displays all company names in CustomersTable enables a user
to select the company name from the list, and set the CustNo on the order form
appropriately.

These lookup controls derive the list of display items from one of two sources:

• A lookup field defined for a dataset.
To specify list box items using a lookup field, the dataset to which you link the
control must already define a lookup field. (This process is described in “Defining
a lookup field” on page 25-9). To specify the lookup field for the list box items,

a Set the DataSource property of the list box to the data source for the dataset
containing the lookup field to use.

b Choose the lookup field to use from the drop-down list for the DataField
property.

When you activate a table associated with a lookup control, the control recognizes
that its data field is a lookup field, and displays the appropriate values from the
lookup.

• A secondary data source, data field, and key.
If you have not defined a lookup field for a dataset, you can establish a similar
relationship using a secondary data source, a field value to search on in the
secondary data source, and a field value to return as a list item. To specify a
secondary data source for list box items,

a Set the DataSource property of the list box to the data source for the control.

b Choose a field into which to insert looked-up values from the drop-down list
for the DataField property. The field you choose cannot be a lookup field.

c Set the ListSource property of the list box to the data source for the dataset that
contain the field whose values you want to look up.

U s i n g d a t a c o n t r o l s 20-13

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

d Choose a field to use as a lookup key from the drop-down list for the KeyField
property. The drop-down list displays fields for the dataset associated with
data source you specified in Step 3. The field you choose need not be part of an
index, but if it is, lookup performance is even faster.

e Choose a field whose values to return from the drop-down list for the ListField
property. The drop-down list displays fields for the dataset associated with the
data source you specified in Step 3.

When you activate a table associated with a lookup control, the control recognizes
that its list items are derived from a secondary source, and displays the
appropriate values from that source.

To specify the number of items that appear at one time in a TDBLookupListBox
control, use the RowCount property. The height of the list box is adjusted to fit this
row count exactly.

To specify the number of items that appear in the drop-down list of
TDBLookupComboBox, use the DropDownRows property instead.

Note You can also set up a column in a data grid to act as a lookup combo box. For
information on how to do this, see “Defining a lookup list column” on page 20-21.

Handling Boolean field values with check boxes
TDBCheckBox is a data-aware check box control. It can be used to set the values of
Boolean fields in a dataset. For example, a customer invoice form might have a check
box control that when checked indicates the customer is tax-exempt, and when
unchecked indicates that the customer is not tax-exempt.

The data-aware check box control manages its checked or unchecked state by
comparing the value of the current field to the contents of ValueChecked and
ValueUnchecked properties. If the field value matches the ValueChecked property, the
control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set
to “true,” but you can make it any alphanumeric value appropriate to your needs.
You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box
is checked. For example, you can specify a ValueChecked string like:

DBCheckBox1.ValueChecked := 'True;Yes;On';

If the field for the current record contains values of “true,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is case-
insensitive. If a user checks a box for which there are multiple ValueChecked strings,
the first string is the value that is posted to the database.

20-14 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Set the ValueUnchecked property to a value the control should post to the database if
the control is not checked when the user moves to another record. By default, this
value is set to “false,” but you can make it any alphanumeric value appropriate to
your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current
record, the check box is unchecked.

A data-aware check box is disabled whenever the field for the current record does
not contain one of the values listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is
always checked if the contents of the field is True, and it is unchecked if the contents
of the field is False. In this case, strings entered in the ValueChecked and
ValueUnchecked properties have no effect on logical fields.

Restricting field values with radio controls
TDBRadioGroup is a data-aware version of a radio group control. It enables you to set
the value of a data field with a radio button control where there is a limited number
of possible values for the field. The radio group includes one button for each value a
field can accept. Users can set the value for a data field by selecting the desired radio
button.

The Items property determines the radio buttons that appear in the group. Items is a
string list. One radio button is displayed for each string in Items, and each string
appears to the right of a radio button as the button’s label.

If the current value of a field associated with a radio group matches one of the strings
in the Items property, that radio button is selected. For example, if three strings,
“Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current record
contains the value “Blue,” then the third button in the group appears selected.

Note If the field does not match any strings in Items, a radio button may still be selected if
the field matches a string in the Values property. If the field for the current record
does not match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated
with buttons in numeric sequence. The first string is associated with the first button,
the second string with the second button, and so on. For example, suppose Items
contains “Red,” “Yellow,” and “Blue,” and Values contains “Magenta,” “Yellow,”
and “Cyan.” If a user selects the button labeled “Red,” “Magenta” is posted to the
database.

If strings for Values are not provided, the Item string for a selected radio button is
returned to the database when a record is posted.

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an
invoicing application might show all the orders made by a single customer on the
same form.

U s i n g d a t a c o n t r o l s 20-15

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To display multiple records, use a grid control. Grid controls provide a multi-field,
multi-record view of data that can make your application’s user interface more
compelling and effective. They are discussed in “Viewing and editing data with
TDBGrid” on page 20-15 and “Creating a grid that contains other data-aware
controls” on page 20-28.

Note You can’t display multiple records when using a unidirectional dataset.

You may want to design a user interface that displays both fields from a single record
and grids that represent multiple records. There are two models that combine these
two approaches:

• Master-detail forms: You can represent information from both a master table and
a detail table by including both controls that display a single field and grid
controls. For example, you could display information about a single customer with
a detail grid that displays the orders for that customer. For information about
linking the underlying tables in a master-detail form, see “Creating master/detail
relationships” on page 24-35 and “Establishing master/detail relationships using
parameters” on page 24-47.

• Drill-down forms: In a form that displays multiple records, you can include single
field controls that display detailed information from the current record only. This
approach is particularly useful when the records include long memos or graphic
information. As the user scrolls through the records of the grid, the memo or
graphic updates to represent the value of the current record. Setting this up is very
easy. The synchronization between the two displays is automatic if the grid and
the memo or image control share a common data source.

Tip It is generally not a good idea to combine these two approaches on a single form. It is
usually confusing for users to understand the data relationships in such forms.

Viewing and editing data with TDBGrid
A TDBGrid control lets you view and edit records in a dataset in a tabular grid
format.

Figure 20.1 TDBGrid control

Current field Column titles

Record
indicator

20-16 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Three factors affect the appearance of records displayed in a grid control:

• Existence of persistent column objects defined for the grid using the Columns
editor. Persistent column objects provide great flexibility setting grid and data
appearance. For information on using persistent columns, see “Creating a
customized grid” on page 20-17.

• Creation of persistent field components for the dataset displayed in the grid. For
more information about creating persistent field components using the Fields
editor, see Chapter 25, “Working with field components.”

• The dataset’s ObjectView property setting for grids displaying ADT and array
fields. See “Displaying ADT and array fields” on page 20-22.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns
object. TDBGridColumns is a collection of TColumn objects representing all of the
columns in a grid control. You can use the Columns editor to set up column
attributes at design time, or use the Columns property of the grid to access the
properties, events, and methods of TDBGridColumns at runtime.

Using a grid control in its default state

The State property of the grid’s Columns property indicates whether persistent
column objects exist for the grid. Columns.State is a runtime-only property that is
automatically set for a grid. The default state is csDefault, meaning that persistent
column objects do not exist for the grid. In that case, the display of data in the grid is
determined primarily by the properties of the fields in the grid’s dataset, or, if there
are no persistent field components, by a default set of display characteristics.

When the grid’s Columns.State property is csDefault, grid columns are dynamically
generated from the visible fields of the dataset and the order of columns in the grid
matches the order of fields in the dataset. Every column in the grid is associated with
a field component. Property changes to field components immediately show up in
the grid.

Using a grid control with dynamically-generated columns is useful for viewing and
editing the contents of arbitrary tables selected at runtime. Because the grid’s
structure is not set, it can change dynamically to accommodate different datasets. A
single grid with dynamically-generated columns can display a Paradox table at one
moment, then switch to display the results of an SQL query when the grid’s
DataSource property changes or when the DataSet property of the data source itself is
changed.

You can change the appearance of a dynamic column at design time or runtime, but
what you are actually modifying are the corresponding properties of the field
component displayed in the column. Properties of dynamic columns exist only so
long as a column is associated with a particular field in a single dataset. For example,
changing the Width property of a column changes the DisplayWidth property of the
field associated with that column. Changes made to column properties that are not
based on field properties, such as Font, exist only for the lifetime of the column.

U s i n g d a t a c o n t r o l s 20-17

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

If a grid’s dataset consists of dynamic field components, the fields are destroyed each
time the dataset is closed. When the field components are destroyed, all dynamic
columns associated with them are destroyed as well. If a grid’s dataset consists of
persistent field components, the field components exist even when the dataset is
closed, so the columns associated with those fields also retain their properties when
the dataset is closed.

Note Changing a grid’s Columns.State property to csDefault at runtime deletes all column
objects in the grid (even persistent columns), and rebuilds dynamic columns based
on the visible fields of the grid’s dataset.

Creating a customized grid

A customized grid is one for which you define persistent column objects that
describe how a column appears and how the data in the column is displayed. A
customized grid lets you configure multiple grids to present different views of the
same dataset (different column orders, different field choices, and different column
colors and fonts, for example). A customized grid also enables you to let users
modify the appearance of the grid at runtime without affecting the fields used by the
grid or the field order of the dataset.

Customized grids are best used with datasets whose structure is known at design
time. Because they expect field names established at design time to exist in the
dataset, customized grids are not well suited to browsing arbitrary tables selected at
runtime.

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated
with underlying fields in a grid’s dataset. Default property values for persistent
columns are dynamically fetched from a default source (the associated field or the
grid itself) until a value is assigned to the column property. Until you assign a
column property a value, its value changes as its default source changes. Once you
assign a value to a column property, it no longer changes when its default source
changes.

For example, the default source for a column title caption is an associated field’s
DisplayLabel property. If you modify the DisplayLabel property, the column title
reflects that change immediately. If you then assign a string to the column title’s
caption, the tile caption becomes independent of the associated field’s DisplayLabel
property. Subsequent changes to the field’s DisplayLabel property no longer affect the
column’s title.

Persistent columns exist independently from field components with which they are
associated. In fact, persistent columns do not have to be associated with field objects
at all. If a persistent column’s FieldName property is blank, or if the field name does
not match the name of any field in the grid’s current dataset, the column’s Field
property is NULL and the column is drawn with blank cells. If you override the cell’s
default drawing method, you can display your own custom information in the blank

20-18 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

cells. For example, you can use a blank column to display aggregated values on the
last record of a group of records that the aggregate summarizes. Another possibility
is to display a bitmap or bar chart that graphically depicts some aspect of the record’s
data.

Two or more persistent columns can be associated with the same field in a dataset.
For example, you might display a part number field at the left and right extremes of a
wide grid to make it easier to find the part number without having to scroll the grid.

Note Because persistent columns do not have to be associated with a field in a dataset, and
because multiple columns can reference the same field, a customized grid’s
FieldCount property can be less than or equal to the grid’s column count. Also note
that if the currently selected column in a customized grid is not associated with a
field, the grid’s SelectedField property is NULL and the SelectedIndex property is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down
list of lookup values from another dataset or from a static pick list, or as an ellipsis
button (…) in a cell that can be clicked upon to launch special data viewers or dialogs
related to the current cell.

Creating persistent columns
To customize the appearance of grid at design time, you invoke the Columns editor
to create a set of persistent column objects for the grid. At runtime, the State property
for a grid with persistent column objects is automatically set to csCustomized.

To create persistent columns for a grid control,

1 Select the grid component in the form.

2 Invoke the Columns editor by double clicking on the grid’s Columns property in
the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the
selected grid. When you first bring up the Columns editor, this list is empty because
the grid is in its default state, containing only dynamic columns.

You can create persistent columns for all fields in a dataset at once, or you can create
persistent columns on an individual basis. To create persistent columns for all fields:

1 Right-click the grid to invoke the context menu and choose Add All Fields. Note
that if the grid is not already associated with a data source, Add All Fields is
disabled. Associate the grid with a data source that has an active dataset before
choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to
delete the existing columns, or append to the column set. If you choose Yes, any
existing persistent column information is removed, and all fields in the current
dataset are inserted by field name according to their order in the dataset. If you
choose No, any existing persistent column information is retained, and new
column information, based on any additional fields in the dataset, are appended to
the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

U s i n g d a t a c o n t r o l s 20-19

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To create persistent columns individually:

1 Choose the Add button in the Columns editor. The new column will be selected in
the list box. The new column is given a sequential number and default name (for
example, 0 - TColumn).

2 To associate a field with this new column, set the FieldName property in the Object
Inspector.

3 To set the title for the new column, expand the Title property in the Object
Inspector and set its Caption property.

4 Close the Columns editor to apply the persistent columns to the grid and close the
dialog box.

At runtime, you can switch to persistent columns by assigning csCustomized to the
Columns.State property. Any existing columns in the grid are destroyed and new
persistent columns are built for each field in the grid’s dataset. You can then add a
persistent column at runtime by calling the Add method for the column list:

DBGrid1.Columns.Add;

Deleting persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do
not want to display. To remove a persistent column from a grid,

1 Double-click the grid to display the Columns editor.

2 Select the field to remove in the Columns list box.

3 Click Delete (you can also use the context menu or Del key, to remove a column).

Note If you delete all the columns from a grid, the Columns.State property reverts to its
csDefault state and automatically build dynamic columns for each field in the dataset.

You can delete a persistent column at runtime by simply freeing the column object:

DBGrid1.Columns[5].Free;

Arranging the order of persistent columns
The order in which columns appear in the Columns editor is the same as the order
the columns appear in the grid. You can change the column order by dragging and
dropping columns within the Columns list box.

To change the order of a column,

1 Select the column in the Columns list box.

2 Drag it to a new location in the list box.

20-20 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

You can also change the column order at runtime by clicking on the column title and
dragging the column to a new position.

Note Reordering persistent fields in the Fields editor also reorders columns in a default
grid, but not a custom grid.

Important You cannot reorder columns in grids containing both dynamic columns and dynamic
fields at design time, since there is nothing persistent to record the altered field or
column order.

At runtime, a user can use the mouse to drag a column to a new location in the grid if
its DragMode property is set to dmManual. Reordering the columns of a grid with a
State property of csDefault state also reorders field components in the dataset
underlying the grid. The order of fields in the physical table is not affected. To
prevent a user from rearranging columns at runtime, set the grid’s DragMode
property to dmAutomatic.

At runtime, the grid’s OnColumnMoved event fires after a column has been moved.

Setting column properties at design time
Column properties determine how data is displayed in the cells of that column. Most
column properties obtain their default values from properties associated with
another component (called the default source) such as a grid or an associated field
component.

To set a column’s properties, select the column in The Columns editor and set its
properties in the Object Inspector. The following table summarizes key column
properties you can set.

Table 20.2 Column properties

Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default
source: TField.Alignment.

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup
field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on
the button fires the grid’s OnEditButtonClick event.
cbsNone: The column uses only the normal edit control to edit data in the
column.

Color Specifies the background color of the cells of the column. Default source:
TDBGrid.Color. (For text foreground color, see the Font property.)

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns
representing ADT or array fields.

FieldName Specifies the field name associated with this column. This can be blank.

ReadOnly True: The data in the column cannot be edited by the user.
False: (default) The data in the column can be edited.

U s i n g d a t a c o n t r o l s 20-21

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

The following table summarizes the options you can specify for the Title property.

Defining a lookup list column
You can create a column that displays a drop-down list of values, similar to a lookup
combo box control. To specify that the column acts like a combo box, set the column’s
ButtonStyle property to cbsAuto. Once you populate the list with values, the grid
automatically displays a combo box-like drop-down button when a cell of that
column is in edit mode.

There are two ways to populate that list with the values for users to select:

• You can fetch the values from a lookup table. To make a column display a drop-
down list of values drawn from a separate lookup table, you must define a lookup
field in the dataset. For information about creating lookup fields, see “Defining a
lookup field” on page 25-9. Once the lookup field is defined, set the column’s
FieldName to the lookup field name. The drop-down list is automatically
populated with lookup values defined by the lookup field.

• You can specify a list of values explicitly at design time. To enter the list values at
design time, double-click the PickList property for the column in the Object
Inspector. This brings up the String List editor, where you can enter the values that
populate the pick list for the column.

By default, the drop-down list displays 7 values. You can change the length of this list
by setting the DropDownRows property.

Note To restore a column with an explicit pick list to its normal behavior, delete all the text
from the pick list using the String List editor.

Width Specifies the width of the column in screen pixels. Default source:
TField.DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default
source: TDBGrid.Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

Table 20.3 Expanded TColumn Title properties

Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default source: TField.DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default source:
TDBGrid.FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default
source: TDBGrid.TitleFont.

Table 20.2 Column properties (continued)

Property Purpose

20-22 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Putting a button in a column
A column can display an ellipsis button (…) to the right of the normal cell editor.
Ctrl+Enter or a mouse click fires the grid’s OnEditButtonClick event. You can use the
ellipsis button to bring up forms containing more detailed views of the data in the
column. For example, in a table that displays summaries of invoices, you could set up
an ellipsis button in the invoice total column to bring up a form that displays the
items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form that displays an image.

To create an ellipsis button in a column:

1 Select the column in the Columns list box.

2 Set ButtonStyle to cbsEllipsis.

3 Write an OnEditButtonClick event handler.

Restoring default values to a column
At runtime you can test a column’s AssignedValues property to determine whether a
column property has been explicitly assigned. Values that are not explicitly defined
are dynamically based on the associated field or the grid’s defaults.

You can undo property changes made to one or more columns. In the Columns
editor, select the column or columns to restore, and then select Restore Defaults from
the context menu. Restore defaults discards assigned property settings and restores a
column’s properties to those derived from its underlying field component

At runtime, you can reset all default properties for a single column by calling the
column’s RestoreDefaults method. You can also reset default properties for all
columns in a grid by calling the column list’s RestoreDefaults method:

DBGrid1.Columns.RestoreDefaults;

Displaying ADT and array fields

Sometimes the fields of the grid’s dataset do not represent simple values such as text,
graphics, numerical values, and so on. Some database servers allow fields that are a
composite of simpler data types, such as ADT fields or array fields.

There are two ways a grid can display composite fields:

• It can “flatten out” the field so that each of the simpler types that make up the field
appears as a separate field in the dataset. When a composite field is flattened out,
its constituents appear as separate fields that reflect their common source only in
that each field name is preceded by the name of the common parent field in the
underlying database table.

To display composite fields as if they were flattened out, set the dataset’s
ObjectView property to False. The dataset stores composite fields as a set of
separate fields, and the grid reflects this by assigning each constituent part a
separate column.

U s i n g d a t a c o n t r o l s 20-23

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

• It can display composite fields in a single column, reflecting the fact that they are a
single field. When displaying composite fields in a single column, the column can
be expanded and collapsed by clicking on the arrow in the title bar of the field, or
by setting the Expanded property of the column:

• When a column is expanded, each child field appears in its own sub-column
with a title bar that appears below the title bar of the parent field. That is, the
title bar for the grid increases in height, with the first row giving the name of
the composite field, and the second row subdividing that for the individual
parts. Fields that are not composites appear with title bars that are extra high.
This expansion continues for constituents that are in turn composite fields (for
example, a detail table nested in a detail table), with the title bar growing in
height accordingly.

• When the field is collapsed, only one column appears with an uneditable
comma delimited string containing the child fields.

To display a composite field in an expanding and collapsing column, set the
dataset’s ObjectView property to True. The dataset stores the composite field as a
single field component that contains a set of nested sub-fields. The grid reflects
this in a column that can expand or collapse

Figure 20.2 shows a grid with an ADT field and an array field. The dataset’s
ObjectView property is set to False so that each child field has a column.

Figure 20.2 TDBGrid control with ObjectView set to False

Figure 20.3 and 20.4 show the grid with an ADT field and an array field. Figure 20.3
shows the fields collapsed. In this state they cannot be edited. Figure 20.4 shows the
fields expanded. The fields are expanded and collapsed by clicking on the arrow in
the fields title bar.

Figure 20.3 TDBGrid control with Expanded set to False

ADT child fields Array child fields

20-24 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Figure 20.4 TDBGrid control with Expanded set to True

The following table lists the properties that affect the way ADT and array fields
appear in a TDBGrid:

Note In addition to ADT and array fields, some datasets include fields that refer to another
dataset (dataset fields) or a record in another dataset (reference) fields. Data-aware
grids display such fields as “(DataSet)” or “(Reference)”, respectively. At runtime an
ellipsis button appears to the right. Clicking on the ellipsis brings up a new form with
a grid displaying the contents of the field. For dataset fields, this grid displays the
dataset that is the field’s value. For reference fields, this grid contains a single row
that displays the record from another dataset.

Setting grid options

You can use the grid Options property at design time to control basic grid behavior
and appearance at runtime. When a grid component is first placed on a form at
design time, the Options property in the Object Inspector is displayed with a + (plus)
sign to indicate that the Options property can be expanded to display a series of
Boolean properties that you can set individually. To view and set these properties,
click on the + sign. The list of options in the Object Inspector below the Options
property. The + sign changes to a – (minus) sign, that collapses the list back when
you click it.

Table 20.4 Properties that affect the way composite fields appear

Property Object Purpose

Expandable TColumn Indicates whether the column can be expanded to show child
fields in separate, editable columns. (read-only)

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can appear in
the grid

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in object
mode, where each object field can be expanded and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field’s column.

ADT child field columns Array child field columns

U s i n g d a t a c o n t r o l s 20-25

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

The following table lists the Options properties that can be set, and describes how
they affect the grid at runtime.

Table 20.5 Expanded TDBGrid Options properties

Option Purpose

dgEditing True: (Default). Enables editing, inserting, and deleting records in the
grid.
False: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor True: When a field is selected, it is in Edit state.
False: (Default). A field is not automatically in Edit state when
selected.

dgTitles True: (Default). Displays field names across the top of the grid.
False: Field name display is turned off.

dgIndicator True: (Default). The indicator column is displayed at the left of the
grid, and the current record indicator (an arrow at the left of the grid)
is activated to show the current record. On insert, the arrow becomes
an asterisk. On edit, the arrow becomes an I-beam.
False: The indicator column is turned off.

dgColumnResize True: (Default). Columns can be resized by dragging the column rulers
in the title area. Resizing changes the corresponding width of the
underlying TField component.
False: Columns cannot be resized in the grid.

dgColLines True: (Default). Displays vertical dividing lines between columns.
False: Does not display dividing lines between columns.

dgRowLines True: (Default). Displays horizontal dividing lines between records.
False: Does not display dividing lines between records.

dgTabs True: (Default). Enables tabbing between fields in records.
False: Tabbing exits the grid control.

dgRowSelect True: The selection bar spans the entire width of the grid.
False: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection True: (Default). The selection bar in the grid is always visible, even if
another control has focus.
False: The selection bar in the grid is only visible when the grid has
focus.

dgConfirmDelete True: (Default). Prompt for confirmation to delete records (Ctrl+Del).
False: Delete records without confirmation.

dgCancelOnExit True: (Default). Cancels a pending insert when focus leaves the grid.
This option prevents inadvertent posting of partial or blank records.
False: Permits pending inserts.

dgMultiSelect True: Allows user to select noncontiguous rows in the grid using
Ctrl+Shift or Shift+ arrow keys.
False: (Default). Does not allow user to multi-select rows.

20-26 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Editing in the grid

At runtime, you can use a grid to modify existing data and enter new records, if the
following default conditions are met:

• The CanModify property of the Dataset is True.
• The ReadOnly property of grid is False.

When a user edits a record in the grid, changes to each field are posted to an internal
record buffer, but are not posted until the user moves to a different record in the grid.
Even if focus is changed to another control on a form, the grid does not post changes
until another the cursor for the dataset is moved to another record. When a record is
posted, the dataset checks all associated data-aware components for a change in
status. If there is a problem updating any fields that contain modified data, the grid
raises an exception, and does not modify the record.

Note If your application caches updates, posting record changes only adds them to an
internal cache. They are not posted back to the underlying database table until your
application applies the updates.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Controlling grid drawing

Your first level of control over how a grid control draws itself is setting column
properties. The grid automatically uses the font, color, and alignment properties of a
column to draw the cells of that column. The text of data fields is drawn using the
DisplayFormat or EditFormat properties of the field component associated with the
column.

You can augment the default grid display logic with code in a grid’s
OnDrawColumnCell event. If the grid’s DefaultDrawing property is True, all the
normal drawing is performed before your OnDrawColumnCell event handler is
called. Your code can then draw on top of the default display. This is primarily useful
when you have defined a blank persistent column and want to draw special graphics
in that column’s cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to
False and place your drawing code in the grid’s OnDrawColumnCell event. If you
want to replace the drawing logic only in certain columns or for certain field data
types, you can call the DefaultDrawColumnCell inside your OnDrawColumnCell event
handler to have the grid use its normal drawing code for selected columns. This
reduces the amount of work you have to do if you only want to change the way
Boolean field types are drawn, for example.

U s i n g d a t a c o n t r o l s 20-27

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Responding to user actions at runtime

You can modify grid behavior by writing event handlers to respond to specific
actions within the grid at runtime. Because a grid typically displays many fields and
records at once, you may have very specific needs to respond to changes to
individual columns. For example, you might want to activate and deactivate a button
elsewhere on the form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in
a column. Such a handler would use the SelectedField property to determine to
current row and column.

Table 20.6 Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State
is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard
when in the grid.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard
when in the grid.

OnKeyUp Occurs when a user releases a key when in the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

20-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g a g r i d t h a t c o n t a i n s o t h e r d a t a - a w a r e c o n t r o l s

Creating a grid that contains other data-aware controls
A TDBCtrlGrid control displays multiple fields in multiple records in a tabular grid
format. Each cell in a grid displays multiple fields from a single row. To use a
database control grid:

1 Place a database control grid on a form.

2 Set the grid’s DataSource property to the name of a data source.

3 Place individual data controls within the design cell for the grid. The design cell
for the grid is the top or leftmost cell in the grid, and is the only cell into which you
can place other controls.

4 Set the DataField property for each data control to the name of a field. The data
source for these data controls is already set to the data source of the database
control grid.

5 Arrange the controls within the cell as desired.

When you compile and run an application containing a database control grid, the
arrangement of data controls you set in the design cell at runtime is replicated in each
cell of the grid. Each cell displays a different record in a dataset.

Figure 20.5 TDBCtrlGrid at design time

U s i n g d a t a c o n t r o l s 20-29

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

The following table summarizes some of the unique properties for database control
grids that you can set at design time:

For more information about database control grid properties and methods, see the
online VCL Reference.

Navigating and manipulating records
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons
that enable a user to scroll forward or backward through records one at a time, go to
the first record, go to the last record, insert a new record, update an existing record,
post data changes, cancel data changes, delete a record, and refresh record display.

Figure 20.6 shows the navigator that appears by default when you place it on a form
at design time. The navigator consists of a series of buttons that let a user navigate
from one record to another in a dataset, and edit, delete, insert, and post records. The
VisibleButtons property of the navigator enables you to hide or show a subset of these
buttons dynamically.

Figure 20.6 Buttons on the TDBNavigator control

Table 20.7 Selected database control grid properties

Property Purpose

AllowDelete True (default): Permits record deletion.
False: Prevents record deletion.

AllowInsert True (default): Permits record insertion.
False: Prevents record insertion.

ColCount Sets the number of columns in the grid. Default = 1.

Orientation goVertical (default): Display records from top to bottom.
goHorizontal: Displays records from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.

PanelWidth Sets the width for an individual panel. Default = 200.

RowCount Sets the number of panels to display. Default = 3.

ShowFocus True (default): Displays a focus rectangle around the current record’s panel at
runtime.
False: Does not display a focus rectangle.

First record

Insert record Delete current record

Post record edits

Refresh records

Cancel record edits

Edit current recordLast record

Prior record

Next record

20-30 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

The following table describes the buttons on the navigator.

Choosing navigator buttons to display

When you first place a TDBNavigator on a form at design time, all its buttons are
visible. You can use the VisibleButtons property to turn off buttons you do not want to
use on a form. For example, when working with a unidirectional dataset, only the
First, Next, and Refresh buttons are meaningful. On a form that is intended for
browsing rather than editing, you might want to disable the Edit, Insert, Delete, Post,
and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to
indicate that it can be expanded to display a Boolean value for each button on the
navigator. To view and set these values, click on the + sign. The list of buttons that
can be turned on or off appears in the Object Inspector below the VisibleButtons
property. The + sign changes to a – (minus) sign, which you can click to collapse the
list of properties.

Button visibility is indicated by the Boolean state of the button value. If a value is set
to True, the button appears in the TDBNavigator. If False, the button is removed from
the navigator at design time and runtime.

Note As button values are set to False, they are removed from the TDBNavigator on the
form, and the remaining buttons are expanded in width to fill the control. You can
drag the control’s handles to resize the buttons.

Table 20.8 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.

Prior Calls the dataset’s Prior method to set the current record to the previous record.

Next Calls the dataset’s Next method to set the current record to the next record.

Last Calls the dataset’s Last method to set the current record to the last record.

Insert Calls the dataset’s Insert method to insert a new record before the current record, and
set the dataset in Insert state.

Delete Deletes the current record. If the ConfirmDelete property is True it prompts for
confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or
query. Useful if the underlying data may have been changed by another application.

U s i n g d a t a c o n t r o l s 20-31

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or
application states. For example, suppose you provide a single navigator for
navigating through two different datasets, one of which permits users to edit records,
and the other of which is read-only. When you switch between datasets, you want to
hide the navigator’s Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the read-
only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the
Insert, Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also
want to allow editing for the CustomersTable. The VisibleButtons property controls
which buttons are displayed in the navigator. Here’s one way you might code the
event handler:

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
begin

DBNavigatorAll.DataSource := CustomerCompany.DataSource;
DBNavigatorAll.VisibleButtons := [nbFirst,nbPrior,nbNext,nbLast];

end
else
begin

DBNavigatorAll.DataSource := OrderNum.DataSource;
DBNavigatorAll.VisibleButtons := DBNavigatorAll.VisibleButtons + [nbInsert,

nbDelete,nbEdit,nbPost,nbCancel,nbRefresh];
end;

end;

Displaying fly-over help

To display fly-over help for each navigator button at runtime, set the navigator
ShowHint property to True. When ShowHint is True, the navigator displays fly-by
Help hints whenever you pass the mouse cursor over the navigator buttons.
ShowHint is False by default.

The Hints property controls the fly-over help text for each button. By default Hints is
an empty string list. When Hints is empty, each navigator button displays default
help text. To provide customized fly-over help for the navigator buttons, use the
String list editor to enter a separate line of hint text for each button in the Hints
property. When present, the strings you provide override the default hints provided
by the navigator control.

20-32 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Using a single navigator for multiple datasets

As with other data-aware controls, a navigator’s DataSource property specifies the
data source that links the control to a dataset. By changing a navigator’s DataSource
property at runtime, a single navigator can provide record navigation and
manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and
OrdersTable datasets through the CustomersSource and OrdersSource data sources
respectively. When a user enters the edit control connected to CustomersSource, the
navigator should also use CustomersSource, and when the user enters the edit control
connected to OrdersSource, the navigator should switch to OrdersSource as well. You
can code an OnEnter event handler for one of the edit controls, and then share that
event with the other edit control. For example:

procedure TForm1.CustomerCompanyEnter(Sender :TObject);
begin

if Sender = CustomerCompany then
DBNavigatorAll.DataSource := CustomerCompany.DataSource

else
DBNavigatorAll.DataSource := OrderNum.DataSource;

end;

C r e a t i n g r e p o r t s w i t h R a v e R e p o r t s 21-1

C h a p t e r

21
Chapter21Creating reports with Rave Reports

This chapter provides an overview of using Rave Reports from Nevrona Designs to
generate reports within a Delphi application. Additional documentation for Rave
Reports is included in the Delphi directory, as described in “Getting more
information” on page 21-6.

Note: Rave Reports is automatically installed with the Professional and Enterprise editions
of Delphi.

Overview
Rave Reports is a component-based visual report design tool that simplifies the
process of adding reports to an application. You can use Rave Reports to create a
variety of reports, from simple banded reports to more complex, highly customized
reports. Report features include:

• Word wrapped memos
• Full graphics
• Justification
• Precise page positioning
• Printer configuration
• Font control
• Print preview
• Reuse of report content
• PDF, HTML, RTF, and text report renditions

21-2 D e v e l o p e r ’ s G u i d e

G e t t i n g s t a r t e d

Getting started
You can use Rave Reports in both VCL and CLX applications to generate reports
from database and non-database data. The following procedure explains how to add
a simple report to an existing database application.

1 Open a database application in Delphi.

2 From the Rave page of the Component palette, add the TRvDataSetConnection
component to a form in the application.

3 In the Object Inspector, set the DataSet property to a dataset component that is
already defined in your application.

4 Use the Rave Visual Designer to design your report and create a report project file
(.rav file).

a Choose Tools|Rave Designer to launch the Rave Visual Designer.

b Choose File|New Data Object to display the Data Connections dialog box.

c In the Data Object Type list, select Direct Data View and click Next.

d In the Active Data Connections list, select RVDataSetConnection1 and click
Finish.

In the Project Tree on the left side of the Rave Visual Designer window, expand
the Data View Dictionary node, then expand the newly created DataView1
node. Your application data fields are displayed under the DataView1 node.

e Choose Tools|Report Wizards|Simple Table to display the Simple Table
wizard.

f Select DataView1 and click Next.

g Select two or three fields that you want to display in the report and click Next.

h Follow the prompts on the subsequent wizard pages to set the order of the
fields, margins, heading text, and fonts to be used in the report.

i On the final wizard page, click Generate to complete the wizard and display the
report in the Page Designer.

j Choose File|Save as to display the Save As dialog box. Navigate to the
directory in which your Delphi application is located and save the Rave project
file as MyRave.rav.

k Minimize the Rave Visual Designer window and return to Delphi.

5 From the Rave page of the Component palette, add the Rave project component,
TRvProject, to the form.

6 In the Object Inspector, set the ProjectFile property to the report project file
(MyRave.rav) that you created in step j.

C r e a t i n g r e p o r t s w i t h R a v e R e p o r t s 21-3

T h e R a v e V i s u a l D e s i g n e r

7 From the Standard page of the Component palette, add the TButton component.

8 In the Object Inspector, click the Events tab and double-click the OnClick event.

9 Write an event handler that uses the ExecuteReport method to execute the Rave
project component.

10 Press F9 to run the application.

11 Click the button that you added in step 7.

12 The Output Options dialog box is displayed. Click OK to display the report.

For a more information on using the Rave Visual Designer, use the Help menu or see
the Rave Reports documentation listed in “Getting more information” on page 21-6.

The Rave Visual Designer
To launch the Rave Visual Designer, do one of the following:

• Choose Tools|Rave Designer.
• Double-click a TRvProject component on a form.
• Right-click a TRvProject component on a form, and choose Rave Visual Designer.

For a detailed information on using the Rave Visual Designer, use the Help menu or
see the Rave Reports documentation listed in “Getting more information” on
page 21-6.

Use the Property
Panel to set the
properties,
methods, and
events for the
selected
component.

Use the Project
Tree to display
and navigate the
structure of the
report project.

Use the Page
Designer to lay
out your report by
adding
components from
the toolbars.

Use the component
toolbars to add
components to the
Page Designer
(click a toolbar
button and then
click the grid). Use
the editor toolbars
to change the
report project or
components.

21-4 D e v e l o p e r ’ s G u i d e

C o m p o n e n t o v e r v i e w

Component overview
This section provides an overview of the Rave Reports components. For detailed
component information, see the documentation listed in “Getting more information”
on page 21-6.

VCL/CLX components

The VCL/CLX components are non-visual components that you add to a form in
your VCL or CLX application. They are available on the Rave page of the Component
palette. There are four categories of components: engine, render, data connection and
Rave project.

Engine components
The Engine components are used to generate reports. Reports can be generated from
a pre-defined visual definition (using the Engine property of TRvProject) or by
making calls to the Rave code-based API library from within the OnPrint event. The
engine components are:

TRvNDRWriter
TRvSystem

Render components
The Render components are used to convert an NDR file (Rave snapshot report file)
or a stream generated from TRvNDRWriter to a variety of formats. Rendering can be
done programmatically or added to the standard setup and preview dialogs of
TRvSystem by dropping a render component on an active form or data module
within your application. The render components are:

Data connection components
The Data Connection components provide the link between application data and the
Direct Data Views in visually designed Rave reports. The data connection
components are:

TRvRenderPreview
TRvRenderPrinter

TRvRenderPDF
TRvRenderHTML

TRvRenderRTF
TRvRenderText

TRvCustomConnection
TRvDataSetConnection

TRvTableConnection
TRvQueryConnection

C r e a t i n g r e p o r t s w i t h R a v e R e p o r t s 21-5

C o m p o n e n t o v e r v i e w

Rave project component
The TRvProject component interfaces with and executes visually designed Rave
reports within an application. Normally a TRvSystem component would be assigned
to the Engine property. The reporting project (.rav) should be specified in the
ProjectFile property or loaded into the DFM using the StoreRAV property. Project
parameters can be set using the SetParam method and reports can be executed using
the ExecuteReport method.

Reporting components

The following components are available in the Rave Visual Designer.

Project components
The Project toolbar provides the essential building blocks for all reports. The project
components are:

TRavePage
TRaveProjectManager
TRaveReport

Data objects
Data objects connect to data or control access to reports from the Rave Reporting
Server. The File|New Data Object menu command displays the Data Connections
dialog box, which you can use to create each of the data objects. The data object
components are:

Standard components
The Standard toolbar provides components that are frequently used when designing
reports. The standard components are:

Drawing components
The Drawing toolbar provides components to create lines and shapes in a report. To
color and style the components, use the Fills, Lines, and Colors toolbars. The drawing
components are:

TRaveDatabase
TRaveDriverDataView

TRaveDirectDataView
TRaveSimpleSecurity

TRaveLookupSecurity

TRaveText
TRaveMemo
TRaveSection

TRaveBitmap
TRaveMetaFile
TRaveFontMaster

TRavePageNumInit

TRaveLine
TRaveHLine
TRaveVLine

TRaveSquare
TRaveRectangle
TRaveCircle

TRaveEllipse

21-6 D e v e l o p e r ’ s G u i d e

G e t t i n g m o r e i n f o r m a t i o n

Report components
The Report toolbar provides components that are used most often in data-aware
reports. The report components are:

Bar code components
The Bar Code toolbar provides different types of bar codes in a report. The bar code
components are:

Getting more information
Delphi includes the following Nevrona Designs documentation for Rave Reports.

These books are distributed as PDF files on the Delphi Companion Tools CD.

Most of the information in the PDF files is also available in the online Help. To
display online Help for a Rave Reports component on a form, select the component
and press F1. To display online Help for the Rave Visual Designer, use the Help
menu.

TRaveRegion
TRaveDataBand
TRaveBand
Band Style Editor
TRaveDataText

DataText Editor
TRaveDataMemo
TRaveCalcText
TRaveDataCycle
TRaveDataMirrorSection

TRaveCalcOp Component
TRaveCalcController
TRaveCalcTotal

TRavePostNetBarCode
TRaveI2of5Bar Code

TRaveCode39BarCode
TRaveCode128BarCode

TRaveUPCBarCode
TRaveEANBarCode

Table 21.1 Rave Reports documentation

Title Description

Rave Visual Designer Manual for
Reference and Learning

Provides detailed information about using the Rave Visual
Designer to create reports.

Rave Tutorial and Reference Provides step-by-step instructions on using the Rave Reports
components and includes a reference of classes, components,
and units.

Rave Application Interface
Technology Specification

Explains how to create custom Rave Reports components,
property editors, component editors, project editors, and control
the Rave environment.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-1

C h a p t e r

22
Chapter22Using decision support components

The decision support components help you create cross-tabulated—or, crosstab—
tables and graphs. You can then use these tables and graphs to view and summarize
data from different perspectives. For more information on cross-tabulated data, see
“About crosstabs” on page 22-2.

Overview
The decision support components appear on the Decision Cube page of the
Component palette:

• The decision cube, TDecisionCube, is a multidimensional data store.

• The decision source, TDecisionSource, defines the current pivot state of a decision
grid or a decision graph.

• The decision query, TDecisionQuery, is a specialized form of TQuery used to define
the data in a decision cube.

• The decision pivot, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons.

• The decision grid, TDecisionGrid, displays single- and multidimensional data in
table form.

• The decision graph, TDecisionGraph, displays fields from a decision grid as a
dynamic graph that changes when data dimensions are modified.

22-2 D e v e l o p e r ’ s G u i d e

A b o u t c r o s s t a b s

Figure 22.1 shows all the decision support components placed on a form at design
time.

Figure 22.1 Decision support components at design time

About crosstabs
Cross-tabulations, or crosstabs, are a way of presenting subsets of data so that
relationships and trends are more visible. Table fields become the dimensions of the
crosstab while field values define categories and summaries within a dimension.

You can use the decision support components to set up crosstabs in forms.
TDecisionGrid shows data in a table, while TDecisionGraph charts it graphically.
TDecisionPivot has buttons that make it easier to display and hide dimensions and
move them between columns and rows.

Crosstabs can be one-dimensional or multidimensional.

Decision query
Decision cube

Decision grid

Decision pivot

Decision graph

Decision source

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-3

A b o u t c r o s s t a b s

One-dimensional crosstabs

One-dimensional crosstabs show a summary row (or column) for the categories of a
single dimension. For example, if Payment is the chosen column dimension and
Amount Paid is the summary category, the crosstab in Figure 22.2 shows the amount
paid using each method.

Figure 22.2 One-dimensional crosstab

Multidimensional crosstabs

Multidimensional crosstabs use additional dimensions for the rows and/or columns.
For example, a two-dimensional crosstab could show amounts paid by payment
method for each country.

A three-dimensional crosstab could show amounts paid by payment method and
terms by country, as shown in Figure 22.3.

Figure 22.3 Three-dimensional crosstab

22-4 D e v e l o p e r ’ s G u i d e

G u i d e l i n e s f o r u s i n g d e c i s i o n s u p p o r t c o m p o n e n t s

Guidelines for using decision support components
The decision support components listed on page 22-1 can be used together to present
multidimensional data as tables and graphs. More than one grid or graph can be
attached to each dataset. More than one instance of TDecisionPivot can be used to
display the data from different perspectives at runtime.

To create a form with tables and graphs of multidimensional data, follow these steps:

1 Create a form.

2 Add these components to the form and use the Object Inspector to bind them as
indicated:

• A dataset, usually TDecisionQuery (for details, see “Creating decision datasets
with the Decision Query editor” on page 22-6) or TQuery

• A decision cube, TDecisionCube, bound to the dataset by setting its DataSet
property to the dataset’s name

• A decision source, TDecisionSource, bound to the decision cube by setting its
DecisionCube property to the decision cube’s name

3 Add a decision pivot, TDecisionPivot, and bind it to the decision source with the
Object Inspector by setting its DecisionSource property to the appropriate decision
source name. The decision pivot is optional but useful; it lets the form developer
and end users change the dimensions displayed in decision grids or decision
graphs by pushing buttons.

In its default orientation, horizontal, buttons on the left side of the decision pivot
apply to fields on the left side of the decision grid (rows); buttons on the right side
apply to fields at the top of the decision grid (columns).

You can determine where the decision pivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default). For
more information on decision pivot properties, see “Using decision pivots” on
page 22-10.

4 Add one or more decision grids and graphs, bound to the decision source. For
details, see “Creating and using decision grids” on page 22-11 and “Creating and
using decision graphs” on page 22-13.

5 Use the Decision Query editor or SQL property of TDecisionQuery (or TQuery) to
specify the tables, fields, and summaries to display in the grid or graph. The last
field of the SQL SELECT should be the summary field. The other fields in the
SELECT must be GROUP BY fields. For instructions, see “Creating decision
datasets with the Decision Query editor” on page 22-6.

6 Set the Active property of the decision query (or alternate dataset component) to
True.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-5

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

7 Use the decision grid and graph to show and chart different data dimensions. See
“Using decision grids” on page 22-11 and “Using decision graphs” on page 22-14
for instructions and suggestions.

For an illustration of all decision support components on a form, see Figure 22.1 on
page 22-2.

Using datasets with decision support components
The only decision support component that binds directly to a dataset is the decision
cube, TDecisionCube. TDecisionCube expects to receive data with groups and
summaries defined by an SQL statement of an acceptable format. The GROUP BY
phrase must contain the same non-summarized fields (and in the same order) as the
SELECT phrase, and summary fields must be identified.

The decision query component, TDecisionQuery, is a specialized form of TQuery. You
can use TDecisionQuery to more simply define the setup of dimensions (rows and
columns) and summary values used to supply data to decision cubes
(TDecisionCube). You can also use an ordinary TQuery or other BDE-enabled dataset
as a dataset for TDecisionCube, but the correct setup of the dataset and TDecisionCube
are then the responsibility of the designer.

To work correctly with the decision cube, all projected fields in the dataset must
either be dimensions or summaries. The summaries should be additive values (like
sum or count), and should represent totals for each combination of dimension values.
For maximum ease of setup, sums should be named “Sum...” in the dataset while
counts should be named “Count...”.

The Decision Cube can pivot, subtotal, and drill-in correctly only for summaries
whose cells are additive. (SUM and COUNT are additive, while AVERAGE, MAX,
and MIN are not.) Build pivoting crosstab displays only for grids that contain only
additive aggregators. If you are using non-additive aggregators, use a static decision
grid that does not pivot, drill, or subtotal.

Since averages can be calculated using SUM divided by COUNT, a pivoting average
is added automatically when SUM and COUNT dimensions for a field are included
in the dataset. Use this type of average in preference to an average calculated using
an AVERAGE statement.

Averages can also be calculated using COUNT(*). To use COUNT(*) to calculate
averages, include a "COUNT(*) COUNTALL" selector in the query. If you use
COUNT(*) to calculate averages, the single aggregator can be used for all fields. Use
COUNT(*) only in cases where none of the fields being summarized include blank
values, or where a COUNT aggregator is not available for every field.

22-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

Creating decision datasets with TQuery or TTable

If you use an ordinary TQuery component as a decision dataset, you must manually
set up the SQL statement, taking care to supply a GROUP BY phrase which contains
the same fields (and in the same order) as the SELECT phrase.

The SQL should look similar to this:

SELECT ORDERS."Terms", ORDERS."ShipVIA",
ORDERS."PaymentMethod", SUM(ORDERS."AmountPaid")

FROM "ORDERS.DB" ORDERS
GROUP BY ORDERS."Terms", ORDERS."ShipVIA", ORDERS."PaymentMethod"

The ordering of the SELECT fields should match the ordering of the GROUP BY
fields.

With TTable, you must supply information to the decision cube about which of the
fields in the query are grouping fields, and which are summaries. To do this, Fill in
the Dimension Type for each field in the DimensionMap of the Decision Cube. You
must indicate whether each field is a dimension or a summary, and if a summary,
you must provide the summary type. Since pivoting averages depend on SUM/
COUNT calculations, you must also provide the base field name to allow the decision
cube to match pairs of SUM and COUNT aggregators.

Creating decision datasets with the Decision Query editor

All data used by the decision support components passes through the decision cube,
which accepts a specially formatted dataset most easily produced by an SQL query.
See “Using datasets with decision support components” on page 22-5 for more
information.

While both TTable and TQuery can be used as decision datasets, it is easier to use
TDecisionQuery; the Decision Query editor supplied with it can be used to specify
tables, fields, and summaries to appear in the decision cube and will help you set up
the SELECT and GROUP BY portions of the SQL correctly.

To use the Decision Query editor:

1 Select the decision query component on the form, then right-click and choose
Decision Query editor. The Decision Query editor dialog box appears.

2 Choose the database to use.

3 For single-table queries, click the Select Table button.

For more complex queries involving multi-table joins, click the Query Builder
button to display the SQL Builder or type the SQL statement into the edit box on
the SQL tab page.

4 Return to the Decision Query editor dialog box.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-7

U s i n g d e c i s i o n c u b e s

5 In the Decision Query editor dialog box, select fields in the Available Fields list
box and assign them to be either Dimensions or Summaries by clicking the
appropriate right arrow button. As you add fields to the Summaries list, select
from the menu displayed the type of summary to use: sum, count, or average.

6 By default, all fields and summaries defined in the SQL property of the decision
query appear in the Active Dimensions and Active Summaries list boxes. To
remove a dimension or summary, select it in the list and click the left arrow beside
the list, or double-click the item to remove. To add it back, select it in the Available
Fields list box and click the appropriate right arrow.

Once you define the contents of the decision cube, you can further manipulate
dimension display with its DimensionMap property and the buttons of TDecisionPivot.
For more information, see the next section, “Using decision cubes,” “Using decision
sources” on page 22-9, and “Using decision pivots” on page 22-10.

Note When you use the Decision Query editor, the query is initially handled in ANSI-92
SQL syntax, then translated (if necessary) into the dialect used by the server. The
Decision Query editor reads and displays only ANSI standard SQL. The dialect
translation is automatically assigned to the TDecisionQuery’s SQL property. To
modify a query, edit the ANSI-92 version in the Decision Query rather then the SQL
property.

Using decision cubes
The decision cube component, TDecisionCube, is a multidimensional data store that
fetches its data from a dataset (typically a specially structured SQL statement entered
through TDecisionQuery or TQuery). The data is stored in a form that makes its easy
to pivot (that is, change the way in which the data is organized and summarized)
without needing to run the query a second time.

Decision cube properties and events

The DimensionMap properties of TDecisionCube not only control which dimensions
and summaries appear but also let you set date ranges and specify the maximum
number of dimensions the decision cube may support. You can also indicate whether
or not to display data during design. You can display names, (categories) values,
subtotals, or data. Display of data at design time can be time consuming, depending
on the data source.

When you click the ellipsis next to DimensionMap in the Object Inspector, the
Decision Cube editor dialog box appears. You can use its pages and controls to set
the DimensionMap properties.

The OnRefresh event fires whenever the decision cube cache is rebuilt. Developers can
access the new dimension map and change it at that time to free up memory, change
the maximum summaries or dimensions, and so on. OnRefresh is also useful if users
access the Decision Cube editor; application code can respond to user changes at that
time.

22-8 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n c u b e s

Using the Decision Cube editor

You can use the Decision Cube editor to set the DimensionMap properties of decision
cubes. You can display the Decision Cube editor through the Object Inspector, as
described in the previous section, or by right-clicking a decision cube on a form at
design time and choosing Decision Cube editor.

The Decision Cube Editor dialog box has two tabs:

• Dimension Settings, used to activate or disable available dimensions, rename and
reformat dimensions, put dimensions in a permanently drilled state, and set date
ranges to display.

• Memory Control, used to set the maximum number of dimensions and summaries
that can be active at one time, to display information about memory usage, and to
determine the names and data that appear at design time.

Viewing and changing dimension settings
To view the dimension settings, display the Decision Cube editor and click the
Dimension Settings tab. Then, select a dimension or summary in the Available Fields
list. Its information appears in the boxes on the right side of the editor:

• To change the dimension or summary name that appears in the decision pivot,
decision grid, or decision graph, enter a new name in the Display Name edit box.

• To determine whether the selected field is a dimension or summary, read the text
in the Type edit box. If the dataset is a TTable component, you can use Type to
specify whether the selected field is a dimension or summary.

• To disable or activate the selected dimension or summary, change the setting in
the Active Type drop-down list box: Active, As Needed, or Inactive. Disabling a
dimension or setting it to As Needed saves memory.

• To change the format of that dimension or summary, enter a format string in the
Format edit box.

• To display that dimension or summary by Year, Quarter, or Month, change the
setting in the Binning drop-down list box. Note that you can choose Set in the
Binning list box to put the selected dimension or summary in a permanently
“drilled down” state. This can be useful for saving memory when a dimension has
many values. For more information, see “Decision support components and
memory control” on page 22-20.

• To determine the starting value for ranges, or the drill-down value for a “Set”
dimension, first choose the appropriate Grouping value in the Grouping drop-
down, and then enter the starting range value or permanent drill-down value in
the Initial Value drop-down list.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-9

U s i n g d e c i s i o n s o u r c e s

Setting the maximum available dimensions and summaries
To determine the maximum number of dimensions and summaries available for
decision pivots, decision grids, and decision graphs bound to the selected decision
cube, display the Decision Cube editor and click the Memory Control tab. Use the
edit controls to adjust the current settings, if necessary. These settings help to control
the amount of memory required by the decision cube. For more information, see
“Decision support components and memory control” on page 22-20.

Viewing and changing design options
To determine how much information appears at design time, display the Decision
Cube editor and click the Memory Control tab. Then, check the setting that indicates
which names and data to display. Display of data or field names at design time can
cause performance delays in some cases because of the time needed to fetch the data.

Using decision sources
The decision source component, TDecisionSource, defines the current pivot state of
decision grids or decision graphs. Any two objects which use the same decision
source also share pivot states.

Properties and events

The following are some special properties and events that control the appearance and
behavior of decision sources:

• The ControlType property of TDecisionSource indicates whether the decision pivot
buttons should act like check boxes (multiple selections) or radio buttons
(mutually exclusive selections).

• The SparseCols and SparseRows properties of TDecisionSource indicate whether to
display columns or rows with no values; if True, sparse columns or rows are
displayed.

• TDecisionSource has the following events:

• OnLayoutChange occurs when the user performs pivots or drill-downs that
reorganize the data.

• OnNewDimensions occurs when the data is completely altered, such as when the
summary or dimension fields are altered.

• OnSummaryChange occurs when the current summary is changed.

• OnStateChange occurs when the Decision Cube activates or deactivates.

22-10 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n p i v o t s

• OnBeforePivot occurs when changes are committed but not yet reflected in the
user interface. Developers have an opportunity to make changes, for example,
in capacity or pivot state, before application users see the result of their
previous action.

• OnAfterPivot fires after a change in pivot state. Developers can capture
information at that time.

Using decision pivots
The decision pivot component, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons. When a row or column is opened by
pressing a TDecisionPivot button, the corresponding dimension appears on the
TDecisionGrid or TDecisionGraph component. When a dimension is closed, its detailed
data doesn’t appear; it collapses into the totals of other dimensions. A dimension
may also be in a “drilled” state, where only the summaries for a particular value of
the dimension field appear.

You can also use the decision pivot to reorganize dimensions displayed in the
decision grid and decision graph. Just drag a button to the row or column area or
reorder buttons within the same area.

For illustrations of decision pivots at design time, see Figures 22.1, 22.2, and 22.3.

Decision pivot properties

The following are some special properties that control the appearance and behavior
of decision pivots:

• The first properties listed for TDecisionPivot define its overall behavior and
appearance. You might want to set ButtonAutoSize to False for TDecisionPivot to
keep buttons from expanding and contracting as you adjust the size of the
component.

• The Groups property of TDecisionPivot defines which dimension buttons appear.
You can display the row, column, and summary selection button groups in any
combination. Note that if you want more flexibility over the placement of these
groups, you can place one TDecisionPivot on your form which contains only rows
in one location, and a second which contains only columns in another location.

• Typically, TDecisionPivot is added above TDecisionGrid. In its default orientation,
horizontal, buttons on the left side of TDecisionPivot apply to fields on the left side
of TDecisionGrid (rows); buttons on the right side apply to fields at the top of
TDecisionGrid (columns).

• You can determine where TDecisionPivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default, described
in the previous paragraph).

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-11

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

Creating and using decision grids
Decision grid components, TDecisionGrid, present cross-tabulated data in table form.
These tables are also called crosstabs, described on page 22-2. Figure 22.1 on
page 22-2 shows a decision grid on a form at design time.

Creating decision grids

To create a form with one or more tables of cross-tabulated data,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 22-4.

2 Add one or more decision grid components (TDecisionGrid) and bind them to the
decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

For a description of what appears in the decision grid and how to use it, see “Using
decision grids” on page 22-11.

To add a graph to the form, follow the instructions in “Creating decision graphs” on
page 22-13.

Using decision grids

The decision grid component, TDecisionGrid, displays data from decision cubes
(TDecisionCube) bound to decision sources (TDecisionSource).

By default, the grid appears with dimension fields at its left side and/or top,
depending on the grouping instructions defined in the dataset. Categories, one for
each data value, appear under each field. You can

• Open and close dimensions
• Reorganize, or pivot, rows and columns
• Drill down for detail
• Limit dimension selection to a single dimension for each axis

For more information about special properties and events of the decision grid, see
“Decision grid properties” on page 22-12.

Opening and closing decision grid fields
If a plus sign (+) appears in a dimension or summary field, one or more fields to its
right are closed (hidden). You can open additional fields and categories by clicking
the sign. A minus sign (–) indicates a fully opened (expanded) field. When you click
the sign, the field closes. This outlining feature can be disabled; see “Decision grid
properties” on page 22-12 for details.

22-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

Reorganizing rows and columns in decision grids
You can drag row and column headings to new locations within the same axis or to
the other axis. In this way, you can reorganize the grid and see the data from new
perspectives as the data groupings change. This pivoting feature can be disabled; see
“Decision grid properties” on page 22-12 for details.

If you included a decision pivot, you can push and drag its buttons to reorganize the
display. See “Using decision pivots” on page 22-10 for instructions.

Drilling down for detail in decision grids
You can drill down to see more detail in a dimension.

For example, if you right-click a category label (row heading) for a dimension with
others collapsed beneath it, you can choose to drill down and only see data for that
category. When a dimension is drilled, you do not see the category labels for that
dimension displayed on the grid, since only the records for a single category value
are being displayed. If you have a decision pivot on the form, it displays category
values and lets you change to other values if you want.

To drill down into a dimension,

• Right-click a category label and choose Drill In To This Value, or
• Right-click a pivot button and choose Drilled In.

To make the complete dimension active again,

• Right-click the corresponding pivot button, or right-click the decision grid in the
upper-left corner and select the dimension.

Limiting dimension selection in decision grids
You can change the ControlType property of the decision source to determine whether
more than one dimension can be selected for each axis of the grid. For more
information, see “Using decision sources” on page 22-9.

Decision grid properties

The decision grid component, TDecisionGrid, displays data from the TDecisionCube
component bound to TDecisionSource. By default, data appears in a grid with
category fields on the left side and top of the grid.

The following are some special properties that control the appearance and behavior
of decision grids:

• TDecisionGrid has unique properties for each dimension. To set these, choose
Dimensions in the Object Inspector, then select a dimension. Its properties then
appear in the Object Inspector: Alignment defines the alignment of category labels
for that dimension, Caption can be used to override the default dimension name,
Color defines the color of category labels, FieldName displays the name of the active
dimension, Format can hold any standard format for that data type, and Subtotals

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-13

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

indicates whether to display subtotals for that dimension. With summary fields,
these same properties are used to changed the appearance of the data that appears
in the summary area of the grid. When you’re through setting dimension
properties, either click a component in the form or choose a component in the
drop-down list box at the top of the Object Inspector.

• The Options property of TDecisionGrid lets you control display of grid lines
(cgGridLines = True), enabling of outline features (collapse and expansion of
dimensions with + and - indicators; cgOutliner = True), and enabling of drag-and-
drop pivoting (cgPivotable = True).

• The OnDecisionDrawCell event of TDecisionGrid gives you a chance to change the
appearance of each cell as it is drawn. The event passes the String, Font, and Color
of the current cell as reference parameters. You are free to alter those parameters to
achieve effects such as special colors for negative values. In addition to the
DrawState which is passed by TCustomGrid, the event passes TDecisionDrawState,
which can be used to determine what type of cell is being drawn. Further
information about the cell can be fetched using the Cells, CellValueArray, or
CellDrawState functions.

• The OnDecisionExamineCell event of TDecisionGrid lets you hook the right-click-on-
event to data cells, and is intended to allow a program to display information
(such as detail records) about that particular data cell. When the user right-clicks a
data cell, the event is supplied with all the information which is was used to
compose the data value, including the currently active summary value and a
ValueArray of all the dimension values which were used to create the summary
value.

Creating and using decision graphs
Decision graph components, TDecisionGraph, present cross-tabulated data in graphic
form. Each decision graph shows the value of a single summary, such as Sum, Count,
or Avg, charted for one or more dimensions. For more information on crosstabs, see
page 22-3. For illustrations of decision graphs at design time, see Figure 22.1 on
page 22-2 and Figure 22.4 on page 22-15.

Creating decision graphs

To create a form with one or more decision graphs,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 22-4.

2 Add one or more decision graph components (TDecisionGraph) and bind them to
the decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

22-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

4 Finally, right-click the graph and choose Edit Chart to modify the appearance of
the graph series. You can set template properties for each graph dimension, then
set individual series properties to override these defaults. For details, see
“Customizing decision graphs” on page 22-16.

For a description of what appears in the decision graph and how to use it, see the
next section, “Using decision graphs.”

To add a decision grid—or crosstab table—to the form, follow the instructions in
“Creating and using decision grids” on page 22-11.

Using decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot).

Graphed data comes from a specially formatted dataset such as TDecisionQuery. For
an overview of how the decision support components handle and arrange this data,
see page 22-1.

By default, the first row dimension appears as the x-axis and the first column
dimension appears as the y-axis.

You can use decision graphs instead of or in addition to decision grids, which present
cross-tabulated data in tabular form. Decision grids and decision graphs that are
bound to the same decision source present the same data dimensions. To show
different summary data for the same dimensions, you can bind more than one
decision graph to the same decision source. To show different dimensions, bind
decision graphs to different decision sources.

For example, in Figure 22.4 the first decision pivot and graph are bound to the first
decision source and the second decision pivot and graph are bound to the second. So,
each graph can show different dimensions.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-15

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Figure 22.4 Decision graphs bound to different decision sources

For more information about what appears in a decision graph, see the next section,
“The decision graph display.”

To create a decision graph, see the previous section, “Creating decision graphs.”

For a discussion of decision graph properties and how to change the appearance and
behavior of decision graphs, see “Customizing decision graphs” on page 22-16.

The decision graph display

By default, the decision graph plots summary values for categories in the first active
row field (along the y-axis) against values in the first active column field (along the x-
axis). Each graphed category appears as a separate series.

If only one dimension is selected—for example, by clicking only one TDecisionPivot
button—only one series is graphed.

If you used a decision pivot, you can push its buttons to determine which decision
cube fields (dimensions) are graphed. To exchange graph axes, drag the decision
pivot dimension buttons from one side of the separator space to the other. If you
have a one-dimensional graph with all buttons on one side of the separator space,
you can use the Row or Column icon as a drop target for adding buttons to the other
side of the separator and making the graph multidimensional.

22-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

If you only want one column and one row to be active at a time, you can set the
ControlType property for TDecisionSource to xtRadio. Then, there can be only one
active field at a time for each decision cube axis, and the decision pivot’s
functionality will correspond to the graph’s behavior. xtRadioEx works the same as
xtRadio, but does not allow the state where all row or all columns dimensions are
closed.

When you have both a decision grid and graph connected to the same
TDecisionSource, you’ll probably want to set ControlType back to xtCheck to
correspond to the more flexible behavior of TDecisionGrid.

Customizing decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot). You can change the type, colors, marker types for line graphs, and
many other properties of decision graphs.

To customize a graph,

1 Right-click it and choose Edit Chart. The Chart Editing dialog box appears.

2 Use the Chart page of the Chart Editing dialog box to view a list of visible series,
select the series definition to use when two or more are available for the same
series, change graph types for a template or series, and set overall graph
properties.

The Series list on the Chart page shows all decision cube dimensions (preceded by
Template:) and currently visible categories. Each category, or series, is a separate
object. You can:

• Add or delete series derived from existing decision-graph series. Derived series
can provide annotations for existing series or represent values calculated from
other series.

• Change the default graph type, and change the title of templates and series.

For a description of the other Chart page tabs, search for the following topic in
online Help: “Chart page (Chart Editing dialog box).”

3 Use the Series page to establish dimension templates, then customize properties
for each individual graph series.

By default, all series are graphed as bar graphs and up to 16 default colors are
assigned. You can edit the template type and properties to create a new default.
Then, as you pivot the decision source to different states, the template is used to
dynamically create the series for each new state. For template details, see “Setting
decision graph template defaults” on page 22-17.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-17

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

To customize individual series, follow the instructions in “Customizing decision
graph series” on page 22-18.

For a description of each Series page tab, search for the following topic in online
Help: “Series page (Chart Editing dialog box).”

Setting decision graph template defaults
Decision graphs display the values from two dimensions of the decision cube: one
dimension is displayed as an axis of the graph, and the other is used to create a set of
series. The template for that dimension provides default properties for those series
(such as whether the series are bar, line, area, and so on). As users pivot from one
state to another, any required series for the dimension are created using the series
type and other defaults specified in the template.

A separate template is provided for cases where users pivot to a state where only one
dimension is active. A one-dimensional state is often represented with a pie chart, so
a separate template is provided for this case.

You can

• Change the default graph type.
• Change other graph template properties.
• View and set overall graph properties.

Changing the default decision graph type
To change the default graph type,

1 Select a template in the Series list on the Chart page of the Chart Editing dialog
box.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

Changing other decision graph template properties
To change color or other properties of a template,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a template in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

Viewing overall decision graph properties
To view and set decision graph properties other than type and series,

1 Select the Chart page at the top of the Chart Editing dialog box.

2 Choose the appropriate property tab and select settings.

22-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Customizing decision graph series
The templates supply many defaults for each decision cube dimension, such as graph
type and how series are displayed. Other defaults, such as series color, are defined by
TDecisionGraph. If you want you can override the defaults for each series.

The templates are intended for use when you want the program to create the series
for categories as they are needed, and discard them when they are no longer needed.
If you want, you can set up custom series for specific category values. To do this,
pivot the graph so its current display has a series for the category you want to
customize. When the series is displayed on the graph, you can use the Chart editor to

• Change the graph type.
• Change other series properties.
• Save specific graph series that you have customized.

To define series templates and set overall graph defaults, see “Setting decision graph
template defaults” on page 22-17.

Changing the series graph type
By default, each series has the same graph type, defined by the template for its
dimension. To change all series to the same graph type, you can change the template
type. See “Changing the default decision graph type” on page 22-17 for instructions.

To change the graph type for a single series,

1 Select a series in the Series list on the Chart page of the Chart editor.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

4 Check the Save Series check box.

Changing other decision graph series properties
To change color or other properties of a decision graph series,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a series in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

4 Check the Save Series check box.

Saving decision graph series settings
By default, only settings for templates are saved at design time. Changes made to
specific series are only saved if the Save box is checked for that series in the Chart
Editing dialog box.

Saving series can be memory intensive, so if you don’t need to save them you can
uncheck the Save box.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-19

D e c i s i o n s u p p o r t c o m p o n e n t s a t r u n t i m e

Decision support components at runtime
At runtime, users can perform many operations by left-clicking, right-clicking, and
dragging visible decision support components. These operations, discussed earlier in
this chapter, are summarized below.

Decision pivots at runtime

Users can:

• Left-click the summary button at the left end of the decision pivot to display a list
of available summaries. They can use this list to change the summary data
displayed in decision grids and decision graphs.

• Right-click a dimension button and choose to:

• Move it from the row area to the column area or the reverse.
• Drill In to display detail data.

• Left-click a dimension button following the Drill In command and choose:

• Open Dimension to move back to the top level of that dimension.

• All Values to toggle between displaying just summaries and summaries plus all
other values in decision grids.

• From a list of available categories for that dimension, a category to drill into for
detail values.

• Left-click a dimension button to open or close that dimension.

• Drag and drop dimension buttons from the row area to the column area and the
reverse; they can drop them next to existing buttons in that area or onto the row or
column icon.

Decision grids at runtime

Users can:

• Right-click within the decision grid and choose to:

• Toggle subtotals on and off for individual data groups, for all values of a
dimension, or for the whole grid.

• Display the Decision Cube editor, described on page 22-8.

• Toggle dimensions and summaries open and closed.

• Click + and – within the row and column headings to open and close dimensions.

• Drag and drop dimensions from rows to columns and the reverse.

22-20 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

Decision graphs at runtime

Users can drag from side to side or up and down in the graph grid area to scroll
through off-screen categories and values.

Decision support components and memory control
When a dimension or summary is loaded into the decision cube, it takes up memory.
Adding a new summary increases memory consumption linearly: that is, a decision
cube with two summaries uses twice as much memory as the same cube with only
one summary, a decision cube with three summaries uses three times as much
memory as the same cube with one summary, and so on. Memory consumption for
dimensions increases more quickly. Adding a dimension with 10 values increases
memory consumption by a factor of 10. Adding a dimension with 100 values
increases memory consumption 100 times. Thus adding dimensions to a decision
cube can have a dramatic effect on memory use, and can quickly lead to performance
problems. This effect is especially pronounced when adding dimensions that have
many values.

The decision support components have a number of settings to help you control how
and when memory is used. For more information on the properties and techniques
mentioned here, look up TDecisionCube in the online Help.

Setting maximum dimensions, summaries, and cells

The decision cube’s MaxDimensions and MaxSummaries properties can be used with
the CubeDim.ActiveFlag property to control how many dimensions and summaries
can be loaded at a time. You can set the maximum values on the Cube Capacity page
of the Decision Cube editor to place some overall control on how many dimensions
or summaries can be brought into memory at the same time.

Limiting the number of dimensions or summaries provides a rough limit on the
amount of memory used by the decision cube. However, it does not distinguish
between dimensions with many values and those with only a few. For greater control
of the absolute memory demands of the decision cube, you can also limit the number
of cells in the cube. Set the maximum number of cells on the Cube Capacity page of
the Decision Cube editor.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 22-21

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

Setting dimension state

The ActiveFlag property controls which dimensions get loaded. You can set this
property on the Dimension Settings tab of the Decision Cube editor using the
Activity Type control. When this control is set to Active, the dimension is loaded
unconditionally, and will always take up space. Note that the number of dimensions
in this state must always be less than MaxDimensions, and the number of summaries
set to Active must be less than MaxSummaries. You should set a dimension or
summary to Active only when it is critical that it be available at all times. An Active
setting decreases the ability of the cube to manage the available memory.

When ActiveFlag is set to AsNeeded, a dimension or summary is loaded only if it can
be loaded without exceeding the MaxDimensions, MaxSummaries, or MaxCells limit.
The decision cube will swap dimensions and summaries that are marked AsNeeded in
and out of memory to keep within the limits imposed by MaxCells, MaxDimensions,
and MaxSummaries. Thus, a dimension or summary may not be loaded in memory if
it is not currently being used. Setting dimensions that are not used frequently to
AsNeeded results in better loading and pivoting performance, although there will be a
time delay to access dimensions which are not currently loaded.

Using paged dimensions

When Binning is set to Set on the Dimension Settings tab of the Decision cube editor
and Start Value is not NULL, the dimension is said to be “paged,” or “permanently
drilled down.” You can access data for just a single value of that dimension at a time,
although you can programmatically access a series of values sequentially. Such a
dimension may not be pivoted or opened.

It is extremely memory intensive to include dimensional data for dimensions that
have very large numbers of values. By making such dimensions paged, you can
display summary information for one value at a time. Information is usually easier to
read when displayed this way, and memory consumption is much easier to manage.

22-22 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o d a t a b a s e s 23-1

C h a p t e r

23
Chapter23Connecting to databases

Most dataset components can connect directly to a database server. Once connected,
the dataset communicates with the server automatically. When you open the dataset,
it populates itself with data from the server, and when you post records, they are sent
back the server and applied. A single connection component can be shared by
multiple datasets, or each dataset can use its own connection.

Each type of dataset connects to the database server using its own type of connection
component, which is designed to work with a single data access mechanism. The
following table lists these data access mechanisms and the associated connection
components:

Note For a discussion of some pros and cons of each of these mechanisms, see “Using
databases” on page 19-1.

The connection component provides all the information necessary to establish a
database connection. This information is different for each type of connection
component:

• For information about describing a BDE-based connection, see “Identifying the
database” on page 26-14.

• For information about describing an ADO-based connection, see “Connecting to a
data store using TADOConnection” on page 27-3.

Table 23.1 Database connection components

Data access mechanism Connection component

Borland Database Engine (BDE) TDatabase

ActiveX Data Objects (ADO) TADOConnection

dbExpress TSQLConnection

InterBase Express TIBDatabase

23-2 D e v e l o p e r ’ s G u i d e

U s i n g i m p l i c i t c o n n e c t i o n s

• For information about describing a dbExpress connection, see “Setting up
TSQLConnection” on page 28-3.

• For information about describing an InterBase Express connection, see the online
help for TIBDatabase.

Although each type of dataset uses a different connection component, they are all
descendants of TCustomConnection. They all perform many of the same tasks and
surface many of the same properties, methods, and events. This chapter discusses
many of these common tasks.

Using implicit connections
No matter what data access mechanism you are using, you can always create the
connection component explicitly and use it to manage the connection to and
communication with a database server. For BDE-enabled and ADO-based datasets,
you also have the option of describing the database connection through properties of
the dataset and letting the dataset generate an implicit connection. For BDE-enabled
datasets, you specify an implicit connection using the DatabaseName property. For
ADO-based datasets, you use the ConnectionString property.

When using an implicit connection, you do not need to explicitly create a connection
component. This can simplify your application development, and the default
connection you specify can cover a wide variety of situations. For complex, mission-
critical client/server applications with many users and different requirements for
database connections, however, you should create your own connection components
to tune each database connection to your application’s needs. Explicit connection
components give you greater control. For example, you need to access the connection
component to perform the following tasks:

• Customize database server login support. (Implicit connections display a default
login dialog to prompt the user for a user name and password.)

• Control transactions and specify transaction isolation levels.

• Execute SQL commands on the server without using a dataset.

• Perform actions on all open datasets that are connected to the same database.

In addition, if you have multiple datasets that all use the same server, it can be easier
to use an connection component, so that you only have to specify the server to use in
one place. That way, if you later change the server, you do not need to update several
dataset components: only the connection component.

C o n n e c t i n g t o d a t a b a s e s 23-3

C o n t r o l l i n g c o n n e c t i o n s

Controlling connections
Before you can establish a connection to a database server, your application must
provide certain key pieces of information that describe the desired server. Each type
of connection component surfaces a different set of properties to let you identify the
server. In general, however, they all provide a way for you to name the server you
want and supply a set of connection parameters that control how the connection is
formed. Connection parameters vary from server to server. They can include
information such as user name and password, the maximum size of BLOB fields,
SQL roles, and so on.

Once you have identified the desired server and any connection parameters, you can
use the connection component to explicitly open or close a connection. The
connection component generates events when it opens or closes a connection that
you can use to customize the response of your application to changes in the database
connection.

Connecting to a database server

There are two ways to connect to a database server using a connection component:

• Call the Open method.
• Set the Connected property to True.

Calling the Open method sets Connected to True.

Note When a connection component is not connected to a server and an application
attempts to open one of its associated datasets, the dataset automatically calls the
connection component’s Open method.

When you set Connected to True, the connection component first generates a
BeforeConnect event, where you can perform any initialization. For example, you can
use this event to alter connection parameters.

After the BeforeConnect event, the connection component may display a default login
dialog, depending on how you choose to control server login. It then passes the user
name and password to the driver, opening a connection.

Once the connection is open, the connection component generates an AfterConnect
event, where you can perform any tasks that require an open connection.

Note Some connection components generate additional events as well when establishing a
connection.

23-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g s e r v e r l o g i n

Once a connection is established, it is maintained as long as there is at least one active
dataset using it. When there are no more active datasets, the connection component
drops the connection. Some connection components surface a KeepConnection
property that allows the connection to remain open even if all the datasets that use it
are closed. If KeepConnection is True, the connection is maintained. For connections to
remote database servers, or for applications that frequently open and close datasets,
setting KeepConnection to True reduces network traffic and speeds up the application.
If KeepConnection is False, the connection is dropped when there are no active datasets
using the database. If a dataset that uses the database is later opened, the connection
must be reestablished and initialized.

Disconnecting from a database server

There are two ways to disconnect a server using a connection component:

• Set the Connected property to False.
• Call the Close method.

Calling Close sets Connected to False.

When Connected is set to False, the connection component generates a BeforeDisconnect
event, where you can perform any cleanup before the connection closes. For example,
you can use this event to cache information about all open datasets before they are
closed.

After the BeforeConnect event, the connection component closes all open datasets and
disconnects from the server.

Finally, the connection component generates an AfterDisconnect event, where you can
respond to the change in connection status, such as enabling a Connect button in
your user interface.

Note Calling Close or setting Connected to False disconnects from a database server even if
the connection component has a KeepConnection property that is True.

Controlling server login
Most remote database servers include security features to prohibit unauthorized
access. Usually, the server requires a user name and password login before
permitting database access.

At design time, if a server requires a login, a standard login dialog box prompts for a
user name and password when you first attempt to connect to the database.

At runtime, there are three ways you can handle a server’s request for a login:

• Let the default login dialog and processes handle the login. This is the default
approach. Set the LoginPrompt property of the connection component to True (the
default) and add DBLogDlg to the uses clause of the unit that declares the
connection component. Your application displays the standard login dialog box
when the server requests a user name and password.

C o n n e c t i n g t o d a t a b a s e s 23-5

C o n t r o l l i n g s e r v e r l o g i n

• Supply the login information before the login attempt. Each type of connection
component uses a different mechanism for specifying the user name and
password:

• For BDE, dbExpress, and InterBase express datasets, the user name and
password connection parameters can be accessed through the Params property.
(For BDE datasets, the parameter values can also be associated with a BDE alias,
while for dbExpress datasets, they can also be associated with a connection
name).

• For ADO datasets, the user name and password can be included in the
ConnectionString property (or provided as parameters to the Open method).

If you specify the user name and password before the server requests them, be
sure to set the LoginPrompt to False, so that the default login dialog does not
appear. For example, the following code sets the user name and password on a
SQL connection component in the BeforeConnect event handler, decrypting an
encrypted password that is associated with the current connection name:

procedure TForm1.SQLConnectionBeforeConnect(Sender: TObject);
begin

with Sender as TSQLConnection do
begin

if LoginPrompt = False then
begin

Params.Values['User_Name'] := 'SYSDBA';
Params.Values['Password'] := Decrypt(Params.Values['Password']);

end;
end;

end;

Note that setting the user name and password at design-time or using hard-coded
strings in code causes the values to be embedded in the application’s executable
file. This still leaves them easy to find, compromising server security.

• Provide your own custom handling for the login event. The connection
component generates an event when it needs the user name and password.

• For TDatabase, TSQLConnection, and TIBDatabase, this is an OnLogin event. The
event handler has two parameters, the connection component, and a local copy
of the user name and password parameters in a string list. (TSQLConnection
includes the database parameter as well). You must set the LoginPrompt
property to True for this event to occur. Having a LoginPrompt value of False and
assigning a handler for the OnLogin event creates a situation where it is
impossible to log in to the database because the default dialog does not appear
and the OnLogin event handler never executes.

• For TADOConnection, the event is an OnWillConnect event. The event handler
has five parameters, the connection component and four parameters that return
values to influence the connection (including two for user name and password).
This event always occurs, regardless of the value of LoginPrompt.

23-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

Write an event handler for the event in which you set the login parameters. Here is
an example where the values for the USER NAME and PASSWORD parameters
are provided from a global variable (UserName) and a method that returns a
password given a user name (PasswordSearch)

procedure TForm1.Database1Login(Database: TDatabase; LoginParams: TStrings);
begin

LoginParams.Values['USER NAME'] := UserName;
LoginParams.Values['PASSWORD'] := PasswordSearch(UserName);

end;

As with the other methods of providing login parameters, when writing an
OnLogin or OnWillConnect event handler, avoid hard coding the password in your
application code. It should appear only as an encrypted value, an entry in a secure
database your application uses to look up the value, or be dynamically obtained
from the user.

Managing transactions
A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If one of the
actions in the group fails, then all actions are rolled back (undone). By using
transactions, you ensure that the database is not left in an inconsistent state when a
problem occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to
another is an operation you would want to protect with a transaction. If, after
decrementing the balance in one account, an error occurred incrementing the balance
in the other, you want to roll back the transaction so that the database still reflects the
correct total balance.

It is always possible to manage transactions by sending SQL commands directly to
the database. Most databases provide their own transaction management model,
although some have no transaction support at all. For servers that support it, you
may want to code your own transaction management directly, taking advantage of
advanced transaction management capabilities on a particular database server, such
as schema caching.

If you do not need to use any advanced transaction management capabilities,
connection components provide a set of methods and properties you can use to
manage transactions without explicitly sending any SQL commands. Using these
properties and methods has the advantage that you do not need to customize your
application for each type of database server you use, as long as the server supports
transactions. (The BDE also provides limited transaction support for local tables with
no server transaction support. When not using the BDE, trying to start transactions
on a database that does not support them causes connection components to raise an
exception.)

Warning When a dataset provider component applies updates, it implicitly generates
transactions for any updates. Be careful that any transactions you explicitly start do
not conflict with those generated by the provider.

C o n n e c t i n g t o d a t a b a s e s 23-7

M a n a g i n g t r a n s a c t i o n s

Starting a transaction

When you start a transaction, all subsequent statements that read from or write to the
database occur in the context of that transaction, until the transaction is explicitly
terminated or (in the case of overlapping transactions) until another transaction is
started. Each statement is considered part of a group. Changes must be successfully
committed to the database, or every change made in the group must be undone.

While the transaction is in process, your view of the data in database tables is
determined by your transaction isolation level. For information about transaction
isolation levels, see “Specifying the transaction isolation level” on page 23-9.

For TADOConnection, start a transaction by calling the BeginTrans method:

Level := ADOConnection1.BeginTrans;

BeginTrans returns the level of nesting for the transaction that started. A nested
transaction is one that is nested within another, parent, transaction. After the server
starts the transaction, the ADO connection receives an OnBeginTransComplete event.

For TDatabase, use the StartTransactionmethod instead. TDataBase does not support
nested or overlapped transactions: If you call a TDatabase component’s
StartTransaction method while another transaction is underway, it raises an
exception. To avoid calling StartTransaction, you can check the InTransaction
property:

if not Database1.InTransaction then
Database1.StartTransaction;

TSQLConnection also uses the StartTransactionmethod, but it uses a version that gives
you a lot more control. Specifically, StartTransaction takes a transaction descriptor,
which lets you manage multiple simultaneous transactions and specify the
transaction isolation level on a per-transaction basis. (For more information on
transaction levels, see “Specifying the transaction isolation level” on page 23-9.) In
order to manage multiple simultaneous transactions, set the TransactionID field of the
transaction descriptor to a unique value. TransactionID can be any value you choose,
as long as it is unique (does not conflict with any other transaction currently
underway). Depending on the server, transactions started by TSQLConnection can be
nested (as they can be when using ADO) or they can be overlapped.

var
TD: TTransactionDesc;

begin
TD.TransactionID := 1;
TD.IsolationLevel := xilREADCOMMITTED;
SQLConnection1.StartTransaction(TD);

By default, with overlapped transactions, the first transaction becomes inactive when
the second transaction starts, although you can postpone committing or rolling back
the first transaction until later. If you are using TSQLConnection with an InterBase
database, you can identify each dataset in your application with a particular active
transaction, by setting its TransactionLevel property. That is, after starting a second
transaction, you can continue to work with both transactions simultaneously, simply
by associating a dataset with the transaction you want.

23-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

Note Unlike TADOConnection, TSQLConnection and TDatabase do not receive any events
when the transactions starts.

InterBase express offers you even more control than TSQLConnection by using a
separate transaction component rather than starting transactions using the
connection component. You can, however, use TIBDatabase to start a default
transaction:

if not IBDatabase1.DefaultTransaction.InTransaction then
IBDatabase1.DefaultTransaction.StartTransaction;

You can have overlapped transactions by using two separate transaction
components. Each transaction component has a set of parameters that let you
configure the transaction. These let you specify the transaction isolation level, as well
as other properties of the transaction.

Ending a transaction

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more
concurrent, simultaneous transactions that start and end during the lifetime of your
transaction, the greater the likelihood that your transaction will conflict with another
when you attempt to commit any changes.

Ending a successful transaction
When the actions that make up the transaction have all succeeded, you can make the
database changes permanent by committing the transaction. For TDatabase, you
commit a transaction using the Commit method:

MyOracleConnection.Commit;

For TSQLConnection, you also use the Commit method, but you must specify which
transaction you are committing by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection.Commit(TD);

For TIBDatabase, you commit a transaction object using its Commit method:

IBDatabase1.DefaultTransaction.Commit;

For TADOConnection, you commit a transaction using the CommitTrans method:

ADOConnection1.CommitTrans;

Note It is possible for a nested transaction to be committed, only to have the changes rolled
back later if the parent transaction is rolled back.

After the transaction is successfully committed, an ADO connection component
receives an OnCommitTransComplete event. Other connection components do not
receive any similar events.

C o n n e c t i n g t o d a t a b a s e s 23-9

M a n a g i n g t r a n s a c t i o n s

A call to commit the current transaction is usually attempted in a try...except
statement. That way, if the transaction cannot commit successfully, you can use the
except block to handle the error and retry the operation or to roll back the
transaction.

Ending an unsuccessful transaction
If an error occurs when making the changes that are part of the transaction or when
trying to commit the transaction, you will want to discard all changes that make up
the transaction. Discarding these changes is called rolling back the transaction.

For TDatabase, you roll back a transaction by calling the Rollback method:

MyOracleConnection.Rollback;

For TSQLConnection, you also use the Rollback method, but you must specify which
transaction you are rolling back by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection.Rollback(TD);

For TIBDatabase, you roll back a transaction object by calling its Rollback method:

IBDatabase1.DefaultTransaction.Rollback;

For TADOConnection, you roll back a transaction by calling the RollbackTrans method:

ADOConnection1.RollbackTrans;

After the transaction is successfully rolled back, an ADO connection component
receives an OnRollbackTransComplete event. Other connection components do not
receive any similar events.

A call to roll back the current transaction usually occurs in

• Exception handling code when you can’t recover from a database error.
• Button or menu event code, such as when a user clicks a Cancel button.

Specifying the transaction isolation level

Transaction isolation level determines how a transaction interacts with other
simultaneous transactions when they work with the same tables. In particular, it
affects how much a transaction “sees” of other transactions’ changes to a table.

Each server type supports a different set of possible transaction isolation levels.
There are three possible transaction isolation levels:

• DirtyRead: When the isolation level is DirtyRead, your transaction sees all changes
made by other transactions, even if they have not been committed. Uncommitted
changes are not permanent, and might be rolled back at any time. This value
provides the least isolation, and is not available for many database servers (such as
Oracle, Sybase, MS-SQL, and InterBase).

23-10 D e v e l o p e r ’ s G u i d e

S e n d i n g c o m m a n d s t o t h e s e r v e r

• ReadCommitted: When the isolation level is ReadCommitted, only committed
changes made by other transactions are visible. Although this setting protects
your transaction from seeing uncommitted changes that may be rolled back, you
may still receive an inconsistent view of the database state if another transaction is
committed while you are in the process of reading. This level is available for all
transactions except local transactions managed by the BDE.

• RepeatableRead: When the isolation level is RepeatableRead, your transaction is
guaranteed to see a consistent state of the database data. Your transaction sees a
single snapshot of the data. It cannot see any subsequent changes to data by other
simultaneous transactions, even if they are committed. This isolation level
guarantees that once your transaction reads a record, its view of that record will
not change. At this level your transaction is most isolated from changes made by
other transactions. This level is not available on some servers, such as Sybase and
MS-SQL and is unavailable on local transactions managed by the BDE.

In addition, TSQLConnection lets you specify database-specific custom isolation
levels. Custom isolation levels are defined by the dbExpress driver. See your driver
documentation for details.

Note For a detailed description of how each isolation level is implemented, see your server
documentation.

TDatabase and TADOConnection let you specify the transaction isolation level by
setting the TransIsolation property. When you set TransIsolation to a value that is not
supported by the database server, you get the next highest level of isolation (if
available). If there is no higher level available, the connection component raises an
exception when you try to start a transaction.

When using TSQLConnection, transaction isolation level is controlled by the
IsolationLevel field of the transaction descriptor.

When using InterBase express, transaction isolation level is controlled by a
transaction parameter.

Sending commands to the server
All database connection components except TIBDatabase let you execute SQL
statements on the associated server by calling the Execute method. Although Execute
can return a cursor when the statement is a SELECT statement, this use is not
recommended. The preferred method for executing statements that return data is to
use a dataset.

The Execute method is very convenient for executing simple SQL statements that do
not return any records. Such statements include Data Definition Language (DDL)
statements, which operate on or create a database’s metadata, such as CREATE
INDEX, ALTER TABLE, and DROP DOMAIN. Some Data Manipulation Language
(DML) SQL statements also do not return a result set. The DML statements that
perform an action on data but do not return a result set are: INSERT, DELETE, and
UPDATE.

C o n n e c t i n g t o d a t a b a s e s 23-11

S e n d i n g c o m m a n d s t o t h e s e r v e r

The syntax for the Execute method varies with the connection type:

• For TDatabase, Execute takes four parameters: a string that specifies a single SQL
statement that you want to execute, a TParams object that supplies any parameter
values for that statement, a boolean that indicates whether the statement should be
cached because you will call it again, and a pointer to a BDE cursor that can be
returned (It is recommended that you pass nil).

• For TADOConnection, there are two versions of Execute. The first takes a
WideString that specifies the SQL statement and a second parameter that specifies
a set of options that control whether the statement is executed asynchronously and
whether it returns any records. This first syntax returns an interface for the
returned records. The second syntax takes a WideString that specifies the SQL
statement, a second parameter that returns the number of records affected when
the statement executes, and a third that specifies options such as whether the
statement executes asynchronously. Note that neither syntax provides for passing
parameters.

• For TSQLConnection, Execute takes three parameters: a string that specifies a single
SQL statement that you want to execute, a TParams object that supplies any
parameter values for that statement, and a pointer that can receive a
TCustomSQLDataSet that is created to return records.

Note Execute can only execute one SQL statement at a time. It is not possible to execute
multiple SQL statements with a single call to Execute, as you can with SQL scripting
utilities. To execute more than one statement, call Execute repeatedly.

It is relatively easy to execute a statement that does not include any parameters. For
example, the following code executes a CREATE TABLE statement (DDL) without
any parameters on a TSQLConnection component:

procedure TForm1.CreateTableButtonClick(Sender: TObject);
var

SQLstmt: String;
begin

SQLConnection1.Connected := True;
SQLstmt := 'CREATE TABLE NewCusts ' +

'(' +
' CustNo INTEGER, ' +
' Company CHAR(40), ' +
' State CHAR(2), ' +
' PRIMARY KEY (CustNo) ' +
')';

SQLConnection1.Execute(SQLstmt, nil, nil);
end;

To use parameters, you must create a TParams object. For each parameter value, use
the TParams.CreateParam method to add a TParam object. Then use properties of
TParam to describe the parameter and set its value.

23-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s s o c i a t e d d a t a s e t s

This process is illustrated in the following example, which uses TDatabase to execute
an INSERT statement. The INSERT statement has a single parameter named:
StateParam. A TParams object (called stmtParams) is created to supply a value of “CA”
for that parameter.

procedure TForm1.INSERT_WithParamsButtonClick(Sender: TObject);
var

SQLstmt: String;
stmtParams: TParams;

begin
stmtParams := TParams.Create;
try

Database1.Connected := True;
stmtParams.CreateParam(ftString, 'StateParam', ptInput);
stmtParams.ParamByName('StateParam').AsString := 'CA';
SQLstmt := 'INSERT INTO "Custom.db" '+

'(CustNo, Company, State) ' +
'VALUES (7777, "Robin Dabank Consulting", :StateParam)';

Database1.Execute(SQLstmt, stmtParams, False, nil);
finally

stmtParams.Free;
end;

end;

If the SQL statement includes a parameter but you do not supply a TParam object to
provide its value, the SQL statement may cause an error when executed (this
depends on the particular database back-end used). If a TParam object is provided
but there is no corresponding parameter in the SQL statement, an exception is raised
when the application attempts to use the TParam.

Working with associated datasets
All database connection components maintain a list of all datasets that use them to
connect to a database. A connection component uses this list, for example, to close all
of the datasets when it closes the database connection.

You can use this list as well, to perform actions on all the datasets that use a specific
connection component to connect to a particular database.

Closing all datasets without disconnecting from the server

The connection component automatically closes all datasets when you close its
connection. There may be times, however, when you want to close all datasets
without disconnecting from the database server.

To close all open datasets without disconnecting from a server, you can use the
CloseDataSets method.

For TADOConnection and TIBDatabase, calling CloseDataSets always leaves the
connection open. For TDatabase and TSQLConnection, you must also set the
KeepConnection property to True.

C o n n e c t i n g t o d a t a b a s e s 23-13

O b t a i n i n g m e t a d a t a

Iterating through the associated datasets

To perform any actions (other than closing them all) on all the datasets that use a
connection component, use the DataSets and DataSetCount properties. DataSets is an
indexed array of all datasets that are linked to the connection component. For all
connection components except TADOConnection, this list includes only the active
datasets. TADOConnection lists the inactive datasets as well. DataSetCount is the
number of datasets in this array.

Note When you use a specialized client dataset to cache updates (as opposed to the generic
client dataset, TClientDataSet), the DataSets property lists the internal dataset owned
by the client dataset, not the client dataset itself.

You can use DataSets with DataSetCount to cycle through all currently active datasets
in code. For example, the following code cycles through all active datasets and
disables any controls that use the data they provide:

var
I: Integer;

begin
with MyDBConnection do
begin

for I := 0 to DataSetCount - 1 do
DataSets[I].DisableControls;

end;
end;

Note TADOConnection supports command objects as well as datasets. You can iterate
through these much like you iterate through the datasets, by using the Commands and
CommandCount properties.

Obtaining metadata
All database connection components can retrieve lists of metadata on the database
server, although they vary in the types of metadata they retrieve. The methods that
retrieve metadata fill a string list with the names of various entities available on the
server. You can then use this information, for example, to let your users dynamically
select a table at runtime.

You can use a TADOConnection component to retrieve metadata about the tables and
stored procedures available on the ADO data store. You can then use this
information, for example, to let your users dynamically select a table or stored
procedure at runtime.

23-14 D e v e l o p e r ’ s G u i d e

O b t a i n i n g m e t a d a t a

Listing available tables

The GetTableNames method copies a list of table names to an already-existing string
list object. This can be used, for example, to fill a list box with table names that the
user can then use to choose a table to open. The following line fills a listbox with the
names of all tables on the database:

MyDBConnection.GetTableNames(ListBox1.Items, False);

GetTableNames has two parameters: the string list to fill with table names, and a
boolean that indicates whether the list should include system tables, or ordinary
tables. Note that not all servers use system tables to store metadata, so asking for
system tables may result in an empty list.

Note For most database connection components, GetTableNames returns a list of all
available non-system tables when the second parameter is False. For TSQLConnection,
however, you have more control over what type is added to the list when you are not
fetching only the names of system tables. When using TSQLConnection, the types of
names added to the list are controlled by the TableScope property. TableScope indicates
whether the list should contain any or all of the following: ordinary tables, system
tables, synonyms, and views.

Listing the fields in a table

The GetFieldNames method fills an existing string list with the names of all fields
(columns) in a specified table. GetFieldNames takes two parameters, the name of the
table for which you want to list the fields, and an existing string list to be filled with
field names:

MyDBConnection.GetFieldNames('Employee', ListBox1.Items);

Listing available stored procedures

To get a listing of all of the stored procedures contained in the database, use the
GetProcedureNamesmethod. This method takes a single parameter: an already-
existing string list to fill:

MyDBConnection.GetProcedureNames(ListBox1.Items);

Note GetProcedureNames is only available for TADOConnection and TSQLConnection.

Listing available indexes

To get a listing of all indexes defined for a specific table, use the GetIndexNames
method. This method takes two parameters: the table whose indexes you want, and
an already-existing string list to fill:

SQLConnection1.GetIndexNames('Employee', ListBox1.Items);

Note GetIndexNames is only available for TSQLConnection, although most table-type
datasets have an equivalent method.

C o n n e c t i n g t o d a t a b a s e s 23-15

O b t a i n i n g m e t a d a t a

Listing stored procedure parameters

To get a list of all parameters defined for a specific stored procedure, use the
GetProcedureParams method. GetProcedureParams fills a TList object with pointers to
parameter description records, where each record describes a parameter of a
specified stored procedure, including its name, index, parameter type, field type, and
so on.

GetProcedureParams takes two parameters: the name of the stored procedure, and an
already-existing TList object to fill:

SQLConnection1.GetProcedureParams('GetInterestRate', List1);

To convert the parameter descriptions that are added to the list into the more familiar
TParams object, call the global LoadParamListItemsprocedure. Because
GetProcedureParams dynamically allocates the individual records, your application
must free them when it is finished with the information. The global FreeProcParams
routine can do this for you.

Note GetProcedureParams is only available for TSQLConnection.

23-16 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g d a t a s e t s 24-1

C h a p t e r

24
Chapter24Understanding datasets

The fundamental unit for accessing data is the dataset family of objects. Your
application uses datasets for all database access. A dataset object represents a set of
records from a database organized into a logical table. These records may be the
records from a single database table, or they may represent the results of executing a
query or stored procedure.

All dataset objects that you use in your database applications descend from TDataSet,
and they inherit data fields, properties, events, and methods from this class. This
chapter describes the functionality of TDataSet that is inherited by the dataset objects
you use in your database applications. You need to understand this shared
functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and methods
are virtual or abstract. A virtual method is a function or procedure declaration where
the implementation of that method can be (and usually is) overridden in descendant
objects. An abstract method is a function or procedure declaration without an actual
implementation. The declaration is a prototype that describes the method (and its
parameters and return type, if any) that must be implemented in all descendant
dataset objects, but that might be implemented differently by each of them.

Because TDataSet contains abstract methods, you cannot use it directly in an
application without generating a runtime error. Instead, you either create instances
of the built-in TDataSet descendants and use them in your application, or you derive
your own dataset object from TDataSet or its descendants and write implementations
for all its abstract methods.

TDataSet defines much that is common to all dataset objects. For example, TDataSet
defines the basic structure of all datasets: an array of TField components that
correspond to actual columns in one or more database tables, lookup fields provided
by your application, or calculated fields provided by your application. For
information about TField components, see Chapter 25, “Working with field
components.”

24-2 D e v e l o p e r ’ s G u i d e

U s i n g T D a t a S e t d e s c e n d a n t s

This chapter describes how to use the common database functionality introduced by
TDataSet. Bear in mind, however, that although TDataSet introduces the methods for
this functionality, not all TDataSet dependants implement them. In particular,
unidirectional datasets implement only a limited subset.

Using TDataSet descendants
TDataSet has several immediate descendants, each of which corresponds to a
different data access mechanism. You do not work directly with any of these
descendants. Rather, each descendant introduces the properties and methods for
using a particular data access mechanism. These properties and methods are then
exposed by descendant classes that are adapted to different types of server data. The
immediate descendants of TDataSet include

• TBDEDataSet, which uses the Borland Database Engine (BDE) to communicate
with the database server. The TBDEDataSet descendants you use are TTable,
TQuery, TStoredProc, and TNestedTable. The unique features of BDE-enabled
datasets are described in Chapter 26, “Using the Borland Database Engine.”

• TCustomADODataSet, which uses ActiveX Data Objects (ADO) to communicate
with an OLEDB data store. The TCustomADODataSet descendants you use are
TADODataSet, TADOTable, TADOQuery, and TADOStoredProc. The unique
features of ADO-based datasets are described in Chapter 27, “Working with ADO
components.”

• TCustomSQLDataSet, which uses dbExpress to communicate with a database
server. The TCustomSQLDataSet descendants you use are TSQLDataSet,
TSQLTable, TSQLQuery, and TSQLStoredProc. The unique features of dbExpress
datasets are described in Chapter 28, “Using unidirectional datasets.”

• TIBCustomDataSet, which communicates directly with an InterBase database
server. The TIBCustomDataSet descendants you use are TIBDataSet, TIBTable,
TIBQuery, and TIBStoredProc.

• TCustomClientDataSet, which represents the data from another dataset component
or the data from a dedicated file on disk. The TCustomClientDataSet descendants
you use are TClientDataSet, which can connect to an external (source) dataset, and
the client datasets that are specialized to a particular data access mechanism
(TBDEClientDataSet, TSimpleDataSet, and TIBClientDataSet), which use an internal
source dataset. The unique features of client datasets are described in Chapter 29,
“Using client datasets.”

Some pros and cons of the various data access mechanisms employed by these
TDataSet descendants are described in “Using databases” on page 19-1.

U n d e r s t a n d i n g d a t a s e t s 24-3

D e t e r m i n i n g d a t a s e t s t a t e s

In addition to the built-in datasets, you can create your own custom TDataSet
descendants — for example to supply data from a process other than a database
server, such as a spreadsheet. Writing custom datasets allows you the flexibility of
managing the data using any method you choose, while still letting you use the VCL
data controls to build your user interface. For more information about creating
custom components, see the Component Writer’s Guide, Chapter 1, “Overview of
component creation.”

Although each TDataSet descendant has its own unique properties and methods,
some of the properties and methods introduced by descendant classes are the same
as those introduced by other descendant classes that use another data access
mechanism. For example, there are similarities between the “table” components
(TTable, TADOTable, TSQLTable, and TIBTable). For information about the
commonalities introduced by TDataSet descendants, see “Types of datasets” on
page 24-24.

Determining dataset states
The state—or mode—of a dataset determines what can be done to its data. For
example, when a dataset is closed, its state is dsInactive, meaning that nothing can be
done to its data. At runtime, you can examine a dataset’s read-only State property to
determine its current state. The following table summarizes possible values for the
State property and what they mean:

Table 24.1 Values for the dataset State property

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is the
default state of an open dataset.

dsEdit Edit DataSet open. The current row can be modified. (not supported
on unidirectional datasets)

dsInsert Insert DataSet open. A new row is inserted or appended. (not
supported on unidirectional datasets)

dsSetKey SetKey DataSet open. Enables setting of ranges and key values used for
ranges and GotoKey operations. (not supported by all datasets)

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsCurValue CurValue DataSet open. Indicates that the CurValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsNewValue NewValue DataSet open. Indicates that the NewValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsOldValue OldValue DataSet open. Indicates that the OldValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

24-4 D e v e l o p e r ’ s G u i d e

O p e n i n g a n d c l o s i n g d a t a s e t s

Typically, an application checks the dataset state to determine when to perform
certain tasks. For example, you might check for the dsEdit or dsInsert state to ascertain
whether you need to post updates.

Note Whenever a dataset’s state changes, the OnStateChange event is called for any data
source components associated with the dataset. For more information about data
source components and OnStateChange, see “Responding to changes mediated
by the data source” on page 20-4.

Opening and closing datasets
To read or write data in a dataset, an application must first open it. You can open a
dataset in two ways,

• Set the Active property of the dataset to True, either at design time in the Object
Inspector, or in code at runtime:

CustTable.Active := True;

• Call the Open method for the dataset at runtime,

CustQuery.Open;

When you open the dataset, the dataset first receives a BeforeOpen event, then it opens
a cursor, populating itself with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can
read the data and navigate through it.

You can close a dataset in two ways,

• Set the Active property of the dataset to False, either at design time in the Object
Inspector, or in code at runtime,

CustQuery.Active := False;

• Call the Close method for the dataset at runtime,

CustTable.Close;

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.
(not supported on unidirectional datasets)

dsBlockRead Block Read DataSet open. Data-aware controls are not updated and events
are not triggered when the current record changes.

dsInternalCalc Internal Calc DataSet open. An OnCalcFields event is underway for calculated
values that are stored with the record. (client datasets only)

dsOpening Opening DataSet is in the process of opening but has not finished. This
state occurs when the dataset is opened for asynchronous
fetching.

Table 24.1 Values for the dataset State property (continued)

Value State Meaning

U n d e r s t a n d i n g d a t a s e t s 24-5

N a v i g a t i n g d a t a s e t s

Just as the dataset receives BeforeOpen and AfterOpen events when you open it, it
receives a BeforeClose and AfterClose event when you close it. handlers that respond to
the Close method for a dataset. You can use these events, for example, to prompt the
user to post pending changes or cancel them before closing the dataset. The following
code illustrates such a handler:

procedure TForm1.CustTableVerifyBeforeClose(DataSet: TDataSet);
begin

if (CustTable.State in [dsEdit, dsInsert]) then begin
case MessageDlg('Post changes before closing?', mtConfirmation, mbYesNoCancel, 0) of

mrYes: CustTable.Post; { save the changes }
mrNo: CustTable.Cancel; { abandon the changes}
mrCancel: Abort; { abort closing the dataset }

end;
end;

end;

Note You may need to close a dataset when you want to change certain of its properties,
such as TableName on a TTable component. When you reopen the dataset, the new
property value takes effect.

Navigating datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The
current row in a dataset is the one whose field values currently show in single-field,
data-aware controls on a form, such as TDBEdit, TDBLabel, and TDBMemo. If the
dataset supports editing, the current record contains the values that can be
manipulated by edit, insert, and delete methods.

You can change the current row by moving the cursor to point at a different row. The
following table lists methods you can use in application code to move to different
records:

The data-aware, visual component TDBNavigator encapsulates these methods as
buttons that users can click to move among records at runtime. For information
about the navigator component, see “Navigating and manipulating records” on
page 20-29.

Table 24.2 Navigational methods of datasets

Method Moves the cursor to

First The first row in a dataset.

Last The last row in a dataset. (not available for unidirectional datasets)

Next The next row in a dataset.

Prior The previous row in a dataset. (not available for unidirectional datasets)

MoveBy A specified number of rows forward or back in a dataset.

24-6 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

Whenever you change the current record using one of these methods (or by other
methods that navigate based on a search criterion), the dataset receives two events:
BeforeScroll (before leaving the current record) and AfterScroll (after arriving at the
new record). You can use these events to update your user interface (for example, to
update a status bar that indicates information about the current record).

TDataSet also defines two boolean properties that provide useful information when
iterating through the records in a dataset.

Using the First and Last methods

The First method moves the cursor to the first row in a dataset and sets the Bof
property to True. If the cursor is already at the first row in the dataset, First does
nothing.

For example, the following code moves to the first record in CustTable:

CustTable.First;

The Last method moves the cursor to the last row in a dataset and sets the Eof
property to True. If the cursor is already at the last row in the dataset, Last does
nothing.

The following code moves to the last record in CustTable:

CustTable.Last;

Note The Last method raises an exception in unidirectional datasets.

Tip While there may be programmatic reasons to move to the first or last rows in a
dataset without user intervention, you can also enable your users to navigate from
record to record using the TDBNavigator component. The navigator component
contains buttons that, when active and visible, enable a user to move to the first and
last rows of an active dataset. The OnClick events for these buttons call the First and
Last methods of the dataset. For more information about making effective use of the
navigator component, see “Navigating and manipulating records” on page 20-29.

Table 24.3 Navigational properties of datasets

Property Description

Bof (Beginning-of-file) True: the cursor is at the first row in the dataset.
False: the cursor is not known to be at the first row in the dataset

Eof (End-of-file) True: the cursor is at the last row in the dataset.
False: the cursor is not known to be at the first row in the dataset

U n d e r s t a n d i n g d a t a s e t s 24-7

N a v i g a t i n g d a t a s e t s

Using the Next and Prior methods

The Next method moves the cursor forward one row in the dataset and sets the Bof
property to False if the dataset is not empty. If the cursor is already at the last row in
the dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

CustTable.Next;

The Prior method moves the cursor back one row in the dataset, and sets Eof to False if
the dataset is not empty. If the cursor is already at the first row in the dataset when
you call Prior, Prior does nothing.

For example, the following code moves to the previous record in CustTable:

CustTable.Prior;

Note The Prior method raises an exception in unidirectional datasets.

Using the MoveBy method

MoveBy lets you specify how many rows forward or back to move the cursor in a
dataset. Movement is relative to the current record at the time that MoveBy is called.
MoveBy also sets the Bof and Eof properties for the dataset as appropriate.

This function takes an integer parameter, the number of records to move. Positive
integers indicate a forward move and negative integers indicate a backward move.

Note MoveBy raises an exception in unidirectional datasets if you use a negative argument.

MoveBy returns the number of rows it moves. If you attempt to move past the
beginning or end of the dataset, the number of rows returned by MoveBy differs from
the number of rows you requested to move. This is because MoveBy stops when it
reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

CustTable.MoveBy(-2);

Note If your application uses MoveBy in a multi-user database environment, keep in mind
that datasets are fluid. A record that was five records back a moment ago may now
be four, six, or even an unknown number of records back if several users are
simultaneously accessing the database and changing its data.

24-8 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

Using the Eof and Bof properties

Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are
useful when you want to iterate through all records in a dataset.

Eof
When Eof is True, it indicates that the cursor is unequivocally at the last row in a
dataset. Eof is set to True when an application

• Opens an empty dataset.

• Calls a dataset’s Last method.

• Calls a dataset’s Next method, and the method fails (because the cursor is
currently at the last row in the dataset.

• Calls SetRange on an empty range or dataset.

Eof is set to False in all other cases; you should assume Eof is False unless one of the
conditions above is met and you test the property directly.

Eof is commonly tested in a loop condition to control iterative processing of all
records in a dataset. If you open a dataset containing records (or you call First) Eof is
False. To iterate through the dataset a record at a time, create a loop that steps
through each record by calling Next, and terminates when Eof is True. Eof remains
False until you call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a
dataset called CustTable:

CustTable.DisableControls;
try

CustTable.First; { Go to first record, which sets Eof False }
while not CustTable.Eof do { Cycle until Eof is True }
begin

{ Process each record here }
ƒ
CustTable.Next; { Eof False on success; Eof True when Next fails on last record }

end;
finally

CustTable.EnableControls;
end;

Tip This example also shows how to disable and enable data-aware visual controls tied to
a dataset. If you disable visual controls during dataset iteration, it speeds processing
because your application does not need to update the contents of the controls as the
current record changes. After iteration is complete, controls should be enabled again
to update them with values for the new current row. Note that enabling of the visual
controls takes place in the finally clause of a try...finally statement. This guarantees
that even if an exception terminates loop processing prematurely, controls are not left
disabled.

U n d e r s t a n d i n g d a t a s e t s 24-9

N a v i g a t i n g d a t a s e t s

Bof
When Bof is True, it indicates that the cursor is unequivocally at the first row in a
dataset. Bof is set to True when an application

• Opens a dataset.

• Calls a dataset’s First method.

• Calls a dataset’s Prior method, and the method fails (because the cursor is
currently at the first row in the dataset.

• Calls SetRange on an empty range or dataset.

Bof is set to False in all other cases; you should assume Bof is False unless one of the
conditions above is met and you test the property directly.

Like Eof, Bof can be in a loop condition to control iterative processing of records in a
dataset. The following code illustrates one way you might code a record-processing
loop for a dataset called CustTable:

CustTable.DisableControls; { Speed up processing; prevent screen flicker }
try

while not CustTable.Bof do { Cycle until Bof is True }
begin

{ Process each record here }
ƒ
CustTable.Prior; { Bof False on success; Bof True when Prior fails on first record }

end;
finally

CustTable.EnableControls; { Display new current row in controls }
end;

Marking and returning to records

In addition to moving from record to record in a dataset (or moving from one record
to another by a specific number of records), it is often also useful to mark a particular
location in a dataset so that you can return to it quickly when desired. TDataSet
introduces a bookmarking feature that consists of a Bookmark property and five
bookmark methods.

TDataSet implements virtual bookmark methods. While these methods ensure that
any dataset object derived from TDataSet returns a value if a bookmark method is
called, the return values are merely defaults that do not keep track of the current
location. TDataSet descendants vary in the level of support they provide for
bookmarks. None of the dbExpress datasets add any support for bookmarks. ADO
datasets can support bookmarks, depending on the underlying database tables. BDE
datasets, InterBase express datasets, and client datasets always support bookmarks.

The Bookmark property
The Bookmark property indicates which bookmark among any number of bookmarks
in your application is current. Bookmark is a string that identifies the current
bookmark. Each time you add another bookmark, it becomes the current bookmark.

24-10 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

The GetBookmark method
To create a bookmark, you must declare a variable of type TBookmark in your
application, then call GetBookmark to allocate storage for the variable and set its value
to a particular location in a dataset. The TBookmark type is a Pointer.

The GotoBookmark and BookmarkValid methods
When passed a bookmark, GotoBookmark moves the cursor for the dataset to the
location specified in the bookmark. Before calling GotoBookmark, you can call
BookmarkValid to determine if the bookmark points to a record. BookmarkValid returns
True if a specified bookmark points to a record.

The CompareBookmarks method
You can also call CompareBookmarks to see if a bookmark you want to move to is
different from another (or the current) bookmark. If the two bookmarks refer to the
same record (or if both are nil), CompareBookmarks returns 0.

The FreeBookmark method
FreeBookmark frees the memory allocated for a specified bookmark when you no
longer need it. You should also call FreeBookmark before reusing an existing
bookmark.

A bookmarking example
The following code illustrates one use of bookmarking:

procedure DoSomething (const Tbl: TTable)
var

Bookmark: TBookmark;
begin

Bookmark := Tbl.GetBookmark; { Allocate memory and assign a value }
Tbl.DisableControls; { Turn off display of records in data controls }
try

Tbl.First; { Go to first record in table }
while not Tbl.Eof do {Iterate through each record in table }
begin

{ Do your processing here }
ƒ
Tbl.Next;

end;
finally

Tbl.GotoBookmark(Bookmark);
Tbl.EnableControls; { Turn on display of records in data controls, if necessary }
Tbl.FreeBookmark(Bookmark); {Deallocate memory for the bookmark }

end;
end;

Before iterating through records, controls are disabled. Should an error occur during
iteration through records, the finally clause ensures that controls are always enabled
and that the bookmark is always freed even if the loop terminates prematurely.

U n d e r s t a n d i n g d a t a s e t s 24-11

S e a r c h i n g d a t a s e t s

Searching datasets
If a dataset is not unidirectional, you can search against it using the Locate and Lookup
methods. These methods enable you to search on any type of columns in any dataset.

Note Some TDataSet descendants introduce an additional family of methods for searching
based on an index. For information about these additional methods, see “Using
Indexes to search for records” on page 24-28.

Using Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In
its simplest form, you pass Locate the name of a column to search, a field value to
match, and an options flag specifying whether the search is case-insensitive or if it
can use partial-key matching. (Partial-key matching is when the criterion string need
only be a prefix of the field value.) For example, the following code moves the cursor
to the first row in the CustTable where the value in the Company column is
“Professional Divers, Ltd.”:

var
LocateSuccess: Boolean;
SearchOptions: TLocateOptions;

begin
SearchOptions := [loPartialKey];
LocateSuccess := CustTable.Locate('Company', 'Professional Divers, Ltd.', SearchOptions);

end;

If Locate finds a match, the first record containing the match becomes the current
record. Locate returns True if it finds a matching record, False if it does not. If a search
fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple
columns and specify multiple values to search for. Search values are Variants, which
means you can specify different data types in your search criteria. To specify
multiple columns in a search string, separate individual items in the string with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a search on multiple columns using multiple
search values and partial-key matching:

with CustTable do
Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver','P']), loPartialKey);

Locate uses the fastest possible method to locate matching records. If the columns to
search are indexed and the index is compatible with the search options you specify,
Locate uses the index.

24-12 D e v e l o p e r ’ s G u i d e

S e a r c h i n g d a t a s e t s

Using Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a
matching row, it forces the recalculation of any calculated fields and lookup fields
associated with the dataset, then returns one or more fields from the matching row.
Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to
match, and the field or fields to return. For example, the following code looks for the
first record in the CustTable where the value of the Company field is “Professional
Divers, Ltd.”, and returns the company name, a contact person, and a phone number
for the company:

var
LookupResults: Variant;

begin
LookupResults := CustTable.Lookup('Company', 'Professional Divers, Ltd.',

 'Company;Contact; Phone');
end;

Lookup returns values for the specified fields from the first matching record it finds.
Values are returned as Variants. If more than one return value is requested, Lookup
returns a Variant array. If there are no matching records, Lookup returns a Null
Variant. For more information about Variant arrays, see the online Help.

The real power of Lookup comes into play when you want to search on multiple
columns and specify multiple values to search for. To specify strings containing
multiple columns or result fields, separate individual fields in the string items with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a lookup search on multiple columns:

var
LookupResults: Variant;

begin
with CustTable do

LookupResults := Lookup('Company; City', VarArrayOf(['Sight Diver', 'Christiansted']),
'Company; Addr1; Addr2; State; Zip');

end;

Like Locate, Lookup uses the fastest possible method to locate matching records. If the
columns to search are indexed, Lookup uses the index.

U n d e r s t a n d i n g d a t a s e t s 24-13

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Displaying and editing a subset of data using filters
An application is frequently interested in only a subset of records from a dataset. For
example, you may be interested in retrieving or viewing only those records for
companies based in California in your customer database, or you may want to find a
record that contains a particular set of field values. In each case, you can use filters to
restrict an application’s access to a subset of all records in the dataset.

With unidirectional datasets, you can only limit the records in the dataset by using a
query that restricts the records in the dataset. With other TDataSet descendants,
however, you can define a subset of the data that has already been fetched. To restrict
an application’s access to a subset of all records in the dataset, you can use filters.

A filter specifies conditions a record must meet to be displayed. Filter conditions can
be stipulated in a dataset’s Filter property or coded into its OnFilterRecord event
handler. Filter conditions are based on the values in any specified number of fields in
a dataset, regardless of whether those fields are indexed. For example, to view only
those records for companies based in California, a simple filter might require that
records contain a value in the State field of “CA”.

Note Filters are applied to every record retrieved in a dataset. When you want to filter
large volumes of data, it may be more efficient to use a query to restrict record
retrieval, or to set a range on an indexed table rather than using filters.

Enabling and disabling filtering

Enabling filters on a dataset is a three step process:

1 Create a filter.

2 Set filter options for string-based filter tests, if necessary.

3 Set the Filtered property to True.

When filtering is enabled, only those records that meet the filter criteria are available
to an application. Filtering is always a temporary condition. You can turn off filtering
by setting the Filtered property to False.

Creating filters

There are two ways to create a filter for a dataset:

• Specify simple filter conditions in the Filter property. Filter is especially useful for
creating and applying filters at runtime.

• Write an OnFilterRecord event handler for simple or complex filter conditions.
With OnFilterRecord, you specify filter conditions at design time. Unlike the Filter
property, which is restricted to a single string containing filter logic, an
OnFilterRecord event can take advantage of branching and looping logic to create
complex, multi-level filter conditions.

24-14 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

The main advantage to creating filters using the Filter property is that your
application can create, change, and apply filters dynamically, (for example, in
response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping
constructs, and cannot test or compare its values against values not already in the
dataset.

The strengths of the OnFilterRecord event are that a filter can be complex and
variable, can be based on multiple lines of code that use branching and looping
constructs, and can test dataset values against values outside the dataset, such as the
text in an edit box. The main weakness of using OnFilterRecord is that you set the
filter at design time and it cannot be modified in response to user input. (You can,
however, create several filter handlers and switch among them in response to general
application conditions.)

The following sections describe how to create filters using the Filter property and the
OnFilterRecord event handler.

Setting the Filter property
To create a filter using the Filter property, set the value of the property to a string that
contains the filter’s test condition. For example, the following statement creates a
filter that tests a dataset’s State field to see if it contains a value for the state of
California:

Dataset1.Filter := 'State = ' + QuotedStr('CA');

You can also supply a value for Filter based on text supplied by the user. For
example, the following statement assigns the text in from edit box to Filter:

Dataset1.Filter := Edit1.Text;

You can, of course, create a string based on both hard-coded text and user-supplied
data:

Dataset1.Filter := 'State = ' + QuotedStr(Edit1.Text);

Blank field values do not appear unless they are explicitly included in the filter:

Dataset1.Filter := 'State <> ‘’CA’’ or State = BLANK';

Note After you specify a value for Filter, to apply the filter to the dataset, set the Filtered
property to True.

Filters can compare field values to literals and to constants using the following
comparison and logical operators:

Table 24.4 Comparison and logical operators that can appear in a filter

Operator Meaning

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

U n d e r s t a n d i n g d a t a s e t s 24-15

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

By using combinations of these operators, you can create fairly sophisticated filters.
For example, the following statement checks to make sure that two test conditions
are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Note When filtering is on, user edits to a record may mean that the record no longer meets
a filter’s test conditions. The next time the record is retrieved from the dataset, it may
therefore “disappear.” If that happens, the next record that passes the filter condition
becomes the current record.

Writing an OnFilterRecord event handler
You can write code to filter records using the OnFilterRecord events generated by the
dataset for each record it retrieves. This event handler implements a test that
determines if a record should be included in those that are visible to the application.

To indicate whether a record passes the filter condition, your OnFilterRecord handler
sets its Accept parameter to True to include a record, or False to exclude it. For
example, the following filter displays only those records with the State field set to
“CA”:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet; var Accept: Boolean);
begin

Accept := DataSet['State'].AsString = 'CA';
end;

When filtering is enabled, an OnFilterRecord event is generated for each record
retrieved. The event handler tests each record, and only those that meet the filter’s
conditions are displayed. Because the OnFilterRecord event is generated for every
record in a dataset, you should keep the event handler as tightly coded as possible to
avoid adversely affecting the performance.

<> Not equal to

AND Tests two statements are both True

NOT Tests that the following statement is not True

OR Tests that at least one of two statements is True

+ Adds numbers, concatenates strings, adds numbers to date/time values (only
available for some drivers)

- Subtracts numbers, subtracts dates, or subtracts a number from a date (only available
for some drivers)

* Multiplies two numbers (only available for some drivers)

/ Divides two numbers (only available for some drivers)

* wildcard for partial comparisons (FilterOptions must include foPartialCompare)

Table 24.4 Comparison and logical operators that can appear in a filter (continued)

Operator Meaning

24-16 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Switching filter event handlers at runtime
You can code any number of OnFilterRecord event handlers and switch among them
at runtime. For example, the following statements switch to an OnFilterRecord event
handler called NewYorkFilter:

DataSet1.OnFilterRecord := NewYorkFilter;
Refresh;

Setting filter options

The FilterOptions property lets you specify whether a filter that compares string-
based fields accepts records based on partial comparisons and whether string
comparisons are case-sensitive. FilterOptions is a set property that can be an empty set
(the default), or that can contain either or both of the following values:

For example, the following statements set up a filter that ignores case when
comparing values in the State field:

FilterOptions := [foCaseInsensitive];
Filter := 'State = ' + QuotedStr('CA');

Navigating records in a filtered dataset

There are four dataset methods that navigate among records in a filtered dataset. The
following table lists these methods and describes what they do:

For example, the following statement finds the first filtered record in a dataset:

DataSet1.FindFirst;

Table 24.5 FilterOptions values

Value Meaning

foCaseInsensitive Ignore case when comparing strings.

foNoPartialCompare Disable partial string matching; that is, don’t match strings that end with an
asterisk (*).

Table 24.6 Filtered dataset navigational methods

Method Purpose

FindFirst Move to the first record that matches the current filter criteria. The search for the first
matching record always begins at the first record in the unfiltered dataset.

FindLast Move to the last record that matches the current filter criteria.

FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

U n d e r s t a n d i n g d a t a s e t s 24-17

M o d i f y i n g d a t a

Provided that you set the Filter property or create an OnFilterRecord event handler for
your application, these methods position the cursor on the specified record
regardless of whether filtering is currently enabled. If you call these methods when
filtering is not enabled, then they

• Temporarily enable filtering.
• Position the cursor on a matching record if one is found.
• Disable filtering.

Note If filtering is disabled and you do not set the Filter property or create an
OnFilterRecord event handler, these methods do the same thing as First, Last, Next,
and Prior.

All navigational filter methods position the cursor on a matching record (if one is
found), make that record the current one, and return True. If a matching record is not
found, the cursor position is unchanged, and these methods return False. You can
check the status of the Found property to wrap these calls, and only take action when
Found is True. For example, if the cursor is already on the last matching record in the
dataset and you call FindNext, the method returns False, and the current record is
unchanged.

Modifying data
You can use the following dataset methods to insert, update, and delete data if the
read-only CanModify property is True. CanModify is True unless the dataset is
unidirectional, the database underlying the dataset does not permit read and write
privileges, or some other factor intervenes. (Intervening factors include the ReadOnly
property on some datasets or the RequestLive property on TQuery components.)

Table 24.7 Dataset methods for inserting, updating, and deleting data

Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset is
put in dsBrowse state; if unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

24-18 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

Editing records

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is True.

When a dataset transitions to dsEdit mode, it first receives a BeforeEdit event. After the
transition to edit mode is successfully completed, the dataset receives an AfterEdit
event. Typically, these events are used for updating the user interface to indicate the
current state of the dataset. If the dataset can’t be put into edit mode for some reason,
an OnEditError event occurs, where you can inform the user of the problem or try to
correct the situation that prevented the dataset from entering edit mode.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if

• The control’s ReadOnly property is False (the default),
• The AutoEdit property of the data source for the control is True, and
• CanModify is True for the dataset.

Note Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current
record that appears in any data-aware controls on a form. Data-aware controls for
which editing is enabled automatically call Post when a user executes any action that
changes the current record (such as moving to a different record in a grid).

If you have a navigator component on your form, users can cancel edits by clicking
the navigator’s Cancel button. Canceling edits returns a dataset to dsBrowse state.

In code, you must write or cancel edits by calling the appropriate methods. You write
changes by calling Post. You cancel them by calling Cancel. In code, Edit and Post are
often used together. For example,

with CustTable do
begin

Edit;
FieldValues['CustNo'] := 1234;
Post;

end;

In the previous example, the first line of code places the dataset in dsEdit mode. The
next line of code assigns the number 1234 to the CustNo field of the current record.
Finally, the last line writes, or posts, the modified record. If you are not caching
updates, posting writes the change back to the database. If you are caching updates,
the change is written to a temporary buffer, where it stays until the dataset’s
ApplyUpdates method is called.

U n d e r s t a n d i n g d a t a s e t s 24-19

M o d i f y i n g d a t a

Adding new records

A dataset must be in dsInsert mode before an application can add new records. In
code, you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is True.

When a dataset transitions to dsInsert mode, it first receives a BeforeInsert event. After
the transition to insert mode is successfully completed, the dataset receives first an
OnNewRecord event hand then an AfterInsert event. You can use these events, for
example, to provide initial values to newly inserted records:

procedure TForm1.OrdersTableNewRecord(DataSet: TDataSet);
begin

DataSet.FieldByName('OrderDate').AsDateTime := Date;
end;

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is False (the default), and
• CanModify is True for the dataset.

Note Even if a dataset is in dsInsert state, adding records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsInsert mode, a user or application can enter values into the
fields associated with the new record. Except for the grid and navigational controls,
there is no visible difference to a user between Insert and Append. On a call to Insert,
an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at
the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes which record is current (such as moving to a
different record in a grid). Otherwise you must call Post in your code.

Post writes the new record to the database, or, if you are caching updates, Post writes
the record to an in-memory cache. To write cached inserts and appends to the
database, call the dataset’s ApplyUpdates method.

Inserting records
Insert opens a new, empty record before the current record, and makes the empty
record the current record so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly inserted record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is inserted into the dataset at
its current position.

24-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

• For SQL databases, the physical location of the insertion is implementation-
specific. If the table is indexed, the index is updated with the new record
information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty
record the current one so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly appended record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is added to the end of the
dataset.

• For SQL databases, the physical location of the append is implementation-specific.
If the table is indexed, the index is updated with the new record information.

Deleting records

Use the Delete method to delete the current record in an active dataset. When the
Delete method is called,

• The dataset receives a BeforeDelete event.
• The dataset attempts to delete the current record.
• The dataset returns to the dsBrowse state.
• The dataset receives an AfterDelete event.

If want to prevent the deletion in the BeforeDelete event handler, you can call the
global Abort procedure:

procedure TForm1.TableBeforeDelete (Dataset: TDataset)
begin

if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) <> mrYes then
Abort;

end;

If Delete fails, it generates an OnDeleteError event. If the OnDeleteError event handler
can’t correct the problem, the dataset remains in dsEdit state. If Delete succeeds, the
dataset reverts to the dsBrowse state and the record that followed the deleted record
becomes the current record.

If you are caching updates, the deleted record is not removed from the underlying
database table until you call ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current
record by clicking the navigator’s Delete button. In code, you must call Delete
explicitly to remove the current record.

U n d e r s t a n d i n g d a t a s e t s 24-21

M o d i f y i n g d a t a

Posting data

After you finish editing a record, you must call the Post method to write out your
changes. The Post method behaves differently, depending on the dataset’s state and
on whether you are caching updates.

• If you are not caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to the database and returns the dataset to the dsBrowse
state.

• If you are caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to an internal cache and returns the dataset to the
dsBrowse state. The edits are net written to the database until you call
ApplyUpdates.

• If the dataset is in the dsSetKey state, Post returns the dataset to the dsBrowse state.

Regardless of the initial state of the dataset, Post generates BeforePost and AfterPost
events, before and after writing the current changes. You can use these events to
update the user interface, or prevent the dataset from posting changes by calling the
Abort procedure. If the call to Post fails, the dataset receives an OnPostError event,
where you can inform the user of the problem or attempt to correct it.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Post is called implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in dsEdit or dsInsert modes.
The Append and Insert methods also implicitly post any pending data.

Warning The Close method does not call Post implicitly. Use the BeforeClose event to post any
pending edits explicitly.

Canceling changes

An application can undo changes made to the current record at any time, if it has not
yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and a
user has changed the data in one or more fields, the application can return the record
back to its original values by calling the Cancel method for the dataset. A call to Cancel
always returns a dataset to dsBrowse state.

If the dataset was in dsEdit or dsInsert mode when your application called Cancel, it
receives BeforeCancel and AfterCancel events before and after the current record is
restored to its original values.

On forms, you can allow users to cancel edit, insert, or append operations by
including the Cancel button on a navigator component associated with the dataset, or
you can provide code for your own Cancel button on the form.

24-22 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

Modifying entire records

On forms, all data-aware controls except for grids and the navigator provide access
to a single field in a record.

In code, however, you can use the following methods that work with entire record
structures provided that the structure of the database tables underlying the dataset is
stable and does not change. The following table summarizes the methods available
for working with entire records rather than individual fields in those records:

These method take an array of values as an argument, where each value corresponds
to a column in the underlying dataset. The values can be literals, variables, or NULL.
If the number of values in an argument is less than the number of columns in a
dataset, then the remaining values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed datasets,
both methods place the record in the correct position in the table, based on the index.
In both cases, the methods move the cursor to the record’s position.

 SetFields assigns the values specified in the array of parameters to fields in the
dataset. To use SetFields, an application must first call Edit to put the dataset in dsEdit
mode. To apply the changes to the current record, it must perform a Post.

If you use SetFields to modify some, but not all fields in an existing record, you can
pass NULL values for fields you do not want to change. If you do not supply enough
values for all fields in a record, SetFields assigns NULL values to them. NULL values
overwrite any existing values already in those fields.

For example, suppose a database has a COUNTRY table with columns for Name,
Capital, Continent, Area, and Population. If a TTable component called CountryTable
were linked to the COUNTRY table, the following statement would insert a record
into the COUNTRY table:

CountryTable.InsertRecord(['Japan', 'Tokyo', 'Asia']);

This statement does not specify values for Area and Population, so NULL values are
inserted for them. The table is indexed on Name, so the statement would insert the
record based on the alphabetic collation of “Japan.”

Table 24.8 Methods that work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end of
a table; analogous to Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current cursor
position of a table; analogous to Insert. Performs an implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to
assigning values to TFields. The application must perform an
explicit Post.

U n d e r s t a n d i n g d a t a s e t s 24-23

C a l c u l a t i n g f i e l d s

To update the record, an application could use the following code:

with CountryTable do
begin

if Locate('Name', 'Japan', loCaseInsensitive) then;
begin

Edit;
SetFields(nil, nil, nil, 344567, 164700000);
Post;

end;
end;

This code assigns values to the Area and Population fields and then posts them to the
database. The three NULL pointers act as place holders for the first three columns to
preserve their current contents.

Calculating fields
Using the Fields editor, you can define calculated fields for your datasets. When a
dataset contains calculated fields, you provide the code to calculate those field’s
values in an OnCalcFields event handler. For details on how to define calculated fields
using the Fields editor, see “Defining a calculated field” on page 25-7.

The AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields
is True, OnCalcFields is called when

• A dataset is opened.

• The dataset enters edit mode.

• A record is retrieved from the database.

• Focus moves from one visual component to another, or from one column to
another in a data-aware grid control and the current record has been modified.

If AutoCalcFields is False, then OnCalcFields is not called when individual fields within
a record are edited (the fourth condition above).

Caution OnCalcFields is called frequently, so the code you write for it should be kept short.
Also, if AutoCalcFields is True, OnCalcFields should not perform any actions that
modify the dataset (or a linked dataset if it is part of a master-detail relationship),
because this leads to recursion. For example, if OnCalcFields performs a Post, and
AutoCalcFields is True, then OnCalcFields is called again, causing another Post, and so
on.

When OnCalcFields executes, a dataset enters dsCalcFields mode. This state prevents
modifications or additions to the records except for the calculated fields the handler
is designed to modify. The reason for preventing other modifications is because
OnCalcFields uses the values in other fields to derive calculated field values. Changes
to those other fields might otherwise invalidate the values assigned to calculated
fields. After OnCalcFields is completed, the dataset returns to dsBrowse state.

24-24 D e v e l o p e r ’ s G u i d e

T y p e s o f d a t a s e t s

Types of datasets
“Using TDataSet descendants” on page 24-2 classifies TDataSet descendants by the
method they use to access their data. Another useful way to classify TDataSet
descendants is to consider the type of server data they represent. Viewed this way,
there are three basic classes of datasets:

• Table type datasets: Table type datasets represent a single table from the database
server, including all of its rows and columns. Table type datasets include TTable,
TADOTable, TSQLTable, and TIBTable.

Table type datasets let you take advantage of indexes defined on the server.
Because there is a one-to-one correspondence between database table and dataset,
you can use server indexes that are defined for the database table. Indexes allow
your application to sort the records in the table, speed searches and lookups, and
can form the basis of a master/detail relationship. Some table type datasets also
take advantage of the one-to-one relationship between dataset and database table
to let you perform table-level operations such as creating and deleting database
tables.

• Query-type datasets: Query-type datasets represent a single SQL command, or
query. Queries can represent the result set from executing a command (typically a
SELECT statement), or they can execute a command that does not return any
records (for example, an UPDATE statement). Query-type datasets include
TQuery, TADOQuery, TSQLQuery, and TIBQuery.

To use a query-type dataset effectively, you must be familiar with SQL and your
server’s SQL implementation, including limitations and extensions to the SQL-92
standard. If you are new to SQL, you may want to purchase a third party book that
covers SQL in-depth. One of the best is Understanding the New SQL: A Complete
Guide, by Jim Melton and Alan R. Simpson, Morgan Kaufmann Publishers.

• Stored procedure-type datasets: Stored procedure-type datasets represent a
stored procedure on the database server. Stored procedure-type datasets include
TStoredProc, TADOStoredProc, TSQLStoredProc, and TIBStoredProc.

A stored procedure is a self-contained program written in the procedure and
trigger language specific to the database system used. They typically handle
frequently repeated database-related tasks, and are especially useful for
operations that act on large numbers of records or that use aggregate or
mathematical functions. Using stored procedures typically improves the
performance of a database application by:

• Taking advantage of the server’s usually greater processing power and speed.
• Reducing network traffic by moving processing to the server.

U n d e r s t a n d i n g d a t a s e t s 24-25

U s i n g t a b l e t y p e d a t a s e t s

Stored procedures may or may not return data. Those that return data may return
it as a cursor (similar to the results of a SELECT query), as multiple cursors
(effectively returning multiple datasets), or they may return data in output
parameters. These differences depend in part on the server: Some servers do not
allow stored procedures to return data, or only allow output parameters. Some
servers do not support stored procedures at all. See your server documentation to
determine what is available.

Note You can usually use a query-type dataset to execute stored procedures because most
servers provide extensions to SQL for working with stored procedures. Each server,
however, uses its own syntax for this. If you choose to use a query-type dataset
instead of a stored procedure-type dataset, see your server documentation for the
necessary syntax.

In addition to the datasets that fall neatly into these three categories, TDataSet has
some descendants that fit into more than one category:

• TADODataSet and TSQLDataSet have a CommandType property that lets you
specify whether they represent a table, query, or stored procedure. Property and
method names are most similar to query-type datasets, although TADODataSet
lets you specify an index like a table type dataset.

• TClientDataSet represents the data from another dataset. As such, it can represent a
table, query, or stored procedure. TClientDataSet behaves most like a table type
dataset, because of its index support. However, it also has some of the features of
queries and stored procedures: the management of parameters and the ability to
execute without retrieving a result set.

• Some other client datasets (like TBDEClientDataSet) have a CommandType property
that lets you specify whether they represent a table, query, or stored procedure.
Property and method names are like TClientDataSet, including parameter support,
indexes, and the ability to execute without retrieving a result set.

• TIBDataSet can represent both queries and stored procedures. In fact, it can
represent multiple queries and stored procedures simultaneously, with separate
properties for each.

Using table type datasets
To use a table type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that contains the table you want to use. Each table
type dataset does this differently, but typically you specify a database connection
component:

• For TTable, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOTable, specify a TADOConnection component using the Connection
property.

24-26 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

• For TSQLTable, specify a TSQLConnection component using the SQLConnection
property.

• For TIBTable, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 23,
“Connecting to databases.”

3 Set the TableName property to the name of the table in the database. You can select
tables from a drop-down list if you have already identified a database connection
component.

4 Place a data source component in the data module or on the form, and set its
DataSet property to the name of the dataset. The data source component is used to
pass a result set from the dataset to data-aware components for display.

Advantages of using table type datasets

The main advantage of using table type datasets is the availability of indexes. Indexes
enable your application to

• Sort the records in the dataset.
• Locate records quickly.
• Limit the records that are visible.
• Establish master/detail relationships.

In addition, the one-to-one relationship between table type datasets and database
tables enables many of them to be used for

• Controlling Read/write access to tables
• Creating and deleting tables
• Emptying tables
• Synchronizing tables

Sorting records with indexes

An index determines the display order of records in a table. Typically, records appear
in ascending order based on a primary, or default, index. This default behavior does
not require application intervention. If you want a different sort order, however, you
must specify either

• An alternate index.
• A list of columns on which to sort (not available on servers that aren’t SQL-based).

Indexes let you present the data from a table in different orders. On SQL-based
tables, this sort order is implemented by using the index to generate an ORDER BY
clause in a query that fetches the table’s records. On other tables (such as Paradox
and dBASE tables), the index is used by the data access mechanism to present records
in the desired order.

U n d e r s t a n d i n g d a t a s e t s 24-27

U s i n g t a b l e t y p e d a t a s e t s

Obtaining information about indexes
You application can obtain information about server-defined indexes from all table
type datasets. To obtain a list of available indexes for the dataset, call the
GetIndexNames method. GetIndexNames fills a string list with valid index names. For
example, the following code fills a listbox with the names of all indexes defined for
the CustomersTable dataset:

CustomersTable.GetIndexNames(ListBox1.Items);

Note For Paradox tables, the primary index is unnamed, and is therefore not returned by
GetIndexNames. You can still change the index back to a primary index on a Paradox
table after using an alternative index, however, by setting the IndexName property to
a blank string.

To obtain information about the fields of the current index, use the

• IndexFieldCount property, to determine the number of columns in the index.

• IndexFields property, to examine a list the field components for the columns that
comprise the index.

The following code illustrates how you might use IndexFieldCount and IndexFields to
iterate through a list of column names in an application:

var
I: Integer;
ListOfIndexFields: array[0 to 20} of string;

begin
with CustomersTable do

begin
for I := 0 to IndexFieldCount - 1 do

ListOfIndexFields[I] := IndexFields[I].FieldName;
end;

end;

Note IndexFieldCount is not valid for a dBASE table opened on an expression index.

Specifying an index with IndexName
Use the IndexName property to cause an index to be active. Once active, an index
determines the order of records in the dataset. (It can also be used as the basis for a
master-detail link, an index-based search, or index-based filtering.)

To activate an index, set the IndexName property to the name of the index. In some
database systems, primary indexes do not have names. To activate one of these
indexes, set IndexName to a blank string.

At design-time, you can select an index from a list of available indexes by clicking the
property’s ellipsis button in the Object Inspector. At runtime set IndexName using a
String literal or variable. You can obtain a list of available indexes by calling the
GetIndexNames method.

The following code sets the index for CustomersTable to CustDescending:

CustomersTable.IndexName := 'CustDescending';

24-28 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Creating an index with IndexFieldNames
If there is no defined index that implements the sort order you want, you can create a
pseudo-index using the IndexFieldNames property.

Note IndexName and IndexFieldNames are mutually exclusive. Setting one property clears
values set for the other.

The value of IndexFieldNames is a string. To specify a sort order, list each column
name to use in the order it should be used, and delimit the names with semicolons.
Sorting is by ascending order only. Case-sensitivity of the sort depends on the
capabilities of your server. See your server documentation for more information.

The following code sets the sort order for PhoneTable based on LastName, then
FirstName:

PhoneTable.IndexFieldNames := 'LastName;FirstName';

Note If you use IndexFieldNames on Paradox and dBASE tables, the dataset attempts to find
an index that uses the columns you specify. If it cannot find such an index, it raises an
exception.

Using Indexes to search for records

You can search against any dataset using the Locate and Lookup methods of TDataSet.
However, by explicitly using indexes, some table type datasets can improve over the
searching performance provided by the Locate and Lookup methods.

ADO datasets all support the Seek method, which moves to a record based on a set of
field values for fields in the current index. Seek lets you specify where to move the
cursor relative to the first or last matching record.

TTable and all types of client dataset support similar indexed-based searches, but use
a combination of related methods. The following table summarizes the six related
methods provided by TTable and client datasets to support index-based searches:

Table 24.9 Index-based search methods

Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the dataset into
dsSetKey state so your application can modify existing search criteria prior to
executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.

FindNearest Combines the SetKey and GotoNearest methods in a single method.

GotoKey Searches for the first record in a dataset that exactly matches the search criteria, and
moves the cursor to that record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial key
values, and moves the cursor to that record.

SetKey Clears the search key buffer and puts the table into dsSetKey state so your
application can specify new search criteria prior to executing a search.

U n d e r s t a n d i n g d a t a s e t s 24-29

U s i n g t a b l e t y p e d a t a s e t s

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a
matching record and return True. If the search is unsuccessful, the cursor is not
moved, and these functions return False.

GotoNearest and FindNearest always reposition the cursor either on the first exact
match found or, if no match is found, on the first record that is greater than the
specified search criteria.

Executing a search with Goto methods
To execute a search using Goto methods, follow these general steps:

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 24-26). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Put the dataset in dsSetKey state by calling the SetKey method.

4 Specify the value(s) to search on in the Fields property. Fields is a TFields object,
which maintains an indexed list of field components you can access by specifying
ordinal numbers corresponding to columns. The first column number in a dataset
is 0.

5 Search for and move to the first matching record found with GotoKey or
GotoNearest.

For example, the following code, attached to a button’s OnClick event, uses the
GotoKey method to move to the first record where the first field in the index has a
value that exactly matches the text in an edit box:

procedure TSearchDemo.SearchExactClick(Sender: TObject);
begin

ClientDataSet1.SetKey;
ClientDataSet1.Fields[0].AsString := Edit1.Text;
if not ClientDataSet1.GotoKey then

ShowMessage('Record not found');
end;

GotoNearest is similar. It searches for the nearest match to a partial field value. It can
be used only for string fields. For example,

Table1.SetKey;
Table1.Fields[0].AsString := 'Sm';
Table1.GotoNearest;

If a record exists with “Sm” as the first two characters of the first indexed field’s
value, the cursor is positioned on that record. Otherwise, the position of the cursor
does not change and GotoNearest returns False.

24-30 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Executing a search with Find methods
The Find methods do the same thing as the Goto methods, except that you do not
need to explicitly put the dataset in dsSetKey state to specify the key field values on
which to search. To execute a search using Find methods, follow these general steps:

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 24-26). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Search for and move to the first or nearest record with FindKey or FindNearest. Both
methods take a single parameter, a comma-delimited list of field values, where
each value corresponds to an indexed column in the underlying table.

Note FindNearest can only be used for string fields.

Specifying the current record after a successful search
By default, a successful search positions the cursor on the first record that matches
the search criteria. If you prefer, you can set the KeyExclusive property to True to
position the cursor on the next record after the first matching record.

By default, KeyExclusive is False, meaning that successful searches position the cursor
on the first matching record.

Searching on partial keys
If the dataset has more than one key column, and you want to search for values in a
subset of that key, set KeyFieldCount to the number of columns on which you are
searching. For example, if the dataset’s current index has three columns, and you
want to search for values using just the first column, set KeyFieldCount to 1.

For table type datasets with multiple-column keys, you can search only for values in
contiguous columns, beginning with the first. For example, for a three-column key
you can search for values in the first column, the first and second, or the first, second,
and third, but not just the first and third.

Repeating or extending a search
Each time you call SetKey or FindKey, the method clears any previous values in the
Fields property. If you want to repeat a search using previously set fields, or you want
to add to the fields used in a search, call EditKey in place of SetKey and FindKey.

For example, suppose you have already executed a search of the Employee table
based on the City field of the “CityIndex” index. Suppose further that “CityIndex”
includes both the City and Company fields. To find a record with a specified company
name in a specified city, use the following code:

Employee.KeyFieldCount := 2;
Employee.EditKey;
Employee['Company'] := Edit2.Text;
Employee.GotoNearest;

U n d e r s t a n d i n g d a t a s e t s 24-31

U s i n g t a b l e t y p e d a t a s e t s

Limiting records with ranges

You can temporarily view and edit a subset of data for any dataset by using filters
(see “Displaying and editing a subset of data using filters” on page 24-13). Some table
type datasets support an additional way to access a subset of available records, called
ranges.

Ranges only apply to TTable and to client datasets. Despite their similarities, ranges
and filters have different uses. The following topics discuss the differences between
ranges and filters and how to use ranges.

Understanding the differences between ranges and filters
Both ranges and filters restrict visible records to a subset of all available records, but
the way they do so differs. A range is a set of contiguously indexed records that fall
between specified boundary values. For example, in an employee database indexed
on last name, you might apply a range to display all employees whose last names are
greater than “Jones” and less than “Smith”. Because ranges depend on indexes, you
must set the current index to one that can be used to define the range. As with
specifying an index to sort records, you can assign the index on which to define a
range using either the IndexName or the IndexFieldNames property.

A filter, on the other hand, is any set of records that share specified data points,
regardless of indexing. For example, you might filter an employee database to
display all employees who live in California and who have worked for the company
for five or more years. While filters can make use of indexes if they apply, filters are
not dependent on them. Filters are applied record-by-record as an application scrolls
through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more
efficient when datasets are large and the records of interest to an application are
already blocked in contiguously indexed groups. For very large datasets, it may be
still more efficient to use the WHERE clause of a query-type dataset to select data. For
details on specifying a query, see “Using query-type datasets” on page 24-42.

Specifying ranges
There are two mutually exclusive ways to specify a range:

• Specify the beginning and ending separately using SetRangeStart and SetRangeEnd.
• Specify both endpoints at once using SetRange.

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin
creating a list of starting values for the range. Once you call SetRangeStart,
subsequent assignments to the Fields property are treated as starting index values to
use when applying the range. Fields specified must apply to the current index.

For example, suppose your application uses a TSimpleDataSet component named
Customers, linked to the CUSTOMER table, and that you have created persistent field
components for each field in the Customers dataset. CUSTOMER is indexed on its first

24-32 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

column (CustNo). A form in the application has two edit components named StartVal
and EndVal, used to specify start and ending values for a range. The following code
can be used to create and apply a range:

with Customers do
begin

SetRangeStart;
FieldByName('CustNo').AsString := StartVal.Text;
SetRangeEnd;
if (Length(EndVal.Text) > 0) then

FieldByName('CustNo').AsString := EndVal.Text;
ApplyRange;

end;

This code checks that the text entered in EndVal is not null before assigning any
values to Fields. If the text entered for StartVal is null, then all records from the
beginning of the dataset are included, since all values are greater than null. However,
if the text entered for EndVal is null, then no records are included, since none are less
than null.

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you try to set a value for a field that is not in
the index, the dataset raises an exception.

Tip To start at the beginning of the dataset, omit the call to SetRangeStart.

To finish specifying the start of a range, call SetRangeEnd or apply or cancel the range.
For information about applying and canceling ranges, see “Applying or canceling a
range” on page 24-34.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call SetRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields specified must apply to the current index.

Warning Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, Delphi assumes the
ending value of the range is a null value. A range with null ending values is always
empty.

The easiest way to assign ending values is to call the FieldByName method. For
example,

with Contacts do
begin

SetRangeStart;
FieldByName('LastName').AsString := Edit1.Text;
SetRangeEnd;
FieldByName('LastName').AsString := Edit2.Text;
ApplyRange;

end;

U n d e r s t a n d i n g d a t a s e t s 24-33

U s i n g t a b l e t y p e d a t a s e t s

As with specifying start of range values, if you try to set a value for a field that is not
in the index, the dataset raises an exception.

To finish specifying the end of a range, apply or cancel the range. For information
about applying and canceling ranges, see “Applying or canceling a range” on
page 24-34.

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range
boundaries, you can call the SetRange procedure to put the dataset into dsSetKey state
and set the starting and ending values for a range with a single call.

SetRange takes two constant array parameters: a set of starting values, and a set of
ending values. For example, the following statement establishes a range based on a
two-column index:

SetRange([Edit1.Text, Edit2.Text], [Edit3.Text, Edit4.Text]);

For a multi-column index, you can specify starting and ending values for all or some
fields in the index. If you do not supply a value for a field used in the index, a null
value is assumed when you apply the range. To omit a value for the first field in an
index, and specify values for successive fields, pass a null value for the omitted field.

Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, the dataset assumes
the ending value of the range is a null value. A range with null ending values is
always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support
partial keys. For example, if an index is based on the LastName and FirstName
columns, the following range specifications are valid:

Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Zzzzzz';
Contacts.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith.” The value specification could also be:

Contacts['LastName'] := 'Sm';

This statement includes records that have LastName greater than or equal to “Sm.”

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified
starting range, and less than or equal to the specified ending range. This behavior is
controlled by the KeyExclusive property. KeyExclusive is False by default.

24-34 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

If you prefer, you can set the KeyExclusive property for a dataset to True to exclude
records equal to ending range. For example,

Contacts.KeyExclusive := True;
Contacts.SetRangeStart;
Contacts['LastName'] := 'Smith';
Contacts.SetRangeEnd;
Contacts['LastName'] := 'Tyler';
Contacts.ApplyRange;

This code includes all records in a range where LastName is greater than or equal to
“Smith” and less than “Tyler”.

Modifying a range
Two functions enable you to modify the existing boundary conditions for a range:
EditRangeStart, for changing the starting values for a range; and EditRangeEnd, for
changing the ending values for the range.

The process for editing and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and modifying the starting index value for
the range.

2 Modifying the ending index value for the range.

3 Applying the range to the dataset.

You can modify either the starting or ending values of the range, or you can modify
both boundary conditions. If you modify the boundary conditions for a range that is
currently applied to the dataset, the changes you make are not applied until you call
ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin
modifying the current list of starting values for the range. Once you call
EditRangeStart, subsequent assignments to the Fields property overwrite the current
index values to use when applying the range.

Tip If you initially created a start range based on a partial key, you can use EditRangeStart
to extend the starting value for a range. For more information about ranges based on
partial keys, see “Specifying a range based on partial keys” on page 24-33.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call EditRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range.

Applying or canceling a range
When you call SetRangeStart or EditRangeStart to specify the start of a range, or
SetRangeEnd or EditRangeEnd to specify the end of a range, the dataset enters the
dsSetKey state. It stays in that state until you apply or cancel the range.

U n d e r s t a n d i n g d a t a s e t s 24-35

U s i n g t a b l e t y p e d a t a s e t s

Applying a range
When you specify a range, the boundary conditions you define are not put into effect
until you apply the range. To make a range take effect, call the ApplyRange method.
ApplyRange immediately restricts a user’s view of and access to data in the specified
subset of the dataset.

Canceling a range
The CancelRange method ends application of a range and restores access to the full
dataset. Even though canceling a range restores access to all records in the dataset,
the boundary conditions for that range are still available so that you can reapply the
range at a later time. Range boundaries are preserved until you provide new range
boundaries or modify the existing boundaries. For example, the following code is
valid:

ƒ
MyTable.CancelRange;
ƒ
{later on, use the same range again. No need to call SetRangeStart, etc.}
MyTable.ApplyRange;
ƒ

Creating master/detail relationships

Table type datasets can be linked into master/detail relationships. When you set up a
master/detail relationship, you link two datasets so that all the records of one (the
detail) always correspond to the single current record in the other (the master).

Table type datasets support master/detail relationships in two very distinct ways:

• All table type datasets can act as the detail of another dataset by linking cursors.
This process is described in “Making the table a detail of another dataset” below.

• TTable, TSQLTable, and all client datasets can act as the master in a master/detail
relationship that uses nested detail tables. This process is described in “Using
nested detail tables” on page 24-37.

Each of these approaches has its unique advantages. Linking cursors lets you create
master/detail relationships where the master table is any type of dataset. With
nested details, the type of dataset that can act as the detail table is limited, but they
provide for more options in how to display the data. If the master is a client dataset,
nested details provide a more robust mechanism for applying cached updates.

Making the table a detail of another dataset
A table type dataset’s MasterSource and MasterFields properties can be used to
establish one-to-many relationships between two datasets.

The MasterSource property is used to specify a data source from which the table gets
data from the master table. This data source can be linked to any type of dataset. For
instance, by specifying a query’s data source in this property, you can link a client
dataset as the detail of the query, so that the client dataset tracks events occurring in
the query.

24-36 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

The dataset is linked to the master table based on its current index. Before you specify
the fields in the master dataset that are tracked by the detail dataset, first specify the
index in the detail dataset that starts with the corresponding fields. You can use
either the IndexName or the IndexFieldNames property.

Once you specify the index to use, use the MasterFields property to indicate the
column(s) in the master dataset that correspond to the index fields in the detail table.
To link datasets on multiple column names, separate field names with semicolons:

Parts.MasterFields := 'OrderNo;ItemNo';

To help create meaningful links between two datasets, you can use the Field Link
designer. To use the Field Link designer, double click on the MasterFields property in
the Object Inspector after you have assigned a MasterSource and an index.

The following steps create a simple form in which a user can scroll through customer
records and display all orders for the current customer. The master table is the
CustomersTable table, and the detail table is OrdersTable. The example uses the BDE-
based TTable component, but you can use the same methods to link any table type
datasets.

1 Place two TTable components and two TDataSource components in a data module.

2 Set the properties of the first TTable component as follows:

• DatabaseName: DBDEMOS
• TableName: CUSTOMER
• Name: CustomersTable

3 Set the properties of the second TTable component as follows:

• DatabaseName: DBDEMOS
• TableName: ORDERS
• Name: OrdersTable

4 Set the properties of the first TDataSource component as follows:

• Name: CustSource
• DataSet: CustomersTable

5 Set the properties of the second TDataSource component as follows:

• Name: OrdersSource
• DataSet: OrdersTable

6 Place two TDBGrid components on a form.

7 Choose File|Use Unit to specify that the form should use the data module.

8 Set the DataSource property of the first grid component to
“CustSource”, and set the DataSource property of the second grid to
“OrdersSource”.

U n d e r s t a n d i n g d a t a s e t s 24-37

U s i n g t a b l e t y p e d a t a s e t s

9 Set the MasterSource property of OrdersTable to “CustSource”. This links the
CUSTOMER table (the master table) to the ORDERS table (the detail table).

10 Double-click the MasterFields property value box in the Object Inspector to invoke
the Field Link Designer to set the following properties:

• In the Available Indexes field, choose CustNo to link the two tables by the
CustNo field.

• Select CustNo in both the Detail Fields and Master Fields field lists.

• Click the Add button to add this join condition. In the Joined Fields list,
“CustNo -> CustNo” appears.

• Choose OK to commit your selections and exit the Field Link Designer.

11 Set the Active properties of CustomersTable and OrdersTable to True to display data
in the grids on the form.

12 Compile and run the application.

If you run the application now, you will see that the tables are linked together, and
that when you move to a new record in the CUSTOMER table, you see only those
records in the ORDERS table that belong to the current customer.

Using nested detail tables
A nested table is a detail dataset that is the value of a single dataset field in another
(master) dataset. For datasets that represent server data, a nested detail dataset can
only be used for a dataset field on the server. TClientDataSet components do not
represent server data, but they can also contain dataset fields if you create a dataset
for them that contains nested details, or if they receive data from a provider that is
linked to the master table of a master/detail relationship.

Note For TClientDataSet, using nested detail sets is necessary if you want to apply updates
from master and detail tables to a database server.

To use nested detail sets, the ObjectView property of the master dataset must be True.
When your table type dataset contains nested detail datasets, TDBGrid provides
support for displaying the nested details in a popup window. For more information
on how this works, see “Displaying dataset fields” on page 25-27.

Alternately, you can display and edit detail datasets in data-aware controls by using
a separate dataset component for the detail set. At design time, create persistent
fields for the fields in your (master) dataset, using the Fields Editor: right click the
master dataset and choose Fields Editor. Add a new persistent field to your dataset
by right-clicking and choosing Add Fields. Define your new field with type DataSet
Field. In the Fields Editor, define the structure of the detail table. You must also add
persistent fields for any other fields used in your master dataset.

24-38 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

The dataset component for the detail table is a dataset descendant of a type allowed
by the master table. TTable components only allow TNestedDataSet components as
nested datasets. TSQLTable components allow other TSQLTable components.
TClientDataset components allow other client datasets. Choose a dataset of the
appropriate type from the Component palette and add it to your form or data
module. Set this detail dataset’s DataSetField property to the persistent DataSet field
in the master dataset. Finally, place a data source component on the form or data
module and set its DataSet property to the detail dataset. Data-aware controls can use
this data source to access the data in the detail set.

Controlling Read/write access to tables

By default when a table type dataset is opened, it requests read and write access for
the underlying database table. Depending on the characteristics of the underlying
database table, the requested write privilege may not be granted (for example, when
you request write access to an SQL table on a remote server and the server restricts
the table’s access to read only).

Note This is not true for TClientDataSet, which determines whether users can edit data
from information that the dataset provider supplies with data packets. It is also not
true for TSQLTable, which is a unidirectional dataset, and hence always read-only.

When the table opens, you can check the CanModify property to ascertain whether the
underlying database (or the dataset provider) allows users to edit the data in the
table. If CanModify is False, the application cannot write to the database. If CanModify
is True, your application can write to the database provided the table’s ReadOnly
property is False.

ReadOnly determines whether a user can both view and edit data. When ReadOnly is
False (the default), a user can both view and edit data. To restrict a user to viewing
data, set ReadOnly to True before opening the table.

Note ReadOnly is implemented on all table type datasets except TSQLTable, which is
always read-only.

Creating and deleting tables

Some table type datasets let you create and delete the underlying tables at design
time or at runtime. Typically, database tables are created and deleted by a database
administrator. However, it can be handy during application development and testing
to create and destroy database tables that your application can use.

Creating tables
TTable and TIBTable both let you create the underlying database table without using
SQL. Similarly, TClientDataSet lets you create a dataset when you are not working
with a dataset provider. Using TTable and TClientDataSet, you can create the table at
design time or runtime. TIBTable only lets you create tables at runtime.

U n d e r s t a n d i n g d a t a s e t s 24-39

U s i n g t a b l e t y p e d a t a s e t s

Before you can create the table, you must be set properties to specify the structure of
the table you are creating. In particular, you must specify

• The database that will host the new table. For TTable, you specify the database
using the DatabaseName property. For TIBTable, you must use a TIBDatabase
component, which is assigned to the Database property. (Client datasets do not use
a database.)

• The type of database (TTable only). Set the TableType property to the desired type
of table. For Paradox, dBASE, or ASCII tables, set TableType to ttParadox, ttDBase,
or ttASCII, respectively. For all other table types, set TableType to ttDefault.

• The name of the table you want to create. Both TTable and TIBTable have a
TableName property for the name of the new table. Client datasets do not use a
table name, but you should specify the FileName property before you save the new
table. If you create a table that duplicates the name of an existing table, the existing
table and all its data are overwritten by the newly created table. The old table and
its data cannot be recovered. To avoid overwriting an existing table, you can check
the Exists property at runtime. Exists is only available on TTable and TIBTable.

• The fields for the new table. There are two ways to do this:

• You can add field definitions to the FieldDefs property. At design time, double-
click the FieldDefs property in the Object Inspector to bring up the collection
editor. Use the collection editor to add, remove, or change the properties of the
field definitions. At runtime, clear any existing field definitions and then use
the AddFieldDef method to add each new field definition. For each new field
definition, set the properties of the TFieldDef object to specify the desired
attributes of the field.

• You can use persistent field components instead. At design time, double-click
on the dataset to bring up the Fields editor. In the Fields editor, right-click and
choose the New Field command. Describe the basic properties of your field.
Once the field is created, you can alter its properties in the Object Inspector by
selecting the field in the Fields editor.

• Indexes for the new table (optional). At design time, double-click the IndexDefs
property in the Object Inspector to bring up the collection editor. Use the
collection editor to add, remove, or change the properties of index definitions. At
runtime, clear any existing index definitions, and then use the AddIndexDef
method to add each new index definition. For each new index definition, set the
properties of the TIndexDef object to specify the desired attributes of the index.

Note You can’t define indexes for the new table if you are using persistent field
components instead of field definition objects.

To create the table at design time, right-click the dataset and choose Create Table
(TTable) or Create Data Set (TClientDataSet). This command does not appear on the
context menu until you have specified all the necessary information.

To create the table at runtime, call the CreateTable method (TTable and TIBTable) or the
CreateDataSet method (TClientDataSet).

24-40 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Note You can set up the definitions at design time and then call the CreateTable (or
CreateDataSet) method at runtime to create the table. However, to do so you must
indicate that the definitions specified at runtime should be saved with the dataset
component. (by default, field and index definitions are generated dynamically at
runtime). Specify that the definitions should be saved with the dataset by setting its
StoreDefs property to True.

Tip If you are using TTable, you can preload the field definitions and index definitions of
an existing table at design time. Set the DatabaseName and TableName properties to
specify the existing table. Right click the table component and choose Update Table
Definition. This automatically sets the values of the FieldDefs and IndexDefs
properties to describe the fields and indexes of the existing table. Next, reset the
DatabaseName and TableName to specify the table you want to create, canceling any
prompts to rename the existing table.

Note When creating Oracle8 tables, you can’t create object fields (ADT fields, array fields,
and dataset fields).

The following code creates a new table at runtime and associates it with the
DBDEMOS alias. Before it creates the new table, it verifies that the table name
provided does not match the name of an existing table:

var
TableFound: Boolean;

begin
with TTable.Create(nil) do // create a temporary TTable component
begin

try
{ set properties of the temporary TTable component }
Active := False;
DatabaseName := 'DBDEMOS';
TableName := Edit1.Text;
TableType := ttDefault;
{ define fields for the new table }
FieldDefs.Clear;
with FieldDefs.AddFieldDef do begin
Name := 'First';
DataType := ftString;
Size := 20;
Required := False;

end;
with FieldDefs.AddFieldDef do begin
Name := 'Second';
DataType := ftString;
Size := 30;
Required := False;

end;
{ define indexes for the new table }
IndexDefs.Clear;
with IndexDefs.AddIndexDef do begin
Name := '';
Fields := 'First';
Options := [ixPrimary];

end;

U n d e r s t a n d i n g d a t a s e t s 24-41

U s i n g t a b l e t y p e d a t a s e t s

TableFound := Exists; // check whether the table already exists
if TableFound then
if MessageDlg('Overwrite existing table ' + Edit1.Text + '?',

mtConfirmation, mbYesNoCancel, 0) = mrYes then
TableFound := False;

if not TableFound then
CreateTable; // create the table

finally
Free; // destroy the temporary TTable when done

end;
end;

end;

Deleting tables
TTable and TIBTable let you delete tables from the underlying database table without
using SQL. To delete a table at runtime, call the dataset’s DeleteTable method. For
example, the following statement removes the table underlying a dataset:

CustomersTable.DeleteTable;

Caution When you delete a table with DeleteTable, the table and all its data are gone forever.

If you are using TTable, you can also delete tables at design time: Right-click the table
component and select Delete Table from the context menu. The Delete Table menu
pick is only present if the table component represents an existing database table (the
DatabaseName and TableName properties specify an existing table).

Emptying tables

Many table type datasets supply a single method that lets you delete all rows of data
in the table.

• For TTable and TIBTable, you can delete all the records by calling the EmptyTable
method at runtime:

PhoneTable.EmptyTable;

• For TADOTable, you can use the DeleteRecords method.

PhoneTable.DeleteRecords;

• For TSQLTable, you can use the DeleteRecords method as well. Note, however, that
the TSQLTable version of DeleteRecords never takes any parameters.

PhoneTable.DeleteRecords;

• For client datasets, you can use the EmptyDataSet method.

PhoneTable.EmptyDataSet;

Note For tables on SQL servers, these methods only succeed if you have DELETE privilege
for the table.

Caution When you empty a dataset, the data you delete is gone forever.

24-42 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

Synchronizing tables

If you have two or more datasets that represent the same database table but do not
share a data source component, then each dataset has its own view on the data and
its own current record. As users access records through each datasets, the
components’ current records will differ.

If the datasets are all instances of TTable, or all instances of TIBTable, or all client
datasets, you can force the current record for each of these datasets to be the same by
calling the GotoCurrent method. GotoCurrent sets its own dataset’s current record to
the current record of a matching dataset. For example, the following code sets the
current record of CustomerTableOne to be the same as the current record of
CustomerTableTwo:

CustomerTableOne.GotoCurrent(CustomerTableTwo);

Tip If your application needs to synchronize datasets in this manner, put the datasets in a
data module and add the unit for the data module to the uses clause of each unit that
accesses the tables.

To synchronize datasets from separate forms, you must add one form’s unit to the
uses clause of the other, and you must qualify at least one of the dataset names with
its form name. For example:

CustomerTableOne.GotoCurrent(Form2.CustomerTableTwo);

Using query-type datasets
To use a query-type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server to query. Each query-type dataset does this
differently, but typically you specify a database connection component:

• For TQuery, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOQuery, specify a TADOConnection component using the Connection
property.

• For TSQLQuery, specify a TSQLConnection component using the SQLConnection
property.

• For TIBQuery, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 23,
“Connecting to databases.”

3 Specify an SQL statement in the SQL property of the dataset, and optionally
specify any parameters for the statement. For more information, see “Specifying
the query” on page 24-43 and “Using parameters in queries” on page 24-45.

U n d e r s t a n d i n g d a t a s e t s 24-43

U s i n g q u e r y - t y p e d a t a s e t s

4 If the query data is to be used with visual data controls, add a data source
component to the data module, and set its DataSet property to the query-type
dataset. The data source component forwards the results of the query (called a
result set) to data-aware components for display. Connect data-aware components
to the data source using their DataSource and DataField properties.

5 Activate the query component. For queries that return a result set, use the Active
property or the Open method. To execute queries that only perform an action on a
table and return no result set, use the ExecSQL method at runtime. If you plan to
execute the query more than once, you may want to call Prepare to initialize the
data access layer and bind parameter values into the query. For information about
preparing a query, see “Preparing queries” on page 24-48.

Specifying the query

For true query-type datasets, you use the SQL property to specify the SQL statement
for the dataset to execute. Some datasets, such as TADODataSet, TSQLDataSet, and
client datasets, use a CommandText property to accomplish the same thing.

Most queries that return records are SELECT commands. Typically, they define the
fields to include, the tables from which to select those fields, conditions that limit
what records to include, and the order of the resulting dataset. For example:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = 1225
ORDER BY SaleDate

Queries that do not return records include statements that use Data Definition
Language (DDL) or Data Manipulation Language (DML) statements other than
SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE INDEX,
and ALTER TABLE commands do not return any records). The language used in
commands is server-specific, but usually compliant with the SQL-92 standard for the
SQL language.

The SQL command you execute must be acceptable to the server you are using.
Datasets neither evaluate the SQL nor execute it. They merely pass the command to
the server for execution. In most cases, the SQL command must be only one complete
SQL statement, although that statement can be as complex as necessary (for example,
a SELECT statement with a WHERE clause that uses several nested logical operators
such as AND and OR). Some servers also support “batch” syntax that permits
multiple statements; if your server supports such syntax, you can enter multiple
statements when you specify the query.

The SQL statements used by queries can be verbatim, or they can contain replaceable
parameters. Queries that use parameters are called parameterized queries. When you
use parameterized queries, the actual values assigned to the parameters are inserted
into the query before you execute, or run, the query. Using parameterized queries is
very flexible, because you can change a user’s view of and access to data on the fly at
runtime without having to alter the SQL statement. For more information about
parameterized queries, see “Using parameters in queries” on page 24-45.

24-44 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

Specifying a query using the SQL property
When using a true query-type dataset (TQuery, TADOQuery, TSQLQuery, or
TIBQuery), assign the query to the SQL property. The SQL property is a TStrings
object. Each separate string in this TStrings object is a separate line of the query.
Using multiple lines does not affect the way the query executes on the server, but can
make it easier to modify and debug the query if you divide the statement into logical
units:

MyQuery.Close;
MyQuery.SQL.Clear;
MyQuery.SQL.Add('SELECT CustNo, OrderNO, SaleDate');
MyQuery.SQL.Add(' FROM Orders');
MyQuery.SQL.Add('ORDER BY SaleDate');
MyQuery.Open;

The code below demonstrates modifying only a single line in an existing SQL
statement. In this case, the ORDER BY clause already exists on the third line of the
statement. It is referenced via the SQL property using an index of 2.

MyQuery.SQL[2] := ‘ORDER BY OrderNo’;

Note The dataset must be closed when you specify or modify the SQL property.

At design time, use the String List editor to specify the query. Click the ellipsis button
by the SQL property in the Object Inspector to display the String List editor.

Note With some versions of Delphi, if you are using TQuery, you can also use the SQL
Builder to construct a query based on a visible representation of tables and fields in a
database. To use the SQL Builder, select the query component, right-click it to invoke
the context menu, and choose Graphical Query Editor. To learn how to use SQL
Builder, open it and use its online help.

Because the SQL property is a TStrings object, you can load the text of the query from
a file by calling the TStrings.LoadFromFile method:

MyQuery.SQL.LoadFromFile('custquery.sql');

You can also use the Assign method of the SQL property to copy the contents of a
string list object into the SQL property. The Assign method automatically clears the
current contents of the SQL property before copying the new statement:

MyQuery.SQL.Assign(Memo1.Lines);

Specifying a query using the CommandText property
When using TADODataSet, TSQLDataSet, or a client dataset, assign the text of the
query statement to the CommandText property:

MyQuery.CommandText := 'SELECT CustName, Address FROM Customer';

At design time, you can type the query directly into the Object Inspector, or, if the
dataset already has an active connection to the database, you can click the ellipsis
button by the CommandText property to display the Command Text editor. The
Command Text editor lists the available tables, and the fields in those tables, to make
it easier to compose your queries.

U n d e r s t a n d i n g d a t a s e t s 24-45

U s i n g q u e r y - t y p e d a t a s e t s

Using parameters in queries

A parameterized SQL statement contains parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values,
such as those used in a WHERE clause for comparisons, that appear in an SQL
statement. Ordinarily, parameters stand in for data values passed to the statement.
For example, in the following INSERT statement, values to insert are passed as
parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, :Name, :Capital, and :Population are placeholders for actual
values supplied to the statement at runtime by your application. Note that the names
of parameters begin with a colon. The colon is required so that the parameter names
can be distinguished from literal values. You can also include unnamed parameters
by adding a question mark (?) to your query. Unnamed parameters are identified by
position, because they do not have unique names.

Before the dataset can execute the query, you must supply values for any parameters
in the query text. TQuery, TIBQuery, TSQLQuery, and client datasets use the Params
property to store these values. TADOQuery uses the Parameters property instead.
Params (or Parameters) is a collection of parameter objects (TParam or TParameter),
where each object represents a single parameter. When you specify the text for the
query, the dataset generates this set of parameter objects, and (depending on the
dataset type) initializes any of their properties that it can deduce from the query.

Note You can suppress the automatic generation of parameter objects in response to
changing the query text by setting the ParamCheck property to False. This is useful for
data definition language (DDL) statements that contain parameters as part of the
DDL statement that are not parameters for the query itself. For example, the DDL
statement to create a stored procedure may define parameters that are part of the
stored procedure. By setting ParamCheck to False, you prevent these parameters from
being mistaken for parameters of the query.

Parameter values must be bound into the SQL statement before it is executed for the
first time. Query components do this automatically for you even if you do not
explicitly call the Prepare method before executing a query.

Tip It is a good programming practice to provide variable names for parameters that
correspond to the actual name of the column with which it is associated. For
example, if a column name is “Number,” then its corresponding parameter would be
“:Number”. Using matching names is especially important if the dataset uses a data
source to obtain parameter values from another dataset. This process is described in
“Establishing master/detail relationships using parameters” on page 24-47.

Supplying parameters at design time
At design time, you can specify parameter values using the parameter collection
editor. To display the parameter collection editor, click on the ellipsis button for the
Params or Parameters property in the Object Inspector. If the SQL statement does not
contain any parameters, no objects are listed in the collection editor.

24-46 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

Note The parameter collection editor is the same collection editor that appears for other
collection properties. Because the editor is shared with other properties, its right-click
context menu contains the Add and Delete commands. However, they are never
enabled for query parameters. The only way to add or delete parameters is in the
SQL statement itself.

For each parameter, select it in the parameter collection editor. Then use the Object
Inspector to modify its properties.

When using the Params property (TParam objects), you will want to inspect or modify
the following:

• The DataType property lists the data type for the parameter’s value. For some
datasets, this value may be correctly initialized. If the dataset did not deduce the
type, DataType is ftUnknown, and you must change it to indicate the type of the
parameter value.

The DataType property lists the logical data type for the parameter. In general,
these data types conform to server data types. For specific logical type-to-server
data type mappings, see the documentation for the data access mechanism (BDE,
dbExpress, InterBase).

• The ParamType property lists the type of the selected parameter. For queries, this is
always ptInput, because queries can only contain input parameters. If the value of
ParamType is ptUnknown, change it to ptInput.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

When using the Parameters property (TParameter objects), you will want to inspect or
modify the following:

• The DataType property lists the data type for the parameter’s value. For some data
types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property lists the type of the selected parameter. For queries, this is
always pdInput, because queries can only contain input parameters.

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

U n d e r s t a n d i n g d a t a s e t s 24-47

U s i n g q u e r y - t y p e d a t a s e t s

Supplying parameters at runtime
To create parameters at runtime, you can use the

• ParamByName method to assign values to a parameter based on its name (not
available for TADOQuery)

• Params or Parameters property to assign values to a parameter based on the
parameter’s ordinal position within the SQL statement.

• Params.ParamValues or Parameters.ParamValues property to assign values to one or
more parameters in a single command line, based on the name of each parameter
set.

The following code uses ParamByName to assign the text of an edit box to the :Capital
parameter:

SQLQuery1.ParamByName('Capital').AsString := Edit1.Text;

The same code can be rewritten using the Params property, using an index of 0
(assuming the :Capital parameter is the first parameter in the SQL statement):

SQLQuery1.Params[0].AsString := Edit1.Text;

The command line below sets three parameters at once, using the
Params.ParamValues property:

Query1.Params.ParamValues['Name;Capital;Continent'] :=
VarArrayOf([Edit1.Text, Edit2.Text, Edit3.Text]);

Note that ParamValues uses Variants, avoiding the need to cast values.

Establishing master/detail relationships using parameters

To set up a master/detail relationship where the detail set is a query-type dataset,
you must specify a query that uses parameters. These parameters refer to current
field values on the master dataset. Because the current field values on the master
dataset change dynamically at runtime, you must rebind the detail set’s parameters
every time the master record changes. Although you could write code to do this
using an event handler, all query-type datasets except TIBQuery provide an easier
mechanism using the DataSource property.

If parameter values for a parameterized query are not bound at design time or
specified at runtime, query-type datasets attempt to supply values for them based on
the DataSource property. DataSource identifies a different dataset that is searched for
field names that match the names of unbound parameters. This search dataset can be
any type of dataset. The search dataset must be created and populated before you
create the detail dataset that uses it. If matches are found in the search dataset, the
detail dataset binds the parameter values to the values of the fields in the current
record pointed to by the data source.

24-48 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

To illustrate how this works, consider two tables: a customer table and an orders
table. For every customer, the orders table contains a set of orders that the customer
made. The Customer table includes an ID field that specifies a unique customer ID.
The orders table includes a CustID field that specifies the ID of the customer who
made an order.

The first step is to set up the Customer dataset:

1 Add a table type dataset to your application and bind it to the Customer table.

2 Add a TDataSource component named CustomerSource. Set its DataSet property to
the dataset added in step 1. This data source now represents the Customer dataset.

3 Add a query-type dataset and set its SQL property to

SELECT CustID, OrderNo, SaleDate
FROM Orders
WHERE CustID = :ID

Note that the name of the parameter is the same as the name of the field in the
master (Customer) table.

4 Set the detail dataset’s DataSource property to CustomerSource. Setting this
property makes the detail dataset a linked query.

At runtime the :ID parameter in the SQL statement for the detail dataset is not
assigned a value, so the dataset tries to match the parameter by name against a
column in the dataset identified by CustomersSource. CustomersSource gets its data
from the master dataset, which, in turn, derives its data from the Customer table.
Because the Customer table contains a column called “ID,” the value from the ID
field in the current record of the master dataset is assigned to the :ID parameter for
the detail dataset’s SQL statement. The datasets are linked in a master-detail
relationship. Each time the current record changes in the Customers dataset, the
detail dataset’s SELECT statement executes to retrieve all orders based on the current
customer id.

Preparing queries

Preparing a query is an optional step that precedes query execution. Preparing a
query submits the SQL statement and its parameters, if any, to the data access layer
and the database server for parsing, resource allocation, and optimization. In some
datasets, the dataset may perform additional setup operations when preparing the
query. These operations improve query performance, making your application
faster, especially when working with updatable queries.

An application can prepare a query by setting the Prepared property to True. If you do
not prepare a query before executing it, the dataset automatically prepares it for you
each time you call Open or ExecSQL. Even though the dataset prepares queries for
you, you can improve performance by explicitly preparing the dataset before you
open it the first time.

CustQuery.Prepared := True;

U n d e r s t a n d i n g d a t a s e t s 24-49

U s i n g q u e r y - t y p e d a t a s e t s

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you add a parameter).

Note When you change the text of the SQL property for a query, the dataset automatically
closes and unprepares the query.

Executing queries that don’t return a result set

When a query returns a set of records (such as a SELECT query), you execute the
query the same way you populate any dataset with records: by setting Active to True
or calling the Open method.

However, often SQL commands do not return any records. Such commands include
statements that use Data Definition Language (DDL) or Data Manipulation
Language (DML) statements other than SELECT statements (For example, INSERT,
DELETE, UPDATE, CREATE INDEX, and ALTER TABLE commands do not return
any records).

For all query-type datasets, you can execute a query that does not return a result set
by calling ExecSQL:

CustomerQuery.ExecSQL; { query does not return a result set }

Tip If you are executing the query multiple times, it is a good idea to set the Prepared
property to True.

Although the query does not return any records, you may want to know the number
of records it affected (for example, the number of records deleted by a DELETE
query). The RowsAffected property gives the number of affected records after a call to
ExecSQL.

Tip When you do not know at design time whether the query returns a result set (for
example, if the user supplies the query dynamically at runtime), you can code both
types of query execution statements in a try...except block. Put a call to the Open
method in the try clause. An action query is executed when the query is activated
with the Open method, but an exception occurs in addition to that. Check the
exception, and suppress it if it merely indicates the lack of a result set. (For example,
TQuery indicates this by an ENoResultSet exception.)

Using unidirectional result sets

When a query-type dataset returns a result set, it also receives a cursor, or pointer to
the first record in that result set. The record pointed to by the cursor is the currently
active record. The current record is the one whose field values are displayed in data-
aware components associated with the result set’s data source. Unless you are using
dbExpress, this cursor is bi-directional by default. A bi-directional cursor can
navigate both forward and backward through its records. Bi-directional cursor
support requires some additional processing overhead, and can slow some queries.

24-50 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

If you do not need to be able to navigate backward through a result set, TQuery and
TIBQuery let you improve query performance by requesting a unidirectional cursor
instead. To request a unidirectional cursor, set the UniDirectional property to True.

Set UniDirectional before preparing and executing a query. The following code
illustrates setting UniDirectional prior to preparing and executing a query:

if not (CustomerQuery.Prepared) then
begin

CustomerQuery.UniDirectional := True;
CustomerQuery.Prepared := True;

end;
CustomerQuery.Open; { returns a result set with a one-way cursor }

Note Do not confuse the UniDirectional property with a unidirectional dataset.
Unidirectional datasets (TSQLDataSet, TSQLTable, TSQLQuery, and TSQLStoredProc)
use dbExpress, which only returns unidirectional cursors. In addition to restricting
the ability to navigate backwards, unidirectional datasets do not buffer records, and
so have additional limitations (such as the inability to use filters).

Using stored procedure-type datasets
How your application uses a stored procedure depends on how the stored procedure
was coded, whether and how it returns data, the specific database server used, or a
combination of these factors.

In general terms, to access a stored procedure on a server, an application must:

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that defines the stored procedure. Each stored
procedure-type dataset does this differently, but typically you specify a database
connection component:

• For TStoredProc, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOStoredProc, specify a TADOConnection component using the
Connection property.

• For TSQLStoredProc, specify a TSQLConnection component using the
SQLConnection property.

• For TIBStoredProc, specify a TIBConnection component using the Database
property.

For information about using database connection components, see Chapter 23,
“Connecting to databases.”

3 Specify the stored procedure to execute. For most stored procedure-type datasets,
you do this by setting the StoredProcName property. The one exception is
TADOStoredProc, which has a ProcedureName property instead.

U n d e r s t a n d i n g d a t a s e t s 24-51

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

4 If the stored procedure returns a cursor to be used with visual data controls, add a
data source component to the data module, and set its DataSet property to the
stored procedure-type dataset. Connect data-aware components to the data source
using their DataSource and DataField properties.

5 Provide input parameter values for the stored procedure, if necessary. If the server
does not provide information about all stored procedure parameters, you may
need to provide additional input parameter information, such as parameter names
and data types. For information about working with stored procedure parameters,
see “Working with stored procedure parameters” on page 24-51.

6 Execute the stored procedure. For stored procedures that return a cursor, use the
Active property or the Open method. To execute stored procedures that do not
return any results or that only return output parameters, use the ExecProc method
at runtime. If you plan to execute the stored procedure more than once, you may
want to call Prepare to initialize the data access layer and bind parameter values
into the stored procedure. For information about preparing a query, see
“Executing stored procedures that don’t return a result set” on page 24-55.

7 Process any results. These results can be returned as result and output parameters,
or they can be returned as a result set that populates the stored procedure-type
dataset. Some stored procedures return multiple cursors. For details on how to
access the additional cursors, see “Fetching multiple result sets” on page 24-56.

Working with stored procedure parameters

There are four types of parameters that can be associated with stored procedures:

• Input parameters, used to pass values to a stored procedure for processing.

• Output parameters, used by a stored procedure to pass return values to an
application.

• Input/output parameters, used to pass values to a stored procedure for processing,
and used by the stored procedure to pass return values to the application.

• A result parameter, used by some stored procedures to return an error or status
value to an application. A stored procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and
on a specific instance of a stored procedure. For any server, individual stored
procedures may or may not use input parameters. On the other hand, some uses of
parameters are server-specific. For example, on MS-SQL Server and Sybase stored
procedures always return a result parameter, but the InterBase implementation of a
stored procedure never returns a result parameter.

24-52 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Access to stored procedure parameters is provided by the Params property (in
TStoredProc, TSQLStoredProc, TIBStoredProc) or the Parameters property (in
TADOStoredProc). When you assign a value to the StoredProcName (or ProcedureName)
property, the dataset automatically generates objects for each parameter of the stored
procedure. For some datasets, if the stored procedure name is not specified until
runtime, objects for each parameter must be programmatically created at that time.
Not specifying the stored procedure and manually creating the TParam or TParameter
objects allows a single dataset to be used with any number of available stored
procedures.

Note Some stored procedures return a dataset in addition to output and result parameters.
Applications can display dataset records in data-aware controls, but must separately
process output and result parameters.

Setting up parameters at design time
You can specify stored procedure parameter values at design time using the
parameter collection editor. To display the parameter collection editor, click on the
ellipsis button for the Params or Parameters property in the Object Inspector.

Important You can assign values to input parameters by selecting them in the parameter
collection editor and using the Object Inspector to set the Value property. However,
do not change the names or data types for input parameters reported by the server.
Otherwise, when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, you must
set up the parameters manually using the parameter collection editor. Right click and
choose Add to add parameters. For each parameter you add, you must fully describe
the parameter. Even if you do not need to add any parameters, you should check the
properties of individual parameter objects to ensure that they are correct.

If the dataset has a Params property (TParam objects), the following properties must
be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. When using
TSQLStoredProc, some data types require additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

U n d e r s t a n d i n g d a t a s e t s 24-53

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

• The ParamType property indicates the type of the selected parameter. This can be
ptInput (for input parameters), ptOutput (for output parameters), ptInputOutput
(for input/output parameters) or ptResult (for result parameters).

• The Value property specifies a value for the selected parameter. You can never set
values for output and result parameters. These types of parameters have values
set by the execution of the stored procedure. For input and input/output
parameters, you can leave Value blank if your application supplies parameter
values at runtime.

If the dataset uses a Parameters property (TParameter objects), the following properties
must be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. For some
data types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property gives the type of the selected parameter. This can be
pdInput (for input parameters), pdOutput (for output parameters), pdInputOutput
(for input/output parameters) or pdReturnValue (for result parameters).

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. Do not set values
for output and result parameters. For input and input/output parameters, you can
leave Value blank if your application supplies parameter values at runtime.

24-54 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Using parameters at runtime
With some datasets, if the name of the stored procedure is not specified until
runtime, no TParam objects are automatically created for parameters and they must
be created programmatically. This can be done using the TParam.Create method or
the TParams.AddParam method:

var
P1, P2: TParam;

begin
ƒ
with StoredProc1 do begin

StoredProcName := 'GET_EMP_PROJ';
Params.Clear;
P1 := TParam.Create(Params, ptInput);
P2 := TParam.Create(Params, ptOutput);
try

Params[0].Name := ‘EMP_NO’;
Params[1].Name := ‘PROJ_ID’;
ParamByname(‘EMP_NO’).AsSmallInt := 52;
ExecProc;
Edit1.Text := ParamByname(‘PROJ_ID’).AsString;

finally
P1.Free;
P2.Free;

end;
end;
ƒ

end;

Even if you do not need to add the individual parameter objects at runtime, you may
want to access individual parameter objects to assign values to input parameters and
to retrieve values from output parameters. You can use the dataset’s ParamByName
method to access individual parameters based on their names. For example, the
following code sets the value of an input/output parameter, executes the stored
procedure, and retrieves the returned value:

with SQLStoredProc1 do
begin

ParamByName('IN_OUTVAR').AsInteger := 103;
ExecProc;
IntegerVar := ParamByName('IN_OUTVAR').AsInteger;

end;

U n d e r s t a n d i n g d a t a s e t s 24-55

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Preparing stored procedures

As with query-type datasets, stored procedure-type datasets must be prepared
before they execute the stored procedure. Preparing a stored procedure tells the data
access layer and the database server to allocate resources for the stored procedure
and to bind parameters. These operations can improve performance.

If you attempt to execute a stored procedure before preparing it, the dataset
automatically prepares it for you, and then unprepares it after it executes. If you plan
to execute a stored procedure a number of times, it is more efficient to explicitly
prepare it by setting the Prepared property to True.

MyProc.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
stored procedure are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change the parameters when using Oracle
overloaded procedures).

Executing stored procedures that don’t return a result set

When a stored procedure returns a cursor, you execute it the same way you populate
any dataset with records: by setting Active to True or calling the Open method.

However, often stored procedures do not return any data, or only return results in
output parameters. You can execute a stored procedure that does not return a result
set by calling ExecProc. After executing the stored procedure, you can use the
ParamByName method to read the value of the result parameter or of any output
parameters:

MyStoredProcedure.ExecProc; { does not return a result set }
Edit1.Text := MyStoredProcedure.ParamByName('OUTVAR').AsString;

Note TADOStoredProc does not have a ParamByName method. To obtain output parameter
values when using ADO, access parameter objects using the Parameters property.

Tip If you are executing the procedure multiple times, it is a good idea to set the Prepared
property to True.

24-56 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Fetching multiple result sets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. If you are using TSQLStoredProc or TADOStoredProc, you
can access the other sets of records by calling the NextRecordSet method:

var
DataSet2: TCustomSQLDataSet;

begin
DataSet2 := SQLStoredProc1.NextRecordSet;
ƒ

In TSQLStoredProc, NextRecordSet returns a newly created TCustomSQLDataSet
component that provides access to the next set of records. In TADOStoredProc,
NextRecordset returns an interface that can be assigned to the RecordSet property of an
existing ADO dataset. For either class, the method returns the number of records in
the returned dataset as an output parameter.

The first time you call NextRecordSet, it returns the second set of records. Calling
NextRecordSet again returns a third dataset, and so on, until there are no more sets of
records. When there are no additional cursors, NextRecordSet returns nil.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-1

C h a p t e r

25
Chapter25Working with field components

This chapter describes the properties, events, and methods common to the TField
object and its descendants. Field components represent individual fields (columns) in
datasets. This chapter also describes how to use field components to control the
display and editing of data in your applications.

Field components are always associated with a dataset. You never use a TField object
directly in your applications. Instead, each field component in your application is a
TField descendant specific to the datatype of a column in a dataset. Field components
provide data-aware controls such as TDBEdit and TDBGrid access to the data in a
particular column of the associated dataset.

Generally speaking, a single field component represents the characteristics of a single
column, or field, in a dataset, such as its data type and size. It also represents the
field’s display characteristics, such as alignment, display format, and edit format. For
example, a TFloatField component has four properties that directly affect the
appearance of its data:

As you scroll from record to record in a dataset, a field component lets you view and
change the value for that field in the current record.

Table 25.1 TFloatField properties that affect data display

Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to
show).

EditFormat Specifies how to display a value during editing.

25-2 D e v e l o p e r ’ s G u i d e

D y n a m i c f i e l d c o m p o n e n t s

Field components have many properties in common with one another (such as
DisplayWidth and Alignment), and they have properties specific to their data types
(such as Precision for TFloatField). Each of these properties affect how data appears to
an application’s users on a form. Some properties, such as Precision, can also affect
what data values the user can enter in a control when modifying or entering data.

All field components for a dataset are either dynamic (automatically generated for
you based on the underlying structure of database tables), or persistent (generated
based on specific field names and properties you set in the Fields editor). Dynamic
and persistent fields have different strengths and are appropriate for different types
of applications. The following sections describe dynamic and persistent fields in
more detail and offer advice on choosing between them.

Dynamic field components
Dynamically generated field components are the default. In fact, all field components
for any dataset start out as dynamic fields the first time you place a dataset on a data
module, specify how that dataset fetches its data, and open it. A field component is
dynamic if it is created automatically based on the underlying physical characteristics
of the data represented by a dataset. Datasets generate one field component for each
column in the underlying data. The exact TField descendant created for each column
is determined by field type information received from the database or (for
TClientDataSet) from a provider component.

Dynamic fields are temporary. They exist only as long as a dataset is open. Each time
you reopen a dataset that uses dynamic fields, it rebuilds a completely new set of
dynamic field components based on the current structure of the data underlying the
dataset. If the columns in the underlying data change, then the next time you open a
dataset that uses dynamic field components, the automatically generated field
components are also changed to match.

Use dynamic fields in applications that must be flexible about data display and
editing. For example, to create a database browsing tool such as SQL explorer, you
must use dynamic fields because every database table has different numbers and
types of columns. You might also want to use dynamic fields in applications where
user interaction with data mostly takes place inside grid components and you know
that the datasets used by the application change frequently.

To use dynamic fields in an application:

1 Place datasets and data sources in a data module.

2 Associate the datasets with data. This involves using a connection component or
provider to connect to the source of the data and setting any properties that
specify what data the dataset represents.

3 Associate the data sources with the datasets.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-3

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Place data-aware controls in the application’s forms, add the data module to each
uses clause for each form’s unit, and associate each data-aware control with a data
source in the module. In addition, associate a field with each data-aware control
that requires one. Note that because you are using dynamic field components,
there is no guarantee that any field name you specify will exist when the dataset is
opened.

5 Open the datasets.

Aside from ease of use, dynamic fields can be limiting. Without writing code, you
cannot change the display and editing defaults for dynamic fields, you cannot safely
change the order in which dynamic fields are displayed, and you cannot prevent
access to any fields in the dataset. You cannot create additional fields for the dataset,
such as calculated fields or lookup fields, and you cannot override a dynamic field’s
default data type. To gain control and flexibility over fields in your database
applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent field components
By default, dataset fields are dynamic. Their properties and availability are
automatically set and cannot be changed in any way. To gain control over a field’s
properties and events you must create persistent fields for the dataset. Persistent
fields let you

• Set or change the field’s display or edit characteristics at design time or runtime.

• Create new fields, such as lookup fields, calculated fields, and aggregated fields,
that base their values on existing fields in a dataset.

• Validate data entry.

• Remove field components from the list of persistent components to prevent your
application from accessing particular columns in an underlying database.

• Define new fields to replace existing fields, based on columns in the table or query
underlying a dataset.

At design time, you can—and should—use the Fields editor to create persistent lists
of the field components used by the datasets in your application. Persistent field
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed. Once you create persistent
fields with the Fields editor, you can also create event handlers for them that respond
to changes in data values and that validate data entries.

Note When you create persistent fields for a dataset, only those fields you select are
available to your application at design time and runtime. At design time, you can
always use the Fields editor to add or remove persistent fields for a dataset.

25-4 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

All fields used by a single dataset are either persistent or dynamic. You cannot mix
field types in a single dataset. If you create persistent fields for a dataset, and then
want to revert to dynamic fields, you must remove all persistent fields from the
dataset. For more information about dynamic fields, see “Dynamic field
components” on page 25-2.

Note One of the primary uses of persistent fields is to gain control over the appearance and
display of data. You can also control the appearance of columns in data-aware grids.
To learn about controlling column appearance in grids, see “Creating a customized
grid” on page 20-17.

Creating persistent fields

Persistent field components created with the Fields editor provide efficient, readable,
and type-safe programmatic access to underlying data. Using persistent field
components guarantees that each time your application runs, it always uses and
displays the same columns, in the same order even if the physical structure of the
underlying database has changed. Data-aware components and program code that
rely on specific fields always work as expected. If a column on which a persistent
field component is based is deleted or changed, Delphi generates an exception rather
than running the application against a nonexistent column or mismatched data.

To create persistent fields for a dataset:

1 Place a dataset in a data module.

2 Bind the dataset to its underlying data. This typically involves associating the
dataset with a connection component or provider and specifying any properties to
describe the data. For example, If you are using TADODataSet, you can set the
Connection property to a properly configured TADOConnection component and set
the CommandText property to a valid query.

3 Double-click the dataset component in the data module to invoke the Fields editor.
The Fields editor contains a title bar, navigator buttons, and a list box.

The title bar of the Fields editor displays both the name of the data module or form
containing the dataset, and the name of the dataset itself. For example, if you open
the Customers dataset in the CustomerData data module, the title bar displays
‘CustomerData.Customers,’ or as much of the name as fits.

Below the title bar is a set of navigation buttons that let you scroll one-by-one
through the records in an active dataset at design time, and to jump to the first or
last record. The navigation buttons are dimmed if the dataset is not active or if the
dataset is empty. If the dataset is unidirectional, the buttons for moving to the last
record and the previous record are always dimmed.

The list box displays the names of persistent field components for the dataset. The
first time you invoke the Fields editor for a new dataset, the list is empty because
the field components for the dataset are dynamic, not persistent. If you invoke the
Fields editor for a dataset that already has persistent field components, you see the
field component names in the list box.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-5

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Choose Add Fields from the Fields editor context menu.

5 Select the fields to make persistent in the Add Fields dialog box. By default, all
fields are selected when the dialog box opens. Any fields you select become
persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields
editor list box. Fields in the Fields editor list box are persistent. If the dataset is active,
note, too, that the Next and (if the dataset is not unidirectional) Last navigation
buttons above the list box are enabled.

From now on, each time you open the dataset, it no longer creates dynamic field
components for every column in the underlying database. Instead it only creates
persistent components for the fields you specified.

Each time you open the dataset, it verifies that each non-calculated persistent field
exists or can be created from data in the database. If it cannot, the dataset raises an
exception warning you that the field is not valid, and does not open the dataset.

Arranging persistent fields

The order in which persistent field components are listed in the Fields editor list box
is the default order in which the fields appear in a data-aware grid component. You
can change field order by dragging and dropping fields in the list box.

To change the order of fields:

1 Select the fields. You can select and order one or more fields at a time.

2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are
inserted as a contiguous block. Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an
individual field’s order in the list.

Defining new persistent fields

Besides making existing dataset fields into persistent fields, you can also create
special persistent fields as additions to or replacements of the other persistent fields
in a dataset.

New persistent fields that you create are only for display purposes. The data they
contain at runtime are not retained either because they already exist elsewhere in the
database, or because they are temporary. The physical structure of the data
underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields
editor and choose New field. The New Field dialog box appears.

25-6 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

The New Field dialog box contains three group boxes: Field properties, Field type,
and Lookup definition.

• The Field properties group box lets you enter general field component
information. Enter the field name in the Name edit box. The name you enter here
corresponds to the field component’s FieldName property. The New Field dialog
uses this name to build a component name in the Component edit box. The name
that appears in the Component edit box corresponds to the field component’s
Name property and is only provided for informational purposes (Name is the
identifier by which you refer to the field component in your source code). The
dialog discards anything you enter directly in the Component edit box.

• The Type combo box in the Field properties group lets you specify the field
component’s data type. You must supply a data type for any new field component
you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. Use the Size edit box to specify the maximum
number of characters that can be displayed or entered in a string-based field, or
the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

• The Field type radio group lets you specify the type of new field component to
create. The default type is Data. If you choose Lookup, the Dataset and Source
Fields edit boxes in the Lookup definition group box are enabled. You can also
create Calculated fields, and if you are working with a client dataset, you can
create InternalCalc fields or Aggregate fields. The following table describes these
types of fields you can create:

The Lookup definition group box is only used to create lookup fields. This is described
more fully in “Defining a lookup field” on page 25-9.

Defining a data field
A data field replaces an existing field in a dataset. For example, for programmatic
reasons you might want to replace a TSmallIntField with a TIntegerField. Because
you cannot change a field’s data type directly, you must define a new field to replace
it.

Important Even though you define a new field to replace an existing field, the field you define
must derive its data values from an existing column in a table underlying a dataset.

Table 25.2 Special persistent field kinds

Field kind Purpose

Data Replaces an existing field (for example to change its data type)

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you
specify. (not supported by unidirectional datasets)

InternalCalc Displays values calculated at runtime by a client dataset and stored with its data.

Aggregate Displays a value summarizing the data in a set of records from a client dataset.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-7

P e r s i s t e n t f i e l d c o m p o n e n t s

To create a replacement data field for a field in a table underlying a dataset, follow
these steps:

1 Remove the field from the list of persistent fields assigned for the dataset, and then
choose New Field from the context menu.

2 In the New Field dialog box, enter the name of an existing field in the database
table in the Name edit box. Do not enter a new field name. You are actually
specifying the name of the field from which your new field will derive its data.

3 Choose a new data type for the field from the Type combo box. The data type you
choose should be different from the data type of the field you are replacing. You
cannot replace a string field of one size with a string field of another size. Note that
while the data type should be different, it must be compatible with the actual data
type of the field in the underlying table.

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.

6 Choose OK. The New Field dialog box closes, the newly defined data field
replaces the existing field you specified in Step 1, and the component declaration
in the data module or form’s type declaration is updated.

To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 25-11.

Defining a calculated field
A calculated field displays values calculated at runtime by a dataset’s OnCalcFields
event handler. For example, you might create a string field that displays
concatenated values from other fields.

To create a calculated field in the New Field dialog box:

1 Enter a name for the calculated field in the Name edit box. Do not enter the name
of an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Calculated or InternalCalc in the Field type radio group. InternalCalc is only
available if you are working with a client dataset. The significant difference
between these types of calculated fields is that the values calculated for an
InternalCalc field are stored and retrieved as part of the client dataset’s data.

25-8 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

5 Choose OK. The newly defined calculated field is automatically added to the end
of the list of persistent fields in the Field editor list box, and the component
declaration is automatically added to the form’s or data module’s type
declaration.

6 Place code that calculates values for the field in the OnCalcFields event handler for
the dataset. For more information about writing code to calculate field values, see
“Programming a calculated field” on page 25-8.

Note To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 25-11.

Programming a calculated field
After you define a calculated field, you must write code to calculate its value.
Otherwise, it always has a null value. Code for a calculated field is placed in the
OnCalcFields event for its dataset.

To program a value for a calculated field:

1 Select the dataset component from the Object Inspector drop-down list.

2 Choose the Object Inspector Events page.

3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure
for the dataset component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

For example, suppose you have created a CityStateZip calculated field for the
Customers table on the CustomerData data module. CityStateZip should display a
company’s city, state, and zip code on a single line in a data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers
table from the Object Inspector drop-down list, switch to the Events page, and
double-click the OnCalcFields property.

The TCustomerData.CustomersCalcFields procedure appears in the unit’s source code
window. Add the following code to the procedure to calculate the field:

CustomersCityStateZip.Value := CustomersCity.Value + ', ' + CustomersState.Value
+ ' ' + CustomersZip.Value;

Note When writing the OnCalcFields event handler for an internally calculated field, you
can improve performance by checking the client dataset’s State property and only
recomputing the value when State is dsInternalCalc. See “Using internally calculated
fields in client datasets” on page 29-11 for details.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-9

P e r s i s t e n t f i e l d c o m p o n e n t s

Defining a lookup field
A lookup field is a read-only field that displays values at runtime based on search
criteria you specify. In its simplest form, a lookup field is passed the name of an
existing field to search on, a field value to search for, and a different field in a lookup
dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a
lookup field to determine automatically the city and state that correspond to the zip
code a customer provides. The column to search on might be called ZipTable.Zip, the
value to search for is the customer’s zip code as entered in Order.CustZip, and the
values to return would be those for the ZipTable.City and ZipTable.State columns of
the record where the value of ZipTable.Zip matches the current value in the
Order.CustZip field.

Note Unidirectional datasets do not support lookup fields.

To create a lookup field in the New Field dialog box:

1 Enter a name for the lookup field in the Name edit box. Do not enter the name of
an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset
and Key Fields combo boxes.

5 Choose from the Dataset combo box drop-down list the dataset in which to look
up field values. The lookup dataset must be different from the dataset for the field
component itself, or a circular reference exception is raised at runtime. Specifying
a lookup dataset enables the Lookup Keys and Result Field combo boxes.

6 Choose from the Key Fields drop-down list a field in the current dataset for which
to match values. To match more than one field, enter field names directly instead
of choosing from the drop-down list. Separate multiple field names with
semicolons. If you are using more than one field, you must use persistent field
components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to
match against the Source Fields field you specified in step 6. If you specified more
than one key field, you must specify the same number of lookup keys. To specify
more than one field, enter field names directly, separating multiple field names
with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return
as the value of the lookup field you are creating.

When you design and run your application, lookup field values are determined
before calculated field values are calculated. You can base calculated fields on lookup
fields, but you cannot base lookup fields on calculated fields.

25-10 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

You can use the LookupCache property to hone the way lookup fields are determined.
LookupCache determines whether the values of a lookup field are cached in memory
when a dataset is first opened, or looked up dynamically every time the current
record in the dataset changes. Set LookupCache to True to cache the values of a lookup
field when the LookupDataSet is unlikely to change and the number of distinct lookup
values is small. Caching lookup values can speed performance, because the lookup
values for every set of LookupKeyFields values are preloaded when the DataSet is
opened. When the current record in the DataSet changes, the field object can locate its
Value in the cache, rather than accessing the LookupDataSet. This performance
improvement is especially dramatic if the LookupDataSet is on a network where
access is slow.

Tip nilTrueIf every record of DataSet has different values for KeyFields, the overhead of
locating values in the cache can be greater than any performance benefit provided by
the cache. The overhead of locating values in the cache increases with the number of
distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call
RefreshLookupList to update the values in the lookup cache. RefreshLookupList
regenerates the LookupList property, which contains the value of the LookupResultField
for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

Defining an aggregate field
An aggregate field displays values from a maintained aggregate in a client dataset.
An aggregate is a calculation that summarizes the data in a set of records. See “Using
maintained aggregates” on page 29-11 for details about maintained aggregates.

To create an aggregate field in the New Field dialog box:

1 Enter a name for the aggregate field in the Name edit box. Do not enter the name
of an existing field.

2 Choose aggregate data type for the field from the Type combo box.

3 Select Aggregate in the Field type radio group.

4 Choose OK. The newly defined aggregate field is automatically added to the client
dataset and its Aggregates property is automatically updated to include the
appropriate aggregate specification.

5 Place the calculation for the aggregate in the ExprText property of the newly
created aggregate field. For more information about defining an aggregate, see
“Specifying aggregates” on page 29-12.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-11

P e r s i s t e n t f i e l d c o m p o n e n t s

Once a persistent TAggregateField is created, a TDBText control can be bound to the
aggregate field. The TDBText control will then display the value of the aggregate
field that is relevant to the current record of the underlying client data set.

Deleting persistent field components

Deleting a persistent field component is useful for accessing a subset of available
columns in a table, and for defining your own persistent fields to replace a column in
a table. To remove one or more persistent field components for a dataset:

1 Select the field(s) to remove in the Fields editor list box.

2 Press Del.

Note You can also delete selected fields by invoking the context menu and choosing
Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by
data-aware controls. You can always recreate a persistent field component that you
delete by accident, but any changes previously made to its properties or events is
lost. For more information, see “Creating persistent fields” on page 25-4.

Note If you remove all persistent field components for a dataset, the dataset reverts to
using dynamic field components for every column in the underlying database table.

Setting persistent field properties and events

You can set properties and customize events for persistent field components at
design time. Properties control the way a field is displayed by a data-aware
component, for example, whether it can appear in a TDBGrid, or whether its value
can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

To set the properties of a field component or write customized event handlers for it,
select the component in the Fields editor, or select it from the component list in the
Object Inspector.

Setting display and edit properties at design time
To edit the display properties of a selected field component, switch to the Properties
page on the Object Inspector window. The following table summarizes display
properties that can be edited.

Table 25.3 Field component properties

Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a data-
aware component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

25-12 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Currency Numeric fields only.
True: displays monetary values.
False (default): does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware component.

DisplayLabel Specifies the column name for a field in a data-aware grid component.

DisplayWidth Specifies the width, in characters, of a grid column that display this field.

EditFormat Specifies the edit format of data in a data-aware component.

EditMask Limits data-entry in an editable field to specified types and ranges of
characters, and specifies any special, non-editable characters that appear
within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field to create.

FieldName Specifies the actual name of a column in the table from which the field
derives its value and data type.

HasConstraints Indicates whether there are constraint conditions imposed on a field.

ImportedConstraint Specifies an SQL constraint imported from the Data Dictionary or an
SQL server.

Index Specifies the order of the field in a dataset.

LookupDataSet Specifies the table used to look up field values when Lookup is True.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a
lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values into
this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for
the field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for
the field.

Name Specifies the component name of the field component within Delphi.

Origin Specifies the name of the field as it appears in the underlying database.

Precision Numeric fields only. Specifies the number of significant digits.

ReadOnly True: Displays field values in data-aware controls, but prevents editing.
False (the default): Permits display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or
entered in a string-based field, or the size, in bytes, of TBytesField and
TVarBytesField fields.

Tag Long integer bucket available for programmer use in every component
as needed.

Transliterate True (default): specifies that translation to and from the respective
locales will occur as data is transferred between a dataset and a database.
False: Locale translation does not occur.

Visible True (the default): Permits display of field in a data-aware grid.
False: Prevents display of field in a data-aware grid component.
User-defined components can make display decisions based on this
property.

Table 25.3 Field component properties (continued)

Property Purpose

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-13

P e r s i s t e n t f i e l d c o m p o n e n t s

Not all properties are available for all field components. For example, a field
component of type TStringField does not have Currency, MaxValue, or DisplayFormat
properties, and a component of type TFloatField does not have a Size property.

While the purpose of most properties is straightforward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using DisplayFormat, EditFormat, and
EditMask, see “Controlling and masking user input” on page 25-15.

Setting field component properties at runtime
You can use and manipulate the properties of field component at runtime. Access
persistent field components by name, where the name can be obtained by
concatenating the field name to the dataset name.

For example, the following code sets the ReadOnly property for the CityStateZip field
in the Customers table to True:

CustomersCityStateZip.ReadOnly := True;

And this statement changes field ordering by setting the Index property of the
CityStateZip field in the Customers table to 3:

CustomersCityStateZip.Index := 3;

Creating attribute sets for field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), it is more convenient to set the properties for a
single field, then store those properties as an attribute set in the Data Dictionary.
Attribute sets stored in the data dictionary can be easily applied to other fields.

Note Attribute sets and the Data Dictionary are only available for BDE-enabled datasets.

To create an attribute set based on a field component in a dataset:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to set properties.

3 Set the desired properties for the field in the Object Inspector.

4 Right-click the Fields editor list box to invoke the context menu.

5 Choose Save Attributes to save the current field’s property settings as an attribute
set in the Data Dictionary.

The name for the attribute set defaults to the name of the current field. You can
specify a different name for the attribute set by choosing Save Attributes As instead
of Save Attributes from the context menu.

25-14 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Once you have created a new attribute set and added it to the Data Dictionary, you
can then associate it with other persistent field components. Even if you later remove
the association, the attribute set remains defined in the Data Dictionary.

Note You can also create attribute sets directly from the SQL Explorer. When you create an
attribute set using SQL Explorer, it is added to the Data Dictionary, but not applied to
any fields. SQL Explorer lets you specify two additional attributes: a field type (such
as TFloatField, TStringField, and so on) and a data-aware control (such as TDBEdit,
TDBCheckBox, and so on) that are automatically placed on a form when a field based
on the attribute set is dragged to the form. For more information, see the online help
for the SQL Explorer.

Associating attribute sets with field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), and you have saved those property settings as
attribute sets in the Data Dictionary, you can easily apply the attribute sets to fields
without having to recreate the settings manually for each field. In addition, if you
later change the attribute settings in the Data Dictionary, those changes are
automatically applied to every field associated with the set the next time field
components are added to the dataset.

To apply an attribute set to a field component:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to apply an attribute set.

3 Invoke the context menu and choose Associate Attributes.

4 Select or enter the attribute set to apply from the Associate Attributes dialog box. If
there is an attribute set in the Data Dictionary that has the same name as the
current field, that set name appears in the edit box.

Important If the attribute set in the Data Dictionary is changed at a later date, you must reapply
the attribute set to each field component that uses it. You can invoke the Fields editor
and multi-select field components within a dataset when reapplying attributes.

Removing attribute associations
If you change your mind about associating an attribute set with a field, you can
remove the association by following these steps:

1 Invoke the Fields editor for the dataset containing the field.

2 Select the field or fields from which to remove the attribute association.

3 Invoke the context menu for the Fields editor and choose Unassociate Attributes.

Important Unassociating an attribute set does not change any field properties. A field retains
the settings it had when the attribute set was applied to it. To change these
properties, select the field in the Fields editor and set its properties in the Object
Inspector.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-15

P e r s i s t e n t f i e l d c o m p o n e n t s

Controlling and masking user input
The EditMask property provides a way to control the type and range of values a user
can enter into a data-aware component associated with TStringField, TDateField,
TTimeField, and TDateTimeField, and TSQLTimeStampField components. You can use
existing masks or create your own. The easiest way to use and create edit masks is
with the Input Mask editor. You can, however, enter masks directly into the EditMask
field in the Object Inspector.

Note For TStringField components, the EditMask property is also its display format.

To invoke the Input Mask editor for a field component:

1 Select the component in the Fields editor or Object Inspector.

2 Click the Properties page in the Object Inspector.

3 Double-click the values column for the EditMask field in the Object Inspector, or
click the ellipsis button. The Input Mask editor opens.

The Input Mask edit box lets you create and edit a mask format. The Sample Masks
grid lets you select from predefined masks. If you select a sample mask, the mask
format appears in the Input Mask edit box where you can modify it or use it as is.
You can test the allowable user input for a mask in the Test Input edit box.

The Masks button enables you to load a custom set of masks—if you have created
one—into the Sample Masks grid for easy selection.

Using default formatting for numeric, date, and time fields
Delphi provides built-in display and edit format routines and intelligent default
formatting for TFloatField, TCurrencyField, TBCDField, TFMTBCDField, TIntegerField,
TSmallIntField, TWordField, TDateField, TDateTimeField, and TTimeField, and
TSQLTimeStampField components. To use these routines, you need do nothing.

Default formatting is performed by the following routines:

Only format properties appropriate to the data type of a field component are
available for a given component.

Default formatting conventions for date, time, currency, and numeric values are
based on the Regional Settings properties in the Control Panel. For example, using
the default settings for the United States, a TFloatField column with the Currency
property set to True sets the DisplayFormat property for the value 1234.56 to $1234.56,
while the EditFormat is 1234.56.

Table 25.4 Field component formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField,

SQLTimeStampToString TSQLTimeStampField

FormatCurr TCurrencyField, TBCDField

BcdToStrF TFMTBCDField

25-16 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

At design time or runtime, you can edit the DisplayFormat and EditFormat properties
of a field component to override the default display settings for that field. You can
also write OnGetText and OnSetText event handlers to do custom formatting for field
components at runtime.

Handling events
Like most components, field components have events associated with them. Methods
can be assigned as handlers for these events. By writing these handlers you can react
to the occurrence of events that affect data entered in fields through data-aware
controls and perform actions of your own design. The following table lists the events
associated with field components:

OnGetText and OnSetText events are primarily useful to programmers who want to
do custom formatting that goes beyond the built-in formatting functions. OnChange
is useful for performing application-specific tasks associated with data change, such
as enabling or disabling menus or visual controls. OnValidate is useful when you
want to control data-entry validation in your application before returning values to a
database server.

To write an event handler for a field component:

1 Select the component.

2 Select the Events page in the Object Inspector.

3 Double-click the Value field for the event handler to display its source code
window.

4 Create or edit the handler code.

Table 25.5 Field component events

Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.

OnValidate Called to validate the value for a field component whenever the value is changed
because of an edit or insert operation.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-17

W o r k i n g w i t h f i e l d c o m p o n e n t m e t h o d s a t r u n t i m e

Working with field component methods at runtime
Field components methods available at runtime enable you to convert field values
from one data type to another, and enable you to set focus to the first data-aware
control in a form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important
when your application performs record-oriented data validation in a dataset event
handler (such as BeforePost). Validation may be performed on the fields in a record
whether or not its associated data-aware control has focus. Should validation fail for
a particular field in the record, you want the data-aware control containing the faulty
data to have focus so that the user can enter corrections.

You control focus for a field’s data-aware components with a field’s FocusControl
method. FocusControl sets focus to the first data-aware control in a form that is
associated with a field. An event handler should call a field’s FocusControl method
before validating the field. The following code illustrates how to call the FocusControl
method for the Company field in the Customers table:

CustomersCompany.FocusControl;

The following table lists some other field component methods and their uses. For a
complete list and detailed information about using each method, see the entries for
TField and its descendants in the online VCL Reference.

Table 25.6 Selected field component methods

Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function
based on the field’s type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a value is
allowed for this field.

SetData Assigns unformatted data to this field.

25-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values
associated with field components. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database.
In general, the built-in properties and methods of data-aware controls enable them to
connect to datasets, display values, and make updates without requiring extra
programming on your part. Use them whenever possible in your database
applications. For more information about data-aware control, see Chapter 20, “Using
data controls.”

Standard controls can also display and edit database values associated with field
components. Using standard controls, however, may require additional
programming on your part. For example, when using standard controls, your
application is responsible for tracking when to update controls because field values
change. If the dataset has a datasource component, you can use its events to help you
do this. In particular, the OnDataChange event lets you know when you may need to
update a control’s value and the OnStateChange event can help you determine when
to enable or disable controls. For more information on these events, see “Responding
to changes mediated by the data source” on page 20-4.

The following topics discuss how to work with field values so that you can display
them in standard controls.

Displaying field component values in standard controls

An application can access the value of a dataset column through the Value property
of a field component. For example, the following OnDataChange event handler
updates the text in a TEdit control because the value of the CustomersCompany field
may have changed:

procedure TForm1.CustomersDataChange(Sender: TObject, Field: TField);
begin

Edit3.Text := CustomersCompany.Value;
end;

This method works well for string values, but may require additional programming
to handle conversions for other data types. Fortunately, field components have built-
in properties for handling conversions.

Note You can also use Variants to access and set field values. For more information about
using variants to access and set field values, see “Accessing field values with the
default dataset property” on page 25-20.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-19

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Converting field values

Conversion properties attempt to convert one data type to another. For example, the
AsString property converts numeric and Boolean values to string representations.
The following table lists field component conversion properties, and which
properties are recommended for field components by field-component class:

Note that some columns in the table refer to more than one conversion property
(such as AsFloat, AsCurrency, and AsBCD). This is because all field data types that
support one of those properties always support the others as well.

Note also that the AsVariant property can translate among all data types. For any
datatypes not listed above, AsVariant is also available (and is, in fact, the only option).
When in doubt, use AsVariant.

AsVariant AsString AsInteger

AsFloat
AsCurrency
AsBCD

AsDateTime
AsSQLTimeStamp AsBoolean

TStringField yes NA yes yes yes yes

TWideStringField yes yes yes yes yes yes

TIntegerField yes yes NA yes

TSmallIntField yes yes yes yes

TWordField yes yes yes yes

TLargeintField yes yes yes yes

TFloatField yes yes yes yes

TCurrencyField yes yes yes yes

TBCDField yes yes yes yes

TFMTBCDField yes yes yes yes

TDateTimeField yes yes yes yes

TDateField yes yes yes yes

TTimeField yes yes yes yes

TSQLTimeStampField yes yes yes yes

TBooleanField yes yes

TBytesField yes yes

TVarBytesField yes yes

TBlobField yes yes

TMemoField yes yes

TGraphicField yes yes

TVariantField NA yes yes yes yes yes

TAggregateField yes yes

25-20 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

In some cases, conversions are not always possible. For example, AsDateTime can be
used to convert a string to a date, time, or datetime format only if the string value is
in a recognizable datetime format. A failed conversion attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not
always intuitive. For example, what does it mean to convert a TDateTimeField value
into a float format? AsFloat converts the date portion of the field to the number of
days since 12/31/1899, and it converts the time portion of the field to a fraction of 24
hours. Table 25.7 lists permissible conversions that produce special results:

In other cases, conversions are not possible at all. In these cases, attempting a
conversion also raises an exception.

Conversion always occurs before an assignment is made. For example, the following
statement converts the value of CustomersCustNo to a string and assigns the string to
the text of an edit control:

Edit1.Text := CustomersCustNo.AsString;

Conversely, the next statement assigns the text of an edit control to the
CustomersCustNo field as an integer:

MyTableMyField.AsInteger := StrToInt(Edit1.Text);

Accessing field values with the default dataset property

The most general method for accessing a field’s value is to use Variants with the
FieldValues property. For example, the following statement puts the value of an edit
box into the CustNo field in the Customers table:

Customers.FieldValues['CustNo'] := Edit2.Text;

Because the FieldValues property is of type Variant, it automatically converts other
datatypes into a Variant value.

For more information about Variants, see the online help.

Table 25.7 Special conversion results

Conversion Result

String to Boolean Converts “True,” “False,” “Yes,” and “No” to Boolean. Other values
raise exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime or
SQLTimeStamp to Float

Converts date to number of days since 12/31/1899, time to a fraction of
24 hours.

Boolean to String Converts any Boolean value to “True” or “False.”

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-21

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Accessing field values with a dataset’s Fields property

You can access the value of a field with the Fields property of the dataset component
to which the field belongs. Fields maintains an indexed list of all the fields in the
dataset. Accessing field values with the Fields property is useful when you need to
iterate over a number of columns, or if your application works with tables that are
not available to you at design time.

To use the Fields property you must know the order of and data types of fields in the
dataset. You use an ordinal number to specify the field to access. The first field in a
dataset is numbered 0. Field values must be converted as appropriate using each
field component’s conversion properties. For more information about field
component conversion properties, see “Converting field values” on page 25-19.

For example, the following statement assigns the current value of the seventh column
(Country) in the Customers table to an edit control:

Edit1.Text := CustTable.Fields[6].AsString;

Conversely, you can assign a value to a field by setting the Fields property of the
dataset to the desired field. For example:

begin
Customers.Edit;
Customers.Fields[6].AsString := Edit1.Text;
Customers.Post;

end;

Accessing field values with a dataset’s FieldByName method

You can also access the value of a field with a dataset’s FieldByName method. This
method is useful when you know the name of the field you want to access, but do not
have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to
access. You pass the field’s name as an argument to the method. To access or change
the field’s value, convert the result with the appropriate field component conversion
property, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

Edit2.Text := Customers.FieldByName('CustNo').AsString;

Conversely, you can assign a value to a field:

begin
Customers.Edit;
Customers.FieldByName('CustNo').AsString := Edit2.Text;
Customers.Post;

end;

25-22 D e v e l o p e r ’ s G u i d e

S e t t i n g a d e f a u l t v a l u e f o r a f i e l d

Setting a default value for a field
You can specify how a default value for a field in a client dataset or a BDE-enabled
dataset should be calculated at runtime using the DefaultExpression property.
DefaultExpression can be any valid SQL value expression that does not refer to field
values. If the expression contains literals other than numeric values, they must
appear in quotes. For example, a default value of noon for a time field would be

‘12:00:00’

including the quotes around the literal value.

Note If the underlying database table defines a default value for the field, the default you
specify in DefaultExpression takes precedence. That is because DefaultExpression is
applied when the dataset posts the record containing the field, before the edited
record is applied to the database server.

Working with constraints
Field components in client datasets or BDE-enabled datasets can use SQL server
constraints. In addition, your applications can create and use custom constraints for
these datasets that are local to your application. All constraints are rules or
conditions that impose a limit on the scope or range of values that a field can store.

Creating a custom constraint

A custom constraint is not imported from the server like other constraints. It is a
constraint that you declare, implement, and enforce in your local application. As
such, custom constraints can be useful for offering a prevalidation enforcement of
data entry, but a custom constraint cannot be applied against data received from or
sent to a server application.

To create a custom constraint, set the CustomConstraint property to specify a
constraint condition, and set ConstraintErrorMessage to the message to display when a
user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints
imposed on the field’s value. Set CustomConstraint to limit the values that the user
can enter into a field. CustomConstraint can be any valid SQL search expression such
as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved
SQL keyword, as long as it is used consistently throughout the constraint expression.

Note Custom constraints are only available in BDE-enabled and client datasets.

Custom constraints are imposed in addition to any constraints to the field’s value
that come from the server. To see the constraints imposed by the server, read the
ImportedConstraint property.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-23

U s i n g o b j e c t f i e l d s

Using server constraints

Most production SQL databases use constraints to impose conditions on the possible
values for a field. For example, a field may not permit NULL values, may require that
its value be unique for that column, or that its values be greater than 0 and less than
150. While you could replicate such conditions in your client applications, client
datasets and BDE-enabled datasets offer the ImportedConstraint property to
propagate a server’s constraints locally.

ImportedConstraint is a read-only property that specifies an SQL clause that limits
field values in some manner. For example:

Value > 0 and Value < 100

Do not change the value of ImportedConstraint, except to edit nonstandard or server-
specific SQL that has been imported as a comment because it cannot be interpreted
by the database engine.

To add additional constraints on the field value, use the CustomConstraint property.
Custom constraints are imposed in addition to the imported constraints. If the server
constraints change, the value of ImportedConstraint also changed but constraints
introduced in the CustomConstraint property persist.

Removing constraints from the ImportedConstraint property will not change the
validity of field values that violate those constraints. Removing constraints results in
the constraints being checked by the server instead of locally. When constraints are
checked locally, the error message supplied as the ConstraintErrorMessage property is
displayed when violations are found, instead of displaying an error message from
the server.

Using object fields
Object fields are fields that represent a composite of other, simpler datatypes. These
include ADT (Abstract Data Type) fields, Array fields, DataSet fields, and Reference
fields. All of these field types either contain or reference child fields or other data
sets.

ADT fields and array fields are fields that contain child fields. The child fields of an
ADT field can be any scalar or object type (that is, any other field type). These child
fields may differ in type from each other. An array field contains an array of child
fields, all of the same type.

25-24 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Dataset and reference fields are fields that access other data sets. A dataset field
provides access to a nested (detail) dataset and a reference field stores a pointer
(reference) to another persistent object (ADT).

When you add fields with the Fields editor to a dataset that contains object fields,
persistent object fields of the correct type are automatically created for you. Adding
persistent object fields to a dataset automatically sets the dataset’s ObjectView
property to True, which instructs the dataset to store these fields hierarchically, rather
than flattening them out as if the constituent child fields were separate, independent
fields.

The following properties are common to all object fields and provide the
functionality to handle child fields and datasets.

Displaying ADT and array fields

Both ADT and array fields contain child fields that can be displayed through data-
aware controls.

Data-aware controls such as TDBEdit that represent a single field value display child
field values in an uneditable comma delimited string. In addition, if you set the
control’s DataField property to the child field instead of the object field itself, the child
field can be viewed an edited just like any other normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the
value of the dataset’s ObjectView property. When ObjectView is False, each child field
appears in a single column. When ObjectView is True, an ADT or array field can be
expanded and collapsed by clicking on the arrow in the title bar of the column. When
the field is expanded, each child field appears in its own column and title bar, all
below the title bar of the ADT or array itself. When the ADT or array is collapsed,
only one column appears with an uneditable comma-delimited string containing the
child fields.

Table 25.8 Types of object field components

Component name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

Table 25.9 Common object field descendant properties

Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classifies the object field.

FieldCount Number of child fields belonging to the object field.

FieldValues Provides access to the values of the child fields.

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-25

U s i n g o b j e c t f i e l d s

Working with ADT fields

ADTs are user-defined types created on the server, and are similar to the record type.
An ADT can contain most scalar field types, array fields, reference fields, and nested
ADTs.

There are a variety of ways to access the data in ADT field types. These are illustrated
in the following examples, which assign a child field value to an edit box called
CityEdit, and use the following ADT structure,

Address
Street
City
State
Zip

Using persistent field components
The easiest way to access ADT field values is to use persistent field components. For
the ADT structure above, the following persistent fields can be added to the Customer
table using the Fields editor:

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

Given these persistent fields, you can simply access the child fields of an ADT field
by name:

CityEdit.Text := CustomerAddrCity.AsString;

Although persistent fields are the easiest way to access ADT child fields, it is not
possible to use them if the structure of the dataset is not known at design time. When
accessing ADT child fields without using persistent fields, you must set the dataset’s
ObjectView property to True.

Using the dataset’s FieldByName method
You can access the children of an ADT field using the dataset’s FieldByName method
by qualifying the name of the child field with the ADT field’s name:

CityEdit.Text := Customer.FieldByName(‘Address.City’).AsString;

Using the dateset’s FieldValues property
You can also use qualified field names with a dataset’s FieldValues property:

CityEdit.Text := Customer['Address.City'];

Note that you can omit the property name (FieldValues) because FieldValues is the
dataset’s default property.

Note Unlike other runtime methods for accessing ADT child field values, the FieldValues
property works even if the dataset’s ObjectView property is False.

25-26 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using the ADT field’s FieldValues property
You can access the value of a child field with the TADTField’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. The index parameter is an integer value that specifies the offset of the field.

CityEdit.Text := TADTField(Customer.FieldByName('Address')).FieldValues[1];

Because FieldValues is the default property of TADTField, the property name
(FieldValues) can be omitted. Thus, the following statement is equivalent to the one
above:

CityEdit.Text := TADTField(Customer.FieldByName('Address'))[1];

Using the ADT field’s Fields property
Each ADT field has a Fields property that is analogous to the Fields property of a
dataset. Like the Fields property of a dataset, you can use it to access child fields by
position:

CityEdit.Text := TADTField(Customer.FieldByName(‘Address’)).Fields[1].AsString;

or by name:

CityEdit.Text :=
TADTField(Customer.FieldByName(‘Address’)).Fields.FieldByName(‘City’).AsString;

Working with array fields

Array fields consist of a set of fields of the same type. The field types can be scalar
(for example, float, string), or non-scalar (an ADT), but an array field of arrays is not
permitted. The SparseArrays property of TDataSet determines whether a unique
TField object is created for each element of the array field.

There are a variety of ways to access the data in array field types. If you are not using
persistent fields, the dataset’s ObjectView property must be set to True before you can
access the elements of an array field.

Using persistent fields
You can map persistent fields to the individual array elements in an array field. For
example, consider an array field TelNos_Array, which is a six element array of strings.
The following persistent fields created for the Customer table component represent
the TelNos_Array field and its six elements:

CustomerTelNos_Array: TArrayField;
CustomerTelNos_Array0: TStringField;
CustomerTelNos_Array1: TStringField;
CustomerTelNos_Array2: TStringField;
CustomerTelNos_Array3: TStringField;
CustomerTelNos_Array4: TStringField;
CustomerTelNos_Array5: TStringField;

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-27

U s i n g o b j e c t f i e l d s

Given these persistent fields, the following code uses a persistent field to assign an
array element value to an edit box named TelEdit.

TelEdit.Text := CustomerTelNos_Array0.AsString;

Using the array field’s FieldValues property
You can access the value of a child field with the array field’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert child fields of
any type. For example,

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array')).FieldValues[1];

Because FieldValues is the default property of TArrayField, this can also be written

TelEdit.Text := TArrayField(Customer.FieldByName('TelNos_Array'))[1];

Using the array field’s Fields property
TArrayField has a Fields property that you can use to access individual sub-fields. This
is illustrated below, where an array field (OrderDates) is used to populate a list box
with all non-null array elements:

for I := 0 to OrderDates.Size - 1 do
begin

if not OrderDates.Fields[I].IsNull then
OrderDateListBox.Items.Add(OrderDates[I]);

end;

Working with dataset fields

Dataset fields provide access to data stored in a nested dataset. The NestedDataSet
property references the nested dataset. The data in the nested dataset is then accessed
through the field objects of the nested dataset.

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid
control, a dataset field is indicated in each cell of a dataset column with the string
“(DataSet)”, and at runtime an ellipsis button also exists to the right. Clicking on the
ellipsis brings up a new form with a grid displaying the dataset associated with the
current record’s dataset field. This form can also be brought up programmatically
with the DB grid’s ShowPopupEditor method. For example, if the seventh column in
the grid represents a dataset field, the following code will display the dataset
associated with that field for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

25-28 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a
nested data set is just that, a data set, the means to get at its data is via a TDataSet
descendant. The type of dataset you use is determined by the parent dataset (the one
with the dataset field.) For example, a BDE-enabled dataset uses TNestedTable to
represent the data in its dataset fields, while client datasets use other client datasets.

To access the data in a dataset field,

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the values in that dataset field. It must be of a type
compatible with the parent dataset.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the nested dataset field for the current record has a value, the detail dataset
component will contain records with the nested data; otherwise, the detail dataset
will be empty.

Before inserting records into a nested dataset, you should be sure to post the
corresponding record in the master table, if it has just been inserted. If the inserted
record is not posted, it will be automatically posted before the nested dataset posts.

Working with reference fields

Reference fields store a pointer or reference to another ADT object. This ADT object is
a single record of another object table. Reference fields always refer to a single record
in a dataset (object table). The data in the referenced object is actually returned in a
nested dataset, but can also be accessed via the Fields property on the TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column,
with (Reference) and, at runtime, an ellipsis button to the right. At runtime, clicking
on the ellipsis brings up a new form with a grid displaying the object associated with
the current record’s reference field.

This form can also be brought up programmatically with the DB grid’s
ShowPopupEditor method. For example, if the seventh column in the grid represents a
reference field, the following code will display the object associated with that field
for the current record.

DBGrid1.ShowPopupEditor(DBGrid1.Columns[7]);

W o r k i n g w i t h f i e l d c o m p o n e n t s 25-29

U s i n g o b j e c t f i e l d s

Accessing data in a reference field
You can access the data in a reference field in the same way you access a nested
dataset:

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the value of that dataset field.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the reference is assigned, the reference dataset will contain a single record with the
referenced data. If the reference is null, the reference dataset will be empty.

You can also use the reference field’s Fields property to access the data in a reference
field. For example, the following lines are equivalent and assign data from the
reference field CustomerRefCity to an edit box called CityEdit:

CityEdit.Text := CustomerRefCity.Fields[1].AsString;
CityEdit.Text := CustomerRefCity.NestedDataSet.Fields[1].AsString;

When data in a reference field is edited, it is actually the referenced data that is
modified.

To assign a reference field, you need to first use a SELECT statement to select the
reference from the table, and then assign. For example:

var
AddressQuery: TQuery;
CustomerAddressRef: TReferenceField;

begin
AddressQuery.SQL.Text := ‘SELECT REF(A) FROM AddressTable A WHERE A.City = ‘’San
Francisco’’’;
AddressQuery.Open;
CustomerAddressRef.Assign(AddressQuery.Fields[0]);

end;

25-30 D e v e l o p e r ’ s G u i d e

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-1

C h a p t e r

26
Chapter26Using the Borland Database Engine

The Borland Database Engine (BDE) is a data-access mechanism that can be shared
by several applications. The BDE defines a powerful library of API calls that can
create, restructure, fetch data from, update, and otherwise manipulate local and
remote database servers. The BDE provides a uniform interface to access a wide
variety of database servers, using drivers to connect to different databases.
Depending on your edition of Delphi, you can use the drivers for local databases
(Paradox, dBASE, FoxPro, and Access) and an ODBC adapter that lets you supply
your own ODBC drivers.

When deploying BDE-based applications, you must include the BDE with your
application. While this increases the size of the application and the complexity of
deployment, the BDE can be shared with other BDE-based applications and provides
a broad range of support for database manipulation. Although you can use the BDE’s
API directly in your application, the components on the BDE page of the Component
palette wrap most of this functionality for you.

BDE-based architecture
When using the BDE, your application uses a variation of the general database
architecture described in “Database architecture” on page 19-6. In addition to the
user interface elements, datasource, and datasets common to all Delphi database
applications, A BDE-based application can include

• One or more database components to control transactions and to manage database
connections.

• One or more session components to isolate data access operations such as database
connections, and to manage groups of databases.

26-2 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

The relationships between the components in a BDE-based application are illustrated
in Figure 26.1:

Figure 26.1 Components in a BDE-based application

Using BDE-enabled datasets

BDE-enabled datasets use the Borland Database Engine (BDE) to access data. They
inherit the common dataset capabilities described in Chapter 24, “Understanding
datasets,” using the BDE to provide the implementation. In addition, all BDE
datasets add properties, events, and methods for

• Associating a dataset with database and session connections.
• Caching BLOBs.
• Obtaining a BDE handle.

There are three BDE-enabled datasets:

• TTable, a table type dataset that represents all of the rows and columns of a single
database table. See “Using table type datasets” on page 24-25 for a description of
features common to table type datasets. See “Using TTable” on page 26-5 for a
description of features unique to TTable.

• TQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 24-42 for a description of features common to query-type
datasets. See “Using TQuery” on page 26-9 for a description of features unique to
TQuery.

• TStoredProc, a stored procedure-type dataset that executes a stored procedure that
is defined on a database server. See “Using stored procedure-type datasets” on
page 24-50 for a description of features common to stored procedure-type
datasets. See “Using TStoredProc” on page 26-11 for a description of features
unique to TStoredProc.

Note In addition to the three types of BDE-enabled datasets, there is a BDE-based client
dataset (TBDEClientDataSet) that can be used for caching updates. For information on
caching updates, see “Using a client dataset to cache updates” on page 29-16.

user
interface
elements

data source

Borland
Database
Engine

Session

database

dataset

datasetdata source

Data ModuleForm

database

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-3

B D E - b a s e d a r c h i t e c t u r e

Associating a dataset with database and session connections
In order for a BDE-enabled dataset to fetch data from a database server it needs to
use both a database and a session.

• Databases represent connections to specific database servers. The database
identifies a BDE driver, a particular database server that uses that driver, and a set
of connection parameters for connecting to that database server. Each database is
represented by a TDatabase component. You can either associate your datasets
with a TDatabase component you add to a form or data module, or you can simply
identify the database server by name and let Delphi generate an implicit database
component for you. Using an explicitly-created TDatabase component is
recommended for most applications, because the database component gives you
greater control over how the connection is established, including the login process,
and lets you create and use transactions.

To associate a BDE-enabled dataset with a database, use the DatabaseName
property. DatabaseName is a string that contains different information, depending
on whether you are using an explicit database component and, if not, the type of
database you are using:

• If you are using an explicit TDatabase component, DatabaseName is the value of
the DatabaseName property of the database component.

• If you are want to use an implicit database component and the database has a
BDE alias, you can specify a BDE alias as the value of DatabaseName. A BDE
alias represents a database plus configuration information for that database.
The configuration information associated with an alias differs by database type
(Oracle, Sybase, InterBase, Paradox, dBASE, and so on). Use the BDE
Administration tool or the SQL explorer to create and manage BDE aliases.

• If you want to use an implicit database component for a Paradox or dBASE
database, you can also use DatabaseName to simply specify the directory where
the database tables are located.

• A session provides global management for a group of database connections in an
application. When you add BDE-enabled datasets to your application, your
application automatically contains a session component, named Session. As you
add database and dataset components to the application, they are automatically
associated with this default session. It also controls access to password protected
Paradox files, and it specifies directory locations for sharing Paradox files over a
network. You can control database connections and access to Paradox files using
the properties, events, and methods of the session.

You can use the default session to control all database connections in your
application. Alternatively, you can add additional session components at design
time or create them dynamically at runtime to control a subset of database
connections in an application. To associate your dataset with an explicitly created
session component, use the SessionName property. If you do not use explicit
session components in your application, you do not have to provide a value for
this property. Whether you use the default session or explicitly specify a session
using the SessionName property, you can access the session associated with a
dataset by reading the DBSession property.

26-4 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Note If you use a session component, the SessionName property of a dataset must match the
SessionName property for the database component with which the dataset is
associated.

For more information about TDatabase and TSession, see “Connecting to databases
with TDatabase” on page 26-12 and “Managing database sessions” on page 26-16.

Caching BLOBs
BDE-enabled datasets all have a CacheBlobs property that controls whether BLOB
fields are cached locally by the BDE when an application reads BLOB records. By
default, CacheBlobs is True, meaning that the BDE caches a local copy of BLOB fields.
Caching BLOBs improves application performance by enabling the BDE to store local
copies of BLOBs instead of fetching them repeatedly from the database server as a
user scrolls through records.

In applications and environments where BLOBs are frequently updated or replaced,
and a fresh view of BLOB data is more important than application performance, you
can set CacheBlobs to False to ensure that your application always sees the latest
version of a BLOB field.

Obtaining a BDE handle
You can use BDE-enabled datasets without ever needing to make direct API calls to
the Borland Database Engine. The BDE-enabled datasets, in combination with
database and session components, encapsulate much of the BDE functionality.
However, if you need to make direct API calls to the BDE, you may need BDE
handles for resources managed by the BDE. Many BDE APIs require these handles as
parameters.

All BDE-enabled datasets include three read-only properties for accessing BDE
handles at runtime:

• Handle is a handle to the BDE cursor that accesses the records in the dataset.

• DBHandle is a handle to the database that contains the underlying tables or stored
procedure.

• DBLocale is a handle to the BDE language driver for the dataset. The locale controls
the sort order and character set used for string data.

These properties are automatically assigned to a dataset when it is connected to a
database server through the BDE.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-5

B D E - b a s e d a r c h i t e c t u r e

Using TTable

TTable encapsulates the full structure of and data in an underlying database table. It
implements all of the basic functionality introduced by TDataSet, as well as all of the
special features typical of table type datasets. Before looking at the unique features
introduced by TTable, you should familiarize yourself with the common database
features described in “Understanding datasets,” including the section on table type
datasets that starts on page 24-25.

Because TTable is a BDE-enabled dataset, it must be associated with a database and a
session. “Associating a dataset with database and session connections” on page 26-3
describes how you form these associations. Once the dataset is associated with a
database and session, you can bind it to a particular database table by setting the
TableName property and, if you are using a Paradox, dBASE, FoxPro, or comma-
delimited ASCII text table, the TableType property.

Note The table must be closed when you change its association to a database, session, or
database table, or when you set the TableType property. However, before you close
the table to change these properties, first post or discard any pending changes. If
cached updates are enabled, call the ApplyUpdates method to write the posted
changes to the database.

TTable components are unique in the support they offer for local database tables
(Paradox, dBASE, FoxPro, and comma-delimited ASCII text tables). The following
topics describe the special properties and methods that implement this support.

In addition, TTable components can take advantage of the BDE’s support for batch
operations (table level operations to append, update, delete, or copy entire groups of
records). This support is described in “Importing data from another table” on
page 26-8.

Specifying the table type for local tables
If an application accesses Paradox, dBASE, FoxPro, or comma-delimited ASCII text
tables, then the BDE uses the TableType property to determine the table’s type (its
expected structure). TableType is not used when TTable represents an SQL-based table
on a database server.

By default TableType is set to ttDefault. When TableType is ttDefault, the BDE
determines a table’s type from its filename extension. Table 26.1 summarizes the file
extensions recognized by the BDE and the assumptions it makes about a table’s type:

Table 26.1 Table types recognized by the BDE based on file extension

Extension Table type

No file extension Paradox

.DB Paradox

.DBF dBASE

.TXT ASCII text

26-6 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

If your local Paradox, dBASE, and ASCII text tables use the file extensions as
described in Table 26.1, then you can leave TableType set to ttDefault. Otherwise, your
application must set TableType to indicate the correct table type. Table 26.2 indicates
the values you can assign to TableType:

Controlling read/write access to local tables
Like any table type dataset, TTable lets you control read and write access by your
application using the ReadOnly property.

In addition, for Paradox, dBASE, and FoxPro tables, TTable can let you control read
and write access to tables by other applications. The Exclusive property controls
whether your application gains sole read/write access to a Paradox, dBASE, or
FoxPro table. To gain sole read/write access for these table types, set the table
component’s Exclusive property to True before opening the table. If you succeed in
opening a table for exclusive access, other applications cannot read data from or
write data to the table. Your request for exclusive access is not honored if the table is
already in use when you attempt to open it.

The following statements open a table for exclusive access:

CustomersTable.Exclusive := True; {Set request for exclusive lock}
CustomersTable.Active := True; {Now open the table}

Note You can attempt to set Exclusive on SQL tables, but some servers do not support
exclusive table-level locking. Others may grant an exclusive lock, but permit other
applications to read data from the table. For more information about exclusive
locking of database tables on your server, see your server documentation.

Specifying a dBASE index file
For most servers, you use the methods common to all table type datasets to specify
an index. These methods are described in “Sorting records with indexes” on
page 24-26.

For dBASE tables that use non-production index files or dBASE III PLUS-style
indexes (*.NDX), however, you must use the IndexFiles and IndexName properties
instead. Set the IndexFiles property to the name of the non-production index file or list
the .NDX files. Then, specify one index in the IndexName property to have it actively
sorting the dataset.

Table 26.2 TableType values

Value Table type

ttDefault Table type determined automatically by the BDE

ttParadox Paradox

ttDBase dBASE

ttFoxPro FoxPro

ttASCII Comma-delimited ASCII text

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-7

B D E - b a s e d a r c h i t e c t u r e

At design time, click the ellipsis button in the IndexFiles property value in the Object
Inspector to invoke the Index Files editor. To add one non-production index file or
.NDX file: click the Add button in the Index Files dialog and select the file from the
Open dialog. Repeat this process once for each non-production index file or .NDX
file. Click the OK button in the Index Files dialog after adding all desired indexes.

This same operation can be performed programmatically at runtime. To do this,
access the IndexFiles property using properties and methods of string lists. When
adding a new set of indexes, first call the Clear method of the table’s IndexFiles
property to remove any existing entries. Call the Add method to add each non-
production index file or .NDX file:

with Table2.IndexFiles do begin
Clear;
Add('Bystate.ndx');
Add('Byzip.ndx');
Add('Fullname.ndx');
Add('St_name.ndx');

end;

After adding any desired non-production or .NDX index files, the names of
individual indexes in the index file are available, and can be assigned to the
IndexName property. The index tags are also listed when using the GetIndexNames
method and when inspecting index definitions through the TIndexDef objects in the
IndexDefs property. Properly listed .NDX files are automatically updated as data is
added, changed, or deleted in the table (regardless of whether a given index is used
in the IndexName property).

In the example below, the IndexFiles for the AnimalsTable table component is set to the
non-production index file ANIMALS.MDX, and then its IndexName property is set to
the index tag called “NAME”:

AnimalsTable.IndexFiles.Add('ANIMALS.MDX');
AnimalsTable.IndexName := 'NAME';

Once you have specified the index file, using non-production or .NDX indexes works
the same as any other index. Specifying an index name sorts the data in the table and
makes it available for indexed-based searches, ranges, and (for non-production
indexes) master-detail linking. See “Using table type datasets” on page 24-25 for
details on these uses of indexes.

There are two special considerations when using dBASE III PLUS-style .NDX indexes
with TTable components. The first is that .NDX files cannot be used as the basis for
master-detail links. The second is that when activating a .NDX index with the
IndexName property, you must include the .NDX extension in the property value as
part of the index name:

with Table1 do begin
IndexName := 'ByState.NDX';
FindKey(['CA']);

end;

26-8 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Renaming local tables
To rename a Paradox or dBASE table at design time, right-click the table component
and select Rename Table from the context menu.

To rename a Paradox or dBASE table at runtime, call the table’s RenameTable method.
For example, the following statement renames the Customer table to CustInfo:

Customer.RenameTable(‘CustInfo’);

Importing data from another table
You can use a table component’s BatchMove method to import data from another
table. BatchMove can

• Copy records from another table into this table.
• Update records in this table that occur in another table.
• Append records from another table to the end of this table.
• Delete records in this table that occur in another table.

BatchMove takes two parameters: the name of the table from which to import data,
and a mode specification that determines which import operation to perform. Table
26.3 describes the possible settings for the mode specification:

For example, the following code updates all records in the current table with records
from the Customer table that have the same values for fields in the current index:

Table1.BatchMove('CUSTOMER.DB', batUpdate);

BatchMove returns the number of records it imports successfully.

Caution Importing records using the batCopy mode overwrites existing records. To preserve
existing records use batAppend instead.

BatchMove performs only some of the batch operations supported by the BDE.
Additional functions are available using the TBatchMove component. If you need to
move a large amount of data between or among tables, use TBatchMove instead of
calling a table’s BatchMove method. For information about using TBatchMove, see
“Using TBatchMove” on page 26-49.

Table 26.3 BatchMove import modes

Value Meaning

batAppend Append all records from the source table to the end of this table.

batAppendUpdate Append all records from the source table to the end of this table and update
existing records in this table with matching records from the source table.

batCopy Copy all records from the source table into this table.

batDelete Delete all records in this table that also appear in the source table.

batUpdate Update existing records in this table with matching records from the source
table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-9

B D E - b a s e d a r c h i t e c t u r e

Using TQuery

TQuery represents a single Data Definition Language (DDL) or Data Manipulation
Language (DML) statement (For example, a SELECT, INSERT, DELETE, UPDATE,
CREATE INDEX, or ALTER TABLE command). The language used in commands is
server-specific, but usually compliant with the SQL-92 standard for the SQL
language. TQuery implements all of the basic functionality introduced by TDataSet,
as well as all of the special features typical of query-type datasets. Before looking at
the unique features introduced by TQuery, you should familiarize yourself with the
common database features described in “Understanding datasets,” including the
section on query-type datasets that starts on page 24-42.

Because TQuery is a BDE-enabled dataset, it must usually be associated with a
database and a session. (The one exception is when you use the TQuery for a
heterogeneous query.) “Associating a dataset with database
and session connections” on page 26-3 describes how you form these associations.
You specify the SQL statement for the query by setting the SQL property.

A TQuery component can access data in:

• Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL is
a subset of the SQL-92 specification. Most DML is supported and enough DDL
syntax to work with these types of tables. See the local SQL help,
LOCALSQL.HLP, for details on supported SQL syntax.

• Local InterBase Server databases, using the InterBase engine. For information on
InterBase’s SQL-92 standard SQL syntax support and extended syntax support,
see the InterBase Language Reference.

• Databases on remote database servers such as Oracle, Sybase, MS-SQL Server,
Informix, DB2, and InterBase. You must install the appropriate SQL Link driver
and client software (vendor-supplied) specific to the database server to access a
remote server. Any standard SQL syntax supported by these servers is allowed.
For information on SQL syntax, limitations, and extensions, see the documentation
for your particular server.

Creating heterogeneous queries
TQuery supports heterogeneous queries against more than one server or table type
(for example, data from an Oracle table and a Paradox table). When you execute a
heterogeneous query, the BDE parses and processes the query using Local SQL.
Because BDE uses Local SQL, extended, server-specific SQL syntax is not supported.

To perform a heterogeneous query, follow these steps:

1 Define separate BDE aliases for each database accessed in the query using the BDE
BDE Administration tool or the SQL explorer.

2 Leave the DatabaseName property of the TQuery blank; the names of the databases
used will be specified in the SQL statement.

3 In the SQL property, specify the SQL statement to execute. Precede each table
name in the statement with the BDE alias for the table’s database, enclosed in
colons. This whole reference is then enclosed in quotation marks.

26-10 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

4 Set any parameters for the query in the Params property.

5 Call Prepare to prepare the query for execution prior to executing it for the first
time.

6 Call Open or ExecSQL depending on the type of query you are executing.

For example, suppose you define an alias called Oracle1 for an Oracle database that
has a CUSTOMER table, and Sybase1 for a Sybase database that has an ORDERS
table. A simple query against these two tables would be:

SELECT Customer.CustNo, Orders.OrderNo
FROM ”:Oracle1:CUSTOMER”

JOIN ”:Sybase1:ORDERS”
ON (Customer.CustNo = Orders.CustNo)

WHERE (Customer.CustNo = 1503)

As an alternative to using a BDE alias to specify the database in a heterogeneous
query, you can use a TDatabase component. Configure the TDatabase as normal to
point to the database, set the TDatabase.DatabaseName to an arbitrary but unique
value, and then use that value in the SQL statement instead of a BDE alias name.

Obtaining an editable result set
To request a result set that users can edit in data-aware controls, set a query
component’s RequestLive property to True. Setting RequestLive to True does not
guarantee a live result set, but the BDE attempts to honor the request whenever
possible. There are some restrictions on live result set requests, depending on
whether the query uses the local SQL parser or a server’s SQL parser.

• Queries where table names are preceded by a BDE database alias (as in
heterogeneous queries) and queries executed against Paradox or dBASE are
parsed by the BDE using Local SQL. When queries use the local SQL parser, the
BDE offers expanded support for updatable, live result sets in both single table
and multi-table queries. When using Local SQL, a live result set for a query against
a single table or view is returned if the query does not contain any of the
following:

• DISTINCT in the SELECT clause
• Joins (inner, outer, or UNION)
• Aggregate functions with or without GROUP BY or HAVING clauses
• Base tables or views that are not updatable
• Subqueries
• ORDER BY clauses not based on an index

• Queries against a remote database server are parsed by the server. If the
RequestLive property is set to True, the SQL statement must abide by Local SQL
standards in addition to any server-imposed restrictions because the BDE needs to
use it for conveying data changes to the table. A live result set for a query against a
single table or view is returned if the query does not contain any of the following:

• A DISTINCT clause in the SELECT statement
• Aggregate functions, with or without GROUP BY or HAVING clauses
• References to more than one base table or updatable views (joins)
• Subqueries that reference the table in the FROM clause or other tables

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-11

B D E - b a s e d a r c h i t e c t u r e

If an application requests and receives a live result set, the CanModify property of the
query component is set to True. Even if the query returns a live result set, you may
not be able to update the result set directly if it contains linked fields or you switch
indexes before attempting an update. If these conditions exist, you should treat the
result set as a read-only result set, and update it accordingly.

If an application requests a live result set, but the SELECT statement syntax does not
allow it, the BDE returns either

• A read-only result set for queries made against Paradox or dBASE.
• An error code for SQL queries made against a remote server.

Updating read-only result sets
Applications can update data returned in a read-only result set if they are using
cached updates.

If you are using a client dataset to cache updates, the client dataset or its associated
provider can automatically generate the SQL for applying updates unless the query
represents multiple tables. If the query represents multiple tables, you must indicate
how to apply the updates:

• If all updates are applied to a single database table, you can indicate the
underlying table to update in an OnGetTableName event handler.

• If you need more control over applying updates, you can associate the query with
an update object (TUpdateSQL). A provider automatically uses this update object
to apply updates:

a Associate the update object with the query by setting the query’s UpdateObject
property to the TUpdateSQL object you are using.

b Set the update object’s ModifySQL, InsertSQL, and DeleteSQL properties to SQL
statements that perform the appropriate updates for your query’s data.

If you are using the BDE to cache updates, you must use an update object.

Note For more information on using update objects, see “Using update objects to update a
dataset” on page 26-40.

Using TStoredProc

TStoredProc represents a stored procedure. It implements all of the basic functionality
introduced by TDataSet, as well as most of the special features typical of stored
procedure-type datasets. Before looking at the unique features introduced by
TStoredProc, you should familiarize yourself with the common database features
described in “Understanding datasets,” including the section on stored procedure-
type datasets that starts on page 24-50.

Because TStoredProc is a BDE-enabled dataset, it must be associated with a database
and a session. “Associating a dataset with database and session connections” on
page 26-3 describes how you form these associations. Once the dataset is associated
with a database and session, you can bind it to a particular stored procedure by
setting the StoredProcName property.

26-12 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

TStoredProc differs from other stored procedure-type datasets in the following ways:

• It gives you greater control over how to bind parameters.
• It provides support for Oracle overloaded stored procedures.

Binding parameters
When you prepare and execute a stored procedure, its input parameters are
automatically bound to parameters on the server.

TStoredProc lets you use the ParamBindMode property to specify how parameters
should be bound to the parameters on the server. By default ParamBindMode is set to
pbByName, meaning that parameters from the stored procedure component are
matched to those on the server by name. This is the easiest method of binding
parameters.

Some servers also support binding parameters by ordinal value, the order in which
the parameters appear in the stored procedure. In this case the order in which you
specify parameters in the parameter collection editor is significant. The first
parameter you specify is matched to the first input parameter on the server, the
second parameter is matched to the second input parameter on the server, and so on.
If your server supports parameter binding by ordinal value, you can set
ParamBindMode to pbByNumber.

Tip If you want to set ParamBindMode to pbByNumber, you need to specify the correct
parameter types in the correct order. You can view a server’s stored procedure source
code in the SQL Explorer to determine the correct order and type of parameters to
specify.

Working with Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are
different procedures with the same name. The stored procedure component’s
Overload property enables an application to specify the procedure to execute.

If Overload is zero (the default), there is assumed to be no overloading. If Overload is
one (1), then the stored procedure component executes the first stored procedure it
finds on the Oracle server that has the overloaded name; if it is two (2), it executes the
second, and so on.

Note Overloaded stored procedures may take different input and output parameters. See
your Oracle server documentation for more information.

Connecting to databases with TDatabase

When a Delphi application uses the Borland Database Engine (BDE) to connect to a
database, that connection is encapsulated by a TDatabase component. A database
component represents the connection to a single database in the context of a BDE
session.

TDatabase performs many of the same tasks as and shares many common properties,
methods, and events with other database connection components. These
commonalities are described in Chapter 23, “Connecting to databases.”

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-13

B D E - b a s e d a r c h i t e c t u r e

In addition to the common properties, methods, and events, TDatabase introduces
many BDE-specific features. These features are described in the following topics.

Associating a database component with a session
All database components must be associated with a BDE session. Use the
SessionName, establish this association. When you first create a database component
at design time, SessionName is set to “Default”, meaning that it is associated with the
default session component that is referenced by the global Session variable.

Multi-threaded or reentrant BDE applications may require more than one session. If
you need to use multiple sessions, add TSession components for each session. Then,
associate your dataset with a session component by setting the SessionName property
to a session component’s SessionName property.

At runtime, you can access the session component with which the database is
associated by reading the Session property. If SessionName is blank or “Default”, then
the Session property references the same TSession instance referenced by the global
Session variable. Session enables applications to access the properties, methods, and
events of a database component’s parent session component without knowing the
session’s actual name.

For more information about BDE sessions, see “Managing database sessions” on
page 26-16.

If you are using an implicit database component, the session for that database
component is the one specified by the dataset’s SessionName property.

Understanding database and session component interactions
In general, session component properties provide global, default behaviors that
apply to all implicit database components created at runtime. For example, the
controlling session’s KeepConnections property determines whether a database
connection is maintained even if its associated datasets are closed (the default), or if
the connections are dropped when all its datasets are closed. Similarly, the default
OnPassword event for a session guarantees that when an application attempts to
attach to a database on a server that requires a password, it displays a standard
password prompt dialog box.

Session methods apply somewhat differently. TSession methods affect all database
components, regardless of whether they are explicitly created or instantiated
implicitly by a dataset. For example, the session method DropConnections closes all
datasets belonging to a session’s database components, and then drops all database
connections, even if the KeepConnection property for individual database components
is True.

Database component methods apply only to the datasets associated with a given
database component. For example, suppose the database component Database1 is
associated with the default session. Database1.CloseDataSets() closes only those
datasets associated with Database1. Open datasets belonging to other database
components within the default session remain open.

26-14 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Identifying the database
AliasName and DriverName are mutually exclusive properties that identify the
database server to which the TDatabase component connects.

• AliasName specifies the name of an existing BDE alias to use for the database
component. The alias appears in subsequent drop-down lists for dataset
components so that you can link them to a particular database component. If you
specify AliasName for a database component, any value already assigned to
DriverName is cleared because a driver name is always part of a BDE alias.

You create and edit BDE aliases using the Database Explorer or the BDE
Administration utility. For more information about creating and maintaining BDE
aliases, see the online documentation for these utilities.

• DriverName is the name of a BDE driver. A driver name is one parameter in a BDE
alias, but you may specify a driver name instead of an alias when you create a
local BDE alias for a database component using the DatabaseName property. If you
specify DriverName, any value already assigned to AliasName is cleared to avoid
potential conflicts between the driver name you specify and the driver name that
is part of the BDE alias identified in AliasName.

DatabaseName lets you provide your own name for a database connection. The name
you supply is in addition to AliasName or DriverName, and is local to your
application. DatabaseName can be a BDE alias, or, for Paradox and dBASE files, a
fully-qualified path name. Like AliasName, DatabaseName appears in subsequent
drop-down lists for dataset components to let you link them to database components.

At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias,
double-click a database component to invoke the Database Properties editor.

You can enter a DatabaseName in the Name edit box in the properties editor. You can
enter an existing BDE alias name in the Alias name combo box for the Alias property,
or you can choose from existing aliases in the drop-down list. The Driver name
combo box enables you to enter the name of an existing BDE driver for the
DriverName property, or you can choose from existing driver names in the drop-
down list.

Note The Database Properties editor also lets you view and set BDE connection
parameters, and set the states of the LoginPrompt and KeepConnection properties. For
information on connection parameters, see “Setting BDE alias parameters” below.
For information on LoginPrompt, see “Controlling server login” on page 23-4. For
information on KeepConnection see “Opening a connection using TDatabase” on
page 26-15.

Setting BDE alias parameters
At design time you can create or edit connection parameters in three ways:

• Use the Database Explorer or BDE Administration utility to create or modify BDE
aliases, including parameters. For more information about these utilities, see their
online Help files.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-15

B D E - b a s e d a r c h i t e c t u r e

• Double-click the Params property in the Object Inspector to invoke the String List
editor.

• Double-click a database component in a data module or form to invoke the
Database Properties editor.

All of these methods edit the Params property for the database component. Params is
a string list containing the database connection parameters for the BDE alias
associated with a database component. Some typical connection parameters include
path statement, server name, schema caching size, language driver, and SQL query
mode.

When you first invoke the Database Properties editor, the parameters for the BDE
alias are not visible. To see the current settings, click Defaults. The current
parameters are displayed in the Parameter overrides memo box. You can edit
existing entries or add new ones. To clear existing parameters, click Clear. Changes
you make take effect only when you click OK.

At runtime, an application can set alias parameters only by editing the Params
property directly. For more information about parameters specific to using SQL
Links drivers with the BDE, see your online SQL Links help file.

Opening a connection using TDatabase
As with all database connection components, to connect to a database using
TDatabase, you set the Connected property to True or call the Open method. This
process is described in “Connecting to a database server” on page 23-3. Once a
database connection is established the connection is maintained as long as there is at
least one active dataset. When there are no more active datasets, the connection is
dropped unless the database component’s KeepConnection property is True.

When you connect to a remote database server from an application, the application
uses the BDE and the Borland SQL Links driver to establish the connection. (The BDE
can also communicate with an ODBC driver that you supply.) You need to configure
the SQL Links or ODBC driver for your application prior to making the connection.
SQL Links and ODBC parameters are stored in the Params property of a database
component. For information about SQL Links parameters, see the online SQL Links
User’s Guide. To edit the Params property, see “Setting BDE alias parameters” on
page 26-14.

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you may need to
specify the network protocol used by the server, such as SPX/IPX or TCP/IP,
depending on the driver’s configuration options. In most cases, network protocol
configuration is handled using a server’s client setup software. For ODBC it may also
be necessary to check the driver setup using the ODBC driver manager.

Establishing an initial connection between client and server can be problematic. The
following troubleshooting checklist should be helpful if you encounter difficulties:

• Is your server’s client-side connection properly configured?

• Are the DLLs for your connection and database drivers in the search path?

26-16 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

• If you are using TCP/IP:

• Is your TCP/IP communications software installed? Is the proper
WINSOCK.DLL installed?

• Is the server’s IP address registered in the client’s HOSTS file?

• Is the Domain Name Services (DNS) properly configured?

• Can you ping the server?

For more troubleshooting information, see the online SQL Links User’s Guide and
your server documentation.

Using ODBC
An application can use ODBC data sources (for example, Btrieve). An ODBC driver
connection requires

• A vendor-supplied ODBC driver.
• The Microsoft ODBC Driver Manager.
• The BDE Administration utility.

To set up a BDE alias for an ODBC driver connection, use the BDE Administration
utility. For more information, see the BDE Administration utility’s online help file.

Using database components in data modules
You can safely place database components in data modules. If you put a data module
that contains a database component into the Object Repository, however, and you
want other users to be able to inherit from it, you must set the HandleShared property
of the database component to True to prevent global name space conflicts.

Managing database sessions

An BDE-based application’s database connections, drivers, cursors, queries, and so
on are maintained within the context of one or more BDE sessions. Sessions isolate a
set of database access operations, such as database connections, without the need to
start another instance of the application.

All BDE-based database applications automatically include a default session
component, named Session, that encapsulates the default BDE session. When
database components are added to the application, they are automatically associated
with the default session (note that its SessionName is “Default”). The default session
provides global control over all database components not associated with another
session, whether they are implicit (created by the session at runtime when you open a
dataset that is not associated with a database component you create) or persistent
(explicitly created by your application). The default session is not visible in your data
module or form at design time, but you can access its properties and methods in your
code at runtime.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-17

B D E - b a s e d a r c h i t e c t u r e

To use the default session, you need write no code unless your application must

• Explicitly activate or deactivate a session, enabling or disabling the session’s
databases’ ability to open.

• Modify the properties of the session, such as specifying default properties for
implicitly generated database components.

• Execute a session’s methods, such as managing database connections (for example
opening and closing database connections in response to user actions).

• Respond to session events, such as when the application attempts to access a
password-protected Paradox or dBASE table.

• Set Paradox directory locations such as the NetFileDir property to access Paradox
tables on a network and the PrivateDir property to a local hard drive to speed
performance.

• Manage the BDE aliases that describe possible database connection configurations
for databases and datasets that use the session.

Whether you add database components to an application at design time or create
them dynamically at runtime, they are automatically associated with the default
session unless you specifically assign them to a different session. If you open a
dataset that is not associated with a database component, Delphi automatically

• Creates a database component for it at runtime.

• Associates the database component with the default session.

• Initializes some of the database component’s key properties based on the default
session’s properties. Among the most important of these properties is
KeepConnections, which determines when database connections are maintained or
dropped by an application.

The default session provides a widely applicable set of defaults that can be used as is
by most applications. You need only associate a database component with an
explicitly named session if the component performs a simultaneous query against a
database already opened by the default session. In this case, each concurrent query
must run under its own session. Multi-threaded database applications also require
multiple sessions, where each thread has its own session.

Applications can create additional session components as needed. BDE-based
database applications automatically include a session list component, named
Sessions, that you can use to manage all of your session components. For more
information about managing multiple sessions see, “Managing multiple sessions” on
page 26-29.

You can safely place session components in data modules. If you put a data module
that contains one or more session components into the Object Repository, however,
make sure to set the AutoSessionName property to True to avoid namespace conflicts
when users inherit from it.

26-18 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Activating a session
Active is a Boolean property that determines if database and dataset components
associated with a session are open. You can use this property to read the current state
of a session’s database and dataset connections, or to change it. If Active is False (the
default), all databases and datasets associated with the session are closed. If True,
databases and datasets are open.

A session is activated when it is first created, and subsequently, whenever its Active
property is changed to True from False (for example, when a database or dataset is
associated with a session is opened and there are currently no other open databases or
datasets). Setting Active to True triggers a session’s OnStartup event, registers the
paradox directory locations with the BDE, and registers the ConfigMode property,
which determines what BDE aliases are available within the session. You can write
an OnStartup event handler to initialize the NetFileDir, PrivateDir, and ConfigMode
properties before they are registered with the BDE, or to perform other specific
session start-up activities. For information about the NetFileDir and PrivateDir
properties, see “Specifying Paradox directory locations” on page 26-24. For
information about ConfigMode, see “Working with BDE aliases” on page 26-25.

Once a session is active, you can open its database connections by calling the
OpenDatabase method.

For session components you place in a data module or form, setting Active to False
when there are open databases or datasets closes them. At runtime, closing databases
and datasets may trigger events associated with them.

Note You cannot set Active to False for the default session at design time. While you can
close the default session at runtime, it is not recommended.

You can also use a session’s Open and Close methods to activate or deactivate sessions
other than the default session at runtime. For example, the following single line of
code closes all open databases and datasets for a session:

Session1.Close;

This code sets Session1’s Active property to False. When a session’s Active property is
False, any subsequent attempt by the application to open a database or dataset resets
Active to True and calls the session’s OnStartup event handler if it exists. You can also
explicitly code session reactivation at runtime. The following code reactivates
Session1:

Session1.Open;

Note If a session is active you can also open and close individual database connections. For
more information, see “Closing database connections” on page 26-20.

Specifying default database connection behavior
KeepConnections provides the default value for the KeepConnection property of
implicit database components created at runtime. KeepConnection specifies what
happens to a database connection established for a database component when all its
datasets are closed. If True (the default), a constant, or persistent, database connection
is maintained even if no dataset is active. If False, a database connection is dropped as
soon as all its datasets are closed.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-19

B D E - b a s e d a r c h i t e c t u r e

Note Connection persistence for a database component you explicitly place in a data
module or form is controlled by that database component’s KeepConnection property.
If set differently, KeepConnection for a database component always overrides the
KeepConnections property of the session. For more information about controlling
individual database connections within a session, see “Managing database
connections” on page 26-19.

KeepConnections should be set to True for applications that frequently open and close
all datasets associated with a database on a remote server. This setting reduces
network traffic and speeds data access because it means that a connection need only
be opened and closed once during the lifetime of the session. Otherwise, every time
the application closes or reestablishes a connection, it incurs the overhead of
attaching and detaching the database.

Note Even when KeepConnections is True for a session, you can close and free inactive
database connections for all implicit database components by calling the
DropConnections method. For more information about DropConnections, see
“Dropping inactive database connections” on page 26-20.

Managing database connections
You can use a session component to manage the database connections within it. The
session component includes properties and methods you can use to

• Open database connections.
• Close database connections.
• Close and free all inactive temporary database connections.
• Locate specific database connections.
• Iterate through all open database connections.

Opening database connections
To open a database connection within a session, call the OpenDatabase method.
OpenDatabase takes one parameter, the name of the database to open. This name is a
BDE alias or the name of a database component. For Paradox or dBASE, the name can
also be a fully qualified path name. For example, the following statement uses the
default session and attempts to open a database connection for the database pointed
to by the DBDEMOS alias:

var
DBDemosDatabase: TDatabase;

begin
DBDemosDatabase := Session.OpenDatabase('DBDEMOS');
ƒ

OpenDatabase actives the session if it is not already active, and then checks if the
specified database name matches the DatabaseName property of any database
components for the session. If the name does not match an existing database
component, OpenDatabase creates a temporary database component using the
specified name. Finally, OpenDatabase calls the Open method of the database
component to connect to the server. Each call to OpenDatabase increments a reference
count for the database by 1. As long as this reference count remains greater than 0,
the database is open.

26-20 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Closing database connections
To close an individual database connection, call the CloseDatabase method. When you
call CloseDatabase, the reference count for the database, which is incremented when
you call OpenDatabase, is decremented by 1. When the reference count for a database
is 0, the database is closed. CloseDatabase takes one parameter, the database to close. If
you opened the database using the OpenDatabase method, this parameter can be set to
the return value of OpenDatabase.

Session.CloseDatabase(DBDemosDatabase);

If the specified database name is associated with a temporary (implicit) database
component, and the session’s KeepConnections property is False, the database
component is freed, effectively closing the connection.

Note If KeepConnections is False temporary database components are closed and freed
automatically when the last dataset associated with the database component is
closed. An application can always call CloseDatabase prior to that time to force
closure. To free temporary database components when KeepConnections is True, call
the database component’s Close method, and then call the session’s DropConnections
method.

Note Calling CloseDatabase for a persistent database component does not actually close the
connection. To close the connection, call the database component’s Close method
directly.

There are two ways to close all database connections within the session:

• Set the Active property for the session to False.
• Call the Close method for the session.

When you set Active to False, Delphi automatically calls the Close method. Close
disconnects from all active databases by freeing temporary database components and
calling each persistent database component’s Close method. Finally, Close sets the
session’s BDE handle to nil.

Dropping inactive database connections
If the KeepConnections property for a session is True (the default), then database
connections for temporary database components are maintained even if all the
datasets used by the component are closed. You can eliminate these connections and
free all inactive temporary database components for a session by calling the
DropConnections method. For example, the following code frees all inactive,
temporary database components for the default session:

Session.DropConnections;

Temporary database components for which one or more datasets are active are not
dropped or freed by this call. To free these components, call Close.

Searching for a database connection
Use a session’s FindDatabase method to determine whether a specified database
component is already associated with a session. FindDatabase takes one parameter,
the name of the database to search for. This name is a BDE alias or database
component name. For Paradox or dBASE, it can also be a fully-qualified path name.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-21

B D E - b a s e d a r c h i t e c t u r e

FindDatabase returns the database component if it finds a match. Otherwise it returns
nil.

The following code searches the default session for a database component using the
DBDEMOS alias, and if it is not found, creates one and opens it:

var
DB: TDatabase;

begin
DB := Session.FindDatabase('DBDEMOS');
if (DB = nil) then { database doesn't exist for session so,}

DB := Session.OpenDatabase('DBDEMOS'); { create and open it}
if Assigned(DB) and DB.Connected then begin

DB.StartTransaction;
ƒ

end;
end;

Iterating through a session’s database components
You can use two session component properties, Databases and DatabaseCount, to cycle
through all the active database components associated with a session.

Databases is an array of all currently active database components associated with a
session. DatabaseCount is the number of databases in that array. As connections are
opened or closed during a session’s life-span, the values of Databases and
DatabaseCount change. For example, if a session’s KeepConnections property is False
and all database components are created as needed at runtime, each time a unique
database is opened, DatabaseCount increases by one. Each time a unique database is
closed, DatabaseCount decreases by one. If DatabaseCount is zero, there are no
currently active database components for the session.

The following example code sets the KeepConnection property of each active database
in the default session to True:

var
MaxDbCount: Integer;

begin
with Session do

if (DatabaseCount > 0) then
for MaxDbCount := 0 to (DatabaseCount - 1) do
Databases[MaxDbCount].KeepConnection := True;

end;

Working with password-protected Paradox and dBASE tables
A session component can store passwords for password-protected Paradox and
dBASE tables. Once you add a password to the session, your application can open
tables protected by that password. Once you remove the password from the session,
your application can’t open tables that use the password until you add it again.

26-22 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Using the AddPassword method
The AddPassword method provides an optional way for an application to provide a
password for a session prior to opening an encrypted Paradox or dBASE table that
requires a password for access. If you do not add the password to the session, when
your application attempts to open a password-protected table, a dialog box prompts
the user for a password.

AddPassword takes one parameter, a string containing the password to use. You can
call AddPassword as many times as necessary to add passwords (one at a time) to
access tables protected with different passwords.

var
Passwrd: String;

begin
Passwrd := InputBox('Enter password', 'Password:', '');
Session.AddPassword(Passwrd);
try

Table1.Open;
except

ShowMessage('Could not open table!');
Application.Terminate;

end;
end;

Note Use of the InputBox function, above, is for demonstration purposes. In a real-world
application, use password entry facilities that mask the password as it is entered,
such as the PasswordDialog function or a custom form.

The Add button of the PasswordDialog function dialog has the same effect as the
AddPassword method.

if PasswordDialog(Session) then
Table1.Open

else
ShowMessage('No password given, could not open table!');

end;

Using the RemovePassword and RemoveAllPasswords methods
RemovePassword deletes a previously added password from memory.
RemovePassword takes one parameter, a string containing the password to delete.

Session.RemovePassword(‘secret’);

RemoveAllPasswords deletes all previously added passwords from memory.

Session.RemoveAllPasswords;

Using the GetPassword method and OnPassword event
The OnPassword event allows you to control how your application supplies
passwords for Paradox and dBASE tables when they are required. Provide a handler
for the OnPassword event if you want to override the default password handling
behavior. If you do not provide a handler, Delphi presents a default dialog for
entering a password and no special behavior is provided—the table open attempt
either succeeds or an exception is raised.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-23

B D E - b a s e d a r c h i t e c t u r e

If you provide a handler for the OnPassword event, do two things in the event
handler: call the AddPassword method and set the event handler’s Continue parameter
to True. The AddPassword method passes a string to the session to be used as a
password for the table. The Continue parameter indicates to Delphi that no further
password prompting need be done for this table open attempt. The default value for
Continue is False, and so requires explicitly setting it to True. If Continue is False after
the event handler has finished executing, an OnPassword event fires again—even if a
valid password has been passed using AddPassword. If Continue is True after
execution of the event handler and the string passed with AddPassword is not the
valid password, the table open attempt fails and an exception is raised.

OnPassword can be triggered by two circumstances. The first is an attempt to open a
password-protected table (dBASE or Paradox) when a valid password has not
already been supplied to the session. (If a valid password for that table has already
been supplied, the OnPassword event does not occur.)

The other circumstance is a call to the GetPassword method. GetPassword either generates
an OnPassword event, or, if the session does not have an OnPassword event handler, displays
a default password dialog. It returns True if the OnPassword event handler or default dialog
added a password to the session, and False if no entry at all was made.

In the following example, the Password method is designated as the OnPassword event
handler for the default session by assigning it to the global Session object’s
OnPassword property.

procedure TForm1.FormCreate(Sender: TObject);
begin

Session.OnPassword := Password;
end;

In the Password method, the InputBox function prompts the user for a password. The
AddPassword method then programmatically supplies the password entered in the
dialog to the session.

procedure TForm1.Password(Sender: TObject; var Continue: Boolean);
var

Passwrd: String;
begin

Passwrd := InputBox('Enter password', 'Password:', '');
Continue := (Passwrd > '');
Session.AddPassword(Passwrd);

end;

The OnPassword event (and thus the Password event handler) is triggered by an
attempt to open a password-protected table, as demonstrated below. Even though
the user is prompted for a password in the handler for the OnPassword event, the
table open attempt can still fail if they enter an invalid password or something else
goes wrong.

procedure TForm1.OpenTableBtnClick(Sender: TObject);
const
 CRLF = #13 + #10;

26-24 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

begin
try

Table1.Open; { this line triggers the OnPassword event }
except

on E:Exception do begin { exception if cannot open table }
ShowMessage('Error!' + CRLF + { display error explaining what happened }
E.Message + CRLF +
'Terminating application...');

Application.Terminate; { end the application }
end;

end;
end;

Specifying Paradox directory locations
Two session component properties, NetFileDir and PrivateDir, are specific to
applications that work with Paradox tables.

NetFileDir specifies the directory that contains the Paradox network control file,
PDOXUSRS.NET. This file governs sharing of Paradox tables on network drives. All
applications that need to share Paradox tables must specify the same directory for the
network control file (typically a directory on a network file server). Delphi derives a
value for NetFileDir from the Borland Database Engine (BDE) configuration file for a
given database alias. If you set NetFileDir yourself, the value you supply overrides
the BDE configuration setting, so be sure to validate the new value.

At design time, you can specify a value for NetFileDir in the Object Inspector. You can
also set or change NetFileDir in code at runtime. The following code sets NetFileDir
for the default session to the location of the directory from which your application
runs:

Session.NetFileDir := ExtractFilePath(Application.EXEName);

Note NetFileDir can only be changed when an application does not have any open Paradox
files. If you change NetFileDir at runtime, verify that it points to a valid network
directory that is shared by your network users.

PrivateDir specifies the directory for storing temporary table processing files, such as
those generated by the BDE to handle local SQL statements. If no value is specified
for the PrivateDir property, the BDE automatically uses the current directory at the
time it is initialized. If your application runs directly from a network file server, you
can improve application performance at runtime by setting PrivateDir to a user’s local
hard drive before opening the database.

Note Do not set PrivateDir at design time and then open the session in the IDE. Doing so
generates a Directory is busy error when running your application from the IDE.

The following code changes the setting of the default session’s PrivateDir property to
a user’s C:\TEMP directory:

Session.PrivateDir := 'C:\TEMP';

Important Do not set PrivateDir to a root directory on a drive. Always specify a subdirectory.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-25

B D E - b a s e d a r c h i t e c t u r e

Working with BDE aliases
Each database component associated with a session has a BDE alias (although
optionally a fully-qualified path name may be substituted for an alias when accessing
Paradox and dBASE tables). A session can create, modify, and delete aliases during
its lifetime.

The AddAlias method creates a new BDE alias for an SQL database server. AddAlias
takes three parameters: a string containing a name for the alias, a string that specifies
the SQL Links driver to use, and a string list populated with parameters for the alias.
For example, the following statements use AddAlias to add a new alias for accessing
an InterBase server to the default session:

var
AliasParams: TStringList;

begin
AliasParams := TStringList.Create;
try

with AliasParams do begin
Add('OPEN MODE=READ');
Add('USER NAME=TOMSTOPPARD');
Add('SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB');

end;
Session.AddAlias('CATS', 'INTRBASE', AliasParams);
ƒ

finally
AliasParams.Free;

end;
end;

AddStandardAlias creates a new BDE alias for Paradox, dBASE, or ASCII tables.
AddStandardAlias takes three string parameters: the name for the alias, the fully-
qualified path to the Paradox or dBASE table to access, and the name of the default
driver to use when attempting to open a table that does not have an extension. For
example, the following statement uses AddStandardAlias to create a new alias for
accessing a Paradox table:

AddStandardAlias('MYDBDEMOS', 'C:\TESTING\DEMOS\', 'Paradox');

When you add an alias to a session, the BDE stores a copy of the alias in memory,
where it is only available to this session and any other sessions with cfmPersistent
included in the ConfigMode property. ConfigMode is a set that describes which types
of aliases can be used by the databases in the session. The default setting is cmAll,
which translates into the set [cfmVirtual, cfmPersistent, cfmSession]. If ConfigMode is
cmAll, a session can see all aliases created within the session (cfmSession), all aliases in
the BDE configuration file on a user’s system (cfmPersistent), and all aliases that the
BDE maintains in memory (cfmVirtual). You can change ConfigMode to restrict what
BDE aliases the databases in a session can use. For example, setting ConfigMode to
cfmSession restricts a session’s view of aliases to those created within the session. All
other aliases in the BDE configuration file and in memory are not available.

26-26 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

To make a newly created alias available to all sessions and to other applications, use
the session’s SaveConfigFile method. SaveConfigFile writes aliases in memory to the
BDE configuration file where they can be read and used by other BDE-enabled
applications.

After you create an alias, you can make changes to its parameters by calling
ModifyAlias. ModifyAlias takes two parameters: the name of the alias to modify and a
string list containing the parameters to change and their values. For example, the
following statements use ModifyAlias to change the OPEN MODE parameter for the
CATS alias to READ/WRITE in the default session:

var
List: TStringList;

begin
List := TStringList.Create;
with List do begin

Clear;
Add('OPEN MODE=READ/WRITE');

end;
Session.ModifyAlias('CATS', List);
List.Free;
ƒ

To delete an alias previously created in a session, call the DeleteAlias method.
DeleteAlias takes one parameter, the name of the alias to delete. DeleteAlias makes an
alias unavailable to the session.

Note DeleteAlias does not remove an alias from the BDE configuration file if the alias was
written to the file by a previous call to SaveConfigFile. To remove the alias from the
configuration file after calling DeleteAlias, call SaveConfigFile again.

Session components provide five methods for retrieving information about a BDE
aliases, including parameter information and driver information. They are:

• GetAliasNames, to list the aliases to which a session has access.
• GetAliasParams, to list the parameters for a specified alias.
• GetAliasDriverName, to return the name of the BDE driver used by the alias.
• GetDriverNames, to return a list of all BDE drivers available to the session.
• GetDriverParams, to return driver parameters for a specified driver.

For more information about using a session’s informational methods, see “Retrieving
information about a session” below. For more information about BDE aliases and the
SQL Links drivers with which they work, see the BDE online help, BDE32.HLP.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-27

B D E - b a s e d a r c h i t e c t u r e

Retrieving information about a session
You can retrieve information about a session and its database components by using a
session’s informational methods. For example, one method retrieves the names of all
aliases known to the session, and another method retrieves the names of tables
associated with a specific database component used by the session. Table 26.4
summarizes the informational methods to a session component:

Except for GetAliasDriverName, these methods return a set of values into a string list
declared and maintained by your application. (GetAliasDriverName returns a single
string, the name of the current BDE driver for a particular database component used
by the session.)

For example, the following code retrieves the names of all database components and
aliases known to the default session:

var
List: TStringList;

begin
List := TStringList.Create;
try

Session.GetDatabaseNames(List);
ƒ

finally
List.Free;

end;
end;

Table 26.4 Database-related informational methods for session components

Method Purpose

GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.

GetAliasNames Retrieves the list of BDE aliases for a database.

GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.

GetConfigParams Retrieves configuration information from the BDE configuration file.

GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase
components currently in use.

GetDriverNames Retrieves the names of all currently installed BDE drivers.

GetDriverParams Retrieves the list of parameters for a specified BDE driver.

GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

GetTableNames Retrieves the names of all tables matching a specified pattern for a
specified database.

GetFieldNames Retrieves the names of all fields in a specified table in a specified
database.

26-28 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Creating additional sessions
You can create sessions to supplement the default session. At design time, you can
place additional sessions on a data module (or form), set their properties in the
Object Inspector, write event handlers for them, and write code that calls their
methods. You can also create sessions, set their properties, and call their methods at
runtime.

Note Creating additional sessions is optional unless an application runs concurrent queries
against a database or the application is multi-threaded.

To enable dynamic creation of a session component at runtime, follow these steps:

1 Declare a TSession variable.

2 Instantiate a new session by calling the Create method. The constructor sets up an
empty list of database components for the session, sets the KeepConnections
property to True, and adds the session to the list of sessions maintained by the
application’s session list component.

3 Set the SessionName property for the new session to a unique name. This property
is used to associate database components with the session. For more information
about the SessionName property, see “Naming a session” on page 26-29.

4 Activate the session and optionally adjust its properties.

You can also create and open sessions using the OpenSession method of TSessionList.
Using OpenSession is safer than calling Create, because OpenSession only creates a
session if it does not already exist. For information about OpenSession, see “Managing
multiple sessions” on page 26-29.

The following code creates a new session component, assigns it a name, and opens
the session for database operations that follow (not shown here). After use, it is
destroyed with a call to the Free method.

Note Never delete the default session.

var
SecondSession: TSession;

begin
SecondSession := TSession.Create(Form1);
with SecondSession do

try
SessionName := 'SecondSession';
KeepConnections := False;
Open;
ƒ

finally
SecondSession.Free;

end;
end;

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-29

B D E - b a s e d a r c h i t e c t u r e

Naming a session
A session’s SessionName property is used to name the session so that you can
associate databases and datasets with it. For the default session, SessionName is
“Default,” For each additional session component you create, you must set its
SessionName property to a unique value.

Database and dataset components have SessionName properties that correspond to
the SessionName property of a session component. If you leave the SessionName
property blank for a database or dataset component it is automatically associated
with the default session. You can also set SessionName for a database or dataset
component to a name that corresponds to the SessionName of a session component
you create.

The following code uses the OpenSession method of the default TSessionList
component, Sessions, to open a new session component, sets its SessionName to
“InterBaseSession,” activate the session, and associate an existing database
component Database1 with that session:

var
IBSession: TSession;
ƒ

begin
IBSession := Sessions.OpenSession('InterBaseSession');
Database1.SessionName := 'InterBaseSession';

end;

Managing multiple sessions
If you create a single application that uses multiple threads to perform database
operations, you must create one additional session for each thread. The BDE page on
the Component palette contains a session component that you can place in a data
module or on a form at design time.

Important When you place a session component, you must also set its SessionName property to a
unique value so that it does not conflict with the default session’s SessionName
property.

Placing a session component at design time presupposes that the number of threads
(and therefore sessions) required by the application at runtime is static. More likely,
however, is that an application needs to create sessions dynamically. To create
sessions dynamically, call the OpenSession method of the global Sessions object at
runtime.

OpenSession requires a single parameter, a name for the session that is unique across
all session names for the application. The following code dynamically creates and
activates a new session with a uniquely generated name:

Sessions.OpenSession('RunTimeSession' + IntToStr(Sessions.Count + 1));

This statement generates a unique name for a new session by retrieving the current
number of sessions, and adding one to that value. Note that if you dynamically create
and destroy sessions at runtime, this example code will not work as expected.
Nevertheless, this example illustrates how to use the properties and methods of
Sessions to manage multiple sessions.

26-30 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Sessions is a variable of type TSessionList that is automatically instantiated for BDE-
based database applications. You use the properties and methods of Sessions to keep
track of multiple sessions in a multi-threaded database application. Table 26.5
summarizes the properties and methods of the TSessionList component:

As an example of using Sessions properties and methods in a multi-threaded
application, consider what happens when you want to open a database connection.
To determine if a connection already exists, use the Sessions property to walk through
each session in the sessions list, starting with the default session. For each session
component, examine its Databases property to see if the database in question is open.
If you discover that another thread is already using the desired database, examine
the next session in the list.

If an existing thread is not using the database, then you can open the connection
within that session.

If, on the other hand, all existing threads are using the database, you must open a
new session in which to open another database connection.

If you are replicating a data module that contains a session in a multi-threaded
application, where each thread contains its own copy of the data module, you can use
the AutoSessionName property to make sure that all datasets in the data module use
the correct session. Setting AutoSessionName to True causes the session to generate its
own unique name dynamically when it is created at runtime. It then assigns this
name to every dataset in the data module, overriding any explicitly set session
names. This ensures that each thread has its own session, and each dataset uses the
session in its own data module.

Table 26.5 TSessionList properties and methods

Property or Method Purpose

Count Returns the number of sessions, both active and inactive, in the session list.

FindSession Searches for a session with a specified name and returns a pointer to it, or
nil if there is no session with the specified name. If passed a blank session
name, FindSession returns a pointer to the default session, Session.

GetSessionNames Populates a string list with the names of all currently instantiated session
components. This procedure always adds at least one string, “Default” for
the default session.

List Returns the session component for a specified session name. If there is no
session with the specified name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a
specified session name.

Sessions Accesses the session list by ordinal value.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-31

U s i n g t r a n s a c t i o n s w i t h t h e B D E

Using transactions with the BDE
By default, the BDE provides implicit transaction control for your applications. When
an application is under implicit transaction control, a separate transaction is used for
each record in a dataset that is written to the underlying database. Implicit
transactions guarantee both a minimum of record update conflicts and a consistent
view of the database. On the other hand, because each row of data written to a
database takes place in its own transaction, implicit transaction control can lead to
excessive network traffic and slower application performance. Also, implicit
transaction control will not protect logical operations that span more than one record.

If you explicitly control transactions, you can choose the most effective times to start,
commit, and roll back your transactions. When you develop applications in a multi-
user environment, particularly when your applications run against a remote SQL
server, you should control transactions explicitly.

There are two mutually exclusive ways to control transactions explicitly in a BDE-
based database application:

• Use the database component to control transactions. The main advantage to using
the methods and properties of a database component is that it provides a clean,
portable application that is not dependent on a particular database or server. This
type of transaction control is supported by all database connection components,
and described in “Managing transactions” on page 23-6

• Use passthrough SQL in a query component to pass SQL statements directly to
remote SQL or ODBC servers. The main advantage to passthrough SQL is that you
can use the advanced transaction management capabilities of a particular database
server, such as schema caching. To understand the advantages of your server’s
transaction management model, see your database server documentation. For
more information about using passthrough SQL, see “Using passthrough SQL”
below.

When working with local databases, you can only use the database component to
create explicit transactions (local databases do not support passthrough SQL).
However, there are limitations to using local transactions. For more information on
using local transactions, see “Using local transactions” on page 26-32.

Note You can minimize the number of transactions you need by caching updates. For
more information about cached updates, see “Using a client dataset to cache
updates” and “Using the BDE to cache updates” on page 26-33.

26-32 D e v e l o p e r ’ s G u i d e

U s i n g t r a n s a c t i o n s w i t h t h e B D E

Using passthrough SQL

With passthrough SQL, you use a TQuery, TStoredProc, or TUpdateSQL component to
send an SQL transaction control statement directly to a remote database server. The
BDE does not process the SQL statement. Using passthrough SQL enables you to take
direct advantage of the transaction controls offered by your server, especially when
those controls are non-standard.

To use passthrough SQL to control a transaction, you must

• Install the proper SQL Links drivers. If you chose the “Typical” installation when
installing Delphi, all SQL Links drivers are already properly installed.

• Configure your network protocol. See your network administrator for more
information.

• Have access to a database on a remote server.

• Set SQLPASSTHRU MODE to NOT SHARED using the SQL Explorer.
SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL
statements can share the same database connections. In most cases,
SQLPASSTHRU MODE is set to SHARED AUTOCOMMIT. However, you can’t
share database connections when using transaction control statements. For more
information about SQLPASSTHRU modes, see the help file for the BDE
Administration utility.

Note When SQLPASSTHRU MODE is NOT SHARED, you must use separate database
components for datasets that pass SQL transaction statements to the server and
datasets that do not.

Using local transactions

The BDE supports local transactions against Paradox, dBASE, Access, and FoxPro
tables. From a coding perspective, there is no difference to you between a local
transaction and a transaction against a remote database server.

Note When using transactions with local Paradox, dBASE, Access, and FoxPro tables, set
TransIsolation to tiDirtyRead instead of using the default value of tiReadCommitted. A
BDE error is returned if TransIsolation is set to anything but tiDirtyRead for local
tables.

When a transaction is started against a local table, updates performed against the
table are logged. Each log record contains the old record buffer for a record. When a
transaction is active, records that are updated are locked until the transaction is
committed or rolled back. On rollback, old record buffers are applied against
updated records to restore them to their pre-update states.

Local transactions are more limited than transactions against SQL servers or ODBC
drivers. In particular, the following limitations apply to local transactions:

• Automatic crash recovery is not provided.

• Data definition statements are not supported.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-33

U s i n g t h e B D E t o c a c h e u p d a t e s

• Transactions cannot be run against temporary tables.

• TransIsolation level must only be set to tiDirtyRead.

• For Paradox, local transactions can only be performed on tables with valid
indexes. Data cannot be rolled back on Paradox tables that do not have indexes.

• Only a limited number of records can be locked and modified. With Paradox
tables, you are limited to 255 records. With dBASE the limit is 100.

• Transactions cannot be run against the BDE ASCII driver.

• Closing a cursor on a table during a transaction rolls back the transaction unless:

• Several tables are open.
• The cursor is closed on a table to which no changes were made.

Using the BDE to cache updates
The recommended approach for caching updates is to use a client dataset
(TBDEClientDataSet) or to connect the BDE-dataset to a client dataset using a dataset
provider. The advantages of using a client dataset are discussed in “Using a client
dataset to cache updates” on page 29-16.

For simple cases, however, you may choose to use the BDE to cache updates instead.
BDE-enabled datasets and TDatabase components provide built-in properties,
methods, and events for handling cached updates. Most of these correspond directly
to the properties, methods, and events that you use with client datasets and dataset
providers when using a client dataset to cache updates. The following table lists these
properties, events, and methods and the corresponding properties, methods and
events on TBDEClientDataSet:

Table 26.6 Properties, methods, and events for cached updates

On BDE-enabled datasets
(or TDatabase) On TBDEClientDataSet Purpose

CachedUpdates Not needed for client
datasets, which always
cache updates.

Determines whether cached updates are
in effect for the dataset.

UpdateObject Use a BeforeUpdateRecord
event handler, or, if using
TClientDataSet, use the
UpdateObject property on
the BDE-enabled source
dataset.

Specifies the update object for updating
read-only datasets.

UpdatesPending ChangeCount Indicates whether the local cache
contains updated records that need to be
applied to the database.

UpdateRecordTypes StatusFilter Indicates the kind of updated records to
make visible when applying cached
updates.

UpdateStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

26-34 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

For an overview of the cached update process, see “Overview of using cached
updates” on page 29-17.

Note Even if you are using a client dataset to cache updates, you may want to read the
section about update objects on page 26-40. You can use update objects in the
BeforeUpdateRecord event handler of TBDEClientDataSet or TDataSetProvider to apply
updates from stored procedures or multi-table queries.

Enabling BDE-based cached updates

To use the BDE for cached updates, the BDE-enabled dataset must indicate that it
should cache updates. This is specified by setting the CachedUpdates property to True.
When you enable cached updates, a copy of all records is cached in local memory.
Users view and edit this local copy of data. Changes, insertions, and deletions are
also cached in memory. They accumulate in memory until the application applies
those changes to the database server. If changed records are successfully applied to
the database, the record of those changes are freed in the cache.

The dataset caches all updates until you set CachedUpdates to False. Applying cached
updates does not disable further cached updates; it only writes the current set of
changes to the database and clears them from memory. Canceling the updates by
calling CancelUpdates removes all the changes currently in the cache, but does not
stop the dataset from caching any subsequent changes.

Note If you disable cached updates by setting CachedUpdates to False, any pending changes
that you have not yet applied are discarded without notification. To prevent losing
changes, test the UpdatesPending property before disabling cached updates.

OnUpdateError OnReconcileError An event for handling update errors on
a record-by-record basis.

OnUpdateRecord BeforeUpdateRecord An event for processing updates on a
record-by-record basis.

ApplyUpdates
ApplyUpdates (database)

ApplyUpdates Applies records in the local cache to the
database.

CancelUpdates CancelUpdates Removes all pending updates from the
local cache without applying them.

CommitUpdates Reconcile Clears the update cache following
successful application of updates.

FetchAll GetNextPacket
(and PacketRecords)

Copies database records to the local
cache for editing and updating.

RevertRecord RevertRecord Undoes updates to the current record if
updates are not yet applied.

Table 26.6 Properties, methods, and events for cached updates (continued)

On BDE-enabled datasets
(or TDatabase) On TBDEClientDataSet Purpose

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-35

U s i n g t h e B D E t o c a c h e u p d a t e s

Applying BDE-based cached updates

Applying updates is a two-phase process that should occur in the context of a
database component’s transaction so that your application can recover gracefully
from errors. For information about transaction handling with database components,
see “Managing transactions” on page 23-6.

When applying updates under database transaction control, the following events
take place:

1 A database transaction starts.

2 Cached updates are written to the database (phase 1). If you provide it, an
OnUpdateRecord event is triggered once for each record written to the database. If
an error occurs when a record is applied to the database, the OnUpdateError event
is triggered if you provide one.

3 The transaction is committed if writes are successful or rolled back if they are not:

If the database write is successful:

• Database changes are committed, ending the database transaction.
• Cached updates are committed, clearing the internal cache buffer (phase 2).

If the database write is unsuccessful:

• Database changes are rolled back, ending the database transaction.
• Cached updates are not committed, remaining intact in the internal cache.

For information about creating and using an OnUpdateRecord event handler, see
“Creating an OnUpdateRecord event handler” on page 26-37. For information about
handling update errors that occur when applying cached updates, see “Handling
cached update errors” on page 26-38.

Note Applying cached updates is particularly tricky when you are working with multiple
datasets linked in a master/detail relationship because the order in which you apply
updates to each dataset is significant. Usually, you must update master tables before
detail tables, except when handling deleted records, where this order must be
reversed. Because of this difficulty, it is strongly recommended that you use client
datasets when caching updates in a master/detail form. Client datasets automatically
handle all ordering issues with master/detail relationships.

There are two ways to apply BDE-based updates:

• You can apply updates using a database component by calling its ApplyUpdates
method. This method is the simplest approach, because the database handles all
details of managing a transaction for the update process and of clearing the
dataset’s cache when updating is complete.

• You can apply updates for a single dataset by calling the dataset’s ApplyUpdates
and CommitUpdates methods. When applying updates at the dataset level you
must explicitly code the transaction that wraps the update process as well as
explicitly call CommitUpdates to commit updates from the cache.

26-36 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

Important To apply updates from a stored procedure or an SQL query that does not return a
live result set, you must use TUpdateSQL to specify how to perform updates. For
updates to joins (queries involving two or more tables), you must provide one
TUpdateSQL object for each table involved, and you must use the OnUpdateRecord
event handler to invoke these objects to perform the updates. See “Using update
objects to update a dataset” on page 26-40 for details.

Applying cached updates using a database
To apply cached updates to one or more datasets in the context of a database
connection, call the database component’s ApplyUpdates method. The following code
applies updates to the CustomersQuery dataset in response to a button click event:

procedure TForm1.ApplyButtonClick(Sender: TObject);
begin

// for local databases such as Paradox, dBASE, and FoxPro
// set TransIsolation to DirtyRead
if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then

Database1.TransIsolation := tiDirtyRead;
Database1.ApplyUpdates([CustomersQuery]);

end;

The above sequence writes cached updates to the database in the context of an
automatically-generated transaction. If successful, it commits the transaction and
then commits the cached updates. If unsuccessful, it rolls back the transaction and
leaves the update cache unchanged. In this latter case, you should handle cached
update errors through a dataset’s OnUpdateError event. For more information about
handling update errors, see “Handling cached update errors” on page 26-38.

The main advantage to calling a database component’s ApplyUpdates method is that
you can update any number of dataset components that are associated with the
database. The parameter for the ApplyUpdates method for a database is an array of
TDBDataSet. For example, the following code applies updates for two queries:

if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
Database1.TransIsolation := tiDirtyRead;

Database1.ApplyUpdates([CustomerQuery, OrdersQuery]);

Applying cached updates with dataset component methods
You can apply updates for individual BDE-enabled datasets directly using the
dataset’s ApplyUpdates and CommitUpdates methods. Each of these methods
encapsulate one phase of the update process:

1 ApplyUpdates writes cached changes to a database (phase 1).

2 CommitUpdates clears the internal cache when the database write is successful
(phase 2).

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-37

U s i n g t h e B D E t o c a c h e u p d a t e s

The following code illustrates how you apply updates within a transaction for the
CustomerQuery dataset:

procedure TForm1.ApplyButtonClick(Sender: TObject)
begin

Database1.StartTransaction;
try

if not (Database1.IsSQLBased) and not (Database1.TransIsolation = tiDirtyRead) then
Database1.TransIsolation := tiDirtyRead;

CustomerQuery.ApplyUpdates; { try to write the updates to the database }
Database1.Commit; { on success, commit the changes }

except
Database1.Rollback; { on failure, undo any changes }
raise; { raise the exception again to prevent a call to CommitUpdates }

end;
CustomerQuery.CommitUpdates; { on success, clear the internal cache }

end;

If an exception is raised during the ApplyUpdates call, the database transaction is
rolled back. Rolling back the transaction ensures that the underlying database table is
not changed. The raise statement inside the try...except block reraises the exception,
thereby preventing the call to CommitUpdates. Because CommitUpdates is not called,
the internal cache of updates is not cleared so that you can handle error conditions
and possibly retry the update.

Creating an OnUpdateRecord event handler
When a BDE-enabled dataset applies its cached updates, it iterates through the
changes recorded in its cache, attempting to apply them to the corresponding records
in the base table. As the update for each changed, deleted, or newly inserted record is
about to be applied, the dataset component’s OnUpdateRecord event fires.

Providing a handler for the OnUpdateRecord event allows you to perform actions just
before the current record’s update is actually applied. Such actions can include
special data validation, updating other tables, special parameter substitution, or
executing multiple update objects. A handler for the OnUpdateRecord event affords
you greater control over the update process.

Here is the skeleton code for an OnUpdateRecord event handler:

procedure TForm1.DataSetUpdateRecord(DataSet: TDataSet;
 UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);
begin

{ perform updates here... }
end;

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update that needs to be performed
for the current record. Values for UpdateKind are ukModify, ukInsert, and ukDelete. If
you are using an update object, you need to pass this parameter to the update object
when applying the update. You may also need to inspect this parameter if your
handler performs any special processing based on the kind of update.

26-38 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

The UpdateAction parameter indicates whether you applied the update. Values for
UpdateAction are uaFail (the default), uaAbort, uaSkip, uaRetry, uaApplied. If your event
handler successfully applies the update, change this parameter to uaApplied before
exiting. If you decide not to update the current record, change the value to uaSkip to
preserve unapplied changes in the cache. If you do not change the value for
UpdateAction, the entire update operation for the dataset is aborted and an exception
is raised. You can suppress the error message (raising a silent exception) by changing
UpdateAction to uaAbort.

In addition to these parameters, you will typically want to make use of the OldValue
and NewValue properties for the field component associated with the current record.
OldValue gives the original field value that was fetched from the database. It can be
useful in locating the database record to update. NewValue is the edited value in the
update you are trying to apply.

Important An OnUpdateRecord event handler, like an OnUpdateError or OnCalcFields event
handler, should never call any methods that change the current record in a dataset.

The following example illustrates how to use these parameters and properties. It uses
a TTable component named UpdateTable to apply updates. In practice, it is easier to
use an update object, but using a table illustrates the possibilities more clearly.

procedure TForm1.EmpAuditUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
if UpdateKind = ukInsert then

UpdateTable.AppendRecord([DataSet.Fields[0].NewValue, DataSet.Fields[1].NewValue])
else

if UpdateTable.Locate('KeyField', VarToStr(DataSet.Fields[1].OldValue), []) then
case UpdateKind of
ukModify:

begin
UpdateTable.Edit;
UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);
UpdateTable.Post;

end;
ukInsert:

begin
UpdateTable.Insert;
UpdateTable.Fields[1].AsString := VarToStr(DataSet.Fields[1].NewValue);
UpdateTable.Post;

end;
ukDelete: UpdateTable.Delete;

end;
UpdateAction := uaApplied;

end;

Handling cached update errors
The Borland Database Engine (BDE) specifically checks for user update conflicts and
other conditions when attempting to apply updates, and reports any errors. The
dataset component’s OnUpdateError event enables you to catch and respond to
errors. You should create a handler for this event if you use cached updates. If you do
not, and an error occurs, the entire update operation fails.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-39

U s i n g t h e B D E t o c a c h e u p d a t e s

Here is the skeleton code for an OnUpdateError event handler:

procedure TForm1.DataSetUpdateError(DataSet: TDataSet; E: EDatabaseError;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
{ ... perform update error handling here ... }

end;

DataSet references the dataset to which updates are applied. You can use this dataset
to access new and old values during error handling. The original values for fields in
each record are stored in a read-only TField property called OldValue. Changed
values are stored in the analogous TField property NewValue. These values provide
the only way to inspect and change update values in the event handler.

Warning Do not call any dataset methods that change the current record (such as Next and
Prior). Doing so causes the event handler to enter an endless loop.

The E parameter is usually of type EDBEngineError. From this exception type, you
can extract an error message that you can display to users in your error handler. For
example, the following code could be used to display the error message in the
caption of a dialog box:

ErrorLabel.Caption := E.Message;

This parameter is also useful for determining the actual cause of the update error.
You can extract specific error codes from EDBEngineError, and take appropriate
action based on it.

The UpdateKind parameter describes the type of update that generated the error.
Unless your error handler takes special actions based on the type of update being
carried out, your code probably will not make use of this parameter.

The following table lists possible values for UpdateKind:

UpdateAction tells the BDE how to proceed with the update process when your event
handler exits. When your update error handler is first called, the value for this
parameter is always set to uaFail. Based on the error condition for the record that
caused the error and what you do to correct it, you typically set UpdateAction to a
different value before exiting the handler:

• If your error handler can correct the error condition that caused the handler to be
invoked, set UpdateAction to the appropriate action to take on exit. For error
conditions you correct, set UpdateAction to uaRetry to apply the update for the
record again.

• When set to uaSkip, the update for the row that caused the error is skipped, and the
update for the record remains in the cache after all other updates are completed.

Table 26.7 UpdateKind values

Value Meaning

ukModify Editing an existing record caused an error.

ukInsert Inserting a new record caused an error.

ukDelete Deleting an existing record caused an error.

26-40 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

• Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an
exception and displays an error message. uaAbort raises a silent exception (does
not display an error message).

The following code shows an OnUpdateError event handler that checks to see if the
update error is related to a key violation, and if it is, it sets the UpdateAction
parameter to uaSkip:

{ Add 'Bde' to your uses clause for this example }
if (E is EDBEngineError) then

with EDBEngineError(E) do begin
if Errors[ErrorCount - 1].ErrorCode = DBIERR_KEYVIOL then

UpdateAction := uaSkip { key violation, just skip this record }
else

UpdateAction := uaAbort; { don't know what's wrong, abort the update }
end;

Note If an error occurs during the application of cached updates, an exception is raised and
an error message displayed. Unless the ApplyUpdates is called from within a
try...except construct, an error message to the user displayed from inside your
OnUpdateError event handler may cause your application to display the same error
message twice. To prevent error message duplication, set UpdateAction to uaAbort to
turn off the system-generated error message display.

Using update objects to update a dataset

When the BDE-enabled dataset represents a stored procedure or a query that is not
“live”, it is not possible to apply updates directly from the dataset. Such datasets may
also cause a problem when you use a client dataset to cache updates. Whether you
are using the BDE or a client dataset to cache updates, you can handle these problem
datasets by using an update object:

1 If you are using a client dataset, use an external provider component with
TClientDataSet rather than TBDEClientDataSet. This is so you can set the
UpdateObject property of the BDE-enabled source dataset (step 3).

2 Add a TUpdateSQL component to the same data module as the BDE-enabled
dataset.

3 Set the BDE-enabled dataset component’s UpdateObject property to the
TUpdateSQL component in the data module.

4 Specify the SQL statements needed to perform updates using the update object’s
ModifySQL, InsertSQL, and DeleteSQL properties. You can use the Update SQL
editor to help you compose these statements.

5 Close the dataset.

6 Set the dataset component’s CachedUpdates property to True or link the dataset to
the client dataset using a dataset provider.

7 Reopen the dataset.

Note Sometimes, you need to use multiple update objects. For example, when updating a
multi-table join or a stored procedure that represents data from multiple datasets,

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-41

U s i n g t h e B D E t o c a c h e u p d a t e s

you must provide one TUpdateSQL object for each table you want to update. When
using multiple update objects, you can’t simply associate the update object with the
dataset by setting the UpdateObject property. Instead, you must manually call the
update object from an OnUpdateRecord event handler (when using the BDE to cache
updates) or a BeforeUpdateRecord event handler (when using a client dataset).

The update object actually encapsulates three TQuery components. Each of these
query components perform a single update task. One query component provides an
SQL UPDATE statement for modifying existing records; a second query component
provides an INSERT statement to add new records to a table; and a third component
provides a DELETE statement to remove records from a table.

When you place an update component in a data module, you do not see the query
components it encapsulates. They are created by the update component at runtime
based on three update properties for which you supply SQL statements:

• ModifySQL specifies the UPDATE statement.
• InsertSQL specifies the INSERT statement.
• DeleteSQL specifies the DELETE statement.

At runtime, when the update component is used to apply updates, it:

1 Selects an SQL statement to execute based on whether the current record is
modified, inserted, or deleted.

2 Provides parameter values to the SQL statement.

3 Prepares and executes the SQL statement to perform the specified update.

Creating SQL statements for update components
To update a record in an associated dataset, an update object uses one of three SQL
statements. Each update object can only update a single table, so the object’s update
statements must each reference the same base table.

The three SQL statements delete, insert, and modify records cached for update. You
must provide these statements as update object’s DeleteSQL, InsertSQL, and
ModifySQL properties. You can provide these values at design time or at runtime. For
example, the following code specifies a value for the DeleteSQL property at runtime:

with UpdateSQL1.DeleteSQL do begin
Clear;
Add(‘DELETE FROM Inventory I’);
Add(‘WHERE (I.ItemNo = :OLD_ItemNo)’);

end;

At design time, you can use the Update SQL editor to help you compose the SQL
statements that apply updates.

Update objects provide automatic parameter binding for parameters that reference
the dataset’s original and updated field values. Typically, therefore, you insert
parameters with specially formatted names when you compose the SQL statements.
For information on using these parameters, see “Understanding parameter
substitution in update SQL statements” on page 26-43.

26-42 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

Using the Update SQL editor
To create the SQL statements for an update component,

1 Using the Object Inspector, select the name of the update object from the drop-
down list for the dataset’s UpdateObject property. This step ensures that the
Update SQL editor you invoke in the next step can determine suitable default
values to use for SQL generation options.

2 Right-click the update object and select UpdateSQL Editor from the context menu.
This displays the Update SQL editor. The editor creates SQL statements for the
update object’s ModifySQL, InsertSQL, and DeleteSQL properties based on the
underlying data set and on the values you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first
invoke the editor. Use the Table Name combo box to select the table to update. When
you specify a table name, the Key Fields and Update Fields list boxes are populated
with available columns.

The Update Fields list box indicates which columns should be updated. When you
first specify a table, all columns in the Update Fields list box are selected for
inclusion. You can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the
update. For Paradox, dBASE, and FoxPro the columns you specify here must
correspond to an existing index, but this is not a requirement for remote SQL
databases. Instead of setting Key Fields you can click the Primary Keys button to
choose key fields for the update based on the table’s primary index. Click Dataset
Defaults to return the selection lists to the original state: all fields selected as keys and
all selected for update.

Check the Quote Field Names check box if your server requires quotation marks
around field names.

After you specify a table, select key columns, and select update columns, click
Generate SQL to generate the preliminary SQL statements to associate with the
update component’s ModifySQL, InsertSQL, and DeleteSQL properties. In most cases
you will want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have
generated SQL statements, then when you select this page, the statement for the
ModifySQL property is already displayed in the SQL Text memo box. You can edit the
statement in the box as desired.

Important Keep in mind that generated SQL statements are starting points for creating update
statements. You may need to modify these statements to make them execute
correctly. For example, when working with data that contains NULL values, you
need to modify the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly
yourself before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements
and edit them as desired.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-43

U s i n g t h e B D E t o c a c h e u p d a t e s

To accept the statements and associate them with the update component’s SQL
properties, click OK.

Understanding parameter substitution in update SQL statements
Update SQL statements use a special form of parameter substitution that enables you
to substitute old or new field values in record updates. When the Update SQL editor
generates its statements, it determines which field values to use. When you write the
update SQL, you specify the field values to use.

When the parameter name matches a column name in the table, the new value in the
field in the cached update for the record is automatically used as the value for the
parameter. When the parameter name matches a column name prefixed by the string
“OLD_”, then the old value for the field will be used. For example, in the update SQL
statement below, the parameter :LastName is automatically filled with the new field
value in the cached update for the inserted record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an
update for a modified record, the new field value from the update cache is used by
the UPDATE statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property
uses the “:OLD_FieldName” syntax. Old field values are also normally used in the
WHERE clause of the SQL statement for a modified or deletion update to determine
which record to update or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at
least the minimal number of parameters to uniquely identify the record in the base
table that is updated with the cached data. For instance, in a list of customers, using
just a customer’s last name may not be sufficient to uniquely identify the correct
record in the base table; there may be a number of records with “Smith” as the last
name. But by using parameters for last name, first name, and phone number could be
a distinctive enough combination. Even better would be a unique field value like a
customer number.

Note If you create SQL statements that contain parameters that do not refer the edited or
original field values, the update object does not know how to bind their values. You
can, however, do this manually, using the update object’s Query property. See “Using
an update component’s Query property” on page 26-48 for details.

Composing update SQL statements
At design time, you can use the Update SQL editor to write the SQL statements for
the DeleteSQL, InsertSQL, and ModifySQL properties. If you do not use the Update
SQL editor, or if you want to modify the generated statements, you should keep in
mind the following guidelines when writing statements to delete, insert, and modify
records in the base table.

26-44 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

The DeleteSQL property should contain only an SQL statement with the DELETE
command. The base table to be updated must be named in the FROM clause. So that
the SQL statement only deletes the record in the base table that corresponds to the
record deleted in the update cache, use a WHERE clause. In the WHERE clause, use a
parameter for one or more fields to uniquely identify the record in the base table that
corresponds to the cached update record. If the parameters are named the same as
the field and prefixed with “OLD_”, the parameters are automatically given the
values from the corresponding field from the cached update record. If the parameter
are named in any other manner, you must supply the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

Some table types might not be able to find the record in the base table when fields
used to identify the record contain NULL values. In these cases, the delete update
fails for those records. To accommodate this, add a condition for those fields that
might contain NULLs using the IS NULL predicate (in addition to a condition for a
non-NULL value). For example, when a FirstName field may contain a NULL value:

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND

((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

The InsertSQL statement should contain only an SQL statement with the INSERT
command. The base table to be updated must be named in the INTO clause. In the
VALUES clause, supply a comma-separated list of parameters. If the parameters are
named the same as the field, the parameters are automatically given the value from
the cached update record. If the parameter are named in any other manner, you must
supply the parameter values. The list of parameters supplies the values for fields in
the newly inserted record. There must be as many value parameters as there are
fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The ModifySQL statement should contain only an SQL statement with the UPDATE
command. The base table to be updated must be named in the FROM clause. Include
one or more value assignments in the SET clause. If values in the SET clause
assignments are parameters named the same as fields, the parameters are
automatically given values from the fields of the same name in the updated record in
the cache. You can assign additional field values using other parameters, as long as
the parameters are not named the same as any fields and you manually supply the
values. As with the DeleteSQL statement, supply a WHERE clause to uniquely
identify the record in the base table to be updated using parameters named the same
as the fields and prefixed with “OLD_”. In the update statement below, the
parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-45

U s i n g t h e B D E t o c a c h e u p d a t e s

Considering the above update SQL, take an example case where the application end-
user modifies an existing record. The original value for the ItemNo field is 999. In a
grid connected to the cached dataset, the end-user changes the ItemNo field value to
123 and Amount to 20. When the ApplyUpdates method is invoked, this SQL
statement affects all records in the base table where the ItemNo field is 999, using the
old field value in the parameter :OLD_ItemNo. In those records, it changes the
ItemNo field value to 123 (using the parameter :ItemNo, the value coming from the
grid) and Amount to 20.

Using multiple update objects
When more than one base table referenced in the update dataset needs to be updated,
you need to use multiple update objects: one for each base table updated. Because the
dataset component’s UpdateObject only allows one update object to be associated
with the dataset, you must associate each update object with a dataset by setting its
DataSet property to the name of the dataset.

Tip When using multiple update objects, you can use TBDEClientDataSet instead of
TClientDataSet with an external provider. This is because you do not need to set the
source dataset’s UpdateObject property.

The DataSet property for update objects is not available at design time in the Object
Inspector. You can only set this property at runtime.

UpdateSQL1.DataSet := Query1;

The update object uses this dataset to obtain original and updated field values for
parameter substitution and, if it is a BDE-enabled dataset, to identify the session and
database to use when applying the updates. So that parameter substitution will work
correctly, the update object’s DataSet property must be the dataset that contains the
updated field values. When using the BDE-enabled dataset to cache updates, this is
the BDE-enabled dataset itself. When using a client dataset, this is a client dataset that
is provided as a parameter to the BeforeUpdateRecord event handler.

When the update object has not been assigned to the dataset’s UpdateObject property,
its SQL statements are not automatically executed when you call ApplyUpdates. To
update records, you must manually call the update object from an OnUpdateRecord
event handler (when using the BDE to cache updates) or a BeforeUpdateRecord event
handler (when using a client dataset). In the event handler, the minimum actions you
need to take are

• If you are using a client dataset to cache updates, you must be sure that the
updates object’s DatabaseName and SessionName properties are set to the
DatabaseName and SessionName properties of the source dataset.

• The event handler must call the update object’s ExecSQL or Apply method. This
invokes the update object for each record that requires updating. For more
information about executing update statements, see “Executing the SQL
statements” below.

• Set the event handler’s UpdateAction parameter to uaApplied (OnUpdateRecord) or
the Applied parameter to True (BeforeUpdateRecord).

26-46 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

You may optionally perform data validation, data modification, or other operations
that depend on each record’s update.

Warning If you call an update object’s ExecSQL or Apply method in an OnUpdateRecord event
handler, be sure that you do not set the dataset’s UpdateObject property to that
update object. Otherwise, this will result in a second attempt to apply each record’s
update.

Executing the SQL statements
When you use multiple update objects, you do not associate the update objects with a
dataset by setting its UpdateObject property. As a result, the appropriate statements
are not automatically executed when you apply updates. Instead, you must explicitly
invoke the update object in code.

There are two ways to invoke the update object. Which way you choose depends on
whether the SQL statement uses parameters to represent field values:

• If the SQL statement to execute uses parameters, call the Apply method.

• If the SQL statement to execute does not use parameters, it is more efficient to call
the ExecSQL method.

Note If the SQL statement uses parameters other than the built-in types (for the original
and updated field values), you must manually supply parameter values instead of
relying on the parameter substitution provided by the Apply method. See “Using an
update component’s Query property” on page 26-48 for information on manually
providing parameter values.

For information about the default parameter substitution for parameters in an update
object’s SQL statements, see “Understanding parameter substitution in update SQL
statements” on page 26-43.

Calling the Apply method
The Apply method for an update component manually applies updates for the
current record. There are two steps involved in this process:

1 Initial and edited field values for the record are bound to parameters in the
appropriate SQL statement.

2 The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache.
The Apply method is most often called from within a handler for the dataset’s
OnUpdateRecord event or from a provider’s BeforeUpdateRecord event handler.

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
Apply is called automatically. In that case, do not call Apply in an OnUpdateRecord
event handler as this will result in a second attempt to apply the current record’s
update.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-47

U s i n g t h e B D E t o c a c h e u p d a t e s

OnUpdateRecord event handlers indicate the type of update that needs to be applied
with an UpdateKind parameter of type TUpdateKind. You must pass this parameter to
the Apply method to indicate which update SQL statement to use. The following code
illustrates this using a BeforeUpdateRecord event handler:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

begin
with UpdateSQL1 do
begin

DataSet := DeltaDS;
DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
Apply(UpdateKind);
Applied := True;

end;
end;

Calling the ExecSQL method
The ExecSQL method for an update component manually applies updates for the
current record. Unlike the Apply method, ExecSQL does not bind parameters in the
SQL statement before executing it. The ExecSQL method is most often called from
within a handler for the OnUpdateRecord event (when using the BDE) or the
BeforeUpdateRecord event (when using a client dataset).

Because ExecSQL does not bind parameter values, it is used primarily when the
update object’s SQL statements do not include parameters. You can use Apply
instead, even when there are no parameters, but ExecSQL is more efficient because it
does not check for parameters.

If the SQL statements include parameters, you can still call ExecSQL, but only after
explicitly binding parameters. If you are using the BDE to cache updates, you can
explicitly bind parameters by setting the update object’s DataSet property and then
calling its SetParams method. When using a client dataset to cache updates, you must
supply parameters to the underlying query object maintained by TUpdateSQL. For
information on how to do this, see “Using an update component’s Query property”
on page 26-48.

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
ExecSQL is called automatically. In that case, do not call ExecSQL in an
OnUpdateRecord or BeforeUpdateRecord event handler as this will result in a second
attempt to apply the current record’s update.

OnUpdateRecord and BeforeUpdateRecord event handlers indicate the type of update
that needs to be applied with an UpdateKind parameter of type TUpdateKind. You
must pass this parameter to the ExecSQL method to indicate which update SQL
statement to use. The following code illustrates this using a BeforeUpdateRecord event
handler:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

26-48 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

begin
with UpdateSQL1 do
begin

DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
ExecSQL(UpdateKind);
Applied := True;

end;
end;

If an exception is raised during the execution of the update program, execution
continues in the OnUpdateError event, if it is defined.

Using an update component’s Query property
The Query property of an update component provides access to the query
components that implement its DeleteSQL, InsertSQL, and ModifySQL statements. In
most applications, there is no need to access these query components directly: you
can use the DeleteSQL, InsertSQL, and ModifySQL properties to specify the statements
these queries execute, and execute them by calling the update object’s Apply or
ExecSQL method. There are times, however, when you may need to directly
manipulate the query component. In particular, the Query property is useful when
you want to supply your own values for parameters in the SQL statements rather
than relying on the update object’s automatic parameter binding to old and new field
values.

Note The Query property is only accessible at runtime.

The Query property is indexed on a TUpdateKind value:

• Using an index of ukModify accesses the query that updates existing records.
• Using an index of ukInsert accesses the query that inserts new records.
• Using an index of ukDelete accesses the query that deletes records.

The following shows how to use the Query property to supply parameter values that
can’t be bound automatically:

procedure TForm1.BDEClientDataSet1BeforeUpdateRecord(Sender: TObject; SourceDS: TDataSet;
DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind; var Applied: Boolean);

begin
UpdateSQL1.DataSet := DeltaDS; { required for the automatic parameter substitution }
with UpdateSQL1.Query[UpdateKind] do
begin

{ Make sure the query has the correct DatabaseName and SessionName }
DatabaseName := (SourceDS as TDBDataSet).DatabaseName;
SessionName := (SourceDS as TDBDataSet).SessionName;
ParamByName('TimeOfUpdate').Value = Now;

end;
UpdateSQL1.Apply(UpdateKind); { now perform automatic substitutions and execute }
Applied := True;

end;

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-49

U s i n g T B a t c h M o v e

Using TBatchMove
TBatchMove encapsulates Borland Database Engine (BDE) features that let you to
duplicate a dataset, append records from one dataset to another, update records in
one dataset with records from another dataset, and delete records from one dataset
that match records in another dataset. TBatchMove is most often used to:

• Download data from a server to a local data source for analysis or other
operations.

• Move a desktop database into tables on a remote server as part of an upsizing
operation.

A batch move component can create tables on the destination that correspond to the
source tables, automatically mapping the column names and data types as
appropriate.

Creating a batch move component

To create a batch move component:

1 Place a table or query component for the dataset from which you want to import
records (called the Source dataset) on a form or in a data module.

2 Place the dataset to which to move records (called the Destination dataset) on the
form or data module.

3 Place a TBatchMove component from the BDE page of the Component palette in
the data module or form, and set its Name property to a unique value appropriate
to your application.

4 Set the Source property of the batch move component to the name of the table from
which to copy, append, or update records. You can select tables from the drop-
down list of available dataset components.

5 Set the Destination property to the dataset to create, append to, or update. You can
select a destination table from the drop-down list of available dataset components.

• If you are appending, updating, or deleting, Destination must represent an
existing database table.

• If you are copying a table and Destination represents an existing table, executing
the batch move overwrites all of the current data in the destination table.

• If you are creating an entirely new table by copying an existing table, the
resulting table has the name specified in the Name property of the table
component to which you are copying. The resulting table type will be of a
structure appropriate to the server specified by the DatabaseName property.

6 Set the Mode property to indicate the type of operation to perform. Valid
operations are batAppend (the default), batUpdate, batAppendUpdate, batCopy, and
batDelete. For information about these modes, see “Specifying a batch move mode”
on page 26-50.

26-50 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

7 Optionally set the Transliterate property. If Transliterate is True (the default),
character data is translated from the Source dataset’s character set to the
Destination dataset’s character set as necessary.

8 Optionally set column mappings using the Mappings property. You need not set
this property if you want batch move to match columns based on their position in
the source and destination tables. For more information about mapping columns,
see “Mapping data types” on page 26-51.

9 Optionally specify the ChangedTableName, KeyViolTableName, and
ProblemTableName properties. Batch move stores problem records it encounters
during the batch operation in the table specified by ProblemTableName. If you are
updating a Paradox table through a batch move, key violations can be reported in
the table you specify in KeyViolTableName. ChangedTableName lists all records that
changed in the destination table as a result of the batch move operation. If you do
not specify these properties, these error tables are not created or used. For more
information about handling batch move errors, see “Handling batch move errors”
on page 26-52.

Specifying a batch move mode

The Mode property specifies the operation a batch move component performs:

Appending records
To append data, the destination dataset must represent an existing table. During the
append operation, the BDE converts data to appropriate data types and sizes for the
destination dataset if necessary. If a conversion is not possible, an exception is
thrown and the data is not appended.

Updating records
To update data, the destination dataset must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are overwritten with the source data.
During the update operation, the BDE converts data to appropriate data types and
sizes for the destination dataset if necessary.

Table 26.8 Batch move modes

Property Purpose

batAppend Append records to the destination table.

batUpdate Update records in the destination table with matching records from the
source table. Updating is based on the current index of the destination table.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise,
append records to the destination table.

batCopy Create the destination table based on the structure of the source table. If the
destination table already exists, it is dropped and recreated.

batDelete Delete records in the destination table that match records in the source table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-51

U s i n g T B a t c h M o v e

Appending and updating records
To append and update data the destination dataset must represent an existing table
and must have an index defined that enables records to be matched. If the primary
index fields are used for matching, records with index fields in the destination
dataset that match index fields records in the source dataset are overwritten with the
source data. Otherwise, data from the source dataset is appended to the destination
dataset. During append and update operations, the BDE converts data to appropriate
data types and sizes for the destination dataset, if necessary.

Copying datasets
To copy a source dataset, the destination dataset should not represent an exist table.
If it does, the batch move operation overwrites the existing table with a copy of the
source dataset.

If the source and destination datasets are maintained by different types of database
engines, for example, Paradox and InterBase, the BDE creates a destination dataset
with a structure as close as possible to that of the source dataset and automatically
performs data type and size conversions as necessary.

Note TBatchMove does not copy metadata structures such as indexes, constraints, and
stored procedures. You must recreate these metadata objects on your database server
or through the SQL Explorer as appropriate.

Deleting records
To delete data in the destination dataset, it must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are deleted in the destination table.

Mapping data types

In batAppend mode, a batch move component creates the destination table based on
the column data types of the source table. Columns and types are matched based on
their position in the source and destination tables. That is, the first column in the
source is matched with the first column in the destination, and so on.

To override the default column mappings, use the Mappings property. Mappings is a
list of column mappings (one per line). This listing can take one of two forms. To map
a column in the source table to a column of the same name in the destination table,
you can use a simple listing that specifies the column name to match. For example,
the following mapping specifies that a column named ColName in the source table
should be mapped to a column of the same name in the destination table:

ColName

To map a column named SourceColName in the source table to a column named
DestColName in the destination table, the syntax is as follows:

DestColName = SourceColName

26-52 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

If source and destination column data types are not the same, a batch move operation
attempts a “best fit”. It trims character data types, if necessary, and attempts to
perform a limited amount of conversion, if possible. For example, mapping a
CHAR(10) column to a CHAR(5) column will result in trimming the last five
characters from the source column.

As an example of conversion, if a source column of character data type is mapped to
a destination of integer type, the batch move operation converts a character value of
‘5’ to the corresponding integer value. Values that cannot be converted generate
errors. For more information about errors, see “Handling batch move errors” on
page 26-52.

When moving data between different table types, a batch move component translates
data types as appropriate based on the dataset’s server types. See the BDE online
help file for the latest tables of mappings among server types.

Note To batch move data to an SQL server database, you must have that database server
and a version of Delphi with the appropriate SQL Link installed, or you can use
ODBC if you have the proper third party ODBC drivers installed.

Executing a batch move

Use the Execute method to execute a previously prepared batch operation at runtime.
For example, if BatchMoveAdd is the name of a batch move component, the following
statement executes it:

BatchMoveAdd.Execute;

You can also execute a batch move at design time by right clicking the mouse on a
batch move component and choosing Execute from the context menu.

The MovedCount property keeps track of the number of records that are moved when
a batch move executes.

The RecordCount property specifies the maximum number of records to move. If
RecordCount is zero, all records are moved, beginning with the first record in the
source dataset. If RecordCount is a positive number, a maximum of RecordCount
records are moved, beginning with the current record in the source dataset. If
RecordCount is greater than the number of records between the current record in the
source dataset and its last record, the batch move terminates when the end of the
source dataset is reached. You can examine MoveCount to determine how many
records were actually transferred.

Handling batch move errors

There are two types of errors that can occur in a batch move operation: data type
conversion errors and integrity violations. TBatchMove has a number of properties
that report on and control error handling.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-53

T h e D a t a D i c t i o n a r y

The AbortOnProblem property specifies whether to abort the operation when a data
type conversion error occurs. If AbortOnProblem is True, the batch move operation is
canceled when an error occurs. If False, the operation continues. You can examine the
table you specify in the ProblemTableName to determine which records caused
problems.

The AbortOnKeyViol property indicates whether to abort the operation when a
Paradox key violation occurs.

The ProblemCount property indicates the number of records that could not be
handled in the destination table without a loss of data. If AbortOnProblem is True, this
number is one, since the operation is aborted when an error occurs.

The following properties enable a batch move component to create additional tables
that document the batch move operation:

• ChangedTableName, if specified, creates a local Paradox table containing all records
in the destination table that changed as a result of an update or delete operation.

• KeyViolTableName, if specified, creates a local Paradox table containing all records
from the source table that caused a key violation when working with a Paradox
table. If AbortOnKeyViol is True, this table will contain at most one entry since the
operation is aborted on the first problem encountered.

• ProblemTableName, if specified, creates a local Paradox table containing all records
that could not be posted in the destination table due to data type conversion
errors. For example, the table could contain records from the source table whose
data had to be trimmed to fit in the destination table. If AbortOnProblem is True,
there is at most one record in this table since the operation is aborted on the first
problem encountered.

Note If ProblemTableName is not specified, the data in the record is trimmed and placed in
the destination table.

The Data Dictionary
When you use the BDE to access your data, your application has access to the Data
Dictionary. The Data Dictionary provides a customizable storage area, independent
of your applications, where you can create extended field attribute sets that describe
the content and appearance of data.

For example, if you frequently develop financial applications, you may create a
number of specialized field attribute sets describing different display formats for
currency. When you create datasets for your application at design time, rather than
using the Object Inspector to set the currency fields in each dataset by hand, you can
associate those fields with an extended field attribute set in the data dictionary. Using
the data dictionary ensures a consistent data appearance within and across the
applications you create.

26-54 D e v e l o p e r ’ s G u i d e

T h e D a t a D i c t i o n a r y

In a client/server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design
time, and how to associate them with fields throughout the datasets in your
application, see “Creating attribute sets for field components” on page 25-13. To
learn more about creating a data dictionary and extended field attributes with the
SQL and Database Explorers, see their respective online help files.

A programming interface to the Data Dictionary is available in the drintf unit
(located in the lib directory). This interface supplies the following methods:

Table 26.9 Data Dictionary interface

Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

IsNullID Indicates whether a given ID is a null ID

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames Executes a callback for each attribute set in the dictionary.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr Updates an attribute set to match the properties of a field.

CreateField Creates a field component based on stored attributes.

UpdateField Changes the properties of a field to match a specified attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control class for a specified attribute ID.

QualifyTableName Returns a fully qualified table name (qualified by user name).

QualifyTableNameByName Returns a fully qualified table name (qualified by user name).

HasConstraints Indicates whether the dataset has constraints in the dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset Updates a dataset to the current settings and constraints in the
dictionary.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 26-55

T o o l s f o r w o r k i n g w i t h t h e B D E

Tools for working with the BDE
One advantage of using the BDE as a data access mechanism is the wealth of
supporting utilities that ship with Delphi. These utilities include:

• SQL Explorer and Database Explorer: Delphi ships with one of these two
applications, depending on which version you have purchased. Both Explorers
enable you to

• Examine existing database tables and structures. The SQL Explorer lets you
examine and query remote SQL databases.

• Populate tables with data

• Create extended field attribute sets in the Data Dictionary or associate them
with fields in your application.

• Create and manage BDE aliases.

SQL Explorer lets you do the following as well:

• Create SQL objects such as stored procedures on remote database servers.
• View the reconstructed text of SQL objects on remote database servers.
• Run SQL scripts.

• SQL Monitor: SQL Monitor lets you watch all of the communication that passes
between the remote database server and the BDE. You can filter the messages you
want to watch, limiting them to only the categories of interest. SQL Monitor is
most useful when debugging your application.

• BDE Administration utility: The BDE Administration utility lets you add new
database drivers, configure the defaults for existing drivers, and create new BDE
aliases.

• Database Desktop: If you are using Paradox or dBASE tables, Database Desktop
lets you view and edit their data, create new tables, and restructure existing tables.
Using Database Desktop affords you more control than using the methods of a
TTable component (for example, it allows you to specify validity checks and
language drivers). It provides the only mechanism for restructuring Paradox and
dBASE tables other than making direct calls the BDE’s API.

26-56 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h A D O c o m p o n e n t s 27-1

C h a p t e r

27
Chapter27Working with ADO components

The dbGo components provide data access through the ADO framework. ADO,
(Microsoft ActiveX Data Objects) is a set of COM objects that access data through an
OLE DB provider. The dbGo components encapsulate these ADO objects in the
Delphi database architecture.

The ADO layer of an ADO-based application consists of Microsoft ADO 2.1, an OLE
DB provider or ODBC driver for the data store access, client software for the specific
database system used (in the case of SQL databases), a database back-end system
accessible to the application (for SQL database systems), and a database. All of these
must be accessible to the ADO-based application for it to be fully functional.

The ADO objects that figure most prominently are the Connection, Command, and
Recordset objects. These ADO objects are wrapped by the TADOConnection,
TADOCommand, and ADO dataset components. The ADO framework includes other
“helper” objects, like the Field and Properties objects, but these are typically not used
directly in dbGo applications and are not wrapped by dedicated components.

This chapter presents the dbGo components and discusses the unique features they
add to the common Delphi database architecture. Before reading about the features
peculiar to the dbGo components, you should familiarize yourself with the common
features of database connection components and datasets described in Chapter 23,
“Connecting to databases” and Chapter 24, “Understanding datasets.”

27-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f A D O c o m p o n e n t s

Overview of ADO components
The ADO page of the Component palette hosts the dbGo components. These
components let you connect to an ADO data store, execute commands, and retrieve
data from tables in databases using the ADO framework. They require ADO 2.1 (or
higher) to be installed on the host computer. Additionally, client software for the
target database system (such as Microsoft SQL Server) must be installed, as well as an
OLE DB driver or ODBC driver specific to the particular database system.

Most dbGo components have direct counterparts in the components available for
other data access mechanisms: a database connection component (TADOConnection)
and various types of datasets. In addition, dbGo includes TADOCommand, a simple
component that is not a dataset but which represents an SQL command to be
executed on the ADO data store.

The following table lists the ADO components.

Table 27.1 ADO components

Component Use

TADOConnection A database connection component that establishes a connection with an ADO
data store; multiple ADO dataset and command components can share this
connection to execute commands, retrieve data, and operate on metadata.

TADODataSet The primary dataset for retrieving and operating on data; TADODataSet can
retrieve data from a single or multiple tables; can connect directly to a data
store or use a TADOConnection component.

TADOTable A table-type dataset for retrieving and operating on a recordset produced by a
single database table; TADOTable can connect directly to a data store or use a
TADOConnection component.

TADOQuery A query-type dataset for retrieving and operating on a recordset produced by
a valid SQL statement; TADOQuery can also execute data definition language
(DDL) SQL statements. It can connect directly to a data store or use a
TADOConnection component

TADOStoredProc A stored procedure-type dataset for executing stored procedures;
TADOStoredProc executes stored procedures that may or may not retrieve
data. It can connect directly to a data store or use a TADOConnection
component.

TADOCommand A simple component for executing commands (SQL statements that do not
return result sets); TADOCommand can be used with a supporting dataset
component, or retrieve a dataset from a table; It can connect directly to a data
store or use a TADOConnection component.

W o r k i n g w i t h A D O c o m p o n e n t s 27-3

C o n n e c t i n g t o A D O d a t a s t o r e s

Connecting to ADO data stores
dbGo applications use Microsoft ActiveX Data Objects (ADO) 2.1 to interact with an
OLE DB provider that connects to a data store and accesses its data. One of the items
a data store can represent is a database. An ADO-based application requires that
ADO 2.1 be installed on the client computer. ADO and OLE DB is supplied by
Microsoft and installed with Windows.

An ADO provider represents one of a number of types of access, from native OLE DB
drivers to ODBC drivers. These drivers must be installed on the client computer. OLE
DB drivers for various database systems are supplied by the database vendor or by a
third-party. If the application uses an SQL database, such as Microsoft SQL Server or
Oracle, the client software for that database system must also be installed on the
client computer. Client software is supplied by the database vendor and installed
from the database systems CD (or disk).

To connect your application with the data store, use an ADO connection component
(TADOConnection). Configure the ADO connection component to use one of the
available ADO providers. Although TADOConnection is not strictly required, because
ADO command and dataset components can establish connections directly using
their ConnectionString property, you can use TADOConnection to share a single
connection among several ADO components. This can reduce resource consumption,
and allows you to create transactions that span multiple datasets.

Like other database connection components, TADOConnection provides support for

• Controlling connections
• Controlling server login
• Managing transactions
• Working with associated datasets
• Sending commands to the server
• Obtaining metadata

In addition to these features that are common to all database connection components,
TADOConnection provides its own support for

• A wide range of options you can use to fine-tune the connection.
• The ability to list the command objects that use the connection.
• Additional events when performing common tasks.

Connecting to a data store using TADOConnection

One or more ADO dataset and command components can share a single connection
to a data store by using TADOConnection. To do so, associated dataset and command
components with the connection component through their Connection properties. At
design-time, select the desired connection component from the drop-down list for the
Connection property in the Object Inspector. At runtime, assign the reference to the
Connection property. For example, the following line associates a TADODataSet
component with a TADOConnection component.

ADODataSet1.Connection := ADOConnection1;

27-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

The connection component represents an ADO connection object. Before you can use
the connection object to establish a connection, you must identify the data store to
which you want to connect. Typically, you provide information using the
ConnectionString property. ConnectionString is a semicolon delimited string that lists
one or more named connection parameters. These parameters identify the data store
by specifying either the name of a file that contains the connection information or the
name of an ADO provider and a reference identifying the data store. Use the
following, predefined parameter names to supply this information:

Thus, a typical value of ConnectionString has the form

Provider=MSDASQL.1;Data Source=MQIS

Note The connection parameters in ConnectionString do not need to include the Provider or
Remote Provider parameter if you specify an ADO provider using the Provider
property. Similarly, you do not need to specify the Data Source parameter if you use
the DefaultDatabase property.

In addition, to the parameters listed above, ConnectionString can include any
connection parameters peculiar to the specific ADO provider you are using. These
additional connection parameters can include user ID and password if you want to
hardcode the login information.

At design-time, you can use the Connection String Editor to build a connection string
by selecting connection elements (like the provider and server) from lists. Click the
ellipsis button for the ConnectionString property in the Object Inspector to launch the
Connection String Editor, which is an ActiveX property editor supplied by ADO.

Once you have specified the ConnectionString property (and, optionally, the Provider
property), you can use the ADO connection component to connect to or disconnect
from the ADO data store, although you may first want to use other properties to fine-
tune the connection. When connecting to or disconnecting from the data store,
TADOConnection lets you respond to a few additional events beyond those common
to all database connection components. These additional events are described in
“Events when establishing a connection” on page 27-8 and “Events when
disconnecting” on page 27-8.

Note If you do not explicitly activate the connection by setting the connection component’s
Connected property to True, it automatically establishes the connection when the first
dataset component is opened or the first time you use an ADO command component
to execute a command.

Table 27.2 Connection parameters

Parameter Description

Provider The name of a local ADO provider to use for the connection.

Data Source The name of the data store.

File name The name of a file containing connection information.

Remote Provider The name of an ADO provider that resides on a remote machine.

Remote Server The name of the remote server when using a remote provider.

W o r k i n g w i t h A D O c o m p o n e n t s 27-5

C o n n e c t i n g t o A D O d a t a s t o r e s

Accessing the connection object
Use the ConnectionObject property of TADOConnection to access the underlying ADO
connection object. Using this reference it is possible to access properties and call
methods of the underlying ADO Connection object.

Using the underlying ADO Connection object requires a good working knowledge of
ADO objects in general and the ADO Connection object in particular. It is not
recommended that you use the Connection object unless you are familiar with
Connection object operations. Consult the Microsoft Data Access SDK help for
specific information on using ADO Connection objects.

Fine-tuning a connection

One advantage of using TADOConnection for establishing the connection to a data
store instead of simply supplying a connection string for your ADO command and
dataset components, is that it provides a greater degree of control over the conditions
and attributes of the connection.

Forcing asynchronous connections
Use the ConnectOptions property to force the connection to be asynchronous.
Asynchronous connections allow your application to continue processing without
waiting for the connection to be completely opened.

By default, ConnectionOptions is set to coConnectUnspecified which allows the server to
decide the best type of connection. To explicitly make the connection asynchronous,
set ConnectOptions to coAsyncConnect.

The example routines below enable and disable asynchronous connections in the
specified connection component:

procedure TForm1.AsyncConnectButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
ConnectOptions := coAsyncConnect;
Open;

end;
end;

procedure TForm1.ServerChoiceConnectButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
ConnectOptions := coConnectUnspecified;
Open;

end;
end;

27-6 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Controlling time-outs
You can control the amount of time that can elapse before attempted commands and
connections are considered failed and are aborted using the ConnectionTimeout and
CommandTimeout properties.

ConnectionTimeout specifies the amount of time, in seconds, before an attempt to
connect to the data store times out. If the connection does not successfully compile
prior to expiration of the time specified in ConnectionTimeout, the connection attempt
is canceled:

with ADOConnection1 do begin
ConnectionTimeout := 10 {seconds};
Open;

end;

CommandTimeout specifies the amount of time, in seconds, before an attempted
command times out. If a command initiated by a call to the Execute method does not
successfully complete prior to expiration of the time specified in CommandTimeout,
the command is canceled and ADO generates an exception:

with ADOConnection1 do begin
CommandTimeout := 10 {seconds};
Execute('DROP TABLE Employee1997', cmdText, []);

end;

Indicating the types of operations the connection supports
ADO connections are established using a specific mode, similar to the mode you use
when opening a file. The connection mode determines the permissions available to
the connection, and hence the types of operations (such as reading and writing) that
can be performed using that connection.

Use the Mode property to indicate the connection mode. The possible values are listed
in Table 27.3:

The possible values for Mode correspond to the ConnectModeEnum values of the Mode
property on the underlying ADO connection object. See the Microsoft Data Access
SDK help for more information on these values.

Table 27.3 ADO connection modes

Connect Mode Meaning

cmUnknown Permissions are not yet set for the connection or cannot be determined.

cmRead Read-only permissions are available to the connection.

cmWrite Write-only permissions are available to the connection.

cmReadWrite Read/write permissions are available to the connection.

cmShareDenyRead Prevents others from opening connections with read permissions.

cmShareDenyWrite Prevents others from opening connection with write permissions.

cmShareExclusive Prevents others from opening connection.

cmShareDenyNone Prevents others from opening connection with any permissions.

W o r k i n g w i t h A D O c o m p o n e n t s 27-7

C o n n e c t i n g t o A D O d a t a s t o r e s

Specifying whether the connection automatically initiates transactions
Use the Attributes property to control the connection component’s use of retaining
commits and retaining aborts. When the connection component uses retaining
commits, then every time your application commits a transaction, a new transaction
is automatically started. When the connection component uses retaining aborts, then
every time your application rolls back a transaction, a new transaction is
automatically started.

Attributes is a set that can contain one, both, or neither of the constants
xaCommitRetaining and xaAbortRetaining. When Attributes contains
xaCommitRetaining, the connection uses retaining commits. When Attributes contains
xaAbortRetaining, it uses retaining aborts.

Check whether either retaining commits or retaining aborts is enabled using the in
operator. Enable retaining commits or aborts by adding the appropriate value to the
attributes property; disable them by subtracting the value. The example routines
below respectively enable and disable retaining commits in an ADO connection
component.

procedure TForm1.RetainingCommitsOnButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
if not (xaCommitRetaining in Attributes) then

Attributes := (Attributes + [xaCommitRetaining])
Open;

end;
end;

procedure TForm1.RetainingCommitsOffButtonClick(Sender: TObject);
begin

with ADOConnection1 do begin
Close;
if (xaCommitRetaining in Attributes) then

Attributes := (Attributes - [xaCommitRetaining]);
Open;

end;
end;

Accessing the connection’s commands

Like other database connection components, you can access the datasets associated
with the connection using the DataSets and DataSetCount properties. However, dbGo
also includes TADOCommand objects, which are not datasets, but which maintain a
similar relationship to the connection component.

You can use the Commands and CommandCount properties of TADOConnection to
access the associated ADO command objects in the same way you use the DataSets
and DataSetCount properties to access the associated datasets. Unlike DataSets and
DataSetCount, which only list active datasets, Commands and CommandCount provide
references to all TADOCommand components associated with the connection
component.

27-8 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Commands is a zero-based array of references to ADO command components.
CommandCount provides a total count of all of the commands listed in Commands.
You can use these properties together to iterate through all the commands that use a
connection component, as illustrated in the following code:

var
i: Integer

begin
for i := 0 to (ADOConnection1.CommandCount - 1) do

ADOConnection1.Commands[i].Execute;
end;

ADO connection events

In addition to the usual events that occur for all database connection components,
TADOConnection generates a number of additional events that occur during normal
usage.

Events when establishing a connection
In addition to the BeforeConnect and AfterConnect events that are common to all
database connection components, TADOConnection also generates an OnWillConnect
and OnConnectComplete event when establishing a connection. These events occur
after the BeforeConnect event.

• OnWillConnect occurs before the ADO provider establishes a connection. It lets
you make last minute changes to the connection string, provide a user name and
password if you are handling your own login support, force an asynchronous
connection, or even cancel the connection before it is opened.

• OnConnectComplete occurs after the connection is opened. Because
TADOConnection can represent asynchronous connections, you should use
OnConnectComplete, which occurs after the connection is opened or has failed due
to an error condition, instead of the AfterConnect event, which occurs after the
connection component instructs the ADO provider to open a connection, but not
necessarily after the connection is opened.

Events when disconnecting
In addition to the BeforeDisconnect and AfterDisconnect events common to all database
connection components, TADOConnection also generates an OnDisconnect event after
closing a connection. OnDisconnect occurs after the connection is closed but before
any associated datasets are closed and before the AfterDisconnect event.

W o r k i n g w i t h A D O c o m p o n e n t s 27-9

U s i n g A D O d a t a s e t s

Events when managing transactions
The ADO connection component provides a number of events for detecting when
transaction-related processes have been completed. These events indicate when a
transaction process initiated by a BeginTrans, CommitTrans, and RollbackTrans method
has been successfully completed at the data store.

• The OnBeginTransComplete event occurs when the data store has successfully
started a transaction after a call to the BeginTrans method.

• The OnCommitTransComplete event occurs after a transaction is successfully
committed due to a call to CommitTrans.

• The OnRollbackTransComplete event occurs after a transaction is successfully
aborted due to a call to RollbackTrans.

Other events
ADO connection components introduce two additional events you can use to
respond to notifications from the underlying ADO connection object:

• The OnExecuteComplete event occurs after the connection component executes a
command on the data store (for example, after calling the Execute method).
OnExecuteComplete indicates whether the execution was successful.

• The OnInfoMessage event occurs when the underlying connection object provides
detailed information after an operation is completed. The OnInfoMessage event
handler receives the interface to an ADO Error object that contains the detailed
information and a status code indicating whether the operation was successful.

Using ADO datasets
ADO dataset components encapsulate the ADO Recordset object. They inherit the
common dataset capabilities described in Chapter 24, “Understanding datasets,”
using ADO to provide the implementation. In order to use an ADO dataset, you must
familiarize yourself with these common features.

In addition to the common dataset features, all ADO datasets add properties, events,
and methods for

• Connecting to an ADO datastore.
• Accessing the underlying Recordset object.
• Filtering records based on bookmarks.
• Fetching records asynchronously.
• Performing batch updates (caching updates).
• Using files on disk to store data.

27-10 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

There are four ADO datasets:

• TADOTable, a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table type datasets” on page 24-25 for
information on using TADOTable and other table-type datasets.

• TADOQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 24-42 for information on using TADOQuery and other query-
type datasets.

• TADOStoredProc, a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 24-50 for information on using TADOStoredProc and other stored procedure-
type datasets.

• TADODataSet, a general-purpose dataset that includes the capabilities of the other
three types. See “Using TADODataSet” on page 27-16 for a description of features
unique to TADODataSet.

Note When using ADO to access database information, you do not need to use a dataset
such as TADOQuery to represent SQL commands that do not return a cursor. Instead,
you can use TADOCommand, a simple component that is not a dataset. For details on
TADOCommand, see “Using Command objects” on page 27-18.

Connecting an ADO dataset to a data store
ADO datasets can connect to an ADO data store either collectively or individually.

When connecting datasets collectively, set the Connection property of each dataset to
a TADOConnection component. Each dataset then uses the ADO connection
component’s connection.

ADODataSet1.Connection := ADOConnection1;
ADODataSet2.Connection := ADOConnection1;
ƒ

Among the advantages of connecting datasets collectively are:

• The datasets share the connection object’s attributes.
• Only one connection need be set up: that of the TADOConnection.
• The datasets can participate in transactions.

For more information on using TADOConnection see “Connecting to ADO data
stores” on page 27-3.

When connecting datasets individually, set the ConnectionString property of each
dataset. Each dataset that uses ConnectionString establishes its own connection to the
data store, independent of any other dataset connection in the application.

W o r k i n g w i t h A D O c o m p o n e n t s 27-11

U s i n g A D O d a t a s e t s

The ConnectionString property of ADO datasets works the same way as the
ConnectionString property of TADOConnection: it is a set of semicolon-delimited
connection parameters such as the following:

ADODataSet1.ConnectionString := 'Provider=YourProvider;Password=SecretWord;' +
'User ID=JaneDoe;SERVER=PURGATORY;UID=JaneDoe;PWD=SecretWord;' +
'Initial Catalog=Employee';

At design time you can use the Connection String Editor to help you build the
connection string. For more information about connection strings, see “Connecting to
a data store using TADOConnection” on page 27-3.

Working with record sets
The Recordset property provides direct access to the ADO recordset object underlying
the dataset component. Using this object, it is possible to access properties and call
methods of the recordset object from an application. Use of Recordset to directly
access the underlying ADO recordset object requires a good working knowledge of
ADO objects in general and the ADO recordset object in specific. Using the recordset
object directly is not recommended unless you are familiar with recordset object
operations. Consult the Microsoft Data Access SDK help for specific information on
using ADO recordset objects.

The RecordsetState property indicates the current state of the underlying recordset
object. RecordsetState corresponds to the State property of the ADO recordset object.
The value of RecordsetState is either stOpen, stExecuting, or stFetching. (TObjectState,
the type of the RecordsetState property, defines other values, but only stOpen,
stExecuting, and stFetching pertain to recordsets.) A value of stOpen indicates that the
recordset is currently idle. A value of stExecuting indicates that it is executing a
command. A value of stFetching indicates that it is fetching rows from the associated
table (or tables).

Use RecordsetState values to perform actions dependent on the current state of the
dataset. For example, a routine that updates data might check the RecordsetState
property to see whether the dataset is active and not in the process of other activities
such as connecting or fetching data.

Filtering records based on bookmarks
ADO datasets support the common dataset feature of using bookmarks to mark and
return to specific records. Also like other datasets, ADO datasets let you use filters to
limit the available records in the dataset. ADO datasets provide an additional feature
that combines these two common dataset features: the ability to filter on a set of
records identified by bookmarks.

To filter on a set of bookmarks,

1 Use the Bookmark method to mark the records you want to include in the filtered
dataset.

2 Call the FilterOnBookmarks method to filter the dataset so that only the
bookmarked records appear.

27-12 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

This process is illustrated below:

procedure TForm1.Button1Click(Sender: TObject);
var
 BM1, BM2: TBookmarkStr;
begin
 with ADODataSet1 do begin
 BM1 := Bookmark;

BMList.Add(Pointer(BM1));
 MoveBy(3);
 BM2 := Bookmark;

BMList.Add(Pointer(BM2));
FilterOnBookmarks([BM1, BM2]);

 end;
end;

Note that the example above also adds the bookmarks to a list object named BMList.
This is necessary so that the application can later free the bookmarks when they are
no longer needed.

For details on using bookmarks, see “Marking and returning to records” on
page 24-9. For details on other types of filters, see “Displaying and editing a subset of
data using filters” on page 24-13.

Fetching records asynchronously
Unlike other datasets, ADO datasets can fetch their data asynchronously. This allows
your application to continue performing other tasks while the dataset populates itself
with data from the data store.

To control whether the dataset fetches data asynchronously, if it fetches data at all,
use the ExecuteOptions property. ExecuteOptions governs how the dataset fetches its
records when you call Open or set Active to True. If the dataset represents a query or
stored procedure that does not return any records, ExecuteOptions governs how the
query or stored procedure is executed when you call ExecSQL or ExecProc.

ExecuteOptions is a set that includes zero or more of the following values:

Table 27.4 Execution options for ADO datasets

Execute Option Meaning

eoAsyncExecute The command or data fetch operation is executed asynchronously.

eoAsyncFetch The dataset first fetches the number of records specified by the
CacheSize property synchronously, then fetches any remaining rows
asynchronously.

eoAsyncFetchNonBlocking Asynchronous data fetches or command execution do not block the
current thread of execution.

eoExecuteNoRecords A command or stored procedure that does not return data. If any
rows are retrieved, they are discarded and not returned.

W o r k i n g w i t h A D O c o m p o n e n t s 27-13

U s i n g A D O d a t a s e t s

Using batch updates
One approach for caching updates is to connect the ADO dataset to a client dataset
using a dataset provider. This approach is discussed in “Using a client dataset to
cache updates” on page 29-16.

However, ADO dataset components provide their own support for cached updates,
which they call batch updates. The following table lists the correspondences between
caching updates using a client dataset and using the batch updates features:

Using the batch updates features of ADO dataset components is a matter of:

• Opening the dataset in batch update mode
• Inspecting the update status of individual rows
• Filtering multiple rows based on update status
• Applying the batch updates to base tables
• Canceling batch updates

Opening the dataset in batch update mode
To open an ADO dataset in batch update mode, it must meet these criteria:

1 The component’s CursorType property must be ctKeySet (the default property
value) or ctStatic.

2 The LockType property must be ltBatchOptimistic.
3 The command must be a SELECT query.

Table 27.5 Comparison of ADO and client dataset cached updates

ADO dataset TClientDataSet Description

LockType Not used: client datasets
always cache updates

Specifies whether the dataset is opened in batch
update mode.

CursorType Not used: client datasets
always work with an
in-memory snapshot of data

Specifies how isolated the ADO dataset is from
changes on the server.

RecordStatus UpdateStatus Indicates what update, if any, has occurred on the
current row. RecordStatus provides more
information than UpdateStatus.

FilterGroup StatusFilter Specifies which type of records are available.
FilterGroup provides a wider variety of
information.

UpdateBatch ApplyUpdates Applies the cached updates back to the database
server. Unlike ApplyUpdates, UpdateBatch lets you
limit the types of updates to be applied.

CancelBatch CancelUpdates Discards pending updates, reverting to the original
values. Unlike CancelUpdates, CancelBatch lets you
limit the types of updates to be canceled.

27-14 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Before activating the dataset component, set the CursorType and LockType properties
as indicated above. Assign a SELECT statement to the component’s CommandText
property (for TADODataSet) or the SQL property (for TADOQuery). For
TADOStoredProc components, set the ProcedureName to the name of a stored
procedure that returns a result set. These properties can be set at design-time through
the Object Inspector or programmatically at runtime. The example below shows the
preparation of a TADODataSet component for batch update mode.

with ADODataSet1 do begin
CursorLocation := clUseClient;
CursorType := ctStatic;
LockType := ltBatchOptimistic;
CommandType := cmdText;
CommandText := 'SELECT * FROM Employee';
Open;

end;

After a dataset has been opened in batch update mode, all changes to the data are
cached rather than applied directly to the base tables.

Inspecting the update status of individual rows
Determine the update status of a given row by making it current and then inspecting
the RecordStatus property of the ADO data component. RecordStatus reflects the
update status of the current row and only that row.

if (rsNew in ADOQuery1.RecordStatus) then
begin
ƒ
end;
else
if (rsDeleted in ADOQuery1.RecordStatus) then
begin
ƒ
else

Filtering multiple rows based on update status
Filter a recordset to show only those rows that belong to a group of rows with the
same update status using the FilterGroup property. Set FilterGroup to the TFilterGroup
constant that represents the update status of rows to display. A value of fgNone (the
default value for this property) specifies that no filtering is applied and all rows are
visible regardless of update status (except rows marked for deletion). The example
below causes only pending batch update rows to be visible.

FilterGroup := fgPendingRecords;
Filtered := True;

Note For the FilterGroup property to have an effect, the ADO dataset component’s Filtered
property must be set to True.

W o r k i n g w i t h A D O c o m p o n e n t s 27-15

U s i n g A D O d a t a s e t s

Applying the batch updates to base tables
Apply pending data changes that have not yet been applied or canceled by calling
the UpdateBatch method. Rows that have been changed and are applied have their
changes put into the base tables on which the recordset is based. A cached row
marked for deletion causes the corresponding base table row to be deleted. A record
insertion (exists in the cache but not the base table) is added to the base table.
Modified rows cause the columns in the corresponding rows in the base tables to be
changed to the new column values in the cache.

Used alone with no parameter, UpdateBatch applies all pending updates. A
TAffectRecords value can optionally be passed as the parameter for UpdateBatch. If any
value except arAll is passed, only a subset of the pending changes are applied.
Passing arAll is the same as passing no parameter at all and causes all pending
updates to be applied. The example below applies only the currently active row to be
applied:

ADODataSet1.UpdateBatch(arCurrent);

Canceling batch updates
Cancel pending data changes that have not yet been canceled or applied by calling
the CancelBatch method. When you cancel pending batch updates, field values on
rows that have been changed revert to the values that existed prior to the last call to
CancelBatch or UpdateBatch, if either has been called, or prior to the current pending
batch of changes.

Used alone with no parameter, CancelBatch cancels all pending updates. A
TAffectRecords value can optionally be passed as the parameter for CancelBatch. If any
value except arAll is passed, only a subset of the pending changes are
canceled.Passing arAll is the same as passing no parameter at all and causes all
pending updates to be canceled. The example below cancels all pending changes:

ADODataSet1.CancelBatch;

Loading data from and saving data to files
The data retrieved via an ADO dataset component can be saved to a file for later
retrieval on the same or a different computer. The data is saved in one of two
proprietary formats: ADTG or XML. These two file formats are the only formats
supported by ADO. However, both formats are not necessarily supported in all
versions of ADO. Consult the ADO documentation for the version you are using to
determine what save file formats are supported.

Save the data to a file using the SaveToFile method. SaveToFile takes two parameters,
the name of the file to which data is saved, and, optionally, the format (ADTG or
XML) in which to save the data. Indicate the format for the saved file by setting the
Format parameter to pfADTG or pfXML. If the file specified by the FileName parameter
already exists, SaveToFile raises an EOleException.

Retrieve the data from file using the LoadFromFile method. LoadFromFile takes a single
parameter, the name of the file to load. If the specified file does not exist,
LoadFromFile raises an EOleException exception. On calling the LoadFromFile method,
the dataset component is automatically activated.

27-16 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

In the example below, the first procedure saves the dataset retrieved by the
TADODataSet component ADODataSet1 to a file. The target file is an ADTG file
named SaveFile, saved to a local drive. The second procedure loads this saved file
into the TADODataSet component ADODataSet2.

procedure TForm1.SaveBtnClick(Sender: TObject);
begin

if (FileExists('c:\SaveFile')) then
begin

DeleteFile('c:\SaveFile');
StatusBar1.Panels[0].Text := 'Save file deleted!';

end;
ADODataSet1.SaveToFile('c:\SaveFile', pfADTG);

end;

procedure TForm1.LoadBtnClick(Sender: TObject);
begin

if (FileExists('c:\SaveFile')) then
ADODataSet2.LoadFromFile('c:\SaveFile')

else
StatusBar1.Panels[0].Text := 'Save file does not exist!';

end;

The datasets that save and load the data need not be on the same form as above, in
the same application, or even on the same computer. This allows for the briefcase-
style transfer of data from one computer to another.

Using TADODataSet

TADODataSet is a general-purpose dataset for working with data from an ADO data
store. Unlike the other ADO dataset components, TADODataSet is not a table-type,
query-type, or stored procedure-type dataset. Instead, it can function as any of these
types:

• Like a table-type dataset, TADODataSet lets you represent all of the rows and
columns of a single database table. To use it in this way, set the CommandType
property to cmdTable and the CommandText property to the name of the table.
TADODataSet supports table-type tasks such as

• Assigning indexes to sort records or form the basis of record-based searches. In
addition to the standard index properties and methods described in “Sorting
records with indexes” on page 24-26, TADODataSet lets you sort using
temporary indexes by setting the Sort property. Indexed-based searches
performed using the Seek method use the current index.

• Emptying the dataset. The DeleteRecords method provides greater control than
related methods in other table-type datasets, because it lets you specify what
records to delete.

The table-type tasks supported by TADODataSet are available even when you are
not using a CommandType of cmdTable.

W o r k i n g w i t h A D O c o m p o n e n t s 27-17

U s i n g A D O d a t a s e t s

• Like a query-type dataset, TADODataSet lets you specify a single SQL command
that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdText and the CommandText property to the SQL
command you want to execute. At design time, you can double-click on the
CommandText property in the Object Inspector to use the Command Text editor for
help in constructing the SQL command. TADODataSet supports query-type tasks
such as

• Using parameters in the query text. See “Using parameters in queries” on
page 24-45 for details on query parameters.

• Setting up master/detail relationships using parameters. See “Establishing
master/detail relationships using parameters” on page 24-47 for details on how
to do this.

• Preparing the query in advance to improve performance by setting the Prepared
property to True.

• Like a stored procedure-type dataset, TADODataSet lets you specify a stored
procedure that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdStoredProc and the CommandText property to the
name of the stored procedure. TADODataSet supports stored procedure-type tasks
such as

• Working with stored procedure parameters. See “Working with stored
procedure parameters” on page 24-51 for details on stored procedure
parameters.

• Fetching multiple result sets. See “Fetching multiple result sets” on page 24-56
for details on how to do this.

• Preparing the stored procedure in advance to improve performance by setting
the Prepared property to True.

In addition, TADODataSet lets you work with data stored in files by setting the
CommandType property to cmdFile and the CommandText property to the file name.

Before you set the CommandText and CommandType properties, you should link the
TADODataSet to a data store by setting the Connection or ConnectionString property.
This process is described in “Connecting an ADO dataset to a data store” on
page 27-10. As an alternative, you can use an RDS DataSpace object to connect the
TADODataSet to an ADO-based application server. To use an RDS DataSpace object,
set the RDSConnection property to a TRDSConnection object.

27-18 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

Using Command objects
In the ADO environment, commands are textual representations of provider-specific
action requests. Typically, they are Data Definition Language (DDL) and Data
Manipulation Language (DML) SQL statements. The language used in commands is
provider-specific, but usually compliant with the SQL-92 standard for the SQL
language.

Although you can always execute commands using TADOQuery, you may not want
the overhead of using a dataset component, especially if the command does not
return a result set. As an alternative, you can use the TADOCommand component,
which is a lighter-weight object designed to execute commands, one command at a
time. TADOCommand is intended primarily for executing those commands that do
not return result sets, such as Data Definition Language (DDL) SQL statements.
Through an overloaded version of its Execute method, however, it is capable of
returning a result set that can be assigned to the RecordSet property of an ADO
dataset component.

In general, working with TADOCommand is very similar to working with
TADODataSet, except that you can’t use the standard dataset methods to fetch data,
navigate records, edit data, and so on. TADOCommand objects connect to a data store
in the same way as ADO datasets. See “Connecting an ADO dataset to a data store”
on page 27-10 for details.

The following topics provide details on how to specify and execute commands using
TADOCommand.

Specifying the command

Specify commands for a TADOCommand component using the CommandText
property. Like TADODataSet, TADOCommand lets you specify the command in
different ways, depending on the CommandType property. Possible values for
CommandType include: cmdText (used if the command is an SQL statement), cmdTable
(if it is a table name), and cmdStoredProc (if the command is the name of a stored
procedure). At design-time, select the appropriate command type from the list in the
Object Inspector. At runtime, assign a value of type TCommandType to the
CommandType property.

with ADOCommand1 do begin
CommandText := 'AddEmployee';
CommandType := cmdStoredProc;

ƒ
end;

If no specific type is specified, the server is left to decide as best it can based on the
command in CommandText.

CommandText can contain the text of an SQL query that includes parameters or the
name of a stored procedure that uses parameters. You must then supply parameter
values, which are bound to the parameters before executing the command. See
“Handling command parameters” on page 27-20 for details.

W o r k i n g w i t h A D O c o m p o n e n t s 27-19

U s i n g C o m m a n d o b j e c t s

Using the Execute method

Before TADOCommand can execute its command, it must have a valid connection to a
data store. This is established just as with an ADO dataset. See “Connecting an ADO
dataset to a data store” on page 27-10 for details.

To execute the command, call the Execute method. Execute is an overloaded method
that lets you choose the most appropriate way to execute the command.

For commands that do not require any parameters and for which you do not need to
know how many records were affected, call Execute without any parameters:

with ADOCommand1 do begin
CommandText := 'UpdateInventory';
CommandType := cmdStoredProc;
Execute;

end;

Other versions of Execute let you provide parameter values using a Variant array,
and to obtain the number of records affected by the command.

For information on executing commands that return a result set, see “Retrieving
result sets with commands” on page 27-20.

Canceling commands

If you are executing the command asynchronously, then after calling Execute you can
abort the execution by calling the Cancel method:

procedure TDataForm.ExecuteButtonClick(Sender: TObject);
begin

ADOCommand1.Execute;
end;

procedure TDataForm.CancelButtonClick(Sender: TObject);
begin

ADOCommand1.Cancel;
end;

The Cancel method only has an effect if there is a command pending and it was
executed asynchronously (eoAsynchExecute is in the ExecuteOptions parameter of the
Execute method). A command is said to be pending if the Execute method has been
called but the command has not yet been completed or timed out.

A command times out if it is not completed or canceled before the number of seconds
specified in the CommandTimeout property expire. By default, commands time out
after 30 seconds.

27-20 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

Retrieving result sets with commands

Unlike TADOQuery components, which use different methods to execute depending
on whether they return a result set, TADOCommand always uses the Execute
command to execute the command, regardless of whether it returns a result set.
When the command returns a result set, Execute returns an interface to the ADO
_RecordSet interface.

The most convenient way to work with this interface is to assign it to the RecordSet
property of an ADO dataset.

For example, the following code uses TADOCommand (ADOCommand1) to execute a
SELECT query, which returns a result set. This result set is then assigned to the
RecordSet property of a TADODataSet component (ADODataSet1).

with ADOCommand1 do begin
CommandText := 'SELECT Company, State ' +

'FROM customer ' +
'WHERE State = :StateParam';

CommandType := cmdText;
Parameters.ParamByName('StateParam').Value := 'HI';
ADODataSet1.Recordset := Execute;

end;

As soon as the result set is assigned to the ADO dataset’s Recordset property, the
dataset is automatically activated and the data is available.

Handling command parameters

There are two ways in which a TADOCommand object may use parameters:

• The CommandText property can specify a query that includes parameters. Working
with parameterized queries in TADOCommand works like using a parameterized
query in an ADO dataset. See “Using parameters in queries” on page 24-45 for
details on parameterized queries.

• The CommandText property can specify a stored procedure that uses parameters.
Stored procedure parameters work much the same using TADOCommand as with
an ADO dataset. See “Working with stored procedure parameters” on page 24-51
for details on stored procedure parameters.

There are two ways to supply parameter values when working with TADOCommand:
you can supply them when you call the Execute method, or you can specify them
ahead of time using the Parameters property.

The Execute method is overloaded to include versions that take a set of parameter
values as a Variant array. This is useful when you want to supply parameter values
quickly without the overhead of setting up the Parameters property:

ADOCommand1.Execute(VarArrayOf([Edit1.Text, Date]));

W o r k i n g w i t h A D O c o m p o n e n t s 27-21

U s i n g C o m m a n d o b j e c t s

When working with stored procedures that return output parameters, you must use
the Parameters property instead. Even if you do not need to read output parameters,
you may prefer to use the Parameters property, which lets you supply parameters at
design time and lets you work with TADOCommand properties in the same way you
work with the parameters on datasets.

When you set the CommandText property, the Parameters property is automatically
updated to reflect the parameters in the query or those used by the stored procedure.
At design-time, you can use the Parameter Editor to access parameters, by clicking
the ellipsis button for the Parameters property in the Object Inspector. At runtime, use
properties and methods of TParameter to set (or get) the values of each parameter.

with ADOCommand1 do begin
CommandText := 'INSERT INTO Talley ' +

'(Counter) ' +
'VALUES (:NewValueParam)';

CommandType := cmdText;
Parameters.ParamByName('NewValueParam').Value := 57;
Execute

end;

27-22 D e v e l o p e r ’ s G u i d e

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-1

C h a p t e r

28
Chapter28Using unidirectional datasets

dbExpress is a set of lightweight database drivers that provide fast access to SQL
database servers. For each supported database, dbExpress provides a driver that
adapts the server-specific software to a set of uniform dbExpress interfaces. When you
deploy a database application that uses dbExpress, you need only include a dll (the
server-specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional
datasets are designed for quick lightweight access to database information, with
minimal overhead. Like other datasets, they can send an SQL command to the
database server, and if the command returns a set of records, obtain a cursor for
accessing those records. However, unidirectional datasets can only retrieve a
unidirectional cursor. They do not buffer data in memory, which makes them faster
and less resource-intensive than other types of dataset. However, because there are
no buffered records, unidirectional datasets are also less flexible than other datasets.
Many of the capabilities introduced by TDataSet are either unimplemented in
unidirectional datasets, or cause them to raise exceptions. For example:

• The only supported navigation methods are the First and Next methods. Most
others raise exceptions. Some, such as the methods involved in bookmark support,
simply do nothing.

• There is no built-in support for editing because editing requires a buffer to hold
the edits. The CanModify property is always False, so attempts to put the dataset
into edit mode always fail. You can, however, use unidirectional datasets to
update data using an SQL UPDATE command or provide conventional editing
support by using a dbExpress-enabled client dataset or connecting the dataset to a
client dataset (see “Connecting to another dataset” on page 19-10).

28-2 D e v e l o p e r ’ s G u i d e

T y p e s o f u n i d i r e c t i o n a l d a t a s e t s

• There is no support for filters, because filters work with multiple records, which
requires buffering. If you try to filter a unidirectional dataset, it raises an
exception. Instead, all limits on what data appears must be imposed using the SQL
command that defines the data for the dataset.

• There is no support for lookup fields, which require buffering to hold multiple
records containing lookup values. If you define a lookup field on a unidirectional
dataset, it does not work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data.
They are the fastest data access mechanism, and very simple to use and deploy.

Types of unidirectional datasets
The dbExpress page of the Component palette contains four types of unidirectional
dataset: TSQLDataSet, TSQLQuery, TSQLTable, and TSQLStoredProc.

TSQLDataSet is the most general of the four. You can use an SQL dataset to represent
any data available through dbExpress, or to send commands to a database accessed
through dbExpress. This is the recommended component to use for working with
database tables in new database applications.

TSQLQuery is a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type datasets”
on page 24-42 for information on using query-type datasets.

TSQLTable is a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table type datasets” on page 24-25 for information
on using table-type datasets.

TSQLStoredProc is a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 24-50 for information on using stored procedure-type datasets.

Note The dbExpress page also includes TSimpleDataSet, which is not a unidirectional
dataset. Rather, it is a client dataset that uses a unidirectional dataset internally to
access its data.

Connecting to the database server
The first step when working with a unidirectional dataset is to connect it to a
database server. At design time, once a dataset has an active connection to a database
server, the Object Inspector can provide drop-down lists of values for other
properties. For example, when representing a stored procedure, you must have an
active connection before the Object Inspector can list what stored procedures are
available on the server.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-3

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

The connection to a database server is represented by a separate TSQLConnection
component. You work with TSQLConnection like any other database connection
component. For information about database connection components, see Chapter 23,
“Connecting to databases.”

To use TSQLConnection to connect a unidirectional dataset to a database server, set
the SQLConnection property. At design time, you can choose the SQL connection
component from a drop-down list in the Object Inspector. If you make this
assignment at runtime, be sure that the connection is active:

SQLDataSet1.SQLConnection := SQLConnection1;
SQLConnection1.Connected := True;

Typically, all unidirectional datasets in an application share the same connection
component, unless you are working with data from multiple database servers.
However, you may want to use a separate connection for each dataset if the server
does not support multiple statements per connection. Check whether the database
server requires a separate connection for each dataset by reading the
MaxStmtsPerConn property. By default, TSQLConnection generates connections as
needed when the server limits the number of statements that can be executed over a
connection. If you want to keep stricter track of the connections you are using, set the
AutoClone property to False.

Before you assign the SQLConnection property, you will need to set up the
TSQLConnection component so that it identifies the database server and any required
connection parameters (including which database to use on the server, the host name
of the machine running the server, the username, password, and so on).

Setting up TSQLConnection

In order to describe a database connection in sufficient detail for TSQLConnection to
open a connection, you must identify both the driver to use and a set of connection
parameters the are passed to that driver.

Identifying the driver
The driver is identified by the DriverName property, which is the name of an installed
dbExpress driver, such as INTERBASE, INFORMIX, ORACLE, MYSQL, MSSQL, or
DB2. The driver name is associated with two files:

• The dbExpress driver. This can be either a dynamic-link library with a name like
dbexpint.dll, dbexpora.dll, dbexpmysql.dll, dbexpmss.dll, or dbexpdb2.dll, or a
compiled unit that you can statically link into your application (dbexpint.dcu,
dbexpora.dcu, dbexpmys.dcu, dbexpmss.dcu, or dbexpdb2.dcu).

• The dynamic-link library provided by the database vendor for client-side support.

28-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

The relationship between these two files and the database name is stored in a file
called dbxdrivers.ini, which is updated when you install a dbExpress driver.
Typically, you do not need to worry about these files because the SQL connection
component looks them up in dbxdrivers.ini when given the value of DriverName.
When you set the DriverName property, TSQLConnection automatically sets the
LibraryName and VendorLib properties to the names of the associated dlls. Once
LibraryName and VendorLib have been set, your application does not need to rely on
dbxdrivers.ini. (That is, you do not need to deploy dbxdrivers.ini with your
application unless you set the DriverName property at runtime.)

Specifying connection parameters
The Params property is a string list that lists name/value pairs. Each pair has the
form Name=Value, where Name is the name of the parameter, and Value is the value
you want to assign.

The particular parameters you need depend on the database server you are using.
However, one particular parameter, Database, is required for all servers. Its value
depends on the server you are using. For example, with InterBase, Database is the
name of the .gdb file, with ORACLE it is the entry in TNSNames.ora, while with DB2,
it is the client-side node name.

Other typical parameters include the User_Name (the name to use when logging in),
Password (the password for User_Name), HostName (the machine name or IP address
of where the server is located), and TransIsolation (the degree to which transactions
you introduce are aware of changes made by other transactions). When you specify a
driver name, the Params property is preloaded with all the parameters you need for
that driver type, initialized to default values.

Because Params is a string list, at design time you can double-click on the Params
property in the Object Inspector to edit the parameters using the String List editor. At
runtime, use the Params.Values property to assign values to individual parameters.

Naming a connection description
Although you can always specify a connection using only the DatabaseName and
Params properties, it can be more convenient to name a specific combination and then
just identify the connection by name. You can name dbExpress database and
parameter combinations, which are then saved in a file called dbxconnections.ini.
The name of each combination is called a connection name.

Once you have defined the connection name, you can identify a database connection
by simply setting the ConnectionName property to a valid connection name. Setting
ConnectionName automatically sets the DriverName and Params properties. Once
ConnectionName is set, you can edit the Params property to create temporary
differences from the saved set of parameter values, but changing the DriverName
property clears both Params and ConnectionName.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-5

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

One advantage of using connection names arises when you develop your application
using one database (for example Local InterBase), but deploy it for use with another
(such as ORACLE). In that case, DriverName and Params will likely differ on the
system where you deploy your application from the values you use during
development. You can switch between the two connection descriptions easily by
using two versions of the dbxconnections.ini file. At design-time, your application
loads the DriverName and Params from the design-time version of dbxconnections.ini.
Then, when you deploy your application, it loads these values from a separate
version of dbxconnections.ini that uses the “real” database. However, for this to
work, you must instruct your connection component to reload the DriverName and
Params properties at runtime. There are two ways to do this:

• Set the LoadParamsOnConnect property to True. This causes TSQLConnection to
automatically set DriverName and Params to the values associated with
ConnectionName in dbxconnections.ini when the connection is opened.

• Call the LoadParamsFromIniFile method. This method sets DriverName and Params
to the values associated with ConnectionName in dbxconnections.ini (or in another
file that you specify). You might choose to use this method if you want to then
override certain parameter values before opening the connection.

Using the Connection Editor
The relationships between connection names and their associated driver and
connection parameters is stored in the dbxconnections.ini file. You can create or
modify these associations using the Connection Editor.

To display the Connection Editor, double-click on the TSQLConnection component.
The Connection Editor appears, with a drop-down list containing all available
drivers, a list of connection names for the currently selected driver, and a table listing
the connection parameters for the currently selected connection name.

You can use this dialog to indicate the connection to use by selecting a driver and
connection name. Once you have chosen the configuration you want, click the Test
Connection button to check that you have chosen a valid configuration.

In addition, you can use this dialog to edit the named connections in
dbxconnections.ini:

• Edit the parameter values in the parameter table to change the currently selected
named connection. When you exit the dialog by clicking OK, the new parameter
values are saved to dbxconnections.ini.

• Click the Add Connection button to define a new named connection. A dialog
appears where you specify the driver to use and the name of the new connection.
Once the connection is named, edit the parameters to specify the connection you
want and click the OK button to save the new connection to dbxconnections.ini.

• Click the Delete Connection button to delete the currently selected named
connection from dbxconnections.ini.

• Click the Rename Connection button to change the name of the currently selected
named connection. Note that any edits you have made to the parameters are saved
with the new name when you click the OK button.

28-6 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

Specifying what data to display
There are a number of ways to specify what data a unidirectional dataset represents.
Which method you choose depends on the type of unidirectional dataset you are
using and whether the information comes from a single database table, the results of
a query, or from a stored procedure.

When you work with a TSQLDataSet component, use the CommandType property to
indicate where the dataset gets its data. CommandType can take any of the following
values:

• ctQuery: When CommandType is ctQuery, TSQLDataSet executes a query you
specify. If the query is a SELECT command, the dataset contains the resulting set
of records.

• ctTable: When CommandType is ctTable, TSQLDataSet retrieves all of the records
from a specified table.

• ctStoredProc: When CommandType is ctStoredProc, TSQLDataSet executes a stored
procedure. If the stored procedure returns a cursor, the dataset contains the
returned records.

Note You can also populate the unidirectional dataset with metadata about what is
available on the server. For information on how to do this, see “Fetching metadata
into a unidirectional dataset” on page 28-13.

Representing the results of a query

Using a query is the most general way to specify a set of records. Queries are simply
commands written in SQL. You can use either TSQLDataSet or TSQLQuery to
represent the result of a query.

When using TSQLDataSet, set the CommandType property to ctQuery and assign the
text of the query statement to the CommandText property. When using TSQLQuery,
assign the query to the SQL property instead. These properties work the same way
for all general-purpose or query-type datasets. “Specifying the query” on page 24-43
discusses them in greater detail.

When you specify the query, it can include parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values
that appear in the SQL statement. Using parameters in queries and supplying values
for those parameters is discussed in “Using parameters in queries” on page 24-45.

SQL defines queries such as UPDATE queries that perform actions on the server but
do not return records. Such queries are discussed in “Executing commands that do
not return records” on page 28-10.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-7

S p e c i f y i n g w h a t d a t a t o d i s p l a y

Representing the records in a table

When you want to represent all of the fields and all of the records in a single
underlying database table, you can use either TSQLDataSet or TSQLTable to generate
the query for you rather than writing the SQL yourself.

Note If server performance is a concern, you may want to compose the query explicitly
rather than relying on an automatically-generated query. Automatically-generated
queries use wildcards rather than explicitly listing all of the fields in the table. This
can result in slightly slower performance on the server. The wildcard (*) in
automatically-generated queries is more robust to changes in the fields on the server.

Representing a table using TSQLDataSet
To make TSQLDataSet generate a query to fetch all fields and all records of a single
database table, set the CommandType property to ctTable.

When CommandType is ctTable, TSQLDataSet generates a query based on the values of
two properties:

• CommandText specifies the name of the database table that the TSQLDataSet object
should represent.

• SortFieldNames lists the names of any fields to use to sort the data, in the order of
significance.

For example, if you specify the following:

SQLDataSet1.CommandType := ctTable;
SQLDataSet1.CommandText := 'Employee';
SQLDataSet1.SortFieldNames := 'HireDate,Salary'

TSQLDataSet generates the following query, which lists all the records in the
Employee table, sorted by HireDate and, within HireDate, by Salary:

select * from Employee order by HireDate, Salary

Representing a table using TSQLTable
When using TSQLTable, specify the table you want using the TableName property.

To specify the order of fields in the dataset, you must specify an index. There are two
ways to do this:

• Set the IndexName property to the name of an index defined on the server that
imposes the order you want.

• Set the IndexFieldNames property to a semicolon-delimited list of field names on
which to sort. IndexFieldNames works like the SortFieldNames property of
TSQLDataSet, except that it uses a semicolon instead of a comma as a delimiter.

28-8 D e v e l o p e r ’ s G u i d e

F e t c h i n g t h e d a t a

Representing the results of a stored procedure

Stored procedures are sets of SQL statements that are named and stored on an SQL
server. How you indicate the stored procedure you want to execute depends on the
type of unidirectional dataset you are using.

When using TSQLDataSet, to specify a stored procedure:

• Set the CommandType property to ctStoredProc.

• Specify the name of the stored procedure as the value of the CommandText
property:

SQLDataSet1.CommandType := ctStoredProc;
SQLDataSet1.CommandText := 'MyStoredProcName';

When using TSQLStoredProc, you need only specify the name of the stored procedure
as the value of the StoredProcName property.

SQLStoredProc1.StoredProcName := 'MyStoredProcName';

After you have identified a stored procedure, your application may need to enter
values for any input parameters of the stored procedure or retrieve the values of
output parameters after you execute the stored procedure. See “Working with stored
procedure parameters” on page 24-51 for information about working with stored
procedure parameters.

Fetching the data
Once you have specified the source of the data, you must fetch the data before your
application can access it. Once the dataset has fetched the data, data-aware controls
linked to the dataset through a data source automatically display data values and
client datasets linked to the dataset through a provider can be populated with
records.

As with any dataset, there are two ways to fetch the data for a unidirectional dataset:

• Set the Active property to True, either at design time in the Object Inspector, or in
code at runtime:

CustQuery.Active := True;

• Call the Open method at runtime,

CustQuery.Open;

Use the Active property or the Open method with any unidirectional dataset that
obtains records from the server. It does not matter whether these records come from
a SELECT query (including automatically-generated queries when the CommandType
is ctTable) or a stored procedure.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-9

F e t c h i n g t h e d a t a

Preparing the dataset

Before a query or stored procedure can execute on the server, it must first be
“prepared”. Preparing the dataset means that dbExpress and the server allocate
resources for the statement and its parameters. If CommandType is ctTable, this is
when the dataset generates its SELECT query. Any parameters that are not bound by
the server are folded into a query at this point.

Unidirectional datasets are automatically prepared when you set Active to True or call
the Open method. When you close the dataset, the resources allocated for executing
the statement are freed. If you intend to execute the query or stored procedure more
than once, you can improve performance by explicitly preparing the dataset before
you open it the first time. To explicitly prepare a dataset, set its Prepared property to
True.

CustQuery.Prepared := True;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to False.

Set the Prepared property to False if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change a parameter value or the SortFieldNames
property).

Fetching multiple datasets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. In order to access the other sets of records, call the
NextRecordSet method:

var
DataSet2: TCustomSQLDataSet;
nRows: Integer;

begin
DataSet2 := SQLStoredProc1.NextRecordSet;
ƒ

NextRecordSet returns a newly created TCustomSQLDataSet component that provides
access to the next set of records. That is, the first time you call NextRecordSet, it
returns a dataset for the second set of records. Calling NextRecordSet returns a third
dataset, and so on, until there are no more sets of records. When there are no
additional datasets, NextRecordSet returns nil.

28-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

Executing commands that do not return records
You can use a unidirectional dataset even if the query or stored procedure it
represents does not return any records. Such commands include statements that use
Data Definition Language (DDL) or Data Manipulation Language (DML) statements
other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE
INDEX, and ALTER TABLE commands do not return any records). The language
used in commands is server-specific, but usually compliant with the SQL-92 standard
for the SQL language.

The SQL command you execute must be acceptable to the server you are using.
Unidirectional datasets neither evaluate the SQL nor execute it. They merely pass the
command to the server for execution.

Note If the command does not return any records, you do not need to use a unidirectional
dataset at all, because there is no need for the dataset methods that provide access to
a set of records. The SQL connection component that connects to the database server
can be used directly to execute a command on the server. See “Sending commands to
the server” on page 23-10 for details.

Specifying the command to execute

With unidirectional datasets, the way you specify the command to execute is the
same whether the command results in a dataset or not. That is:

When using TSQLDataSet, use the CommandType and CommandText properties to
specify the command:

• If CommandType is ctQuery, CommandText is the SQL statement to pass to the
server.

• If CommandType is ctStoredProc, CommandText is the name of a stored procedure to
execute.

When using TSQLQuery, use the SQL property to specify the SQL statement to pass
to the server.

When using TSQLStoredProc, use the StoredProcName property to specify the name of
the stored procedure to execute.

Just as you specify the command in the same way as when you are retrieving records,
you work with query parameters or stored procedure parameters the same way as
with queries and stored procedures that return records. See “Using parameters in
queries” on page 24-45 and “Working with stored procedure parameters” on
page 24-51 for details.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-11

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

Executing the command

To execute a query or stored procedure that does not return any records, you do not
use the Active property or the Open method. Instead, you must use

• The ExecSQL method if the dataset is an instance of TSQLDataSet or TSQLQuery.

FixTicket.CommandText := 'DELETE FROM TrafficViolations WHERE (TicketID = 1099)';
FixTicket.ExecSQL;

• The ExecProc method if the dataset is an instance of TSQLStoredProc.

SQLStoredProc1.StoredProcName := 'MyCommandWithNoResults';
SQLStoredProc1.ExecProc;

Tip If you are executing the query or stored procedure multiple times, it is a good idea to
set the Prepared property to True.

Creating and modifying server metadata

Most of the commands that do not return data fall into two categories: those that you
use to edit data (such as INSERT, DELETE, and UPDATE commands), and those that
you use to create or modify entities on the server such as tables, indexes, and stored
procedures.

If you don’t want to use explicit SQL commands for editing, you can link your
unidirectional dataset to a client dataset and let it handle all the generation of all SQL
commands concerned with editing (see “Connecting a client dataset to another
dataset in the same application” on page 19-12). In fact, this is the recommended
approach because data-aware controls are designed to perform edits through a
dataset such as TClientDataSet.

The only way your application can create or modify metadata on the server,
however, is to send a command. Not all database drivers support the same SQL
syntax. It is beyond the scope of this topic to describe the SQL syntax supported by
each database type and the differences between the database types. For a
comprehensive and up-to-date discussion of the SQL implementation for a given
database system, see the documentation that comes with that system.

In general, use the CREATE TABLE statement to create tables in a database and
CREATE INDEX to create new indexes for those tables. Where supported, use other
CREATE statements for adding various metadata objects, such as CREATE
DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE.

For each of the CREATE statements, there is a corresponding DROP statement to
delete the metadata object. These statements include DROP TABLE, DROP VIEW,
DROP DOMAIN, DROP SCHEMA, and DROP PROCEDURE.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE
has ADD and DROP clauses to create new elements in a table and to delete them. For
example, use the ADD COLUMN clause to add a new column to the table and DROP
CONSTRAINT to delete an existing constraint from the table.

28-12 D e v e l o p e r ’ s G u i d e

S e t t i n g u p m a s t e r / d e t a i l l i n k e d c u r s o r s

For example, the following statement creates a stored procedure called
GET_EMP_PROJ on an InterBase database:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The following code uses a TSQLDataSet to create this stored procedure. Note the use
of the ParamCheck property to prevent the dataset from confusing the parameters in
the stored procedure definition (:EMP_NO and :PROJ_ID) with a parameter of the
query that creates the stored procedure.

with SQLDataSet1 do
begin

ParamCheck := False;
CommandType := ctQuery;
CommandText := 'CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) ' +

'RETURNS (PROJ_ID CHAR(5)) AS ' +
'BEGIN ' +
'FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT ' +
'WHERE EMP_NO = :EMP_NO ' +
'INTO :PROJ_ID ' +

'DO SUSPEND; ' +
END';

ExecSQL;
end;

Setting up master/detail linked cursors
There are two ways to use linked cursors to set up a master/detail relationship with a
unidirectional dataset as the detail set. Which method you use depends on the type of
unidirectional dataset you are using. Once you have set up such a relationship, the
unidirectional dataset (the “many” in a one-to-many relationship) provides access
only to those records that correspond to the current record on the master set (the
“one” in the one-to-many relationship).

TSQLDataSet and TSQLQuery require you to use a parameterized query to establish a
master/detail relationship. This is the technique for creating such relationships on all
query-type datasets. For details on creating master/detail relationships with query-
type datasets, see “Establishing master/detail relationships using parameters” on
page 24-47.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-13

A c c e s s i n g s c h e m a i n f o r m a t i o n

To set up a master/detail relationship where the detail set is an instance of
TSQLTable, use the MasterSource and MasterFields properties, just as you would with
any other table-type dataset. For details on creating master/detail relationships with
table-type datasets, see “Establishing master/detail relationships using parameters”
on page 24-47.

Accessing schema information
There are two ways to obtain information about what is available on the server. This
information, called schema information or metadata, includes information about
what tables and stored procedures are available on the server and information about
these tables and stored procedures (such as the fields a table contains, the indexes
that are defined, and the parameters a stored procedure uses).

The simplest way to obtain this metadata is to use the methods of TSQLConnection.
These methods fill an existing string list or list object with the names of tables, stored
procedures, fields, or indexes, or with parameter descriptors. This technique is the
same as the way you fill lists with metadata for any other database connection
component. These methods are described in “Obtaining metadata” on page 23-13.

If you require more detailed schema information, you can populate a unidirectional
dataset with metadata. Instead of a simple list, the unidirectional dataset is filled with
schema information, where each record represents a single table, stored procedure,
index, field, or parameter.

Fetching metadata into a unidirectional dataset

To populate a unidirectional datasets with metadata from the database server, you
must first indicate what data you want to see, using the SetSchemaInfo method.
SetSchemaInfo takes three parameters:

• The type of schema information (metadata) you want to fetch. This can be a list of
tables (stTables), a list of system tables (stSysTables), a list of stored procedures
(stProcedures), a list of fields in a table (stColumns), a list of indexes (stIndexes), or a
list of parameters used by a stored procedure (stProcedureParams). Each type of
information uses a different set of fields to describe the items in the list. For details
on the structures of these datasets, see “The structure of metadata datasets” on
page 28-14.

• If you are fetching information about fields, indexes, or stored procedure
parameters, the name of the table or stored procedure to which they apply. If you
are fetching any other type of schema information, this parameter is nil.

28-14 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

• A pattern that must be matched for every name returned. This pattern is an SQL
pattern such as ‘Cust%’, which uses the wildcards ‘%’ (to match a string of
arbitrary characters of any length) and ‘_’ (to match a single arbitrary character).
To use a literal percent or underscore in a pattern, the character is doubled (%% or
__). If you do not want to use a pattern, this parameter can be nil.

Note If you are fetching schema information about tables (stTables), the resulting schema
information can describe ordinary tables, system tables, views, and/or synonyms,
depending on the value of the SQL connection’s TableScope property.

The following call requests a table listing all system tables (server tables that contain
metadata):

SQLDataSet1.SetSchemaInfo(stSysTable, '', '');

When you open the dataset after this call to SetSchemaInfo, the resulting dataset has a
record for each table, with columns giving the table name, type, schema name, and so
on. If the server does not use system tables to store metadata (for example MySQL),
when you open the dataset it contains no records.

The previous example used only the first parameter. Suppose, Instead, you want to
obtain a list of input parameters for a stored procedure named ‘MyProc’. Suppose,
further, that the person who wrote that stored procedure named all parameters using
a prefix to indicate whether they were input or output parameters (‘inName’,
‘outValue’ and so on). You could call SetSchemaInfo as follows:

SQLDataSet1.SetSchemaInfo(stProcedureParams, 'MyProc', 'in%');

The resulting dataset is a table of input parameters with columns to describe the
properties of each parameter.

Fetching data after using the dataset for metadata
There are two ways to return to executing queries or stored procedures with the
dataset after a call to SetSchemaInfo:

• Change the CommandText property, specifying the query, table, or stored
procedure from which you want to fetch data.

• Call SetSchemaInfo, setting the first parameter to stNoSchema. In this case, the
dataset reverts to fetching the data specified by the current value of CommandText.

The structure of metadata datasets
For each type of metadata you can access using TSQLDataSet, there is a predefined
set of columns (fields) that are populated with information about the items of the
requested type.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-15

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about tables
When you request information about tables (stTables or stSysTables), the resulting
dataset includes a record for each table. It has the following columns:

Information about stored procedures
When you request information about stored procedures (stProcedures), the resulting
dataset includes a record for each stored procedure. It has following columns:

Table 28.1 Columns in tables of metadata listing tables

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table. This
is the same as the Database parameter on an SQL connection
component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the table.

TABLE_NAME ftString The name of the table. This field determines the sort order of
the dataset.

TABLE_TYPE ftInteger Identifies the type of table. It is a sum of one or more of the
following values:

1: Table
2: View.
4: System table
8: Synonym

16: Temporary table
32: Local table.

Table 28.2 Columns in tables of metadata listing stored procedures

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored
procedure.

PROC_NAME ftString The name of the stored procedure. This field determines the
sort order of the dataset.

PROC_TYPE ftInteger Identifies the type of stored procedure. It is a sum of one or
more of the following values:

1: Procedure
2: Function
4: Package
8: System procedure

IN_PARAMS ftSmallint The number of input parameters

OUT_PARAMS ftSmallint The number of output parameters.

28-16 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about fields
When you request information about the fields in a specified table (stColumns), the
resulting dataset includes a record for each field. It includes the following columns:

Table 28.3 Columns in tables of metadata listing fields

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table
whose fields you listing. This is the same as the Database
parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
field.

TABLE_NAME ftString The name of the table that contains the fields.

COLUMN_NAME ftString The name of the field. This value determines the sort
order of the dataset.

COLUMN_POSITION ftSmallint The position of the column in its table.

COLUMN_TYPE ftInteger Identifies the type of value in the field. It is a sum of one
or more of the following:

1: Row ID
2: Row Version
4: Auto increment field
8: Field with a default value

COLUMN_DATATYPE ftSmallint The datatype of the column. This is one of the logical field
type constants defined in sqllinks.pas.

COLUMN_TYPENAME ftString A string describing the datatype. This is the same
information as contained in COLUMN_DATATYPE and
COLUMN_SUBTYPE, but in a form used in some DDL
statements.

COLUMN_SUBTYPE ftSmallint A subtype for the column’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

COLUMN_PRECISION ftInteger The size of the field type (number of characters in a string,
bytes in a bytes field, significant digits in a BCD value,
members of an ADT field, and so on).

COLUMN_SCALE ftSmallint The number of digits to the right of the decimal on BCD
values, or descendants on ADT and array fields.

COLUMN_LENGTH ftInteger The number of bytes required to store field values.

COLUMN_NULLABLE ftSmallint A Boolean that indicates whether the field can be left
blank (0 means the field requires a value).

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-17

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about indexes
When you request information about the indexes on a table (stIndexes), the resulting
dataset includes a record for each field in each record. (Multi-record indexes are
described using multiple records) The dataset has the following columns:

Table 28.4 Columns in tables of metadata listing indexes

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the index.
This is the same as the Database parameter on an SQL
connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
index.

TABLE_NAME ftString The name of the table for which the index is defined.

INDEX_NAME ftString The name of the index. This field determines the sort order
of the dataset.

PKEY_NAME ftString Indicates the name of the primary key.

COLUMN_NAME ftString The name of the field (column) in the index.

COLUMN_POSITION ftSmallint The position of this field in the index.

INDEX_TYPE ftSmallint Identifies the type of index. It is a sum of one or more of the
following values:

1: Non-unique
2: Unique
4: Primary key

SORT_ORDER ftString Indicates that the index is ascending (a) or descending (d).

FILTER ftString Describes a filter condition that limits the indexed records.

28-18 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about stored procedure parameters
When you request information about the parameters of a stored procedure
(stProcedureParams), the resulting dataset includes a record for each parameter. It has
the following columns:

Table 28.5 Columns in tables of metadata listing parameters

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
stored procedure.

PROC_NAME ftString The name of the stored procedure that contains the
parameter.

PARAM_NAME ftString The name of the parameter. This field determines the sort
order of the dataset.

PARAM_TYPE ftSmallint Identifies the type of parameter. This is the same as a
TParam object’s ParamType property.

PARAM_DATATYPE ftSmallint The datatype of the parameter. This is one of the logical field
type constants defined in sqllinks.pas.

PARAM_SUBTYPE ftSmallint A subtype for the parameter’s datatype. This is one of the
logical subtype constants defined in sqllinks.pas.

PARAM_TYPENAME ftString A string describing the datatype. This is the same
information as contained in PARAM_DATATYPE and
PARAM_SUBTYPE, but in a form used in some DDL
statements.

PARAM_PRECISION ftInteger The maximum number of digits in floating-point values or
bytes (for strings and Bytes fields).

PARAM_SCALE ftSmallint The number of digits to the right of the decimal on floating-
point values.

PARAM_LENGTH ftInteger The number of bytes required to store parameter values.

PARAM_NULLABLE ftSmallint A Boolean that indicates whether the parameter can be left
blank (0 means the parameter requires a value).

U s i n g u n i d i r e c t i o n a l d a t a s e t s 28-19

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

Debugging dbExpress applications
While you are debugging your database application, it may prove useful to monitor
the SQL messages that are sent to and from the database server through your
connection component, including those that are generated automatically for you (for
example by a provider component or by the dbExpress driver).

Using TSQLMonitor to monitor SQL commands

TSQLConnection uses a companion component, TSQLMonitor, to intercept these
messages and save them in a string list. TSQLMonitor works much like the SQL
monitor utility that you can use with the BDE, except that it monitors only those
commands involving a single TSQLConnection component rather than all commands
managed by dbExpress.

To use TSQLMonitor,

1 Add a TSQLMonitor component to the form or data module containing the
TSQLConnection component whose SQL commands you want to monitor.

2 Set its SQLConnection property to the TSQLConnection component.

3 Set the SQL monitor’s Active property to True.

As SQL commands are sent to the server, the SQL monitor’s TraceList property is
automatically updated to list all the SQL commands that are intercepted.

You can save this list to a file by specifying a value for the FileName property and
then setting the AutoSave property to True. AutoSave causes the SQL monitor to save
the contents of the TraceList property to a file every time is logs a new message.

If you do not want the overhead of saving a file every time a message is logged, you
can use the OnLogTrace event handler to only save files after a number of messages
have been logged. For example, the following event handler saves the contents of
TraceList every 10th message, clearing the log after saving it so that the list never gets
too long:

procedure TForm1.SQLMonitor1LogTrace(Sender: TObject; CBInfo: Pointer);
var

LogFileName: string;
begin

with Sender as TSQLMonitor do
begin

if TraceCount = 10 then
begin

LogFileName := 'c:\log' + IntToStr(Tag) + '.txt';
Tag := Tag + 1; {ensure next log file has a different name }
SaveToFile(LogFileName);
TraceList.Clear; { clear list }

end;
end;

end;

28-20 D e v e l o p e r ’ s G u i d e

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

Note If you were to use the previous event handler, you would also want to save any
partial list (fewer than 10 entries) when the application shuts down.

Using a callback to monitor SQL commands

Instead of using TSQLMonitor, you can customize the way your application traces
SQL commands by using the SQL connection component’s SetTraceCallbackEvent
method. SetTraceCallbackEvent takes two parameters: a callback of type
TSQLCallbackEvent, and a user-defined value that is passed to the callback function.

The callback function takes two parameters: CallType and CBInfo:

• CallType is reserved for future use.

• CBInfo is a pointer to a record that includes the category (the same as CallType), the
text of the SQL command, and the user-defined value that is passed to the
SetTraceCallbackEvent method.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component
passes a command to the server or the server returns an error message.

Warning Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated
TSQLMonitor component. TSQLMonitor uses the callback mechanism to work, and
TSQLConnection can only support one callback at a time.

U s i n g c l i e n t d a t a s e t s 29-1

C h a p t e r

29
Chapter29Using client datasets

Client datasets are specialized datasets that hold all their data in memory. The
support for manipulating the data they store in memory is provided by midaslib.dcu
or midas.dll. The format client datasets use for storing data is self-contained and
easily transported, which allows client datasets to

• Read from and write to dedicated files on disk, acting as a file-based dataset.
Properties and methods supporting this mechanism are described in “Using a
client dataset with file-based data” on page 29-33.

• Cache updates for data from a database server. Client dataset features that support
cached updates are described in “Using a client dataset to cache updates” on
page 29-16.

• Represent the data in the client portion of a multi-tiered application. To function in
this way, the client dataset must work with an external provider, as described in
“Using a client dataset with a provider” on page 29-24. For information about
multi-tiered database applications, see Chapter 31, “Creating multi-tiered
applications.”

• Represent the data from a source other than a dataset. Because a client dataset can
use the data from an external provider, specialized providers can adapt a variety
of information sources to work with client datasets. For example, you can use an
XML provider to enable a client dataset to represent the information in an XML
document.

Whether you use client datasets for file-based data, caching updates, data from an
external provider (such as working with an XML document or in a multi-tiered
application), or a combination of these approaches such as a “briefcase model”
application, you can take advantage of broad range of features client datasets
support for working with data.

29-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Working with data using a client dataset
Like any dataset, you can use client datasets to supply the data for data-aware
controls using a data source component. See Chapter 20, “Using data controls”for
information on how to display database information in data-aware controls.

Client datasets implement all the properties an methods inherited from TDataSet. For
a complete introduction to this generic dataset behavior, see Chapter 24,
“Understanding datasets.”

In addition, client datasets implement many of the features common to table type
datasets such as

• Sorting records with indexes.
• Using Indexes to search for records.
• Limiting records with ranges.
• Creating master/detail relationships.
• Controlling read/write access
• Creating the underlying dataset
• Emptying the dataset
• Synchronizing client datasets

For details on these features, see “Using table type datasets” on page 24-25.

Client datasets differ from other datasets in that they hold all their data in memory.
Because of this, their support for some database functions can involve additional
capabilities or considerations. This chapter describes some of these common
functions and the differences introduced by client datasets.

Navigating data in client datasets

If an application uses standard data-aware controls, then a user can navigate through
a client dataset’s records using the built-in behavior of those controls. You can also
navigate programmatically through records using standard dataset methods such as
First, Last, Next, and Prior. For more information about these methods, see
“Navigating datasets” on page 24-5.

Unlike most datasets, client datasets can also position the cursor at a specific record
in the dataset by using the RecNo property. Ordinarily an application uses RecNo to
determine the record number of the current record. Client datasets can, however, set
RecNo to a particular record number to make that record the current one.

Limiting what records appear

To restrict users to a subset of available data on a temporary basis, applications can
use ranges and filters. When you apply a range or a filter, the client dataset does not
display all the data in its in-memory cache. Instead, it only displays the data that
meets the range or filter conditions. For more information about using filters, see
“Displaying and editing a subset of data using filters” on page 24-13. For more
information about ranges, see “Limiting records with ranges” on page 24-31.

U s i n g c l i e n t d a t a s e t s 29-3

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

With most datasets, filter strings are parsed into SQL commands that are then
implemented on the database server. Because of this, the SQL dialect of the server
limits what operations are used in filter strings. Client datasets implement their own
filter support, which includes more operations than that of other datasets. For
example, when using a client dataset, filter expressions can include string operators
that return substrings, operators that parse date/time values, and much more. Client
datasets also allow filters on BLOB fields or complex field types such as ADT fields
and array fields.

The various operators and functions that client datasets can use in filters, along with
a comparison to other datasets that support filters, is given below:

Table 29.1 Filter support in client datasets

Operator
or function Example

Supported
by other
datasets Comment

Comparisons

= State = 'CA' Yes

<> State <> 'CA' Yes

>= DateEntered >= '1/1/1998' Yes

<= Total <= 100,000 Yes

> Percentile > 50 Yes

< Field1 < Field2 Yes

BLANK State <> 'CA' or State = BLANK Yes Blank records do not appear
unless explicitly included in the
filter.

IS NULL Field1 IS NULL No

IS NOT NULL Field1 IS NOT NULL No

Logical operators

and State = 'CA' and Country = 'US' Yes

or State = 'CA' or State = 'MA' Yes

not not (State = 'CA') Yes

Arithmetic operators

+ Total + 5 > 100 Depends
on driver

Applies to numbers, strings, or
date (time) + number.

- Field1 - 7 <> 10 Depends
on driver

Applies to numbers, dates, or
date (time) - number.

* Discount * 100 > 20 Depends
on driver

Applies to numbers only.

/ Discount > Total / 5 Depends
on driver

Applies to numbers only.

29-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

String functions

Upper Upper(Field1) = 'ALWAYS' No

Lower Lower(Field1 + Field2) = 'josp' No

Substring Substring(DateFld,8) = '1998'
Substring(DateFld,1,3) = 'JAN'

No Value goes from position of
second argument to end or
number of chars in third
argument. First char has position
1.

Trim Trim(Field1 + Field2)
Trim(Field1, '-')

No Removes third argument from
front and back. If no third
argument, trims spaces.

TrimLeft TrimLeft(StringField)
TrimLeft(Field1, '$') <> ''

No See Trim.

TrimRight TrimRight(StringField)
TrimRight(Field1, '.') <> ''

No See Trim.

DateTime functions

Year Year(DateField) = 2000 No

Month Month(DateField) <> 12 No

Day Day(DateField) = 1 No

Hour Hour(DateField) < 16 No

Minute Minute(DateField) = 0 No

Second Second(DateField) = 30 No

GetDate GetDate - DateField > 7 No Represents current date and
time.

Date DateField = Date(GetDate) No Returns the date portion of a
datetime value.

Time TimeField > Time(GetDate) No Returns the time portion of a
datetime value.

Miscellaneous

Like Memo LIKE '%filters%' No Works like SQL-92 without the
ESC clause. When applied to
BLOB fields, FilterOptions
determines whether case is
considered.

In Day(DateField) in (1,7) No Works like SQL-92. Second
argument is a list of values all
with the same type.

* State = 'M*' Yes Wildcard for partial
comparisons.

Table 29.1 Filter support in client datasets (continued)

Operator
or function Example

Supported
by other
datasets Comment

U s i n g c l i e n t d a t a s e t s 29-5

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

When applying ranges or filters, the client dataset still stores all of its records in
memory. The range or filter merely determines which records are available to
controls that navigate or display data from the client dataset.

Note When fetching data from a provider, you can also limit the data that the client dataset
stores by supplying parameters to the provider. For details, see “Limiting records
with parameters” on page 29-29.

Editing data

Client datasets represent their data as an in-memory data packet. This packet is the
value of the client dataset’s Data property. By default, however, edits are not stored
in the Data property. Instead the insertions, deletions, and modifications (made by
users or programmatically) are stored in an internal change log, represented by the
Delta property. Using a change log serves two purposes:

• The change log is required for applying updates to a database server or external
provider component.

• The change log provides sophisticated support for undoing changes.

The LogChanges property lets you disable logging. When LogChanges is True, changes
are recorded in the log. When LogChanges is False, changes are made directly to the
Data property. You can disable the change log in file-based applications if you do not
want the undo support.

Edits in the change log remain there until they are removed by the application.
Applications remove edits when

• Undoing changes
• Saving changes

Note Saving the client dataset to a file does not remove edits from the change log. When
you reload the dataset, the Data and Delta properties are the same as they were when
the data was saved.

Undoing changes
Even though a record’s original version remains unchanged in Data, each time a user
edits a record, leaves it, and returns to it, the user sees the last changed version of the
record. If a user or application edits a record a number of times, each changed
version of the record is stored in the change log as a separate entry.

29-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Storing each change to a record makes it possible to support multiple levels of undo
operations should it be necessary to restore a record’s previous state:

• To remove the last change to a record, call UndoLastChange. UndoLastChange takes
a Boolean parameter, FollowChange, that indicates whether to reposition the cursor
on the restored record (True), or to leave the cursor on the current record (False). If
there are several changes to a record, each call to UndoLastChange removes another
layer of edits. UndoLastChange returns a Boolean value indicating success or
failure. If the removal occurs, UndoLastChange returns True. Use the ChangeCount
property to check whether there are more changes to undo. ChangeCount indicates
the number of changes stored in the change log.

• Instead of removing each layer of changes to a single record, you can remove them
all at once. To remove all changes to a record, select the record, and call
RevertRecord. RevertRecord removes any changes to the current record from the
change log.

• To restore a deleted record, first set the StatusFilter property to [usDeleted], which
makes the deleted records “visible.” Next, navigate to the record you want to
restore and call RevertRecord. Finally, restore the StatusFilter property to
[usModified, usInserted, usUnmodified] so that the edited version of the dataset (now
containing the restored record) is again visible.

• At any point during edits, you can save the current state of the change log using
the SavePoint property. Reading SavePoint returns a marker into the current
position in the change log. Later, if you want to undo all changes that occurred
since you read the save point, set SavePoint to the value you read previously. Your
application can obtain values for multiple save points. However, once you back up
the change log to a save point, the values of all save points that your application
read after that one are invalid.

• You can abandon all changes recorded in the change log by calling CancelUpdates.
CancelUpdates clears the change log, effectively discarding all edits to all records.
Be careful when you call CancelUpdates. After you call CancelUpdates, you cannot
recover any changes that were in the log.

Saving changes
Client datasets use different mechanisms for incorporating changes from the change
log, depending on whether the client datasets stores its data in a file or represents
data obtained through a provider. Whichever mechanism is used, the change log is
automatically emptied when all updates have been incorporated.

File-based applications can simply merge the changes into the local cache
represented by the Data property. They do not need to worry about resolving local
edits with changes made by other users. To merge the change log into the Data
property, call the MergeChangeLog method. “Merging changes into data” on
page 29-34 describes this process.

U s i n g c l i e n t d a t a s e t s 29-7

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

You can’t use MergeChangeLog if you are using the client dataset to cache updates or
to represent the data from an external provider component. The information in the
change log is required for resolving updated records with the data stored in the
database (or source dataset). Instead, you call ApplyUpdates, which attempts to write
the modifications to the database server or source dataset, and updates the Data
property only when the modifications have been successfully committed. See
“Applying updates” on page 29-20 for more information about this process.

Constraining data values

Client datasets can enforce constraints on the edits a user makes to data. These
constraints are applied when the user tries to post changes to the change log. You can
always supply custom constraints. These let you provide your own, application-
defined limits on what values users post to a client dataset.

In addition, when client datasets represent server data that is accessed using the BDE,
they also enforce data constraints imported from the database server. If the client
dataset works with an external provider component, the provider can control
whether those constraints are sent to the client dataset, and the client dataset can
control whether it uses them. For details on how the provider controls whether
constraints are included in data packets, see “Handling server constraints” on
page 30-13. For details on how and why client dataset can turn off enforcement of
server constraints, see “Handling constraints from the server” on page 29-30.

Specifying custom constraints
You can use the properties of the client dataset’s field components to impose your
own constraints on what data users can enter. Each field component has two
properties that you can use to specify constraints:

• The DefaultExpression property defines a default value that is assigned to the field if
the user does not enter a value. Note that if the database server or source dataset also
assigns a default expression for the field, the client dataset’s version takes precedence
because it is assigned before the update is applied back to the database server or
source dataset.

• The CustomConstraint property lets you assign a constraint condition that must be
met before a field value can be posted. Custom constraints defined this way are
applied in addition to any constraints imported from the server. For more
information about working with custom constraints on field components, see
“Creating a custom constraint” on page 25-22.

In addition, you can create record-level constraints using the client dataset’s
Constraints property. Constraints is a collection of TCheckConstraint objects, where each
object represents a separate condition. Use the CustomConstraint property of a
TCheckConstraint object to add your own constraints that are checked when you post
records.

29-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Sorting and indexing

Using indexes provides several benefits to your applications:

• They allow client datasets to locate data quickly.

• They let you apply ranges to limit the available records.

• They let your application set up relationships with other datasets such as lookup
tables or master/detail forms.

• They specify the order in which records appear.

If a client dataset represents server data or uses an external provider, it inherits a
default index and sort order based on the data it receives. The default index is called
DEFAULT_ORDER. You can use this ordering, but you cannot change or delete the
index.

In addition to the default index, the client dataset maintains a second index, called
CHANGEINDEX, on the changed records stored in the change log (Delta property).
CHANGEINDEX orders all records in the client dataset as they would appear if the
changes specified in Delta were applied. CHANGEINDEX is based on the ordering
inherited from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change
or delete the CHANGEINDEX index.

You can use other existing indexes, and you can create your own indexes. The
following sections describe how to create and use indexes with client datasets.

Note You may also want to review the material on indexes in table type datasets, which
also applies to client datasets. This material is in “Sorting records with indexes” on
page 24-26 and “Limiting records with ranges” on page 24-31.

Adding a new index
There are three ways to add indexes to a client dataset:

• To create a temporary index at runtime that sorts the records in the client dataset,
you can use the IndexFieldNames property. Specify field names, separated by
semicolons. Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can’t specify a
descending or case-insensitive index, and the resulting indexes do not support
grouping. These indexes do not persist when you close the dataset, and are not
saved when you save the client dataset to a file.

• To create an index at runtime that can be used for grouping, call AddIndex.
AddIndex lets you specify the properties of the index, including

• The name of the index. This can be used for switching indexes at runtime.

• The fields that make up the index. The index uses these fields to sort records
and to locate records that have specific values on these fields.

U s i n g c l i e n t d a t a s e t s 29-9

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

• How the index sorts records. By default, indexes impose an ascending sort
order (based on the machine’s locale). This default sort order is case-sensitive.
You can set options to make the entire index case-insensitive or to sort in
descending order. Alternately, you can provide a list of fields to be sorted case-
insensitively and a list of fields to be sorted in descending order.

• The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed.
(That is, they are lost when you reopen the client dataset). You can't call AddIndex
when the dataset is closed. Indexes you add using AddIndex are not saved when
you save the client dataset to a file.

• The third way to create an index is at the time the client dataset is created. Before
creating the client dataset, specify the desired indexes using the IndexDefs
property. The indexes are then created along with the underlying dataset when
you call CreateDataSet. See “Creating and deleting tables” on page 24-38 for more
information about creating client datasets.

As with AddIndex, indexes you create with the dataset support grouping, can sort
in ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way
always persist and are saved when you save the client dataset to a file.

Tip You can index and sort on internally calculated fields with client datasets.

Deleting and switching indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the
name of the index to remove. You cannot remove the DEFAULT_ORDER and
CHANGEINDEX indexes.

To use a different index when more than one index is available, use the IndexName
property to select the index to use. At design time, you can select from available
indexes in IndexName property drop-down box in the Object Inspector.

Using indexes to group data
When you use an index in your client dataset, it automatically imposes a sort order
on the records. Because of this order, adjacent records usually contain duplicate
values on the fields that make up the index. For example, consider the following
fragment from an orders table that is indexed on the SalesRep and Customer fields:

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

29-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Because of the sort order, adjacent values in the SalesRep column are duplicated.
Within the records for SalesRep 1, adjacent values in the Customer column are
duplicated. That is, the data is grouped by SalesRep, and within the SalesRep group
it is grouped by Customer. Each grouping has an associated level. In this case, the
SalesRep group has level 1 (because it is not nested in any other groups) and the
Customer group has level 2 (because it is nested in the group with level 1). Grouping
level corresponds to the order of fields in the index.

Client datasets let you determine where the current record lies within any given
grouping level. This allows your application to display records differently,
depending on whether they are the first record in the group, in the middle of a group,
or the last record in a group. For example, you might want to display a field value
only if it is on the first record of the group, eliminating the duplicate values. To do
this with the previous table results in the following:

To determine where the current record falls within any group, use the GetGroupState
method. GetGroupState takes an integer giving the level of the group and returns a
value indicating where the current record falls the group (first record, last record, or
neither).

When you create an index, you can specify the level of grouping it supports (up to
the number of fields in the index). GetGroupState can’t provide information about
groups beyond that level, even if the index sorts records on additional fields.

Representing calculated values

As with any dataset, you can add calculated fields to your client dataset. These are
fields whose values you calculate dynamically, usually based on the values of other
fields in the same record. For more information about using calculated fields, see
“Defining a calculated field” on page 25-7.

Client datasets, however, let you optimize when fields are calculated by using
internally calculated fields. For more information on internally calculated fields, see
“Using internally calculated fields in client datasets” below.

You can also tell client datasets to create calculated values that summarize the data in
several records using maintained aggregates. For more information on maintained
aggregates, see “Using maintained aggregates” on page 29-11.

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

U s i n g c l i e n t d a t a s e t s 29-11

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Using internally calculated fields in client datasets
In other datasets, your application must compute the value of calculated fields every
time the record changes or the user edits any fields in the current record. It does this
in an OnCalcFields event handler.

While you can still do this, client datasets let you minimize the number of times
calculated fields must be recomputed by saving calculated values in the client
dataset’s data. When calculated values are saved with the client dataset, they must
still be recomputed when the user edits the current record, but your application need
not recompute values every time the current record changes. To save calculated
values in the client dataset’s data, use internally calculated fields instead of
calculated fields.

Internally calculated fields, just like calculated fields, are calculated in an
OnCalcFields event handler. However, you can optimize your event handler by
checking the State property of your client dataset. When State is dsInternalCalc, you
must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated
before you create the client dataset. Depending on whether you use persistent fields
or field definitions, you do this in one of the following ways:

• If you use persistent fields, define fields as internally calculated by selecting
InternalCalc in the Fields editor.

• If you use field definitions, set the InternalCalcField property of the relevant field
definition to True.

Note Other types of datasets use internally calculated fields. However, with other datasets,
you do not calculate these values in an OnCalcFields event handler. Instead, they are
computed automatically by the BDE or remote database server.

Using maintained aggregates

Client datasets provide support for summarizing data over groups of records.
Because these summaries are automatically updated as you edit the data in the
dataset, this summarized data is called a “maintained aggregate.”

In their simplest form, maintained aggregates let you obtain information such as the
sum of all values in a column of the client dataset. They are flexible enough, however,
to support a variety of summary calculations and to provide subtotals over groups of
records defined by a field in an index that supports grouping.

29-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

 Specifying aggregates
To specify that you want to calculate summaries over the records in a client dataset,
use the Aggregates property. Aggregates is a collection of aggregate specifications
(TAggregate). You can add aggregate specifications to your client dataset using the
Collection Editor at design time, or using the Add method of Aggregates at runtime. If
you want to create field components for the aggregates, create persistent fields for the
aggregated values in the Fields Editor.

Note When you create aggregated fields, the appropriate aggregate objects are added to
the client dataset’s Aggregates property automatically. Do not add them explicitly
when creating aggregated persistent fields. For details on creating aggregated
persistent fields, see “Defining an aggregate field” on page 25-10.

For each aggregate, the Expression property indicates the summary calculation it
represents. Expression can contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

Sum(Qty * Price) - Sum(AmountPaid)

Aggregate expressions include one or more of the summary operators in Table 29.2

The summary operators act on field values or on expressions built from field values
using the same operators you use to create filters. (You can’t nest summary
operators, however.) You can create expressions by using operators on summarized
values with other summarized values, or on summarized values and constants.
However, you can’t combine summarized values with field values, because such
expressions are ambiguous (there is no indication of which record should supply the
field value.) These rules are illustrated in the following expressions:

Table 29.2 Summary operators for maintained aggregates

Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

Sum(Qty * Price) {legal -- summary of an expression on fields }

Max(Field1) - Max(Field2) {legal -- expression on summaries }

Avg(DiscountRate) * 100 {legal -- expression of summary and constant }

Min(Sum(Field1)) {illegal -- nested summaries }

Count(Field1) - Field2 {illegal -- expression of summary and field }

U s i n g c l i e n t d a t a s e t s 29-13

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the
records in the client dataset. However, you can specify that you want to summarize
over the records in a group instead. This lets you provide intermediate summaries
such as subtotals for groups of records that share a common field value.

Before you can specify a maintained aggregate over a group of records, you must use
an index that supports the appropriate grouping. See “Using indexes to group data”
on page 29-9 for information on grouping support.

Once you have an index that groups the data in the way you want it summarized,
specify the IndexName and GroupingLevel properties of the aggregate to indicate what
index it uses, and which group or subgroup on that index defines the records it
summarizes.

For example, consider the following fragment from an orders table that is grouped by
SalesRep and, within SalesRep, by Customer:

The following code sets up a maintained aggregate that indicates the total amount for
each sales representative:

Agg.Expression := 'Sum(Amount)';
Agg.IndexName := 'SalesCust';
Agg.GroupingLevel := 1;
Agg.AggregateName := 'Total for Rep';

To add an aggregate that summarizes for each customer within a given sales
representative, create a maintained aggregate with level 2.

Maintained aggregates that summarize over a group of records are associated with a
specific index. The Aggregates property can include aggregates that use different
indexes. However, only the aggregates that summarize over the entire dataset and
those that use the current index are valid. Changing the current index changes which
aggregates are valid. To determine which aggregates are valid at any time, use the
ActiveAggs property.

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

29-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Obtaining aggregate values
To get the value of a maintained aggregate, call the Value method of the TAggregate
object that represents the aggregate. Value returns the maintained aggregate for the
group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any
time to obtain the maintained aggregate. However, when you are summarizing over
grouped information, you must be careful to ensure that the current record is in the
group whose summary you want. Because of this, it is a good idea to obtain
aggregate values at clearly specified times, such as when you move to the first record
of a group or when you move to the last record of a group. Use the GetGroupState
method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to
create a persistent aggregate field component. When you specify an aggregate field
in the Fields editor, the client dataset’s Aggregates is automatically updated to include
the appropriate aggregate specification. The AggFields property contains the new
aggregated field component, and the FindField method returns it.

Copying data from another dataset

To copy the data from another dataset at design time, right click the client dataset
and choose Assign Local Data. A dialog appears listing all the datasets available in
your project. Select the one whose data and structure you want to copy and choose
OK. When you copy the source dataset, your client dataset is automatically activated.

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Assigning data directly
You can use the client dataset’s Data property to assign data to a client dataset from
another dataset. Data is a data packet in the form of an OleVariant. A data packet can
come from another client dataset or from any other dataset by using a provider. Once
a data packet is assigned to Data, its contents are displayed automatically in data-
aware controls connected to the client dataset by a data source component.

When you open a client dataset that represents server data or that uses an external
provider component, data packets are automatically assigned to Data.

When your client dataset does not use a provider, you can copy the data from
another client dataset as follows:

ClientDataSet1.Data := ClientDataSet2.Data;

Note When you copy the Data property of another client dataset, you copy the change log
as well, but the copy does not reflect any filters or ranges that have been applied. To
include filters or ranges, you must clone the source dataset’s cursor instead.

U s i n g c l i e n t d a t a s e t s 29-15

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

If you are copying from a dataset other than a client dataset, you can create a dataset
provider component, link it to the source dataset, and then copy its data:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := SourceDataSet;
ClientDataSet1.Data := TempProvider.Data;
TempProvider.Free;

Note When you assign directly to the Data property, the new data packet is not merged
into the existing data. Instead, all previous data is replaced.

If you want to merge changes from another dataset, rather than copying its data, you
must use a provider component. Create a dataset provider as in the previous
example, but attach it to the destination dataset and instead of copying the data
property, use the ApplyUpdates method:

TempProvider := TDataSetProvider.Create(Form1);
TempProvider.DataSet := ClientDataSet1;
TempProvider.ApplyUpdates(SourceDataSet.Delta, -1, ErrCount);
TempProvider.Free;

Cloning a client dataset cursor
Client datasets use the CloneCursor method to let you work with a second view of the
data at runtime. CloneCursor lets a second client dataset share the original client
dataset’s data. This is less expensive than copying all the original data, but, because
the data is shared, the second client dataset can’t modify the data without affecting
the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The
last two parameters (Reset and KeepSettings) indicate whether to copy information
other than the data. This information includes any filters, the current index, links to a
master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider.

When Reset and KeepSettings are False, a cloned client dataset is opened, and the
settings of the source client dataset are used to set the properties of the destination.
When Reset is True, the destination dataset’s properties are given the default values
(no index or filters, no master table, ReadOnly is False, and no connection component
or provider is specified). When KeepSettings is True, the destination dataset’s
properties are not changed.

Adding application-specific information to the data

Application developers can add custom information to the client dataset’s Data
property. Because this information is bundled with the data packet, it is included
when you save the data to a file or stream. It is copied when you copy the data to
another dataset. Optionally, it can be included with the Delta property so that a
provider can read this information when it receives updates from the client dataset.

To save application-specific information with the Data property, use the
SetOptionalParam method. This method lets you store an OleVariant that contains the
data under a specific name.

29-16 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

To retrieve this application-specific information, use the GetOptionalParam method,
passing in the name that was used when the information was stored.

Using a client dataset to cache updates
By default, when you edit data in most datasets, every time you delete or post a
record, the dataset generates a transaction, deletes or writes that record to the
database server, and commits the transaction. If there is a problem writing changes to
the database, your application is notified immediately: the dataset raises an exception
when you post the record.

If your dataset uses a remote database server, this approach can degrade
performance due to network traffic between your application and the server every
time you move to a new record after editing the current record. To minimize the
network traffic, you may want to cache updates locally. When you cache updates,
you application retrieves data from the database, caches and edits it locally, and then
applies the cached updates to the database in a single transaction. When you cache
updates, changes to a dataset (such as posting changes or deleting records) are stored
locally instead of being written directly to the dataset’s underlying table. When
changes are complete, your application calls a method that writes the cached changes
to the database and clears the cache.

Caching updates can minimize transaction times and reduce network traffic.
However, cached data is local to your application and is not under transaction
control. This means that while you are working on your local, in-memory, copy of the
data, other applications can be changing the data in the underlying database table.
They also can’t see any changes you make until you apply the cached updates.
Because of this, cached updates may not be appropriate for applications that work
with volatile data, as you may create or encounter too many conflicts when trying to
merge your changes into the database.

Although the BDE and ADO provide alternate mechanisms for caching updates,
using a client dataset for caching updates has several advantages:

• Applying updates when datasets are linked in master/detail relationships is
handled for you. This ensures that updates to multiple linked datasets are applied
in the correct order.

• Client datasets give you the maximum of control over the update process. You can
set properties to influence the SQL that is generated for updating records, specify
the table to use when updating records from a multi-table join, or even apply
updates manually from a BeforeUpdateRecord event handler.

• When errors occur applying cached updates to the database server, only client
datasets (and dataset providers) provide you with information about the current
record value on the database server in addition to the original (unedited) value
from your dataset and the new (edited) value of the update that failed.

• Client datasets let you specify the number of update errors you want to tolerate
before the entire update is rolled back.

U s i n g c l i e n t d a t a s e t s 29-17

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

Overview of using cached updates

To use cached updates, the following order of processes must occur in an application:

1 Indicate the data you want to edit. How you do this depends on the type of client
dataset you are using:

• If you are using TClientDataSet, Specify the provider component that represent
the data you want to edit. This is described in “Specifying a provider” on
page 29-25.

• If you are using a client dataset associated with a particular data access
mechanism, you must
– Identify the database server by setting the DBConnectionproperty to an

appropriate connection component.
– Indicate what data you want to see by specifying the CommandText and

CommandTypeproperties. CommandType indicates whether CommandText is an
SQL statement to execute, the name of a stored procedure, or the name of a
table. If CommandText is a query or stored procedure, use the Params property to
provide any input parameters.

– Optionally, use the Options property to indicate whether nested detail sets and
BLOB data should be included in data packets or fetched separately, whether
specific types of edits (insertions, modifications, or deletions) should be
disabled, whether a single update can affect multiple server records, and
whether the client dataset’s records are refreshed when it applies updates.
Options is identical to a provider’s Options property. As a result, it allows you to
set options that are not relevant or appropriate. For example, there is no reason
to include poIncFieldProps, because the client dataset does not fetch its data from
a dataset with persistent fields. Conversely, you do not want to exclude
poAllowCommandText, which is included by default, because that would disable
the CommandText property, which the client dataset uses to specify what data it
wants. For information on the provider’s Options property, see “Setting options
that influence the data packets” on page 30-5.

2 Display and edit the data, permit insertion of new records, and support deletions
of existing records. Both the original copy of each record and any edits to it are
stored in memory. This process is described in “Editing data” on page 29-5.

3 Fetch additional records as necessary. By default, client datasets fetch all records
and store them in memory. If a dataset contains many records or records with
large BLOB fields, you may want to change this so that the client dataset fetches
only enough records for display and re-fetches as needed. For details on how to
control the record-fetching process, see “Requesting data from the source dataset
or document” on page 29-26.

4 Optionally, refresh the records. As time passes, other users may modify the data
on the database server. This can cause the client dataset’s data to deviate more and
more from the data on the server, increasing the chance of errors when you apply
updates. To mitigate this problem, you can refresh records that have not already
been edited. See “Refreshing records” on page 29-31 for details.

29-18 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

5 Apply the locally cached records to the database or cancel the updates. For each
record written to the database, a BeforeUpdateRecord event is triggered. If an error
occurs when writing an individual record to the database, an OnUpdateError event
enables the application to correct the error, if possible, and continue updating.
When updates are complete, all successfully applied updates are cleared from the
local cache. For more information about applying updates to the database, see
“Updating records” on page 29-20.

Instead of applying updates, an application can cancel the updates, emptying the
change log without writing the changes to the database. You can cancel the
updates by calling CancelUpdates method. All deleted records in the cache are
undeleted, modified records revert to original values, and newly inserted record
simply disappear.

Choosing the type of dataset for caching updates

Delphi includes some specialized client dataset components for caching updates.
Each client dataset is associated with a particular data access mechanism. These are
listed in Table 29.3:

In addition, you can cache updates using the generic client dataset (TClientDataSet)
with an external provider and source dataset. For information about using
TClientDataSet with an external provider, see “Using a client dataset with a provider”
on page 29-24.

Note The specialized client datasets associated with each data access mechanism actually
use a provider and source dataset as well. However, both the provider and the source
dataset are internal to the client dataset.

It is simplest to use one of the specialized client datasets to cache updates. However,
there are times when it is preferable to use TClientDataSet with an external provider:

• If you are using a data access mechanism that does not have a specialized client
dataset, you must use TClientDataSet with an external provider component. For
example, if the data comes from an XML document or custom dataset.

• If you are working with tables that are related in a master/detail relationship, you
should use TClientDataSet and connect it, using a provider, to the master table of
two source datasets linked in a master/detail relationship. The client dataset sees
the detail dataset as a nested dataset field. This approach is necessary so that
updates to master and detail tables can be applied in the correct order.

Table 29.3 Specialized client datasets for caching updates

Client dataset Data access mechanism

TBDEClientDataSet Borland Database Engine

TSimpleDataSet dbExpress

TIBClientDataSet InterBase Express

U s i n g c l i e n t d a t a s e t s 29-19

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

• If you want to code event handlers that respond to the communication between
the client dataset and the provider (for example, before and after the client dataset
fetches records from the provider), you must use TClientDataSet with an external
provider component. The specialized client datasets publish the most important
events for applying updates (OnReconcileError, BeforeUpdateRecord and
OnGetTableName), but do not publish the events surrounding communication
between the client dataset and its provider, because they are intended primarily
for multi-tiered applications.

• When using the BDE, you may want to use an external provider and source
dataset if you need to use an update object. Although it is possible to code an
update object from the BeforeUpdateRecord event handler of TBDEClientDataSet, it
can be simpler just to assign the UpdateObject property of the source dataset. For
information about using update objects, see “Using update objects to update a
dataset” on page 26-40.

Indicating what records are modified

While the user edits a client dataset, you may find it useful to provide feedback about
the edits that have been made. This is especially useful if you want to allow the user
to undo specific edits, for example, by navigating to them and clicking an “Undo”
button.

The UpdateStatus method and StatusFilter properties are useful when providing
feedback on what updates have occurred:

• UpdateStatus indicates what type of update, if any, has occurred for the current
record. It can be any of the following values:

• usUnmodified indicates that the current record is unchanged.
• usModified indicates that the current record has been edited.
• usInserted indicates a record that was inserted by the user.
• usDeleted indicates a record that was deleted by the user.

• StatusFilter controls what type of updates in the change log are visible. StatusFilter
works on cached records in much the same way as filters work on regular data.
StatusFilter is a set, so it can contain any combination of the following values:

• usUnmodified indicates an unmodified record.
• usModified indicates a modified record.
• usInserted indicates an inserted record.
• usDeleted indicates a deleted record.

By default, StatusFilter is the set [usModified, usInserted, usUnmodified]. You can add
usDeleted to this set to provide feedback about deleted records as well.

Note UpdateStatus and StatusFilter are also useful in BeforeUpdateRecord and
OnReconcileError event handlers. For information about BeforeUpdateRecord, see
“Intervening as updates are applied” on page 29-21. For information about
OnReconcileError, see “Reconciling update errors” on page 29-23.

29-20 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

The following example shows how to provide feedback about the update status of
records using the UpdateStatus method. It assumes that you have changed the
StatusFilter property to include usDeleted, allowing deleted records to remain visible
in the dataset. It further assumes that you have added a calculated field to the dataset
called “Status.”

procedure TForm1.ClientDataSet1CalcFields(DataSet: TDataSet);
begin

with ClientDataSet1 do begin
case UpdateStatus of

usUnmodified: FieldByName('Status').AsString := '';
usModified: FieldByName('Status').AsString := 'M';
usInserted: FieldByName('Status').AsString := 'I';
usDeleted: FieldByName('Status').AsString := 'D';

end;
end;

end;

Updating records

The contents of the change log are stored as a data packet in the client dataset’s Delta
property. To make the changes in Delta permanent, the client dataset must apply
them to the database (or source dataset or XML document).

When a client applies updates to the server, the following steps occur:

1 The client application calls the ApplyUpdates method of a client dataset object. This
method passes the contents of the client dataset’s Delta property to the (internal or
external) provider. Delta is a data packet that contains a client dataset’s updated,
inserted, and deleted records.

2 The provider applies the updates, caching any problem records that it can’t
resolve itself. See “Responding to client update requests” on page 30-8 for details
on how the provider applies updates.

3 The provider returns all unresolved records to the client dataset in a Result data
packet. The Result data packet contains all records that were not updated. It also
contains error information, such as error messages and error codes.

4 The client dataset attempts to reconcile update errors returned in the Result data
packet on a record-by-record basis.

Applying updates
Changes made to the client dataset’s local copy of data are not sent to the database
server (or XML document) until the client application calls the ApplyUpdates method.
ApplyUpdates takes the changes in the change log, and sends them as a data packet
(called Delta) to the provider. (Note that, when using most client datasets, the
provider is internal to the client dataset.)

U s i n g c l i e n t d a t a s e t s 29-21

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum
number of errors that the provider should tolerate before aborting the update
process. If MaxErrors is 0, then as soon as an update error occurs, the entire update
process is terminated. No changes are written to the database, and the client dataset’s
change log remains intact. If MaxErrors is -1, any number of errors is tolerated, and
the change log contains all records that could not be successfully applied. If
MaxErrors is a positive value, and more errors occur than are permitted by
MaxErrors, all updates are aborted. If fewer errors occur than specified by MaxErrors,
all records successfully applied are automatically cleared from the client dataset’s
change log.

ApplyUpdates returns the number of actual errors encountered, which is always less
than or equal to MaxErrors plus one. This return value indicates the number of
records that could not be written to the database.

The client dataset’s ApplyUpdates method does the following:

1 It indirectly calls the provider’s ApplyUpdates method. The provider’s
ApplyUpdates method writes the updates to the database, source dataset, or XML
document and attempts to correct any errors it encounters. Records that it cannot
apply because of error conditions are sent back to the client dataset.

2 The client dataset ‘s ApplyUpdates method then attempts to reconcile these
problem records by calling the Reconcile method. Reconcile is an error-handling
routine that calls the OnReconcileError event handler. You must code the
OnReconcileError event handler to correct errors. For details about using
OnReconcileError, see “Reconciling update errors” on page 29-23.

3 Finally, Reconcile removes successfully applied changes from the change log and
updates Data to reflect the newly updated records. When Reconcile completes,
ApplyUpdates reports the number of errors that occurred.

Important In some cases, the provider can’t determine how to apply updates (for example,
when applying updates from a stored procedure or multi-table join). Client datasets
and provider components generate events that let you handle these situations. See
“Intervening as updates are applied” below for details.

Tip If the provider is on a stateless application server, you may want to communicate
with it about persistent state information before or after you apply updates.
TClientDataSet receives a BeforeApplyUpdates event before the updates are sent, which
lets you send persistent state information to the server. After the updates are applied
(but before the reconcile process), TClientDataSet receives an AfterApplyUpdates event
where you can respond to any persistent state information returned by the
application server.

Intervening as updates are applied
When a client dataset applies its updates, the provider determines how to handle
writing the insertions, deletions, and modifications to the database server or source
dataset. When you use TClientDataSet with an external provider component, you can
use the properties and events of that provider to influence the way updates are
applied. These are described in “Responding to client update requests” on page 30-8.

29-22 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

When the provider is internal, however, as it is for any client dataset associated with
a data access mechanism, you can’t set its properties or provide event handlers. As a
result, the client dataset publishes one property and two events that let you influence
how the internal provider applies updates.

• UpdateMode controls what fields are used to locate records in the SQL statements
the provider generates for applying updates. UpdateMode is identical to the
provider’s UpdateMode property. For information on the provider’s UpdateMode
property, see “Influencing how updates are applied” on page 30-10.

• OnGetTableName lets you supply the provider with the name of the database table
to which it should apply updates. This lets the provider generate the SQL
statements for updates when it can’t identify the database table from the stored
procedure or query specified by CommandText. For example, if the query executes
a multi-table join that only requires updates to a single table, supplying an
OnGetTableName event handler allows the internal provider to correctly apply
updates.

An OnGetTableName event handler has three parameters: the internal provider
component, the internal dataset that fetched the data from the server, and a
parameter to return the table name to use in the generated SQL.

• BeforeUpdateRecord occurs for every record in the delta packet. This event lets you
make any last-minute changes before the record is inserted, deleted, or modified.
It also provides a way for you to execute your own SQL statements to apply the
update in cases where the provider can’t generate correct SQL (for example, for
multi-table joins where multiple tables must be updated.)

A BeforeUpdateRecord event handler has five parameters: the internal provider
component, the internal dataset that fetched the data from the server, a delta
packet that is positioned on the record that is about to be updated, an indication of
whether the update is an insertion, deletion, or modification, and a parameter that
returns whether the event handler performed the update.The use of these is
illustrated in the following event handler. For simplicity, the example assumes the
SQL statements are available as global variables that only need field values:

procedure TForm1.SimpleDataSet1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataSet; DeltaDS: TCustomClientDataSet; UpdateKind: TUpdateKind;
var Applied Boolean);

var
SQL: string;
Connection: TSQLConnection;

begin
Connection := (SourceDS as TSimpleDataSet).Connection;
case UpdateKind of
ukModify:

begin
{ 1st dataset: update Fields[1], use Fields[0] in where clause }
SQL := Format(UpdateStmt1, [DeltaDS.Fields[1].NewValue, DeltaDS.Fields[0].OldValue]);
Connection.Execute(SQL, nil, nil);

{ 2nd dataset: update Fields[2], use Fields[3] in where clause }
SQL := Format(UpdateStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].OldValue]);
Connection.Execute(SQL, nil, nil);

end;

U s i n g c l i e n t d a t a s e t s 29-23

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

ukDelete:
begin
{ 1st dataset: use Fields[0] in where clause }
SQL := Format(DeleteStmt1, [DeltaDS.Fields[0].OldValue]);
Connection.Execute(SQL, nil, nil);

{ 2nd dataset: use Fields[3] in where clause }
SQL := Format(DeleteStmt2, [DeltaDS.Fields[3].OldValue]);
Connection.Execute(SQL, nil, nil);

end;
ukInsert:

begin
{ 1st dataset: values in Fields[0] and Fields[1] }

SQL := Format(InsertStmt1, [DeltaDS.Fields[0].NewValue, DeltaDS.Fields[1].NewValue]);
Connection.Execute(SQL, nil, nil);

{ 2nd dataset: values in Fields[2] and Fields[3] }
SQL := Format(InsertStmt2, [DeltaDS.Fields[2].NewValue, DeltaDS.Fields[3].NewValue]);
Connection.Execute(SQL, nil, nil);

end;
end;
Applied := True;

end;

Reconciling update errors
There are two events that let you handle errors that occur during the update process:

• During the update process, the internal provider generates an OnUpdateError
event every time it encounters an update that it can’t handle. If you correct the
problem in an OnUpdateError event handler, then the error does not count toward
the maximum number of errors passed to the ApplyUpdates method. This event
only occurs for client datasets that use an internal provider. If you are using
TClientDataSet, you can use the provider component’s OnUpdateError event
instead.

• After the entire update operation is finished, the client dataset generates an
OnReconcileError event for every record that the provider could not apply to the
database server.

You should always code an OnReconcileError or OnUpdateError event handler, even if
only to discard the records returned that could not be applied. The event handlers for
these two events work the same way. They include the following parameters:

• DataSet: A client dataset that contains the updated record which couldn’t be
applied. You can use this dataset’s methods to get information about the problem
record and to edit the record in order to correct any problems. In particular, you
will want to use the CurValue, OldValue, and NewValue properties of the fields in
the current record to determine the cause of the update problem. However, you
must not call any client dataset methods that change the current record in your
event handler.

• E: An object that represents the problem that occurred. You can use this exception
to extract an error message or to determine the cause of the update error.

29-24 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

• UpdateKind: The type of update that generated the error. UpdateKind can be
ukModify (the problem occurred updating an existing record that was modified),
ukInsert (the problem occurred inserting a new record), or ukDelete (the problem
occurred deleting an existing record).

• Action: A var parameter that indicates what action to take when the event handler
exits. In your event handler, you set this parameter to

• Skip this record, leaving it in the change log. (rrSkip or raSkip)

• Stop the entire reconcile operation. (rrAbort or raAbort)

• Merge the modification that failed into the corresponding record from the
server. (rrMerge or raMerge) This only works if the server record does not
include any changes to fields modified in the client dataset’s record.

• Replace the current update in the change log with the value of the record in the
event handler, which has presumably been corrected. (rrApply or raCorrect)

• Ignore the error completely. (rrIgnore) This possibility only exists in the
OnUpdateError event handler, and is intended for the case where the event
handler applies the update back to the database server. The updated record is
removed from the change log and merged into Data, as if the provider had
applied the update.

• Back out the changes for this record on the client dataset, reverting to the
originally provided values. (raCancel) This possibility only exists in the
OnReconcileError event handler.

• Update the current record value to match the record on the server. (raRefresh)
This possibility only exists in the OnReconcileError event handler.

The following code shows an OnReconcileError event handler that uses the reconcile
error dialog from the RecError unit which ships in the objrepos directory. (To use this
dialog, add RecError to your uses clause.)

procedure TForm1.ClientDataSetReconcileError(DataSet: TCustomClientDataSet; E:
EReconcileError; UpdateKind: TUpdateKind, var Action TReconcileAction);
begin

Action := HandleReconcileError(DataSet, UpdateKind, E);
end;

Using a client dataset with a provider
A client dataset uses a provider to supply it with data and apply updates when

• It caches updates from a database server or another dataset.
• It represents the data in an XML document.
• It stores the data in the client portion of a multi-tiered application.

U s i n g c l i e n t d a t a s e t s 29-25

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

For any client dataset other than TClientDataSet, this provider is internal, and so not
directly accessible by the application. With TClientDataSet, the provider is an external
component that links the client dataset to an external source of data.

An external provider component can reside in the same application as the client
dataset, or it can be part of a separate application running on another system. For
more information about provider components, see Chapter 30, “Using provider
components.” For more information about applications where the provider is in a
separate application on another system, see Chapter 31, “Creating multi-tiered
applications.”

When using an (internal or external) provider, the client dataset always caches any
updates. For information on how this works, see “Using a client dataset to cache
updates” on page 29-16.

The following topics describe additional properties and methods of the client dataset
that enable it to work with a provider.

Specifying a provider

Unlike the client datasets that are associated with a data access mechanism,
TClientDataSet has no internal provider component to package data or apply
updates. If you want it to represent data from a source dataset or XML document,
therefore, you must associated the client dataset with an external provider
component.

The way you associate TClientDataSet with a provider depends on whether the
provider is in the same application as the client dataset or on a remote application
server running on another system.

• If the provider is in the same application as the client dataset, you can associate it
with a provider by choosing a provider from the drop-down list for the
ProviderName property in the Object Inspector. This works as long as the provider
has the same Owner as the client dataset. (The client dataset and the provider have
the same Owner if they are placed in the same form or data module.) To use a local
provider that has a different Owner, you must form the association at runtime
using the client dataset’s SetProvider method

If you think you may eventually scale up to a remote provider, or if you want to
make calls directly to the IAppServer interface, you can also set the RemoteServer
property to a TLocalConnection component. If you use TLocalConnection, the
TLocalConnection instance manages the list of all providers that are local to the
application, and handles the client dataset’s IAppServer calls. If you do not use
TLocalConnection, the application creates a hidden object that handles the
IAppServer calls from the client dataset.

29-26 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

• If the provider is on a remote application server, then, in addition to the
ProviderName property, you need to specify a component that connects the client
dataset to the application server. There are two properties that can handle this
task: RemoteServer, which specifies the name of a connection component from
which to get a list of providers, or ConnectionBroker, which specifies a centralized
broker that provides an additional level of indirection between the client dataset
and the connection component. The connection component and, if used, the
connection broker, reside in the same data module as the client dataset. The
connection component establishes and maintains a connection to an application
server, sometimes called a “data broker”. For more information, see “The structure
of the client application” on page 31-4.

At design time, after you specify RemoteServer or ConnectionBroker, you can select a
provider from the drop-down list for the ProviderName property in the Object
Inspector. This list includes both local providers (in the same form or data
module) and remote providers that can be accessed through the connection
component.

Note If the connection component is an instance of TDCOMConnection, the application
server must be registered on the client machine.

At runtime, you can switch among available providers (both local and remote) by
setting ProviderName in code.

Requesting data from the source dataset or document

Client datasets can control how they fetch their data packets from a provider. By
default, they retrieve all records from the source dataset. This is true whether the
source dataset and provider are internal components (as with TBDEClientDataSet,
TSimpleDataSet, and TIBClientDataSet), or separate components that supply the data
for TClientDataSet.

You can change how the client dataset fetches records using the PacketRecords and
FetchOnDemand properties.

Incremental fetching
By changing the PacketRecords property, you can specify that the client dataset fetches
data in smaller chunks. PacketRecords specifies either how many records to fetch at a
time, or the type of records to return. By default, PacketRecords is set to -1, which
means that all available records are fetched at once, either when the client dataset is
first opened, or when the application explicitly calls GetNextPacket. When
PacketRecords is -1, then after the client dataset first fetches data, it never needs to
fetch more data because it already has all available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch.
For example, the following statement sets the size of each data packet to ten records:

ClientDataSet1.PacketRecords := 10;

This process of fetching records in batches is called “incremental fetching”. Client
datasets use incremental fetching when PacketRecords is greater than zero.

U s i n g c l i e n t d a t a s e t s 29-27

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

To fetch each batch of records, the client dataset calls GetNextPacket. Newly fetched
packets are appended to the end of the data already in the client dataset.
GetNextPacket returns the number of records it fetches. If the return value is the same
as PacketRecords, the end of available records was not encountered. If the return value
is greater than 0 but less than PacketRecords, the last record was reached during the
fetch operation. If GetNextPacket returns 0, then there are no more records to fetch.

Warning Incremental fetching does not work if you are fetching data from a remote provider
on a stateless application server. See “Supporting state information in remote
data modules” on page 31-19 for information on how to use incremental fetching
with stateless remote data modules.

Note You can also use PacketRecords to fetch metadata information about the source
dataset. To retrieve metadata information, set PacketRecords to 0.

Fetch-on-demand
Automatic fetching of records is controlled by the FetchOnDemand property. When
FetchOnDemand is True (the default), the client dataset automatically fetches records
as needed. To prevent automatic fetching of records, set FetchOnDemand to False.
When FetchOnDemand is False, the application must explicitly call GetNextPacket to
fetch records.

For example, Applications that need to represent extremely large read-only datasets
can turn off FetchOnDemand to ensure that the client datasets do not try to load more
data than can fit into memory. Between fetches, the client dataset frees its cache using
the EmptyDataSet method. This approach, however, does not work well when the
client must post updates to the server.

The provider controls whether the records in data packets include BLOB data and
nested detail datasets. If the provider excludes this information from records, the
FetchOnDemand property causes the client dataset to automatically fetch BLOB data
and detail datasets on an as-needed basis. If FetchOnDemand is False, and the provider
does not include BLOB data and detail datasets with records, you must explicitly call
the FetchBlobs or FetchDetails method to retrieve this information.

Getting parameters from the source dataset

There are two circumstances when the client dataset needs to fetch parameter values:

• The application needs the value of output parameters on a stored procedure.

• The application wants to initialize the input parameters of a query or stored
procedure to the current values on the source dataset.

Client datasets store parameter values in their Params property. These values are
refreshed with any output parameters when the client dataset fetches data from the
source dataset. However, there may be times a TClientDataSet component in a client
application needs output parameters when it is not fetching data.

29-28 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

To fetch output parameters when not fetching records, or to initialize input
parameters, the client dataset can request parameter values from the source dataset
by calling the FetchParams method. The parameters are returned in a data packet
from the provider and assigned to the client dataset’s Params property.

At design time, the Params property can be initialized by right-clicking the client
dataset and choosing Fetch Params.

Note There is never a need to call FetchParams when the client dataset uses an internal
provider and source dataset, because the Params property always reflects the
parameters of the internal source dataset. With TClientDataSet, the FetchParams
method (or the Fetch Params command) only works if the client dataset is connected
to a provider whose associated dataset can supply parameters. For example, if the
source dataset is a table type dataset, there are no parameters to fetch.

If the provider is on a separate system as part of a stateless application server, you
can’t use FetchParams to retrieve output parameters. In a stateless application server,
other clients can change and rerun the query or stored procedure, changing output
parameters before the call to FetchParams. To retrieve output parameters from a
stateless application server, use the Execute method. If the provider is associated with
a query or stored procedure, Execute tells the provider to execute the query or stored
procedure and return any output parameters. These returned parameters are then
used to automatically update the Params property.

Passing parameters to the source dataset

Client datasets can pass parameters to the source dataset to specify what data they
want provided in the data packets it sends. These parameters can specify

• Input parameter values for a query or stored procedure that is run on the
application server

• Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the source dataset
at design time or at runtime. At design time, select the client dataset and double-click
the Params property in the Object Inspector. This brings up the collection editor,
where you can add, delete, or rearrange parameters. By selecting a parameter in the
collection editor, you can use the Object Inspector to edit the properties of that
parameter.

At runtime, use the CreateParam method of the Params property to add parameters to
your client dataset. CreateParam returns a parameter object, given a specified name,
parameter type, and datatype. You can then use the properties of that parameter
object to assign a value to the parameter.

For example, the following code adds an input parameter named CustNo with a
value of 605:

with ClientDataSet1.Params.CreateParam(ftInteger, 'CustNo', ptInput) do
 AsInteger := 605;

U s i n g c l i e n t d a t a s e t s 29-29

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

If the client dataset is not active, you can send the parameters to the application
server and retrieve a data packet that reflects those parameter values simply by
setting the Active property to True.

Sending query or stored procedure parameters
When the client dataset’s CommandType property is ctQuery or ctStoredProc, or, if the
client dataset is a TClientDataSet instance, when the associated provider represents
the results of a query or stored procedure, you can use the Params property to specify
parameter values. When the client dataset requests data from the source dataset or
uses its Execute method to run a query or stored procedure that does not return a
dataset, it passes these parameter values along with the request for data or the
execute command. When the provider receives these parameter values, it assigns
them to its associated dataset. It then instructs the dataset to execute its query or
stored procedure using these parameter values, and, if the client dataset requested
data, begins providing data, starting with the first record in the result set.

Note Parameter names should match the names of the corresponding parameters on the
source dataset.

Limiting records with parameters
If the client dataset is

• a TClientDataSet instance whose associated provider represents a TTable or
TSQLTable component

• a TSimpleDataSet or a TBDEClientDataSet instance whose CommandType property is
ctTable

then it can use the Params property to limit the records that it caches in memory. Each
parameter represents a field value that must be matched before a record can be
included in the client dataset’s data. This works much like a filter, except that with a
filter, the records are still cached in memory, but unavailable.

Each parameter name must match the name of a field. When using TClientDataSet,
these are the names of fields in the TTable or TSQLTable component associated with
the provider. When using TSimpleDataSet or TBDEClientDataSet, these are the names
of fields in the table on the database server. The data in the client dataset then
includes only those records whose values on the corresponding fields match the
values assigned to the parameters.

For example, consider an application that displays the orders for a single customer.
When the user identifies the customer, the client dataset sets its Params property to
include a single parameter named CustID (or whatever field in the source table is
called) whose value identifies the customer whose orders should be displayed. When
the client dataset requests data from the source dataset, it passes this parameter
value. The provider then sends only the records for the identified customer. This is
more efficient than letting the provider send all the orders records to the client
application and then filtering the records using the client dataset.

29-30 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Handling constraints from the server

When a database server defines constraints on what data is valid, it is useful if the
client dataset knows about them. That way, the client dataset can ensure that user
edits never violate those server constraints. As a result, such violations are never
passed to the database server where they would be rejected. This means fewer
updates generate error conditions during the updating process.

Regardless of the source of data, you can duplicate such server constraints by
explicitly adding them to the client dataset. This process is described in “Specifying
custom constraints” on page 29-7.

It is more convenient, however, if the server constraints are automatically included in
data packets. Then you need not explicitly specify default expressions and
constraints, and the client dataset changes the values it enforces when the server
constraints change. By default, this is exactly what happens: if the source dataset is
aware of server constraints, the provider automatically includes them in data packets
and the client dataset enforces them when the user posts edits to the change log.

Note Only datasets that use the BDE can import constraints from the server. This means
that server constraints are only included in data packets when using
TBDEClientDataSet or TClientDataSet with a provider that represents a BDE-based
dataset. For more information on how to import server constraints and how to
prevent a provider from including them in data packets, see “Handling server
constraints” on page 30-13.

Note For more information on working with the constraints once they have been imported,
see “Using server constraints” on page 25-23.

While importing server constraints and expressions is an extremely valuable feature
that helps an application preserve data integrity, there may be times when it needs to
disable constraints on a temporary basis. For example, if a server constraint is based
on the current maximum value of a field, but the client dataset uses incremental
fetching, the current maximum value for a field in the client dataset may differ from
the maximum value on the database server, and constraints may be invoked
differently. In another case, if a client dataset applies a filter to records when
constraints are enabled, the filter may interfere in unintended ways with constraint
conditions. In each of these cases, an application may disable constraint-checking.

To disable constraints temporarily, call the DisableConstraints method. Each time
DisableConstraints is called, a reference count is incremented. While the reference
count is greater than zero, constraints are not enforced on the client dataset.

To reenable constraints for the client dataset, call the dataset’s EnableConstraints
method. Each call to EnableConstraints decrements the reference count. When the
reference count is zero, constraints are enabled again.

Tip Always call DisableConstraints and EnableConstraints in paired blocks to ensure that
constraints are enabled when you intend them to be.

U s i n g c l i e n t d a t a s e t s 29-31

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Refreshing records

Client datasets work with an in-memory snapshot of the data from the source
dataset. If the source dataset represents server data, then as time elapses other users
may modify that data. The data in the client dataset becomes a less accurate picture
of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records
to match the current values on the server. However, calling Refresh only works if
there are no edits in the change log. Calling Refresh when there are unapplied edits
results in an exception.

Client datasets can also update the data while leaving the change log intact. To do
this, call the RefreshRecord method. Unlike the Refresh method, RefreshRecord updates
only the current record in the client dataset. RefreshRecord changes the record value
originally obtained from the provider but leaves any changes in the change log.

Warning It is not always appropriate to call RefreshRecord. If the user’s edits conflict with
changes made to the underlying dataset by other users, calling RefreshRecord masks
this conflict. When the client dataset applies its updates, no reconcile error occurs
and the application can’t resolve the conflict.

In order to avoid masking update errors, you may want to check that there are no
pending updates before calling RefreshRecord. For example, the following AfterScroll
refreshes the current record every time the user moves to a new record (ensuring the
most up-to-date value), but only when it is safe to do so.:

procedure TForm1.ClientDataSet1AfterScroll(DataSet: TDataSet);
begin
 if ClientDataSet1.UpdateStatus = usUnModified then
 ClientDataSet1.RefreshRecord;
end;

Communicating with providers using custom events

Client datasets communicate with a provider component through a special interface
called IAppServer. If the provider is local, IAppServer is the interface to an
automatically-generated object that handles all communication between the client
dataset and its provider. If the provider is remote, IAppServer is the interface to a
remote data module on the application server, or (in the case of a SOAP server) an
interface generated by the connection component.

29-32 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

TClientDataSet provides many opportunities for customizing the communication that
uses the IAppServer interface. Before and after every IAppServer method call that is
directed at the client dataset’s provider, TClientDataSet receives special events that
allow it to communicate arbitrary information with its provider. These events are
matched with similar events on the provider. Thus for example, when the client
dataset calls its ApplyUpdates method, the following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary
custom information in an OleVariant called OwnerData.

2 The provider receives a BeforeApplyUpdates event, where it can respond to the
OwnerData from the client dataset and update the value of OwnerData to new
information.

3 The provider goes through its normal process of assembling a data packet
(including all the accompanying events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the
current value of OwnerData and update it to a value for the client dataset.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the
returned value of OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and
AfterXXX events that let you customize the communication between client dataset
and provider.

In addition, the client dataset has a special method, DataRequest, whose only purpose
is to allow application-specific communication with the provider. When the client
dataset calls DataRequest, it passes an OleVariant as a parameter that can contain any
information you want. This, in turn, generates an is the OnDataRequest event on the
provider, where you can respond in any application-defined way and return a value
to the client dataset.

Overriding the source dataset

The client datasets that are associated with a particular data access mechanism use
the CommandText and CommandType properties to specify the data they represent.
When using TClientDataSet, however, the data is specified by the source dataset, not
the client dataset. Typically, this source dataset has a property that specifies an SQL
statement to generate the data or the name of a database table or stored procedure.

If the provider allows, TClientDataSet can override the property on the source dataset
that indicates what data it represents. That is, if the provider permits, the client
dataset’s CommandText property replaces the property on the provider’s dataset that
specifies what data it represents. This allows TClientDataSet to specify dynamically what
data it wants to see.

By default, external provider components do not let client datasets use the
CommandText value in this way. To allow TClientDataSet to use its CommandText
property, you must add poAllowCommandText to the Options property of the provider.
Otherwise, the value of CommandText is ignored.

U s i n g c l i e n t d a t a s e t s 29-33

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Note Never remove poAllowCommandText from the Options property of TBDEClientDataSet
or TIBClientDataSet. The client dataset’s Options property is forwarded to the internal
provider, so removing poAllowCommandText prevents the client dataset from
specifying what data to access.

The client dataset sends its CommandText string to the provider at two times:

• When the client dataset first opens. After it has retrieved the first data packet from
the provider, the client dataset does not send CommandText when fetching
subsequent data packets.

• When the client dataset sends an Execute command to provider.

To send an SQL command or to change a table or stored procedure name at any other
time, you must explicitly use the IAppServer interface that is available as the
AppServer property. This property represents the interface through which the client
dataset communicates with its provider.

Using a client dataset with file-based data
Client datasets can work with dedicated files on disk as well as server data. This
allows them to be used in file-based database applications and “briefcase model”
applications. The special files that client datasets use for their data are called MyBase.

Tip All client datasets are appropriate for a briefcase model application, but for a pure
MyBase application (one that does not use a provider), it is preferable to use
TClientDataSet, because it involves less overhead.

In a pure MyBase application, the client application cannot get table definitions and
data from the server, and there is no server to which it can apply updates. Instead,
the client dataset must independently

• Define and create tables
• Load saved data
• Merge edits into its data
• Save data

Creating a new dataset

There are three ways to define and create client datasets that do not represent server
data:

• You can define and create a new client dataset using persistent fields or field and
index definitions. This follows the same scheme as creating any table type dataset.
See “Creating and deleting tables” on page 24-38 for details.

• You can copy an existing dataset (at design or runtime). See “Copying data from
another dataset” on page 29-14 for more information about copying existing
datasets.

• You can create a client dataset from an arbitrary XML document. See “Converting
XML documents into data packets” on page 32-6 for details.

29-34 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Once the dataset is created, you can save it to a file. From then on, you do not need to
recreate the table, only load it from the file you saved. When beginning a file-based
database application, you may want to first create and save empty files for your
datasets before writing the application itself. This way, you start with the metadata
for your client dataset already defined, making it easier to set up the user interface.

Loading data from a file or stream

To load data from a file, call a client dataset’s LoadFromFile method. LoadFromFile
takes one parameter, a string that specifies the file from which to read data. The file
name can be a fully qualified path name, if appropriate. If you always load the client
dataset’s data from the same file, you can use the FileName property instead. If
FileName names an existing file, the data is automatically loaded when the client
dataset is opened.

To load data from a stream, call the client dataset’s LoadFromStream method.
LoadFromStream takes one parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved
in a client dataset’s data format by this or another client dataset using the SaveToFile
(SaveToStream) method, or generated from an XML document. For more information
about saving data to a file or stream, see “Saving data to a file or stream” on
page 29-35. For information about creating client dataset data from an XML
document, see Chapter 32, “Using XML in database applications.”

When you call LoadFromFile or LoadFromStream, all data in the file is read into the
Data property. Any edits that were in the change log when the data was saved are
read into the Delta property. However, the only indexes that are read from the file are
those that were created with the dataset.

Merging changes into data

When you edit the data in a client dataset, all edits to the data exist only in an in-
memory change log. This log can be maintained separately from the data itself,
although it is completely transparent to objects that use the client dataset. That is,
controls that navigate the client dataset or display its data see a view of the data that
includes the changes. If you do not want to back out of changes, however, you should
merge the change log into the data of the client dataset by calling the MergeChangeLog
method. MergeChangeLog overwrites records in Data with any changed field values in
the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes
that were in the change log. This mix becomes the new Data baseline against which
further changes can be made. MergeChangeLog clears the change log of all records and
resets the ChangeCount property to 0.

Warning Do not call MergeChangeLog for client datasets that use a provider. In this case, call
ApplyUpdates to write changes to the database. For more information, see “Applying
updates” on page 29-20.

U s i n g c l i e n t d a t a s e t s 29-35

U s i n g a s i m p l e d a t a s e t

Note It is also possible to merge changes into the data of a separate client dataset if that
dataset originally provided the data in the Data property. To do this, you must use a
dataset provider. For an example of how to do this, see “Assigning data directly” on
page 29-14.

If you do not want to use the extended undo capabilities of the change log, you can
set the client dataset’s LogChanges property to False. When LogChanges is False, edits
are automatically merged when you post records and there is no need to call
MergeChangeLog.

Saving data to a file or stream

Even when you have merged changes into the data of a client dataset, this data still
exists only in memory. While it persists if you close the client dataset and reopen it in
your application, it will disappear when your application shuts down. To make the
data permanent, it must be written to disk. Write changes to disk using the SaveToFile
method.

SaveToFile takes one parameter, a string that specifies the file into which to write data.
The file name can be a fully qualified path name, if appropriate. If the file already
exists, its current contents are completely overwritten.

Note SaveToFile does not preserve any indexes you added to the client dataset at runtime,
only indexes that were added when you created the client dataset.

If you always save the data to the same file, you can use the FileName property
instead. If FileName is set, the data is automatically saved to the named file when the
client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream
takes one parameter, a stream object that receives the data.

Note If you save a client dataset while there are still edits in the change log, these are not
merged with the data. When you reload the data, using the LoadFromFile or
LoadFromStream method, the change log will still contain the unmerged edits. This is
important for applications that support the briefcase model, where those changes
will eventually have to be applied to a provider component on the application server.

Using a simple dataset
TSimpleDataSet is a special type of client dataset designed for simple two-tiered
applications. Like a unidirectional dataset, it can use an SQL connection component
to connect to a database server and specify an SQL statement to execute on that
server. Like other client datasets, it buffers data in memory to allow full navigation
and editing support.

TSimpleDataSet works the same way as a generic client dataset (TClientDataSet) that is
linked to a unidirectional dataset by a dataset provider. In fact, TSimpleDataSet has its
own, internal provider, which it uses to communicate with an internally created
unidirectional dataset.

29-36 D e v e l o p e r ’ s G u i d e

U s i n g a s i m p l e d a t a s e t

Using a simple dataset can simplify the process of two-tiered application
development because you don’t need to work with as many components.

When to use TSimpleDataSet

TSimpleDataSet is intended for use in a simple two-tiered database applications and
briefcase model applications. It provides an easy-to-set up component for linking to
the database server, fetching data, caching updates, and applying them back to the
server. It can be used in most two-tiered applications.

There are times, however, when it is more appropriate to use TClientDataSet:

• If you are not using data from a database server (for example, if you are using a
dedicated file on disk), then TClientDataSet has the advantage of less overhead.

• Only TClientDataSet can be used in a multi-tiered database application. Thus, if
you are writing a multi-tiered application, or if you intend to scale up to a multi-
tiered application eventually, you should use TClientDataSet with an external
provider and source dataset.

• Because the source dataset is internal to the simple dataset component, you can’t
link two source datasets in a master/detail relationship to obtain nested detail
sets. (You can, however, link two simple datasets into a master/detail
relationship.)

• The simple dataset does not surface any of the events or properties that occur on
its internal dataset provider. However, in most cases, these events are used in
multi-tiered applications, and are not needed for two-tiered applications.

Setting up a simple dataset

Setting up a simple dataset requires two essential steps. Set up:

1 The connection information.

2 The dataset information.

The following steps describe setting up a simple dataset in more detail.

To use TSimpleDataSet:

1 Place the TSimpleDataSet component in a data module or on a form. Set its Name
property to a unique value appropriate to your application.

2 Identify the database server that contains the data. There are two ways to do this:

• If you have a named connection in the connections file, expand the Connection
property and specify the ConnectionName value.

• For greater control over connection properties, transaction support, login
support, and the ability to use a single connection for more than one dataset,
use a separate TSQLConnection component instead. Specify the TSQLConnection
component as the value of the Connection property. For details on
TSQLConnection, see Chapter 23, “Connecting to databases”.

U s i n g c l i e n t d a t a s e t s 29-37

U s i n g a s i m p l e d a t a s e t

3 To indicate what data you want to fetch from the server, expand the DataSet
property and set the appropriate values. There are three ways to fetch data from
the server:

• Set CommandType to ctQuery and set CommandText to an SQL statement you
want to execute on the server. This statement is typically a SELECT statement.
Supply the values for any parameters using the Params property.

• Set CommandType to ctStoredProc and set CommandText to the name of the stored
procedure you want to execute. Supply the values for any input parameters
using the Params property.

• Set CommandType to ctTable and set CommandText to the name of the database
tables whose records you want to use.

4 If the data is to be used with visual data controls, add a data source component to
the form or data module, and set its DataSet property to the TSimpleDataSet object.
The data source component forwards the data in the client dataset’s in-memory
cache to data-aware components for display. Connect data-aware components to
the data source using their DataSource and DataField properties.

5 Activate the dataset by setting the Active property to true (or, at runtime, calling
the Open method).

6 If you executed a stored procedure, use the Params property to retrieve any output
parameters.

7 When the user has edited the data in the simple dataset, you can apply those edits
back to the database server by calling the ApplyUpdates method. Resolve any
update errors in an OnReconcileError event handler. For more information on
applying updates, see “Updating records” on page 29-20.

29-38 D e v e l o p e r ’ s G u i d e

U s i n g p r o v i d e r c o m p o n e n t s 30-1

C h a p t e r

30
Chapter30Using provider components

Provider components (TDataSetProvider and TXMLTransformProvider) supply the
most common mechanism by which client datasets obtain their data. Providers

• Receive data requests from a client dataset (or XML broker), fetch the requested
data, package the data into a transportable data packet, and return the data to the
client dataset (or XML broker). This activity is called “providing.”

• Receive updated data from a client dataset (or XML broker), apply updates to the
database server, source dataset, or source XML document, and log any updates
that cannot be applied, returning unresolved updates to the client dataset for
further reconciliation. This activity is called “resolving.”

Most of the work of a provider component happens automatically. You need not
write any code on the provider to create data packets from the data in a dataset or
XML document or to apply updates. However, provider components include a
number of events and properties that allow your application more direct control over
what information is packaged for clients and how your application responds to client
requests.

When using TBDEClientDataSet, TSimpleDataSet, or TIBClientDataSet, the provider is
internal to the client dataset, and the application has no direct access to it. When
using TClientDataSet or TXMLBroker, however, the provider is a separate component
that you can use to control what information is packaged for clients and for
responding to events that occur around the process of providing and resolving. The
client datasets that have internal providers surface some of the internal provider’s
properties and events as their own properties and events, but for the greatest amount
of control, you may want to use TClientDataSet with a separate provider component.

When using a separate provider component, it can reside in the same application as
the client dataset (or XML broker), or it can reside on an application server as part of
a multi-tiered application.

This chapter describes how to use a provider component to control the interaction
with client datasets or XML brokers.

30-2 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g t h e s o u r c e o f d a t a

Determining the source of data
When you use a provider component, you must specify the source it uses to get the
data it assembles into data packets. Depending on your version of Delphi, you can
specify the source as one of the following:

• To provide the data from a dataset, use TDataSetProvider.
• To provide the data from an XML document, use TXMLTransformProvider.

Using a dataset as the source of the data

If the provider is a dataset provider (TDataSetProvider), set the DataSet property of the
provider to indicate the source dataset. At design time, select from available datasets
in the DataSet property drop-down list in the Object Inspector.

TDataSetProvider interacts with the source dataset using the IProviderSupport
interface. This interface is introduced by TDataSet, so it is available for all datasets.
However, the IProviderSupport methods implemented in TDataSet are mostly stubs
that don’t do anything or that raise exceptions.

The dataset classes that ship with Delphi (BDE-enabled datasets, ADO-enabled
datasets, dbExpress datasets, and InterBase Express datasets) override these methods
to implement the IProviderSupport interface in a more useful fashion. Client datasets
don’t add anything to the inherited IProviderSupport implementation, but can still be
used as a source dataset as long as the ResolveToDataSet property of the provider is
True.

Component writers that create their own custom descendants from TDataSet must
override all appropriate IProviderSupport methods if their datasets are to supply data
to a provider. If the provider only provides data packets on a read-only basis (that is,
if it does not apply updates), the IProviderSupport methods implemented in TDataSet
may be sufficient.

Using an XML document as the source of the data

If the provider is an XML provider, set the XMLDataFile property of the provider to
indicate the source document.

XML providers must transform the source document into data packets, so in addition
to indicating the source document, you must also specify how to transform that
document into data packets. This transformation is handled by the provider’s
TransformRead property. TransformRead represents a TXMLTransform object. You can
set its properties to specify what transformation to use, and use its events to provide
your own input to the transformation. For more information on using XML
providers, see “Using an XML document as the source for a provider” on page 32-8.

U s i n g p r o v i d e r c o m p o n e n t s 30-3

C o m m u n i c a t i n g w i t h t h e c l i e n t d a t a s e t

Communicating with the client dataset
All communication between a provider and a client dataset or XML broker takes
place through an IAppServer interface. If the provider is in the same application as the
client, this interface is implemented by a hidden object generated automatically for
you, or by a TLocalConnection component. If the provider is part of a multi-tiered
application, this is the interface for the application server’s remote data module or (in
the case of a SOAP server) an interface generated by the connection component.

Most applications do not use IAppServer directly, but invoke it indirectly through the
properties and methods of the client dataset or XML broker. However, when
necessary, you can make direct calls to the IAppServer interface by using the
AppServer property of a client dataset.

Table 30.1 lists the methods of the IAppServer interface, as well as the corresponding
methods and events on the provider component and the client dataset. These
IAppServer methods include a Provider parameter. In multi-tiered applications, this
parameter indicates the provider on the application server with which the client
dataset communicates. Most methods also include an OleVariant parameter called
OwnerData that allows a client dataset and a provider to pass custom information
back and forth. OwnerData is not used by default, but is passed to all event handlers
so that you can write code that allows your provider to adjust to application-defined
information before and after each call from a client dataset.

Table 30.1 AppServer interface members

IAppServer Provider component TClientDataSet

AS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event.

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method.

AS_Execute method Execute method,
BeforeExecute event,
AfterExecute event

Execute method,
BeforeExecute event,
AfterExecute event.

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetParams event,
AfterGetParams event.

AS_GetProviderNames method Used to identify all available
providers.

Used to create a design-time
list for ProviderName property.

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method,
Data property,
BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method,
FetchDetails method,
RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

30-4 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o a p p l y u p d a t e s u s i n g a d a t a s e t p r o v i d e r

Choosing how to apply updates using a dataset provider
TXMLTransformProvider components always apply updates to the associated XML
document. When using TDataSetProvider, however, you can choose how updates are
applied. By default, when TDataSetProvider components apply updates and resolve
update errors, they communicate directly with the database server using
dynamically generated SQL statements. This approach has the advantage that your
server application does not need to merge updates twice (first to the dataset, and
then to the remote server).

However, you may not always want to take this approach. For example, you may
want to use some of the events on the dataset component. Alternately, the dataset
you use may not support the use of SQL statements (for example if you are providing
from a TClientDataSet component).

TDataSetProvider lets you decide whether to apply updates to the database server
using SQL or to the source dataset by setting the ResolveToDataSet property. When
this property is True, updates are applied to the dataset. When it is False, updates are
applied directly to the underlying database server.

Controlling what information is included in data packets
When working with a dataset provider, there are a number of ways to control what
information is included in data packets that are sent to and from the client. These
include

• Specifying what fields appear in data packets
• Setting options that influence the data packets
• Adding custom information to data packets

Note These techniques for controlling the content of data packets are only available for
dataset providers. When using TXMLTransformProvider, you can only control the
content of data packets by controlling the transformation file the provider uses.

Specifying what fields appear in data packets

When using a dataset provider, you can control what fields are included in data
packets by creating persistent fields on the dataset that the provider uses to build
data packets. The provider then includes only these fields. Fields whose values are
generated dynamically by the source dataset (such as calculated fields or lookup
fields) can be included, but appear to client datasets on the receiving end as static
read-only fields. For information about persistent fields, see “Persistent field
components” on page 25-3.

U s i n g p r o v i d e r c o m p o n e n t s 30-5

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

If the client dataset will be editing the data and applying updates, you must include
enough fields so that there are no duplicate records in the data packet. Otherwise,
when the updates are applied, it is impossible to determine which record to update.
If you do not want the client dataset to be able to see or use extra fields provided only
to ensure uniqueness, set the ProviderFlags property for those fields to include
pfHidden.

Note Including enough fields to avoid duplicate records is also a consideration when the
provider’s source dataset represents a query. You must specify the query so that it
includes enough fields to ensure all records are unique, even if your application does
not use all the fields.

Setting options that influence the data packets

The Options property of a dataset provider lets you specify when BLOBs or nested
detail tables are sent, whether field display properties are included, what type of
updates are allowed, and so on. The following table lists the possible values that can
be included in Options.

Table 30.2 Provider options

Value Meaning

poAutoRefresh The provider refreshes the client dataset with current record
values whenever it applies updates.

poReadOnly The client dataset can’t apply updates to the provider.

poDisableEdits Client datasets can’t modify existing data values. If the user tries
to edit a field, the client dataset raises exception. (This does not
affect the client dataset’s ability to insert or delete records).

poDisableInserts Client datasets can’t insert new records. If the user tries to insert a
new record, the client dataset raises an exception. (This does not
affect the client dataset’s ability to delete records or modify
existing data)

poDisableDeletes Client datasets can’t delete records. If the user tries to delete a
record, the client dataset raises an exception. (This does not affect
the client dataset’s ability to insert or modify records)

poFetchBlobsOnDemand BLOB field values are not included in data packets. Instead, client
datasets must request these values on an as-needed basis. If the
client dataset’s FetchOnDemand property is True, it requests these
values automatically. Otherwise, the application must call the
client dataset’s FetchBlobs method to retrieve BLOB data.

poFetchDetailsOnDemand When the provider’s dataset represents the master of a master/
detail relationship, nested detail values are not included in data
packets. Instead, client datasets request these on an as-needed
basis. If the client dataset’s FetchOnDemand property is True, it
requests these values automatically. Otherwise, the application
must call the client dataset’s FetchDetails method to retrieve
nested details.

30-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

Adding custom information to data packets

Dataset providers can add application-defined information to data packets using the
OnGetDataSetProperties event. This information is encoded as an OleVariant, and
stored under a name you specify. Client datasets can then retrieve the information
using their GetOptionalParam method. You can also specify that the information be
included in delta packets that the client dataset sends when updating records. In this
case, the client dataset may never be aware of the information, but the provider can
send a round-trip message to itself.

poIncFieldProps The data packet includes the following field properties (where
applicable): Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency,
EditMask, DisplayValues.

poCascadeDeletes When the provider’s dataset represents the master of a master/
detail relationship, the server automatically deletes detail records
when master records are deleted. To use this option, the database
server must be set up to perform cascaded deletes as part of its
referential integrity.

poCascadeUpdates When the provider’s dataset represents the master of a master/
detail relationship, key values on detail tables are updated
automatically when the corresponding values are changed in
master records. To use this option, the database server must be
set up to perform cascaded updates as part of its referential
integrity.

poAllowMultiRecordUpdates A single update can cause more than one record of the
underlying database table to change. This can be the result of
triggers, referential integrity, SQL statements on the source
dataset, and so on. Note that if an error occurs, the event handlers
provide access to the record that was updated, not the other
records that change in consequence.

poNoReset Client datasets can’t specify that the provider should reposition
the cursor on the first record before providing data.

poPropogateChanges Changes made by the server to updated records as part of the
update process are sent back to the client and merged into the
client dataset.

poAllowCommandText The client can override the associated dataset’s SQL text or the
name of the table or stored procedure it represents.

poRetainServerOrder The client dataset should not re-sort the records in the dataset to
enforce a default order.

Table 30.2 Provider options (continued)

Value Meaning

U s i n g p r o v i d e r c o m p o n e n t s 30-7

R e s p o n d i n g t o c l i e n t d a t a r e q u e s t s

When adding custom information in the OnGetDataSetProperties event, each
individual attribute (sometimes called an “optional parameter”) is specified using a
Variant array that contains three elements: the namLe (a string), the value (a Variant),
and a boolean flag indicating whether the information should be included in delta
packets when the client applies updates. Add multiple attributes by creating a
Variant array of Variant arrays. For example, the following OnGetDataSetProperties
event handler sends two values, the time the data was provided and the total number
of records in the source dataset. Only the time the data was provided is returned
when client datasets apply updates:

procedure TMyDataModule1.Provider1GetDataSetProperties(Sender: TObject; DataSet: TDataSet;
out Properties: OleVariant);
begin

Properties := VarArrayCreate([0,1], varVariant);
Properties[0] := VarArrayOf(['TimeProvided', Now, True]);
Properties[1] := VarArrayOf(['TableSize', DataSet.RecordCount, False]);

end;

When the client dataset applies updates, the time the original records were provided
can be read in the provider’s OnUpdateData event:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
var

WhenProvided: TDateTime;
begin

WhenProvided := DataSet.GetOptionalParam('TimeProvided');
ƒ

end;

Responding to client data requests
Usually client requests for data are handled automatically. A client dataset or XML
broker requests a data packet by calling GetRecords (indirectly, through the
IAppServer interface). The provider responds automatically by fetching data from the
associated dataset or XML document, creating a data packet, and sending the packet
to the client.

The provider has the option of editing data after it has been assembled into a data
packet but before the packet is sent to the client. For example, you might want to
remove records from the packet based on some criterion (such as the user’s level of
access), or, in a multi-tiered application, you might want to encrypt sensitive data
before it is sent on to the client.

To edit the data packet before sending it on to the client, write an OnGetData event
handler. OnGetData event handlers provide the data packet as a parameter in the
form of a client dataset. Using the methods of this client dataset, you can edit data
before it is sent to the client.

30-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to GetRecords. This communication takes place using the BeforeGetRecords and
AfterGetRecords event handlers. For a discussion of persistent state information in
application servers, see “Supporting state information in remote data modules” on
page 31-19.

Responding to client update requests
A provider applies updates to database records based on a Delta data packet received
from a client dataset or XML broker. The client requests updates by calling the
ApplyUpdates method (indirectly, through the IAppServer interface).

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to ApplyUpdates. This communication takes place using the BeforeApplyUpdates
and AfterApplyUpdates event handlers. For a discussion of persistent state
information in application servers, see “Supporting state information in remote
data modules” on page 31-19.

If you are using a dataset provider, a number of additional events allow you more
control:

When a dataset provider receives an update request, it generates an OnUpdateData
event, where you can edit the Delta packet before it is written to the dataset or
influence how updates are applied. After the OnUpdateData event, the provider
writes the changes to the database or source dataset.

The provider performs the update on a record-by-record basis. Before the dataset
provider applies each record, it generates a BeforeUpdateRecord event, which you can
use to screen updates before they are applied. If an error occurs when updating a
record, the provider receives an OnUpdateError event where it can resolve the error.
Usually errors occur because the change violates a server constraint or a database
record was changed by a different application subsequent to its retrieval by the
provider, but prior to the client dataset’s request to apply updates.

Update errors can be processed by either the dataset provider or the client dataset.
When the provider is part of a multi-tiered application, it should handle all update
errors that do not require user interaction to resolve. When the provider can’t resolve
an error condition, it temporarily stores a copy of the offending record. When record
processing is complete, the provider returns a count of the errors it encountered to
the client dataset, and copies the unresolved records into a results data packet that it
returns to the client dataset for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client
dataset. If your event handler is only dealing with certain types of updates, you can
filter the dataset based on the update status of records. By filtering the records, your
event handler does not need to sort through records it won’t be using. To filter the
client dataset on the update status of its records, set its StatusFilter property.

U s i n g p r o v i d e r c o m p o n e n t s 30-9

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Note Applications must supply extra support when the updates are directed at a dataset
that does not represent a single table. For details on how to do this, see “Applying
updates to datasets that do not represent a single table” on page 30-12.

Editing delta packets before updating the database

Before a dataset provider applies updates to the database, it generates an
OnUpdateData event. The OnUpdateData event handler receives a copy of the Delta
packet as a parameter. This is a client dataset.

In the OnUpdateData event handler, you can use any of the properties and methods of
the client dataset to edit the Delta packet before it is written to the dataset. One
particularly useful property is the UpdateStatus property. UpdateStatus indicates what
type of modification the current record in the delta packet represents. It can have any
of the values in Table 30.3.

For example, the following OnUpdateData event handler inserts the current date into
every new record that is inserted into the database:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do
begin

First;
while not Eof do
begin

if UpdateStatus = usInserted then
begin
Edit;
FieldByName('DateCreated').AsDateTime := Date;
Post;

end;
Next;

end;
end;

Table 30.3 UpdateStatus values

Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

30-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Influencing how updates are applied

The OnUpdateData event also gives your dataset provider a chance to indicate how
records in the delta packet are applied to the database.

By default, changes in the delta packet are written to the database using
automatically generated SQL UPDATE, INSERT, or DELETE statements such as

UPDATE EMPLOYEES
 set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52
WHERE
 EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Unless you specify otherwise, all fields in the delta packet records are included in the
UPDATE clause and in the WHERE clause. However, you may want to exclude some
of these fields. One way to do this is to set the UpdateMode property of the provider.
UpdateMode can be assigned any of the following values:

You might, however, want even more control. For example, with the previous
statement, you might want to prevent the EMPNO field from being modified by
leaving it out of the UPDATE clause and leave the TITLE and DEPT fields out of the
WHERE clause to avoid update conflicts when other applications have modified the
data. To specify the clauses where a specific field appears, use the ProviderFlags
property. ProviderFlags is a set that can include any of the values in Table 30.5

Thus, the following OnUpdateData event handler allows the TITLE field to be
updated and uses the EMPNO and DEPT fields to locate the desired record. If an
error occurs, and a second attempt is made to locate the record based only on the key,
the generated SQL looks for the EMPNO field only:

procedure TMyDataModule1.Provider1UpdateData(Sender: TObject; DataSet:
TCustomClientDataSet);
begin

with DataSet do

Table 30.4 UpdateMode values

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereKeyOnly Only key fields are used to locate records.

Table 30.5 ProviderFlags values

Value Description

pfInWhere The field appears in the WHERE clause of generated INSERT, DELETE, and
UPDATE statements when UpdateMode is upWhereAll or upWhereChanged.

pfInUpdate The field appears in the UPDATE clause of generated UPDATE statements.

pfInKey The field is used in the WHERE clause of generated statements when UpdateMode is
upWhereKeyOnly.

pfHidden The field is included in records to ensure uniqueness, but can’t be seen or used on
the client side.

U s i n g p r o v i d e r c o m p o n e n t s 30-11

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

begin
FieldByName('TITLE').ProviderFlags := [pfInUpdate];
FieldByName('EMPNO').ProviderFlags := [pfInWhere, pfInKey];
FieldByName('DEPT').ProviderFlags := [pfInWhere];

end;
end;

Note You can use the UpdateFlags property to influence how updates are applied even if
you are updating to a dataset and not using dynamically generated SQL. These flags
still determine which fields are used to locate records and which fields get updated.

Screening individual updates

Immediately before each update is applied, a dataset provider receives a
BeforeUpdateRecord event. You can use this event to edit records before they are
applied, similar to the way you can use the OnUpdateData event to edit entire delta
packets. For example, the provider does not compare BLOB fields (such as memos)
when checking for update conflicts. If you want to check for update errors involving
BLOB fields, you can use the BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject
updates. The BeforeUpdateRecord event handler lets you signal that an update has
been handled already and should not be applied. The provider then skips that
record, but does not count it as an update error. For example, this event provides a
mechanism for applying updates to a stored procedure (which can’t be updated
automatically), allowing the provider to skip any automatic processing once the
record is updated from within the event handler.

Resolving update errors on the provider

When an error condition arises as the dataset provider tries to post a record in the
delta packet, an OnUpdateError event occurs. If the provider can’t resolve an update
error, it temporarily stores a copy of the offending record. When record processing is
complete, the provider returns a count of the errors it encountered, and copies the
unresolved records into a results data packet that it passes back to the client for
further reconciliation.

In multi-tiered applications, this mechanism lets you handle any update errors you
can resolve mechanically on the application server, while still allowing user
interaction on the client application to correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an
error code from the database, and an indication of whether the resolver was trying to
insert, delete, or update the record. The problem record is passed back in a client
dataset. You should never use the data navigation methods on this dataset. However,
for each field in the dataset, you can use the NewValue, OldValue, and CurValue
properties to determine the cause of the problem and make any modifications to
resolve the update error. If the OnUpdateError event handler can correct the problem,
it sets the Response parameter so that the corrected record is applied.

30-12 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t - g e n e r a t e d e v e n t s

Applying updates to datasets that do not represent a single table

When a dataset provider generates SQL statements that apply updates directly to a
database server, it needs the name of the database table that contains the records.
This can be handled automatically for many datasets such as table type datasets or
“live” TQuery components. Automatic updates are a problem however, if the
provider must apply updates to the data underlying a stored procedure with a result
set or a multi-table query. There is no easy way to obtain the name of the table to
which updates should be applied.

If the query or stored procedure is a BDE-enabled dataset (TQuery or TStoredProc)
and it has an associated update object, the provider uses the update object. However,
if there is no update object, you can supply the table name programmatically in an
OnGetTableName event handler. Once an event handler supplies the table name, the
provider can generate appropriate SQL statements to apply updates.

Supplying a table name only works if the target of the updates is a single database
table (that is, only the records in one table need to be updated). If the update requires
making changes to multiple underlying database tables, you must explicitly apply
the updates in code using the BeforeUpdateRecord event of the provider. Once this
event handler has applied an update, you can set the event handler’s Applied
parameter to True so that the provider does not generate an error.

Note If the provider is associated with a BDE-enabled dataset, you can use an update
object in the BeforeUpdateRecord event handler to apply updates using customized
SQL statements. See “Using update objects to update a dataset” on page 26-40 for
details.

Responding to client-generated events
Provider components implement a general-purpose event that lets you create your
own calls from client datasets directly to the provider. This is the OnDataRequest
event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a
hook to allow your client datasets to communicate directly with providers. The event
handler takes an OleVariant as an input parameter and returns an OleVariant. By
using OleVariants, the interface is sufficiently general to accommodate almost any
information you want to pass to or from the provider.

To generate an OnDataRequest event, the client application calls the DataRequest
method of the client dataset.

U s i n g p r o v i d e r c o m p o n e n t s 30-13

H a n d l i n g s e r v e r c o n s t r a i n t s

Handling server constraints
Most relational database management systems implement constraints on their tables
to enforce data integrity. A constraint is a rule that governs data values in tables and
columns, or that governs data relationships across columns in different tables. For
example, most SQL-92 compliant relational databases support the following
constraints:

• NOT NULL, to guarantee that a value supplied to a column has a value.

• NOT NULL UNIQUE, to guarantee that column value has a value and does not
duplicate any other value already in that column for another record.

• CHECK, to guarantee that a value supplied to a column falls within a certain
range, or is one of a limited number of possible values.

• CONSTRAINT, a table-wide check constraint that applies to multiple columns.

• PRIMARY KEY, to designate one or more columns as the table’s primary key for
indexing purposes.

• FOREIGN KEY, to designate one or more columns in a table that reference another
table.

Note This list is not exclusive. Your database server may support some or all of these
constraints in part or in whole, and may support additional constraints. For more
information about supported constraints, see your server documentation.

Database server constraints obviously duplicate many kinds of data checks that
traditional desktop database applications manage. You can take advantage of server
constraints in multi-tiered database applications without having to duplicate the
constraints in application server or client application code.

If the provider is working with a BDE-enabled dataset, the Constraints property lets
you replicate and apply server constraints to data passed to and received from client
datasets. When Constraints is True (the default), server constraints stored in the
source dataset are included in data packets and affect client attempts to update data.

Important Before the provider can pass constraint information on to client datasets, it must
retrieve the constraints from the database server. To import database constraints
from the server, use SQL Explorer to import the database server’s constraints and
default expressions into the Data Dictionary. Constraints and default expressions in
the Data Dictionary are automatically made available to BDE-enabled datasets.

There may be times when you do not want to apply server constraints to data sent to
a client dataset. For example, a client dataset that receives data in packets and
permits local updating of records prior to fetching more records may need to disable
some server constraints that might be triggered because of the temporarily
incomplete set of data. To prevent constraint replication from the provider to a client
dataset, set Constraints to False. Note that client datasets can disable and enable
constraints using the DisableConstraints and EnableConstraints methods. For more
information about enabling and disabling constraints from the client dataset, see
“Handling constraints from the server” on page 29-30.

30-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-1

C h a p t e r

31
Chapter31Creating multi-tiered applications

This chapter describes how to create a multi-tiered, client/server database
application. A multi-tiered client/server application is partitioned into logical units,
called tiers, which run in conjunction on separate machines. Multi-tiered applications
share data and communicate with one another over a local-area network or even over
the Internet. They provide many benefits, such as centralized business logic and thin
client applications.

In its simplest form, sometimes called the “three-tiered model,” a multi-tiered
application is partitioned into thirds:

• Client application: provides a user interface on the user’s machine.

• Application server: resides in a central networking location accessible to all clients
and provides common data services.

• Remote database server: provides the relational database management system
(RDBMS).

In this three-tiered model, the application server manages the flow of data between
clients and the remote database server, so it is sometimes called a “data broker.” You
usually only create the application server and its clients, although, if you are really
ambitious, you could create your own database back end as well.

In more complex multi-tiered applications, additional services reside between a
client and a remote database server. For example, there might be a security services
broker to handle secure Internet transactions, or bridge services to handle sharing of
data with databases on other platforms.

Support for developing multi-tiered applications is an extension of the way client
datasets communicate with a provider component using transportable data packets.
This chapter focuses on creating a three-tiered database application. Once you
understand how to create and manage a three-tiered application, you can create and
add additional service layers based on your needs.

31-2 D e v e l o p e r ’ s G u i d e

A d v a n t a g e s o f t h e m u l t i - t i e r e d d a t a b a s e m o d e l

Advantages of the multi-tiered database model
The multi-tiered database model breaks a database application into logical pieces.
The client application can focus on data display and user interactions. Ideally, it
knows nothing about how the data is stored or maintained. The application server
(middle tier) coordinates and processes requests and updates from multiple clients. It
handles all the details of defining datasets and interacting with the database server.

The advantages of this multi-tiered model include the following:

• Encapsulation of business logic in a shared middle tier. Different client
applications all access the same middle tier. This allows you to avoid the
redundancy (and maintenance cost) of duplicating your business rules for each
separate client application.

• Thin client applications. Your client applications can be written to make a small
footprint by delegating more of the processing to middle tiers. Not only are client
applications smaller, but they are easier to deploy because they don’t need to
worry about installing, configuring, and maintaining the database connectivity
software (such as the database server’s client-side software). Thin client
applications can be distributed over the Internet for additional flexibility.

• Distributed data processing. Distributing the work of an application over several
machines can improve performance because of load balancing, and allow
redundant systems to take over when a server goes down.

• Increased opportunity for security. You can isolate sensitive functionality into
tiers that have different access restrictions. This provides flexible and configurable
levels of security. Middle tiers can limit the entry points to sensitive material,
allowing you to control access more easily. If you are using HTTP or COM+, you
can take advantage of the security models they support.

Understanding multi-tiered database applications
Multi-tiered applications use the components on the DataSnap page, the Data Access
page, and possibly the WebServices page of the Component palette, plus a remote
data module that is created by a wizard on the Multitier or WebServices page of the
New Items dialog. They are based on the ability of provider components to package
data into transportable data packets and handle updates received as transportable
delta packets.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-3

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

The components needed for a multi-tiered application are described in Table 31.1:

The provider and client dataset components require midas.dll or midaslib.dcu,
which manages datasets stored as data packets. (Note that, because the provider is
used on the application server and the client dataset is used on the client application,
if you are using midas.dll, you must deploy it on both application server and client
application.)

If you are using BDE-enabled datasets, the application server may also require SQL
Explorer to help in database administration and to import server constraints into the
Data Dictionary so that they can be checked at any level of the multi-tiered
application.

Note You must purchase server licenses for deploying your application server.

An overview of the architecture into which these components fit is described in
“Using a multi-tiered architecture” on page 19-13.

Overview of a three-tiered application

The following numbered steps illustrate a normal sequence of events for a provider-
based three-tiered application:

1 A user starts the client application. The client connects to the application server
(which can be specified at design time or runtime). If the application server is not
already running, it starts. The client receives an IAppServer interface for
communicating with the application server.

2 The client requests data from the application server. A client may request all data
at once, or may request chunks of data throughout the session (fetch on demand).

Table 31.1 Components used in multi-tiered applications

Component Description

Remote data
modules

Specialized data modules that can act as a COM Automation server or implement
a Web Service to give client applications access to any providers they contain.
Used on the application server.

Provider
component

A data broker that provides data by creating data packets and resolves client
updates. Used on the application server.

Client dataset
component

A specialized dataset that uses midas.dll or midaslib.dcu to manage data stored in
data packets. The client dataset is used in the client application. It caches updates
locally, and applies them in delta packets to the application server.

Connection
components

A family of components that locate the server, form connections, and make the
IAppServer interface available to client datasets. Each connection component is
specialized to use a particular communications protocol.

31-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

3 The application server retrieves the data (first establishing a database connection,
if necessary), packages it for the client, and returns a data packet to the client.
Additional information, (for example, field display characteristics) can be
included in the metadata of the data packet. This process of packaging data into
data packets is called “providing.”

4 The client decodes the data packet and displays the data to the user.

5 As the user interacts with the client application, the data is updated (records are
added, deleted, or modified). These modifications are stored in a change log by the
client.

6 Eventually the client applies its updates to the application server, usually in
response to a user action. To apply updates, the client packages its change log and
sends it as a data packet to the server.

7 The application server decodes the package and posts updates (in the context of a
transaction if appropriate). If a record can’t be posted (for example, because
another application changed the record after the client requested it and before the
client applied its updates), the application server either attempts to reconcile the
client’s changes with the current data, or saves the records that could not be
posted. This process of posting records and caching problem records is called
“resolving.”

8 When the application server finishes the resolving process, it returns any
unposted records to the client for further resolution.

9 The client reconciles unresolved records. There are many ways a client can
reconcile unresolved records. Typically the client attempts to correct the situation
that prevented records from being posted or discards the changes. If the error
situation can be rectified, the client applies updates again.

10 The client refreshes its data from the server.

The structure of the client application

To the end user, the client application of a multi-tiered application looks and behaves
no differently than a two-tiered application that uses cached updates. User
interaction takes place through standard data-aware controls that display data from a
TClientDataSet component. For detailed information about using the properties,
events, and methods of client datasets, see Chapter 29, “Using client datasets.”

TClientDataSet fetches data from and applies updates to a provider component, just
as in two-tiered applications that use a client dataset with an external provider. For
details about providers, see Chapter 30, “Using provider components.” For details
about client dataset features that facilitate its communication with a provider, see
“Using a client dataset with a provider” on page 29-24.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-5

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

The client dataset communicates with the provider through the IAppServer interface.
It gets this interface from a connection component. The connection component
establishes the connection to the application server. Different connection components
are available for using different communications protocols. These connection
components are summarized in the following table:

Note The DataSnap page of the Component palette also includes a connection component
that does not connect to an application server at all, but instead supplies an
IAppServer interface for client datasets to use when communicating with providers in
the same application. This component, TLocalConnection, is not required, but makes it
easier to scale up to a multi-tiered application later.

For more information about using connection components, see “Connecting to the
application server” on page 31-23.

The structure of the application server

When you set up and run an application server, it does not establish any connection
with client applications. Rather, client applications initiate and maintain the
connection. The client application uses a connection component to connect to the
application server, and uses the interface of the application server to communicate
with a selected provider. All of this happens automatically, without your having to
write code to manage incoming requests or supply interfaces.

The basis of an application server is a remote data module, which is a specialized
data module that supports the IAppServer interface (for application servers that also
function as a Web Service, the remote data module supports the IAppServerSOAP
interface as well, and uses it in preference to IAppServer.) Client applications use the
remote data module’s interface to communicate with providers on the application
server. When the remote data module uses IAppServerSOAP, the connection
component adapts this to an IAppServer interface that client datasets can use.

Table 31.2 Connection components

Component Protocol

TDCOMConnection DCOM

TSocketConnection Windows sockets (TCP/IP)

TWebConnection HTTP

TSOAPConnection SOAP (HTTP and XML)

31-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

There are three types of remote data modules:

• TRemoteDataModule: This is a dual-interface Automation server. Use this type of
remote data module if clients use DCOM, HTTP, sockets, or OLE to connect to the
application server, unless you want to install the application server with COM+.

• TMTSDataModule: This is a dual-interface Automation server. Use this type of
remote data module if you are creating the application server as an Active Library
(.DLL) that is installed with COM+ (or MTS). You can use MTS remote data
modules with DCOM, HTTP, sockets, or OLE.

• TSoapDataModule: This is a data module that implements an IAppServerSOAP
interface in a Web Service application. Use this type of remote data module to
provide data to clients that access data as a Web Service.

Note If the application server is to be deployed under COM+ (or MTS), the remote data
module includes events for when the application server is activated or deactivated.
This allows it to acquire database connections when activated and release them when
deactivated.

The contents of the remote data module
As with any data module, you can include any nonvisual component in the remote
data module. There are certain components, however, that you must include:

• If the remote data module is exposing information from a database server, it must
include a dataset component to represent the records from that database server.
Other components, such as a database connection component of some type, may
be required to allow the dataset to interact with a database server. For information
about datasets, see Chapter 24, “Understanding datasets.” For information about
database connection components, see Chapter 23, “Connecting to databases.”

For every dataset that the remote data module exposes to clients, it must include a
dataset provider. A dataset provider packages data into data packets that are sent
to client datasets and applies updates received from client datasets back to a
source dataset or a database server. For more information about dataset providers,
see Chapter 30, “Using provider components.”

• For every XML document that the remote data module exposes to clients, it must
include an XML provider. An XML provider acts like a dataset provider, except
that it fetches data from and applies updates to an XML document rather than a
database server. For more information about XML providers, see “Using an XML
document as the source for a provider” on page 32-8.

Note Do not confuse database connection components, which connect datasets to a
database server, with the connection components used by client applications in a
multi-tiered application. The connection components in multi-tiered applications can
be found on the DataSnap page or WebServices page of the Component palette.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-7

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

Using transactional data modules
You can write an application server that takes advantage of special services for
distributed applications that are supplied by COM+ (under Windows 2000 and later)
or MTS (before Windows 2000). To do so, create a transactional data module instead
of an ordinary remote data module.

When you use a transactional data module, your application can take advantage of
the following special services:

• Security. COM+ (or MTS) provides role-based security for your application
server. Clients are assigned roles, which determine how they can access the MTS
data module’s interface. The MTS data module implements the IsCallerInRole
method, which you lets you check the role of the currently connected client and
conditionally allow certain functions based on that role. For more information
about COM+ security, see “Role-based security” on page 46-15.

• Database handle pooling. Transactional data modules automatically pool
database connections that are made via ADO or (if you are using MTS and turn on
MTS POOLING) the BDE. When one client is finished with a database connection,
another client can reuse it. This cuts down on network traffic, because your middle
tier does not need to log off of the remote database server and then log on again.
When pooling database handles, your database connection component should set
its KeepConnection property to False, so that your application maximizes the
sharing of connections. For more information about pooling database handles, see
“Database resource dispensers” on page 46-6.

• Transactions. When using a transactional data module, you can provide enhanced
transaction support beyond that available with a single database connection.
Transactional data modules can participate in transactions that span multiple
databases, or include functions that do not involve databases at all. For more
information about the transaction support provided by transactional objects such
as transactional data modules, see “Managing transactions in multi-tiered
applications” on page 31-17.

• Just-in-time activation and as-soon-as-possible deactivation. You can write your
server so that remote data module instances are activated and deactivated on an
as-needed basis. When using just-in-time activation and as-soon-as-possible
deactivation, your remote data module is instantiated only when it is needed to
handle client requests. This prevents it from tying up resources such as database
handles when they are not in use.

Using just-in-time activation and as-soon-as-possible deactivation provides a
middle ground between routing all clients through a single remote data module
instance, and creating a separate instance for every client connection. With a single
remote data module instance, the application server must handle all database calls
through a single database connection. This acts as a bottleneck, and can impact
performance when there are many clients. With multiple instances of the remote
data module, each instance can maintain a separate database connection, thereby
avoiding the need to serialize database access. However, this monopolizes
resources because other clients can’t use the database connection while it is
associated with another client’s remote data module.

31-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

To take advantage of transactions, just-in-time activation, and as-soon-as-possible
deactivation, remote data module instances must be stateless. This means you must
provide additional support if your client relies on state information. For example, the
client must pass information about the current record when performing incremental
fetches. For more information about state information and remote data modules in
multi-tiered applications, see “Supporting state information in remote data modules”
on page 31-19.

By default, all automatically generated calls to a transactional data module are
transactional (that is, they assume that when the call exits, the data module can be
deactivated and any current transactions committed or rolled back). You can write a
transactional data module that depends on persistent state information by setting the
AutoComplete property to False, but it will not support transactions, just-in-time
activation, or as-soon-as-possible deactivation unless you use a custom interface.

Warning Application servers containing transactional data modules should not open database
connections until the data module is activated. While developing your application,
be sure that all datasets are not active and the database is not connected before
running your application. In the application itself, add code to open database
connections when the data module is activated and close them when it is deactivated.

Pooling remote data modules
Object pooling allows you to create a cache of remote data modules that are shared
by their clients, thereby conserving resources. How this works depends on the type
of remote data module and on the connection protocol.

If you are creating a transactional data module that will be installed to COM+, you
can use the COM+ Component Manager to install the application server as a pooled
object. See “Object pooling” on page 46-8 for details.

Even if you are not using a transactional data module, you can take advantage of
object pooling if the connection is formed using TWebConnection. Under this second
type of object pooling, you limit the number of instances of your remote data module
that are created. This limits the number of database connections that you must hold,
as well as any other resources used by the remote data module.

When the Web Server application (which passes calls to your remote data module)
receives client requests, it passes them on to the first available remote data module in
the pool. If there is no available remote data module, it creates a new one (up to a
maximum number that you specify). This provides a middle ground between routing
all clients through a single remote data module instance (which can act as a
bottleneck), and creating a separate instance for every client connection (which can
consume many resources).

If a remote data module instance in the pool does not receive any client requests for a
while, it is automatically freed. This prevents the pool from monopolizing resources
unless they are used.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-9

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

To set up object pooling when using a Web connection (HTTP), your remote data
module must override the UpdateRegistry method. In the overridden method, call
RegisterPooled when the remote data module registers and UnregisterPooled when the
remote data module unregisters. When using either method of object pooling, your
remote data module must be stateless. This is because a single instance potentially
handles requests from several clients. If it relied on persistent state information,
clients could interfere with each other. See “Supporting state information in remote
data modules” on page 31-19 for more information on how to ensure that your
remote data module is stateless.

Choosing a connection protocol

Each communications protocol you can use to connect your client applications to the
application server provides its own unique benefits. Before choosing a protocol,
consider how many clients you expect, how you are deploying your application, and
future development plans.

Using DCOM connections
DCOM provides the most direct approach to communication, requiring no
additional runtime applications on the server.

DCOM provides the only approach that lets you use security services when writing a
transactional data module. These security services are based on assigning roles to the
callers of transactional objects. When using DCOM, DCOM identifies the caller to the
system that calls your application server (COM+ or MTS). Therefore, it is possible to
accurately determine the role of the caller. When using other protocols, however,
there is a runtime executable, separate from the application server, that receives
client calls. This runtime executable makes COM calls into the application server on
behalf of the client. Because of this, it is impossible to assign roles to separate clients:
The runtime executable is, effectively, the only client. For more information about
security and transactional objects, see “Role-based security” on page 46-15.

Using Socket connections
TCP/IP Sockets let you create lightweight clients. For example, if you are writing a
Web-based client application, you can’t be sure that client systems support DCOM.
Sockets provide a lowest common denominator that you know will be available for
connecting to the application server. For more information about sockets, see
Chapter 39, “Working with sockets.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), sockets use a separate application on the server (ScktSrvr.exe), which
accepts client requests and instantiates the remote data module using COM. The
connection component on the client and ScktSrvr.exe on the server are responsible
for marshaling IAppServer calls.

Note ScktSrvr.exe can run as an NT service application. Register it with the Service
manager by starting it using the -install command line option. You can unregister it
using the -uninstall command line option.

31-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g m u l t i - t i e r e d d a t a b a s e a p p l i c a t i o n s

Before you can use a socket connection, the application server must register its
availability to clients using a socket connection. By default, all new remote data
modules automatically register themselves by adding a call to EnableSocketTransport
in the UpdateRegistry method. You can remove this call to prevent socket connections
to your application server.

Note Because older servers did not add this registration, you can disable the check for
whether an application server is registered by unchecking the Connections|
Registered Objects Only menu item on ScktSrvr.exe.

When using sockets, there is no protection on the server against client systems failing
before they release a reference to interfaces on the application server. While this
results in less message traffic than when using DCOM (which sends periodic keep-
alive messages), this can result in an application server that can’t release its resources
because it is unaware that the client has gone away.

Using Web connections
HTTP lets you create clients that can communicate with an application server that is
protected by a firewall. HTTP messages provide controlled access to internal
applications so that you can distribute your client applications safely and widely.
Like socket connections, HTTP messages provide a lowest common denominator
that you know will be available for connecting to the application server. For more
information about HTTP messages, see Chapter 33, “Creating Internet server
applications.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), HTTP-based connections use a Web server application on the server
(httpsrvr.dll) that accepts client requests and instantiates the remote data module
using COM. Because of this, they are also called Web connections. The connection
component on the client and httpsrvr.dll on the server are responsible for marshaling
IAppServer calls.

Web connections can take advantage of the SSL security provided by wininet.dll (a
library of Internet utilities that runs on the client system). Once you have configured
the Web server on the server system to require authentication, you can specify the
user name and password using the properties of the Web connection component.

As an additional security measure, the application server must register its availability
to clients using a Web connection. By default, all new remote data modules
automatically register themselves by adding a call to EnableWebTransport in the
UpdateRegistry method. You can remove this call to prevent Web connections to your
application server.

Web connections can take advantage of object pooling. This allows your server to
create a limited pool of remote data module instances that are available for client
requests. By pooling the remote data modules, your server does not consume the
resources for the data module and its database connection except when they are
needed. For more information on object pooling, see “Pooling remote data modules”
on page 31-8.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-11

B u i l d i n g a m u l t i - t i e r e d a p p l i c a t i o n

Unlike most other connection components, you can’t use callbacks when the
connection is formed via HTTP.

Using SOAP connections
SOAP is the protocol that underlies the built-in support for Web Service applications.
SOAP marshals method calls using an XML encoding. SOAP connections use HTTP
as a transport protocol.

SOAP connections have the advantage that they work in cross-platform applications
because they are supported on both the Windows and Linux. Because SOAP
connections use HTTP, they have the same advantages as Web connections: HTTP
provides a lowest common denominator that you know is available on all clients, and
clients can communicate with an application server that is protected by a “firewall.”
For more information about using SOAP to distribute applications, see Chapter 38,
“Using Web Services.”

As with HTTP connections, you can’t use callbacks when the connection is formed
via SOAP.

Building a multi-tiered application
The general steps for creating a multi-tiered database application are

1 Create the application server.

2 Register or install the application server.

3 Create a client application.

The order of creation is important. You should create and run the application server
before you create a client. At design time, you can then connect to the application
server to test your client. You can, of course, create a client without specifying the
application server at design time, and only supply the server name at runtime.
However, doing so prevents you from seeing if your application works as expected
when you code at design time, and you will not be able to choose servers and
providers using the Object Inspector.

Note If you are not creating the client application on the same system as the server, and
you are using a DCOM connection, you may want to register the application server
on the client system. This makes the connection component aware of the application
server at design time so that you can choose server names and provider names from
a drop-down list in the Object Inspector. (If you are using a Web connection, SOAP
connection, or socket connection, the connection component fetches the names of
registered providers from the server machine.)

31-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Creating the application server
You create an application server very much as you create most database applications.
The major difference is that the application server uses a remote data module.

To create an application server, follow these steps:

1 Start a new project:

• If you are using SOAP as a transport protocol, this should be a new Web Service
application. Choose File|New|Other, and on the WebServices page of the new
items dialog, choose SOAP Server application. Select the type of Web Server
you want to use, and when prompted whether you want to define a new
interface for the SOAP module, say no.

• For any other transport protocol, you need only choose File|New|Application.

Save the new project.

2 Add a new remote data module to the project. From the main menu, choose File|
New |Other, and on the MultiTier or WebServices page of the new items dialog,
select

• Remote Data Module if you are creating a COM Automation server that clients
access using DCOM, HTTP, or sockets.

• Transactional Data Module if you are creating a remote data module that runs
under COM+ (or MTS). Connections can be formed using DCOM, HTTP, or
sockets. However, only DCOM supports the security services.

• SOAP Server Data Module if you are creating a SOAP server in a Web Service
application.

For more detailed information about setting up a remote data module, see “Setting
up the remote data module” on page 31-13.

Note Remote data modules are more than simple data modules. The SOAP data module
implements an invokable interface in a Web Service application. Other data
modules are COM Automation objects.

3 Place the appropriate dataset components on the data module and set them up to
access the database server.

4 Place a TDataSetProvider component on the data module for each dataset you want
to expose to clients. This provider is required for brokering client requests and
packaging data. Set the DataSet property for each provider to the name of the
dataset to access. You can set additional properties for the provider. See
Chapter 30, “Using provider components” for more detailed information about
setting up a provider.

If you are working with data from XML documents, you can use a
TXMLTransformProvider component instead of a dataset and TDataSetProvider
component. When using TXMLTransformProvider, set the XMLDataFile property to
specify the XML document from which data is provided and to which updates are
applied.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-13

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

5 Write application server code to implement events, shared business rules, shared
data validation, and shared security. When writing this code, you may want to

• Extend the application server’s interface to provide additional ways for the
client application to call the server. Extending the application server’s interface
is described in “Extending the application server’s interface” on page 31-16.

• Provide transaction support beyond the transactions automatically created
when applying updates. Transaction support in multi-tiered database
applications is described in “Managing transactions in multi-tiered
applications” on page 31-17.

• Create master/detail relationships between the datasets in your application
server. Master/detail relationships are described in “Supporting master/detail
relationships” on page 31-18.

• Ensure your application server is stateless. Handling state information is
described in “Supporting state information in remote data modules” on
page 31-19.

• Divide your application server into multiple remote data modules. Using
multiple remote data modules is described in “Using multiple remote data
modules” on page 31-21.

6 Save, compile, and register or install the application server. Registering an
application server is described in “Registering the application server” on
page 31-22.

7 If your server application does not use DCOM or SOAP, you must install the
runtime software that receives client messages, instantiates the remote data
module, and marshals interface calls.

• For TCP/IP sockets this is a socket dispatcher application, Scktsrvr.exe.

• For HTTP connections this is httpsrvr.dll, an ISAPI/NSAPI DLL that must be
installed with your Web server.

Setting up the remote data module

When you create the remote data module, you must provide certain information that
indicates how it responds to client requests. This information varies, depending on
the type of remote data module. See “The structure of the application server” on
page 31-5 for information on what type of remote data module you need.

Configuring TRemoteDataModule
To add a TRemoteDataModule component to your application, choose File|New|
Other and select Remote Data Module from the Multitier page of the new items
dialog. You will see the Remote Data Module wizard.

31-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

You must supply a class name for your remote data module. This is the base name of
a descendant of TRemoteDataModule that your application creates. It is also the base
name of the interface for that class. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TRemoteDataModule, which implements IMyDataServer, a descendant of
IAppServer.

Note You can add your own properties and methods to the new interface. For more
information, see “Extending the application server’s interface” on page 31-16.

You must specify the threading model in the Remote Data Module wizard. You can
choose Single-threaded, Apartment-threaded, Free-threaded, or Both.

• If you choose Single-threaded, COM ensures that only one client request is
serviced at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment-threaded, COM ensures that any instance of your remote
data module services one request at a time. When writing code in an Apartment-
threaded library, you must guard against thread conflicts if you use global
variables or objects not contained in the remote data module. This is the
recommended model if you are using BDE-enabled datasets. (Note that you will
need a session component with its AutoSessionName property set to True to handle
threading issues on BDE-enabled datasets).

• If you choose Free-threaded, your application can receive simultaneous client
requests on several threads. You are responsible for ensuring your application is
thread-safe. Because multiple clients can access your remote data module
simultaneously, you must guard your instance data (properties, contained objects,
and so on) as well as global variables. This is the recommended model if you are
using ADO datasets.

• If you choose Both, your library works the same as when you choose Free-
threaded, with one exception: all callbacks (calls to client interfaces) are serialized
for you.

• If you choose Neutral, the remote data module can receive simultaneous calls on
separate threads, as in the Free-threaded model, but COM guarantees that no two
threads access the same method at the same time.

If you are creating an EXE, you must also specify what type of instancing to use. You
can choose Single instance or Multiple instance (Internal instancing applies only if
the client code is part of the same process space.)

• If you choose Single instance, each client connection launches its own instance of
the executable. That process instantiates a single instance of the remote data
module, which is dedicated to the client connection.

• If you choose Multiple instance, a single instance of the application (process)
instantiates all remote data modules created for clients. Each remote data module
is dedicated to a single client connection, but they all share the same process space.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-15

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Configuring TMTSDataModule
To add a TMTSDataModule component to your application, choose File|New|Other
and select Transactional Data Module from the Multitier page of the new items
dialog. You will see the Transactional Data Module wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TMTSDataModule that your application creates. It is also the base
name of the interface for that class. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TMTSDataModule, which implements IMyDataServer, a descendant of IAppServer.

Note You can add your own properties and methods to your new interface. For more
information, see “Extending the application server’s interface” on page 31-16.

You must specify the threading model in the Transactional Data Module wizard.
Choose Single, Apartment, or Both.

• If you choose Single, client requests are serialized so that your application services
only one at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment, the system ensures that any instance of your remote
data module services one request at a time, and calls always use the same thread.
You must guard against thread conflicts if you use global variables or objects not
contained in the remote data module. Instead of using global variables, you can
use the shared property manager. For more information on the shared property
manager, see “Shared property manager” on page 46-6.

• If you choose Both, MTS calls into the remote data module’s interface in the same
way as when you choose Apartment. However, any callbacks you make to client
applications are serialized, so that you don’t need to worry about them interfering
with each other.

Note The Apartment model under MTS or COM+ is different from the corresponding
model under DCOM.

You must also specify the transaction attributes of your remote data module. You can
choose from the following options:

• Requires a transaction. When you select this option, every time a client uses your
remote data module’s interface, that call is executed in the context of a transaction.
If the caller supplies a transaction, a new transaction need not be created.

• Requires a new transaction. When you select this option, every time a client uses
your remote data module’s interface, a new transaction is automatically created
for that call.

• Supports transactions. When you select this option, your remote data module can
be used in the context of a transaction, but the caller must supply the transaction
when it invokes the interface.

• Does not support transactions. When you select this option, your remote data
module can’t be used in the context of transactions.

31-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Configuring TSoapDataModule
To add a TSoapDataModule component to your application, choose File|New|Other
and select SOAP Server Data Module from the WebServices page of the new items
dialog. The SOAP data module wizard appears.

You must supply a class name for your SOAP data module. This is the base name of a
TSoapDataModule descendant that your application creates. It is also the base name of
the interface for that class. For example, if you specify the class name MyDataServer,
the wizard creates a new unit declaring TMyDataServer, a descendant of
TSoapDataModule, which implements IMyDataServer, a descendant of
IAppServerSOAP.

Note To use TSoapDataModule, the new data module should be added to a Web Service
application. The IAppServerSOAP interface is an invokable interface, which is
registered in the initialization section of the new unit. This allows the invoker
component in the main Web module to forward all incoming calls to your data
module.

You may want to edit the definitions of the generated interface and TSoapDataModule
descendant, adding your own properties and methods. These properties and
methods are not called automatically, but client applications that request your new
interface by name or GUID can use any of the properties and methods that you add.

Extending the application server’s interface

Client applications interact with the application server by creating or connecting to
an instance of the remote data module. They use its interface as the basis of all
communication with the application server.

You can add to your remote data module’s interface to provide additional support
for your client applications. This interface is a descendant of IAppServer and is
created for you automatically by the wizard when you create the remote data
module.

To add to the remote data module’s interface, you can

• Choose the Add to Interface command from the Edit menu in the IDE. Indicate
whether you are adding a procedure, function, or property, and enter its syntax.
When you click OK, you will be positioned in the code editor on the
implementation of your new interface member.

• Use the type library editor. Select the interface for your application server in the
type library editor, and click the tool button for the type of interface member
(method or property) that you are adding. Give your interface member a name in
the Attributes page, specify parameters and type in the Parameters page, and then
refresh the type library. See Chapter 41, “Working with type libraries” for more
information about using the type library editor.

Note Neither of these approaches works if you are implementing TSoapDataModule. For
TSoapDataModule descendants, you must edit the server interface directly.

When you add to a COM interface, your changes are added to your unit source code
and the type library file (.TLB).

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-17

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Note You must explicitly save the TLB file by choosing Refresh in the type library editor
and then saving the changes from the IDE.

Once you have added to your remote data module’s interface, locate the properties
and methods that were added to your remote data module’s implementation. Add
code to finish this implementation by filling in the bodies of the new methods.

If you are not writing a SOAP data module, client applications call your interface
extensions using the AppServer property of their connection component. With SOAP
data modules, they call the connection component’s GetSOAPServer method. For
more information on how to call your interface extensions, see “Calling server
interfaces” on page 31-28.

Adding callbacks to the application server’s interface
You can allow the application server to call your client application by introducing a
callback. To do this, the client application passes an interface to one of the application
server’s methods, and the application server later calls this method as needed.
However, if your extensions to the remote data module’s interface include callbacks,
you can’t use an HTTP or SOAP-based connection. TWebConnection and
TSoapConnection do not support callbacks. If you are using a socket-based connection,
client applications must indicate whether they are using callbacks by setting the
SupportCallbacks property. All other types of connection automatically support
callbacks.

Extending a transactional application server’s interface
When using transactions or just-in-time activation, you must be sure all new methods
call SetComplete to indicate when they are finished. This allows transactions to
complete and permits the remote data module to be deactivated.

Furthermore, you can’t return any values from your new methods that allow the
client to communicate directly with objects or interfaces on the application server
unless they provide a safe reference. If you are using a stateless MTS data module,
neglecting to use a safe reference can lead to crashes because you can’t guarantee that
the remote data module is active. For more information on safe references, see
“Passing object references” on page 46-23.

Managing transactions in multi-tiered applications

When client applications apply updates to the application server, the provider
component automatically wraps the process of applying updates and resolving
errors in a transaction. This transaction is committed if the number of problem
records does not exceed the MaxErrors value specified as an argument to the
ApplyUpdates method. Otherwise, it is rolled back.

In addition, you can add transaction support to your server application by adding a
database connection component or managing the transaction directly by sending
SQL to the database server. This works the same way that you would manage
transactions in a two-tiered application. For more information about this sort of
transaction control, see “Managing transactions” on page 23-6.

31-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

If you have a transactional data module, you can broaden your transaction support
by using COM+ (or MTS) transactions. These transactions can include any of the
business logic on your application server, not just the database access. In addition,
because they support two-phase commits, they can span multiple databases.

Only the BDE- and ADO-based data access components support two-phase commit.
Do not use InterbaseExpress or dbExpress components if you want to have
transactions that span multiple databases.

Warning When using the BDE, two-phase commit is fully implemented only on Oracle7 and
MS-SQL databases. If your transaction involves multiple databases, and some of
them are remote servers other than Oracle7 or MS-SQL, your transaction runs a small
risk of only partially succeeding. Within any one database, however, you will always
have transaction support.

By default, all IAppServer calls on a transactional data module are transactional. You
need only set the transaction attribute of your data module to indicate that it must
participate in transactions. In addition, you can extend the application server’s
interface to include method calls that encapsulate transactions that you define.

If your transaction attribute indicates that the remote data module requires a
transaction, then every time a client calls a method on its interface, it is automatically
wrapped in a transaction. All client calls to your application server are then enlisted
in that transaction until you indicate that the transaction is complete. These calls
either succeed as a whole or are rolled back.

Note Do not combine COM+ or MTS transactions with explicit transactions created by a
database connection component or using explicit SQL commands. When your
transactional data module is enlisted in a transaction, it automatically enlists all of
your database calls in the transaction as well.

For more information about using COM+ (or MTS) transactions, see “MTS and
COM+ transaction support” on page 46-9.

Supporting master/detail relationships

You can create master/detail relationships between client datasets in your client
application in the same way you set them up using any table-type dataset. For more
information about setting up master/detail relationships in this way, see “Creating
master/detail relationships” on page 24-35.

However, this approach has two major drawbacks:

• The detail table must fetch and store all of its records from the application server
even though it only uses one detail set at a time. (This problem can be mitigated by
using parameters. For more information, see “Limiting records with parameters”
on page 29-29.)

• It is very difficult to apply updates, because client datasets apply updates at the
dataset level and master/detail updates span multiple datasets. Even in a two-
tiered environment, where you can use the database connection component to
apply updates for multiple tables in a single transaction, applying updates in
master/detail forms is tricky.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-19

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

In multi-tiered applications, you can avoid these problems by using nested tables to
represent the master/detail relationship. To do this when providing from datasets,
set up a master/detail relationship between the datasets on the application server.
Then set the DataSet property of your provider component to the master table. To use
nested tables to represent master/detail relationships when providing from XML
documents, use a transformation file that defines the nested detail sets.

When clients call the GetRecords method of the provider, it automatically includes the
detail dataset as a DataSet field in the records of the data packet. When clients call the
ApplyUpdates method of the provider, it automatically handles applying updates in
the proper order.

Supporting state information in remote data modules

The IAppServer interface, which client datasets use to communicate with providers on
the application server, is mostly stateless. When an application is stateless, it does not
“remember” anything that happened in previous calls by the client. This stateless
quality is useful if you are pooling database connections in a transactional data
module, because your application server does not need to distinguish between
database connections for persistent information such as record currency. Similarly,
this stateless quality is important when you are sharing remote data module
instances between many clients, as occurs with just-in-time activation or object
pooling. SOAP data modules must be stateless.

However, there are times when you want to maintain state information between calls
to the application server. For example, when requesting data using incremental
fetching, the provider on the application server must “remember” information from
previous calls (the current record).

Before and after any calls to the IAppServer interface that the client dataset makes
(AS_ApplyUpdates, AS_Execute, AS_GetParams, AS_GetRecords, or AS_RowRequest), it
receives an event where it can send or retrieve custom state information. Similarly,
before and after providers respond to these client-generated calls, they receive events
where they can retrieve or send custom state information. Using this mechanism, you
can communicate persistent state information between client applications and the
application server, even if the application server is stateless.

For example, consider a dataset that represents the following parameterized query:

SELECT * from CUSTOMER WHERE CUST_NO > :MinVal ORDER BY CUST_NO

31-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

To enable incremental fetching in a stateless application server, you can do the
following:

• When the provider packages a set of records in a data packet, it notes the value of
CUST_NO on the last record in the packet:

TRemoteDataModule1.DataSetProvider1GetData(Sender: TObject; DataSet:
TCustomClientDataSet);

begin
DataSet.Last; { move to the last record }
with Sender as TDataSetProvider do

Tag := DataSet.FieldValues['CUST_NO']; {save the value of CUST_NO }
end;

• The provider sends this last CUST_NO value to the client after sending the data
packet:

TRemoteDataModule1.DataSetProvider1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do

OwnerData := Tag; {send the last value of CUST_NO }
end;

• On the client, the client dataset saves this last value of CUST_NO:

TDataModule1.ClientDataSet1AfterGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin

with Sender as TClientDataSet do
Tag := OwnerData; {save the last value of CUST_NO }

end;

• Before fetching a data packet, the client sends the last value of CUST_NO it
received:

TDataModule1.ClientDataSet1BeforeGetRecords(Sender: TObject; var OwnerData: OleVariant);
begin

with Sender as TClientDataSet do
begin

if not Active then Exit;
OwnerData := Tag; { Send last value of CUST_NO to application server }

end;
end;

• Finally, on the server, the provider uses the last CUST_NO sent as a minimum
value in the query:

TRemoteDataModule1.DataSetProvider1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
if not VarIsEmpty(OwnerData) then

with Sender as TDataSetProvider do
with DataSet as TSQLDataSet do
begin
Params.ParamValues['MinVal'] := OwnerData;
Refresh; { force the query to reexecute }

end;
end;

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-21

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Using multiple remote data modules

You may want to structure your application server so that it uses multiple remote
data modules. Using multiple remote data modules lets you partition your code,
organizing a large application server into multiple units, where each unit is relatively
self-contained.

Although you can always create multiple remote data modules on the application
server that function independently, a special connection component on the DataSnap
page of the Component palette provides support for a model where you have one
main “parent” remote data module that dispatches connections from clients to other
“child” remote data modules. This model requires that you use a COM-based
application server (that is, not TSoapDataModule).

To create the parent remote data module, you must extend its IAppServer interface,
adding properties that expose the interfaces of the child remote data modules. That
is, for each child remote data module, add a property to the parent data module’s
interface whose value is the IAppServer interface for the child data module. The
property getter should look something like the following:

function ParentRDM.Get_ChildRDM: IChildRDM;
begin

if not Assigned(ChildRDMFactory) then
ChildRDMFactory :=

TComponentFactory.Create(ComServer, TChildRDM, Class_ChildRDM,
ciInternal, tmApartment);

Result := ChildRDMFactory.CreateCOMObject(nil) as IChildRDM;
Result.MainRDM := Self;

end;

For information about extending the parent remote data module’s interface, see
“Extending the application server’s interface” on page 31-16.

Tip You may also want to extend the interface for each child data module, exposing the
parent data module’s interface, or the interfaces of the other child data modules. This
lets the various data modules in your application server communicate more freely
with each other.

Once you have added properties that represent the child remote data modules to the
main remote data module, client applications do not need to form separate
connections to each remote data module on the application server. Instead, they
share a single connection to the parent remote data module, which then dispatches
messages to the “child” data modules. Because each client application uses the same
connection for every remote data module, the remote data modules can share a single
database connection, conserving resources. For information on how child
applications share a single connection, see “Connecting to an application server that
uses multiple data modules” on page 31-30.

31-22 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g t h e a p p l i c a t i o n s e r v e r

Registering the application server
Before client applications can locate and use an application server, it must be
registered or installed.

• If the application server uses DCOM, HTTP, or sockets as a communication
protocol, it acts as an Automation server and must be registered like any other
COM server. For information about registering a COM server, see “Registering a
COM object” on page 43-17.

• If you are using a transactional data module, you do not register the application
server. Instead, you install it with COM+ or MTS. For information about installing
transactional objects, see “Installing transactional objects” on page 46-26.

• When the application server uses SOAP, the application must be a Web Service
application. As such, it must be registered with your Web Server, so that it
receives incoming HTTP messages. In addition, you need to publish a WSDL
document that describes the invokable interfaces in your application. For
information about exporting a WSDL document for a Web Service application, see
“Generating WSDL documents for a Web Service application” on page 38-19.

Creating the client application
In most regards, creating a multi-tiered client application is similar to creating a two-
tiered client that uses a client dataset to cache updates. The major difference is that a
multi-tiered client uses a connection component to establish a conduit to the
application server.

To create a multi-tiered client application, start a new project and follow these steps:

1 Add a new data module to the project.

2 Place a connection component on the data module. The type of connection
component you add depends on the communication protocol you want to use. See
“The structure of the client application” on page 31-4 for details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 31-23.

4 Set the other connection component properties as needed for your application. For
example, you might set the ObjectBroker property to allow the connection
component to choose dynamically from several servers. For more information
about using the connection components, see “Managing server connections” on
page 31-27

5 Place as many TClientDataSet components as needed on the data module, and set
the RemoteServer property for each component to the name of the connection
component you placed in Step 2. For a full introduction to client datasets, see
Chapter 29, “Using client datasets.”

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-23

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

6 Set the ProviderName property for each TClientDataSet component. If your
connection component is connected to the application server at design time, you
can choose available application server providers from the ProviderName
property’s drop-down list.

7 Continue in the same way you would create any other database application. There
are a few additional features available to clients of multi-tiered applications:

• Your application may want to make direct calls to the application server.
“Calling server interfaces” on page 31-28 describes how to do this.

• You may want to use the special features of client datasets that support their
interaction with the provider components. These are described in “Using a
client dataset with a provider” on page 29-24.

Connecting to the application server

To establish and maintain a connection to an application server, a client application
uses one or more connection components. You can find these components on the
DataSnap or WebServices page of the Component palette.

Use a connection component to

• Identify the protocol for communicating with the application server. Each type of
connection component represents a different communication protocol. See
“Choosing a connection protocol” on page 31-9 for details on the benefits and
limitations of the available protocols.

• Indicate how to locate the server machine. The details of identifying the server
machine vary depending on the protocol.

• Identify the application server on the server machine.

• If you are not using SOAP, identify the server using the ServerName~or
ServerGUID property. ServerName identifies the base name of the class you specify
when creating the remote data module on the application server. See “Setting up
the remote data module” on page 31-13 for details on how this value is specified
on the server. If the server is registered or installed on the client machine, or if the
connection component is connected to the server machine, you can set the
ServerName property at design time by choosing from a drop-down list in the
Object Inspector. ServerGUID specifies the GUID of the remote data module’s
interface. You can look up this value using the type library editor.

If you are using SOAP, the server is identified in the URL you use to locate the
server machine. Follow the steps in “Specifying a connection using SOAP” on
page 31-26.

• Manage server connections. Connection components can be used to create or drop
connections and to call application server interfaces.

31-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Usually the application server is on a different machine from the client application,
but even if the server resides on the same machine as the client application (for
example, during the building and testing of the entire multi-tier application), you can
still use the connection component to identify the application server by name, specify
a server machine, and use the application server interface.

Specifying a connection using DCOM
When using DCOM to communicate with the application server, client applications
include a TDCOMConnection component for connecting to the application server.
TDCOMConnection uses the ComputerName property to identify the machine on
which the server resides.

When ComputerName is blank, the DCOM connection component assumes that the
application server resides on the client machine or that the application server has a
system registry entry. If you do not provide a system registry entry for the
application server on the client when using DCOM, and the server resides on a
different machine from the client, you must supply ComputerName.

Note Even when there is a system registry entry for the application server, you can specify
ComputerName to override this entry. This can be especially useful during
development, testing, and debugging.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for ComputerName. For more
information, see “Brokering connections” on page 31-27.

If you supply the name of a host computer or server that cannot be found, the DCOM
connection component raises an exception when you try to open the connection.

Specifying a connection using sockets
You can establish a connection to the application server using sockets from any
machine that has a TCP/IP address. This method has the advantage of being
applicable to more machines, but does not provide for using any security protocols.
When using sockets, include a TSocketConnection component for connecting to the
application server.

TSocketConnection identifies the server machine using the IP Address or host name of
the server system, and the port number of the socket dispatcher program
(Scktsrvr.exe) that is running on the server machine. For more information about IP
addresses and port values, see “Describing sockets” on page 39-4.

Three properties of TSocketConnection specify this information:

• Address specifies the IP Address of the server.

• Host specifies the host name of the server.

• Port specifies the port number of the socket dispatcher program on the application
server.

Address and Host are mutually exclusive. Setting one unsets the value of the other.
For information on which one to use, see “Describing the host” on page 39-4.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-25

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for Address or Host. For more
information, see “Brokering connections” on page 31-27.

By default, the value of Port is 211, which is the default port number of the socket
dispatcher program that forwards incoming messages to your application server. If
the socket dispatcher has been configured to use a different port, set the Port
property to match that value.

Note You can configure the port of the socket dispatcher while it is running by right-
clicking the Borland Socket Server tray icon and choosing Properties.

Although socket connections do not provide for using security protocols, you can
customize the socket connection to add your own encryption. To do this

1 Create a COM object that supports the IDataIntercept interface. This is an interface
for encrypting and decrypting data.

2 Use TPacketInterceptFactory as the class factory for this object. If you are using a
wizard to create the COM object in step 1, replace the line in the initialization
section that says TComponentFactory.Create(...) with
TPacketInterceptFactory.Create(...).

3 Register your new COM server on the client machine.

4 Set the InterceptName or InterceptGUID property of the socket connection
component to specify this COM object. If you used TPacketInterceptFactory in step
2, your COM server appears in the drop-down list of the Object Inspector for the
InterceptName property.

5 Finally, right click the Borland Socket Server tray icon, choose Properties, and on
the properties tab set the Intercept Name or Intercept GUID to the ProgId or GUID
for the interceptor.

This mechanism can also be used for data compression and decompression.

Specifying a connection using HTTP
You can establish a connection to the application server using HTTP from any
machine that has a TCP/IP address. Unlike sockets, however, HTTP allows you to
take advantage of SSL security and to communicate with a server that is protected
behind a firewall. When using HTTP, include a TWebConnection component for
connecting to the application server.

The Web connection component establishes a connection to the Web server
application (httpsrvr.dll), which in turn communicates with the application server.
TWebConnection locates httpsrvr.dll using a Uniform Resource Locator (URL). The
URL specifies the protocol (http or, if you are using SSL security, https), the host
name for the machine that runs the Web server and httpsrvr.dll, and the path to the
Web server application (httpsrvr.dll). Specify this value using the URL property.

Note When using TWebConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

31-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the UserName and Password
properties so that the connection component can log on.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for URL. For more
information, see “Brokering connections” on page 31-27.

Specifying a connection using SOAP
You can establish a connection to a SOAP application server using the
TSoapConnection component. TSoapConnection is very similar to TWebConnection,
because it also uses HTTP as a transport protocol. Thus, you can use TSoapConnection
from any machine that has a TCP/IP address, and it can take advantage of SSL
security and to communicate with a server that is protected by a firewall.

The SOAP connection component establishes a connection to a Web Service provider
that implements the IAppServerSOAP or IAppServer interface. (The UseSOAPAdapter
property specifies which interface it expects the server to support.) If the server
implements the IAppServerSOAP interface, TSoapConnection converts that interface to
an IAppServer interface for client datasets. TSoapConnection locates the Web Server
application using a Uniform Resource Locator (URL). The URL specifies the protocol
(http or, if you are using SSL security, https), the host name for the machine that runs
the Web server, the name of the Web Service application, and a path that matches the
path name of the THTTPSoapDispatcher on the application server. Specify this value
using the URL property.

By default, TSOAPConnection automatically looks for an IAppServerSOAP (or
IAppServer) interface. If the server includes more than one remote data module, you
must indicate the target data module’s interface (an IAppServerSOAP descendant) so
that TSOAPConnection can identify the remote data module you want to use. There
are two ways to do this:

• Set the SOAPServerIID property to indicate the interface of the target remote data
module. This method works for any server that implements an IAppServerSOAP
descendant. SOAPServerIID identifies the target interface by its GUID. At runtime,
you can use the interface name, and the compiler automatically extracts the GUID.
However, at design time, in the Object Inspector, you must specify the GUID
string.

• If the server is written using the Delphi language, you can simply include the
name of the SOAP data module’s interface following a slash at the end of the path
portion of the URL. This lets you specify the interface by name rather than GUID,
but is only available when both client and server are written in Delphi.

Tip The first approach, using the SOAPServerIID method, has the added advantage that it
lets you call extensions to the remote data module’s interface.

If you are using a proxy server, you must indicate the name of the proxy server
using the Proxy property. If that proxy requires authentication, you must also set the
values of the UserName and Password properties so that the connection component
can log on.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-27

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Note When using TSoapConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

Brokering connections
If you have multiple COM-based servers that your client application can choose
from, you can use an Object Broker to locate an available server system. The object
broker maintains a list of servers from which the connection component can choose.
When the connection component needs to connect to an application server, it asks the
Object Broker for a computer name (or IP address, host name, or URL). The broker
supplies a name, and the connection component forms a connection. If the supplied
name does not work (for example, if the server is down), the broker supplies another
name, and so on, until a connection is formed.

Once the connection component has formed a connection with a name supplied by
the broker, it saves that name as the value of the appropriate property
(ComputerName, Address, Host, RemoteHost, or URL). If the connection component
closes the connection later, and then needs to reopen the connection, it tries using this
property value, and only requests a new name from the broker if the connection fails.

Use an Object Broker by specifying the ObjectBroker property of your connection
component. When the ObjectBroker property is set, the connection component does
not save the value of ComputerName, Address, Host, RemoteHost, or URL to disk.

Note You can not use the ObjectBroker property with SOAP connections.

Managing server connections

The main purpose of connection components is to locate and connect to the
application server. Because they manage server connections, you can also use
connection components to call the methods of the application server’s interface.

Connecting to the server
To locate and connect to the application server, you must first set the properties of
the connection component to identify the application server. This process is
described in “Connecting to the application server” on page 31-23. Before opening
the connection, any client datasets that use the connection component to
communicate with the application server should indicate this by setting their
RemoteServer property to specify the connection component.

The connection is opened automatically when client datasets try to access the
application server. For example, setting the Active property of the client dataset to
True opens the connection, as long as the RemoteServer property has been set.

If you do not link any client datasets to the connection component, you can open the
connection by setting the Connected property of the connection component to True.

31-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Before a connection component establishes a connection to an application server, it
generates a BeforeConnect event. You can perform any special actions prior to
connecting in a BeforeConnect handler that you code. After establishing a connection,
the connection component generates an AfterConnect event for any special actions.

Dropping or changing a server connection
A connection component drops a connection to the application server when you

• set the Connected property to False.

• free the connection component. A connection object is automatically freed when a
user closes the client application.

• change any of the properties that identify the application server (ServerName,
ServerGUID, ComputerName, and so on). Changing these properties allows you to
switch among available application servers at runtime. The connection component
drops the current connection and establishes a new one.

Note Instead of using a single connection component to switch among available
application servers, a client application can instead have more than one connection
component, each of which is connected to a different application server.

Before a connection component drops a connection, it automatically calls its
BeforeDisconnect event handler, if one is provided. To perform any special actions
prior to disconnecting, write a BeforeDisconnect handler. Similarly, after dropping the
connection, the AfterDisconnect event handler is called. If you want to perform any
special actions after disconnecting, write an AfterDisconnect handler.

Calling server interfaces

Applications do not need to call the IAppServer or IAppServerSOAP interface directly
because the appropriate calls are made automatically when you use the properties
and methods of the client dataset. However, while it is not necessary to work directly
with the IAppServer or IAppServerSOAP interface, you may have added your own
extensions to the remote data module’s interface. When you extend the application
server’s interface, you need a way to call those extensions using the connection
created by your connection component. Unless you are using SOAP, you can do this
using the AppServer property of the connection component. For information about
extending the application server’s interface, see “Extending the application server’s
interface” on page 31-16.

AppServer is a Variant that represents the application server’s interface. If you are not
using SOAP, you can call an interface method using AppServer by writing a statement
such as

MyConnection.AppServer.SpecialMethod(x,y);

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-29

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

However, this technique provides late (dynamic) binding of the interface call. That is,
the SpecialMethod procedure call is not bound until runtime when the call is executed.
Late binding is very flexible, but by using it you lose many benefits such as code
insight and type checking. In addition, late binding is slower than early binding,
because the compiler generates additional calls to the server to set up interface calls
before they are invoked.

Using early binding with DCOM
When you are using DCOM as a communications protocol, you can use early binding
of AppServer calls. Use the as operator to cast the AppServer variable to the IAppServer
descendant you created when you created the remote data module. For example:

with MyConnection.AppServer as IMyAppServer do
 SpecialMethod(x,y);

To use early binding under DCOM, the server’s type library must be registered on
the client machine. You can use TRegsvr.exe, which ships with Delphi to register the
type library.

Note See the TRegSvr demo (which provides the source for TRegsvr.exe) for an example of
how to register the type library programmatically.

Using dispatch interfaces with TCP/IP or HTTP
When you are using TCP/IP or HTTP, you can’t use true early binding, but because
the remote data module uses a dual interface, you can use the application server’s
dispinterface to improve performance over simple late binding. The dispinterface has
the same name as the remote data module’s interface, with the string ‘Disp’
appended. You can assign the AppServer property to a variable of this type to obtain
the dispinterface. Thus:

var
 TempInterface: IMyAppServerDisp;
begin

TempInterface :=IMyAppServerDisp(IDispatch(MyConnection.AppServer));
ƒ
 TempInterface.SpecialMethod(x,y);
ƒ
end;

Note To use the dispinterface, you must add the _TLB unit that is generated when you
save the type library to the uses clause of your client module.

31-30 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Calling the interface of a SOAP-based server
If you are using SOAP, you can’t use the AppServer property. Instead, you must
obtain the server’s interface by calling the GetSOAPServer method. Before you call
GetSOAPServer, however, you must take the following steps:

• Your client application must include the definition of the application server’s
interface and register it with the invocation registry. You can add the definition of
this interface to your client application by referencing a WSDL document that
describes the interface you want to call. For information on importing a WSDL
document that describes the server interface, see “Importing WSDL documents”
on page 38-20. When you import the interface definition, the WSDL importer
automatically adds code to register it with the invocation registry. For more
information about interfaces and the invocation registry, see “Understanding
invokable interfaces” on page 38-2.

• The TSOAPConnection component must have its UseSOAPAdapter property set to
True. This means that the server must support the IAppServerSOAP interface. If the
application server is built using Delphi 6 or Kylix 1, it does not support
IAppServerSOAP and you must use a separate THTTPRio component instead. For
details on how to call an interface using a THTTPRio component, see “Calling
invokable interfaces” on page 38-20.

• You must set the SOAPServerIID property of the SOAP connection component to
the GUID of the server interface. You must set this property before your
application connects to the server, because it tells the TSOAPConnection
component what interface to fetch from the server.

Assuming the previous three conditions are met, you can fetch the server interface as
follows:

with MyConnection.GetSOAPServer as IMyAppServer do
 SpecialMethod(x,y);

Connecting to an application server that uses multiple data modules

If a COM-based application server uses a main “parent” remote data module and
several child remote data modules, as described in “Using multiple remote data
modules” on page 31-21, then you need a separate connection component for every
remote data module on the application server. Each connection component
represents the connection to a single remote data module.

While it is possible to have your client application form independent connections to
each remote data module on the application server, it is more efficient to use a single
connection to the application server that is shared by all the connection components.
That is, you add a single connection component that connects to the “main” remote
data module on the application server, and then, for each “child” remote data

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-31

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

module, add an additional component that shares the connection to the main remote
data module.

1 For the connection to the main remote data module, add and set up a connection
component as described in “Connecting to the application server” on page 31-23.
The only limitation is that you can’t use a SOAP connection.

2 For each child remote data module, use a TSharedConnection component.

• Set its ParentConnection property to the connection component you added in
step 1. The TSharedConnection component shares the connection that this main
connection establishes.

• Set its ChildName property to the name of the property on the main remote data
module’s interface that exposes the interface of the desired child remote data
module.

When you assign the TSharedConnection component placed in step 2 as the value of a
client dataset’s RemoteServer property, it works as if you were using an entirely
independent connection to the child remote data module. However, the
TSharedConnection component uses the connection established by the component you
placed in step 1.

Writing Web-based client applications
If you want to create Web-based clients for your multi-tiered database application,
you must replace the client tier with a special Web application that acts
simultaneously as a client to an application server and as a Web server application
that is installed with a Web server on the same machine. This architecture is
illustrated in Figure 31.1.

Figure 31.1 Web-based multi-tiered database application

There are two approaches that you can take to build the Web application:

• You can combine the multi-tiered database architecture with an ActiveX form to
distribute the client application as an ActiveX control. This allows any browser
that supports ActiveX to run your client application as an in-process server.

• You can use XML data packets to build an InternetExpress application. This allows
browsers that supports javascript to interact with your client application through
html pages.

Remote Database

Web ServerBrowser

Application
Server

Web-based
Client

Application

31-32 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

These two approaches are very different. Which one you choose depends on the
following considerations:

• Each approach relies on a different technology (ActiveX vs. javascript and XML).
Consider what systems your end users will use. The first approach requires a
browser to support ActiveX (which limits clients to a Windows platform). The
second approach requires a browser to support javascript and the DHTML
capabilities introduced by Netscape 4 and Internet Explorer 4.

• ActiveX controls must be downloaded to the browser to act as an in-process
server. As a result, the clients using an ActiveX approach require much more
memory than the clients of an HTML-based application.

• The InternetExpress approach can be integrated with other HTML pages. An
ActiveX client must run in a separate window.

• The InternetExpress approach uses standard HTTP, thereby avoiding any firewall
issues that confront an ActiveX application.

• The ActiveX approach provides greater flexibility in how you program your
application. You are not limited by the capabilities of the javascript libraries. The
client datasets used in the ActiveX approach surface more features (such as filters,
ranges, aggregation, optional parameters, delayed fetching of BLOBs or nested
details, and so on) than the XML brokers used in the InternetExpress approach.

Caution Your Web client application may look and act differently when viewed from
different browsers. Test your application with the browsers you expect your end-
users to use.

Distributing a client application as an ActiveX control

The multi-tiered database architecture can be combined with ActiveX features to
distribute a client application as an ActiveX control.

When you distribute your client application as an ActiveX control, create the
application server as you would for any other multi-tiered application. For details on
creating the application server, see “Creating the application server” on page 31-12.

When creating the client application, you must use an Active Form as the basis
instead of an ordinary form. See “Creating an Active Form for the client application”
for details.

Once you have built and deployed your client application, it can be accessed from
any ActiveX-enabled Web browser on another machine. For a Web browser to
successfully launch your client application, the Web server must be running on the
machine that has the client application.

If the client application uses DCOM to communicate between the client application
and the application server, the machine with the Web browser must be enabled to
work with DCOM. If the machine with the Web browser is a Windows 95 machine, it
must have installed DCOM95, which is available from Microsoft.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-33

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Creating an Active Form for the client application
1 Because the client application will be deployed as an ActiveX control, you must

have a Web server that runs on the same system as the client application. You can
use a ready-made server such as Microsoft’s Personal Web server or you can write
your own using the socket components described in Chapter 39, “Working with
sockets.”

2 Create the client application following the steps described in “Creating the client
application” on page 31-22, except start by choosing File|New|ActiveX|Active
Form, rather than beginning an ordinary client project.

3 If your client application uses a data module, add a call to explicitly create the data
module in the active form initialization.

4 When your client application is finished, compile the project, and select Project|
Web Deployment Options. In the Web Deployment Options dialog, you must do
the following:

a On the Project page, specify the Target directory, the URL for the target
directory, and the HTML directory. Typically, the Target directory and the
HTML directory will be the same as the projects directory for your Web Server.
The target URL is typically the name of the server machine.

b On the Additional Files page, include midas.dll with your client application.

5 Finally, select Project|WebDeploy to deploy the client application as an active
form.

Any Web browser that can run Active forms can run your client application by
specifying the .HTM file that was created when you deployed the client application.
This .HTM file has the same name as your client application project, and appears in
the directory specified as the Target directory.

Building Web applications using InternetExpress

A client application can request that the application server provide data packets that
are coded in XML instead of OleVariants. By combining XML-coded data packets,
special javascript libraries of database functions, and the Web server application
support, you can create thin client applications that can be accessed using a Web
browser that supports javascript. This combination of features is called
InternetExpress.

Before building an InternetExpress application, you should understand the Web
server application architecture. This is described in Chapter 33, “Creating Internet
server applications.”

An InternetExpress application extends the basic Web server application architecture
to act as the client of an application server. InternetExpress applications generate
HTML pages that contain a mixture of HTML, XML, and javascript. The HTML
governs the layout and appearance of the pages seen by end users in their browsers.
The XML encodes the data packets and delta packets that represent database
information. The javascript allows the HTML controls to interpret and manipulate
the data in these XML data packets on the client machine.

31-34 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

If the InternetExpress application uses DCOM to connect to the application server,
you must take additional steps to ensure that the application server grants access and
launch permissions to its clients. See “Granting permission to access and
launch the application server” on page 31-36 for details.

Tip You can create an InternetExpress application to provide Web browsers with “live”
data even if you do not have an application server. Simply add the provider and its
dataset to the Web module.

Building an InternetExpress application

The following steps describe one way to build a Web application using
InternetExpress. The result is an application that creates HTML pages that let users
interact with the data from an application server via a javascript-enabled Web
browser. You can also build an InternetExpress application using the Site Express
architecture by using the InternetExpress page producer (TInetXPageProducer).

1 Choose File|New|Other to display the New Items dialog box, and on the New
page select Web Server application. This process is described in “Creating Web
server applications with Web Broker” on page 34-1.

2 From the DataSnap page of the Component palette, add a connection component
to the Web Module that appears when you create a new Web server application.
The type of connection component you add depends on the communication
protocol you want to use. See “Choosing a connection protocol” on page 31-9 for
details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 31-23.

4 Instead of a client dataset, add an XML broker from the InternetExpress page of
the Component palette to the Web module. Like TClientDataSet, TXMLBroker
represents the data from a provider on the application server and interacts with
the application server through an IAppServer interface. However, unlike client
datasets, XML brokers request data packets as XML instead of as OleVariants and
interact with InternetExpress components instead of data controls.

5 Set the RemoteServer property of the XML broker to point to the connection
component you added in step 2. Set the ProviderName property to indicate the
provider on the application server that provides data and applies updates. For
more information about setting up the XML broker, see “Using an XML broker”
on page 31-36.

6 Add an InternetExpress page producer (TInetXPageProducer) to the Web module
for each separate page that users will see in their browsers. For each page
producer, you must set the IncludePathURL property to indicate where it can find
the javascript libraries that augment its generated HTML controls with data
management capabilities.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-35

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

7 Right-click a Web page and choose Action Editor to display the Action editor. Add
action items for every message you want to handle from browsers. Associate the
page producers you added in step 6 with these actions by setting their Producer
property or writing code in an OnAction event handler. For more information on
adding action items using the Action editor, see “Adding actions to the
dispatcher” on page 34-5.

8 Double-click each Web page to display the Web Page editor. (You can also display
this editor by clicking the ellipsis button in the Object Inspector next to the
WebPageItems property.) In this editor you can add Web Items to design the pages
that users see in their browsers. For more information about designing Web pages
for your InternetExpress application, see “Creating Web pages with an
InternetExpress page producer” on page 31-39.

9 Build your Web application. Once you install this application with your Web
server, browsers can call it by specifying the name of the application as the script
name portion of the URL and the name of the Web Page component as the
pathinfo portion.

Using the javascript libraries
The HTML pages generated by the InternetExpress components and the Web items
they contain make use of several javascript libraries that ship in the source/
webmidas directory:

Once you have installed these libraries, you must set the IncludePathURL property of
all InternetExpress page producers to indicate where they can be found.

It is possible to write your own HTML pages using the javascript classes provided in
these libraries instead of using Web items to generate your Web pages. However, you
must ensure that your code does not do anything illegal, as these classes include
minimal error checking (so as to minimize the size of the generated Web pages).

Table 31.3 Javascript libraries

Library Description

xmldom.js This library is a DOM-compatible XML parser written in javascript. It allows
parsers that do not support XML to use XML data packets. Note that this does not
include support for XML Islands, which are supported by IE5 and later.

xmldb.js This library defines data access classes that manage XML data packets and XML
delta packets.

xmldisp.js This library defines classes that associate the data access classes in xmldb with
HTML controls in the HTML page.

xmlerrdisp.js This library defines classes that can be used when reconciling update errors. These
classes are not used by any of the built-in InternetExpress components, but are
useful when writing a Reconcile producer.

xmlshow.js This library includes functions to display formatted XML data packets and XML
delta packets. This library is not used by any of the InternetExpress components,
but is useful when debugging.

31-36 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Granting permission to access and launch the application server
Requests from the InternetExpress application appear to the application server as
originating from a guest account with the name IUSR_computername, where
computername is the name of the system running the Web application. By default,
this account does not have access or launch permission for the application server. If
you try to use the Web application without granting these permissions, when the
Web browser tries to load the requested page it times out with EOLE_ACCESS_ERROR.

Note Because the application server runs under this guest account, it can’t be shut down
by other accounts.

To grant the Web application access and launch permissions, run DCOMCnfg.exe,
which is located in the System32 directory of the machine that runs the application
server. The following steps describe how to configure your application server:

1 When you run DCOMCnfg, select your application server in the list of
applications on the Applications page.

2 Click the Properties button. When the dialog changes, select the Security page.

3 Select Use Custom Access Permissions, and press the Edit button. Add the name
IUSR_computername to the list of accounts with access permission, where
computername is the name of the machine that runs the Web application.

4 Select Use Custom Launch Permissions, and press the Edit button. Add
IUSR_computername to this list as well.

5 Click the Apply button.

Using an XML broker

The XML broker serves two major functions:

• It fetches XML data packets from the application server and makes them available
to the Web Items that generate HTML for the InternetExpress application.

• It receives updates in the form of XML delta packets from browsers and applies
them to the application server.

Fetching XML data packets
Before the XML broker can supply XML data packets to the components that
generate HTML pages, it must fetch them from the application server. To do this, it
uses the IAppServer interface, which it acquires from a connection component.

Note Even when using SOAP, where the application server supports IAppServerSOAP, the
XML broker uses IAppServer because the connection component acts as an adapter
between the two interfaces.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-37

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

You must set the following properties so that the XML producer can use the
IAppServer interface:

• Set the RemoteServer property to the connection component that establishes the
connection to the application server and gets its IAppServer interface. At design
time, you can select this value from a drop-down list in the object inspector.

• Set the ProviderName property to the name of the provider component on the
application server that represents the dataset for which you want XML data
packets. This provider both supplies XML data packets and applies updates from
XML delta packets. At design time, if the RemoteServer property is set and the
connection component has an active connection, the Object Inspector displays a
list of available providers. (If you are using a DCOM connection the application
server must also be registered on the client machine).

Two properties let you indicate what you want to include in data packets:

• You can limit the number of records that are added to the data packet by setting
the MaxRecords property. This is especially important for large datasets because
InternetExpress applications send the entire data packet to client Web browsers. If
the data packet is too large, the download time can become prohibitively long.

• If the provider on the application server represents a query or stored procedure,
you may want to provide parameter values before obtaining an XML data packet.
You can supply these parameter values using the Params property.

The components that generate HTML and javascript for the InternetExpress
application automatically use the XML broker’s XML data packet once you set their
XMLBroker property. To obtain the XML data packet directly in code, use the
RequestRecords method.

Note When the XML broker supplies a data packet to another component (or when you
call RequestRecords), it receives an OnRequestRecords event. You can use this event to
supply your own XML string instead of the data packet from the application server.
For example, you could fetch the XML data packet from the application server using
GetXMLRecords and then edit it before supplying it to the emerging Web page.

Applying updates from XML delta packets
When you add the XML broker to the Web module (or data module containing a
TWebDispatcher), it automatically registers itself with the Web dispatcher as an auto-
dispatching object. This means that, unlike other components, you do not need to
create an action item for the XML broker in order for it to respond to update
messages from a Web browser. These messages contain XML delta packets that
should be applied to the application server. Typically, they originate from a button
that you create on one of the HTML pages produced by the Web client application.

31-38 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

So that the dispatcher can recognize messages for the XML broker, you must describe
them using the WebDispatch property. Set the PathInfo property to the path portion of
the URL to which messages for the XML broker are sent. Set MethodType to the value
of the method header of update messages addressed to that URL (typically mtPost). If
you want to respond to all messages with the specified path, set MethodType to
mtAny. If you don’t want the XML broker to respond directly to update messages (for
example, if you want to handle them explicitly using an action item), set the Enabled
property to False. For more information on how the Web dispatcher determines
which component handles messages from the Web browser, see “Dispatching
request messages” on page 34-5.

When the dispatcher passes an update message on to the XML broker, it passes the
updates on to the application server and, if there are update errors, receives an XML
delta packet describing all update errors. Finally, it sends a response message back to
the browser, which either redirects the browser to the same page that generated the
XML delta packet or sends it some new content.

A number of events allow you to insert custom processing at all steps of this update
process:

1 When the dispatcher first passes the update message to the XML broker, it receives
a BeforeDispatch event, where you can preprocess the request or even handle it
entirely. This event allows the XML broker to handle messages other than update
messages.

2 If the BeforeDispatch event handler does not handle the message, the XML broker
receives an OnRequestUpdate event, where you can apply the updates yourself
rather than using the default processing.

3 If the OnRequestUpdate event handler does not handle the request, the XML broker
applies the updates and receives a delta packet containing any update errors.

4 If there are no update errors, the XML broker receives an OnGetResponse event,
where you can create a response message that indicates the updates were
successfully applied or sends refreshed data to the browser. If the OnGetResponse
event handler does not complete the response (does not set the Handled parameter
to True), the XML broker sends a response that redirects the browser back to the
document that generated the delta packet.

5 If there are update errors, the XML broker receives an OnGetErrorResponse event
instead. You can use this event to try to resolve update errors or to generate a Web
page that describes them to the end user. If the OnGetErrorResponse event handler
does not complete the response (does not set the Handled parameter to True), the
XML broker calls on a special content producer called the ReconcileProducer to
generate the content of the response message.

6 Finally, the XML broker receives an AfterDispatch event, where you can perform
any final actions before sending a response back to the Web browser.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-39

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Creating Web pages with an InternetExpress page producer

Each InternetExpress page producer generates an HTML document that appears in
the browsers of your application’s clients. If your application includes several
separate Web documents, use a separate page producer for each of them.

The InternetExpress page producer (TInetXPageProducer) is a special page producer
component. As with other page producers, you can assign it as the Producer property
of an action item or call it explicitly from an OnAction event handler. For more
information about using content producers with action items, see “Responding to
request messages with action items” on page 34-8. For more information about page
producers, see “Using page producer components” on page 34-14.

The InternetExpress page producer has a default template as the value of its
HTMLDoc property. This template contains a set of HTML-transparent tags that the
InternetExpress page producer uses to assemble an HTML document (with
embedded javascript and XML) including content produced by other components.
Before it can translate all of the HTML-transparent tags and assemble this document,
you must indicate the location of the javascript libraries used for the embedded
javascript on the page. This location is specified by setting the IncludePathURL
property.

You can specify the components that generate parts of the Web page using the Web
page editor. Display the Web page editor by double-clicking the Web page
component or clicking the ellipsis button next to the WebPageItems property in the
Object Inspector.

The components you add in the Web page editor generate the HTML that replaces
one of the HTML-transparent tags in the InternetExpress page producer’s default
template. These components become the value of the WebPageItems property. After
adding the components in the order you want them, you can customize the template
to add your own HTML or change the default tags.

Using the Web page editor
The Web page editor lets you add Web items to your InternetExpress page producer
and view the resulting HTML page. Display the Web page editor by double-clicking
on a InternetExpress page producer component.

Note You must have Internet Explorer 4 or better installed to use the Web page editor.

The top of the Web page editor displays the Web items that generate the HTML
document. These Web items are nested, where each type of Web item assembles the
HTML generated by its subitems. Different types of items can contain different
subitems. On the left, a tree view displays all of the Web items, indicating how they
are nested. On the right, you can see the Web items included by the currently selected
item. When you select a component in the top of the Web page editor, you can set its
properties using the Object Inspector.

Click the New Item button to add a subitem to the currently selected item. The Add
Web Component dialog lists only those items that can be added to the currently
selected item.

31-40 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

The InternetExpress page producer can contain one of two types of item, each of
which generates an HTML form:

• TDataForm, which generates an HTML form for displaying data and the controls
that manipulate that data or submit updates.

Items you add to TDataForm display data in a multi-record grid (TDataGrid) or in a
set of controls each of which represents a single field from a single record
(TFieldGroup). In addition, you can add a set of buttons to navigate through data or
post updates (TDataNavigator), or a button to apply updates back to the Web client
(TApplyUpdatesButton). Each of these items contains subitems to represent
individual fields or buttons. Finally, as with most Web items, you can add a layout
grid (TLayoutGroup), that lets you customize the layout of any items it contains.

• TQueryForm, which generates an HTML form for displaying or reading
application-defined values. For example, you can use this form for displaying and
submitting parameter values.

Items you add to TQueryForm display application-defined
values(TQueryFieldGroup) or a set of buttons to submit or reset those values
(TQueryButtons). Each of these items contains subitems to represent individual
values or buttons. You can also add a layout grid to a query form, just as you can
to a data form.

The bottom of the Web page editor displays the generated HTML code and lets you
see what it looks like in a browser (Internet Explorer).

Setting Web item properties
The Web items that you add using the Web page editor are specialized components
that generate HTML. Each Web item class is designed to produce a specific control or
section of the final HTML document, but a common set of properties influences the
appearance of the final HTML.

When a Web item represents information from the XML data packet (for example,
when it generates a set of field or parameter display controls or a button that
manipulates the data), the XMLBroker property associates the Web item with the
XML broker that manages the data packet. You can further specify a dataset that is
contained in a dataset field of that data packet using the XMLDataSetField property. If
the Web item represents a specific field or parameter value, the Web item has a
FieldName or ParamName property.

You can apply a style attribute to any Web item, thereby influencing the overall
appearance of all the HTML it generates. Styles and style sheets are part of the
HTML 4 standard. They allow an HTML document to define a set of display

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 31-41

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

attributes that apply to a tag and everything in its scope. Web items offer a flexible
selection of ways to use them:

• The simplest way to use styles is to define a style attribute directly on the Web
item. To do this, use the Style property. The value of Style is simply the attribute
definition portion of a standard HTML style definition, such as

color: red.

• You can also define a style sheet that defines a set of style definitions. Each
definition includes a style selector (the name of a tag to which the style always
applies or a user-defined style name) and the attribute definition in curly braces:

H2 B {color: red}
.MyStyle {font-family: arial; font-weight: bold; font-size: 18px }

The entire set of definitions is maintained by the InternetExpress page producer as
its Styles property. Each Web item can then reference the styles with user-defined
names by setting its StyleRule property.

• If you are sharing a style sheet with other applications, you can supply the style
definitions as the value of the InternetExpress page producer’s StylesFile property
instead of the Styles property. Individual Web items still reference styles using the
StyleRule property.

Another common property of Web items is the Custom property. Custom includes a
set of options that you add to the generated HTML tag. HTML defines a different set
of options for each type of tag. The VCL reference for the Custom property of most
Web items gives an example of possible options. For more information on possible
options, use an HTML reference.

Customizing the InternetExpress page producer template
The template of an InternetExpress page producer is an HTML document with extra
embedded tags that your application translates dynamically. Initially, the page
producer generates a default template as the value of the HTMLDoc property. This
default template has the form

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES> <#STYLES> <#WARNINGS> <#FORMS> <#SCRIPT>
</BODY>
</HTML>

The HTML-transparent tags in the default template are translated as follows:

<#INCLUDES> generates the statements that include the javascript libraries. These
statements have the form

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldom.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldb.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmlbind.js"> </

SCRIPT>

31-42 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

<#STYLES> generates the statements that defines a style sheet from definitions listed in
the Styles or StylesFile property of the InternetExpress page producer.

<#WARNINGS> generates nothing at runtime. At design time, it adds warning messages
for problems detected while generating the HTML document. You can see these
messages in the Web page editor.

<#FORMS> generates the HTML produced by the components that you add in the Web
page editor. The HTML from each component is generated in the order it appears in
WebPageItems.

<#SCRIPT> generates a block of javascript declarations that are used in the HTML
generated by the components added in the Web page editor.

You can replace the default template by changing the value of HTMLDoc or setting
the HTMLFile property. The customized HTML template can include any of the
HTML-transparent tags that make up the default template. The InternetExpress page
producer automatically translates these tags when you call the Content method. In
addition, The InternetExpress page producer automatically translates three
additional tags:

<#BODYELEMENTS> is replaced by the same HTML as results from the 5 tags in the default
template. It is useful when generating a template in an HTML editor when you want
to use the default layout but add additional elements using the editor.

<#COMPONENT Name=WebComponentName> is replaced by the HTML that the component
named WebComponentName generates. This component can be one of the components
added in the Web page editor, or it can be any component that supports the
IWebContent interface and has the same Owner as the InternetExpress page producer.

<#DATAPACKET XMLBroker=BrokerName> is replaced with the XML data packet obtained
from the XML broker specified by BrokerName. When, in the Web page editor, you see
the HTML that the InternetExpress page producer generates, you see this tag instead
of the actual XML data packet.

In addition, the customized template can include any other HTML-transparent tags
that you define. When the InternetExpress page producer encounters a tag that is not
one of the seven types it translates automatically, it generates an OnHTMLTag event,
where you can write code to perform your own translations. For more information
about HTML templates in general, see “HTML templates” on page 34-14.

Tip The components that appear in the Web page editor generate static code. That is,
unless the application server changes the metadata that appears in data packets, the
HTML is always the same, no matter when it is generated. You can avoid the
overhead of generating this code dynamically at runtime in response to every request
message by copying the generated HTML in the Web page editor and using it as a
template. Because the Web page editor displays a <#DATAPACKET> tag instead of
the actual XML, using this as a template still allows your application to fetch data
packets from the application server dynamically.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-1

C h a p t e r

32
Chapter32Using XML in database applications

In addition to the support for connecting to database servers, Delphi lets you work
with XML documents as if they were database servers. XML (Extensible Markup
Language) is a markup language for describing structured data. XML documents
provide a standard, transportable format for data that is used in Web applications,
business-to-business communication, and so on. For information on Delphi’s support
for working directly with XML documents, see Chapter 37, “Working with XML
documents.”

Support for working with XML documents in database applications is based on a set
of components that can convert data packets (the Data property of a client dataset)
into XML documents and convert XML documents into data packets. To use these
components, you must first define the transformation between the XML document
and the data packet. Once you have defined the transformation, you can use special
components to

• convert XML documents into data packets.
• provide data from and resolve updates to an XML document.
• use an XML document as the client of a provider.

Defining transformations
Before you can convert between data packets and XML documents, you must define
the relationship between the metadata in a data packet and the nodes of the
corresponding XML document. A description of this relationship is stored in a
special XML document called a transformation.

Each transformation file contains two things: the mapping between the nodes in an
XML schema and the fields in a data packet, and a skeletal XML document that
represents the structure for the results of the transformation. A transformation is a
one-way mapping: from an XML schema or document to a data packet or from the

32-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

metadata in a data packet to an XML schema. Often, you create transformation files
in pairs: one that maps from XML to data packet, and one that maps from data packet
to XML.

In order to create the transformation files for a mapping, use the XMLMapper utility
that ships in the bin directory.

Mapping between XML nodes and data packet fields

XML provides a text-based way to store or describe structured data. Datasets provide
another way to store and describe structured data. To convert an XML document into
a dataset, therefore, you must identify the correspondences between the nodes in an
XML document and the fields in a dataset.

Consider, for example, an XML document that represents a set of email messages. It
might look like the following (containing a single message):

<?xml version="1.0" standalone="yes" ?>
<email>

<head>
<from>

<name>Dave Boss</name>
<address>dboss@MyCo.com</address>

</from>
<to>

<name>Joe Engineer</name>
<address>jengineer@MyCo.com</address>

</to>
<cc>

<name>Robin Smith/name>
<address>rsmith@MyCo.com</address>

</cc>
<cc>

<name>Leonard Devon</name>
<address>ldevon@MyCo.com</address>

</cc>
</head>
<body>

<subject>XML components</subject>
<content>
Joe,
Attached is the specification for the XML component support in Delphi.
This looks like a good solution to our buisness-to-buisness application!
Also attached, please find the project schedule. Do you think its reasonable?

Dave.
</content>
<attachment attachfile="XMLSpec.txt"/>
<attachment attachfile="Schedule.txt"/>

</body>
</email>

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-3

D e f i n i n g t r a n s f o r m a t i o n s

One natural mapping between this document and a dataset would map each e-mail
message to a single record. The record would have fields for the sender’s name and
address. Because an e-mail message can have multiple recipients, the recipient (<to>
would map to a nested dataset. Similarly, the cc list maps to a nested dataset. The
subject line would map to a string field while the message itself (<content>) would
probably be a memo field. The names of attachment files would map to a nested
dataset because one message can have several attachments. Thus, the e-mail above
would map to a dataset something like the following:

where the nested dataset in the “To” field is

the nested dataset in the “CC” field is

and the nested dataset in the “Attach” field is

Defining such a mapping involves identifying those nodes of the XML document that
can be repeated and mapping them to nested datasets. Tagged elements that have
values and appear only once (such as <content>...</content>) map to fields whose
datatype reflects the type of data that can appear as the value. Attributes of a tag
(such as the AttachFile attribute of the attachment tag) also map to fields.

Note that not all tags in the XML document appear in the corresponding dataset. For
example, the <head>...<head/> element has no corresponding element in the
resulting dataset. Typically, only elements that have values, elements that can be
repeated, or the attributes of a tag map to the fields (including nested dataset fields)
of a dataset. The exception to this rule is when a parent node in the XML document
maps to a field whose value is built up from the values of the child nodes. For
example, an XML document might contain a set of tags such as

<FullName>
<Title> Mr. </Title>
<FirstName> John </FirstName>
<LastName> Smith </LastName>

</FullName>

SenderName SenderAddress To CC Subject Content Attach

Dave Boss dboss@MyCo.Com (DataSet) (DataSet) XML components (MEMO) (DataSet)

Name Address

Joe Engineer jengineer@MyCo.Com

Name Address

Robin Smith rsmith@MyCo.Com

Leonard Devon ldevon@MyCo.Com

Attachfile

XMLSpec.txt

Schedule.txt

32-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

which could map to a single dataset field with the value

Mr. John Smith

Using XMLMapper

The XML mapper utility, xmlmapper.exe, lets you define mappings in three ways:

• From an existing XML schema (or document) to a client dataset that you define.
This is useful when you want to create a database application to work with data
for which you already have an XML schema.

• From an existing data packet to a new XML schema you define. This is useful
when you want to expose existing database information in XML, for example to
create a new business-to-business communication system.

• Between an existing XML schema and an existing data packet. This is useful when
you have an XML schema and a database that both describe the same information
and you want to make them work together.

Once you define the mapping, you can generate the transformation files that are used
to convert XML documents to data packets and to convert data packets to XML
documents. Note that only the transformation file is directional: a single mapping
can be used to generate both the transformation from XML to data packet and from
data packet to XML.

Note XML mapper relies on two .DLLs (midas.dll and msxml.dll) to work correctly. Be
sure that you have both of these .DLLs installed before you try to use
xmlmapper.exe. In addition, msxml.dll must be registered as a COM server. You can
register it using Regsvr32.exe.

Loading an XML schema or data packet
Before you can define a mapping and generate a transformation file, you must first
load descriptions of the XML document and the data packet between which you are
mapping.

You can load an XML document or schema by choosing File|Open and selecting the
document or schema in the resulting dialog.

You can load a data packet by choosing File|Open and selecting a data packet file in
the resulting dialog. (The data packet is simply the file generated when you call a
client dataset’s SaveToFile method.) If you have not saved the data packet to disk, you
can fetch the data packet directly from the application server of a multi-tiered
application by right-clicking in the Datapacket pane and choosing Connect To
Remote Server.

You can load only an XML document or schema, only a data packet, or you can load
both. If you load only one side of the mapping, XML mapper can generate a natural
mapping for the other side.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-5

D e f i n i n g t r a n s f o r m a t i o n s

Defining mappings
The mapping between an XML document and a data packet need not include all of
the fields in the data packet or all of the tagged elements in the XML document.
Therefore, you must first specify those elements that are mapped. To specify these
elements, first select the Mapping page in the central pane of the dialog.

To specify the elements of an XML document or schema that are mapped to fields in
a data packet, select the Sample or Structure tab of the XML document pane and
double-click on the nodes for elements that map to data packet fields.

To specify the fields of the data packet that are mapped to tagged elements or
attributes in the XML document, double-click on the nodes for those fields in the
Datapacket pane.

If you have only loaded one side of the mapping (the XML document or the data
packet), you can generate the other side after you have selected the nodes that are
mapped.

• If you are generating a data packet from an XML document, you first define
attributes for the selected nodes that determine the types of fields to which they
correspond in the data packet. In the center pane, select the Node Repository page.
Select each node that participates in the mapping and indicate the attributes of the
corresponding field. If the mapping is not straightforward (for example, a node
with subnodes that corresponds to a field whose value is built from those
subnodes), check the User Defined Translation check box. You will need to write
an event handler later to perform the transformation on user defined nodes.

Once you have specified the way nodes are to be mapped, choose Create|
Datapacket from XML. The corresponding data packet is automatically generated
and displayed in the Datapacket pane.

• If you are generating an XML document from a data packet, choose Create|XML
from Datapacket. A dialog appears where you can specify the names of the tags
and attributes in the XML document that correspond to fields, records, and
datasets in the data packet. For field values, the way you name them indicates
whether they map to a tagged element with a value or to an attribute. Names that
begin with an @ symbol map to attributes of the tag that corresponds to the record,
while names that do not begin with an @ symbol map to tagged elements that
have values and that are nested within the element for the record.

• If you have loaded both an XML document and a data packet (client dataset file),
be sure you select corresponding nodes in the same order. The corresponding
nodes should appear next to each other in the table at the top of the Mapping page.

Once you have loaded or generated both the XML document and the data packet and
selected the nodes that appear in the mapping, the table at the top of the Mapping
page should reflect the mapping you have defined.

32-6 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

Generating transformation files
To generate a transformation file, use the following steps:

1 First select the radio button that indicates what the transformation creates:

• Choose the Datapacket to XML button if the mapping goes from data packet to
XML document.

• Choose the XML to Datapacket button if the mapping goes from XML
document to data packet.

2 If you are generating a data packet, you will also want to use the radio buttons in
the Create Datapacket As section. These buttons let you specify how the data
packet will be used: as a dataset, as a delta packet for applying updates, or as the
parameters to supply to a provider before fetching data.

3 Click Create and Test Transformation to generate an in-memory version of the
transformation. XML mapper displays the XML document that would be
generated for the data packet in the Datapacket pane or the data packet that would
be generated for the XML document in the XML Document pane.

4 Finally, choose File|Save|Transformation to save the transformation file. The
transformation file is a special XML file (with the .xtr extension) that describes the
transformation you have defined.

Converting XML documents into data packets
Once you have created a transformation file that indicates how to transform an XML
document into a data packet, you can create data packets for any XML document that
conforms to the schema used in the transformation. These data packets can then be
assigned to a client dataset and saved to a file so that they form the basis of a file-
based database application.

The TXMLTransform component transforms an XML document into a data packet
according to the mapping in a transformation file.

Note You can also use TXMLTransform to convert a data packet that appears in XML
format into an arbitrary XML document.

Specifying the source XML document

There are three ways to specify the source XML document:

• If the source document is an .xml file on disk, you can use the SourceXmlFile
property.

• If the source document is an in-memory string of XML, you can use the SourceXml
property.

• If you have an IDOMDocument interface for the source document, you can use the
SourceXmlDocument property.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-7

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the SourceXmlFile property. Only if SourceXmlFile is an
empty string does it check the SourceXml property. Only if SourceXml is an empty
string does it then check the SourceXmlDocument property.

Specifying the transformation

There are two ways to specify the transformation that converts the XML document
into a data packet:

• Set the TransformationFile property to indicate a transformation file that was
created using xmlmapper.exe.

• Set the TransformationDocument property if you have an IDOMDocument interface
for the transformation.

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the TransformationFile property. Only if TransformationFile is
an empty string does it check the TransformationDocument property.

Obtaining the resulting data packet

To cause TXMLTransform to perform its transformation and generate a data packet,
you need only read the Data property. For example, the following code uses an XML
document and transformation file to generate a data packet, which is then assigned
to a client dataset:

XMLTransform1.SourceXMLFile := 'CustomerDocument.xml';
XMLTransform1.TransformationFile := 'CustXMLToCustTable.xtr';
ClientDataSet1.XMLData := XMLTransform1.Data;

Converting user-defined nodes

When you define a transformation using xmlmapper.exe, you can specify that some
of the nodes in the XML document are “user-defined.” User-defined nodes are nodes
for which you want to provide the transformation in code rather than relying on a
straightforward node-value-to-field-value translation.

You can provide the code to translate user-defined nodes using the OnTranslate
event. The OnTranslate event handler is called every time the TXMLTransform
component encounters a user-defined node in the XML document. In the
OnTranslate event handler, you can read the source document and specify the
resulting value for the field in the data packet.

32-8 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e s o u r c e f o r a p r o v i d e r

For example, the following OnTranslate event handler converts a node in the XML
document with the following form

<FullName>
<Title> </Title>
<FirstName> </FirstName>
<LastName> </LastName>

</FullName>

into a single field value:

procedure TForm1.XMLTransform1Translate(Sender: TObject; Id: String; SrcNode: IDOMNode;
var Value: String; DestNode: IDOMNode);

var
CurNode: IDOMNode;

begin
if Id = 'FullName' then
begin

Value = '';
if SrcNode.hasChildNodes then
begin

CurNode := SrcNode.firstChild;
Value := Value + CurNode.nodeValue;
while CurNode <> SrcNode.lastChild do
begin
CurNode := CurNode.nextSibling;
Value := Value + ' ';
Value := Value + CurNode.nodeValue;

end;
end;

end;
end;

Using an XML document as the source for a provider
The TXMLTransformProvider component lets you use an XML document as if it were
a database table. TXMLTransformProvider packages the data from an XML document
and applies updates from clients back to that XML document. It appears to clients
such as client datasets or XML brokers like any other provider component. For
information on provider components, see Chapter 30, “Using provider components.”
For information on using provider components with client datasets, see “Using a
client dataset with a provider” on page 29-24.

You can specify the XML document from which the XML provider provides data and
to which it applies updates using the XMLDataFile property.

TXMLTransformProvider components use internal TXMLTransform components to
translate between data packets and the source XML document: one to translate the
XML document into data packets, and one to translate data packets back into the
XML format of the source document after applying updates. These two
TXMLTransform components can be accessed using the TransformRead and
TransformWrite properties, respectively.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-9

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

When using TXMLTransformProvider, you must specify the transformations that these
two TXMLTransform components use to translate between data packets and the
source XML document. You do this by setting the TXMLTransform component’s
TransformationFile or TransformationDocument property, just as when using a stand-
alone TXMLTransform component.

In addition, if the transformation includes any user-defined nodes, you must supply
an OnTranslate event handler to the internal TXMLTransform components.

You do not need to specify the source document on the TXMLTransform components
that are the values of TransformRead and TransformWrite. For TransformRead, the
source is the file specified by the provider’s XMLDataFile property (although, if you
set XMLDataFile to an empty string, you can supply the source document using
TransformRead.XmlSource or TransformRead.XmlSourceDocument). For TransformWrite,
the source is generated internally by the provider when it applies updates.

Using an XML document as the client of a provider
The TXMLTransformClient component acts as an adapter to let you use an XML
document (or set of documents) as the client for an application server (or simply as
the client of a dataset to which it connects via a TDataSetProvider component). That is,
TXMLTransformClient lets you publish database data as an XML document and to
make use of update requests (insertions or deletions) from an external application
that supplies them in the form of XML documents.

To specify the provider from which the TXMLTransformClient object fetches data and
to which it applies updates, set the ProviderName property. As with the ProviderName
property of a client dataset, ProviderName can be the name of a provider on a remote
application server or it can be a local provider in the same form or data module as the
TXMLTransformClient object. For information about providers, see Chapter 30,
“Using provider components.”

If the provider is on a remote application server, you must use a DataSnap
connection component to connect to that application server. Specify the connection
component using the RemoteServer property. For information on DataSnap
connection components, see “Connecting to the application server” on page 31-23.

Fetching an XML document from a provider

TXMLTransformClient uses an internal TXMLTransform component to translate data
packets from the provider into an XML document. You can access this
TXMLTransform component as the value of the TransformGetData property.

32-10 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

Before you can create an XML document that represents the data from a provider,
you must specify the transformation file that TransformGetData uses to translate the
data packet into the appropriate XML format. You do this by setting the
TXMLTransform component’s TransformationFile or TransformationDocument property,
just as when using a stand-alone TXMLTransform component. If that transformation
includes any user-defined nodes, you will want to supply TransformGetData with an
OnTranslate event handler as well.

There is no need to specify the source document for TransformGetData,
TXMLTransformClient fetches that from the provider. However, if the provider
expects any input parameters, you may want to set them before fetching the data.
Use the SetParams method to supply these input parameters before you fetch data
from the provider. SetParams takes two arguments: a string of XML from which to
extract parameter values, and the name of a transformation file to translate that XML
into a data packet. SetParams uses the transformation file to convert the string of XML
into a data packet, and then extracts the parameter values from that data packet.

Note You can override either of these arguments if you want to specify the parameter
document or transformation in another way. Simply set one of the properties on
TransformSetParams property to indicate the document that contains the parameters
or the transformation to use when converting them, and then set the argument you
want to override to an empty string when you call SetParams. For details on the
properties you can use, see “Converting XML documents into data packets” on
page 32-6.

Once you have configured TransformGetData and supplied any input parameters, you
can call the GetDataAsXml method to fetch the XML. GetDataAsXml sends the current
parameter values to the provider, fetches a data packet, converts it into an XML
document, and returns that document as a string. You can save this string to a file:

var
XMLDoc: TFileStream;
XML: string;

begin
XMLTransformClient1.ProviderName := 'Provider1';
XMLTransformClient1.TransformGetData.TransformationFile := 'CustTableToCustXML.xtr';
XMLTransformClient1.TransFormSetParams.SourceXmlFile := 'InputParams.xml';
XMLTransformClient1.SetParams('', 'InputParamsToDP.xtr');
XML := XMLTransformClient1.GetDataAsXml;
XMLDoc := TFileStream.Create('Customers.xml', fmCreate or fmOpenWrite);
try

XMLDoc.Write(XML, Length(XML));
finally

XMLDoc.Free;
end;

end;

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 32-11

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

Applying updates from an XML document to a provider

TXMLTransformClient also lets you insert all of the data from an XML document into
the provider’s dataset or to delete all of the records in an XML document from the
provider’s dataset. To perform these updates, call the ApplyUpdates method, passing
in

• A string whose value is the contents of the XML document with the data to insert
or delete.

• The name of a transformation file that can convert that XML data into an insert or
delete delta packet. (When you define the transformation file using the XML
mapper utility, you specify whether the transformation is for an insert or delete
delta packet.)

• The number of update errors that can be tolerated before the update operation is
aborted. If fewer than the specified number of records can’t be inserted or deleted,
ApplyUpdates returns the number of actual failures. If more than the specified
number of records can’t be inserted or deleted, the entire update operation is
rolled back, and no update is performed.

The following call transforms the XML document Customers.xml into a delta packet
and applies all updates regardless of the number of errors:

StringList1.LoadFromFile('Customers.xml');
nErrors := ApplyUpdates(StringList1.Text, 'CustXMLToInsert.xtr', -1);

32-12 D e v e l o p e r ’ s G u i d e

W r i t i n g I n t e r n e t a p p l i c a t i o n s

P a r t

III
Part IIIWriting Internet applications

The chapters in “Writing Internet applications” present concepts and skills necessary
for building applications that are distributed over the Internet. The components
described in this section are not available in all editions of Delphi.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 33-1

C h a p t e r

33
Chapter33Creating Internet server applications

Web server applications extend the functionality and capability of existing Web
servers. A Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Many operations that you can perform with an
ordinary application can be incorporated into a Web server application.

The IDE provides two different architectures for developing Web server applications:
Web Broker and WebSnap. Although these two architectures are different, WebSnap
and Web Broker have many common elements. The WebSnap architecture acts as a
superset of Web Broker. It provides additional components and new features like the
Preview tab, which allows the content of a page to be displayed without the
developer having to run the application. Applications developed with WebSnap can
include Web Broker components, whereas applications developed with Web Broker
cannot include WebSnap components.

This chapter describes the features of the Web Broker and WebSnap technologies and
provides general information on Internet-based client/server applications.

About Web Broker and WebSnap
Part of the function of any application is to make data accessible to the user. In a
standard application you accomplish this by creating traditional front end elements,
like dialogs and scrolling windows. Developers can specify the exact layout of these
objects using familiar form design tools. Web server applications must be designed
differently, however. All information passed to users must be in the form of HTML
pages which are transferred through HTTP. Pages are generally interpreted on the
client machine by a Web browser application, which displays the pages in a form
appropriate for the user's particular system in its present state.

33-2 D e v e l o p e r ’ s G u i d e

A b o u t W e b B r o k e r a n d W e b S n a p

The first step in building a Web server application is choosing which architecture you
want to use, Web Broker or WebSnap. Both approaches provide many of the same
features, including

• Support for CGI and Apache DSO Web server application types. These are
described in “Types of Web server applications” on page 33-6.

• Multithreading support so that incoming client requests are handled on separate
threads.

• Caching of Web modules for quicker responses.

• Cross-platform development. You can easily port your Web server application
between the Windows and Linux operating systems. Your source code will
compile on either platform.

Both the Web Broker and WebSnap components handle all of the mechanics of page
transfer. WebSnap uses Web Broker as its foundation, so it incorporates all of the
functionality of Web Broker’s architecture. WebSnap offers a much more powerful
set of tools for generating pages, however. Also, WebSnap applications allow you to
use server-side scripting to help generate pages at runtime. Web Broker does not
have this scripting capability. The tools offered in Web Broker are not nearly as
complete as those in WebSnap, and are much less intuitive. If you are developing a
new Web server application, WebSnap is probably a better choice of architecture than
Web Broker.

The major differences between these two approaches are outlined in the following
table:

Table 33.1 Web Broker versus WebSnap

Web Broker WebSnap

Backward compatible Although WebSnap applications can use any Web
Broker components that produce content, the Web
modules and dispatcher that contain these are new.

Only one Web module allowed in an
application.

Multiple Web modules can partition the application
into units, allowing multiple developers to work on
the same project with fewer conflicts.

Only one Web dispatcher allowed in the
application.

Multiple, special-purpose dispatchers handle
different types of requests.

Specialized components for creating
content include page producers,
InternetExpress components, and Web
Services components.

Supports all the content producers that can appear in
Web Broker applications, plus many others designed
to let you quickly build complex data-driven Web
pages.

No scripting support. Support for server-side scripting allows HTML
generation logic to be separated from the business
logic.

No built-in support for named pages. Named pages can be automatically retrieved by a
page dispatcher and addressed from server-side
scripts.

No session support. Sessions store information about an end user that is
needed for a short period of time. This can be used
for such tasks as login/logout support.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 33-3

T e r m i n o l o g y a n d s t a n d a r d s

For more information on Web Broker, see Chapter 34, “Using Web Broker.” For more
information on WebSnap, see Chapter 35, “Creating Web Server applications using
WebSnap.”

Terminology and standards
Many of the protocols that control activity on the Internet are defined in Request for
Comment (RFC) documents that are created, updated, and maintained by the
Internet Engineering Task Force (IETF), the protocol engineering and development
arm of the Internet. There are several important RFCs that you will find useful when
writing Internet applications:

• RFC822, “Standard for the format of ARPA Internet text messages,” describes the
structure and content of message headers.

• RFC1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies,” describes
the method used to encapsulate and transport multipart and multiformat
messages.

• RFC1945, “Hypertext Transfer Protocol — HTTP/1.0,” describes a transfer
mechanism used to distribute collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

Parts of a Uniform Resource Locator

The Uniform Resource Locator (URL) is a complete description of the location of a
resource that is available over the net. It is composed of several parts that may be
accessed by an application. These parts are illustrated in Figure 33.1:

Figure 33.1 Parts of a Uniform Resource Locator

The first portion (not technically part of the URL) identifies the protocol (http). This
portion can specify other protocols such as https (secure http), ftp, and so on.

Every request must be explicitly handled,
using either an action item or an auto-
dispatching component.

Dispatch components automatically respond to a
variety of requests.

Only a few specialized components
provide previews of the content they
produce. Most development is not visual.

WebSnaplets you build Web pages more visually and
view the results at design time. Previews are
available for all components.

Table 33.1 Web Broker versus WebSnap (continued)

Web Broker WebSnap

Host ScriptName PathInfo Query

Query Field Query Field

http://www.Tsite.com/art/gallery.dll/mammals?animal=dog&color=black

33-4 D e v e l o p e r ’ s G u i d e

T e r m i n o l o g y a n d s t a n d a r d s

The Host portion identifies the machine that runs the Web server and Web server
application. Although it is not shown in the preceding picture, this portion can
override the port that receives messages. Usually, there is no need to specify a port,
because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the
application to which the Web server passes messages.

Following the script name is the pathinfo. This identifies the destination of the
message within the Web server application. Path info values may refer to directories
on the host machine, the names of components that respond to specific messages, or
any other mechanism the Web server application uses to divide the processing of
incoming messages.

The Query portion contains a set a named values. These values and their names are
defined by the Web server application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP
standard, RFC1945. Web server applications frequently produce content from many
sources where the final result does not reside in a particular location, but is created as
necessary. URIs can describe resources that are not location-specific.

HTTP request header information

HTTP request messages contain many headers that describe information about the
client, the target of the request, the way the request should be handled, and any
content sent with the request. Each header is identified by a name, such as “Host”
followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The first line identifies the request as a GET. A GET request message asks the Web
server application to return the content associated with the URI that follows the word
GET (in this case /art/gallery.dll/animals?animal=doc&color=black). The last part
of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should
not be closed once the request is serviced. The third line is the User-Agent header,
and provides information about the program generating the request. The next line is
the Host header, and provides the Host name and port on the server that is contacted
to form the connection. The final line is the Accept header, which lists the media
types the client can accept as valid responses.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 33-5

H T T P s e r v e r a c t i v i t y

HTTP server activity
The client/server nature of Web browsers is deceptively simple. To most users,
retrieving information on the World Wide Web is a simple procedure: click on a link,
and the information appears on the screen. More knowledgeable users have some
understanding of the nature of HTML syntax and the client/server nature of the
protocols used. This is usually sufficient for the production of simple, page-oriented
Web site content. Authors of more complex Web pages have a wide variety of
options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client
issues a request and how the server responds to client requests.

Composing client requests

When an HTML hypertext link is selected (or the user otherwise specifies a URL), the
browser collects information about the protocol, the specified domain, the path to the
information, the date and time, the operating environment, the browser itself, and
other content information. It then composes a request.

For example, to display a page of images based on criteria selected by clicking
buttons on a form, the client might construct this URL:

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

which specifies an HTTP server in the www.TSite.com domain. The client contacts
www.TSite.com, connects to the HTTP server, and passes it a request. The request
might look something like this:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Serving client requests

The Web server receives a client request and can perform any number of actions,
based on its configuration. If the server is configured to recognize the /gallery.dll
portion of the request as a program, it passes information about the request to that
program. The way information about the request is passed to the program depends
on the type of Web server application:

• If the program is a Common Gateway Interface (CGI) program, the server passes
the information contained in the request directly to the CGI program. The server
waits while the program executes. When the CGI program exits, it passes the
content directly back to the server.

33-6 D e v e l o p e r ’ s G u i d e

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

• If the program is a dynamic-link library (DLL), the server loads the DLL (if
necessary) and passes the information contained in the request to the DLL as a
structure. The server waits while the program executes. When the DLL exits, it
passes the content directly back to the server.

In all cases, the program acts on the request of and performs actions specified by the
programmer: accessing databases, doing simple table lookups or calculations,
constructing or selecting HTML documents, and so on.

Responding to client requests

When a Web server application finishes with a client request, it constructs a page of
HTML code or other MIME content, and passes it back (via the server) to the client
for display. The way the response is sent may differ based on the type of program.

When a DLL finishes, it passes the HTML page and any response information
directly back to the server, which passes them back to the client. Creating a Web
server application as a DLL reduces system load and resource use by reducing the
number of processes and disk accesses necessary to service an individual request.

Types of Web server applications
Whether you use Web Broker or WebSnap, you can create five standard types of Web
server applications. In addition, you can create a Web Application Debugger
executable, which integrates the Web server into your application so that you can
debug your application logic. The Web Application Debugger executable is intended
only for debugging. When you deploy your application, you should migrate to one of
the other five types.

ISAPI and NSAPI
An ISAPI or NSAPI Web server application is a DLL that is loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by the
ISAPI/NSAPI application, which creates appropriate request and response objects.
Each request message is automatically handled in a separate execution thread.

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client
request information on standard input and passes the results back to the server on
standard output. This data is evaluated by the CGI application, which creates
appropriate request and response objects. Each request message is handled by a
separate instance of the application.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 33-7

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

Apache
An Apache Web server application is a DLL that is loaded by the Web server. Client
request information is passed to the DLL as a structure and evaluated by the Apache
Web server application, which creates appropriate request and response objects.
Each request message is automatically handled in a separate execution thread. You
can build your Web server applications using Apache 1 or 2 as your target type.

When you deploy your Apache Web server application, you will need to specify
some application-specific information in the Apache configuration files. For example,
in Apache 1 projects the default module name is the project name with _module
appended to the end. For example, a project named Project1 would have
Project1_module as its module name. Similarly, the default content type is the project
name with -content appended, and the default handler type is the project name with-
handler appended.

These definitions can be changed in the project (.dpr) file when necessary. For
example, when you create your project a default module name is stored in the project
file. Here is a common example:

exports
 apache_module name ’Project1_module’;

Note When you rename the project during the save process, that name isn’t changed
automatically. Whenever you rename your project, you must change the module
name in your project file to match your project name. The content and handler
definitions should change automatically once the module name is changed.

For information on using module, content, and handler definitions in your Apache
configuration files, see the documentation on the Apache Web site httpd.apache.org.

Web App Debugger
The server types mentioned above have their advantages and disadvantages for
production environments, but none of them is well-suited for debugging. Deploying
your application and configuring the debugger can make Web server application
debugging far more tedious than debugging other application types.

Fortunately, Web server application debugging doesn’t need to be that complicated.
The IDE includes a Web App Debugger which makes debugging simple. The Web
App Debugger acts like a Web server on your development machine. If you build
your Web server application as a Web App Debugger executable, deployment
happens automatically during the build process. To debug your application, start it
using Run|Run. Next, select Tools|Web App Debugger, click the default URL and
select your application in the Web browser which appears. Your application will
launch in the browser window, and you can use the IDE to set breakpoints and
obtain debugging information.

33-8 D e v e l o p e r ’ s G u i d e

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

When your application is ready to be tested or deployed in a production
environment, you can convert your Web App Debugger project to one of the other
target types using the steps given below.

Note When you create a Web App Debugger project, you will need to provide a CoClass
Name for your project. This is simply a name used by the Web App Debugger to
refer to your application. Most developers use the application’s name as the CoClass
Name.

Converting Web server application target types

One powerful feature of Web Broker and WebSnap is that they offer several different
target server types. The IDE allows you to easily convert from one target type to
another.

Because Web Broker and WebSnap have slightly different design philosophies, you
must use a different conversion method for each architecture. To convert your Web
Broker application target type, use the following steps:

1 Right-click the Web module and choose Add To Repository.

2 In the Add To Repository dialog box, give your Web module a title, text
description, Repository page (probably Data Modules), author name, and icon.

3 Choose OK to save your Web module as a template.

4 From the main menu, choose File|New and select Web Server Application. In the
New Web Server Application dialog box, choose the appropriate target type.

5 Delete the automatically generated Web module.

6 From the main menu, choose File|New and select the template you saved in step
3. This will be on the page you specified in step 2.

To convert a WebSnap application’s target type:

1 Open your project in the IDE.

2 Display the Project Manager using View|Project Manager. Expand your project so
all of its units are visible.

3 In the Project Manager, click the New button to create a new Web server
application project. Double-click the WebSnap Application item in the WebSnap
tab. Select the appropriate options for your project, including the server type you
want to use, then click OK.

4 Expand the new project in the Project Manager. Select any files appearing there
and delete them.

5 One at a time, select each file in your project (except for the form file in a Web App
Debugger project) and drag it to the new project. When a dialog appears asking if
you want to add that file to your new project, click Yes.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 33-9

D e b u g g i n g s e r v e r a p p l i c a t i o n s

Debugging server applications
Debugging Web server applications presents some unique problems, because they
run in response to messages from a Web server. You can not simply launch your
application from the IDE, because that leaves the Web server out of the loop, and
your application will not find the request message it is expecting.

The following topics describe techniques you can use to debug Web server
applications.

Using the Web Application Debugger

The Web Application Debugger provides an easy way to monitor HTTP requests,
responses, and response times. The Web Application Debugger takes the place of the
Web server. Once you have debugged your application, you can convert it to one of
the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as
a Web Application Debugger executable. Whether you are using Web Broker or
WebSnap, the wizard that creates your Web server application includes this as an
option when you first begin the application. This creates a Web server application
that is also a COM server.

For information on how to write this Web server application using Web Broker, see
Chapter 34, “Using Web Broker.”. For more information on using WebSnap, see
Chapter 35, “Creating Web Server applications using WebSnap.”

Launching your application with the Web Application Debugger
Once you have developed your Web server application, you can run and debug it as
follows:

1 With your project loaded in the IDE, set any breakpoints so that you can debug
your application just like any other executable.

2 Choose Run|Run. This displays the console window of the COM server that is
your Web server application. The first time you run your application, it registers
your COM server so that the Web App debugger can access it.

3 Select Tools|Web App Debugger.

4 Click the Start button. This displays the ServerInfo page in your default Browser.

5 The ServerInfo page provides a drop-down list of all registered Web Application
Debugger executables. Select your application from the drop-down list. If you do
not find your application in this drop-down list, try running your application as
an executable. Your application must be run once so that it can register itself. If
you still do not find your application in the drop-down list, try refreshing the Web
page. (Sometimes the Web browser caches this page, preventing you from seeing
the most recent changes.)

33-10 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

6 Once you have selected your application in the drop-down list, press the Go
button. This launches your application in the Web Application Debugger, which
provides you with details on request and response messages that pass between
your application and the Web Application Debugger.

Converting your application to another type of Web server application
When you have finished debugging your Web server application with the Web
Application Debugger, you will need to convert it to another type that can be
installed on a commercial Web server. To learn more about converting your
application, see “Converting Web server application target types” on page 33-8.

Debugging Web applications that are DLLs

ISAPI, NSAPI, and Apache applications are actually DLLs that contain predefined
entry points. The Web server passes request messages to the application by making
calls to these entry points. Because these applications are DLLs, you can debug them
by setting your application’s run parameters to launch the server.

To set up your application’s run parameters, choose Run|Parameters and set the
Host Application and Run Parameters to specify the executable for the Web server
and any parameters it requires when you launch it. For details about these values on
your Web server, see the documentation provided by you Web server vendor.

Note Some Web Servers require additional changes before you have the rights to launch
the Host Application in this way. See your Web server vendor for details.

Tip If you are using Windows 2000 with IIS 5, details on all of the changes you need to
make to set up your rights properly are described at the following Web site:

http://community.borland.com/article/0,1410,23024,00.html

Once you have set the Host Application and Run Parameters, you can set up your
breakpoints so that when the server passes a request message to your DLL, you hit
one of your breakpoints, and can debug normally.

Note Before launching the Web server using your application’s run parameters, make sure
that the server is not already running.

User rights necessary for DLL debugging
Under Windows, you must have the correct user rights to debug a DLL. You can
obtain these rights as follows:

1 In the Administrative Tools portion of the Control Panel, click on Local Security
Policy. Expand Local Policies and double-click User Rights Assignment. Double-
click Act as part of the operating system in the right-hand panel.

2 Select Add to add a user to the list. Add your current user.

3 Reboot so the changes take effect.

U s i n g W e b B r o k e r 34-1

C h a p t e r

34
Chapter34Using Web Broker

Web Broker components (located on the Internet tab of the component palette)
enable you to create event handlers that are associated with a specific Uniform
Resource Identifier (URI). When processing is complete, you can programmatically
construct HTML or XML documents and transfer them to the client. You can use Web
Broker components for cross-platform application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet
components to automatically manage connections to databases, allowing a single
DLL to handle numerous simultaneous, thread-safe database connections.

The following sections in this chapter explain how you use the Web Broker
components to create a Web server application.

Creating Web server applications with Web Broker
To create a new Web server application using the Web Broker architecture:

1 Select File|New|Other.

2 In the New Items dialog box, select the New tab and choose Web Server
Application.

3 A dialog box appears, where you can select one of the Web server application
types:

• ISAPI and NSAPI: Selecting this type of application sets up your project as a
DLL, with the exported methods expected by the Web server. It adds the library
header to the project file and the required entries to the uses list and exports
clause of the project file.

• CGI stand-alone: Selecting this type of application sets up your project as a
console application, and adds the required entries to the uses clause of the
project file.

34-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b B r o k e r

• Apache: Selecting one of these two application types (1.x and 2.x) sets up your
project as a DLL, with the exported methods expected by the applicable Apache
Web server. It adds the library header to the project file and the required entries
to the uses list and exports clause of the project file.

• Web Application Debugger stand-alone executable: Selecting this type of
application sets up an environment for developing and testing Web server
applications. This type of application is not intended for deployment.

Choose the type of Web Server Application that communicates with the type of Web
Server your application will use. This creates a new project configured to use Internet
components and containing an empty Web Module.

The Web module

The Web module (TWebModule) is a descendant of TDataModule and may be used in
the same way: to provide centralized control for business rules and non-visual
components in the Web application.

Add any content producers that your application uses to generate response
messages. These can be the built-in content producers such as TPageProducer,
TDataSetPageProducer, TDataSetTableProducer, TQueryTableProducer and
TInetXPageProducer, or descendants of TCustomContentProducer that you have written
yourself. If your application generates response messages that include material
drawn from databases, you can add data access components or special components
for writing a Web server that acts as a client in a multi-tiered database application.

In addition to storing non-visual components and business rules, the Web module
also acts as a dispatcher, matching incoming HTTP request messages to action items
that generate the responses to those requests.

You may have a data module already that is set up with many of the non-visual
components and business rules that you want to use in your Web application. You
can replace the Web module with your pre-existing data module. Simply delete the
automatically generated Web module and replace it with your data module. Then,
add a TWebDispatcher component to your data module, so that it can dispatch request
messages to action items, the way a Web module can. If you want to change the way
action items are chosen to respond to incoming HTTP request messages, derive a
new dispatcher component from TCustomWebDispatcher, and add that to the data
module instead.

Your project can contain only one dispatcher. This can either be the Web module that
is automatically generated when you create the project, or the TWebDispatcher
component that you add to a data module that replaces the Web module. If a second
data module containing a dispatcher is created during execution, the Web server
application generates a runtime error.

U s i n g W e b B r o k e r 34-3

T h e s t r u c t u r e o f a W e b B r o k e r a p p l i c a t i o n

Note The Web module that you set up at design time is actually a template. In ISAPI and
NSAPI applications, each request message spawns a separate thread, and separate
instances of the Web module and its contents are created dynamically for each
thread.

Warning The Web module in a DLL-based Web server application is cached for later reuse to
increase response time. The state of the dispatcher and its action list is not
reinitialized between requests. Enabling or disabling action items during execution
may cause unexpected results when that module is used for subsequent client
requests.

The Web Application object

The project that is set up for your Web application contains a global variable named
Application. Application is a descendant of TWebApplication that is appropriate to the
type of application you are creating. It runs in response to HTTP request messages
received by the Web server.

Warning Do not include the Forms or QForms unit in the project uses clause after the CGIApp,
ApacheApp, ApacheTwoApp, or ISAPIApp unit. Forms also declares a global
variable named Application, and if it appears after the CGIApp, ApacheApp,
ApacheTwoApp, or ISAPIApp unit, Application will be initialized to an object of the
wrong type.

The structure of a Web Broker application
When the Web application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned. The application then passes
these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher
maintains a collection of action items (TWebActionItem) that know how to handle
certain types of HTTP request messages. The dispatcher identifies the appropriate
action items or auto-dispatching components to handle the HTTP request message,
and passes the request and response objects to the identified handler so that it can
perform any requested actions or formulate a response message. It is described more
fully in the section “The Web dispatcher” on page 34-5.

34-4 D e v e l o p e r ’ s G u i d e

T h e s t r u c t u r e o f a W e b B r o k e r a p p l i c a t i o n

Figure 34.1 Structure of a Server Application

The action items are responsible for reading the request and assembling a response
message. Specialized content producer components aid the action items in
dynamically generating the content of response messages, which can include custom
HTML code or other MIME content. The content producers can make use of other
content producers or descendants of THTMLTagAttributes, to help them create the
content of the response message. For more information on content producers, see
“Generating the content of response messages” on page 34-13.

If you are creating the Web Client in a multi-tiered database application, your Web
server application may include additional, auto-dispatching components that
represent database information encoded in XML and database manipulation classes
encoded in javascript. If you are creating a server that implements a Web Service,
your Web server application may include an auto-dispatching component that passes
SOAP-based messages on to an invoker that interprets and executes them. The
dispatcher calls on these auto-dispatching components to handle the request message
after it has tried all of its action items.

When all action items (or auto-dispatching components) have finished creating the
response by filling out the TWebResponse object, the dispatcher passes the result back
to the Web application. The application sends the response on to the client via the
Web server.

Web Module (Dispatcher)

Web
Server

Action
Item

Content
Producer

Web
Application

Web
Response

Action
Item

Content
Producer

Content
Producer

Web
Request

U s i n g W e b B r o k e r 34-5

T h e W e b d i s p a t c h e r

The Web dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a pre-
existing data module, you must add a single dispatcher component (TWebDispatcher)
to that data module. The dispatcher maintains a collection of action items that know
how to handle certain kinds of request messages. When the Web application passes a
request object and a response object to the dispatcher, it chooses one or more action
items to respond to the request.

Adding actions to the dispatcher

Open the action editor from the Object Inspector by clicking the ellipsis on the Actions
property of the dispatcher. Action items can be added to the dispatcher by clicking
the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs.
You can set up your action items in a variety of ways. You can start with action items
that preprocess requests, and end with a default action that checks whether the
response is complete and either sends the response or returns an error code. Or, you
can add a separate action item for every type of request, where each action item
completely handles the request.

Action items are discussed in further detail in “Action items” on page 34-6.

Dispatching request messages

When the dispatcher receives the client request, it generates a BeforeDispatch event.
This provides your application with a chance to preprocess the request message
before it is seen by any of the action items.

Next, the dispatcher iterates over its list of action items, looking for an entry that
matches the PathInfo portion of the request message’s target URL and that also
provides the service specified as the method of the request message. It does this by
comparing the PathInfo and MethodType properties of the TWebRequest object with the
properties of the same name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response or signals that the request is
completely handled.

• Adds to the response and then allows other action items to complete the job.

• Defers the request to other action items.

34-6 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

After checking all its action items, if the message is not handled the dispatcher checks
any specially registered auto-dispatching components that do not use action items.
These components are specific to multi-tiered database applications, which are
described in “Building Web applications using InternetExpress” on page 31-33

If, after checking all the action items and any specially registered auto-dispatching
components, the request message has still not been fully handled, the dispatcher calls
the default action item. The default action item does not need to match either the
target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any)
and no actions have been triggered, nothing is passed back to the server. The server
simply drops the connection to the client.

If the request is handled by the action items, the dispatcher generates an
AfterDispatch event. This provides a final opportunity for your application to check
the response that was generated, and make any last minute changes.

Action items
Each action item (TWebActionItem) performs a specific task in response to a given
type of request message.

Action items can completely respond to a request or perform part of the response and
allow other action items to complete the job. Action items can send the HTTP
response message for the request, or simply set up part of the response for other
action items to complete. If a response is completed by the action items but not sent,
the Web server application sends the response message.

Determining when action items fire

Most properties of the action item determine when the dispatcher selects it to handle
an HTTP request message. To set the properties of an action item, you must first
bring up the action editor: select the Actions property of the dispatcher in the Object
Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

The target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the
request message. The value of this property should be the path information portion
of the URL for all requests that the action item is prepared to handle. For example,
given this URL,

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

and assuming that the /gallery.dll part indicates the Web server application, the
path information portion is

/mammals

U s i n g W e b B r o k e r 34-7

A c t i o n i t e m s

Use path information to indicate where your Web application should look for
information when servicing requests, or to divide you Web application into logical
subservices.

The request method type
The MethodType property of an action item indicates what type of request messages it
can process. The dispatcher compares the MethodType property of an action item to
the MethodType of the request message. MethodType can take one of the following
values:

Enabling and disabling action items
Each action item has an Enabled property that can be used to enable or disable that
action item. By setting Enabled to False, you disable the action item so that it is not
considered by the dispatcher when it looks for an action item to handle a request.

A BeforeDispatch event handler can control which action items should process a
request by changing the Enabled property of the action items before the dispatcher
begins matching them to the request message.

Caution Changing the Enabled property of an action during execution may cause unexpected
results for subsequent requests. If the Web server application is a DLL that caches
Web modules, the initial state will not be reinitialized for the next request. Use the
BeforeDispatch event to ensure that all action items are correctly initialized to their
appropriate starting states.

Choosing a default action item
Only one of the action items can be the default action item. The default action item is
selected by setting its Default property to True. When the Default property of an action
item is set to True, the Default property for the previous default action item (if any) is
set to False.

When the dispatcher searches its list of action items to choose one to handle a
request, it stores the name of the default action item. If the request has not been fully
handled when the dispatcher reaches the end of its list of action items, it executes the
default action item.

Table 34.1 MethodType values

Value Meaning

mtGet The request is asking for the information associated with the target URI to be returned in
a response message.

mtHead The request is asking for the header properties of a response, as if servicing an mtGet
request, but omitting the content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the
content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

34-8 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

The dispatcher does not check the PathInfo or MethodType of the default action item.
The dispatcher does not even check the Enabled property of the default action item.
Thus, you can make sure the default action item is only called at the very end by
setting its Enabled property to False.

The default action item should be prepared to handle any request that is
encountered, even if it is only to return an error code indicating an invalid URI or
MethodType. If the default action item does not handle the request, no response is sent
to the Web client.

Caution Changing the Default property of an action during execution may cause unexpected
results for the current request. If the Default property of an action that has already
been triggered is set to True, that action will not be reevaluated and the dispatcher
will not trigger that action when it reaches the end of the action list.

Responding to request messages with action items

The real work of the Web server application is performed by action items when they
execute. When the Web dispatcher fires an action item, that action item can respond
to the current request message in two ways:

• If the action item has an associated producer component as the value of its
Producer property, that producer automatically assigns the Content of the response
message using its Content method. The Internet page of the component palette
includes a number of content producer components that can help construct an
HTML page for the content of the response message.

• After the producer has assigned any response content (if there is an associated
producer), the action item receives an OnAction event. The OnAction event handler
is passed the TWebRequest object that represents the HTTP request message and a
TWebResponse object to fill with any response information.

If the action item’s content can be generated by a single content producer, it is
simplest to assign the content producer as the action item’s Producer property.
However, you can always access any content producer from the OnAction event
handler as well. The OnAction event handler allows more flexibility, so that you can
use multiple content producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any
objects or runtime library methods to respond to request messages. They can access
databases, perform calculations, construct or select HTML documents, and so on. For
more information about generating response content using content-producer
components, see “Generating the content of response messages” on page 34-13.

Sending the response
An OnAction event handler can send the response back to the Web client by using the
methods of the TWebResponse object. However, if no action item sends the response to
the client, it will still get sent by the Web server application as long as the last action
item to look at the request indicates that the request was handled.

U s i n g W e b B r o k e r 34-9

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

Using multiple action items
You can respond to a request from a single action item, or divide the work up among
several action items. If the action item does not completely finish setting up the
response message, it must signal this state in the OnAction event handler by setting
the Handled parameter to False.

If many action items divide up the work of responding to request messages, each
setting Handled to False so that others can continue, make sure the default action item
leaves the Handled parameter set to True. Otherwise, no response will be sent to the
Web client.

When dividing the work among several action items, either the OnAction event
handler of the default action item or the AfterDispatch event handler of the dispatcher
should check whether all the work was done and set an appropriate error code if it is
not.

Accessing client request information
When an HTTP request message is received by the Web server application, the
headers of the client request are loaded into the properties of an object descended
from TWebRequest. For example, in NSAPI and ISAPI applications, the request
message is encapsulated by a TISAPIRequest object, and console CGI applications use
TCGIRequest objects.

The properties of the request object are read-only. You can use them to gather all of
the information available in the client request.

Properties that contain request header information

Most properties in a request object contain information about the request that comes
from the HTTP request header. Not every request supplies a value for every one of
these properties. Also, some requests may include header fields that are not surfaced
in a property of the request object, especially as the HTTP standard continues to
evolve. To obtain the value of a request header field that is not surfaced as one of the
properties of the request object, use the GetFieldByName method.

Properties that identify the target
The full target of the request message is given by the URL property. Usually, this is a
URL that can be broken down into the protocol (HTTP), Host (server system),
ScriptName (server application), PathInfo (location on the host), and Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP,
and the Host and ScriptName identify the Web server application. The dispatcher uses
the PathInfo portion when matching action items to request messages. The Query is
used by some requests to specify the details of the requested information. Its value is
also parsed for you as the QueryFields property.

34-10 D e v e l o p e r ’ s G u i d e

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

Properties that describe the Web client
The request also includes several properties that provide information about where
the request originated. These include everything from the e-mail address of the
sender (the From property), to the URI where the message originated (the Referer or
RemoteHost property). If the request contains any content, and that content does not
arise from the same URI as the request, the source of the content is given by the
DerivedFrom property. You can also determine the IP address of the client (the
RemoteAddr property), and the name and version of the application that sent the
request (the UserAgent property).

Properties that identify the purpose of the request
The Method property is a string describing what the request message is asking the
server application to do. The HTTP 1.1 standard defines the following methods:

Table 34.2 Predefined tag names

The Method property may indicate any other method that the Web client requests of
the server.

The Web server application does not need to provide a response for every possible
value of Method. The HTTP standard does require that it service both GET and HEAD
requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet),
HEAD (mtHead), POST (mtPost), PUT (mtPut) or some other string (mtAny). The
dispatcher matches the value of the MethodType property with the MethodType of each
action item.

Properties that describe the expected response
The Accept property indicates the media types the Web client will accept as the
content of the response message. The IfModifiedSince property specifies whether the
client only wants information that has changed recently. The Cookie property
includes state information (usually added previously by your application) that can
modify the response.

Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the
response.

POST The server application to post the data included in the Content property, as
appropriate.

PUT The server application to replace the resource indicated by the URL property with the
data included in the Content property.

DELETE The server application to delete or hide the resource identified by the URL property.

TRACE The server application to send a loop-back to confirm receipt of the request.

U s i n g W e b B r o k e r 34-11

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

Properties that describe the content
Most requests do not include any content, as they are requests for information.
However, some requests, such as POST requests, provide content that the Web server
application is expected to use. The media type of the content is given in the
ContentType property, and its length in the ContentLength property. If the content of
the message was encoded (for example, for data compression), this information is in
the ContentEncoding property. The name and version number of the application that
produced the content is specified by the ContentVersion property. The Title property
may also provide information about the content.

The content of HTTP request messages

In addition to the header fields, some request messages include a content portion that
the Web server application should process in some way. For example, a POST
request might include information that should be added to a database accessed by
the Web server application.

The unprocessed value of the content is given by the Content property. If the content
can be parsed into fields separated by ampersands (&), a parsed version is available
in the ContentFields property.

Creating HTTP response messages
When the Web server application creates a TWebRequest descended object for an
incoming HTTP request message, it also creates a corresponding object descended
from TWebResponse to represent the response message that will be sent in return. For
example, in NSAPI and ISAPI applications, the response message is encapsulated by
a TISAPIResponse object, and Console CGI applications use TCGIResponse objects.

The action items that generate the response to a Web client request fill in the
properties of the response object. In some cases, this may be as simple as returning
an error code or redirecting the request to another URI. In other cases, this may
involve complicated calculations that require the action item to fetch information
from other sources and assemble it into a finished form. Most request messages
require some response, even if it is only the acknowledgment that a requested action
was carried out.

Filling in the response header

Most of the properties of the TWebResponse object represent the header information of
the HTTP response message that is sent back to the Web client. An action item sets
these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header
properties. The properties that should be set depend on the nature of the request and
the status of the response.

34-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

Indicating the response status
Every response message must include a status code that indicates the status of the
response. You can specify the status code by setting the StatusCode property. The
HTTP standard defines a number of standard status codes with predefined
meanings. In addition, you can define your own status codes using any of the unused
possible values.

Each status code is a three-digit number where the most significant digit indicates the
class of the response, as follows:

• 1xx: Informational (The request was received but has not been fully processed).
• 2xx: Success (The request was received, understood, and accepted).
• 3xx: Redirection (Further action by the client is needed to complete the request).
• 4xx: Client Error (The request cannot be understood or cannot be serviced).
• 5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status
code. This is given by the ReasonString property. For predefined status codes, you do
not need to set the ReasonString property. If you define your own status codes, you
should also set the ReasonString property.

Indicating the need for client action
When the status code is in the 300-399 range, the client must perform further action
before the Web server application can complete its request. If you need to redirect the
client to another URI, or indicate that a new URI was created to handle the request,
set the Location property. If the client must provide a password before you can
proceed, set the WWWAuthenticate property.

Describing the server application
Some of the response header properties describe the capabilities of the Web server
application. The Allow property indicates the methods to which the application can
respond. The Server property gives the name and version number of the application
used to generate the response. The Cookies property can hold state information about
the client’s use of the server application which is included in subsequent request
messages.

Describing the content
Several properties describe the content of the response. ContentType gives the media
type of the response, and ContentVersion is the version number for that media type.
ContentLength gives the length of the response. If the content is encoded (such as for
data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the
value of the content is time-sensitive, the LastModified property and the Expires
property indicate whether the value is still valid. The Title property can provide
descriptive information about the content.

U s i n g W e b B r o k e r 34-13

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Setting the response content

For some requests, the response to the request message is entirely contained in the
header properties of the response. In most cases, however, action item assigns some
content to the response message. This content may be static information stored in a
file, or information that was dynamically produced by the action item or its content
producer.

You can set the content of the response message by using either the Content property
or the ContentStream property.

The Content property is a string. Delphi strings are not limited to text values, so the
value of the Content property can be a string of HTML commands, graphics content
such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read
from a stream. For example, if the response message should send the contents of a
file, use a TFileStream object for the ContentStream property. As with the Content
property, ContentStream can provide a string of HTML commands or other MIME
content type. If you use the ContentStream property, do not free the stream yourself.
The Web response object automatically frees it for you.

Note If the value of the ContentStream property is not nil, the Content property is ignored.

Sending the response

If you are sure there is no more work to be done in response to a request message,
you can send a response directly from an OnAction event handler. The response
object provides two methods for sending a response: SendResponse and SendRedirect.
Call SendResponse to send the response using the specified content and all the header
properties of the TWebResponse object. If you only need to redirect the Web client to
another URI, the SendRedirect method is more efficient.

If none of the event handlers send the response, the Web application object sends it
after the dispatcher finishes. However, if none of the action items indicate that they
have handled the response, the application will close the connection to the Web client
without sending any response.

Generating the content of response messages
Web Broker provides a number of objects to assist your action items in producing
content for HTTP response messages. You can use these objects to generate strings of
HTML commands that are saved in a file or sent directly back to the Web client. You
can write your own content producers, deriving them from TCustomContentProducer
or one of its descendants.

34-14 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

TCustomContentProducer provides a generic interface for creating any MIME type as
the content of an HTTP response message. Its descendants include page producers
and table producers:

• Page producers scan HTML documents for special tags that they replace with
customized HTML code. They are described in the following section.

• Table producers create HTML commands based on the information in a dataset.
They are described in “Using database information in responses” on page 34-18.

Using page producer components

Page producers (TPageProducer and its descendants) take an HTML template and
convert it by replacing special HTML-transparent tags with customized HTML code.
You can store a set of standard response templates that are filled in by page
producers when you need to generate the response to an HTTP request message. You
can chain page producers together to iteratively build up an HTML document by
successive refinement of the HTML-transparent tags.

HTML templates
An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#)
immediately follows the opening angle bracket (<) with no spaces separating it from
the angle bracket. The pound sign identifies the string to the page producer as an
HTML-transparent tag. The tag name immediately follows the pound sign with no
spaces separating it from the pound sign. The tag name can be any valid identifier
and identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is
of the form ParamName=Value, where there is no space between the parameter name,
the equals symbol (=) and the value. The parameters are separated by whitespace.

The angle brackets (< and >) make the tag transparent to HTML browsers that do not
recognize the #TagName construct.

U s i n g W e b B r o k e r 34-15

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

While you can create your own HTML-transparent tags to represent any kind of
information processed by your page producer, there are several predefined tag
names associated with values of the TTag data type. These predefined tag names
correspond to HTML commands that are likely to vary over response messages. They
are listed in the following table:

Any other tag name is associated with tgCustom. The page producer supplies no
built-in processing of the predefined tag names. They are simply provided to help
applications organize the conversion process into many of the more common tasks.

Note The predefined tag names are case insensitive.

Specifying the HTML template
Page producers provide you with many choices in how to specify the HTML
template. You can set the HTMLFile property to the name of a file that contains the
HTML template. You can set the HTMLDoc property to a TStrings object that contains
the HTML template. If you use either the HTMLFile property or the HTMLDoc
property to specify the template, you can generate the converted HTML commands
by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML
template that is a single string which is passed in as a parameter. You can also call the
ContentFromStream method to read the HTML template from a stream. Thus, for
example, you could store all your HTML templates in a memo field in a database,
and use the ContentFromStream method to obtain the converted HTML commands,
reading the template directly from a TBlobStream object.

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning with an
<A> tag and ending with an tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning with a
<TABLE> tag and ending with a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an HTML
sequence beginning with a <MAP> tag and ending with a </MAP>
tag.

Object tgObject An embedded ActiveX object. The result is an HTML sequence
beginning with an <OBJECT> tag and ending with an </OBJECT> tag.

Embed tgEmbed A Netscape-compliant add-in DLL. The result is an HTML sequence
beginning with an <EMBED> tag and ending with an </EMBED> tag.

34-16 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Converting HTML-transparent tags
The page producer converts the HTML template when you call one of its Content
methods. When the Content method encounters an HTML-transparent tag, it triggers
the OnHTMLTag event. You must write an event handler to determine the type of tag
encountered, and to replace it with customized content.

If you do not create an OnHTMLTag event handler for the page producer, HTML-
transparent tags are replaced with an empty string.

Using page producers from an action item
A typical use of a page producer component uses the HTMLFile property to specify a
file containing an HTML template. The OnAction event handler calls the Content
method to convert the template into a final HTML sequence:

procedure WebModule1.MyActionEventHandler(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
PageProducer1.HTMLFile := 'Greeting.html';
Response.Content := PageProducer1.Content;

end;

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our Web site.
</BODY>
</HTML>

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML
during execution:

procedure WebModule1.PageProducer1HTMLTag(Sender : TObject;Tag: TTag;
const TagString: string; TagParams: TStrings; var ReplaceText: string);

begin
if CompareText(TagString,'UserName') = 0 then

ReplaceText := TPageProducer(Sender).Dispatcher.Request.Content;
end;

If the content of the request message was the string Mr. Ed, the value of
Response.Content would be

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our Web site.
</BODY>
</HTML>

Note This example uses an OnAction event handler to call the content producer and assign
the content of the response message. You do not need to write an OnAction event
handler if you assign the page producer’s HTMLFile property at design time. In that
case, you can simply assign PageProducer1 as the value of the action item’s Producer
property to accomplish the same effect as the OnAction event handler above.

U s i n g W e b B r o k e r 34-17

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Chaining page producers together
The replacement text from an OnHTMLTag event handler need not be the final
HTML sequence you want to use in the HTTP response message. You may want to
use several page producers, where the output from one page producer is the input
for the next.

The simplest way is to chain the page producers together is to associate each page
producer with a separate action item, where all action items have the same PathInfo
and MethodType. The first action item sets the content of the Web response message
from its content producer, but its OnAction event handler makes sure the message is
not considered handled. The next action item uses the ContentFromString method of
its associated producer to manipulate the content of the Web response message, and
so on. Action items after the first one use an OnAction event handler such as the
following:

procedure WebModule1.Action2Action(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageProducer2.ContentFromString(Response.Content);

end;

For example, consider an application that returns calendar pages in response to
request messages that specify the month and year of the desired page. Each calendar
page contains a picture, followed by the name and year of the month between small
images of the previous month and next months, followed by the actual calendar. The
resulting image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

34-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

The OnHTMLTag event handler of the first page producer looks up the month and
year from the request message. Using that information and the template file, it does
the following:

• Replaces <#MonthlyImage> with <#Image Month=January Year=2000>.

• Replaces <#TitleLine> with <#Calendar Month=December Year=1999
Size=Small> January 2000 <#Calendar Month=February Year=2000 Size=Small>.

• Replaces <#MainBody> with <#Calendar Month=January Year=2000 Size=Large>.

The OnHTMLTag event handler of the next page producer uses the content produced
by the first page producer, and replaces the <#Image Month=January Year=2000> tag
with the appropriate HTML tag. Yet another page producer resolves the
#Calendar tags with appropriate HTML tables.

Using database information in responses
The response to an HTTP request message may include information taken from a
database. Specialized content producers on the Internet palette page can generate the
HTML to represent the records from a database in an HTML table.

As an alternate approach, special components on the InternetExpress page of the
component palette let you build Web servers that are part of a multi-tiered database
application. See “Building Web applications using InternetExpress” on page 31-33
for details.

Adding a session to the Web module

Console CGI applications are launched in response to HTTP request messages. When
working with databases in these types of applications, you can use the default
session to manage your database connections, because each request message has its
own instance of the application. Each instance of the application has its own distinct,
default session.

When writing an ISAPI application or an NSAPI application, however, each request
message is handled in a separate thread of a single application instance. To prevent
the database connections from different threads from interfering with each other, you
must give each thread its own session.

Each request message in an ISAPI or NSAPI application spawns a new thread. The
Web module for that thread is generated dynamically at runtime. Add a TSession
object to the Web module to handle the database connections for the thread that
contains the Web module.

U s i n g W e b B r o k e r 34-19

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Separate instances of the Web module are generated for each thread at runtime. Each
of those modules contains the session object. Each of those sessions must have a
separate name, so that the threads that handle separate request messages do not
interfere with each other’s database connections. To cause the session objects in each
module to dynamically generate unique names for themselves, set the
AutoSessionName property of the session object. Each session object will dynamically
generate a unique name for itself and set the SessionName property of all datasets in
the module to refer to that unique name. This allows all interaction with the database
for each request thread to proceed without interfering with any of the other request
messages. For more information on sessions, see “Managing database sessions” on
page 26-16

Representing database information in HTML

Specialized Content producer components on the Internet palette page supply
HTML commands based on the records of a dataset. There are two types of data-
aware content producers:

• The dataset page producer, which formats the fields of a dataset into the text of an
HTML document.

• Table producers, which format the records of a dataset as an HTML table.

Using dataset page producers
Dataset page producers work like other page producer components: they convert a
template that includes HTML-transparent tags into a final HTML representation.
They include the special ability, however, of converting tags that have a tag name
which matches the name of a field in a dataset into the current value of that field. For
more information about using page producers in general, see “Using page producer
components” on page 34-14.

To use a dataset page producer, add a TDataSetPageProducer component to your Web
module and set its DataSet property to the dataset whose field values should be
displayed in the HTML content. Create an HTML template that describes the output
of your dataset page producer. For every field value you want to display, include a
tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset
whose value should be displayed.

When your application calls the Content, ContentFromString, or ContentFromStream
method, the dataset page producer substitutes the current field values for the tags
that represent fields.

34-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Using table producers
The Internet palette page includes two components that create an HTML table to
represent the records of a dataset:

• Dataset table producers, which format the fields of a dataset into the text of an
HTML document.

• Query table producers, which runs a query after setting parameters supplied by
the request message and formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a
resulting HTML table by specifying properties for the table’s color, border, separator
thickness, and so on. To set the properties of a table producer at design time, double-
click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Table producers use the THTMLTableAttributes object to describe the visual
appearance of the HTML table that displays the records from the dataset. The
THTMLTableAttributes object includes properties for the table’s width and spacing
within the HTML document, and for its background color, border thickness, cell
padding, and cell spacing. These properties are all turned into options on the HTML
<TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table
producer object in the Object Inspector and expand the TableAttributes property to
access the display properties of the THTMLTableAttributes object.

You can also specify these properties programmatically at runtime.

Specifying the row attributes
Similar to the table attributes, you can specify the alignment and background color of
cells in the rows of the table that display data. The RowAttributes property is a
THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the
RowAttributes property. You can also specify these properties programmatically at
runtime.

You can also adjust the number of rows shown in the HTML table by setting the
MaxRows property.

Specifying the columns
If you know the dataset for the table at design time, you can use the Columns editor
to customize the columns’ field bindings and display attributes. Select the table
producer component, and right-click. From the context menu, choose the Columns
editor. This lets you add, delete, or rearrange the columns in the table. You can set the
field bindings and display properties of individual columns in the Object Inspector
after selecting them in the Columns editor.

U s i n g W e b B r o k e r 34-21

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

If you are getting the name of the dataset from the HTTP request message, you can’t
bind the fields in the Columns editor at design time. However, you can still
customize the columns programmatically at runtime, by setting up the appropriate
THTMLTableColumn objects and using the methods of the Columns property to add
them to the table. If you do not set up the Columns property, the table producer
creates a default set of columns that match the fields of the dataset and specify no
special display characteristics.

Embedding tables in HTML documents
You can embed the HTML table that represents your dataset in a larger document by
using the Header and Footer properties of the table producer. Use Header to specify
everything that comes before the table, and Footer to specify everything that comes
after the table.

You may want to use another content producer (such as a page producer) to create
the values for the Header and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the
table. Use the Caption and CaptionAlignment properties to give your table a caption.

Setting up a dataset table producer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset.
Set the DataSet property of TDataSetTableProducer to specify the dataset that contains
the records you want to display. You do not set the DataSource property, as you
would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always
displays records from the same dataset. You must set the DataSet property at runtime
if you are basing the dataset on the information in the HTTP request message.

Setting up a query table producer
You can produce an HTML table to display the results of a query, where the
parameters of the query come from the HTTP request message. Specify the TQuery
object that uses those parameters as the Query property of a TQueryTableProducer
component.

If the request message is a GET request, the parameters of the query come from the
Query fields of the URL that was given as the target of the HTTP request message. If
the request message is a POST request, the parameters of the query come from the
content of the request message.

When you call the Content method of TQueryTableProducer, it runs the query, using
the parameters it finds in the request object. It then formats an HTML table to display
the records in the resulting dataset.

As with any table producer, you can customize the display properties or column
bindings of the HTML table, or embed the table in a larger HTML document.

34-22 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-1

C h a p t e r

35
Chapter35Creating Web Server applications

using WebSnap
WebSnap augments Web Broker with additional components, wizards, and views—
making it easier to build Web server applications that deliver complex, data-driven
Web pages. WebSnap's support for multiple modules and for server-side scripting
makes development and maintenance easier for teams of developers and Web
designers.

WebSnap allows HTML design experts on your team to make a more effective
contribution to Web server development and maintenance. The final product of the
WebSnap development process includes a series of scriptable HTML page templates.
These pages can be changed using HTML editors that support embedded script tags,
like Microsoft FrontPage, or even a simple text editor. Changes can be made to the
templates as needed, even after the application is deployed. There is no need to
modify the project source code at all, which saves valuable development time. Also,
WebSnap’s multiple module support can be used to partition your application into
smaller pieces during the coding phases of your project. Developers can work more
independently.

The dispatcher components automatically handle requests for page content, HTML
form submissions, and requests for dynamic images. WebSnap components called
adapters provide a means to define a scriptable interface to the business rules of your
application. For example, the TDataSetAdapter object is used to make dataset
components scriptable. You can use WebSnap producer components to quickly build
complex, data-driven forms and tables, or to use XSL to generate a page. You can use
the session component to keep track of end users. You can use the user list
component to provide access to user names, passwords, and access rights.

The Web application wizard allows you to quickly build an application that is
customized with the components that you will need. The Web page module wizard
allows you to create a module that defines a new page in your application. Or use the
Web data module wizard to create a container for components that are shared across
your Web application.

35-2 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

The page module views show the result of server-side scripting without running the
application. You can view the generated HTML in an embedded browser using the
Preview tab, or in text form using the HTML Result tab. The HTML Script tab shows
the page with server-side scripting, which is used to generate HTML for the page.

The following sections of this chapter explain how you use the WebSnap components
to create a Web server application.

Fundamental WebSnap components
Before you can build Web server applications using WebSnap, you must first
understand the fundamental components used in WebSnap development. They fall
into three categories:

• Web modules, which contain the components that make up the application and
define pages

• Adapters, which provide an interface between HTML pages and the Web server
application itself

• Page producers, which contain the routines that create the HTML pages to be
served to the end user

The following sections examine each type of component in more detail.

Web modules

Web modules are the basic building block of WebSnap applications. Every WebSnap
server application must have at least one Web module. More can be added as
needed. There are four Web module types:

• Web application page modules (TWebAppPageModule objects)
• Web application data modules (TWebAppDataModule objects)
• Web page modules (TWebPageModule objects)
• Web data modules (TWebDataModule objects)

Web page modules and Web application page modules provide content for Web
pages. Web data modules and Web application data modules act as containers for
components shared across your application; they serve the same purpose in
WebSnap applications that ordinary data modules serve in regular applications. You
can include any number of Web page or data modules in your server application.

You may be wondering how many Web modules your application needs. Every
WebSnap application needs one (and only one) Web application module of some
type. Beyond that, you can add as many Web page or data modules as you need.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-3

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

For Web page modules, a good rule of thumb is one per page style. If you intend to
implement a page that can use the format of an existing page, you may not need a
new Web page module. Modifications to an existing page module may suffice. If the
page is very different from your existing modules, you will probably want to create a
new module. For example, let’s say you are trying to build a server to handle online
catalog sales. Pages which describe available products might all share the same Web
page module, since the pages can all contain the same basic information types using
the same layout. An order form, however, would probably require a different Web
page module, since the format and function of an order form is different from that of
an item description page.

The rules are different for Web data modules. Components that can be shared by
many different Web modules should be placed in a Web data module to simplify
shared access. You will also want to place components that can be used by many
different Web applications in their own Web data module. That way you can easily
share those items among applications. Of course, if neither of these circumstances
applies you might choose not to use Web data modules at all. Use them the same way
you would use regular data modules, and let your own judgment and experience be
your guide.

Web application module types
Web application modules provide centralized control for business rules and non-
visual components in the Web application. The two types of Web application
modules are tabulated below.

Web application modules act as containers for components that perform functions
for the application as a whole—such as dispatching requests, managing sessions, and
maintaining user lists. If you are already familiar with the Web Broker architecture,
you can think of Web application modules as being similar to TWebApplication
objects. Web application modules also contain the functionality of a regular Web
module, either page or data, depending on the Web application module type. Your
project can contain only one Web application module. You will never need more than
one anyway; you can add regular Web modules to your server to provide whatever
extra features you want.

Table 35.1 Web application module types

Web application
module type Description

Page Creates a content page. The page module contains a page producer which is
responsible for generating the content of a page. The page producer displays
its associated page when the HTTP request pathinfo matches the page name.
The page can act as the default page when the pathinfo is blank.

Data Used as a container for components shared by other modules, such as database
components used by multiple Web page modules.

35-4 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

Use the Web application module to contain the most basic features of your server
application. If your server will maintain a home page of some sort, you may want to
make your Web application module a TWebAppPageModule instead of a
TWebAppDataModule, so you don’t have to create an extra Web page module for that
page.

Web page modules
Each Web page module has a page producer associated with it. When a request is
received, the page dispatcher analyzes the request and calls the appropriate page
module to process the request and return the content of the page.

Like Web data modules, Web page modules are containers for components. A Web
page module is more than a mere container, however. A Web page module is used
specifically to produce a Web page.

All web page modules have an editor view, called Preview, that allows you to
preview the page as you are building it. You can take full advantage of the visual
application development environment in the IDE.

Page producer component
Web page modules have a property that identifies the page producer component
responsible for generating content for the page. (To learn more about page
producers, see “Page producers” on page 35-6.) The WebSnap page module wizard
automatically adds a producer when creating a Web page module. You can change
the page producer component later by dropping in a different producer from the
WebSnap palette. However, if the page module has a template file, be sure that the
content of this file is compatible with the replacement producer component.

Page name
Web page modules have a page name that can be used to reference the page in an
HTTP request or within the application's logic. A factory in the Web page module’s
unit specifies the page name for the Web page module.

Producer template
Most page producers use a template. HTML templates typically contain some static
HTML mixed in with transparent tags or server-side scripting. When page producers
create their content, they replace the transparent tags with appropriate values and
execute the server-side script to produce the HTML that is displayed by a client
browser. (The XSLPageProducer is an exception to this. It uses XSL templates, which
contain XSL rather than HTML. The XSL templates do not support transparent tags
or server-side script.)

Web page modules may have an associated template file that is managed as part of
the unit. A managed template file appears in the Project Manager and has the same
base file name and location as the unit service file. If the Web page module does not
have an associated template file, the properties of the page producer component
specify the template.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-5

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

Web data modules
Like standard data modules, Web data modules are a container for components from
the palette. Data modules provide a design surface for adding, removing, and
selecting components. The Web data module differs from a standard data module in
the structure of the unit and the interfaces that the Web data module implements.

Use the Web data module as a container for components that are shared across your
application. For example, you can put a dataset component in a data module and
access the dataset from both:

• a page module that displays a grid, and
• a page module that displays an input form.

You can also use Web data modules to contain sets of components that can be used
by several different Web server applications.

Structure of a Web data module unit
Standard data modules have a variable called a form variable, which is used to access
the data module object. Web data modules replace the variable with a function,
which is defined in a Web data module’s unit and has the same name as the Web data
module. The function’s purpose is the same as that of the variable it replaces.
WebSnap applications may be multi-threaded and may have multiple instances of a
particular module to service multiple requests concurrently. Therefore, the function
is used to return the correct instance.

The Web data module unit also registers a factory to specify how the module should
be managed by the WebSnap application. For example, flags indicate whether to
cache the module and reuse it for other requests or to destroy the module after a
request has been serviced.

Adapters

Adapters define a script interface to your server application. They allow you to insert
scripting languages into a page and retrieve information by making calls from your
script code to the adapters. For example, you can use an adapter to define data fields
to be displayed on an HTML page. A scripted HTML page can then contain HTML
content and script statements that retrieve the values of those data fields. This is
similar to the transparent tags used in Web Broker applications. Adapters also
support actions that execute commands. For example, clicking on a hyperlink or
submitting an HTML form can initiate adapter actions.

Adapters simplify the task of creating HTML pages dynamically. By using adapters
in your application, you can include object-oriented script that supports conditional
logic and looping. Without adapters and server-side scripting, you must write more
of your HTML generation logic in event handlers. Using adapters can significantly
reduce development time.

See “Server-side scripting in WebSnap”on page 35-19 and “Dispatching requests and
responses” on page 35-22 for more details about scripting.

35-6 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

Four types of adapter components can be used to create page content: fields, actions,
errors and records.

Fields
Fields are components that the page producer uses to retrieve data from your
application and to display the content on a Web page. Fields can also be used to
retrieve an image. In this case, the field returns the address of the image written to
the Web page. When a page displays its content, a request is sent to the Web server
application, which invokes the adapter dispatcher to retrieve the actual image from
the field component.

Actions
Actions are components that execute commands on behalf of the adapter. When a
page producer generates its page, the scripting language calls adapter action
components to return the name of the action along with any parameters necessary to
execute the command. For example, consider clicking a button on an HTML form to
delete a row from a table. This returns, in the HTTP request, the action name
associated with the button and a parameter indicating the row number. The adapter
dispatcher locates the named action component and passes the row number as a
parameter to the action.

Errors
Adapters keep a list of errors that occur while executing an action. Page producers
can access this list of errors and display them in the Web page that the application
returns to the end user.

Records
Some adapter components, such as TDataSetAdapter, represent multiple records. The
adapter provides a scripting interface which allows iteration through the records.
Some adapters support paging and iterate only through the records on the current
page.

Page producers

Page producers to generate content on behalf of a Web page module. Page producers
provide the following functionality:

• They generate HTML content.

• They can reference an external file using the HTMLFile property, or the internal
string using the HTMLDoc property.

• When the producers are used with a Web page module, the template can be a file
associated with a unit.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-7

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

• Producers dynamically generate HTML that can be inserted into the template
using transparent tags or active scripting. Transparent tags can be used in the
same way as WebBroker applications. To learn more about using transparent tags,
see “Converting HTML-transparent tags” on page 34-16. Active scripting support
allows you to embed JScript or VBScript inside the HTML page.

The standard WebSnap method for using page producers is as follows. When you
create a Web page module, you must choose a page producer type in the Web Page
Module wizard. You have many choices, but most WebSnap developers prototype
their pages by using an adapter page producer, TAdapterPageProducer. The adapter
page producer lets you build a prototype Web page using a process analogous to the
standard component model. You add a type of form, an adapter form, to the adapter
page producer. As you need them, you can add adapter components (such as adapter
grids) to the adapter form. Using adapter page producers, you can create Web pages
in a way that is similar to the standard technique for building user interfaces.

There are some circumstances where switching from an adapter page producer to a
regular page producer is more appropriate. For example, part of the function of an
adapter page producer is to dynamically generate script in a page template at
runtime. You may decide that static script would help optimize your server. Also,
users who are experienced with script may want to make changes to the script
directly. In this case, a regular page producer must be used to avoid conflicts
between dynamic and static script. To learn how to change to a regular page
producer, see “Advanced HTML design” on page 35-11

You can also use page producers the same way you would use them in Web Broker
applications, by associating the producer with a Web dispatcher action item. The
advantages of using the Web page module are

• the ability to preview the page’s layout without running the application, and

• the ability to associate a page name with the module, so that the page dispatcher
can call the page producer automatically.

Creating Web server applications with WebSnap
If you look at the source code for WebSnap, you will discover that WebSnap
comprises hundreds of objects. In fact, WebSnap is so rich in objects and features that
you could spend a long time studying its architecture in detail before understanding
it completely. Fortunately, you really don’t need to understand the whole WebSnap
system before you start developing your server application.

Here you will learn more about how WebSnap works by creating a new Web server
application.

To create a new Web server application using the WebSnap architecture:

1 Choose File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap
Application.

A dialog box appears (as shown in Figure 35.1).

35-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

3 Specify the correct server type.

4 Use the components button to specify application module components.

5 Use the Page Options button to select application module options.

6 Check the Cross Platform box if you intend to build and deploy your application
on both Windows and Linux servers.

Figure 35.1 New WebSnap application dialog box

Selecting a server type

Select one of the following types of Web server application, depending on your
application’s type of Web server.

Table 35.2 Web server application types

Server type Description

ISAPI and NSAPI Sets up your project as a DLL with the exported methods expected by the
Web server.

Apache Sets up your project as a DLL with the exported methods expected by the
appropriate Apache Web server. Both Apache 1 and 2 are supported.

CGI stand-alone Sets up your project as a console application which conforms to the
Common Gateway Interface (CGI) standard.

Web App Debugger
executable

Creates an environment for developing and testing Web server
applications. This type of application is not intended for deployment.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-9

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

Specifying application module components

Application components provide the Web application’s functionality. For example,
including an adapter dispatcher component automatically handles HTML form
submissions and the return of dynamically generated images. Including a page
dispatcher automatically displays the content of a page when the HTTP request
pathinfo contains the name of the page.

Selecting the Components button on the new WebSnap application dialog (see Figure
35.1) displays another dialog that allows you to select one or more of the Web
application module components. The dialog, which is called the Web App
Components dialog, is shown in Figure 35.2.

Figure 35.2 Web App Components dialog

The following table contains a brief explanation of the available components:

Table 35.3 Web application components

Component type Description

Application Adapter Contains information about the application, such as the title. The default
type is TApplicationAdapter.

End User Adapter Contains information about the user, such as their name, access rights, and
whether they are logged in. The default type is TEndUserAdapter.
TEndUserSessionAdapter may also be selected.

Page Dispatcher Examines the HTTP request’s pathinfo and calls the appropriate page
module to return the content of a page. The default type is
TPageDispatcher.

Adapter Dispatcher Automatically handles HTML form submissions and requests for dynamic
images by calling adapter action and field components. The default type is
TAdapterDispatcher.

35-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

For each of the above components, the component types listed are the default types
shipped with the IDE. Users can create their own component types or use third-party
component types.

Selecting Web application module options

If the selected application module type is a page module, you can associate a name
with the page by entering a name in the Page Name field in the New WebSnap
Application dialog box. At runtime, the instance of this module can be either kept in
cache or removed from memory when the request has been serviced. Select either of
the options from the Caching field. You can select more page module options by
choosing the Page Options button. The Application Module Page Options dialog is
displayed and provides the following categories:

• Producer: The producer type for the page can be set to one of AdapterPageProducer,
DataSetPageProducer, InetXPageProducer, PageProducer, or XSLPageProducer. If the
selected page producer supports scripting, then use the Script Engine drop-down
list to select the language used to script the page.

Note The AdapterPageProducer supports only JScript.

• HTML: When the selected producer uses an HTML template this group will be
visible.

• XSL: When the selected producer uses an XSL template, such as
TXSLPageProducer, this group will be visible.

• New File: Check New File if you want a template file to be created and managed
as part of the unit. A managed template file appears in the Project Manager and
has the same file name and location as the unit source file. Uncheck New File if
you want to use the properties of the producer component (typically the
HTMLDoc or HTMLFile property).

Dispatch Actions Allows you to define a collection of action items to handle requests based
on pathinfo and method type. Action items call user-defined events or
request the content of page-producer components. The default type is
TWebDispatcher.

Locate File Service Provides control over the loading of template files, and script include files,
when the Web application is running. The default type is
TLocateFileService.

Sessions Service Stores information about end users that is needed for a short period of
time. For example, you can use sessions to keep track of logged-in users
and to automatically log a user out after a period of inactivity. The default
type is TSessionsService.

User List Service Keeps track of authorized users, their passwords, and their access rights.
The default type is TWebUserList.

Table 35.3 Web application components (continued)

Component type Description

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-11

A d v a n c e d H T M L d e s i g n

• Template: When New File is checked, choose the default content for the template
file from the Template drop-down. The standard template displays the title of the
application, the title of the page, and hyperlinks to published pages. The blank
template creates a blank page.

• Page: Enter a page name and title for the page module. The page name is used to
reference the page in an HTTP request or within the application's logic, whereas
the title is the name that the end user will see when the page is displayed in a
browser.

• Published: Check Published to allow the page to automatically respond to HTTP
requests where the page name matches the pathinfo in the request message.

• Login Required: Check Login Required to require the user to log on before the
page can be accessed.

You have now learned how to begin creating a WebSnap server application. The
WebSnap tutorial describes how to develop a more complete application.

Advanced HTML design
Using adapters and adapter page producers, WebSnap makes it easy to create
scripted HTML pages in your Web server application. You can create a Web front
end for your application data using WebSnap tools that may suit all of your needs.
One powerful feature of WebSnap, however, is the ability to incorporate Web design
expertise from other sources into your application. This section discusses some
strategies for expanding the Web server design and maintenance process to include
other tools and non-programmer team members.

The end products of WebSnap development are your server application and HTML
templates for the pages that the server produces. The templates include a mixture of
scripting and HTML. Once they have been generated initially, they can be edited at
any time using any HTML tool you like. (It would be best to use a tool that supports
embedded script tags, like Microsoft FrontPage, to ensure that the editor doesn’t
accidentally damage the script.) The ability to edit template pages outside of the IDE
can be used many ways.

For example, developers can edit the HTML templates at design time using any
external editor they prefer. This allows them to use advanced formatting and
scripting features that may be present in an external HTML editor but not in the IDE.
To enable an external HTML editor from the IDE, use the following steps:

1 From the main menu, select Tools|Environment Options. In the Environment
Options dialog, click on the Internet tab.

2 In the Internet File Types box, select HTML and click the Edit button to display the
Edit Type dialog box.

3 In the Edit Action box, select an action associated with your HTML editor. For
example, to select the default HTML editor on your system, choose Edit from the
drop-down list. Click OK twice to close the Edit Type and Environment Options
dialog boxes.

35-12 D e v e l o p e r ’ s G u i d e

A d v a n c e d H T M L d e s i g n

To edit an HTML template, open the unit which contains that template. In the Edit
window, right-click and select html Editor from the context menu. The HTML editor
displays the template for editing in a separate window. The editor runs independent
of the IDE; save the template and close the editor when you’re finished.

After the product has been deployed, you may wish to change the look of the final
HTML pages. Perhaps your software development team is not even responsible for
the final page layout. That duty may belong to a dedicated Web page designer in
your organization, for example. Your page designers may not have any experience
with software development. Fortunately, they don’t have to. They can edit the page
templates at any point in the product development and maintenance cycle, without
ever changing the source code. Thus, WebSnap HTML templates can make server
development and maintenance more efficient.

Manipulating server-side script in HTML files

HTML in page templates can be modified at any time in the development cycle.
Server-side scripting can be a different matter, however. It is always possible to
manipulate the server-side script in the templates outside of the IDE, but it is not
recommended for pages generated by an adapter page producer. The adapter page
producer is different from ordinary page producers in that it can change the server-
side scripting in the page templates at runtime. It can be difficult to predict how your
script will act if other script is added dynamically. If you want to manipulate script
directly, make sure that your Web page module contains a page producer instead of
an adapter page producer.

If you have a Web page module that uses an adapter page producer, you can convert
it to use a regular page producer instead by using the following steps:

1 In the module you want to convert (let’s call it ModuleName), copy all of the
information from the HTML Script tab to the ModuleName.html tab, replacing all
of the information that it contained previously.

2 Drop a page producer (located on the Internet tab of the component palette) onto
your Web page module.

3 Set the page producer’s ScriptEngine property to match that of the adapter page
producer it replaces.

4 Change the page producer in the Web page module from the adapter page
producer to the new page producer. Click on the Preview tab to verify that the
page contents are unchanged.

5 The adapter page producer has now been bypassed. You may now delete it from
the Web page module.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-13

L o g i n s u p p o r t

Login support
Many Web server applications require login support. For example, a server
application may require a user to login before granting access to some parts of a Web
site. Pages may have a different appearance for different users; logins may be
necessary to enable the Web server to send the right pages. Also, because servers
have physical limitations on memory and processor cycles, server applications
sometimes need the ability to limit the number of users at any given time.

With WebSnap, incorporating login support into your Web server application is
fairly simple and straightforward. In this section, you will learn how you can add
login support, either by designing it in from the beginning of your development
process or by retrofitting it onto an existing application.

Adding login support

In order to implement login support, you need to make sure your Web application
module has the following components:

• A user list service (an object of type TWebUserList), which contains the usernames,
passwords and permissions for server users

• A sessions service (TSessionsService), which stores information about users currently
logged in to the server

• An end user adapter (TEndUserSessionAdapter) which handles actions associated
with logging in

When you first create your Web server application, you can add these components
using the New WebSnap Application dialog box. Click the Components button on
that dialog to display the New Web App Components dialog box. Check the End
User Adapter, Sessions Service and Web User List boxes. Select
TEndUserSessionAdapter on the drop down menu next to the End User Adapter box to
select the end user adapter type. (The default choice, TEndUserAdapter, is not
appropriate for login support because it cannot track the current user.) When you’re
finished, your dialog should look like the one shown below. Click OK twice to
dismiss the dialog boxes. Your Web application module now has the necessary
components for login support.

35-14 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

Figure 35.3 Web App Components dialog with options for login support selected

If you are adding login support to an existing Web application module, you can drop
these components directly into your module from the WebSnap tab of the component
palette. The Web application module will configure itself automatically.

The sessions service and the end user adapter may not require your attention during
your design phase, but the Web user list probably will. You can add default users
and set their read/modify permissions through the WebUserList component editor.
Double-click on the component to display an editor which lets you set usernames,
passwords and access rights. For more information on how to set up access rights,
see “User access rights” on page 35-17.

Using the sessions service

The sessions service, which is an object of type TSessionsService, keeps track of the
users who are logged into your Web server application. The sessions service is
responsible for assigning a different session for each user and for associating name/
value pairs (such as a username) with a user.

Information contained in a sessions service is stored in the application’s memory.
Therefore, the Web server application must keep running between requests for the
sessions service to work. Some server application types, such as CGI, terminate
between requests.

Note If you want your application to support logins, be sure to use a server type that does
not terminate between requests. If your project produces a Web App debugger
executable, you must have the application running in the background before it
receives a page request. Otherwise it will terminate after each page request, and
users will never be able to get past the login page.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-15

L o g i n s u p p o r t

There are two important properties in the sessions service which you can use to
change default server behavior. The MaxSessions property specifies how many users
can be logged into the system at any given time. The default value for MaxSessions is
-1, which places no software limitation on the number of allowed users. Of course,
your server hardware can still run short of memory or processor cycles for new users,
which can adversely affect system performance. If you are concerned that excessive
numbers of users might overwhelm your server, be sure to set MaxSessions to an
appropriate value.

The DefaultTimeout property specifies the defaut time-out period in minutes. After
DefaultTimeout minutes have passed without any user activity, the session is
automatically terminated. If the user had logged in, all login information is lost. The
default value is 20. You can override the default value in any given session by
changing its TimeoutMinutes property.

Login pages

Of course, your application also needs a login page. Users enter their username and
password for authentication, either while trying to access a restricted page or prior to
such an attempt. The user can also specify which page they receive when
authentication is completed. If the username and password match a user in the Web
user list, the user acquires the appropriate access rights and is forwarded to the page
specified on the login page. If the user isn’t authenticated, the login page may be
redisplayed (the default action) or some other action may occur.

Fortunately, WebSnap makes it easy to create a simple login page using a Web page
module and the adapter page producer. To create a login page, start by creating a
new Web page module. Select File|New|Other to display the New Items dialog box,
then select WebSnap Page Module from the WebSnap tab. Select
AdapterPageProducer as the page producer type. Fill in the other options however
you like. Login tends to be a good name for the login page.

Now you should add the most basic login page fields: a username field, a password
field, a selection box for selecting which page the user receives after logging in, and a
Login button which submits the page and authenticates the user. To add these fields:

1 Add a LoginFormAdapter component (which you can find on the WebSnap tab of
the component palette) to the Web page module you just created.

2 Double-click the AdapterPageProducer component to display a Web page editor
window.

3 Right-click the AdapterPageProducer in the top left pane and select New
Component. In the Add Web Component dialog box, select AdapterForm and click
OK.

4 Add an AdapterFieldGroup to the AdapterForm. (Right-click the AdapterForm in the
top left pane and select New Component. In the Add Web Component dialog box,
select AdapterFieldGroup and click OK.)

35-16 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

5 Now go to the Object Inspector and set the Adapter property of your
AdapterFieldGroup to your LoginFormAdapter. The UserName, Password and
NextPage fields should appear automatically in the Browser tab of the Web page
editor.

So, WebSnap takes care of most of the work in a few simple steps. The login page is
still missing a Login button, which submits the information on the form for
authentication. To add a Login button:

1 Add an AdapterCommandGroup to the AdapterForm.

2 Add an AdapterActionButton to the AdapterCommandGroup.

3 Click on the AdapterActionButton (listed in the upper right pane of the Web page
editor) and change its ActionName property to Login using the Object Inspector.
You can see a preview of your login page in the Web page editor’s Browser tab.

 Your Web page editor should look similar to the one shown below.

Figure 35.4 An example of a login page as seen from a Web page editor

If the button doesn’t appear below the AdapterFieldGroup, make sure that the
AdapterCommandGroup is listed below the AdapterFieldGroup on the Web page editor.
If it appears above, select the AdapterCommandGroup and click the down arrow on the
Web page editor. (In general, Web page elements appear vertically in the same order
as they appear in the Web page editor.)

There is one more step necessary before your login page becomes functional. You
need to specify which of your pages is the login page in your end user session
adapter. To do so, select the EndUserSessionAdapter component in your Web
application module. In the Object Inspector, change the LoginPage property to the
name of your login page. Your login page is now enabled for all the pages in your
Web server application.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-17

L o g i n s u p p o r t

Setting pages to require logins

Once you have a working login page, you must require logins for those pages which
need controlled access. The easiest way to have a page require logins is to design that
requirement into the page. When you first create a Web page module, check the
Login Required box in the Page section of the New WebSnap Page Module dialog
box.

If you create a page without requiring logins, you can change your mind later. To
require logins after a Web page module has been created:

1 Open the source code file associated with the Web page module in the editor.

2 Scroll down to the implementation section. In the parameters for the
WebRequestHandler.AddWebModuleFactory command, find the creator of the
TWebPageInfo object. It should look like this:

TWebPageInfo.Create([wpPublished {, wpLoginRequired}], '.html')

3 Uncomment the wpLoginRequired portion of the parameter list by removing the
curly braces. The TWebPageInfo creator should now look like this:

TWebPageInfo.Create([wpPublished , wpLoginRequired], '.html')

To remove the login requirement from a page, reverse the process and recomment
the wpLoginRequired portion of the creator.

Note You can use the same process to make the page published or not. Simply add or
remove comment marks around the wpPublished portion as needed.

User access rights

User access rights are an important part of any Web server application. You need to
be able to control who can view and modify the information your server provides.
For example, let’s say you are building a server application to handle online retail
sales. It makes sense to allow users to view items in your catalog, but you don’t want
them to be able to change your prices! Clearly, access rights are an important issue.

Fortunately, WebSnap offers you several ways to control access to pages and server
content. In previous sections, you saw how you can control page access by requiring
logins. You have other options as well. For example:

• You can show data fields in an edit box to users with appropriate modify access
rights; other users will see the field contents, but not have the ability to edit them.

• You can hide specific fields from users who don’t have the correct view access
rights.

• You can prevent unauthorized users from receiving specific pages.

Descriptions for implementing these behaviors are included in this section.

35-18 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

Dynamically displaying fields as edit or text boxes
If you use the adapter page producer, you can change the appearance of page
elements for users with different access rights. For example, the Biolife demo (found
in the WebSnap subdirectory of the Demos directory) contains a form page which
shows all the information for a given species. The form appears when the user clicks
a Details button on the grid. A user logged in as Will sees data displayed as plain
text. Will is not allowed to modify the data, so the form doesn’t give him a
mechanism to do so. User Ellen does have modify permissions, so when Ellen views
the form page, she sees a series of edit boxes which allow her to change field
contents. Using access rights in this manner can save you from creating extra pages.

The appearance of some page elements, such as TAdapterDisplayField and
TAdapterDisplayColumn, is determined by its ViewMode property. If ViewMode is set to
vmToggleOnAccess, the page element will appear as an edit box to users with modify
access. Users without modify access will see plain text. Set the ViewMode property to
vmToggleOnAccess to allow the page element’s appearance and function to be
determined dynamically.

A Web user list is a list of TWebUserListItem objects, one for each user who can login
to the system. Permissions for users are stored in their Web user list item’s
AccessRights property. AccessRights is a text string, so you are free to specify
permissions any way you like. Create a name for every kind of access right you want
in your server application. If you want a user to have multiple access rights, separate
items in the list with a space, semicolon or comma.

Access rights for fields are controlled by their ViewAccess and ModifyAccess
properties. ViewAccess stores the name of the access rights needed to view a given
field. ModifyAccess dictates what access rights are needed to modify field data. These
properties appear in two places: in each field and in the adapter object that contains
them.

Checking access rights is a two-step process. When deciding the appearance of a field
in a page, the application first checks the field’s own access rights. If the value is an
empty string, the application then checks the access rights for the adapter which
contains the field. If the adapter property is empty as well, the application will follow
its default behavior. For modify access, the default behavior is to allow modifications
by any user in the Web user list who has a non-empty AccessRights property. For
view access, permission is automatically granted when no view access rights are
specified.

Hiding fields and their contents
You can hide the contents of a field from users who don’t have appropriate view
permissions. First set the ViewAccess property for the field to match the permission
you want users to have. Next, make sure that the ViewAccess for the field’s page
element is set to vmToggleOnAccess. The field caption will appear, but the value of the
field won’t.

Of course, it is often best to hide all references to the field when a user doesn’t have
view permissions. To do so, set the HideOptions for the field’s page element to include
hoHideOnNoDisplayAccess. Neither the caption nor the contents of the field will be
displayed.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-19

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

Preventing page access
You may decide that certain pages should not be accessible to unauthorized users. To
grant check access rights before displaying pages, alter your call to the TWebPageInfo
constructor in the Web request handler’s AddWebModuleFactory command. This
command appears in the initialization section of the source code for your module.

The constructor for TWebPageInfo takes up to 6 arguments. WebSnap usually leaves
four of them set to default values (empty strings), so the call generally looks like this:

TWebPageInfo.Create([wpPublished, wpLoginRequired], '.html')

To check permissions before granting access, you need to supply the string for the
necessary permission in the sixth parameter. For example, let’s say that the
permission is called “Access”. This is how you could modify the creator:

TWebPageInfo.Create([wpPublished, wpLoginRequired], '.html', ’’, ‘’, ‘’, ‘Access’)

Access to the page will now be denied to anyone who lacks Access permission.

Server-side scripting in WebSnap
Page producer templates can include scripting languages such as JScript or VBScript.
The page producer executes the script in response to a request for the producer's
content. Because the Web server application evaluates the script, it is called server-
side script, as opposed to client-side script (which is evaluated by the browser).

This section provides a conceptual overview of server-side scripting and how it is
used by WebSnap applications. The ”WebSnap server-side scripting reference”topic
in the online help has much more detailed information about script objects and their
properties and methods. You can think of it as an API reference for server-side
scripting, similar to the object descriptions found in the help files. The server-side
scripting topic also contains detailed script examples which show you exactly how
script can be used to generate HTML pages.

Although server-side scripting is a valuable part of WebSnap, it is not essential that
you use scripting in your WebSnap applications. Scripting is used for HTML
generation and nothing else. It allows you to insert application data into an HTML
page. In fact, almost all of the properties exposed by adapters and other script-
enabled objects are read-only. Server-side script isn’t used to change application
data, which is still managed by components and event handlers written in your
application’s source code.

There are other ways to insert application data into an HTML page. You can use Web
Broker’s transparent tags or some other tag-based solution, if you prefer. For
example, several projects in the WebSnap examples directory use XML and XSL
instead of scripting. Without scripting, however, you will be forced to write most of
your HTML generation logic in source code, which will increase your development
time.

35-20 D e v e l o p e r ’ s G u i d e

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

The scripting used in WebSnap is object-oriented and supports conditional logic and
looping, which can greatly simplify your page generation tasks. For example, your
pages may include a data field that can be edited by some users but not others. With
scripting, conditional logic can be placed in your template pages which displays an
edit box for authorized users and simple text for others. With a tag-based approach,
you must program such decision-making into your HTML generating source code.

Active scripting

WebSnap relies on active scripting to implement server-side script. Active scripting is
a technology created by Microsoft to allow a scripting language to be used with
application objects through COM interfaces. Microsoft ships two active scripting
languages, VBScript and JScript. Support for other languages is available through
third parties.

Script engine

The page producer’s ScriptEngine property identifies the active scripting engine that
evaluates the script within a template. It is set to support JScript by default, but it can
also support other scripting languages (such as VBScript).

Note WebSnap’s adapters are designed to produce JScript. You will need to provide your
own script generation logic for other scripting languages.

Script blocks

Script blocks, which appear in HTML templates, are delimited by <% and %>. The
script engine evaluates any text inside script blocks. The result becomes part of the
page producer's content. The page producer writes text outside of a script block after
translating any embedded transparent tags. Script blocks can also enclose text,
allowing conditional logic and loops to dictate the output of text. For example, the
following JScript block generates a list of five numbered lines:

<% for (i=0;i<5;i++) { %>
 Item <%=i %>
<% } %>

(The <%= delimiter is short for Response.Write.)

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-21

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

Creating script

Developers can take advantage of WebSnap features to automatically generate script.

Wizard templates
When creating a new WebSnap application or page module, WebSnap wizards
provide a template field that is used to select the initial content for the page module
template. For example, the Default template generates JScript which, in turn,
displays the application title, page name, and links to published pages.

TAdapterPageProducer
The TAdapterPageProducer builds forms and tables by generating HTML and JScript.
The generated JScript calls adapter objects to retrieve field values, field image
parameters, and action parameters.

Editing and viewing script

Use the HTML Result tab to view the HTML resulting from the executed script. Use
the Preview tab to view the result in a browser. The HTML Script tab is available
when the Web Page module uses TAdapterPageProducer. The HTML Script tab
displays the HTML and JScript generated by the TAdapterPageProducer object.
Consult this view to see how to write script that builds HTML forms to display
adapter fields and execute adapter actions.

Including script in a page

A template can include script from a file or from another page. To include script from
a file, use the following code statement:

<!-- #include file="filename.html" -->

When the template includes script from another page, the script is evaluated by the
including page. Use the following code statement to include the unevaluated content
of page1.

<!-- #include page="page1" -- >

35-22 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Script objects

Script objects are objects that script commands can reference. You make objects
available for scripting by registering an IDispatch interface to the object with the
active scripting engine. The following objects are available for scripting:

Script objects on the current page, which all use the same adapter, can be referenced
without qualification. Script objects on other pages are part of another page module
and have a different adapter object. They can be accessed by starting the script object
reference with the name of the adapter object. For example,

<%= FirstName %>

displays the contents of the FirstName property of the current page’s adapter. The
following script line displays the FirstName property of Adapter1, which is in another
page module:

<%= Adapter1.FirstName %>

For more complete descriptions of script objects, see the ”WebSnap server-side
scripting reference”appendix.

Dispatching requests and responses
One reason to use WebSnap for your Web server application development is that
WebSnap components automatically handle HTML requests and responses. Instead
of writing event handlers for common page transfer chores, you can focus your
efforts on your business logic and server design. Still, it can be helpful to understand
how WebSnap applications handle HTML requests and responses. This section gives
you an overview of that process.

Table 35.4 Script objects

Script object Description

Application Provides access to the application adapter of the Web Application module.

EndUser Provides access to the end user adapter of the Web Application module.

Session Provides access to the session object of the Web Application module.

Pages Provides access to the application pages.

Modules Provides access to the application modules.

Page Provides access to the current page

Producer Provides access to the page producer of the Web Page module.

Response Provides access to the WebResponse. Use this object when tag replacement is
not desired.

Request Provides access to the WebRequest.

Adapter objects All of the adapter components on the current page can be referenced without
qualification. Adapters in other modules must be qualified using the Modules
objects.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-23

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Before handling any requests, the Web application module initializes the Web
context object (of type TWebContext). The Web context object, which is accessed by
calling the global WebContext function, provides global access to variables used by
components servicing the request. For example, the Web context contains the
TWebRequest and TWebResponse objects to represent the HTTP request message and
the response that should be returned.

Dispatcher components

The dispatcher components in the Web application module control the flow of the
application. The dispatchers determine how to handle certain types of HTTP request
messages by examining the HTTP request.

The adapter dispatcher component (TAdapterDispatcher) looks for a content field, or a
query field, that identifies an adapter action component or an adapter image field
component. If the adapter dispatcher finds a component, it passes control to that
component.

The Web dispatcher component (TWebDispatcher) maintains a collection of action
items (of type TWebActionItem) that know how to handle certain types of HTTP
request messages. The Web dispatcher looks for an action item that matches the
request. If it finds one, it passes control to that action item. The Web dispatcher also
looks for auto-dispatching components that can handle the request.

The page dispatcher component (TPageDispatcher) examines the PathInfo property of
the TWebRequest object, looking for the name of a registered Web page module. If the
dispatcher finds a Web page module name, it passes control to that module.

Adapter dispatcher operation

The adapter dispatcher component (TAdapterDispatcher) automatically handles
HTML form submissions, and requests for dynamic images, by calling adapter action
and field components.

Using adapter components to generate content
For WebSnap applications to automatically execute adapter actions and retrieve
dynamic images from adapter fields, the HTML content must be properly
constructed. If the HTML content is not properly constructed, the resulting HTTP
request will not contain the information that the adapter dispatcher needs to call
adapter action and field components.

35-24 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

To reduce errors in constructing the HTML page, adapter components indicate the
names and values of HTML elements. Adapter components have methods that
retrieve the names and values of hidden fields that must appear on an HTML form
designed to update adapter fields. Typically, page producers use server-side
scripting to retrieve names and values from adapter components and then uses this
information to generate HTML. For example, the following script constructs an
 element that references the field called Graphic from Adapter1:

<img src="<%=Adapter1.Graphic.Image.AsHREF%>" alt="<%=Adapter1.Graphic.DisplayText%>">

When the Web application evaluates the script, the HTML src attribute will contain
the information necessary to identify the field and any parameters that the field
component needs to retrieve the image. The resulting HTML might look like this:

When the browser sends an HTTP request to retrieve this image to the Web
application, the adapter dispatcher will be able to determine that the Graphic field of
Adapter1, in the module DM, should be called with "Species No=90090" as a
parameter. The adapter dispatcher will call the Graphic field to write an appropriate
HTTP response.

The following script constructs an <A> element referencing the EditRow action of
Adapter1 and creates a hyperlink to a page called Details:

<a href="<%=Adapter1.EditRow.LinkToPage("Details", Page.Name).AsHREF%>">Edit...

The resulting HTML might look like this:

Edit...

The end user clicks this hyperlink, and the browser sends an HTTP request. The
adapter dispatcher can determine that the EditRow action of Adapter1, in the module
DM, should be called with the parameter Species No=903010. The adapter dispatcher
also displays the Edit page if the action executes successfully, and displays the Grid
page if action execution fails. It then calls the EditRow action to locate the row to be
edited, and the page named Edit is called to generate an HTTP response. Figure 35.5
shows how adapter components are used to generate content.

Figure 35.5 Generating content flow

WebSnap Application

Web Application Module

Web
Response

Page
Producer

Script
Engine

Adapter

Server

Template

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-25

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Receiving adapter requests and generating responses
When the adapter dispatcher receives a client request, the adapter dispatcher creates
adapter request and adapter response objects to hold information about that HTTP
request. The adapter request and adapter response objects are stored in the Web
context to allow access during the processing of the request.

The adapter dispatcher creates two types of adapter request objects: action and
image. It creates the action request object when executing an adapter action. It creates
the image request object when retrieving an image from an adapter field.

The adapter response object is used by the adapter component to indicate the
response to an adapter action or adapter image request. There are two types of
adapter response objects, action and image.

Action requests
Action request objects are responsible for breaking the HTTP request down into
information needed to execute an adapter action. The types of information needed
for executing an adapter action may include the following request information:

Generating action responses
Action response objects generate an HTTP response on behalf of an adapter action
component. The adapter action indicates the type of response by setting properties
within the object, or by calling methods in the action response object. The properties
include:

• RedirectOptions—The redirect options indicate whether to perform an HTTP
redirect instead of returning HTML content.

• ExecutionStatus—Setting the status to success causes the default action response to
be the content of the success page identified in the Action Request.

Table 35.5 Request information found in action requests

Request informaton Description

Component name Identifies the adapter action component.

Adapter mode Defines a mode. For example, TDataSetAdapter supports Edit, Insert, and
Browse modes. An adapter action may execute differently depending on
the mode.

Success page Identifies the page displayed after successful execution of the action.

Failure page Identifies the page displayed if an error occurs during execution of the
action.

Action request
parameters

Identifies the parameters need by the adapter action. For example, the
TDataSetAdapter Apply action will include the key values identifying the
record to be updated.

Adapter field values Specifies values for the adapter fields passed in the HTTP request when an
HTML form is submitted. A field value can include new values entered by
the end user, the original values of the adapter field, and uploaded files.

Record keys Specifies keys that uniquely identify each record.

35-26 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

The action response methods include:

• RespondWithPage —The adapter action calls this method when a particular Web
page module should generate the response.

• RespondWithComponent—The adapter action calls this method when the response
should come from the Web page module containing this component.

• RespondWithURL—The adapter action calls this method when the response is a
redirect to a specified URL.

When responding with a page, the action response object attempts to use the page
dispatcher to generate page content. If it does not find the page dispatcher, it calls the
Web page module directly.

Figure 35.8 illustrates how action request and action response objects handle a
request.

Figure 35.6 Action request and response

Image request
The image request object is responsible for breaking the HTTP request down into the
information required by the adapter image field to generate an image. The types of
information represented by the Image Request include:

• Component name - Identifies the adapter field component.

• Image request parameters - Identifies the parameters needed by the adapter
image. For example, the TDataSetAdapterImageField object needs key values to
identify the record that contains the image.

WebSnap Application

Web Application Module

Web
Request

Adapter
Dispatcher

Action
Request

Adapter
Action

Page
Dispatcher

Action
Response

Web
Response

Web Page
Module

Server

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 35-27

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Image response
The image response object contains the TWebResponse object. Adapter fields respond
to an adapter request by writing an image to the Web response object.

Figure 35.7 illustrates how adapter image fields respond to a request.

Figure 35.7 Image response to a request

Dispatching action items

When responding to a request, the Web dispatcher (TWebDispatcher) searches
through its list of action items for one that:

• matches the PathInfo portion of the target URL’s request message, and
• can provide the service specified as the method of the request message.

It accomplishes this by comparing the PathInfo and MethodType properties of the
TWebRequest object with the properties of the same name on the action item.

When the dispatcher finds the appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response, or signals that the request has
been completely handled.

• Adds to the response, and then allows other action items to complete the job.

• Defers the request to other action items.

After the dispatcher has checked all of its action items, if the message was not
handled correctly, the dispatcher checks for specially registered auto-dispatching
components that do not use action items. (These components are specific to multi-
tiered database applications.) If the request message is still not fully handled, the
dispatcher calls the default action item. The default action item does not need to
match either the target URL or the method of the request.

WebSnap Application

Web Application Module

Web
Request

Adapter
Dispatcher

Image
Request

Adapter Image
Field

Web
Response

Server

35-28 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Page dispatcher operation

When the page dispatcher receives a client request, it determines the page name by
checking the PathInfo portion of the target URL’s request message. If the PathInfo
portion is not blank, the page dispatcher uses the ending word of PathInfo as the
page name. If the PathInfo portion is blank, the page dispatcher tries to determine a
default page name.

If the page dispatcher’s DefaultPage property contains a page name, the page
dispatcher uses this name as the default page name. If the DefaultPage property is
blank and the Web application module is a page module, the page dispatcher uses
the name of the Web application module as the default page name.

If the page name is not blank, the page dispatcher searches for a Web page module
with a matching name. If it finds a Web page module, it calls that module to generate
a response. If the page name is blank, or if the page dispatcher does not find a Web
page module, the page dispatcher raises an exception.

Figure 35.8 shows how the page dispatcher responds to a request.

Figure 35.8 Dispatching a page

WebSnap Application

Web Application Module

Web
Request

Page Dispatcher

Web
Response

Page Module
Server

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s u s i n g I n t r a W e b 36-1

C h a p t e r

36
Chapter36Creating Web server applications

using IntraWeb
IntraWeb is a tool which simplifies Web server application development. You can use
IntraWeb to build Web server applications exactly the same way you would build
traditional GUI applications, using forms. You can write all of your business logic in
the Delphi language; IntraWeb will automatically convert program elements to script
or HTML when necessary.

You can use IntraWeb in any of the following modes:

1 Standalone mode. IntraWeb uses its own application object type to handle
program execution. The application isn’t deployed on a commercial server;
instead, IntraWeb’s own Application Server is used for application deployment.

2 Application Mode. The application object is provided by IntraWeb. The
application is deployed on a commercial server.

3 Page mode. The application object is provided by Web Broker or WebSnap.
IntraWeb is used to develop pages. The application is deployed on a commercial
server.

IntraWeb applications can be targeted to any of the following server types:

• ISAPI/NSAPI
• Apache versions 1 and 2
• CGI (page mode only)
• Windows services

IntraWeb offers a wide range of browser compatibility. IntraWeb applications
automatically detect the user’s browser type and generate HTML and script most
appropriate for that browser. IntraWeb supports Internet Explorer versions 4
through 6, Netscape 4 and 6, and Mozilla.

36-2 D e v e l o p e r ’ s G u i d e

U s i n g I n t r a W e b c o m p o n e n t s

Using IntraWeb components
One of the advantages of IntraWeb is that it uses the same kinds of tools and
techniques as regular VCL and CLX development. You can build your user interface
by dropping components on forms, like you would any other application. There are a
number of important differences that you must keep in mind, however. The forms
and components used in IntraWeb user interfaces are not the same ones used in non-
Web GUI applications. When you create a form or use a component, be sure to use an
IntraWeb version instead of a VCL or CLX version.

Many VCL and CLX components have IntraWeb counterparts. Generally, the
IntraWeb components have the same name as their VCL/CLX counterparts, with the
letters “IW” prefixed to the name. For example, IWCheckBox is the IntraWeb
equivalent of CheckBox. (The name used in source code starts with the letter T, of
course, like TIWCheckBox.) On the component palette, the icons for IntraWeb
components are nearly identical to their VCL and CLX counterparts, making it easier
to find the IntraWeb components you need.

The following table lists VCL/CLX components and their IntraWeb counterparts. For
more information on these components and how to use them, refer to the IntraWeb
help files and other IntraWeb documentation.

Table 36.1 VCL/CLX and IntraWeb components

VCL/CLX component IntraWeb equivalent
Component palette tab
for IntraWeb component

Button IWButton IW Standard

CheckBox IWCheckBox IW Standard

ComboBox IWComboBox IW Standard

DBCheckBox IWDBCheckBox IW Data

DBComboBox IWDBComboBox IW Data

DBEdit IWDBEdit IW Data

DBGrid IWDBGrid IW Data

DBImage IWDBImage IW Data

DBLabel IWDBLabel IW Data

DBListBox IWDBListBox IW Data

DBLookupComboBox IWDBLookupComboBox IW Data

DBLookupListBox IWDBLookupListBox IW Data

DBMemo IWDBMemo IW Data

DBNavigator IWDBNavigator IW Data

DBText IWDBText IW Data

Edit IWEdit IW Standard

Image IWImage or IWImageFile IW Standard

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s u s i n g I n t r a W e b 36-3

G e t t i n g s t a r t e d w i t h I n t r a W e b

Getting started with IntraWeb
If you have experience writing GUI applications using Borland’s rapid application
development tools, then you already have the basic skills you need to start building
applications with IntraWeb. The basic design method for the user interface is the
same for IntraWeb and regular GUI applications: find the components you need on
the component palette and drop them on a form. Unlike WebSnap’s page modules,
the appearance of the form mirrors the appearance of the page. The IntraWeb forms
and components are distinct from their VCL and CLX counterparts, but they are
named and arranged similarly.

For example, let’s say you want to add a button to a form. In an ordinary VCL or CLX
application, you would find the Button component on the Standard component
palette tab and drop it on your form in an appropriate location. In the compiled
application, the button appears where you placed it. For an IntraWeb application, the
only difference is that you use the IWButton component on the IWStandard tab. Even
the icons for the two different button components look almost identical. The only
difference is an “IW” in the top right corner of the IntraWeb button icon.

Here is a short tutorial to show how easy it is to build an IntraWeb application. The
application you develop in the tutorial asks the user for some input and displays the
input in a popup window. The tutorial uses IntraWeb’s standalone mode, so the
application you create will run without a commercial Web server.

The tutorial includes the following steps:

1 Creating a new IntraWeb application.

2 Editing the main form.

3 Writing an event handler for the button.

4 Running the completed application.

Label IWLabel IW Standard

ListBox IWListBox IW Standard

Memo IWMemo IW Standard

RadioGroup IWRadioGroup IW Standard

Timer IWTimer IW Standard

TreeView IWTreeView IW Standard

Table 36.1 VCL/CLX and IntraWeb components

VCL/CLX component IntraWeb equivalent
Component palette tab
for IntraWeb component

36-4 D e v e l o p e r ’ s G u i d e

G e t t i n g s t a r t e d w i t h I n t r a W e b

Creating a new IntraWeb application

The first step in the process of creating the demo program is to create a new IntraWeb
project. The project will be a stand alone application, but you can convert it to ISAPI/
NSAPI or Apache later by changing two lines of code. To create the new project:

1 Using an external tool (such as Microsoft Windows Explorer), create a directory
named Hello in your Projects directory. This is where the project files will be
stored. IntraWeb will set the new project’s name to match that of the directory.

2 Choose File|New|Other, then select the IntraWeb tab. The New Items dialog box
appears.

Figure 36.1 The IntraWeb tab of the New Items dialog box

3 Select Stand Alone Application and click OK.

4 Find your new Hello directory in the dialog box. Double-click it, then click OK.

You have just created your IntraWeb application in the Hello directory. All of its
source code files have already been saved. You are now ready to edit the main form
to create the Web user interface for your application.

Editing the main form

You are now ready to edit the main form to create the Web user interface for your
application.

1 Choose File|Open, then select IWUnit1.pas and click OK. The main form window
(named formMain) should appear in the IDE.

2 Click on the main form window. In the Object Inspector, change the form’s Title
property to “What is your name?” This question will appear in the title bar of the
Web browser when you run the application and view the page corresponding to
the main form.

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s u s i n g I n t r a W e b 36-5

G e t t i n g s t a r t e d w i t h I n t r a W e b

3 Drop an IWLabel component (found on the IW Standard tab of the component
palette) onto the form. In the Object Inspector, change the Caption property to
“What is your name?” That question should now appear on the form.

4 Drop an IWEdit component onto the form underneath the IWLabel component.
Use the Object Inspector to make the following changes:

• Empty the contents of the Text property.
• Set the Name property to editName.

5 Drop an IWButton component on the form underneath the IWEdit component. Set
its Caption property to OK.

Your form should look similar to this one:

Figure 36.2 The main form of the IntraWeb application

You might want to save all your files before continuing.

Writing an event handler for the button

The form does not yet perform any actions when the user clicks the OK button. You
will now write an event handler that will display a greeting when the user clicks OK.

1 Double-click the OK button on the form. An empty event handler is created in the
editor window, like the one shown here:

procedure TformMain.IWButton1Click(Sender: TObject);
begin

end;

2 Using the editor, add code to the event handler so it looks like the following:

procedure TformMain.IWButton1Click(Sender: TObject);
var s: string;
begin
 s := editName.Text;
 if Length(s) = 0 then
 WebApplication.ShowMessage('Please enter your name.')
 else
 begin
 WebApplication.ShowMessage('Hello, ' + s +'!');
 editName.Text := '';
 end;
end;

36-6 D e v e l o p e r ’ s G u i d e

G e t t i n g s t a r t e d w i t h I n t r a W e b

Running the completed application

You can now test the IntraWeb application as follows:

1 Select Run|Run. The IntraWeb Application Server (shown below) will appear.

Figure 36.3 The IntraWeb Application Server

2 In the IntraWeb Application Server, select Run|Execute. Your Web server
application will appear in your default Web browser window. For example, here
are the results in a Netscape 6 window:

Figure 36.4 The running application viewed in a Netscape 6 window

3 Assume your name is World. Type World in the edit box and click the OK button.
A modal dialog box will appear:

Figure 36.5 A greeting from the IntraWeb application

You have now completed a simple IntraWeb application using only forms and
Delphi language code. When you are finished using your application, you can
terminate it by closing the browser window and then closing the IntraWeb
Application Server.

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s u s i n g I n t r a W e b 36-7

U s i n g I n t r a W e b w i t h W e b B r o k e r a n d W e b S n a p

Using IntraWeb with Web Broker and WebSnap
IntraWeb is a powerful tool for developing Web server applications all by itself. Still,
there are some things it can’t do alone, like create CGI applications. For CGI, you
need Web Broker or WebSnap. Also, you may have existing Web Broker and
WebSnap applications that you want to extend but not rewrite. You can still take
advantage of IntraWeb’s design tools by using IntraWeb forms and components in
Web Broker or WebSnap projects. You can use IntraWeb to create individual pages
instead of entire applications.

To create Web pages using IntraWeb tools, use the following steps:

1 Create or open a Web Broker or WebSnap application.

2 Drop a WebDispatcher component on your Web module (Web Broker) or Web
application module (WebSnap). The WebDispatcher component is on the Internet
tab of the component palette.

3 Drop an IWModuleController component on your Web module (Web Broker) or
Web application module (WebSnap). IWModuleController is on the IW Control
tab of the component palette.

4 In WebSnap applications, create a new Web page module if necessary. In the New
WebSnap Page dialog, uncheck the New File box in the HTML section before
continuing.

Note If you create a page module with the New File box checked, you can change the
result later. Open the page module’s unit file in the editor. Next, change '.html' to
an empty string ('') in the WebRequestHandler.AddWebModuleFactory call at the
bottom of the unit.

5 Remove any existing page producer components from your Web module (Web
Broker) or Web page module (WebSnap).

6 Drop an IWPageProducer component on your Web module or Web page module.

7 Select File|New|Other|IntraWeb|Page Form to create a new IntraWeb page
form.

8 Add an OnGetForm event handler by double-clicking the IWPageProducer
component on your Web module or Web page module. A new method will appear
in the editor window.

9 Connect the IntraWeb form to the Web module or Web page module by adding a
line of code to your OnGetForm event handler. The code line should be similar to,
if not identical to, the following:

VForm := TformMain.Create(AWebApplication);

If necessary, change TformMain to the name of your IntraWeb form class. To find
the form class name, click on the form. Its name appears next to the form window
name in the Object Inspector.

10 In the unit file where you changed the event handler, add IWApplication and
IWPageForm to the uses clause. Also, add the unit containing your form.

36-8 D e v e l o p e r ’ s G u i d e

F o r m o r e i n f o r m a t i o n

For a more complete example, refer to the document “IntraWeb and WebSnap.pdf”.

For more information
This chapter is not intended to be a complete IntraWeb reference. Other
documentation on the installation CD includes:

• “Intro to IntraWeb.pdf,” which summarizes IntraWeb’s features and explains its
benefits.

• “IntraWeb Manual.pdf,” which contains more detailed reference material on
IntraWeb.

• “IntraWeb and WebSnap.pdf,” which explains how to integrate IntraWeb and
WebSnap in the same Web server application.

• Windows help files containing IntraWeb’s API documentation.

For more information about IntraWeb, refer to these documents. There are also many
useful references available on the Web. If you need help locating any of these
documents, refer to the product readme file.

W o r k i n g w i t h X M L d o c u m e n t s 37-1

C h a p t e r

37
Chapter37Working with XML documents

XML (Extensible Markup Language) is a markup language for describing structured
data. It is similar to HTML, except that the tags describe the structure of information
rather than its display characteristics. XML documents provide a simple, text-based
way to store information so that it is easily searched or edited. They are often used as
a standard, transportable format for data in Web applications, business-to-business
communication, and so on.

XML documents provide a hierarchical view of a body of data. Tags in the XML
document describe the role or meaning of each data element, as illustrated in the
following document, which describes a collection of stock holdings:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>

<Stock exchange="NASDAQ">
<name>Borland</name>
<price>15.375</price>
<symbol>BORL</symbol>
<shares>100</shares>

</Stock>
<Stock exchange="NYSE">

<name>Pfizer</name>
 <price>42.75</price>

<symbol>PFE</symbol>
<shares type="preferred">25</shares>

</Stock>
</StockHoldings>

37-2 D e v e l o p e r ’ s G u i d e

U s i n g t h e D o c u m e n t O b j e c t M o d e l

This example illustrates a number of typical elements in an XML document. The first
line is a processing instruction called an XML declaration. The XML declaration is
optional but you should include it, because it supplies useful information about the
document. In this example, the XML declaration says that the document conforms to
version 1.0 of the XML specification, that it uses UTF-8 character encoding, and that it
relies on an external file for its document type declaration (DTD).

The second line, which begins with the <!DOCType> tag, is a document type
declaration (DTD). The DTD is how XML defines the structure of the document. It
imposes syntax rules on the elements (tags) contained in the document. The DTD in
this example references another file (sth.dtd). In this case, the structure is defined in
an external file, rather than in the XML document itself. Other types of files that
describe the structure of an XML document include Reduced XML Data (XDR) and
XML schemas (XSD).

The remaining lines are organized into a hierarchy with a single root node (the
<StockHoldings> tag). Each node in this hierarchy contains either a set of child
nodes, or a text value. Some of the tags (the <Stock> and <shares> tags) include
attributes, which are Name=Value pairs that provide details on how to interpret the
tag.

Although it is possible to work directly with the text in an XML document, typically
applications use additional tools for parsing and editing the data. W3C defines a set
of standard interfaces for representing a parsed XML document called the Document
Object Model (DOM). A number of vendors provide XML parsers that implement the
DOM interfaces to let you interpret and edit XML documents more easily.

Delphi provides a number of additional tools for working with XML documents.
These tools use a DOM parser that is provided by another vendor, and make it even
easier to work with XML documents. This chapter describes those tools.

Note In addition to the tools described in this chapter, Delphi comes with tools and
components for converting XML documents to data packets that integrate into the
Delphi database architecture. For details on tools for integrating XML documents
into database applications, see Chapter 32, “Using XML in database applications.”

Using the Document Object Model
The Document Object Model (DOM) is a set of standard interfaces for representing a
parsed XML document. These interfaces are implemented by a number of different
third-party vendors. If you do not want to use the default vendor that ships with
Delphi, there is a registration mechanism that lets you integrate additional DOM
implementations by other vendors into the XML framework.

W o r k i n g w i t h X M L d o c u m e n t s 37-3

U s i n g t h e D o c u m e n t O b j e c t M o d e l

The XMLDOM unit includes declarations for all the DOM interfaces defined in the
W3C XML DOM level 2 specification. Each DOM vendor provides an
implementation for these interfaces.

• To use one of the DOM vendors for which Delphi already includes support, locate
the unit that represents the DOM implementation. These units end in the string
‘xmldom.’ For example, the unit for the Microsoft implementation is
MSXMLDOM, the unit for the IMB implementation is IBMXMLDOM, and the unit
for the Open XML implementation is OXMLDOM. If you add the unit for the
desired implementation to your project, the DOM implementation is
automatically registered so that it is available to your code.

• To use another DOM implementation, you must create a unit that defines a
descendant of the TDOMVendor class. This unit can then work like one of the
built-in DOM implementations, making your DOM implementation available
when it is included in a project.

• In your descendant class, you must override two methods: the Description
method, which returns a string identifying the vendor, and the
DOMImplementation method, which returns the top-level interface
(IDOMImplementation).

• Your new unit must register the vendor by calling the global
RegisterDOMVendor procedure. This call typically goes in the initialization
section of the unit.

• When your unit is unloaded, it needs to unregister itself to indicate that the
DOM implementation is no longer available. Unregister the vendor by calling
the global UnRegisterDOMVendor procedure. This call typically goes in the
finalization section.

Some vendors supply extensions to the standard DOM interfaces. To allow you to
uses these extensions, the XMLDOM unit also defines an IDOMNodeEx interface.
IDOMNodeEx is a descendant of the standard IDOMNode that includes the most
useful of these extensions.

You can work directly with the DOM interfaces to parse and edit XML documents.
Simply call the GetDOM function to obtain an IDOMImplementation interface, which
you can use as a starting point.

Note For detailed descriptions of the DOM interfaces, see the declarations in the
XMLDOM unit, the documentation supplied by your DOM Vendor, or the
specifications provided on the W3C web site (www.w3.org).

You may find it more convenient to use special XML classes rather than working
directly with the DOM interfaces. These are described below.

37-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h X M L c o m p o n e n t s

Working with XML components
The VCL (or CLX) defines a number of classes and interfaces for working with XML
documents. These simplify the process of loading, editing, and saving XML
documents.

Using TXMLDocument

The starting point for working with an XML document is the TXMLDocument
component. The following steps describe how to use TXMLDocument to work
directly with an XML document:

1 Add a TXMLDocument component to your form or data module. TXMLDocument
appears on the Internet page of the Component palette.

2 Set the DOMVendor property to specify the DOM implementation you want the
component to use for parsing and editing an XML document. The Object Inspector
lists all the currently registered DOM vendors. For information on DOM
implementations, see “Using the Document Object Model” on page 37-2.

3 Depending on your implementation, you may want to set the ParseOptions
property to configure how the underlying DOM implementation parses the XML
document.

4 If you are working with an existing XML document, specify the document:

• If the XML document is stored in a file, set the FileName property to the name of
that file.

• You can specify the XML document as a string instead by using the XML
property.

5 Set the Active property to True.

Once you have an active TXMLDocument object, you can traverse the hierarchy of its
nodes, reading or setting their values. The root node of this hierarchy is available as
the DocumentElement property.

Working with XML nodes

Once an XML document has been parsed by a DOM implementation, the data it
represents is available as a hierarchy of nodes. Each node corresponds to a tagged
element in the document. For example, given the following XML:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>

<Stock exchange="NASDAQ">
<name>Borland</name>
<price>15.375</price>
<symbol>BORL</symbol>
<shares>100</shares>

W o r k i n g w i t h X M L d o c u m e n t s 37-5

W o r k i n g w i t h X M L c o m p o n e n t s

</Stock>
<Stock exchange="NYSE">

<name>Pfizer</name>
 <price>42.75</price>

<symbol>PFE</symbol>
<shares type="preferred">25</shares>

</Stock>
</StockHoldings>

TXMLDocument would generate a hierarchy of nodes as follows: The root of the
hierarchy would be the StockHoldings node. StockHoldings would have two child
nodes, which correspond to the two Stock tags. Each of these two child nodes would
have four child nodes of its own (name, price, symbol, and shares). Those four child
nodes would act as leaf nodes. The text they contain would appear as the value of
each of the leaf nodes.

Note This division into nodes differs slightly from the way a DOM implementation
generates nodes for an XML document. In particular, a DOM parser treats all tagged
elements as internal nodes. Additional nodes (of type text node) are created for the
values of the name, price, symbol, and shares nodes. These text nodes then appear as
the children of the name, price, symbol, and shares nodes.

Each node is accessed through an IXMLNode interface, starting with the root node,
which is the value of the XML document component’s DocumentElement property.

Working with a node’s value
Given an IXMLNode interface, you can check whether it represents an internal node
or a leaf node by checking the IsTextElement property.

• If it represents a leaf node, you can read or set its value using the Text property.

• If it represents an internal node, you can access its child nodes using the
ChildNodes property.

Thus, for example, using the XML document above, you can read the price of
Borland’s stock as follows:

BorlandStock := XMLDocument1.DocumentElement.ChildNodes[0];
Price := BorlandStock.ChildNodes['price'].Text;

Working with a node’s attributes
If the node includes any attributes, you can work with them using the Attributes
property. You can read or change an attribute value by specifying an existing
attribute name. You can add new attributes by specifying a new attribute name when
you set the Attributes property:

BorlandStock := XMLDocument1.DocumentElement.ChildNodes[0];
BorlandStock.ChildNodes['shares'].Attributes['type'] := 'common';

37-6 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Adding and deleting child nodes
You can add child nodes using the AddChild method. AddChild creates new nodes
that correspond to tagged elements in the XML document. Such nodes are called
element nodes.

To create a new element node, specify the name that appears in the new tag and,
optionally, the position where the new node should appear. For example, the
following code adds a new stock listing to the document above:

var
NewStock: IXMLNode;
ValueNode: IXMLNode;

begin
NewStock := XMLDocument1.DocumentElement.AddChild('stock');
NewStock.Attributes['exchange'] := 'NASDAQ';
ValueNode := NewStock.AddChild('name');
ValueNode.Text := 'Cisco Systems'
ValueNode := NewStock.AddChild('price');
ValueNode.Text := '62.375';
ValueNode := NewStock.AddChild('symbol');
ValueNode.Text := 'CSCO';
ValueNode := NewStock.AddChild('shares');
ValueNode.Text := '25';

end;

An overloaded version of AddChild lets you specify the namespace URI in which the
tag name is defined.

You can delete child nodes using the methods of the ChildNodes property. ChildNodes
is an IXMLNodeList interface, which manages the children of a node. You can use its
Delete method to delete a single child node that is identified by position or by name.
For example, the following code deletes the last stock listed in the document above:

StockList := XMLDocument1.DocumentElement;
StockList.ChildNodes.Delete(StockList.ChildNodes.Count - 1);

Abstracting XML documents with the Data Binding wizard
It is possible to work with an XML document using only the TXMLDocument
component and the IXMLNode interface it surfaces for the nodes in that document, or
even to work exclusively with the DOM interfaces (avoiding even TXMLDocument).
However, you can write code that is much simpler and more readable by using the
XML Data Binding wizard.

The Data Binding wizard takes an XML schema or data file and generates a set of
interfaces that map on top of it. For example, given XML data that looks like the
following:

<customer id=1>
<name>Mark</name>
<phone>(831) 431-1000</phone>

</customer>

W o r k i n g w i t h X M L d o c u m e n t s 37-7

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

The Data Binding wizard generates the following interface (along with a class to
implement it):

ICustomer = interface(IXMLNode)
property id: Integer read Getid write Setid;
property name: DOMString read Getname write Setname;
property phone: DOMString read Getphone write Setphone;
function Getid: Integer;
function Getname: DOMString;
function Getphone: DOMString;
procedure Setid(Value: Integer);
procedure Setname(Value: DOMString);
procedure Setphone(Value: DOMString);

end;

Every child node is mapped to a property whose name matches the tag name of the
child node and whose value is the interface of the child node (if the child is an
internal node) or the value of the child node (for leaf nodes). Every node attribute is
also mapped to a property, where the property name is the attribute name and the
property value is the attribute value.

In addition to creating interfaces (and implementation classes) for each tagged
element in the XML document, the wizard creates global functions for obtaining the
interface to the root node. For example, if the XML above came from a document
whose root node had the tag <Customers>, the Data Binding wizard would create
the following global routines:

function GetCustomers(XMLDoc: IXMLDocument): ICustomers;
function LoadCustomers(const FileName: WideString): ICustomers;
function NewCustomers: ICustomers;

The Get... function takes the interface for a TXMLDocument instance . The Load...
function dynamically creates a TXMLDocument instance and loads the specified XML
file as its value before returning an interface pointer. The New... function creates a
new (empty) TXMLDocument instance and returns the interface to the root node.

Using the generated interfaces simplifies your code, because they reflect the structure
of the XML document more directly. For example, instead of writing code such as the
following:

CustIntf := XMLDocument1.DocumentElement;
CustName := CustIntf.ChildNodes[0].ChildNodes['name'].Value;

Your code would look as follows:

CustIntf := GetCustomers(XMLDocument1);
CustName := CustIntf[0].Name;

Note that the interfaces generated by the Data Binding wizard all descend from
IXMLNode. This means you can still add and delete child nodes in the same way as
when you do not use the Data Binding wizard. (See “Adding and deleting child
nodes” on page 37-6.) In addition, when child nodes represent repeating elements
(when all of the children of a node are of the same type), the parent node is given two
methods, Add, and Insert, for adding additional repeats. These methods are simpler
than using AddChild, because you do not need to specify the type of node to create.

37-8 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Using the XML Data Binding wizard

To use the Data Binding wizard,

1 Choose File|New|Other and select the icon labeled XML Data Binding from the
bottom of the New page.

2 The XML Data Binding wizard appears.

3 On the first page of the wizard, specify the XML document or schema for which
you want to generate interfaces. This can be a sample XML document, a Document
Type Definition (.dtd) file, a Reduced XML Data (.xdr) file, or an XML schema
(.xsd) file.

4 Click the Options button to specify the naming strategies you want the wizard to
use when generating interfaces and implementation classes and the default
mapping of types defined in the schema to native Delphi data types.

5 Move to the second page of the wizard. This page lets you provide detailed
information about every node type in the document or schema. At the left is a tree
view that shows all of the node types in the document. For complex nodes (nodes
that have children), the tree view can be expanded to display the child elements.
When you select a node in this tree view, the right-hand side of the dialog displays
information about that node and lets you specify how you want the wizard to treat
that node.

• The Source Name control displays the name of the node type in the XML
schema.

• The Source Datatype control displays the type of the node’s value, as specified
in the XML schema.

• The Documentation control lets you add comments to the schema describing
the use or purpose of the node.

• If the wizard generates code for the selected node (that is, if it is a complex type
for which the wizard generates an interface and implementation class, or if it is
one of the child elements of a complex type for which the wizard generates a
property on the complex type’s interface), you can use the Generate Binding
check box to specify whether you want the wizard to generate code for the
node. If you uncheck Generate Binding, the wizard does not generate the
interface or implementation class for a complex type, or does not create a
property in the parent interface for a child element or attribute.

• The Binding Options section lets you influence the code that the wizard
generates for the selected element. For any node, you can specify the Identifier
Name (the name of the generated interface or property). In addition, for
interfaces, you must indicate which one represents the root node of the
document. For nodes that represent properties, you can specify the type of the
property and, if the property is not an interface, whether it is a read-only
property.

W o r k i n g w i t h X M L d o c u m e n t s 37-9

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

6 Once you have specified what code you want the wizard to generate for each
node, move to the third page. This page lets you choose some global options about
how the wizard generates its code and lets you preview the code that will be
generated, and lets you tell the wizard how to save your choices for future use.

• To preview the code the wizard generates, select an interface in the Binding
Summary list and view the resulting interface definition in the Code Preview
control.

• Use the Data Binding Settings to indicate how the wizard should save your
choices. You can store the settings as annotations in a schema file that is
associated with the document (the schema file specified on the first page of the
dialog), or you can name an independent schema file that is used only by the
wizard.

7 When you click Finish, the Data Binding wizard generates a new unit that defines
interfaces and implementation classes for all of the node types in your XML
document. In addition, it creates a global function that takes a TXMLDocument
object and returns the interface for the root node of the data hierarchy.

Using code that the XML Data Binding wizard generates

Once the wizard has generated a set of interfaces and implementation classes, you
can use them to work with XML documents that match the structure of the document
or schema you supplied to the wizard. Just as when you are using only the built-in
XML components, your starting point is the TXMLDocument component that appears
on the Internet page of the Component palette.

To work with an XML document, use the following steps:

1 Obtain an interface for the root node of your XML document. You can do this in
one of three ways:

• Place a TXMLDocument component in your form or data module. Bind the
TXMLDocument to an XML document by setting the FileName property. (As an
alternative approach, you can use a string of XML by setting the XML property
at runtime.) Then, In your code, call the global function that the wizard created
to obtain an interface for the root node of the XML document. For example, if
the root element of the XML document was the tag <StockList>, by default, the
wizard generates a function GetStockListType, which returns an IStockListType
interface:

var
StockList: IStockListType;

begin
XMLDocument1.FileName := 'Stocks.xml';
StockList := GetStockListType(XMLDocument1);

37-10 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

• Call the generated Load... function to create and bind the TXMLDocument
instance and obtain its interface all in one step. For example, using the same
XML document described above:

var
StockList: IStockListType;

begin
StockList := LoadStockListType('Stocks.xml');

• Call the generated New... function to create the TXMLDocument instance for an
empty document when you want to create all the data in your application:

var
StockList: IStockListType;

begin
StockList := NewStockListType;

2 This interface has properties that correspond to the subnodes of the document’s
root element, as well as properties that correspond to that root element’s
attributes. You can use these to traverse the hierarchy of the XML document,
modify the data in the document, and so on.

3 To save any changes you make using the interfaces generated by the wizard, call
the TXMLDocument component’s SaveToFile method or read its XML property.

Tip If you set the Options property of the TXMLDocument object to include doAutoSave,
then you do not need to explicitly call the SaveToFile method.

U s i n g W e b S e r v i c e s 38-1

C h a p t e r

38
Chapter38Using Web Services

Web Services are self-contained modular applications that can be published and
invoked over the Internet. Web Services provide well-defined interfaces that describe
the services provided. Unlike Web server applications that generate Web pages for
client browsers, Web Services are not designed for direct human interaction. Rather,
they are accessed programmatically by client applications.

Web Services are designed to allow a loose coupling between client and server. That
is, server implementations do not require clients to use a specific platform or
programming language. In addition to defining interfaces in a language-neutral
fashion, they are designed to allow multiple communications mechanisms as well.

Support for Web Services is designed to work using SOAP (Simple Object Access
Protocol). SOAP is a standard lightweight protocol for exchanging information in a
decentralized, distributed environment. It uses XML to encode remote procedure
calls and typically uses HTTP as a communications protocol. For more information
about SOAP, see the SOAP specification available at

http://www.w3.org/TR/SOAP/

Note Although the components that support Web Services are built to use SOAP and
HTTP, the framework is sufficiently general that it can be expanded to use other
encoding and communications protocols.

In addition to letting you build SOAP-based Web Service applications (servers),
special components and wizards let you build clients of Web Services that use either
a SOAP encoding or a Document Literal style. The Document Literal style is used in
.Net Web Services.

The components that support Web Services are available on both Windows and
Linux, so you can use them as the basis of cross-platform distributed applications.
There is no special client runtime software to install, as you must have when
distributing applications using CORBA. Because this technology is based on HTTP
messages, it has the advantage that it is widely available on a variety of machines.
Support for Web Services is built on the Web server application architecture (Web
Broker).

38-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Web Service applications publish information on what interfaces are available and
how to call them using a WSDL (Web Service Definition Language) document. On
the server side, your application can publish a WSDL document that describes your
Web Service. On the client side, a wizard or command-line utility can import a
published WSDL document, providing you with the interface definitions and
connection information you need. If you already have a WSDL document that
describes the Web service you want to implement, you can generate the server-side
code as well when importing the WSDL document.

Understanding invokable interfaces
Servers that support Web Services are built using invokable interfaces. Invokable
interfaces are interfaces that are compiled to include runtime type information
(RTTI). On the server, this RTTI is used when interpreting incoming method calls
from clients so that they can be correctly marshaled. On clients, this RTTI is used to
dynamically generate a method table for making calls to the methods of the interface.

To create an invokable interface, you need only compile an interface with the {$M+}
compiler option. The descendant of any invokable interface is also invokable.
However, if an invokable interface descends from another interface that is not
invokable, your Web Service can only use the methods defined in the invokable
interface and its descendants. Methods inherited from the non-invokable ancestors
are not compiled with type information and so can’t be used as part of the Web
Service.

When defining a Web service, you can derive an invokable interface from the base
invokable interface, IInvokable. IInvokable is defined in the System unit. IInvokable is
the same as the base interface (IInterface), except that it is compiled using the {$M+}
compiler option. The {$M+} compiler option ensures that the interface and all its
descendants include RTTI.

For example, the following code defines an invokable interface that contains two
methods for encoding and decoding numeric values:

IEncodeDecode = interface(IInvokable)
 ['{C527B88F-3F8E-1134-80e0-01A04F57B270}']

function EncodeValue(Value: Integer): Double; stdcall;
function DecodeValue(Value: Double): Integer; stdcall;

end;

Note An invokable interface can use overloaded methods, but only if the different
overloads can be distinguished by parameter count. That is, one overload must not
have the same number of parameters as another, including the possible number of
parameters when default parameters are taken into account.

U s i n g W e b S e r v i c e s 38-3

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Before a Web Service application can use this invokable interface, it must be
registered with the invocation registry. On the server, the invocation registry entry
allows the invoker component (THTTPSOAPPascalInvoker) to identify an
implementation class to use for executing interface calls. On client applications, an
invocation registry entry allows remote interfaced objects (THTTPRio) to look up
information that identifies the invokable interface and supplies information on how
to call it.

Typically, your Web Service client or server creates the code to define invokable
interfaces either by importing a WSDL document or using the Web Service wizard.
By default, when the WSDL importer or Web Service wizard generates an interface,
the definition is added to a unit with the same name as the Web Service. This unit
includes both the interface definition and code to register the interface with the
invocation registry. The invocation registry is a catalog of all registered invokable
interfaces, their implementation classes, and any functions that create instances of the
implementation classes. It is accessed using the global InvRegistry function, which is
defined in the InvokeRegistry unit.

The definition of the invokable interface is added to the interface section of the unit,
and the code to register the interface goes in the initialization section. The registration
code looks like the following:

initialization
InvRegistry.RegisterInterface(TypeInfo(IEncodeDecode));

end.

Note The implementation section’s uses clause must include the InvokeRegistry unit so
that the call to the InvRegistry function is defined.

The interfaces of Web Services must have a namespace to identify them among all the
interfaces in all possible Web Services. The previous example does not supply a
namespace for the interface. When you do not explicitly supply a namespace, the
invocation registry automatically generates one for you. This namespace is built from
a string that uniquely identifies the application (the AppNamespacePrefix variable), the
interface name, and the name of the unit in which it is defined. If you do not want to
use the automatically-generated namespace, you can specify one explicitly using a
second parameter to the RegisterInterface call.

You can use the same unit file to define an invokable interface for both client and
server applications. If you are doing this, it is a good idea to keep the unit that defines
your invokable interfaces separate from the unit in which you write the classes that
implement them. Because the generated namespace includes the name of the unit in
which the interface is defined, sharing the same unit in both client and server
applications enables them to automatically use the same namespace, as long as they
both use the same value for the AppNamespacePrefix variable.

38-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Using nonscalar types in invokable interfaces

The Web Services architecture automatically includes support for marshaling the
following scalar types:

You need do nothing special when you use these scalar types on an invokable
interface. If your interface includes any properties or methods that use other types,
however, your application must register those types with the remotable type registry.
For more information on the remotable type registry, see “Registering nonscalar
types” on page 38-5.

Dynamic arrays can be used in invokable interfaces. They must be registered with the
remotable type registry, but this registration happens automatically when you
register the interface. The remotable type registry extracts all the information it needs
from the type information that the compiler generates.

Note You should avoid defining multiple dynamic array types with the same element
type. Because the compiler treats these as transparent types that can be implicitly cast
one to another, it doesn’t distinguish their runtime type information. As a result, the
remotable type registry can’t distinguish the types. This is not a problem for servers,
but can result in clients using the wrong type definition. As an alternate approach,
you can use remotable clases to represent array types.

Note The dynamic array types defined in the Types unit are automatically registered for
you, so your application does not need to add any special registration code for them.
One of these in particular, TByteDynArray, deserves special notice because it maps to
a ‘base64’ block of binary data, rather than mapping each array element separately
the way the other dynamic array types do.

Enumerated types and types that map directly to one of the automatically-marshaled
scalar types can also be used in an invokable interface. As with dynamic array types,
they are automatically registered with the remotable type registry.

For any other types, such as static arrays, structs or records, sets, interfaces, or
classes, you must map the type to a remotable class. A remotable class is a class that
includes runtime type information (RTTI). Your interface must then use the
remotable class instead of the corresponding static array, struct or record, set,
interface, or class. Any remotable classes you create must be registered with the
remotable type registry. As with other types, this registration happens automatically.

• Boolean
• ByteBool
• WordBool
• LongBool
• Char
• Byte
• ShortInt
• SmallInt
• Word
• Integer
• Cardinal

• LongInt
• Int64
• Single
• Double
• Extended
• string
• WideString
• Currency
• TDateTime
• Variant

U s i n g W e b S e r v i c e s 38-5

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Registering nonscalar types
Before an invokable interface can use any types other than the built-in scalar types
listed in “Using nonscalar types in invokable interfaces” on page 38-4, the application
must register the type with the remotable type registry. To access the remotable type
registry, you must add the InvokeRegistry unit to your uses clause. This unit declares
a global function, RemTypeRegistry, which returns a reference to the remotable type
registry.

Note On clients, the code to register types with the remotable type registry is generated
automatically when you import a WSDL document. For servers, remotable types are
registered for you automatically when you register an interface that uses them. You
only need to explicitly add code to register types if you want to specify the
namespace or type name rather than using the automatically-generated values.

The remotable type registry has two methods that you can use to register types:
RegisterXSInfo and RegisterXSClass. The first (RegisterXSInfo) lets you register a
dynamic array or other type definition. The second (RegisterXSClass) is for registering
remotable classes that you define to represent other types.

If you are using dynamic arrays or enumerated types, the invocation registry can get
the information it needs from the compiler-generated type information. Thus, for
example, your interface may use a type such as the following:

type
TDateTimeArray = array of TXSDateTime;

This type is registered automatically when you register the invokable interface.
However, if you want to specify the namespace in which the type is defined or the
name of the type, you must add code to explicitly register the type using the
RegisterXSInfo method of the remotable type registry.

The registration goes in the initialization section of the unit where you declare or use
the dynamic array:

RemTypeRegistry.RegisterXSInfo(TypeInfo(TDateTimeArray), MyNameSpace, 'DTarray', 'DTarray');

The first parameter of RegisterXSInfo is the type information for the type you are
registering. The second parameter is the namespace URI for the namespace in which
the type is defined. If you omit this parameter or supply an empty string, the registry
generates a namespace for you. The third parameter is the name of the type as it
appears in native code. If you omit this parameter or supply an empty string, the
registry uses the type name from the type information you supplied as the first
parameter. The final parameter is the name of the type as it appears in WSDL
documents. If you omit this parameter or supply an empty string, the registry uses
the native type name (the third parameter).

Registering a remotable class is similar, except that you supply a class reference
rather than a type information pointer. For example, the following line comes from
the XSBuiltIns unit. It registers TXSDateTime, a TRemotable descendant that
represents TDateTime values:

RemClassRegistry.RegisterXSClass(TXSDateTime, XMLSchemaNameSpace, 'dateTime', '',True);

38-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

The first parameter is class reference for the remotable class that represents the type.
The second is a uniform resource identifier (URI) that uniquely identifies the
namespace of the new class. If you supply an empty string, the registry generates a
URI for you. The third and fourth parameters specify the native and external names
of the data type your class represents. If you omit the fourth parameter, the type
registry uses the third parameter for both values. If you supply an empty string for
both parameters, the registry uses the class name. The fifth parameter indicates
whether the value of class instances can be transmitted as a string. You can optionally
add a sixth parameter (not shown here) to control how multiple references to the
same object instance should be represented in SOAP packets.

Using remotable objects
Use TRemotable as a base class when defining a class to represent a complex data type
on an invokable interface. For example, in the case where you would ordinarily pass
a record or struct as a parameter, you would instead define a TRemotable descendant
where every member of the record or struct is a published property on your new
class.

You can control whether the published properties of your TRemotable descendant
appear as element nodes or attributes in the corresponding SOAP encoding of the
type. To make the property an attribute, use the stored directive on the property
definition, assigning a value of AS_ATTRIBUTE:

property MyAttribute: Boolean read FMyAttribute write FMyAttribute stored AS_ATTRIBUTE;

Note If you do not include a stored directive, or if you assign any other value to the stored
directive (even a function that returns AS_ATTRIBUTE), the property is encoded as a
node rather than an attribute.

If the value of your new TRemotable descendant represents a scalar type in a WSDL
document, you should use TRemotableXS as a base class instead. TRemotableXS is a
TRemotable descendant that introduces two methods for converting between your
new class and its string representation. Implement these methods by overriding the
XSToNative and NativeToXS methods.

For certain commonly-used XML scalar types, the XSBuiltIns unit already defines
and registers remotable classes for you. These are listed in the following table:

Table 38.1 Remotable classes

XML type remotable class

dateTime
timeInstant

TXSDateTime

date TXSDate

time TXSTime

duration
timeDuration

TXSDuration

decimal TXSDecimal

hexBinary TXSHexBinary

U s i n g W e b S e r v i c e s 38-7

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

After you define a remotable class, it must be registered with the remotable type
registry, as described in “Registering nonscalar types” on page 38-5.This registration
happens automatically on servers when you register the interface that uses the class.
On clients, the code to register the class is generated automatically when you import
the WSDL document that defines the type.

Tip It is a good idea to implement and register TRemotable descendants in a separate unit
from the rest of your server application, including from the units that declare and
register invokable interfaces. In this way, you can use the type for more than one
interface.

Representing attachments
One important TRemotable descendant is TSoapAttachment. This class represents an
attachment. It can be used as the value of a parameter or the return value of a method
on an invokable interface. Attachments are sent with SOAP messages as separate
parts in a multipart form.

When a Web Service application or the client of a Web Service receives an
attachment, it writes the attachment to a temporary file. TSoapAttachment lets you
access that temporary file or save its content to a permanent file or stream. When the
application needs to send an attachment, it creates an instance of TSoapAttachment
and assigns its content by specifying the name of a file, supplying a stream from
which to read the attachment, or providing a string that represents the content of the
attachment.

Managing the lifetime of remotable objects
One issue that arises when using TRemotable descendants is the question of when
they are created and destroyed. Obviously, the server application must create its own
local instance of these objects, because the caller’s instance is in a separate process
space. To handle this, Web Service applications create a data context for incoming
requests. The data context persists while the server handles the request, and is freed
after any output parameters are marshaled into a return message. When the server
creates local instances of remotable objects, it adds them to the data context, and
those instances are then freed along with the data context.

In some cases, you may want to keep an instance of a remotable object from being
freed after a method call. For example, if the object contains state information, it may
be more efficient to have a single instance that is used for every message call. To
prevent the remotable object from being freed along with the data context, change its
DataContext property.

Remotable object example
This example shows how to create a remotable object for a parameter on an invokable
interface where you would otherwise use an existing class. In this example, the
existing class is a string list (TStringList). To keep the example small, it does not
reproduce the Objects property of the string list.

38-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Because the new class is not scalar, it descends from TRemotable rather than
TRemotableXS. It includes a published property for every property of the string list
you want to communicate between the client and server. Each of these remotable
properties corresponds to a remotable type. In addition, the new remotable class
includes methods to convert to and from a string list.

TRemotableStringList = class(TRemotable)
private

FCaseSensitive: Boolean;
FSorted: Boolean;
FDuplicates: TDuplicates;
FStrings: TStringDynArray;

public
procedure Assign(SourceList: TStringList);
procedure AssignTo(DestList: TStringList);

published
property CaseSensitive: Boolean read FCaseSensitive write FCaseSensitive;
property Sorted: Boolean read FSorted write FSorted;
property Duplicates: TDuplicates read FDuplicates write FDuplicates;
property Strings: TStringDynArray read FStrings write FStrings;

end;

Note that TRemotableStringList exists only as a transport class. Thus, although it has a
Sorted property (to transport the value of a string list’s Sorted property), it does not
need to sort the strings it stores, it only needs to record whether the strings should be
sorted. This keeps the implementation very simple. You only need to implement the
Assign and AssignTo methods, which convert to and from a string list:

procedure TRemotableStringList.Assign(SourceList: TStrings);
var I: Integer;
begin

SetLength(Strings, SourceList.Count);
for I := 0 to SourceList.Count - 1 do

Strings[I] := SourceList[I];
CaseSensitive := SourceList.CaseSensitive;
Sorted := SourceList.Sorted;
Duplicates := SourceList.Duplicates;

end;

procedure TRemotableStringList.AssignTo(DestList: TStrings);
var I: Integer;
begin

DestList.Clear;
DestList.Capacity := Length(Strings);
DestList.CaseSensitive := CaseSensitive;
DestList.Sorted := Sorted;
DestList.Duplicates := Duplicates;
for I := 0 to Length(Strings) - 1 do

DestList.Add(Strings[I]);
end;

U s i n g W e b S e r v i c e s 38-9

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Optionally, you may want to register the new remotable class so that you can specify
its class name. If you do not register the class, it is registered automatically when you
register the interface that uses it. Similarly, if you register the class but not the
TDuplicates and TStringDynArray types that it uses, they are registered automatically.
This code shows how to register the TRemotableStringList class and the TDuplicates
type. TStringDynArray is registered automatically because it is one of the built-in
dynamic array types declared in the Types unit.

This registration code goes in the initialization section of the unit where you define
the remotable class:

RemClassRegistry.RegisterXSInfo(TypeInfo(TDuplicates), MyNameSpace, 'duplicateFlag');
RemClassRegistry.RegisterXSClass(TRemotableStringList, MyNameSpace, 'stringList', '',False);

Writing servers that support Web Services
In addition to the invokable interfaces and the classes that implement them, your
server requires two components: a dispatcher and an invoker. The dispatcher
(THTTPSoapDispatcher) receives incoming SOAP messages and passes them on to the
invoker. The invoker (THTTPSoapPascalInvoker) interprets the SOAP message,
identifies the invokable interface it calls, executes the call, and assembles the
response message.

Note THTTPSoapDispatcher and THTTPSoapPascalInvoker are designed to respond to HTTP
messages containing a SOAP request. The underlying architecture is sufficiently
general, however, that it can support other protocols with the substitution of
different dispatcher and invoker components.

Once you register your invokable interfaces and their implementation classes, the
dispatcher and invoker automatically handle any messages that identify those
interfaces in the SOAP Action header of the HTTP request message.

Web services also include a publisher (TWSDLHTMLPublish). Publishers respond to
incoming client requests by creating the WSDL documents that describe how to call
the Web Services in the application.

Building a Web Service server

Use the following steps to build a server application that implements a Web Service:

1 Choose File|New|Other and on the WebServices tab, double-click the Soap
Server Application icon to launch the SOAP Server Application wizard. The
wizard creates a new Web server application that includes the components you
need to respond to SOAP requests. For details on the SOAP application wizard
and the code it generates, see “Using the SOAP application wizard” on page 38-10.

2 When you exit the SOAP Server Application wizard, it asks you if you want to
define an interface for your Web Service. If you are creating a Web Service from
scratch, click yes, and you will see the Add New Web Service wizard. The wizard
adds code to declare and register a new invokable interface for your Web Service.
Edit the generated code to define and implement your Web Service. If you want to

38-10 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

add additional interfaces (or you want to define the interfaces at a later time),
choose File|New|Other, and on the WebServices tab, double-click the SOAP Web
Service interface icon. For details on using the Add New Web Service wizard and
completing the code it generates, see “Adding new Web Services” on page 38-11.

3 If you are implementing a Web Service that has already been defined in a WSDL
document, you can use the WSDL importer to generate the interfaces,
implementation classes, and registration code that your application needs. You
need only fill in the body of the methods the importer generates for the
implementation classes. For details on using the WSDL importer, see “Using the
WSDL importer” on page 38-13.

4 If you want to use the headers in the SOAP envelope that encodes messages
between your application and clients, you can define classes to represent those
headers and write code to process them. This is described in “Defining and using
SOAP headers” on page 38-16.

5 If your application raises an exception when attempting to execute a SOAP
request, the exception will be automatically encoded in a SOAP fault packet,
which is returned instead of the results of the method call. If you want to convey
more information than a simple error message, you can create your own exception
classes that are encoded and passed to the client. This is described in “Creating
custom exception classes for Web Services” on page 38-18.

6 The SOAP Server Application wizard adds a publisher component
(TWSDLHTMLPublish) to new Web Service applications. This enables your
application to publish WSDL documents that describe your Web Service to clients.
For information on the WSDL publisher, see “Generating WSDL documents for a
Web Service application” on page 38-19.

Using the SOAP application wizard

Web Service applications are a special form of Web Server application. Because of
this, support for Web Services is built on top of the Web Broker architecture. To
understand the code that the SOAP Application wizard generates, therefore, it is
helpful to understand the Web Broker architecture. Information about Web Server
applications in general, and Web Broker in particular, can be found in Chapter 33,
“Creating Internet server applications” and Chapter 34, “Using Web Broker.”

To launch the SOAP application wizard, choose File|New|Other, and on the
WebServices page, double-click the Soap Server Application icon. Choose the type of
Web server application you want to use for your Web Service. For information about
different types of Web Server applications, see “Types of Web server applications”
on page 33-6.

Check the box to indicate whether you are writing a cross-platform application or a
Windows-only application. If you specify cross-platform, the Component palette
does not show any Windows-only components.

U s i n g W e b S e r v i c e s 38-11

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

The wizard generates a new Web server application that includes a Web module
which contains three components:

• An invoker component (THTTPSoapPascalInvoker). The invoker converts between
SOAP messages and the methods of any registered invokable interfaces in your
Web Service application.

• A dispatcher component (THTTPSoapDispatcher). The dispatcher automatically
responds to incoming SOAP messages and forwards them to the invoker. You can
use its WebDispatch property to identify the HTTP request messages to which your
application responds. This involves setting the PathInfo property to indicate the
path portion of any URL directed to your application, and the MethodType
property to indicate the method header for request messages.

• A WSDL publisher (TWSDLHTMLPublish). The WSDL publisher publishes a
WSDL document that describes your interfaces and how to call them. The WSDL
document tells clients that how to call on your Web Service application. For details
on using the WSDL publisher, see “Generating WSDL documents for a
Web Service application” on page 38-19.

The SOAP dispatcher and WSDL publisher are auto-dispatching components. This
means they automatically register themselves with the Web module so that it
forwards any incoming requests addressed using the path information they specify
in their WebDispatch properties. If you right-click on the Web module, you can see
that in addition to these auto-dispatching components, it has a single Web action
item named DefaultHandler.

DefaultHandler is the default action item. That is, if the Web module receives a request
for which it can’t find a handler (can’t match the path information), it forwards that
message to the default action item. DefaultHandler generates a Web page that
describes your Web Service. To change the default action, edit this action item’s
OnAction event handler.

Adding new Web Services

To add a new Web Service interface to your server application, choose File|New|
Other, and on the WebServices tab double-click on the icon labeled SOAP Server
Interface.

The Add New Web Service wizard lets you specify the name of the invokable
interface you want to expose to clients, and generates the code to declare and register
the interface and its implementation class. By default, the wizard also generates
comments that show sample methods and additional type definitions, to help you get
started in editing the generated files.

38-12 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Editing the generated code
The interface definitions appear in the interface section of the generated unit. This
generated unit has the name you specified using the wizard. You will want to change
the interface declaration, replacing the sample methods with the methods you are
making available to clients.

The wizard generates an implementation class that descends from TInvokableClass
and that supports the invokable interface). If you are defining an invokable interface
from scratch, you must edit the declaration of the implementation class to match any
edits you made to the generated invokable interface.

When adding methods to the invokable interface and implementation class,
remember that the methods must only use remotable types. For information on
remotable types and invokable interfaces, see “Using nonscalar types in invokable
interfaces” on page 38-4.

Using a different base class
The Add New Web Service wizard generates implementation classes that descend
from TInvokableClass. This is the easiest way to create a new class to implement a Web
Service. You can, however, replace this generated class with an implementation class
that has a different base class (for example, you may want to use an existing class as a
base class.) There are a number of considerations to take into account when you
replace the generated implementation class:

• Your new implementation class must support the invokable interface directly. The
invocation registry, with which you register invokable interfaces and their
implementation classes, keeps track of what class implements each registered
interface and makes it available to the invoker component when the invoker needs
to call the interface. It can only detect that a class implements an interface if the
interface is directly included in the class declaration. It does not detect support an
interface if it is inherited along with a base class.

• Your new implementation class must include support for the IInterface methods
that are part of any interface. This point may seem obvious, but it is an easy one to
overlook.

• You must change the generated code that registers the implementation class to
include a factory method to create instances of your implementation class.

This last point takes a bit of explanation. When the implementation class descends
from TInvokableClass and does not replace the inherited constructor with a new
constructor that includes one or more parameters, the invocation registry knows how
to create instances of the class when it needs them. When you write an
implementation class that does not descend from TInvokableClass, or when you
change the constructor, you must tell the invocation registry how to obtain instances
of your implementation class.

U s i n g W e b S e r v i c e s 38-13

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

You can tell the invocation registry how to obtain instances of your implementation
class by supplying it with a factory procedure. Even if you have an implementation
class that descends from TInvokableClass and that uses the inherited constructor, you
may want to supply a factory procedure anyway. For example, you can use a single
global instance of your implementation class rather than requiring the invocation
registry to create a new instance every time your application receives a call to the
invokable interface.

The factory procedure must be of type TCreateInstanceProc. It returns an instance of
your implementation class. If the procedure creates a new instance, the
implementation object should free itself when the reference count on its interface
drops to zero, as the invocation registry does not explicitly free object instances. The
following code illustrates another approach, where the factory procedure returns a
single global instance of the implementation class:

procedure CreateEncodeDecode(out obj: TObject);
begin

if FEncodeDecode = nil then
begin

FEncodeDecode := TEncodeDecode.Create;
{save a reference to the interface so that the global instance doesn’t free itself }
FEncodeDecodeInterface := FEncodeDecode as IEncodeDecode;

end;
obj := FEncodeDecode; { return global instance }

end;

Note In this example, FEncodeDecodeInterface is a variable of type IEncodeDecode.

You register the factory procedure with an implementation class by supplying it as a
second parameter to the call that registers the class with the invocation registry. First,
locate the call the wizard generated to register the implementation class. This
appears in initialization section of the unit that defines the class. It looks something
like the following:

InvRegistry.RegisterInvokableClass(TEncodeDecode);

Add a second parameter to this call that specifies the factory procedure:

InvRegistry.RegisterInvokableClass(TEncodeDecode, CreateEncodeDecode);

Using the WSDL importer

To use the WSDL importer, choose File|New|Other, and on the WebServices page
double-click the icon labeled WSDL importer. In the dialog that appears, specify the
file name of a WSDL document (or XML file) or provide the URL where that
document is published.

Note If you do not know the URL for the WSDL document you want to import, you can
browse for one by clicking the button labeled Search UDDI. This launches the UDDI
browser, which is described in “Browsing for Business services” on page 38-14.

Tip An advantage of using the UDDI browser, even if you know the location of the
WSDL document, is that when you locate the WSDL document using a UDDI
description, client applications get fail-over support.

38-14 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

If the WSDL document is on a server that requires authentication (or must be reached
using a proxy server that requires authentication), you need to provide a user name
and password before the wizard can retrieve the WSDL document. To supply this
information, click the Options button and provide the appropriate connection
information.

When you click the Next button, the WSDL importer displays the code it generates
for every definition in the WSDL document that is compatible with the Web Services
framework. That is, it only uses those port types that have a SOAP binding. You can
configure the way the importer generates code by clicking the Options button and
choosing the options you want.

You can use the WSDL importer when writing either a server or a client application.
When writing a server, click the Options button and in the resulting dialog, check the
option that tells the importer to generate server code. When you select this option,
the importer generates implementation classes for the invokable interfaces, and you
need only fill in the bodies of the methods.

Warning If you import a WSDL document to create a server that implements a Web Service
that is already defined, you must still publish your own WSDL document for that
service. There may be minor differences in the imported WSDL document and the
generated implementation. For example, if the WSDL document or XML schema file
uses identifiers that are also keywords, the importer automatically adjusts their
names so that the generated code can compile.

When you click Finish, the importer creates new units that define and register
invokable interfaces for the operations defined in the document, and that define and
register remotable classes for the types that the document defines.

As an alternate approach, you can use the command line WSDL importer instead. For
a server, call the command line importer with the -Os option, as follows:

WSDLIMP -Os -P -V MyWSDLDoc.wsdl

For a client application, call the command line importer without the -Os option:

WSDLIMP -P -V MyWSDLDoc.wsdl

Tip The command line interpreter includes some options that are not available when you
use the WSDL importer in the IDE. For details, see the help for WSDLIMP.

Browsing for Business services

You can use the UDDI browser to locate and import the WSDL document that
describes a Web Service. Launch the UDDI browser by clicking the UDDI button on
the WSDL importer.

One of the advantages of using the UDDI browser is that client applications gain fail-
over support. That is, if a request to the server returns a status code of 404, 405, or 410
(indicating that the requested interface or method is not available), the client
application automatically returns to the UDDI entry where you found the WSDL
document and checks whether it has changed.

U s i n g W e b S e r v i c e s 38-15

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Understanding UDDI
UDDI stands for Universal Description, Discovery, and Integration. It is a generic
format for registering services available through the Web. A number of public
registries exist, which make information about registered services available. Ideally,
these public registries all contain the same information, although there may be minor
discrepancies due to differences in when they update their information.

UDDI registries contain information about more than just Web Services. The format
is sufficiently general that it can be used to describe any business service. Entries in
the UDDI registry are organized hierarchically; first by business, then by type of
service, and lastly by detailed information within a service. This detailed information
is called a TModel. A Web Service, which can include one or more invokable
interfaces, makes up a single TModel. Thus, a single business service can include
multiple Web Services, as well as other business information. Each TModel can
include a variety of information, including contact information for people within the
business, a description of the service, and technical details such as a WSDL
document.

For example, consider a hypothetical business, Widgets Inc. This business might
have two services, widget manufacturing and custom widget design. Under the
widget manufacturing service, you might find two TModels, one for selling parts to
Widgets Inc, and one for ordering widgets. Each of these could be a Web Service.
Under the custom widget design service, you might find a Web Service for obtaining
cost estimates, and another TModel that is not a Web Service, which gives the address
of a Web site for viewing past custom designs.

Using the UDDI browser
The first step after you launch the UDDI browser from the WSDL importer is to
indicate the UDDI registry you want to search. The public registries should all
contain the same information, but there can be differences. In addition, you may be
using an internal, private registry. Select a public registry from the drop-down in the
upper left corner, or type in the address of a private registry you want to use.

The next step is to locate the business from which you want to import a Web Service.
Enter the name of the business in the edit control labeled Name. Other controls let
you specify whether the browser must match this name exactly, or whether you want
a case-insensitive search or want to allow a partial match. You can also specify how
many matches you want to fetch (if multiple businesses meet your criteria) and how
to sort the results.

Once you have specified the search criteria, click the Find button to locate the
business. All of the matches appear in the tree view in the upper right corner. Use
this tree view to drill down, locating the service you want, and the TModel within that
service that corresponds to the Web Service you want to import. As you select items
in this tree view, the lower right portion of the browser provides information about
the selected item. When you select a TModel that represents a Web Service with a
WSDL document, the Import button becomes enabled. When you locate the Web
Service you want to import, click the Import button.

38-16 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Defining and using SOAP headers

The SOAP encoding of a request to your Web Service application and of the response
your application sends include a set of header nodes. Some of these, such as the
SOAP Action header, are generated and interpreted automatically. However, you
can also define your own headers to customize the communication between your
server and its clients. Typically, these headers contain information that is associated
with the entire invokable interface, or even with the entire application, rather than
just the method that is the subject of a single message.

Defining header classes
For each header you want to define, create a descendant of TSOAPHeader.
TSOAPHeader is a descendant of TRemotable. That is, SOAP header objects are simply
special types of remotable objects. As with any remotable object, you can add
published properties to your TSOAPHeader descendant to represent the information
that your header communicates. Once you have defined a SOAP header class, it must
be registered with the remotable type registry. For more information about remotable
objects, see “Using remotable objects” on page 38-6. Note that unlike other remotable
classes, which are registered automatically when you register an invokable interface
that uses them, you must explicitly write code to register your header types.

TSOAPHeader defines two properties that are used to represent attributes of the
SOAP header node. These are MustUnderstand and Actor. When the MustUnderstand
attribute is True, the recipient of a message that includes the header is required to
recognize it. If the recipient can’t interpret a header with the MustUnderstand
attribute, it must abort the interpretation of the entire message. An application can
safely ignore any headers it does not recognize if their MustUnderstand attribute is
not set. The use of MustUnderstand is qualified by the Actor property. Actor is a URI
that identifies the application to which the header is directed. Thus, for example, if
your Web Service application forwards requests on to another service for further
processing, some of the headers in client messages may be targeted at that other
service. If such a header includes the MustUnderstand attribute, you should not abort
the request even if your application can’t understand the header. Your application is
only concerned with those headers that give its URL as the Actor.

Sending and receiving headers
Once you have defined and registered header classes, they are available for your
application to use. When your application receives a request, the headers on that
message are automatically converted into the corresponding TSOAPHeader
descendants that you have defined. Your application identifies the appropriate
header class by matching the name of the header node against the type name you
used when you registered the header class. Any headers for which it can’t find a
match in the remotable type registry are ignored (or, if their MustUnderstand attribute
is True, the application generates a SOAP fault).

You can access the headers your application receives using the ISOAPHeaders
interface. There are two ways to obtain this interface: from an instance of
TInvokableClass or, if you are implementing your invokable interface without using
TInvokableClass, by calling the global GetSOAPHeaders function.

U s i n g W e b S e r v i c e s 38-17

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Use the Get method of ISOAPHeaders to access the headers by name. For example:

TServiceImpl.GetQuote(Symbol: string): Double;
var

Headers: ISOAPHeaers;
H: TAuthHeader;

begin
Headers := Self as ISOAPHeaders;
Headers.Get(AuthHeader, TSOAPHeader(H)); { Retrieve the authentication header }
try

if H = nil then
raise ERemotableException.Create('SOAP header for authentication required');

{ code here to check name and password }
finally

H.Free;
end;
{ now that user is authenticated, look up and return quote }

end;

If you want to include any headers in the response your application generates to a
request message, you can use the same interface. ISOAPHeaders defines a Send
method to add headers to the outgoing response. Simply create an instance of each
header class that corresponds to a header you want to send, set its properties, and
call Send:

TServiceImpl.GetQuote(Symbol: string): Double;
var

Headers: ISOAPHeaers;
H: TQuoteDelay;
TXSDuration Delay;

begin
Headers := Self as ISOAPHeaders;
{ code to lookup the quote and set the return value }
{ this code sets the Delay variable to the time delay on the quote }
H := TQuoteDelay.Create;
H.Delay := Delay;
Headers.OwnsSentHeaders := True;
Headers.Send(H);

end;

Handling scalar-type headers
Some Web Services define and use headers that are simple types (such as an integer
or string) rather than a complex structure that corresponds to a remotable type.
However, Delphi’s support for SOAP headers requires that you use a TSOAPHeader
descendant to represent header types. You can define header classes for simple types
by treating the TSOAPHeader class as a holder class. That is, the TSOAPHeader
descendant has a single published property, which is the type of the actual header.
To signal that the SOAP representation does not need to include a node for the
TSOAPHeader descendant, call the remotable type registry’s RegisterSerializeOptions
method (after registering the header type) and give your header type an option of
xoSimpleTypeWrapper.

38-18 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Communicating the structure of your headers to other applications
If your application defines headers, you need to allow its clients to access those
definitions. If those clients are also written in Delphi, you can share the unit that
defines and registers your header classes with the client application. However, you
may want to let other clients know about the headers you use as well. To enable your
application to export information about its header classes, you must register them
with the invocation registry.

Like the code that registers your invokable interface, the code to register a header
class for export is added to the initialization section of the unit in which it is defined.
Use the global InvRegistry function to obtain a reference to the invocation registry
and call its RegisterHeaderClass method, indicating the interface with which the
header is associated:

initialization
InvRegistry.RegisterInterface(TypeInfo(IMyWebService)); {register the interface}
InvRegistry.RegisterHeaderClass(TypeInfo(IMyWebService), TMyHeaderClass); {and the header}

end.

You can limit the header to a subset of the methods on the interface by subsequent
calls to the RegisterHeaderMethod method.

Note The implementation section’s uses clause must include the InvokeRegistry unit so
that the call to the InvRegistry function is defined.

Once you have registered your header class with the invocation registry, its
description is added to WSDL documents when you publish your Web Service. For
information about publishing Web Services, see “Generating WSDL documents for a
Web Service application” on page 38-19.

Note This registration of your header class with the invocation registry is in addition to the
registration of that class with the remotable type registry.

Creating custom exception classes for Web Services

When your Web Service application raises an exception in the course of trying to
execute a SOAP request, it automatically encodes information about that exception in
a SOAP fault packet, which it returns instead of the results of the method call. The
client application then raises the exception.

By default, the client application raises a generic exception of type
ERemotableExceptionwith the information from the SOAP fault packet. You can
transmit additional, application-specific information by deriving an
ERemotableException descendant. The values of any published properties you add to
the exception class are included in the SOAP fault packet so that the client can raise
an equivalent exception.

To use an ERemotableException descendant, you must register it with the remotable
type registry. Thus, in the unit that defines your ERemotableException descendant, you
must add the InvokeRegistry unit to the uses clause and add a call to the
RegisterXSClass method of the object that the global RemTypeRegistry function
returns.

U s i n g W e b S e r v i c e s 38-19

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

If the client also defines and registers your ERemotableException descendant, then
when it receives the SOAP fault packet, it automatically raises an instance of the
appropriate exception class, with all properties set to the values in the SOAP fault
packet.

To allow clients to import information about your ERemotableException descendant,
you must register it with the invocation registry as well as the remotable type
registry. Add a call to the RegisterException method of the object that the global
InvRegistry function returns.

Generating WSDL documents for a Web Service application

To allow client applications to know what Web Services your application makes
available, you can publish a WSDL document that describes your invokable
interfaces and indicates how to call them.

To publish a WSDL document that describes your Web Service, include a
TWSDLHTMLPublish component in your Web Module. (The SOAP Server
Application wizard adds this component by default.) TWSDLHTMLPublish is an
auto-dispatching component, which means it automatically responds to incoming
messages that request a list of WSDL documents for your Web Service. Use the
WebDispatch property to specify the path information of the URL that clients must
use to access the list of WSDL documents. The Web browser can then request the list
of WSDL documents by specifying an URL that is made up of the location of the
server application followed by the path in the WebDispatch property. This URL looks
something like the following:

http://www.myco.com/MyService.dll/WSDL

Tip If you want to use a physical WSDL file instead, you can display the WSDL
document in your Web browser and then save it to generate a WSDL document file.

Note In addition to the WSDL document, the THWSDLHTMLPublish also generates a WS-
Inspection document to describe the service for automated tools. The URL for this
document looks something like the following:

http://www.myco.com/MyService.dll/inspection.wsil

It is not necessary to publish the WSDL document from the same application that
implements your Web Service. To create an application that simply publishes the
WSDL document, omit the code that implements and registers the implementation
objects and only include the code that defines and registers invokable interfaces,
remotable classes that represent complex types, and any remotable exceptions.

By default, when you publish a WSDL document, it indicates that the services are
available at the same URL as the one where you published the WSDL document (but
with a different path). If you are deploying multiple versions of your Web Service
application, or if you are publishing the WSDL document from a different
application than the one that implements the Web Service, you will need to change
the WSDL document so that it includes updated information on where to locate the
Web Service.

38-20 D e v e l o p e r ’ s G u i d e

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

To change the URL, use the WSDL administrator. The first step is to enable the
administrator. You do this by setting the AdminEnabled property of the
TWSDLHTMLPublish component to true. Then, when you use your browser to
display the list of WSDL documents, it includes a button to administer them as well.
Use the WSDL administrator to specify the locations (URLs) where you have
deployed your Web Service application.

Writing clients for Web Services
You can write clients that access Web Services that you have written, or any other
Web Service that is defined in a WSDL document. There are three steps to writing an
application that is the client of a Web Service:

• Importing the definitions from a WSDL document.

• Obtaining an invokable interface and calling it to invoke the Web Service.

• Processing the headers of the SOAP messages that pass between the client and the
server.

Importing WSDL documents

Before you can use a Web Service, your application must define and register the
invokable interfaces and types that are included in the Web Service application. To
obtain these definitions, you can import a WSDL document (or XML file) that defines
the service. The WSDL importer creates a unit that defines and registers the
interfaces, headers, and types you need to use. For details on using the WSDL
importer, see “Using the WSDL importer” on page 38-13.

Calling invokable interfaces

To call an invokable interface, your client application must include any definitions of
the invokable interfaces and any remotable classes that implement complex types.

If the server is written in Delphi, you can use the same units that the server
application uses to define and register these interfaces and classes instead of the files
generated by importing a WSDL file. Be sure that the unit uses the same namespace
URI and SOAPAction header when it registers invokable interfaces. These values can
be explicitly specified in the code that registers the interfaces, or it can be
automatically generated. If it is automatically generated, the unit that defines the
interfaces must have the same name in both client and server, and both client and
server must define the global AppNameSpacePrefix variable to have the same value.

Once you have the definition of the invokable interface, there are two ways you can
obtain an instance to call:

• If you imported a WSDL document, the importer automatically generates a global
function that returns the interface, which you can then call.

• You can use a remote interfaced object.

U s i n g W e b S e r v i c e s 38-21

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

Obtaining an invokable interface from the generated function
The WSDL importer automatically generates a function from which you can obtain
the invokable interfaces you imported. For example, if you imported a WSDL
document that defined an invokable interface named IServerInterface, the generated
unit would include the following global function:

function GetIServerInterface(UseWSDL: Boolean; Addr: string): IServerInterface;

The generated function takes two parameters: UseWSDL and Addr. UseWSDL
indicates whether to look up the location of the server from a WSDL document (true),
or whether the client application supplies the URL for the server (false).

When UseWSDL is false, Addr is the URL for the Web Service. When UseWSDL is
true, Addr is the URL of a WSDL document that describes the Web Service you are
calling. If you supply an empty string, this defaults to the document you imported.
This second approach is best if you expect that the URL for the Web Service may
change, or that details such as the namespace or SOAP Action header may change.
Using this second approach, this information is looked up dynamically at the time
your application makes the method call.

Note The generated function uses an internal remote interfaced object to implement the
invokable interface. If you are using this function and find you need to access that
underlying remote interfaced object, you can obtain an IRIOAccess interface from the
invokable interface, and use that to access the remote interfaced object:

var
Interf: IServerInterface;
RIOAccess: IRIOAccess;
X: THTTPRIO;

begin
Intrf := GetIServerInterface(True,

'http://MyServices.org/scripts/AppServer.dll/wsdl');
RIOAccess := Intrf as IRIOAccess;
X := RIOAccess.RIO as THTTPRIO;

Using a remote interfaced object
If you do not use the global function to obtain the invokable interface you want to
call, you can create an instance of THTTPRio for the desired interface:

X := THTTPRio.Create(nil);

Note It is important that you do not explicitly destroy the THTTPRio instance. If it is
created without an Owner (as in the previous line of code), it automatically frees itself
when its interface is released. If it is created with an Owner, the Owner is responsible
for freeing the THTTPRio instance.

38-22 D e v e l o p e r ’ s G u i d e

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

Once you have an instance of THTTPRio, provide it with the information it needs to
identify the server interface and locate the server. There are two ways to supply this
information:

• If you do not expect the URL for the Web Service or the namespaces and soap
Action headers it requires to change, you can simply specify the URL for the Web
Service you want to access. THTTPRio uses this URL to look up the definition of
the interface, plus any namespace and header information, based on the
information in the invocation registry. Specify the URL by setting the URL
property to the location of the server:

X.URL := 'http://www.myco.com/MyService.dll/SOAP/IServerInterface';

• If you want to look up the URL, namespace, or Soap Action header from the
WSDL document dynamically at runtime, you can use the WSDLLocation, Service,
and Port properties, and it will extract the necessary information from the WSDL
document:

X.WSDLLocation := 'Cryptography.wsdl';
X.Service := 'Cryptography';
X.Port := 'SoapEncodeDecode';

After specifying how to locate the server and identify the interface, you can obtain an
interface pointer for the invokable interface from the THTTPRio object. You obtain
this interface pointer using the as operator. Simply cast the THTTPRio instance to the
invokable interface:

InterfaceVariable := X as IEncodeDecode;
Code := InterfaceVariable.EncodeValue(5);

When you obtain the interface pointer, THTTPRio creates a vtable for the associated
interface dynamically in memory, enabling you to make interface calls.

THTTPRio relies on the invocation registry to obtain information about the invokable
interface. If the client application does not have an invocation registry, or if the
invokable interface is not registered, THTTPRio can’t build its in-memory vtable.

Warning If you assign the interface you obtain from THTTPRio to a global variable, you must
change that assignment to nil before shutting down your application. For example, if
InterfaceVariable in the previous code sample is a global variable, rather than stack
variable, you must release the interface before the THTTPRio object is freed.
Typically, this code goes in the OnDestroy event handler of the form or data module:

procedure TForm1.FormDestroy(Sender: TObject);
begin

InterfaceVariable := nil;
end;

The reason you must reassign a global interface variable to nil is because THTTPRio
builds its vtable dynamically in memory. That vtable must still be present when the
interface is released. If you do not release the interface along with the form or data
module, it is released when the global variable is freed on shutdown. The memory
for global variables may be freed after the form or data module that contains the
THTTPRio object, in which case the vtable will not be available when the interface is
released.

U s i n g W e b S e r v i c e s 38-23

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

Processing headers in client applications

If the Web Service application you are calling expects your client to include any
headers in its requests or if its response messages include special headers, your client
application needs the definitions of the header classes that correspond to these
headers. When you import a WSDL document that describes the Web Service
application, the importer automatically generates code to declare these header
classes and register them with the remotable type registry. If the server is written in
Delphi, you can use the same units that the server application uses to define and
register these header classes instead of the files generated by importing a WSDL file.
Be sure that the unit uses the same namespace URI and SOAPAction header when it
registers invokable interfaces. These values can be explicitly specified in the code that
registers the interfaces, or it can be automatically generated. If it is automatically
generated, the unit that defines the interfaces must have the same name in both client
and server, and both client and server must define the global AppSpacePrefix variable
to have the same value.

Note For more information about header classes, see “Defining and using SOAP headers”
on page 38-16.

As with a server, client applications use the ISOAPHeaders interface to access
incoming headers and add outgoing headers. The remote interfaced object that you
use to call invokable interfaces implements the ISOAPHeaders interface. However,
you can’t obtain an ISOAPHeaders interface directly from the remote interfaced
object. This is because when you try to obtain an interface directly from a remote
interfaced object, it generates an in-memory vtable, assuming that the interface is an
invokable interface. Thus, you must obtain the ISOAPHeaders interface from the
invokable interface rather than from the remote interfaced object:

var
Service: IMyService;
Hdr: TAuthHeader;
Val: Double;

begin
Service := HTTPRIO1 as IService;
Hdr := TAUthHeader.Create;
try

Hdr.Name := 'Frank Borland';
Hdr.Password := 'SuperDelphi';
(Service as ISOAPHeaders).Send(Hdr); { add the header to outgoing message }
Val := Service.GetQuote('BORL'); { invoke the service }

finally
Hdr.Free;

end;
end;

38-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s o c k e t s 39-1

C h a p t e r

39
Chapter39Working with sockets

This chapter describes the socket components that let you create an application that
can communicate with other systems using TCP/IP and related protocols. Using
sockets, you can read and write over connections to other machines without
worrying about the details of the underlying networking software. Sockets provide
connections based on the TCP/IP protocol, but are sufficiently general to work with
related protocols such as User Datagram Protocol (UDP), Xerox Network System
(XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

Using sockets, you can write network servers or client applications that read from
and write to other systems. A server or client application is usually dedicated to a
single service such as Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). Using server sockets, an application that provides one of these services can
link to client applications that want to use that service. Client sockets allow an
application that uses one of these services to link to server applications that provide
the service.

Implementing services
Sockets provide one of the pieces you need to write network servers or client
applications. For many services, such as HTTP or FTP, third party servers are readily
available. Some are even bundled with the operating system, so that there is no need
to write one yourself. However, when you want more control over the way the
service is implemented, a tighter integration between your application and the
network communication, or when no server is available for the particular service you
need, then you may want to create your own server or client application. For
example, when working with distributed data sets, you may want to write a layer to
communicate with databases on other systems.

39-2 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g s e r v i c e s

Understanding service protocols

Before you can write a network server or client, you must understand the service that
your application is providing or using. Many services have standard protocols that
your network application must support. If you are writing a network application for
a standard service such as HTTP, FTP, or even finger or time, you must first
understand the protocols used to communicate with other systems. See the
documentation on the particular service you are providing or using.

If you are providing a new service for an application that communicates with other
systems, the first step is designing the communication protocol for the servers and
clients of this service. What messages are sent? How are these messages coordinated?
How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the
networking software and an application that uses the service. For example, an HTTP
server sits between the Internet and a Web server application that provides content
and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and
the networking software. You must provide the interface between your application
and the clients that use it. You can copy the API of a standard third party server (such
as Apache), or you can design and publish your own API.

Services and ports

Most standard services are associated, by convention, with specific port numbers. We
will discuss port numbers in greater detail later. For now, consider the port number a
numeric code for the service.

If you are implementing a standard service for use in cross-platform applications,
Linux socket objects provide methods for you to look up the port number for the
service. If you are providing a new service, you can specify the associated port
number in the /etc/services file (or its equivalent for your particular Linux
distribution). See your Linux documentation for more information.

W o r k i n g w i t h s o c k e t s 39-3

T y p e s o f s o c k e t c o n n e c t i o n s

Types of socket connections
Socket connections can be divided into three basic types, which reflect how the
connection was initiated and what the local socket is connected to. These are

• Client connections.
• Listening connections.
• Server connections.

Once the connection to a client socket is completed, the server connection is
indistinguishable from a client connection. Both end points have the same
capabilities and receive the same types of events. Only the listening connection is
fundamentally different, as it has only a single endpoint.

Client connections

Client connections connect a client socket on the local system to a server socket on a
remote system. Client connections are initiated by the client socket. First, the client
socket must describe the server socket to which it wishes to connect. The client socket
then looks up the server socket and, when it locates the server, requests a connection.
The server socket may not complete the connection right away. Server sockets
maintain a queue of client requests, and complete connections as they find time.
When the server socket accepts the client connection, it sends the client socket a full
description of the server socket to which it is connecting, and the connection is
completed by the client.

Listening connections

Server sockets do not locate clients. Instead, they form passive “half connections”
that listen for client requests. Server sockets associate a queue with their listening
connections; the queue records client connection requests as they come in. When the
server socket accepts a client connection request, it forms a new socket to connect to
the client, so that the listening connection can remain open to accept other client
requests.

Server connections

Server connections are formed by server sockets when a listening socket accepts a
client request. A description of the server socket that completes the connection to the
client is sent to the client when the server accepts the connection. The connection is
established when the client socket receives this description and completes the
connection.

39-4 D e v e l o p e r ’ s G u i d e

D e s c r i b i n g s o c k e t s

Describing sockets
Sockets let your network application communicate with other systems over the
network. Each socket can be viewed as an endpoint in a network connection. It has an
address that specifies:

• The system on which it is running.
• The types of interfaces it understands.
• The port it is using for the connection.

A full description of a socket connection includes the addresses of the sockets on both
ends of the connection. You can describe the address of each socket endpoint by
supplying both the IP address or host and the port number.

Before you can make a socket connection, you must fully describe the sockets that
form its endpoints. Some of the information is available from the system your
application is running on. For instance, you do not need to describe the local IP
address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working
with. Client sockets must describe the server they want to connect to. Listening
server sockets must describe the port that represents the service they provide.

Describing the host

The host is the system that is running the application that contains the socket. You
can describe the host for a socket by giving its IP address, which is a string of four
numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to
use the host name. Host names are aliases for the IP address that you often see in
Uniform Resource Locators (URLs). They are strings containing a domain name and
service, such as

http://www.ASite.com

Most Intranets provide host names for the IP addresses of systems on the Internet.
You can learn the host name associated with any IP address (if one already exists) by
executing the following command from a command prompt:

nslookup IPADDRESS

where IPADDRESS is the IP address you’re interested in. If your local IP address
doesn’t have a host name and you decide you want one, contact your network
administrator. It is common for computers to refer to themselves with the name
localhost and the IP number 127.0.0.1.

W o r k i n g w i t h s o c k e t s 39-5

D e s c r i b i n g s o c k e t s

Server sockets do not need to specify a host. The local IP address can be read from the
system. If the local system supports more than one IP address, server sockets will
listen for client requests on all IP addresses simultaneously. When a server socket
accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP
address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to
remember, and easier to check for typographical errors. Further, servers can change
the system or IP address that is associated with a particular host name. Using a host
name allows the client socket to find the abstract site represented by the host name,
even when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using
its IP address. Specifying the server system by giving the IP address is faster. When
you provide the host name, the socket must search for the IP address associated with
the host name, before it can locate the server system.

Using ports

While the IP address provides enough information to find the system on the other
end of a socket connection, you also need a port number on that system. Without port
numbers, a system could only form a single connection at a time. Port numbers are
unique identifiers that enable a single system to host multiple connections
simultaneously, by giving each connection a separate port number.

Earlier, we described port numbers as numeric codes for the services implemented
by network applications. This is actually just a convention that allows listening server
connections to make themselves available on a fixed port number so that they can be
found by client sockets. Server sockets listen on the port number associated with the
service they provide. When they accept a connection to a client socket, they create a
separate socket connection that uses a different, arbitrary, port number. This way, the
listening connection can continue to listen on the port number associated with the
service.

Client sockets use an arbitrary local port number, as there is no need for them to be
found by other sockets. They specify the port number of the server socket to which
they want to connect so that they can find the server application. Often, this port
number is specified indirectly, by naming the desired service.

39-6 D e v e l o p e r ’ s G u i d e

U s i n g s o c k e t c o m p o n e n t s

Using socket components
The Internet palette page includes three socket components that allow your network
application to form connections to other machines, and that allow you to read and
write information over that connection. These are:

• TcpServer
• TcpClient
• UdpSocket

Associated with each of these socket components are socket objects, which represent
the endpoint of an actual socket connection. The socket components use the socket
objects to encapsulate the socket server calls, so that your application does not need
to be concerned with the details of establishing the connection or managing the
socket messages.

If you want to customize the details of the connections that the socket components
make on your behalf, you can use the properties, events, and methods of the socket
objects.

Getting information about the connection

After completing the connection to a client or server socket, you can use the client or
server socket object associated with your socket component to obtain information
about the connection. Use the LocalHost and LocalPort properties to determine the
address and port number used by the local client or server socket, or use the
RemoteHost and RemotePort properties to determine the address and port number
used by the remote client or server socket. Use the GetSocketAddr method to build a
valid socket address based on the host name and port number. You can use the
LookupPort method to look up the port number. Use the LookupProtocol method to
look up the protocol number. Use the LookupHostName method to look up the host
name based on the host machine’s IP address.

To view network traffic in and out of the socket, use the BytesSent and BytesReceived
properties.

Using client sockets

Add a TcpClient or UdpSocket component to your form or data module to turn your
application into a TCP/IP or UDP client. Client sockets allow you to specify the
server socket you want to connect to, and the service you want that server to provide.
Once you have described the desired connection, you can use the client socket
component to complete the connection to the server.

Each client socket component uses a single client socket object to represent the client
endpoint in a connection.

W o r k i n g w i t h s o c k e t s 39-7

U s i n g s o c k e t c o m p o n e n t s

Specifying the desired server
Client socket components have a number of properties that allow you to specify the
server system and port to which you want to connect. Use the RemoteHost property to
specify the remote host server by either its host name or IP address.

In addition to the server system, you must specify the port on the server system that
your client socket will connect to. You can use the RemotePort property to specify the
server port number directly or indirectly by naming the target service.

Forming the connection
Once you have set the properties of your client socket component to describe the
server you want to connect to, you can form the connection at runtime by calling the
Open method. If you want your application to form the connection automatically
when it starts up, set the Active property to True at design time, using the Object
Inspector.

Getting information about the connection
After completing the connection to a server socket, you can use the client socket
object associated with your client socket component to obtain information about the
connection. Use the LocalHost and LocalPort properties to determine the address and
port number used by the client and server sockets to form the end points of the
connection. You can use the Handle property to obtain a handle to the socket
connection to use when making socket calls.

Closing the connection
When you have finished communicating with a server application over the socket
connection, you can shut down the connection by calling the Close method. The
connection may also be closed from the server end. If that is the case, you will receive
notification in an OnDisconnect event.

Using server sockets

Add a server socket component (TcpServer or UdpSocket) to your form or data module
to turn your application into an IP server. Server sockets allow you to specify the
service you are providing or the port you want to use to listen for client requests. You
can use the server socket component to listen for and accept client connection
requests.

Each server socket component uses a single server socket object to represent the
server endpoint in a listening connection. It also uses a server client socket object for
the server endpoint of each active connection to a client socket that the server accepts.

39-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s o c k e t e v e n t s

Specifying the port
Before your server socket can listen to client requests, you must specify the port that
your server will listen on. You can specify this port using the LocalPort property. If
your server application is providing a standard service that is associated by
convention with a specific port number, you can also specify the service name using
the LocalPort property. It is a good idea to use the service name instead of a port
number, because it is easy to introduce typographical errors when specifying the port
number.

Listening for client requests
Once you have set the port number of your server socket component, you can form a
listening connection at runtime by calling the Open method. If you want your
application to form the listening connection automatically when it starts up, set the
Active property to True at design time, using the Object Inspector.

Connecting to clients
A listening server socket component automatically accepts client connection requests
when they are received. You receive notification every time this occurs in an
OnAccept event.

Closing server connections
When you want to shut down the listening connection, call the Close method or set
the Active property to False. This shuts down all open connections to client
applications, cancels any pending connections that have not been accepted, and then
shuts down the listening connection so that your server socket component does not
accept any new connections.

When TCP clients shut down their individual connections to your server socket, you
are informed by an OnDisconnect event.

Responding to socket events
When writing applications that use sockets, you can write or read to the socket
anywhere in the program. You can write to the socket using the SendBuf, SendStream,
or Sendln methods in your program after the socket has been opened. You can read
from the socket using the similarly-named methods ReceiveBuf and Receiveln. The
OnSend and OnReceive events are triggered every time something is written or read
from the socket. They can be used for filtering. Every time you read or write, a read
or write event is triggered.

Both client sockets and server sockets generate error events when they receive error
messages from the connection.

Socket components also receive two events in the course of opening and completing
a connection. If your application needs to influence how the opening of the socket
proceeds, you must use the SendBuf and ReceiveBuf methods to respond to these
client events or server events.

W o r k i n g w i t h s o c k e t s 39-9

R e s p o n d i n g t o s o c k e t e v e n t s

Error events

Client and server sockets generate OnError events when they receive error messages
from the connection. You can write an OnError event handler to respond to these
error messages. The event handler is passed information about

• What socket object received the error notification.
• What the socket was trying to do when the error occurred.
• The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to
prevent the socket from raising an exception.

Client events

When a client socket opens a connection, the following events occur:

• The socket is set up and initialized for event notification.

• An OnCreateHandle event occurs after the server and server socket is created. At
this point, the socket object available through the Handle property can provide
information about the server or client socket that will form the other end of the
connection. This is the first chance to obtain the actual port used for the
connection, which may differ from the port of the listening sockets that accepted
the connection.

• The connection request is accepted by the server and completed by the client
socket.

• When the connection is established, the OnConnect notification event occurs.

Server events

Server socket components form two types of connections: listening connections and
connections to client applications. The server socket receives events during the
formation of each of these connections.

Events when listening
Just before the listening connection is formed, the OnListening event occurs. You can
use its Handle property to make changes to the socket before it is opened for listing.
For example, if you want to restrict the IP addresses the server uses for listening, you
would do that in an OnListening event handler.

39-10 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

Events with client connections
When a server socket accepts a client connection request, the following events occur:

• An OnAccept event occurs, passing in the new TTcpClient object to the event
handler. This is the first point when you can use the properties of TTcpClient to
obtain information about the server endpoint of the connection to a client.

• If BlockMode is bmThreadBlocking an OnGetThread event occurs. If you want to
provide your own customized descendant of TServerSocketThread, you can create
one in an OnGetThread event handler, and that will be used instead of
TServerSocketThread. If you want to perform any initialization of the thread, or
make any socket API calls before the thread starts reading or writing over the
connection, you should use the OnGetThread event handler for these tasks as well.

• The client completes the connection and an OnAccept event occurs. With a non-
blocking server, you may want to start reading or writing over the socket
connection at this point.

Reading and writing over socket connections
The reason you form socket connections to other machines is so that you can read or
write information over those connections. What information you read or write, or
when you read it or write it, depends on the service associated with the socket
connection.

Reading and writing over sockets can occur asynchronously, so that it does not block
the execution of other code in your network application. This is called a non-blocking
connection. You can also form blocking connections, where your application waits
for the reading or writing to be completed before executing the next line of code.

Non-blocking connections

Non-blocking connections read and write asynchronously, so that the transfer of data
does not block the execution of other code in you network application. To create a
non-blocking connection for client or server sockets, set the BlockMode property to
bmNonBlocking.

When the connection is non-blocking, reading and writing events inform your socket
when the socket on the other end of the connection tries to read or write information.

W o r k i n g w i t h s o c k e t s 39-11

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

Reading and writing events
Non-blocking sockets generate reading and writing events when they need to read or
write over the connection. You can respond to these notifications in an OnReceive or
OnSend event handler.

The socket object associated with the socket connection is provided as a parameter to
the read or write event handlers. This socket object provides a number of methods to
allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or Receiveln method. To write
to the socket connection, use the SendBuf, SendStream, or Sendln method.

Blocking connections

When the connection is blocking, your socket must initiate reading or writing over
the connection. It cannot wait passively for a notification from the socket connection.
Use a blocking socket when your end of the connection is in charge of when reading
and writing takes place.

For client or server sockets, set the BlockMode property to bmBlocking to form a
blocking connection. Depending on what else your client application does, you may
want to create a new execution thread for reading or writing, so that your application
can continue executing code on other threads while it waits for the reading or writing
over the connection to be completed.

For server sockets, set the BlockMode property to bmBlocking or bmThreadBlocking to
form a blocking connection. Because blocking connections hold up the execution of
all other code while the socket waits for information to be written or read over the
connection, server socket components always spawn a new execution thread for
every client connection when the BlockMode is bmThreadBlocking. When the BlockMode
is bmBlocking, program execution is blocked until a new connection is established.

39-12 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g C O M - b a s e d a p p l i c a t i o n s

P a r t

IV
Part IVDeveloping COM-based applications

The chapters in “Developing COM-based applications” present concepts necessary
for building COM-based applications, including Automation controllers,
Automation servers, ActiveX controls, and COM+ applications.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-1

C h a p t e r

40
Chapter40Overview of COM technologies

Delphi provides wizards and classes to make it easy to implement applications based
on the Component Object Model (COM) from Microsoft. With these wizards, you can
create COM-based classes and components to use within applications or you can
create fully functional COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms.

Note COM components such as those on the ActiveX, COM+, and Servers tabs of the
Component palette are not available for use in CLX applications. This technology is
for use on Windows only and is not cross-platform.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same
computer as the application or that exist on another computer on the network using a
mechanism called Distributed COM (DCOM). For more information on clients,
servers, and interfaces see, “Parts of a COM application,” on page 40-3.

This chapter provides a conceptual overview of the underlying technology on which
Automation and ActiveX controls are built. Later chapters provide details on creating
Automation objects and ActiveX controls in Delphi.

40-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f C O M t e c h n o l o g i e s

COM as a specification and implementation
COM is both a specification and an implementation. The COM specification defines
how objects are created and how they communicate with each other. According to
this specification, COM objects can be written in different languages, run in different
process spaces and on different platforms. As long as the objects adhere to the
written specification, they can communicate. This allows you to integrate legacy code
as a component with new components implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a
number of core services that support the written specification. The COM library
contains a set of standard interfaces that define the core functionality of a COM
object, and a small set of API functions designed for the purpose of creating and
managing COM objects.

When you use Delphi wizards and VCL objects in your application, you are using
Delphi’s implementation of the COM specification. In addition, Delphi provides
some wrappers for COM services for those features that it does not implement
directly (such as Active Documents). You can find these wrappers defined in the
ComObj unit and the API definitions in the AxCtrls unit.

Note Delphi’s interfaces and language follow the COM specification. Delphi implements
objects conforming to the COM spec using a set of classes called the Delphi ActiveX
framework (DAX). These classes are found in the AxCtrls, OleCtrls, and OleServer
units. In addition, the Delphi interface to the COM API is in ActiveX.pas and
ComSvcs.pas.

COM extensions
As COM has evolved, it has been extended beyond the basic COM services. COM
serves as the basis for other technologies such as Automation, ActiveX controls,
Active Documents, and Active Directories. For details on COM extensions, see
“COM extensions” on page 40-10.

In addition, when working in a large, distributed environment, you can create
transactional COM objects. Prior to Windows 2000, these objects were not
architecturally part of COM, but rather ran in the Microsoft Transaction Server (MTS)
environment. With the advent of Windows 2000, this support is integrated into
COM+. Transactional objects are described in detail in Chapter 46, “Creating MTS or
COM+ objects.”

Delphi provides wizards to easily implement applications that incorporate the above
technologies in the Delphi environment. For details, see “Implementing COM objects
with wizards” on page 40-19.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-3

P a r t s o f a C O M a p p l i c a t i o n

Parts of a COM application
When implementing a COM application, you supply the following:

COM interfaces

COM clients communicate with objects through COM interfaces. Interfaces are
groups of logically or semantically related routines which provide communication
between a provider of a service (server object) and its clients. The standard way to
depict a COM interface is shown in Figure 40.1:

Figure 40.1 A COM interface

For example, every COM object must implement the basic interface, IUnknown.
Through a routine called QueryInterface in IUnknown, clients can request other
interfaces implemented by the server.

Objects can have multiple interfaces, where each interface implements a feature. An
interface provides a way to convey to the client what service it provides, without
providing implementation details of how or where the object provides this service.

COM interface The way in which an object exposes its services externally to clients.
A COM object provides an interface for each set of related methods
and properties. Note that COM properties are not identical to
properties on VCL objects. COM properties always use read and
write access methods.

COM server A module, either an EXE, DLL, or OCX, that contains the code for a
COM object. Object implementations reside in servers. A COM
object implements one or more interfaces.

COM client The code that calls the interfaces to get the requested services from
the server. Clients know what they want to get from the server
(through the interface); clients do not know the internals of how the
server provides the services. Delphi eases the process in creating a
client by letting you install COM servers (such as a Word document
or PowerPoint slide) as components on the Component Palette.
This allows you to connect to the server and hook its events
through the Object Inspector.

COM
Object

Interface

40-4 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

Key aspects of COM interfaces are as follows:

• Once published, interfaces are immutable; that is, they do not change. You can rely
on an interface to provide a specific set of functions. Additional functionality is
provided by additional interfaces.

• By convention, COM interface identifiers begin with a capital I and a symbolic
name that defines the interface, such as IMalloc or IPersist.

• Interfaces are guaranteed to have a unique identification, called a Globally
Unique Identifier (GUID), which is a 128-bit randomly generated number.
Interface GUIDs are called Interface Identifiers (IIDs). This eliminates naming
conflicts between different versions of a product or different products.

• Interfaces are language independent. You can use any language to implement a
COM interface as long as the language supports a structure of pointers, and can
call a function through a pointer either explicitly or implicitly.

• Interfaces are not objects themselves; they provide a way to access an object.
Therefore, clients do not access data directly; clients access data through an
interface pointer. Windows 2000 adds an additional layer of indirection known as
an interceptor through which it provides COM+ features such as just-in-time
activation and object pooling.

• Interfaces are always inherited from the fundamental interface, IUnknown.

• Interfaces can be redirected by COM through proxies to enable interface method
calls to call between threads, processes, and networked machines, all without the
client or server objects ever being aware of the redirection. For more information
see , “In-process, out-of-process, and remote servers,” on page 40-7.

The fundamental COM interface, IUnknown
All COM objects must support the fundamental interface, called IUnknown, a typedef
to the base interface type IInterface. IUnknown contains the following routines:

Clients obtain pointers to other interfaces through the IUnknown method,
QueryInterface. QueryInterface knows about every interface in the server object and
can give a client a pointer to the requested interface. When receiving a pointer to an
interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release,
which are simple reference counting methods. As long as an object’s reference count
is nonzero, the object remains in memory. Once the reference count reaches zero, the
interface implementation can safely dispose of the underlying object(s).

QueryInterface Provides pointers to other interfaces that the object supports.

AddRef and Release Simple reference counting methods that keep track of the
object’s lifetime so that an object can delete itself when the
client no longer needs its service.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-5

P a r t s o f a C O M a p p l i c a t i o n

COM interface pointers
An interface pointer is a pointer to an object instance that points, in turn, to the
implementation of each method in the interface. The implementation is accessed
through an array of pointers to these methods, which is called a vtable. Vtables are
similar to the mechanism used to support virtual functions in Delphi. Because of this
similarity, the compiler can resolve calls to methods on the interface the same way it
resolves calls to methods on Delphi classes.

The vtable is shared among all instances of an object class, so for each object instance,
the object code allocates a second structure that contains its private data. The client’s
interface pointer, then, is a pointer to the pointer to the vtable, as shown in the
following diagram.

Figure 40.2 Interface vtable

In Windows 2000 and subsequent versions of Windows, when an object is running
under COM+, an added level of indirection is provided between the interface pointer
and the vtable pointer. The interface pointer available to the client points at an
interceptor, which in turn points at the vtable. This allows COM+ to provide such
services as just-in-time activation, whereby the server can be deactivated and
reactivated dynamically in a way that is opaque to the client. To achieve this, COM+
guarantees that the interceptor behaves as if it were an ordinary vtable pointer.

COM servers

A COM server is an application or a library that provides services to a client
application or library. A COM server consists of one or more COM objects, where a
COM object is a set of properties and methods.

Clients do not know how a COM object performs its service; the object’s
implementation remains encapsulated. An object makes its services available
through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides
transparent access regardless of the object’s location.

Pointer to
Function 1

Implementation
of interface
functions

vtable pointerinterface pointer

object

Pointer to
Function 2

Pointer to
Function 3

40-6 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

When a client requests a service from a COM object, the client passes a class identifier
(CLSID) to COM. A CLSID is simply a GUID that identifies a COM object. COM uses
this CLSID, which is registered in the system registry, to locate the appropriate server
implementation. Once the server is located, COM brings the code into memory, and
has the server instantiate an object instance for the client. This process is handled
indirectly, through a special object called a class factory (based on interfaces) that
creates instances of objects on demand.

As a minimum, a COM server must perform the following:

• Register entries in the system registry that associate the server module with the
class identifier (CLSID).

• Implement a class factory object, which manufactures another object of a
particular CLSID.

• Expose the class factory to COM.

• Provide an unloading mechanism through which a server that is not servicing
clients can be removed from memory.

Note Delphi wizards automate the creation of COM objects and servers as described in
“Implementing COM objects with wizards” on page 40-19.

CoClasses and class factories
A COM object is an instance of a CoClass, which is a class that implements one or
more COM interfaces. The COM object provides the services as defined by its
interfaces.

CoClasses are instantiated by a special type of object called a class factory. Whenever
an object’s services are requested by a client, a class factory creates an object instance
for that particular client. Typically, if another client requests the object’s services, the
class factory creates another object instance to service the second client. (Clients can
also bind to running COM objects that register themselves to support it.)

A CoClass must have a class factory and a class identifier (CLSID) so that it can be
instantiated externally, that is, from another module. Using these unique identifiers
for CoClasses means that they can be updated whenever new interfaces are
implemented in their class. A new interface can modify or add methods without
affecting older versions, which is a common problem when using DLLs.

Delphi wizards take care of assigning class identifiers and of implementing and
instantiating class factories.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-7

P a r t s o f a C O M a p p l i c a t i o n

In-process, out-of-process, and remote servers
With COM, a client does not need to know where an object resides, it simply makes a
call to an object’s interface. COM performs the necessary steps to make the call. These
steps differ depending on whether the object resides in the same process as the client,
in a different process on the client machine, or in a different machine across the
network. The different types of servers are known as:

As shown in Figure 40.3, for in-process servers, pointers to the object interfaces are in
the same process space as the client, so COM makes direct calls into the object
implementation.

Figure 40.3 In-process server

Note This is not always true under COM+. When a client makes a call to an object in a
different context, COM+ intercepts the call so that it behaves like a call to an out-of-
process server (see below), even if the server is in-process. See Chapter 46, “Creating
MTS or COM+ objects” for more information working with COM+.

In-process server A library (DLL) running in the same process space as the client,
for example, an ActiveX control embedded in a Web page
viewed under Internet Explorer or Netscape. Here, the
ActiveX control is downloaded to the client machine and
invoked within the same process as the Web browser.

The client communicates with the in-process server using
direct calls to the COM interface.

Out-of-process server
(or local server)

Another application (EXE) running in a different process space
but on the same machine as the client. For example, an Excel
spreadsheet embedded in a Word document are two
separate applications running on the same machine.

The local server uses COM to communicate with the client.

Remote server A DLL or another application running on a different machine
from that of the client. For example, a Delphi database
application is connected to an application server on another
machine in the network.

The remote server uses distributed COM (DCOM) to access
interfaces and communicate with the application server.

Client Process

Client
Server

In-process
Object

40-8 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

As shown in Figure 40.4, when the process is either in a different process or in a
different machine altogether, COM uses a proxy to initiate remote procedure calls.
The proxy resides in the same process as the client, so from the client’s perspective,
all interface calls look alike. The proxy intercepts the client’s call and forwards it to
where the real object is running. The mechanism that enables the client to access
objects in a different process space, or even different machine, as if they were in their
own process, is called marshaling.

Figure 40.4 Out-of-process and remote servers

The difference between out-of-process and remote servers is the type of interprocess
communication used. The proxy uses COM to communicate with an out-of-process
server, it uses distributed COM (DCOM) to communicate with a remote machine.
DCOM transparently transfers a local object request to the remote object running on
a different machine.

Note For remote procedure calls, DCOM uses the RPC protocol provided by Open
Group’s Distributed Computing Environment (DCE). For distributed security,
DCOM uses the NT LAN Manager (NTLM) security protocol. For directory services,
DCOM uses the Domain Name System (DNS).

The marshaling mechanism
Marshaling is the mechanism that allows a client to make interface function calls to
remote objects in another process or on a different machine. Marshaling

• Takes an interface pointer in the server’s process and makes a proxy pointer
available to code in the client process.

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

DCOM
RPC

Client Process

Client

In-process
Proxy

Out-of-Process Server

Stub In-process
Object

Remote machine

Remote machine

DCOM

Stub

Remote server

In-process
Object

COM
RPC

O v e r v i e w o f C O M t e c h n o l o g i e s 40-9

P a r t s o f a C O M a p p l i c a t i o n

For any interface call, the client pushes arguments onto a stack and makes a function
call through the interface pointer. If the call to the object is not in-process, the call gets
passed to the proxy. The proxy packs the arguments into a marshaling packet and
transmits the structure to the remote object. The object’s stub unpacks the packet,
pushes the arguments onto the stack, and calls the object’s implementation. In
essence, the object recreates the client’s call in its own address space.

The type of marshaling that occurs depends on what interface the COM object
implements. Objects can use a standard marshaling mechanism provided by the
IDispatch interface. This is a generic marshaling mechanism that enables
communication through a system-standard remote procedure call (RPC). For details
on the IDispatch interface, see “Automation interfaces” on page 43-13. Even if the
object does not implement IDispatch, if it limits itself to automation-compatible types
and has a registered type library, COM automatically provides marshaling support.

Applications that do not limit themselves to automation-compatible types or register
a type library must provide their own marshaling. Marshaling is provided either
through an implementation of the IMarshal interface, or by using a separately
generated proxy/stub DLL. Delphi does not support the automatic generation of
proxy/stub DLLs.

Aggregation
Sometimes, a server object makes use of another COM object to perform some of its
functions. For example, an inventory management object might make use of a
separate invoicing object to handle customer invoices. If the inventory management
object wants to present the invoice interface to clients, however, there is a problem:
Although a client that has the inventory interface can call QueryInterface to obtain the
invoice interface, when the invoice object was created it did not know about the
inventory management object and can’t return an inventory interface in response to a
call to QueryInterface. A client that has the invoice interface can’t get back to the
inventory interface.

To avoid this problem, some COM objects support aggregation. When the inventory
management object creates an instance of the invoice object, it passes it a copy of its
own IUnknown interface. The invoice object can then use that IUnknown interface to
handle any QueryInterface calls that request an interface, such as the inventory
interface, that it does not support. When this happens, the two objects together are
called an aggregate. The invoice object is called the inner, or contained object of the
aggregate, and the inventory object is called the outer object.

Note In order to act as the outer object of an aggregate, a COM object must create the inner
object using the Windows API CoCreateInstance or CoCreateInstanceEx, passing its
IUnknown pointer as a parameter that the inner object can use for QueryInterface calls.

In order to create an object that can act as the inner object of an aggregate, it must
descend from TContainedObject. When the object is created, the IUnknown interface of
the outer object is passed to the constructor so that it can be used by the
QueryInterface method on calls that the inner object can’t handle.

40-10 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

COM clients

Clients can always query the interfaces of a COM object to determine what it is
capable of providing. All COM objects allow clients to request known interfaces. In
addition, if the server supports the IDispatch interface, clients can query the server for
information about what methods the interface supports. Server objects have no
expectations about the client using its objects. Similarly, clients don’t need to know
how (or even where) an object provides the services; they simply rely on server
objects to provide the services they advertise through their interfaces.

There are two types of COM clients, controllers and containers. Controllers launch
the server and interact with it through its interface. They request services from the
COM object or drive it as a separate process. Containers host visual controls or
objects that appear in the container’s user interface. They use predefined interfaces to
negotiate display issues with server objects. It is impossible to have a container
relationship over DCOM; for example, visual controls that appear in the container's
user interface must be located locally. This is because the controls are expected to
paint themselves, which requires that they have access to local GDI resources.

Delphi makes it easier for you to develop COM clients by letting you import a type
library or ActiveX control into a component wrapper so that server objects look like
other VCL components. For details on this process, see Chapter 42, “Creating COM
clients.”

COM extensions
COM was originally designed to provide core communication functionality and to
enable the broadening of this functionality through extensions. COM itself has
extended its core functionality by defining specialized sets of interfaces for specific
purposes.

The following lists some of the services COM extensions currently provide.
Subsequent sections describe these services in greater detail.

Automation servers Automation refers to the ability of an application to control
the objects in another application programmatically.
Automation servers are the objects that can be controlled by
other executables at runtime.

ActiveX controls ActiveX controls are specialized in-process servers, typically
intended for embedding in a client application. The controls
offer both design and runtime behaviors as well as events.

Active Server Pages Active Server Pages are scripts that generate HTML pages.
The scripting language includes constructs for creating and
running Automation objects. That is, the Active Server Page
acts as an Automation controller.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-11

C O M e x t e n s i o n s

The following diagram illustrates the relationship of the COM extensions and how
they are built upon COM:

Figure 40.5 COM-based technologies

Active Documents Objects that support linking and embedding, drag-and-drop,
visual editing, and in-place activation. Word documents and
Excel spreadsheets are examples of Active Documents.

Transactional objects Objects that include additional support for responding to
large numbers of clients. This includes features such as just-
in-time activation, transactions, resource pooling, and
security services. These features were originally handled by
MTS but have been built into COM with the advent of
COM+.

Type libraries A collection of static data structures, often saved as a
resource, that provides detailed type information about an
object and its interfaces. Clients of Automation servers,
ActiveX controls, and transactional objects expect type
information to be available.

40-12 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

COM objects can be visual or non-visual. Some must run in the same process space as
their clients; others can run in different processes or remote machines, as long as the
objects provide marshaling support. Table 40.1 summarizes the types of COM objects
that you can create, whether they are visual, process spaces they can run in, how they
provide marshaling, and whether they require a type library.

Automation servers

Automation refers to the ability of an application to control the objects in another
application programmatically, like a macro that can manipulate more than one
application at the same time. The server object being manipulated is called the
Automation object, and the client of the Automation object is referred to as an
Automation controller.

Automation can be used on in-process, local, and remote servers.

Automation is characterized by two key points:

• The Automation object defines a set of properties and commands, and describes
their capabilities through type descriptions. In order to do this, it must have a way
to provide information about its interfaces, the interface methods, and those
methods’ arguments. Typically, this information is available in a type library. The
Automation server can also generate type information dynamically when queried
via its IDispatch interface (see following).

• Automation objects make their methods accessible so that other applications can
use them. For this, they implement the IDispatch interface. Through this interface
an object can expose all of its methods and properties. Through the primary
method of this interface, the object’s methods can be invoked, once having been
identified through type information.

Table 40.1 COM object requirements

Object
Visual
Object? Process space Communication Type library

Active Document Usually In-process, or out-
of-process

OLE Verbs No

Automation
Server

Occasionally In-process,
out-of-process, or
remote

Automatically marshaled using
the IDispatch interface (for out-of
process and remote servers)

Required for
automatic
marshaling

ActiveX Control Usually In-process Automatically marshaled using
the IDispatch interface

Required

MTS or COM+ Occasionally In-process for MTS,
any for COM+

Automatically marshaled via a
type library

Required

In-process custom
 interface object

Optionally In-process No marshaling required for in-
process servers

Recommended

Other custom
interface object

Optionally In-process,
out-of-process, or
remote

Automatically marshaled via a
type library; otherwise, manually
marshaled using custom interfaces

Recommended

O v e r v i e w o f C O M t e c h n o l o g i e s 40-13

C O M e x t e n s i o n s

Developers often use Automation to create and use non-visual OLE objects that run
in any process space because the Automation IDispatch interface automates the
marshaling process. Automation does, however, restrict the types that you can use.

For a list of types that are valid for type libraries in general, and Automation
interfaces in particular, see “Valid types” on page 41-12.

For information on writing an Automation server, see Chapter 43, “Creating simple
COM servers.”

Active Server Pages

The Active Server Page (ASP) technology lets you write simple scripts, called Active
Server Pages, that can be launched by clients via a Web server. Unlike ActiveX
controls, which run on the client, Active Server Pages run on the server, and return a
resulting HTML page to clients.

Active Server Pages are written in Jscript or VB script. The script runs every time the
server loads the Web page. That script can then launch an embedded Automation
server (or Enterprise Java Bean). For example, you can write an Automation server,
such as one to create a bitmap or connect to a database, and this server accesses data
that gets updated every time a client loads the Web page.

Active Server Pages rely on the Microsoft Internet Information Server (IIS)
environment to serve your Web pages.

Delphi wizards let you create an Active Server Object, which is an Automation object
specifically designed to work with an Active Server Page. For more information
about creating and using these types of objects, see Chapter 44, “Creating an Active
Server Page.”

ActiveX controls

ActiveX is a technology that allows COM components, especially controls, to be more
compact and efficient. This is especially necessary for controls that are intended for
Intranet applications that need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be
plugged into an ActiveX control container application. They are not complete
applications in themselves, but can be thought of as prefabricated OLE controls that
are reusable in various applications. ActiveX controls have a visible user interface,
and rely on predefined interfaces to negotiate I/O and display issues with their host
containers.

ActiveX controls make use of Automation to expose their properties, methods, and
events. Features of ActiveX controls include the ability to fire events, bind to data
sources, and support licensing.

40-14 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As
such, ActiveX is a standard that targets interactive content for the World Wide Web,
including the use of ActiveX Documents used for viewing non-HTML documents
through a Web browser. For more information about ActiveX technology, see the
Microsoft ActiveX Web site.

Delphi wizards allow you to easily create ActiveX controls. For more information
about creating and using these types of objects, see Chapter 45, “Creating an ActiveX
control.”

Active Documents

Active Documents (previously referred to as OLE documents) are a set of COM
services that support linking and embedding, drag-and-drop, and visual editing.
Active Documents can seamlessly incorporate data or objects of different formats,
such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they
can be used in cross-process applications.

Unlike Automation objects, which are almost never visual, Active Document objects
can be visually active in another application. Thus, Active Document objects are
associated with two types of data: presentation data, used for visually displaying the
object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While
Delphi does not provide an automatic wizard for creating Active Documents, you
can use the VCL class, TOleContainer, to support linking and embedding of existing
Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To
create objects for Active Document servers, use the COM object wizard and add the
appropriate interfaces, depending on the services the object needs to support. For
more information about creating and using Active Document servers, see the
Microsoft ActiveX Web site.

Note While the specification for Active Documents has built-in support for marshaling in
cross-process applications, Active Documents do not run on remote servers because
they use types that are specific to a system on a given machine such as window
handles, menu handles, and so on.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-15

C O M e x t e n s i o n s

Transactional objects

Delphi uses the term “transactional objects” to refer to objects that take advantage of
the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment.

The transaction services provide robustness so that activities are always completed
or rolled back (the server never partially completes an activity). The security services
allow you to expose different levels of support to different classes of clients. The
resource management allows an object to handle more clients by pooling resources or
keeping objects active only when they are in use. To enable the system to provide
these services, the object must implement the IObjectControl interface. To access the
services, transactional objects use an interface called IObjectContext, which is created
on their behalf by MTS or COM+.

Under MTS, the server object must be built into a library (DLL), which is then
installed in the MTS runtime environment. That is, the server object is an in-process
server that runs in the MTS runtime process space. Under COM+, this restriction
does not apply because all COM calls are routed through an interceptor. To clients,
the difference between MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space.
Under MTS, this group is called an MTS package, while under COM+ it is called a
COM+ application. A single machine can be running several different MTS packages
(or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The
client need never know about transactions, security, or just-in-time activation unless
it is initiating a transaction itself.

Both MTS and COM+ provide a separate tool for administering transactional objects.
This tool lets you configure objects into packages or COM+ applications, view the
packages or COM+ applications installed on a computer, view or change the
attributes of the included objects, monitor and manage transactions, make objects
available to clients, and so on. Under MTS, this tool is the MTS Explorer. Under
COM+ it is the COM+ Component Manager.

40-16 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Type libraries

Type libraries provide a way to get more type information about an object than can
be determined from an object’s interface. The type information contained in type
libraries provides needed information about objects and their interfaces, such as
what interfaces exist on what objects (given the CLSID), what member functions exist
on each interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or
by loading and reading type libraries. With this information, you can implement a
client which uses a desired object, knowing specifically what member functions you
need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect
type information to be available. All of Delphi’s wizards generate a type library
automatically, although the COM object wizard makes this optional. You can view or
edit this type information by using the Type Library Editor as described in
Chapter 41, “Working with type libraries.”

This section describes what a type library contains, how it is created, when it is used,
and how it is accessed. For developers wanting to share interfaces across languages,
the section ends with suggestions on using type library tools.

The content of type libraries
Type libraries contain type information, which indicates which interfaces exist in
which COM objects, and the types and numbers of arguments to the interface
methods. These descriptions include the unique identifiers for the CoClasses
(CLSIDs) and the interfaces (IIDs), so that they can be properly accessed, as well as
the dispatch identifiers (dispIDs) for Automation interface methods and properties.

Type libraries can also contain the following information:

• Descriptions of custom type information associated with custom interfaces

• Routines that are exported by the Automation or ActiveX server, but that are not
interface methods

• Information about enumeration, record (structures), unions, alias, and module
data types

• References to type descriptions from other type libraries

O v e r v i e w o f C O M t e c h n o l o g i e s 40-17

C O M e x t e n s i o n s

Creating type libraries
With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
running that script through a compiler. However, Delphi automatically generates a
type library when you create a COM object (including ActiveX controls, Automation
objects, remote data modules, and so on) using any of the wizards on the ActiveX or
Multitier page of the new items dialog. (You can opt not to create a type library when
using the COM object wizard.) You can also create a type library by choosing from
the main menu, File|New|Other, select the ActiveX tab, and choose Type Library.

You can view the type library using Delphi’s Type Library editor. You can easily edit
your type library using the Type Library editor and Delphi automatically updates the
corresponding .tlb file (binary type library file) when the type library is saved. For
any changes to Interfaces and CoClasses that were created using a wizard, the Type
Library editor also updates your implementation files. For more information on
using the Type Library editor to write interfaces and CoClasses, see Chapter 41,
“Working with type libraries.”

When to use type libraries
It is important to create a type library for each set of objects that is exposed to
external users, for example,

• ActiveX controls require a type library, which must be included as a resource in
the DLL that contains the ActiveX controls.

• Exposed objects that support vtable binding of custom interfaces must be
described in a type library because vtable references are bound at compile time.
Clients import information about the interfaces from the type library and use that
information to compile. For more information about vtable and compile time
binding, see “Automation interfaces” on page 43-13.

• Applications that implement Automation servers should provide a type library so
that clients can early bind to it.

• Objects instantiated from classes that support the IProvideClassInfo interface, such
as all descendants of the VCL TTypedComObject class, must have a type library.

• Type libraries are not required, but are useful for identifying the objects used with
OLE drag-and-drop.

When defining interfaces for internal use only (within an application) you do not
need to create a type library.

40-18 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Accessing type libraries
The binary type library is normally a part of a resource file (.res) or a stand-alone file
with a .tlb file-name extension. When included in a resource file, the type library can
be bound into a server (.dll, .ocx, or .exe).

Once a type library has been created, object browsers, compilers, and similar tools
can access type libraries through special type interfaces:

Delphi can import and use type libraries from other applications by choosing
Project|Import Type Library. Most of the VCL classes used for COM applications
support the essential interfaces that are used to store and retrieve type information
from type libraries and from running instances of an object. The VCL class
TTypedComObject supports interfaces that provide type information, and is used as a
foundation for the ActiveX object framework.

Benefits of using type libraries
Even if your application does not require a type library, you can consider the
following benefits of using one:

• Type checking can be performed at compile time.

• You can use early binding with Automation, and controllers that do not support
vtables or dual interfaces can encode dispIDs at compile time, improving runtime
performance.

• Type browsers can scan the library, so clients can see the characteristics of your
objects.

• The RegisterTypeLib function can be used to register your exposed objects in the
registration database.

Interface Description

ITypeLib Provides methods for accessing a library of type descriptions.

ITypeLib2 Augments ITypeLib to include support for documentation strings, custom data, and
statistics about the type library.

ITypeInfo Provides descriptions of individual objects contained in a type library. For example,
a browser uses this interface to extract information about objects from the type
library.

ITypeInfo2 Augments ITypeInfo to access additional type library information, including methods
for accessing custom data elements.

ITypeComp Provides a fast way to access information that compilers need when binding to an
interface.

O v e r v i e w o f C O M t e c h n o l o g i e s 40-19

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

• The UnRegisterTypeLib function can be used to completely uninstall an
application’s type library from the system registry.

• Local server access is improved because Automation uses information from the
type library to package the parameters that are passed to an object in another
process.

Using type library tools
The tools for working with type libraries are listed below.

• The TLIBIMP (Type Library Import) tool, which takes existing type libraries and
creates Delphi Interface files (_TLB.pas files), is incorporated into the Type Library
editor. TLIBIMP provides additional configuration options not available inside the
Type Library editor.

• TRegSvr is a tool for registering and unregistering servers and type libraries,
which comes with Delphi. The source to TRegSvr is available as an example in the
Demos directory.

• The Microsoft IDL compiler (MIDL) compiles IDL scripts to create a type library.

• RegSvr32.exe is a standard Windows utility for registering and unregistering
servers and type libraries.

• OLEView is a type library browser tool, found on Microsoft’s Web site.

Implementing COM objects with wizards
Delphi makes it easier to write COM server applications by providing wizards that
handle many of the details involved. Delphi provides separate wizards to create the
following:

• A simple COM object
• An Automation object
• An Active Server Object (for embedding in an Active Server page)
• An ActiveX control
• An ActiveX Form
• A transactional object
• A COM+ Event Object
• A Property page
• A Type library
• An ActiveX library

40-20 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

The wizards handle many of the tasks involved in creating each type of COM object.
They provide the required COM interfaces for each type of object. As shown in
Figure 40.6, with a simple COM object, the wizard implements the one required
COM interface, IUnknown, which provides an interface pointer to the object.

Figure 40.6 Simple COM object interface

The COM object wizard also provides an implementation for IDispatch if you specify
that you are creating an object that supports an IDispatch descendant.

As shown in Figure 40.7, for Automation and Active Server objects, the wizard
implements IUnknown and IDispatch, which provides automatic marshaling.

Figure 40.7 Automation object interface

As shown in Figure 40.8, for ActiveX control objects and ActiveX forms, the wizard
implements all the required ActiveX control interfaces, from IUnknown, IDispatch,
IOleObject, IOleControl, and so on. For a complete list of interfaces, see the reference
page for TActiveXControl object.

Figure 40.8 ActiveX object interface

COM
Object

IUnknown

Automation
Object

IUnknown

IDispatch

IUnknown

IOleObject

IOleControl

IOleInPlaceObject

ISpecifyPropertyPages

ActiveX
Control
Object

IDispatch

·
··

O v e r v i e w o f C O M t e c h n o l o g i e s 40-21

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Table 40.2 lists the various wizards and the interfaces they implement:

Table 40.2 Delphi wizards for implementing COM, Automation, and ActiveX objects

Wizard Implemented interfaces What the wizard does

COM server IUnknown (and IDispatch if
you select a default interface
that descends from
IDispatch)

• Exports routines that handle server registration, class
registration, loading and unloading the server, and
object instantiation.

• Creates and manages class factories for objects
implemented on the server.

• Provides registry entries for the object that specify the
selected threading model.

• Declares the methods that implement a selected
interface, providing skeletal implementations for you
to complete.

• Provides a type library, if requested.
• Allows you to select an arbitrary interface that is

registered in the type library and implement it. If you
do this, you must use a type library.

Automation server IUnknown, IDispatch Performs the tasks of a COM server wizard (described
above), plus:
• Implements the interface that you specify, either dual

or dispatch.Provides server-side support for
generating events, if requested.

• Provides a type library automatically.

Active Server Object IUnknown, IDispatch,
(IASPObject)

Performs the tasks of an Automation object wizard
(described above) and
• optionally generates an .ASP page which can be

loaded into a Web browser. It leaves you in the Type
Library editor so that you can modify the object’s
properties and methods if needed.

• Surfaces the ASP intrinsics as properties so that you
can easily obtain information about the ASP
application and the HTTP messages that launched it.

ActiveX Control IUnknown, IDispatch,
IPersistStreamInit,
IOleInPlaceActiveObject,
IPersistStorage, IViewObject,
IOleObject, IViewObject2,
IOleControl,
IPerPropertyBrowsing,
IOleInPlaceObject,
ISpecifyPropertyPages

Performs the tasks of the Automation server wizard
(described above), plus:
• Generates a CoClass that corresponds to the VCL

control on which the ActiveX control is based and
which implements all the ActiveX interfaces.

• Leaves you in the source code editor so that you can
modify the implementation class.

40-22 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

You can add additional COM objects or reimplement an existing implementation. To
add a new object, it is easiest to use the wizard a second time. This is because the
wizard sets up an association between the type library and an implementation class,
so that changes you make in the type library editor are automatically applied to your
implementation object.

Code generated by wizards

Delphi’s wizards generate classes that are derived from the Delphi ActiveX
framework (DAX). Despite its name, the Delphi ActiveX framework supports all
types of COM objects, not just ActiveX controls. The classes in this framework
provide the underlying implementation of the standard COM interfaces for the
objects you create using a wizard. Figure 40.9 illustrates the objects in the Delphi
ActiveX framework:

ActiveForm Same interfaces as ActiveX
Control

Performs the tasks of the ActiveX control wizard, plus:
• Creates a TActiveForm descendant that takes the place

of the pre-existing VCL class in the ActiveX control
wizard. This new class lets you design the Active
Form the same way you design a form in a Windows
application.

Transactional object IUnknown, IDispatch,
IObjectControl

Adds a new unit to the current project containing the
MTS or COM+ object definition. It inserts proprietary
GUIDs into the type library so that Delphi can install the
object properly, and leaves you in the Type Library
editor so that you can define the interface that the object
exposes to clients. You must install the object separately
after it is built.

Property Page IUnknown, IPropertyPage Creates a new property page that you can design in the
Form Designer.

COM+ Event object None, by default Creates a COM+ event object that you can define using
the Type Library editor. Unlike the other object wizards,
the COM+ Event object wizard does not create an
implementation unit because event objects have no
implementation (it is provided by event subscriber
objects).

Type Library None, by default Creates a new type library and associates it with the
active project.

ActiveX library None, by default Creates a new ActiveX or Com server DLL and exposes
the necessary export functions.

Table 40.2 Delphi wizards for implementing COM, Automation, and ActiveX objects (continued)

Wizard Implemented interfaces What the wizard does

O v e r v i e w o f C O M t e c h n o l o g i e s 40-23

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Figure 40.9 Delphi ActiveX framework

Each wizard generates an implementation unit that implements your COM server
object. The COM server object (the implementation object) descends from one of the
classes in DAX:

Table 40.3 DAX Base classes for generated implementation classes

Wizard
Base class from
DAX Inherited support

COM server TTypedComObject • Support for IUnknown and ISupportErrorInfo
interfaces.

• Support for aggregation, OLE exception
handling, and safecall calling convention on
dual interfaces.

• Support for reading type library information.

Automation server
Active Server Object

TAutoObject Everything provided by TTypedComObject, plus:
• Support for the IDispatch interface.
• Auto-marshaling support.

 ActiveX Control TActiveXControl Everything provided by TAutoObject, plus:
• Support for embedding in a container.
• Support for in-place activation.
• Support for properties and property pages.
• The ability to delegate to an associated

windowed control that it creates.

ActiveForm TActiveFormControl Everything provided by TAutoObject, except that it
works with a descendant of TActiveForm rather
than another windowed control class.

MTS object TMTSAutoObject Everything provided by TAutoObject, plus:
• Support for the IObjectControl interface.

Property Page TPropertyPage • Support for IUnknown and ISupportErrorInfo
interfaces.

• Support for aggregation, OLE exception
handling, and safecall calling convention on
dual interfaces.

• Support for the IPropertyPage interface.

40-24 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Corresponding to the classes in Figure 40.9 is a hierarchy of class factory objects that
handle the creation of these COM objects. The wizard adds code to the initialization
section of your implementation unit that instantiates the appropriate class factory for
your implementation class.

The wizards also generate a type library and its associated unit, which has a name of
the form Project1_TLB. The Project1_TLB unit includes the definitions your
application needs to use the type definitions and interfaces defined in the type
library. For more information on the contents of this file, see “Code generated when
you import type library information” on page 42-5.

You can modify the interface generated by the wizard using the type library editor.
When you do this, the implementation class is automatically updated to reflect those
changes. You need only fill in the bodies of the generated methods to complete the
implementation.

W o r k i n g w i t h t y p e l i b r a r i e s 41-1

C h a p t e r

41
Chapter41Working with type libraries

This chapter describes how to create and edit type libraries using Delphi’s Type
Library editor. Type libraries are files that include information about data types,
interfaces, member functions, and object classes exposed by a COM object. They
provide a way to identify what types of objects and interfaces are available on a
server. For a detailed overview on why and when to use type libraries, see “Type
libraries” on page 40-16.

A type library can contain any and all of the following:

• Information about custom data types such as aliases, enumerations, structures,
and unions.

• Descriptions of one or more COM elements, such as an interface, dispinterface, or
CoClass. Each of these descriptions is commonly referred to as type information.

• Descriptions of constants and methods defined in external units.

• References to type descriptions from other type libraries.

By including a type library with your COM application or ActiveX library, you make
information about the objects in your application available to other applications and
programming tools through COM’s type library tools and interfaces.

With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
run that script through a compiler. The Type Library editor automates some of this
process, easing the burden of creating and modifying your own type libraries.

When you create a COM server of any type (ActiveX control, Automation object,
remote data module, and so on) using Delphi’s wizards, the wizard automatically
generates a type library for you (although in the case of the COM object wizard, this
is optional). Most of the work you do in customizing the generated object starts with
the type library, because that is where you define the properties and methods it
exposes to clients: you change the interface of the CoClass generatevd by the wizard,

41-2 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

using the Type Library editor. The Type Library editor automatically updates the
implementation unit for your object, so that all you need do is fill in the bodies of the
generated methods.

You can also use the Delphi Type Library Editor in the development of Common
Object Request Broker Architecture (CORBA) applications. With traditional CORBA
tools, you must define object interfaces separately from your application, using the
CORBA Interface Definition Language (IDL). You then run a utility that generates
stub-and-skeleton code from that definition. However, Delphi generates the stub,
skeleton, and IDL for you automatically. You can easily edit your interface using the
Type Library editor and Delphi automatically updates the appropriate source files.

Type Library editor
The Type Library editor enables developers to examine and create type information
for COM objects. Using the Type Library editor can greatly simplify the task of
developing COM objects by centralizing the tasks of defining interfaces, CoClasses,
and types, obtaining GUIDs for new interfaces, associating interfaces with CoClasses,
updating implementation units, and so on.

Note The Type Library editor is also used to define CORBA interfaces in projects that use
the CORBA Object or CORBA Data Module wizard.

The Type Library editor outputs two types of file that represent the contents of the
type library:

Table 41.1 Type Library editor files

File Description

.TLB file The binary type library file. By default, you do not need to use this file, because the
type library is automatically compiled into the application as a resource. However,
you can use this file to explicitly compile the type library into another project or to
deploy the type library separately from the .exe or .ocx. For more information, see
“Opening an existing type library” on page 41-20 and “Deploying type libraries” on
page 41-27.

Note: When using the Type Library editor for CORBA interfaces, the Type Library
editor does not create the .tlb file.

_TLB unit This unit reflects the contents of the type library for use by your application. It
contains all the declarations your application needs to use the elements defined in the
type library. Although you can open this file in the code editor, you should never edit
it—it is maintained by the Type Library editor, so any changes you make will be
overwritten by the Type Library editor. For more details on the contents of this file,
see “Code generated when you import type library information” on page 42-5.

Note: When using the Type Library editor for CORBA interfaces, this unit defines
the stub and skeleton objects required by the CORBA application.

W o r k i n g w i t h t y p e l i b r a r i e s 41-3

T y p e L i b r a r y e d i t o r

Parts of the Type Library editor

The main elements of the Type Library editor are described in Table 41.2:

These parts are illustrated in Figure 41.1, which shows the Type Library editor
displaying type information for a COM object named cyc.

Figure 41.1 Type Library editor

Toolbar
The Type Library editor’s toolbar located at the top of the Type Library Editor,
contains buttons that you click to add new objects into your type library.

The first group of buttons let you add elements to the type library. When you click a
toolbar button, the icon for that element appears in the object list pane. You can then
customize its attributes in the right pane. Depending on the type of icon you select,
different pages of information appear to the right.

Table 41.2 Type Library editor parts

Part Description

Toolbar Includes buttons to add new types, CoClasses, interfaces, and interface
members to your type library. The toolbar also includes buttons for refreshing
your implementation unit, registering the type library, and saving an IDL file
with the information in your type library.

Object list pane Displays all the existing elements in the type library. When you click on an
item in the object list pane, it displays pages valid for that object.

Status bar Displays syntax errors if you try to add invalid types to your type library.

Pages Display information about the selected object. Which pages appear here
depends on the type of object selected.

Toolbar

Pages

Status bar

Object list pane

41-4 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

The following table lists the elements you can add to your type library:

When you select one of the elements listed above in the object list pane, the second
group of buttons displays members that are valid for that element. For example,
when you select Interface, the Method and Property icons in the second box become
enabled because you can add methods and properties to your interface definition.
When you select Enum, the second group of buttons changes to display the Const
member, which is the only valid member for Enum type information.

The following table lists the members that can be added to elements in the object list
pane:

Icon Meaning

An interface description.

A dispinterface description. (not used for CORBA interface definitions)

A CoClass.

An enumeration.

An alias.

A record.

A union.

A module.

Icon Meaning

A method of the interface, dispinterface, or an entry point in a module.

A property on an interface or dispinterface.

A write-only property. (available from the drop-down list on the property button)

A read-write property. (available from the drop-down list on the property button)

A read-only property. (available from the drop-down list on the property button)

A field in a record or union.

A constant in an enum or a module.

W o r k i n g w i t h t y p e l i b r a r i e s 41-5

T y p e L i b r a r y e d i t o r

The third group of buttons let you refresh, register, or export your type library (save
it as an IDL file), as described in “Saving and registering type library information” on
page 41-25.

Object list pane
The Object list pane displays all the elements of the current type library in a tree
view. The root of the tree represents the type library itself, and appears as the
following icon:

Descending from the type library node are the elements in the type library:

Figure 41.2 Object list pane

When you select any of these elements (including the type library itself), the pages of
type information to the right change to reflect only the relevant information for that
element. You can use these pages to edit the definition and properties of the selected
element.

You can manipulate the elements in the object list pane by right clicking to get the
object list pane context menu. This menu includes commands that let you use the
Windows clipboard to move or copy existing elements as well as commands to add
new elements or customize the appearance of the Type Library editor.

Status bar
When editing or saving a type library, syntax, translation errors, and warnings are
listed in the Status bar pane.

For example, if you specify a type that the Type Library editor does not support, you
will get a syntax error. For a complete list of types supported by the Type Library
editor, see “Valid types” on page 41-12.

41-6 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Pages of type information
When you select an element in the object list pane, pages of type information appear
in the Type Library editor that are valid for the selected element. Which pages appear
depends on the element selected in the object list panel, as follows:

Type Info
element

Page of
type information Contents of page

Type library Attributes Name, version, and GUID for the type library, as well as
information linking the type library to help.

Uses List of other type libraries that contain definitions on which
this one depends.

Flags Flags that determine how other applications can use the type
library.

Text All definitions and declarations defining the type library itself
(see discussion below).

Interface Attributes Name, version, and GUID for the interface, the name of the
interface from which it descends, and information linking the
interface to help.

Flags Flags that indicate whether the interface is hidden, dual,
Automation-compatible, and/or extensible.

Text The definitions and declarations for the Interface (see
discussion below).

Dispinterface Attributes Name, version, and GUID for the interface, and information
linking it to help.

Flags Flags that indicate whether the Dispinterface is hidden, dual,
and/or extensible.

Text The definitions and declarations for the Dispinterface. (see
discussion below).

CoClass Attributes Name, version, and GUID for the CoClass, and information
linking it to help.

Implements A List of interfaces that the CoClass implements, as well as
their attributes.

COM+ The attributes of transactional objects, such as the transaction
model, call synchronization, just-in-time activation, object
pooling, and so on. Also includes the attributes of COM+
event objects.

Flags Flags that indicate various attributes of the CoClass, including
how clients can create and use instances, whether it is visible
to users in a browser, whether it is an ActiveX control, and
whether it can be aggregated (act as part of a composite).

Text The definitions and declarations for the CoClass (see
discussion below).

Enumeration Attributes Name, version, and GUID for the enumeration, and
information linking it to help.

Text The definitions and declarations for the enumerated type (see
discussion below).

W o r k i n g w i t h t y p e l i b r a r i e s 41-7

T y p e L i b r a r y e d i t o r

Alias Attributes Name, version, and GUID for the enumeration, the type the
alias represents, and information linking it to help.

Text The definitions and declarations for the alias (see discussion
below).

Record Attributes Name, version, and GUID for the record, and information
linking it to help.

Text The definitions and declarations for the record (see discussion
below).

Union Attributes Name, version, and GUID for the union, and information
linking it to help.

Text The definitions and declarations for the union (see discussion
below).

Module Attributes Name, version, GUID, and associated DLL for the module,
and information linking it to help.

Text The definitions and declarations for the module (see
discussion below).

Method Attributes Name, dispatch ID or DLL entry point, and information
linking it to help.

Parameters Method return type, and a list of all parameters with their
types and any modifiers.

Flags Flags to indicate how clients can view and use the method,
whether this is a default method for the interface, and
whether it is replaceable.

Text The definitions and declarations for the method (see
discussion below).

Property Attributes Name, dispatch ID, type of property access method (getter vs.
setter), and information linking it to help.

Parameters Property access method return type, and a list of all
parameters with their types and any modifiers.

Flags Flags to indicate how clients can view and use the property,
whether this is a default for the interface, whether the
property is replaceable, bindable, and so on.

Text The definitions and declarations for the property access
method (see discussion below).

Const Attributes Name, value, type (for module consts), and information
linking it to help.

Flags Flags to indicate how clients can view and use the constant,
whether this represents a default value, whether the constant
is bindable, and so on.

Text The definitions and declarations for the constant (see
discussion below).

Field Attributes Name, type, and information linking it to help.

Flags Flags to indicate how clients can view and use the field,
whether this represents a default value, whether the field is
bindable, and so on.

Text The definitions and declarations for the field (see discussion
below).

Type Info
element

Page of
type information Contents of page

41-8 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Note For more detailed information about the various options you can set on type
information pages, see the online Help for the Type Library editor.

You can use each of the pages of type information to view or edit the values it
displays. Most of the pages organize the information into a set of controls so that you
can type in values or select them from a list without requiring that you know the
syntax of the corresponding declarations. This can prevent many small mistakes such
as typographic errors when specifying values from a limited set. However, you may
find it faster to type in the declarations directly. To do this, use the Text page.

All type library elements have a text page that displays the syntax for the element.
This syntax appears in an IDL subset of Microsoft Interface Definition Language, or
Delphi. Any changes you make in other pages of the element are reflected on the text
page. If you add code directly in the text page, changes are reflected in the other
pages of the Type Library editor.

The Type Library editor generates syntax errors if you add identifiers that are
currently not supported by the editor; the editor currently supports only those
identifiers that relate to type library support (not RPC support or constructs used by
the Microsoft IDL compiler for C++ code generation or marshaling support).

Type library elements

The Type Library interface can seem overwhelmingly complicated at first. This is
because it represents information about a great number of elements, each of which
has its own characteristics. However, many of these characteristics are common to all
elements. For example, every element (including the type library itself) has the
following:

• A Name, which is used to describe the element and which is used when referring
to the element in code.

• A GUID (globally unique identifier), which is a unique 128-bit value that COM
uses to identify the element. This should always be supplied for the type library
itself and for CoClasses and interfaces. It is optional otherwise.

• A Version number, which distinguishes between multiple versions of the element.
This is always optional, but should be provided for CoClasses and interfaces,
because some tools can’t use them without a version number.

• Information linking the element to a Help topic. These include a Help String, and
Help Context or Help String Context value. The Help Context is used for a
traditional Windows Help system where the type library has a stand-alone Help
file. The Help String Context is used when help is supplied by a separate DLL
instead. The Help Context or Help String Context refers to a Help file or DLL that
is specified on the type library’s Attributes page. This is always optional.

W o r k i n g w i t h t y p e l i b r a r i e s 41-9

T y p e L i b r a r y e d i t o r

Interfaces
An interface describes the methods (and any properties expressed as ‘get’ and ‘set’
functions) for an object that must be accessed through a virtual function table
(vtable). If an interface is flagged as dual, it will inherit from IDispatch, and your
object can provide both early-bound, vtable access, and runtime binding through
OLE automation. By default, the type library flags all interfaces you add as dual.

Interfaces can be assigned members: methods and properties. These appear in the
object list pane as children of the interface node. Properties for interfaces are
represented by the ‘get’ and ‘set’ methods used to read and write the property’s
underlying data. They are represented in the tree view using special icons that
indicate their purpose.

Note When a property is specified as Write By Reference, it means it is passed as a pointer
rather than by value. Some applications, such a Visual Basic, use Write By Reference,
if it is present, to optimize performance. To pass the property only by reference
rather than by value, use the property type By Reference Only. To pass the property by
reference as well as by value, select Read|Write|Write By Ref. To invoke this menu,
go to the toolbar and select the arrow next to the property icon.

Once you add the properties or methods using the toolbar button or the object list
pane context menu, you describe their syntax and attributes by selecting the property
or method and using the pages of type information.

The Attributes page lets you give the property or method a name and dispatch ID (so
that it can be called using IDispatch). For properties, you also assign a type. The
function signature is created using the Parameters page, where you can add, remove,
and rearrange parameters, set their type and any modifiers, and specify function
return types.

Note Members of interfaces that need to raise exceptions should return an HRESULT and
specify a return value parameter (PARAM_RETVAL) for the actual return value.
Declare these methods using the safecall calling convention.

Note that when you assign properties and methods to an interface, they are implicitly
assigned to its associated CoClass. This is why the Type Library editor does not let
you add properties and methods directly to a CoClass.

Dispinterfaces
Interfaces are more commonly used than dispinterfaces to describe the properties
and methods of an object. Dispinterfaces are only accessible through dynamic
binding, while interfaces can have static binding through a vtable.

You can add methods and properties to dispinterfaces in the same way you add them
to interfaces. However, when you create a property for a dispinterface, you can’t
specify a function kind or parameter types.

41-10 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

CoClasses
A CoClass describes a unique COM object that implements one or more interfaces.
When defining a CoClass, you must specify which implemented interface is the
default for the object, and optionally, which dispinterface is the default source for
events. Note that you do not add properties or methods to a CoClass in the Type
Library editor. Properties and methods are exposed to clients by interfaces, which are
associated with the CoClass using the Implements page.

Type definitions
Enumerations, aliases, records, and unions all declare types that can then be used
elsewhere in the type library.

Enums consist of a list of constants, each of which must be numeric. Numeric input is
usually an integer in decimal or hexadecimal format. The base value is zero by
default. You can add constants to your enumeration by selecting the enumeration in
the object list pane and clicking the Const button on the toolbar or selecting New|
Const command from the object list pane context menu.

Note It is strongly recommended that you provide help strings for your enumerations to
make their meaning clearer. The following is a sample entry of an enumeration type
for a mouse button and includes a help string for each enumeration element.

mbLeft = 0 [helpstring 'mbLeft'];
mbRight = 1 [helpstring 'mbRight'];
mbMiddle = 3 [helpstring 'mbMiddle'];

An alias creates an alias (type definition) for a type. You can use the alias to define
types that you want to use in other type info such as records or unions. Associate the
alias with the underlying type definition by setting the Type attribute on the
Attributes page.

A record consists of a list of structure members or fields. A union is a record with
only a variant part. Like a record, a union consists of a list of structure members or
fields. However, unlike the members of records, each member of a union occupies
the same physical address, so that only one logical value can be stored.

Add the fields to a record or union by selecting it in the object list pane and clicking
the field button in the toolbar or right clicking and choosing field from the object list
pane context menu. Each field has a name and a type, which you assign by selecting
the field and assigning values using the Attributes page. Records and unions can be
defined with an optional tag.

Members can be of any built-in type, or you can specify a type using alias before you
define the record.

W o r k i n g w i t h t y p e l i b r a r i e s 41-11

T y p e L i b r a r y e d i t o r

Modules
A module defines a group of functions, typically a set of DLL entry points. You
define a module by

• Specifying a DLL that it represents on the attributes page.

• Adding methods and constants using the toolbar or the object list pane context
menu. For each method or constant, you must then define its attributes by
selecting the it in the object list pane and setting the values on the Attributes page.

For module methods, you must assign a name and DLL entry point using the
attributes page. Declare the function’s parameters and return type using the
parameters page.

For module constants, use the Attributes page to specify a name, type, and value.

Note The Type Library editor does not generate any declarations or implementation
related to a module. The specified DLL must be created as a separate project.

Using the Type Library editor

Using the type library editor, you can create new type libraries or edit existing ones.
Typically, an application developer uses a wizard to create the objects that are
exposed in the type library, letting Delphi generate the type library automatically.
Then, the automatically-generated type library is opened in the Type Library editor
so that the interfaces can be defined (or modified), type definitions added, and so on.

However, even if you are not using a wizard to define the objects, you can use the
Type Library editor to define a new type library. In this case, you must create any
implementation classes yourself, because the Type Library editor does not generate
code for CoClasses that were not associated with a type library by a wizard.

The editor supports a subset of valid types in a type library as described below.

The final topics in this section describe how to:

• Create a new type library
• Open an existing type library
• Add an interface to the type library
• Modify an interface
• Add properties and methods to the type library
• Add a CoClass to the type library
• Add an interface to a CoClass
• Add an enumeration to the type library
• Add an alias to the type library
• Add a record or union to the type library
• Add a module to the type library
• Save and register type library information

41-12 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Valid types
In the Type Library editor, you use different type identifiers, depending on whether
you are working in IDL or Delphi. Specify the language you want to use in the
Environment options dialog.

The following types are valid in a type library for COM development. The
Automation compatible column specifies whether the type can be used by an
interface that has its Automation or Dispinterface flag checked. These are the types
that COM can marshal via the type library automatically.

Note The Byte (VT_UI1) is Automation-compatible, but is not allowed in a Variant or
OleVariant since many Automation servers do not handle this value correctly.

Besides these IDL types, any interfaces and types defined in the library or defined in
referenced libraries can be used in a type library definition.

Delphi type IDL type variant type
Automation
compatible Description

Smallint short VT_I2 Yes 2-byte signed integer

Integer long VT_I4 Yes 4-byte signed integer

Single single VT_R4 Yes 4-byte real

Double double VT_R8 Yes 8-byte real

Currency CURRENCY VT_CY Yes currency

TDateTime DATE VT_DATE Yes date

WideString BSTR VT_BSTR Yes binary string

IDispatch IDispatch VT_DISPATCH Yes pointer to IDispatch interface

SCODE SCODE VT_ERROR Yes Ole Error Code

WordBool VARIANT_BOOL VT_BOOL Yes True = -1, False = 0

OleVariant VARIANT VT_VARIANT Yes Ole Variant

IUnknown IUnknown VT_UNKNOWN Yes pointer to IUnknown interface

Shortint byte VT_I1 No 1 byte signed integer

Byte unsigned char VT_UI1 Yes 1 byte unsigned integer

Word unsigned short VT_UI2 Yes* 2 byte unsigned integer

LongWord unsigned long VT_UI4 Yes* 4 byte unsigned integer

Int64 __int64 VT_I8 No 8 byte signed integer

Largeuint uint64 VT_UI8 No 8 byte unsigned integer

SYSINT int VT_INT Yes* system dependent integer
(Win32=Integer)

SYSUINT unsigned int VT_UINT Yes* system dependent unsigned integer

HResult HRESULT VT_HRESULT No 32 bit error code

Pointer VT_PTR -> VT_VOID No untyped pointer

SafeArray SAFEARRAY VT_SAFEARRAY No OLE Safe Array

PChar LPSTR VT_LPSTR No pointer to Char

PWideCha
r

LPWSTR VT_LPWSTR No pointer to WideChar

* Word, LongWord, SYSINT, and SYSUINT are Automation-compatible in most applications, but in older
applications they may not be.

W o r k i n g w i t h t y p e l i b r a r i e s 41-13

T y p e L i b r a r y e d i t o r

The Type Library editor stores type information in the generated type library (.TLB)
file in binary form.

If a parameter type is specified as a Pointer type, the Type Library editor usually
translates that type into a variable parameter. When the type library is saved, the
variable parameter’s associated ElemDesc’s IDL flags are marked IDL_FIN or
IDL_FOUT.

Often, ElemDesc IDL flags are not marked by IDL_FIN or IDL_FOUT when the type
is preceded with a Pointer. Or, in the case of dispinterfaces, IDL flags are not
typically used. In these cases, you may see a comment next to the variable identifier
such as {IDL_None} or {IDL_In}. These comments are used when saving a type
library to correctly mark the IDL flags.

SafeArrays
COM requires that arrays be passed via a special data type known as a SafeArray.
You can create and destroy SafeArrays by calling special COM functions to do so,
and all elements within a SafeArray must be valid automation-compatible types. The
Delphi compiler has built-in knowledge of COM SafeArrays and automatically calls
the COM API to create, copy, and destroy SafeArrays.

In the Type Library editor, a SafeArray must specify the type of its elements. For
example, the following line from the text page declares a method with a parameter
that is a SafeArray with an element type of Integer:

procedure HighLightLines(Lines: SafeArray of Integer);

Note Although you must specify the element type when declaring a SafeArray type in the
Type Library editor, the declaration in the generated _TLB unit does not indicate the
element type.

Using Delphi or IDL syntax
The Text page of the Type Library editor displays your type information in one of
two ways:

• Using an extension of Delphi syntax.
• Using the Microsoft IDL.

Note When working on a CORBA object, you use neither of these on the text page. Instead,
you must use the CORBA IDL.

You can select which language you want to use by changing the setting in the
Environment Options dialog. Choose Tools|Environment Options, and specify
either Pascal or IDL as the Language on the Type Library page of the dialog.

Note The choice of Delphi or IDL syntax also affects the choices available on the
parameters attributes page.

Like Delphi applications in general, identifiers in type libraries are case insen sitive.
They can be up to 255 characters long, and must begin with a letter or an underscore
(_).

41-14 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Attribute specifications
Delphi has been extended to allow type libraries to include attribute specifications.
Attribute specifications appear enclosed in square brackets and separated by
commas. Each attribute specification consists of an attribute name followed (if
appropriate) by a value.

The following table lists the attribute names and their corresponding values.

Table 41.3 Attribute syntax

Attribute name Example Applies to

aggregatable [aggregatable] typeinfo

appobject [appobject] CoClass typeinfo

bindable [bindable] members except CoClass members

control [control] type library, typeinfo

custom [custom
'{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}' 0]

anything

default [default] CoClass members

defaultbind [defaultbind] members except CoClass members

defaultcollection [defaultcollection] members except CoClass members

defaultvtbl [defaultvtbl] CoClass members

dispid [dispid] members except CoClass members

displaybind [displaybind] members except CoClass members

dllname [dllname 'Helper.dll'] module typeinfo

dual [dual] interface typeinfo

helpfile [helpfile 'c:\help\myhelp.hlp'] type library

helpstringdll [helpstringdll 'c:\help\myhelp.dll'] type library

helpcontext [helpcontext 2005] anything except CoClass members and
parameters

helpstring [helpstring 'payroll interface'] anything except CoClass members and
parameters

helpstringcontext [helpstringcontext $17] anything except CoClass members and
parameters

hidden [hidden] anything except parameters

immediatebind [immediatebind] members except CoClass members

lcid [lcid $324] type library

licensed [licensed] type library, CoClass typeinfo

nonbrowsable [nonbrowsable] members except CoClass members

nonextensible [nonextensible] interface typeinfo

oleautomation [oleautomation] interface typeinfo

predeclid [predeclid] typeinfo

propget [propget] members except CoClass members

propput [propput] members except CoClass members

propputref [propputref] members except CoClass members

public [public] alias typeinfo

W o r k i n g w i t h t y p e l i b r a r i e s 41-15

T y p e L i b r a r y e d i t o r

Interface syntax
The Delphi syntax for declaring interface type information has the form

interfacename = interface[(baseinterface)] [attributes]
functionlist
[propertymethodlist]
end;

For example, the following text declares an interface with two methods and one
property:

Interface1 = interface (IDispatch)
[uuid '{7B5687A1-F4E9-11D1-92A8-00C04F8C8FC4}', version 1.0]
function Calculate(optional seed:Integer=0): Integer;
procedure Reset;
procedure PutRange(Range: Integer) [propput, dispid $00000005]; stdcall;
function GetRange: Integer;[propget, dispid $00000005]; stdcall;

end;

The corresponding syntax in Microsoft IDL is

[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',version 1.0]
interface Interface1 :IDispatch
{

long Calculate([in, optional, defaultvalue(0)] long seed);
void Reset(void);
[propput, id(0x00000005)] void _stdcall PutRange([in] long Value);
[propput, id(0x00000005)] void _stdcall getRange([out, retval] long *Value);

};

readonly [readonly] members except CoClass members

replaceable [replaceable] anything except CoClass members and
parameters

requestedit [requestedit] members except CoClass members

restricted [restricted] anything except parameters

source [source] all members

uidefault [uidefault] members except CoClass members

usesgetlasterror [usesgetlasterror] members except CoClass members

uuid [uuid '{7B5687A1-F4E9-11D1-92A8-
00C04F8C8FC4}']

type library, typeinfo (required)

vararg [vararg] members except CoClass members

version [version 1.1] type library, typeinfo

Table 41.3 Attribute syntax (continued)

Attribute name Example Applies to

41-16 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Dispatch interface syntax
The Delphi syntax for declaring dispinterface type information has the form

dispinterfacename = dispinterface [attributes]
functionlist
[propertylist]
end;

For example, the following text declares a dispinterface with the same methods and
property as the previous interface:

MyDispObj = dispinterface
[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',

version 1.0,
helpstring 'dispatch interface for MyObj'
function Calculate(seed:Integer): Integer [dispid 1];
procedure Reset [dispid 2];
property Range: Integer [dispid 3];

end;

The corresponding syntax in Microsoft IDL is

[uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
version 1.0,
helpstring "dispatch interface for MyObj"

dispinterface Interface1
{

methods:
[id(1)] int Calculate([in] int seed);
[id(2)] void Reset(void);

properties:
[id(3)] int Value;

};

W o r k i n g w i t h t y p e l i b r a r i e s 41-17

T y p e L i b r a r y e d i t o r

CoClass syntax
The Delphi syntax for declaring CoClass type information has the form

classname = coclass(interfacename[interfaceattributes], ...); [attributes];

For example, the following text declares a coclass for the interface IMyInt and
dispinterface DmyInt:

myapp = coclass(IMyInt [source], DMyInt);
[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',

version 1.0,
helpstring ’A class’,
appobject]

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
version 1.0,
helpstring "A class",
appobject]

coclass myapp
{

methods:
[source] interface IMyInt);
dispinterface DMyInt;

};

Enum syntax
The Delphi syntax for declaring Enum type information has the form

enumname = ([attributes] enumlist);

For example, the following text declares an enumerated type with three values:

location = ([uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring 'location of booth']

Inside = 1 [helpstring 'Inside the pavillion'];
Outside = 2 [helpstring 'Outside the pavillion'];
Offsite = 3 [helpstring 'Not near the pavillion'];);

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring "location of booth"]

typedef enum
{

[helpstring "Inside the pavillion"] Inside = 1,
[helpstring "Outside the pavillion"] Outside = 2,
[helpstring "Not near the pavillion"] Offsite = 3

} location;

41-18 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Alias syntax
The Delphi syntax for declaring Alias type information has the form

aliasname = basetype[attributes];

For example, the following text declares DWORD as an alias for integer:

DWORD = Integer [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}'];

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}'] typedef long DWORD;

Record syntax
The Delphi syntax for declaring Record type information has the form

recordname = record [attributes] fieldlist end;

For example, the following text declares a record:

Tasks = record [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring 'Task description']

ID: Integer;
StartDate: TDate;
EndDate: TDate;
Ownername: WideString;
Subtasks: safearray of Integer;

end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring "Task description"]

typedef struct
{

long ID;
DATE StartDate;
DATE EndDate;
BSTR Ownername;
SAFEARRAY (int) Subtasks;

} Tasks;

Union syntax
The Delphi syntax for declaring Union type information has the form

unionname = record [attributes]
case Integer of

0: field1;
1: field2;
ƒ

end;

W o r k i n g w i t h t y p e l i b r a r i e s 41-19

T y p e L i b r a r y e d i t o r

For example, the following text declares a union:

MyUnion = record [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring 'item description']

case Integer of
0: (Name: WideString);
1: (ID: Integer);
3: (Value: Double);

end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
helpstring "item description"]

typedef union
{

BSTR Name;
long ID;
double Value;
} MyUnion;

Module syntax
The Delphi syntax for declaring Module type information has the form

modulename = module constants entrypoints end;

For example, the following text declares the type information for a module:

MyModule = module [uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
dllname ‘circle.dll’]

PI: Double = 3.14159;
function area(radius: Double): Double [entry 1]; stdcall;
function circumference(radius: Double): Double [entry 2]; stdcall;

end;

The corresponding syntax in Microsoft IDL is

[uuid '{2MD36ABF-90E3-11D1-AA75-02C04FB73F42}',
dllname("circle.dll")]

module MyModule
{

double PI = 3.14159;
[entry(1)] double _stdcall area([in] double radius);
[entry(2)] double _stdcall circumference([in] double radius);

};

Creating a new type library
You may want to create a type library that is independent of a particular COM object.
For example, you might want to define a type library that contains type definitions
that you use in several other type libraries. You can then create a type library of basic
definitions and add it to the uses page of other type libraries.

You can also create a type library for an object that is not yet implemented. Once the
type library contains the interface definition, you can use the COM object wizard to
generate a CoClass and implementation.

41-20 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

To create a new type library,

1 Choose File|New|Other to open the New Items dialog box.

2 Choose the ActiveX page.

3 Select the Type Library icon.

4 Choose OK.

The Type Library editor opens with a prompt to enter a name for the type library.

5 Enter a name for the type library. Continue by adding elements to your type
library.

Opening an existing type library
When you use the wizards to create an ActiveX control, Automation object, Active
form, Active Server Page object, COM object, transactional object, remote data
module, or transactional data module, a type library is automatically created with an
implementation unit. In addition, you may have type libraries that are associated
with other products (servers) that are available on your system.

To open a type library that is not currently part of your project,

1 Choose File|Open from the main menu in the IDE.

2 In the Open dialog box, set the File Type to type library.

3 Navigate to the desired type library files and choose Open.

To open a type library associated with the current project, choose View|Type
Library.

Note When you use the CORBA Object wizard, you can also choose View|Type Library to
edit the CORBA Object interfaces. What you see is not, technically speaking, a type
library, but you can use it in much the same way.

Now, you can add interfaces, CoClasses, and other elements of the type library such
as enumerations, properties, and methods.

Note Changes you make to any type library information with the Type Library editor can
be automatically reflected in the associated implementation class. If you want to
review the changes before they are added, be sure that the Apply Updates dialog is
on. It is on by default and can be changed in the setting, “Display updates before
refreshing,” on the Tools|Environment Options|Type Library page. For more
information, see “Apply Updates dialog” on page 41-26.

Tip When writing client applications, you do not need to open the type library. You only
need the Project_TLB unit that the Type Library editor creates from a type library, not
the type library itself. You can add this file directly to a client project, or, if the type
library is registered on your system, you can use the Import Type Library dialog
(Project|Import Type Library).

W o r k i n g w i t h t y p e l i b r a r i e s 41-21

T y p e L i b r a r y e d i t o r

Adding an interface to the type library
To add an interface,

1 On the toolbar, click on the interface icon.

An interface is added to the object list pane prompting you to add a name.

2 Type a name for the interface.

The new interface contains default attributes that you can modify as needed.

You can add properties (represented by getter/setter functions) and methods to suit
the purpose of the interface.

Modifying an interface using the type library
There are several ways to modify an interface or dispinterface once it is created.

• You can change the interface’s attributes using the page of type information that
contains the information you want to change. Select the interface in the object list
pane and then use the controls on the appropriate page of type information. For
example, you may want to change the parent interface using the attributes page, or
use the flags page to change whether or not it is a dual interface.

• You can edit the interface declaration directly by selecting the interface in the
object list pane and then editing the declarations on the Text page.

• You can Add properties and methods to the interface (see the next section).

• You can modify the properties and methods already in your interface by changing
their type information.

• You can associate it with a CoClass by selecting the CoClass in the object list pane,
right-clicking on the Implements page, and choosing Insert Interface.

Note When using the type library to add a CORBA interface, most of the information on
the attributes page is irrelevant. You will also not need the Flags page.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. If you have the Apply Updates dialog
enabled, the Type Library editor notifies you before updating the sources and warns
you of potential problems. For example, if you rename an event interface by mistake,
you may get a warning in your source file that looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You also get a TODO comment in your source file immediately above it.

Warning If you ignore this warning and TODO comment, the code will not compile.

41-22 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Adding properties and methods to an interface or dispinterface
To add properties or methods to an interface or dispinterface,

1 Select the interface, and choose either a property or method icon from the toolbar.
If you are adding a property, you can click directly on the property icon to create a
read/write property (with both a getter and a setter), or click the down arrow to
display a menu of property types.

The property access method members or method member is added to the object
list pane, prompting you to add a name.

2 Type a name for the member.

The new member contains default settings on its attributes, parameters, and flags
pages that you can modify to suit the member. For example, you will probably want
to assign a type to a property on the attributes page. If you are adding a method, you
will probably want to specify its parameters on the parameters page.

As an alternate approach, you can add properties and methods by typing directly
into the text page using Delphi or IDL syntax. For example, if you are working in
Delphi syntax, you can type the following property declarations into the text page of
an interface:

Interface1 = interface(IDispatch)
 [uuid '{5FD36EEF-70E5-11D1-AA62-00C04FB16F42}',
 version 1.0,
 dual,
 oleautomation]
function AutoSelect: Integer [propget, dispid $00000002]; safecall; // Add this
function AutoSize: WordBool [propget, dispid $00000001]; safecall; // And this
procedure AutoSize(Value: WordBool) [propput, dispid $00000001]; safecall; // And this

end;

If you are working in IDL, you can add the same declarations as follows:

[
 uuid(5FD36EEF-70E5-11D1-AA62-00C04FB16F42),
 version(1.0),
 dual,
 oleautomation
]
interface Interface1: IDispatch
{ // Add everything between the curly braces
[propget, id(0x00000002)]
 HRESULT _stdcall AutoSelect([out, retval] long Value);
 [propget, id(0x00000003)]
 HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL Value);
 [propput, id(0x00000003)]
 HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value);
};

After you have added members to an interface using the interface text page, the
members appear as separate items in the object list pane, each with its own attributes,
flags, and parameters pages. You can modify each new property or method by
selecting it in the object list pane and using these pages, or by making edits directly in
the text page.

W o r k i n g w i t h t y p e l i b r a r i e s 41-23

T y p e L i b r a r y e d i t o r

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. The Type Library editor adds new
methods to your implementation class to reflect the new members. You can then
locate the new methods in implementation unit’s source code and fill in their bodies
to complete the implementation.

If you have the Apply Updates dialog enabled, the Type Library editor notifies you of
all changes before updating the sources and warns you of potential problems.

Adding a CoClass to the type library
The easiest way to add a CoClass to your project is to choose File|New|Other from
the main menu in the IDE and use the appropriate wizard on the ActiveX or Multitier
page of the New Items dialog. The advantage to this approach is that, in addition to
adding the CoClass and its interface to the type library, the wizard adds an
implementation unit and updates the project file to include the new implementation
unit in its uses clause.

If you are not using a wizard, however, you can create a CoClass by clicking the
CoClass icon on the toolbar and then specifying its attributes. You will probably
want to give the new CoClass a name (on the Attributes page), and may want to use
the Flags page to indicate information such as whether the CoClass is an application
object, whether it represents an ActiveX control, and so on.

Note When you add a CoClass to a type library using the toolbar instead of a wizard, you
must generate the implementation for the CoClass yourself and update it by hand
every time you change an element on one of the CoClass’ interfaces. You can’t add
members directly to a CoClass. Instead, you implicitly add members when you add
an interface to the CoClass.

Adding an interface to a CoClass
CoClasses are defined by the interfaces they present to clients. While you can add
any number of properties and methods to the implementation class of a CoClass,
clients can only see those properties and methods that are exposed by interfaces
associated with the CoClass.

To associate an interface with a CoClass, right-click in the Implements page for the
class and choose Insert Interface to display a list of interfaces from which you can
choose. The list includes interfaces that are defined in the current type library and
those defined in any type libraries that the current type library references. Choose an
interface you want the class to implement. The interface is added to the page with its
GUID and other attributes.

If the CoClass was generated by a wizard, the Type Library editor automatically
updates the implementation class to include skeletal methods for the methods
(including property access methods) of any interfaces you add this way.If you have
the Apply Updates dialog enabled, the Type Library editor notifies you before
updating the sources and warns you of potential problems.

41-24 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Adding an enumeration to the type library
To add enumerations to a type library,

1 On the toolbar, click on the enum icon.

An enum type is added to the object list pane prompting you to add a name.

2 Type a name for the enumeration.

The new enum is empty and contains default attributes in its attributes page for
you to modify.

Add values to the enum by clicking on the New Const button. Then, select each
enumerated value and assign it a name (and possibly a value) using the attributes
page.

Once you have added an enumeration, the new type is available for use by the type
library or any other type library that references it from its uses page. For example,
you can use the enumeration as the type for a property or parameter.

Adding an alias to the type library
To add an alias to a type library,

1 On the toolbar, click on the alias icon.

An alias type is added to the object list pane prompting you to add a name.

2 Type a name for the alias.

By default, the new alias stands for an Integer type. Use the Attributes page to
change this to the type you want the alias to represent.

Once you have added an alias, the new type is available for use by the type library or
any other type library that references it from its uses page. For example, you can use
the alias as the type for a property or parameter.

Adding a record or union to the type library
To add a record or union to a type library,

1 On the toolbar, click on the record icon or the union icon.

The selected type element is added to the object list pane prompting you to add a
name.

2 Type a name for the record or union.

At this point, the new record or union contains no fields.

3 With the record or union selected in the object list pane, click on the field icon in
the toolbar. Specify the field’s name and type, using the Attributes page.

4 Repeat step 3 for as many fields as you need.

Once you have defined the record or union, the new type is available for use by the
type library or any other type library that references it from its uses page. For
example, you can use the record or union as the type for a property or parameter.

W o r k i n g w i t h t y p e l i b r a r i e s 41-25

T y p e L i b r a r y e d i t o r

Adding a module to the type library
To add a module to a type library,

1 On the toolbar, click on the module icon.

The selected module is added to the object list pane prompting you to add a name.

2 Type a name for the module.

3 On the Attributes page, specify the name of the DLL whose entry points the
Module represents.

4 Add any methods from the DLL you specified in step 3 by clicking on the Method
icon in the toolbar and then using the attributes pages to describe the method.

5 Add any constants you want the module to define by clicking on the Const icon on
the toolbar. For each constant, specify a name, type, and value.

Saving and registering type library information
After modifying your type library, you’ll want to save and register the type library
information.

Saving the type library automatically updates:

• The binary type library file (.tlb extension).
• The Project_TLB unit that represents its contents
• The implementation code for any CoClasses that were generated by a wizard.

Note The type library is stored as a separate binary (.TLB) file, but is also linked into the
server (.EXE, DLL, or .OCX).

Note When using the Type Library editor for CORBA interfaces, the Project_TLB.pas unit
defines the stub and skeleton objects required by the CORBA application.

The Type Library editor gives you options for storing your type library information.
Which way you choose depends on what stage you are at in implementing the type
library:

• Save, to save both the .TLB and the Project_TLB unit to disk.

• Refresh, to update the type library units in memory only.

• Register, to add an entry for the type library in your system’s Windows registry.
This is done automatically when the server with which the .TLB is associated is
itself registered.

• Export, to save a .IDL file that contains the type and interface definitions in IDL
syntax.

All the above methods perform syntax checking. When you refresh, register, or save
the type library, Delphi automatically updates the implementation unit of any
CoClasses that were created using a wizard. Optionally, you can review these
updates before they are committed, if you have the Type Library editor option,
Apply Updates on.

41-26 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Apply Updates dialog
The Apply Updates dialog appears when you refresh, register, or save the type
library if you have selected “Display updates before refreshing” in the Tools|
Environment Options|Type Library page (which is on by default).

Without this option, the Type Library editor automatically updates the sources of the
associated object when you make changes in the editor. With this option, you have a
chance to veto the proposed changes when you attempt to refresh, save, or register
the type library.

The Apply Updates dialog will warn you about potential errors, and will insert
TODO comments in your source file. For example, if you rename an event by
mistake, you will get a warning in your source file that looks like this:

Because of the presence of instance variables in your implementation file,
Delphi was not able to update the file to reflect the change in your event
interface name. As Delphi has updated the type library for you, however, you
must update the implementation file by hand.

You will also get a TODO comment in your source file immediately above it.

Note If you ignore this warning and TODO comment, the code will not compile.

Saving a type library
Saving a type library:

• Performs a syntax and validity check.

• Saves information out to a .TLB file.

• Saves information out to the Project_TLB unit.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To save the type library, choose File|Save from the Delphi main menu.

Refreshing the type library
Refreshing the type library

• Performs a syntax check.

• Regenerates the Delphi type library units in memory only. It does not save any
files to disk.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To refresh the type library choose the Refresh icon on the Type Library editor toolbar.

Note If you have renamed items in the type library, refreshing the implementation may
create duplicate entries. In this case, you must move your code to the correct entry
and delete any duplicates. Similarly, if you delete items in the type library, refreshing
the implementation does not remove them from CoClasses (under the assumption
that you are merely removing them from visibility to clients). You must delete these
items manually in the implementation unit if they are no longer needed.

W o r k i n g w i t h t y p e l i b r a r i e s 41-27

D e p l o y i n g t y p e l i b r a r i e s

Registering the type library
Typically, you do not need to explicitly register a type library because it is registered
automatically when you register your COM server application (see “Registering a
COM object” on page 43-17). However, when you create a type library using the
Type Library wizard, it is not associated with a server object. In this case, you can
register the type library directly using the toolbar.

Registering the type library,

• Performs a syntax check
• Adds an entry to the Windows Registry for the type library

To register the type library, choose the Register icon on the Type Library editor
toolbar.

Exporting an IDL file
Exporting the type library,

• Performs a syntax check.

• Creates an IDL file that contains the type information declarations. This file
describes the type information in either CORBA IDL or Microsoft IDL.

To export the type library, choose the Export icon on the Type Library editor toolbar.

Deploying type libraries
By default, when you have a type library that was created as part of an ActiveX or
Automation server project, the type library is automatically linked into the .DLL,
.OCX, or EXE as a resource.

You can, however, deploy your application with the type library as a separate .TLB,
as Delphi maintains the type library, if you prefer.

Historically, type libraries for Automation applications were stored as a separate file
with the .TLB extension. Now, typical Automation applications compile the type
libraries into the .OCX or .EXE file directly. The operating system expects the type
library to be the first resource in the executable (.DLL, .OCX, or .EXE) file.

41-28 D e v e l o p e r ’ s G u i d e

D e p l o y i n g t y p e l i b r a r i e s

When you make type libraries other than the primary project type library available to
application developers, the type libraries can be in any of the following forms:

• A resource. This resource should have the type TYPELIB and an integer ID. If you
choose to build type libraries with a resource compiler, it must be declared in the
resource (.RC) file as follows:

1 typelib mylib1.tlb
2 typelib mylib2.tlb

There can be multiple type library resources in an ActiveX library. Application
developers use the resource compiler to add the .TLB file to their own ActiveX
library.

• Stand-alone binary files. The .TLB file output by the Type Library editor is a binary
file.

C r e a t i n g C O M c l i e n t s 42-1

C h a p t e r

42
Chapter42Creating COM clients

COM clients are applications that make use of a COM object implemented by another
application or library. The most common types are applications that control an
Automation server (Automation controllers) and applications that host an ActiveX
control (ActiveX containers).

At first glance these two types of COM client are very different: The typical
Automation controller launches an external server EXE and issues commands to
make that server perform tasks on its behalf. The Automation server is usually
nonvisual and out-of-process. The typical ActiveX client, on the other hand, hosts a
visual control, using it much the same way you use any control on the Component
palette. ActiveX servers are always in-process servers.

However, the task of writing these two types of COM client is remarkably similar:
The client application obtains an interface for the server object and uses its properties
and methods. Delphi makes this particularly easy by letting you wrap the server
CoClass in a component on the client, which you can even install on the Component
palette. Samples of such component wrappers appear on two pages of the
Component palette: sample ActiveX wrappers appear on the ActiveX page and
sample Automation objects appear on the Servers page.

When writing a COM client, you must understand the interface that the server
exposes to clients, just as you must understand the properties and methods of a
component from the Component palette to use it in your application. This interface
(or set of interfaces) is determined by the server application, and typically published
in a type library. For specific information on a particular server application’s
published interfaces, you should consult that application’s documentation.

Even if you do not choose to wrap a server object in a component wrapper and install
it on the Component palette, you must make its interface definition available to your
application. To do this, you can import the server’s type information.

Note You can also query the type information directly using COM APIs, but Delphi
provides no special support for this.

42-2 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. These are discussed in “Creating clients for servers that do not
have a type library” on page 42-16.

Importing type library information
To make information about the COM server available to your client application, you
must import the information about the server that is stored in the server’s type
library. Your application can then use the resulting generated classes to control the
server object.

There are two ways to import type library information:

• You can use the Import Type Library dialog to import all available information
about the server types, objects, and interfaces. This is the most general method,
because it lets you import information from any type library and can optionally
generate component wrappers for all creatable CoClasses in the type library that
are not flagged as Hidden, Restricted, or PreDeclID.

• You can use the Import ActiveX dialog if you are importing from the type library
of an ActiveX control. This imports the same type information, but only creates
component wrappers for CoClasses that represent ActiveX controls.

• You can use the command line utility tlibimp.exe which provides additional
configuration options not available from within the IDE.

• A type library generated using a wizard is automatically imported using the same
mechanism as the import type library menu item.

Regardless of which method you choose to import type library information, the
resulting dialog creates a unit with the name TypeLibName_TLB, where TypeLibName
is the name of the type library. This file contains declarations for the classes, types,
and interfaces defined in the type library. By including it in your project, those
definitions are available to your application so that you can create objects and call
their interfaces. This file may be recreated by the IDE from time to time; as a result,
making manual changes to the file is not recommended.

In addition to adding type definitions to the TypeLibName_TLB unit, the dialog can
also create VCL class wrappers for any CoClasses defined in the type library. When
you use the Import Type Library dialog, these wrappers are optional. When you use
the Import ActiveX dialog, they are always generated for all CoClasses that represent
controls.

The generated class wrappers represent the CoClasses to your application, and
expose the properties and methods of its interfaces. If a CoClass supports the
interfaces for generating events (IConnectionPointContainer and IConnectionPoint), the
VCL class wrapper creates an event sink so that you can assign event handlers for the
events as simply as you can for any other component. If you tell the dialog to install
the generated VCL classes on the Component palette, you can use the Object
Inspector to assign property values and event handlers.

C r e a t i n g C O M c l i e n t s 42-3

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Note The Import Type Library dialog does not create class wrappers for COM+ event
objects. To write a client that responds to events generated by a COM+ event object,
you must create the event sink programmatically. This process is described in
“Handling COM+ events” on page 42-15.

For more details about the code generated when you import a type library, see “Code
generated when you import type library information” on page 42-5.

Using the Import Type Library dialog

To import a type library,

1 Choose Project|Import Type Library.

2 Select the type library from the list.

The dialog lists all the libraries registered on this system. If the type library is not
in the list, choose the Add button, find and select the type library file, choose OK.
This registers the type library, making it available. Then repeat step 2. Note that
the type library could be a stand-alone type library file (.tlb, .olb), or a server that
provides a type library (.dll, .ocx, .exe).

3 If you want to generate a VCL component that wraps a CoClass in the type library,
check Generate Component Wrapper. If you do not generate the component, you
can still use the CoClass by using the definitions in the TypeLibName_TLB unit.
However, you will have to write your own calls to create the server object and, if
necessary, to set up an event sink.

The Import Type Library dialog only imports CoClasses that are have the
CanCreate flag set and that do not have the Hidden, Restricted, or PreDeclID flags
set. These flags can be overridden using the command-line utility tlibimp.exe.

4 If you do not want to install a generated component wrapper on the Component
palette, choose Create Unit. This generates the TypeLibName_TLB unit and, if you
checked Generate Component Wrapper in step 3, adds the declaration of the
component wrapper. This exits the Import Type Library dialog.

5 If you want to install the generated component wrapper on the Component
palette, select the Palette page on which this component will reside and then
choose Install. This generates the TypeLibName_TLB unit, like the Create Unit
button, and then displays the Install component dialog, letting you specify the
package where the components should reside (either an existing package or a new
one). This button is grayed out if no component can be created for the type library.

When you exit the Import Type Library dialog, the new TypeLibName_TLB unit
appears in the directory specified by the Unit dir name control. This file contains
declarations for the elements defined in the type library, as well as the generated
component wrapper if you checked Generate Component Wrapper.

42-4 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

In addition, if you installed the generated component wrapper, a server object that
the type library described now resides on the Component palette. You can use the
Object Inspector to set properties or write an event handler for the server. If you add
the component to a form or data module, you can right-click on it at design time to
see its property page (if it supports one).

Note The Servers page of the Component palette contains a number of example
Automation servers that were imported this way for you.

Using the Import ActiveX dialog

To import an ActiveX control,

1 Choose Component|Import ActiveX Control.

2 Select the type library from the list.

The dialog lists all the registered libraries that define ActiveX controls. (This is a
subset of the libraries listed in the Import Type Library dialog.) If the type library
is not in the list, choose the Add button, find and select the type library file, choose
OK. This registers the type library, making it available. Then repeat step 2. Note
that the type library could be a stand-alone type library file (.tlb, .olb), or an
ActiveX server (.dll, .ocx).

3 If you do not want to install the ActiveX control on the Component palette, choose
Create Unit. This generates the TypeLibName_TLB unit and adds the declaration of
its component wrapper. This exits the Import ActiveX dialog.

4 If you want to install the ActiveX control on the Component palette, select the
Palette page on which this component will reside and then choose Install. This
generates the TypeLibName_TLB unit, like the Create Unit button, and then
displays the Install component dialog, letting you specify the package where the
components should reside (either an existing package or a new one).

When you exit the Import ActiveX dialog, the new TypeLibName_TLB unit appears in
the directory specified by the Unit dir name control. This file contains declarations
for the elements defined in the type library, as well as the generated component
wrapper for the ActiveX control.

Note Unlike the Import Type Library dialog where it is optional, the import ActiveX
dialog always generates a component wrapper. This is because, as a visual control, an
ActiveX control needs the additional support of the component wrapper so that it can
fit in with VCL forms.

If you installed the generated component wrapper, an ActiveX control now resides
on the Component palette. You can use the Object Inspector to set properties or write
event handlers for this control.If you add the control to a form or data module, you
can right-click on it at design time to see its property page (if it supports one).

Note The ActiveX page of the Component palette contains a number of example ActiveX
controls that were imported this way for you.

C r e a t i n g C O M c l i e n t s 42-5

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Code generated when you import type library information

Once you import a type library, you can view the generated TypeLibName_TLB unit.
At the top, you will find the following:

• Constant declarations giving symbolic names to the GUIDS of the type library and
its interfaces and CoClasses. The names for these constants are generated as
follows:

• The GUID for the type library has the form LBID_TypeLibName, where
TypeLibName is the name of the type library.

• The GUID for an interface has the form IID_InterfaceName, where InterfaceName
is the name of the interface.

• The GUID for a dispinterface has the form DIID_InterfaceName, where
InterfaceName is the name of the dispinterface.

• The GUID for a CoClass has the form CLASS_ClassName, where ClassName is
the name of the CoClass.

• The compiler directive VARPROPSETTER will be on. This allows the use of the
keyword var in the parameter list of property setter methods. This disables a
compiler optimization that would cause parameters to be passed by value
instead of by reference. The VARPROPSETTER directive must be on, when
creating TLB units for components written in a language other than Delphi.

• Declarations for the CoClasses in the type library. These map each CoClass to its
default interface.

• Declarations for the interfaces and dispinterfaces in the type library.

• Declarations for a creator class for each CoClass whose default interface supports
VTable binding. The creator class has two class methods, Create and CreateRemote,
that can be used to instantiate the CoClass locally (Create) or remotely
(CreateRemote).These methods return the default interface for the CoClass.

These declarations provide you with what you need to create instances of the
CoClass and access its interface. All you need do is add the generated
TypeLibName_TLB.pas file to the uses clause of the unit where you wish to bind to a
CoClass and call its interfaces.

Note This portion of the TypeLibName_TLB unit is also generated when you use the Type
Library editor or the command-line utility TLIBIMP.

If you want to use an ActiveX control, you also need the generated VCL wrapper in
addition to the declarations described above. The VCL wrapper handles window
management issues for the control. You may also have generated a VCL wrapper for
other CoClasses in the Import Type Library dialog. These VCL wrappers simplify the
task of creating server objects and calling their methods. They are especially
recommended if you want your client application to respond to events.

42-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

The declarations for generated VCL wrappers appear at the bottom of the interface
section. Component wrappers for ActiveX controls are descendants of TOleControl.
Component wrappers for Automation objects descend from TOleServer. The
generated component wrapper adds the properties, events, and methods exposed by
the CoClass’s interface. You can use this component like any other VCL component.

Warning You should not edit the generated TypeLibName_TLB unit. It is regenerated each time
the type library is refreshed, so any changes will be overwritten.

Note For the most up-to-date information about the generated code, refer to the comments
in the automatically-generated TypeLibName_TLB unit.

Controlling an imported object
After importing type library information, you are ready to start programming with
the imported objects. How you proceed depends in part on the objects, and in part on
whether you have chosen to create component wrappers.

Using component wrappers

If you generated a component wrapper for your server object, writing your COM
client application is not very different from writing any other application that
contains VCL components. The server object’s properties, methods, and events are
already encapsulated in the VCL component. You need only assign event handlers,
set property values, and call methods.

To use the properties, methods, and events of the server object, see the
documentation for your server. The component wrapper automatically provides a
dual interface where possible. Delphi determines the VTable layout from information
in the type library.

In addition, your new component inherits certain important properties and methods
from its base class.

ActiveX wrappers
You should always use a component wrapper when hosting ActiveX controls,
because the component wrapper integrates the control’s window into the VCL
framework.

The properties and methods an ActiveX control inherits from TOleControl allow you to
access the underlying interface or obtain information about the control. Most
applications, however, do not need to use these. Instead, you use the imported control
the same way you would use any other VCL control.

Typically, ActiveX controls provide a property page that lets you set their properties.
Property pages are similar to the component editors some components display when
you double-click on them in the form designer. To display an ActiveX control’s
property page, right click and choose Properties.

C r e a t i n g C O M c l i e n t s 42-7

C o n t r o l l i n g a n i m p o r t e d o b j e c t

The way you use most imported ActiveX controls is determined by the server
application. However, ActiveX controls use a standard set of notifications when they
represent the data from a database field. See “Using data-aware ActiveX controls” on
page 42-8 for information on how to host such ActiveX controls.

Automation object wrappers
The wrappers for Automation objects let you control how you want to form the
connection to your server object:

• The ConnectKind property indicates whether the server is local or remote and
whether you want to connect to a server that is already running or if a new
instance should be launched. When connecting to a remote server, you must
specify the machine name using the RemoteMachineName property.

• Once you have specified the ConnectKind, there are three ways you can connect
your component to the server:

• you can explicitly connect to the server by calling the component’s Connect
method.

• You can tell the component to connect automatically when your application
starts up by setting the AutoConnect property to true.

• You do not need to explicitly connect to the server. The component
automatically forms a connection when you use one of the server’s properties
or methods using the component.

Calling methods or accessing properties is the same as using any other component:

TServerComponent1.DoSomething;

Handling events is easy, because you can use the Object Inspector to write event
handlers. Note, however, that the event handler on your component may have
slightly different parameters than those defined for the event in the type library.
Specifically, pointer types (var parameters and interface pointers) are changed to
Variants. You must explicitly cast var parameters to the underlying type before
assigning a value. Interface pointers can be cast to the appropriate interface type
using the as operator.For example, the following code shows an event handler for the
ExcelApplication event, OnNewWorkBook. The event handler has a parameter that
provides the interface of another CoClass (ExcelWorkbook). However, the interface
is not passed as an ExcelWorkbook interface pointer, but rather as an OleVariant.

procedure TForm1.XLappNewWorkbook(Sender: TObject; var Wb:OleVariant);
begin

{ Note how the OleVariant for the interface must be cast to the correct type }
ExcelWorkbook1.ConnectTo((iUnknown(wb) as ExcelWorkbook));

end;

In this example, the event handler assigns the workbook to an ExcelWorkbook
component (ExcelWorkbook1). This demonstrates how to connect a component
wrapper to an existing interface by using the ConnectTo method. The ConnectTo
method is added to the generated code for the component wrapper.

42-8 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Servers that have an application object expose a Quit method on that object to let
clients terminate the connection. Quit typically exposes functionality that is
equivalent to using the File menu to quit the application. Code to call the Quit
method is generated in your component’s Disconnect method. If it is possible to call
the Quit method with no parameters, the component wrapper also has an AutoQuit
property. AutoQuit causes your controller to call Quit when the component is freed.
If you want to disconnect at some other time, or if the Quit method requires
parameters, you must call it explicitly. Quit appears as a public method on the
generated component.

Using data-aware ActiveX controls

When you use a data-aware ActiveX control in a Delphi application, you must
associate it with the database whose data it represents. To do this, you need a data
source component, just as you need a data source for any data-aware VCL control.

After you place the data-aware ActiveX control in the form designer, assign its
DataSource property to the data source that represents the desired dataset. Once you
have specified a data source, you can use the Data Bindings editor to link the
control’s data-bound property to a field in the dataset.

To display the Data Bindings editor, right-click the data-aware ActiveX control to
display a list of options. In addition to the basic options, the additional Data
Bindings item appears. Select this item to see the Data Bindings editor, which lists the
names of fields in the dataset and the bindable properties of the ActiveX control.

To bind a field to a property,

1 In the ActiveX Data Bindings Editor dialog, select a field and a property name.

Field Name lists the fields of the database and Property Name lists the ActiveX
control properties that can be bound to a database field. The dispID of the
property is in parentheses, for example, Value(12).

2 Click Bind and OK.

Note If no properties appear in the dialog, the ActiveX control contains no data-aware
properties. To enable simple data binding for a property of an ActiveX control, use
the type library as described in “Enabling simple data binding with the type library”
on page 45-11.

The following example walks you through the steps of using a data-aware ActiveX
control in the Delphi container. This example uses the Microsoft Calendar Control,
which is available if you have Microsoft Office 97 installed on your system.

1 From the Delphi main menu, choose Component|Import ActiveX Control.

2 Select a data-aware ActiveX control, such as the Microsoft Calendar control 8.0,
change its class name to TCalendarAXControl, and click Install.

3 In the Install dialog, click OK to add the control to the default user package, which
makes the control available on the Palette.

4 Choose Close All and File|New|Application to begin a new application.

C r e a t i n g C O M c l i e n t s 42-9

C o n t r o l l i n g a n i m p o r t e d o b j e c t

5 From the ActiveX tab, drop a TCalendarAXControl object, which you just added to
the Palette, onto the form.

6 Drop a DataSource object from the Data Access tab, and a Table object from the BDE
tab onto the form.

7 Select the DataSource object and set its DataSet property to Table1.

8 Select the Table object and do the following:

• Set the DatabaseName property to DBDEMOS.
• Set the TableName property to EMPLOYEE.DB.
• Set the Active property to true.

9 Select the TCalendarAXControl object and set its DataSource property to
DataSource1.

10 Select the TCalendarAXControl object, right-click, and choose Data Bindings to
invoke the ActiveX Control Data Bindings Editor.

Field Name lists all the fields in the active database. Property Name lists those
properties of the ActiveX Control that can be bound to a database field. The dispID
of the property is in parentheses.

11 Select the HireDate field and the Value property name, choose Bind, and OK.

The field name and property are now bound.

12 From the Data Controls tab, drop a DBGrid object onto the form and set its
DataSource property to DataSource1.

13 From the Data Controls tab, drop a DBNavigator object onto the form and set its
DataSource property to DataSource1.

14 Run the application.

15 Test the application as follows:

With the HireDate field displayed in the DBGrid object, navigate through the
database using the Navigator object. The dates in the ActiveX control change as
you move through the database.

Example: Printing a document with Microsoft Word

The following steps show how to create an Automation controller that prints a
document using Microsoft Word 8 from Office 97.

1 Create a new project that consists of a form, a button, and an open dialog box
(TOpenDialog). These controls constitute the Automation controller.

2 Prepare Delphi for this example.

3 Import the Word type library.

4 Use a VTable or dispatch interface object to control Microsoft Word.

5 Clean up the example.

42-10 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Preparing Delphi for this example
For your convenience, Delphi has provided many common servers, such as Word,
Excel, and PowerPoint, on the Component palette. To demonstrate how to import a
server, we use Word. Since it already exists on the Component palette, this first step
asks you to remove the package containing Word so that you can see how to install it
on the palette. Step 4 describes how to return the Component palette to its normal
state.

To remove Word from the Component palette,

1 Choose Component|Install packages.

2 Click Microsoft Office Sample Automation Server Wrapper Components and
choose Remove.

The Servers page of the Component palette no longer contains any of the servers
supplied with Delphi. (If no other servers have been imported, the Servers page
also disappears.)

Importing the Word type library
To import the Word type library,

1 Choose Project|Import Type Library.

2 In the Import Type Library dialog,

a Select Microsoft Office 8.0 Object Library.

If Word (Version 8) is not in the list, choose the Add button, go to Program
Files\Microsoft Office\Office, select the Word type library file, MSWord8.olb
choose Add, and then select Word (Version 8) from the list.

b For Palette Page, choose Servers.

c Choose Install.

The Install dialog appears. Select the Into New Packages tab and type
WordExample to create a new package containing this type library.

3 Go to the Servers Palette Page, select WordApplication and place it on a form.

4 Write an event handler for the button object as described in the next step.

C r e a t i n g C O M c l i e n t s 42-11

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Using a VTable or dispatch interface object to control Microsoft Word
You can use either a VTable or a dispatch object to control Microsoft Word.

Using a VTable interface object
By dropping an instance of the WordApplication object onto your form, you can
easily access the control using a VTable interface object. You simply call on methods
of the class you just created. For Word, this is the TWordApplication class.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

procedure TForm1.Button1Click(Sender: TObject);

var
FileName: OleVariant;

begin
 if OpenDialog1.Execute then
 begin
 FileName := OpenDialog1.FileName;

WordApplication1.Documents.Open(FileName,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

WordApplication1.ActiveDocument.PrintOut(
EmptyParam,EmptyParam,EmptyParam,
EmptyParam, EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam);

 end;

end;

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

42-12 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Using a dispatch interface object
As an alternate, you can use a dispatch interface for late binding. To use a dispatch
interface object, you create and initialize the Application object using the
_ApplicationDisp dispatch wrapper class as follows. Notice that dispinterface
methods are “documented” by the source as returning VTable interfaces, but, in fact,
you must cast them to dispatch interfaces.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

procedure TForm1.Button1Click(Sender: TObject);
var
MyWord : _ApplicationDisp;
FileName : OleVariant;
begin

if OpenDialog1.Execute then
begin

FileName := OpenDialog1.FileName;
MyWord := CoWordApplication.Create as

_ApplicationDisp;
(MyWord.Documents as DocumentsDisp).Open(FileName,EmptyParam,

EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

(MyWord.ActiveDocument as _DocumentDisp).PrintOut(EmptyParam,
EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam,EmptyParam,EmptyParam,
EmptyParam,EmptyParam,EmptyParam);

MyWord.Quit(EmptyParam,EmptyParam,EmptyParam);
end;

end;

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Cleaning up the example
After completing this example, you will want to restore Delphi to its original form.

1 Delete the objects on this Servers page:

• Choose Component|Install Packages.
• From the list, select the WordExample package and click remove.
• Click Yes to the message box asking for confirmation.
• Exit the Install Packages dialog by clicking OK.

2 Return the Microsoft Office Automation Server Wrapper Components package:

• Choose Component|Install Packages.

• Click the Add button.

• In the resulting dialog, choose dclaxserver70.bpl, dcloffice2k70.bpl, or
dclofficexp70.bpl, for Office 97, Office 2K, or Office XP, respectively.

• Exit the Install Packages dialog by clicking OK.

C r e a t i n g C O M c l i e n t s 42-13

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Writing client code based on type library definitions

Although you must use a component wrapper for hosting an ActiveX control, you
can write an Automation controller using only the definitions from the type library
that appear in the TypeLibName_TLB unit. This process is a bit more involved that
letting a component do the work, especially if you need to respond to events.

Connecting to a server
Before you can drive an Automation server from your controller application, you
must obtain a reference to an interface it supports. Typically, you connect to a server
through its main interface. For example, you connect to Microsoft Word through the
WordApplication component.

If the main interface is a dual interface, you can use the creator objects in the
TypeLibName_TLB.pas file. The creator classes have the same name as the CoClass,
with the prefix “Co” added. You can connect to a server on the same machine by
calling the Create method, or a server on a remote machine using the CreateRemote
method. Because Create and CreateRemote are class methods, you do not need an
instance of the creator class to call them.

MyInterface := CoServerClassName.Create;
MyInterface := CoServerClassName.CreateRemote('Machine1');

Create and CreateRemote return the default interface for the CoClass.

If the default interface is a dispatch interface, then there is no Creator class generated
for the CoClass. Instead, you can call the global CreateOleObject function, passing in
the GUID for the CoClass (there is a constant for this GUID defined at the top of the
_TLB unit). CreateOleObject returns an IDispatch pointer for the default interface.

Controlling an Automation server using a dual interface
After using the automatically generated creator class to connect to the server, you call
methods of the interface. For example,

var
MyInterface : _Application;

begin
MyInterface := CoWordApplication.Create;
MyInterface.DoSomething;

The interface and creator class are defined in the TypeLibName_TLB unit that is
generated automatically when you import a type library.

For information about dual interfaces, see “Dual interfaces” on page 43-13.

42-14 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Controlling an Automation server using a dispatch interface
Typically, you use the dual interface to control the Automation server, as described
above. However, you may find a need to control an Automation server with a
dispatch interface because no dual interface is available.

To call the methods of a dispatch interface,

1 Connect to the server, using the global CreateOleObject function.

2 Use the as operator to cast the IDispatch interface returned by CreateOleObject to
the dispinterface for the CoClass. This dispinterface type is declared in the
TypeLibName_TLB unit.

3 Control the Automation server by calling methods of the dispinterface.

Another way to use dispatch interfaces is to assign them to a Variant. By assigning
the interface returned by CreateOleObject to a Variant, you can take advantage of
the Variant type’s built-in support for interfaces. Simply call the methods of the
interface, and the Variant automatically handles all IDispatch calls, fetching the
dispatch ID and invoking the appropriate method. The Variant type includes
built-in support for calling dispatch interfaces, through its var.

V: Variant;
begin

V:= CreateOleObject('TheServerObject');
V.MethodName; { calls the specified method }
ƒ

An advantage of using Variants is that you do not need to import the type library,
because Variants use only the standard IDispatch methods to call the server. The
trade-off is that Variants are slower, because they use dynamic binding at runtime.

For more information on dispatch interfaces, see “Automation interfaces” on
page 43-13.

Handling events in an automation controller
When you generate a Component wrapper for an object whose type library you
import, you can respond to events simply using the events that are added to the
generated component. If you do not use a Component wrapper, however, (or if the
server uses COM+ events), you must write the event sink code yourself.

Handling Automation events programmatically
Before you can handle events, you must define an event sink. This is a class that
implements the event dispatch interface that is defined in the server’s type library.

To write the event sink, create an object that implements the event dispatch interface:

TServerEventsSink = class(TObject, _TheServerEvents)
ƒ{ declare the methods of _TheServerEvents here }
end;

C r e a t i n g C O M c l i e n t s 42-15

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Once you have an instance of your event sink, you must inform the server object of
its existence so that the server can call it. To do this, you call the global
InterfaceConnect procedure, passing it

• The interface to the server that generates events.

• The GUID for the event interface that your event sink handles.

• An IUnknown interface for your event sink.

• A variable that receives a Longint that represents the connection between the
server and your event sink.

{MyInterface is the server interface you got when you connected to the server }
InterfaceConnect(MyInterface, DIID_TheServerEvents,

MyEventSinkObject as IUnknown, cookievar);

After calling InterfaceConnect, your event sink is connected and receives calls from the
server when events occur.

You must terminate the connection before you free your event sink. To do this, call
the global InterfaceDisconnect procedure, passing it all the same parameters except for
the interface to your event sink (and the final parameter is ingoing rather than
outgoing):

InterfaceDisconnect(MyInterface, DIID_TheServerEvents, cookievar);

Note You must be certain that the server has released its connection to your event sink
before you free it. Because you don’t know how the server responds to the disconnect
notification initiated by InterfaceDisconnect, this may lead to a race condition if you
free your event sink immediately after the call. The easiest way to guard against
problems is to have your event sink maintain its own reference count that is not
decremented until the server releases the event sink’s interface.

Handling COM+ events
Under COM+, servers use a special helper object to generate events rather than a set
of special interfaces (IConnectionPointContainer and IConnectionPoint). Because of this,
you can’t use an event sink that descends from TEventDispatcher. TEventDispatcher is
designed to work with those interfaces, not COM+ event objects.

Instead of defining an event sink, your client application defines a subscriber object.
Subscriber objects, like event sinks, provide the implementation of the event
interface. They differ from event sinks in that they subscribe to a particular event
object rather than connecting to a server’s connection point.

To define a subscriber object, use the COM Object wizard, selecting the event object’s
interface as the one you want to implement. The wizard generates an implementation
unit with skeletal methods that you can fill in to create your event handlers. For more
information about using the COM Object wizard to implement an existing interface,
see “Using the COM object wizard” on page 43-3.

Note You may need to add the event object’s interface to the registry using the wizard if it
does not appear in the list of interfaces you can implement.

42-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g c l i e n t s f o r s e r v e r s t h a t d o n o t h a v e a t y p e l i b r a r y

Once you create the subscriber object, you must subscribe to the event object’s
interface or to individual methods (events) on that interface. There are three types of
subscriptions from which you can choose:

• Transient subscriptions. Like traditional event sinks, transient subscriptions are
tied to the lifetime of an object instance. When the subscriber object is freed, the
subscription ends and COM+ no longer forwards events to it.

• Persistent subscriptions. These are tied to the object class rather than a specific
object instance. When the event occurs, COM locates or launches an instance of the
subscriber object and calls its event handler. In-process objects (DLLs) use this
type of subscription.

• Per-user subscriptions. These subscriptions provide a more secure version of
transient subscriptions. Both the subscriber object and the server object that fires
events must be running under the same user account on the same machine.

Note Objects that subscribe to COM+ events must be installed in a COM+ application.

Creating clients for servers that do not have a type library
Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. To write clients that host such objects, you can use the
TOleContainer component. This component appears on the System page of the
Component palette.

TOleContainer acts as a host site for an Ole2 object. It implements the IOleClientSite
interface and, optionally, IOleDocumentSite. Communication is handled using OLE
verbs.

To use TOleContainer,

1 Place a TOleContainer component on your form.

2 Set the AllowActiveDoc property to true if you want to host an Active document.

3 Set the AllowInPlace property to indicate whether the hosted object should appear
in the TOleContainer, or in a separate window.

4 Write event handlers to respond when the object is activated, deactivated, moved,
or resized.

5 To bind the TOleContainer object at design time, right click and choose Insert
Object. In the Insert Object dialog, choose a server object to host.

6 To bind the TOleContainer object at runtime, you have several methods to choose
from, depending on how you want to identify the server object. These include
CreateObject, which takes a program id, CreateObjectFromFile, which takes the
name of a file to which the object has been saved, CreateObjectFromInfo, which
takes a record containing information on how to create the object, or
CreateLinkToFile, which takes the name of a file to which the object was saved and
links to it rather than embeds it.

C r e a t i n g C O M c l i e n t s 42-17

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

7 Once the object is bound, you can access its interface using the OleObjectInterface
property. However, because communication with Ole2 objects was based on OLE
verbs, you will most likely want to send commands to the server using the DoVerb
method.

8 When you want to release the server object, call the DestroyObject method.

Using .NET assemblies with Delphi
The Microsoft .NET Framework and the Common Language Runtime (CLR) provide
a runtime environment in which components written in .NET languages can
seamlessly interact with each other. A compiler for a .NET language does not emit
native machine code. Instead, the language is compiled to an intermediate, platform
neutral form called Microsoft Intermediate Language (MSIL, or IL for short). The
modules containing IL code are linked together to form an assembly. An assembly
can be made up of multiple modules, or it can be a single file. In either case, an
assembly is a self-describing entity; it holds information about the types it contains,
the modules that comprise the assembly, and dependencies on other assemblies. An
assembly is the basic unit of deployment in the .NET development environment, and
the CLR manages loading, compilation to native machine code, and subsequent
execution of that code. Applications that run entirely within the context of the CLR
are called managed code.

One of the services provided by the CLR is the ability for managed code to call on
unmanaged code, that is, code that was compiled to native machine language and
which does not execute within the environment of the CLR. For example, through a
service called Platform Invoke (often shortened to PInvoke), managed code can call
on native Win32 APIs. This ability extends to using legacy COM objects from a
managed .NET application. The ability to interoperate between managed code and
COM objects also goes in the other direction, making it possible to expose .NET
components to unmanaged applications. To the unmanaged application, loading and
accessing the .NET component almost entirely the same as accessing any other COM
object.

Requirements for COM interoperability

If you are developing new components with the .NET Framework, then you need to
install the full .NET Framework SDK, which is available from Microsoft’s MSDN
website: msdn.microsoft.com. If you are only using .NET types directly from the
.NET Framework core assemblies, then you only need to install the .NET Framework
Redistributable, also available from the MSDN website. Of course, any unmanaged
application that relies on services provided by the .NET Framework will require the
.NET Framework Redistributable to be deployed on the end-user’s machine.

42-18 D e v e l o p e r ’ s G u i d e

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

.NET components are exposed to unmanaged code through the use of proxy objects
called COM Callable Wrappers (CCW). Since COM mechanisms are used to make
the bridge between unmanaged and managed code, you must register the .NET
assemblies that contain components you wish to use. Use the .NET Framework
utiltity called regasm to create the necessary registry entries. The process is similar to
registering any other COM object, and will be covered in more detail later in this
section.

The .NET assembly mscorlib.dll contains the types that are integral to the .NET
Framework. All .NET assemblies must reference the mscorlib assembly, simply
because it provides the core functionality of the .NET Framework on the Microsoft
Windows platform. If you will be using types directly contained in the mscorlib
assembly, then you must run the regasm utility on mscorlib.dll. The Delphi installer
registers the mscorlib assembly for you, if it is not already registered.

.NET components can be deployed in two ways: In a global, shared location called
the Global Assembly Cache (GAC), or together in the same directory as the
executable. Components that are shared among multiple applications should be
deployed in the GAC. Because they are shared, and because of the side-by-side
deployment capabilities of the .NET Framework, assemblies deployed in the GAC
must be given a strong name (i.e. they must be digitally signed). The .NET
Framework contains a utility called sn, which is used to generate the encryption
keys. After the keys have been generated and the component has been built, the
assembly is installed into the global assembly cache using another .NET utility called
gacutil.

A .NET component can also be deployed in the same directory as the unmanaged
executable. In this deployment scenario, the strong key and GAC installation utility
are not required. However, the component must still be registered using the regasm
utility. Unlike an ordinary COM object, registering a .NET component does not make
it accessible to an application outside of the directory where the component is
deployed.

.NET components and type libraries

Both COM, and the .NET Framework contain mechanisms to expose type
information. In COM, one such mechansim is the type library. Type libraries are a
binary, programming language-neutral way for a COM object to expose type
metadata at runtime. Because type libraries are opened and parsed by system APIs,
languages such as Delphi can import them and gain the advantages of vtable
binding, even if the component was written in a different programming language.

In the .NET development environment, the assembly doubles as a container for both
IL, and type information. The .NET Framework contains classes that are used to
examine (or, “reflect”) the types contained in an assembly. When you access a .NET
component from unmanaged code, you are actually using a proxy (the COM Callable
Wrapper, mentioned earlier), not the .NET component itself. The CCW mechanism,
plus the self-describing nature of assemblies, is enough to allow you to access a .NET
component entirely through late binding.

C r e a t i n g C O M c l i e n t s 42-19

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

Because you can access a .NET component through late binding, creating a type
library for the component is not strictly required. All that is required is that the
assembly be registered. In fact, unmanaged clients are restricted to late binding by
default. Depending on how the .NET component was designed and built, you might
find only an “empty” class interface if you inspect its type library. Such a type library
is useless, in terms of enabling clients to use vtable binding instead of late binding
through IDispatch.

The following example demonstrates how to late bind to the ArrayList collection
class contained in mscorlib.dll. The mscorlib assembly must be registered prior to
using any type in the manner described here. The Delphi installer automatically
registers mscorlib, but you can run the regasm utility again if need be (e.g. you
unregistered mscorlib with the /u regasm option). Execute the command

regasm mscorlib.dll

in the .NET Framework directory to register the mscorlib assembly.

Note Do not use the /tlb option when registering mscorlib.dll. The .NET Framework
already includes a type library for the mscorlib assembly; you do not need to create a
new one.

The following code is attached to a button click event of a Delphi form:

procedure TForm1.Button1Click(Sender: TObject);
var

capacity: Integer;
item: Variant;
dotNetArrayList:Variant;

begin
{ Create the object }
dotNetArrayList := CreateOleObject('System.Collections.ArrayList');

{ Get the capacity of the ArrayList }
capacity := dotNetArrayList.Capacity;

{ Add an item }
dotNetArrayList.Add('A string item');

{ Retrieve the item, using the Array interface method, Item(). }
item := dotNetArrayList.Item(0);

{Remove all items }
dotNetArrayList.Clear;

end;

Note The class name string, System.Collections.ArrayList, is found by viewing the type
library mscorlib.tlb. This can be done either by opening the type library with Delphi,
or with another type library viewer such as oleview, provided with the Windows
Platform SDK.

42-20 D e v e l o p e r ’ s G u i d e

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

Accessing user-defined .NET components

When you examine a type library for a .NET component, you might - depending on
how the component was designed and built - find only an empty class interface. The
class interface will not contain any information about the parameters expected by the
methods implemented by the class. Also notably absent, are the dispids for the
methods of the class. The reason for this are the problems that can arise when a new
version of the component is created.

In COM, inheriting via interface is the only option. In the .NET Framework,
inheriting via interface or inheriting via implementation is a design decision. .NET
component writers can choose to add a new method or property at any time. If
changes are made to the .NET component, any COM client that depends on the
layout of the interface (e.g. by caching dispids) will break.

A .NET component writer must choose to expose type information in an exported
type library; it is not the default behavior. This is done through the use of the
ClassInterfaceAttribute custom attribute. ClassInterfaceAttribute is found in the
System.Reflection.InteropServices namespace. It can take on the values of the
ClassInterfaceType enumeration, which are, AutoDispatch (the default), AutoDual,
and None.

The AutoDispatch value is what causes the empty class interface to be generated.
Clients are restricted to late binding when accessing such a class. The AutoDual
value causes all type information (including dispids) to be included for a class so
marked. When a class is marked with the AutoDual value, type information is also
included for all inherited classes. This is the most convenient approach, and it can
work well when the .NET components are developed in a controlled environment.
However, this approach is also the one most prone to the versioning problems
mentioned earlier.

The ClassInterfaceType value None inhibits the generation of a class interface. When
a .NET class is marked this way, only the methods implemented in inherited
interfaces can be invoked. For .NET components that are intended to be used by an
unmanaged COM client, inheritance via interface is the preferred method of
interoperating between managed and unmanaged code. This way, the COM client is
less susceptible to changes in the .NET class. It also reinforces a tried-and-true COM
design principle, the immutability of interfaces.

The following example demonstrates this approach. We start out with a C# interface
called MyInterface, and a class called MyClass.

using System;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Windows.Forms;

[assembly:AssemblyKeyFile("KeyFile.snk")]
namespace InteropTest1 {

public interface MyInterface {
void myMethod1();
void myMethod2(string msg);

}

C r e a t i n g C O M c l i e n t s 42-21

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

// Restrict clients to using only implemented interfaces.
[ClassInterface(ClassInterfaceType.None)]
public class MyClass : MyInterface {

// The class must have a parameterless constructor for COM interoperability
public MyClass() {
}

// Implement MyInterface methods
public void myMethod1() {

MessageBox.Show("In C# Method!");
}

public void myMethod2(string msg) {
MessageBox.Show(msg);

}
}

}

The assembly is marked with the AssemblyKeyFile attribute. This is required if the
component is to be deployed in the Global Assembly Cache. If you deploy your
component in the same directory as the unmanaged executable client, the strong key
is not required. This example component will be deployed in the GAC, so we first
generate the keyfile using the Strong Name Utility of the .NET Framework SDK:

sn -k KeyFile.snk

Execute this command from the same directory where the C# source file is located.

The next step is to compile this code using the C# compiler. Assuming the C# code is
in a file called interoptest1.cs:

csc /t:library interoptest1.cs

The result of this command is the creation of an assembly called interoptest1.dll. The
assembly must now be registered, using the regasm utility. Regasm is similar in
concept to tregsvr; it creates entries in the Windows registry that allow the
component to be exposed to unmanaged COM clients.

regasm /tlb interoptest1.dll

The use of the /tlb option causes regasm to do two things: First, the registry entries
for the assembly are created. Second, the types in the assembly will be exported to a
type library, and the type library will also be registered.

Finally, the component is deployed to the GAC using the gacutil command:

gacutil -i interoptest1.dll

The -i option indicates the assembly is being installed into the GAC. The gacutil
command must be executed each time you build a new version of the .NET
component. Later, if you wish to remove the component from the GAC, execute the
gacutil command again, this time with the -u option:

gacutil -u interoptest1

Note When uninstalling a component, do not include the ‘.dll’ extension on the assembly
name.

42-22 D e v e l o p e r ’ s G u i d e

U s i n g . N E T a s s e m b l i e s w i t h D e l p h i

Once the .NET component has been built, registered, and installed into the GAC (or,
copied to the directory of the unmanaged executable), accessing it in Delphi is the
same as for any other COM object. Open or create your project, and then select
Project|Import Type Library from the menu. Scroll through the list of registered type
libraries until you find the one for your component. You can create a package for the
component and install it on the Component Palette by selecting the Install checkbox.
The type library importer will create a _TLB file to wrap the component, making it
accessible to unmanaged Delphi code through vtable binding.

The Add button of the type library import dialog box will not correctly register a type
library exported for a .NET assembly. Instead, you must always use the regasm
utility on the command line.

The type library importer will automatically create _TLB files (and their
corresponding .dcr and .dcu files) for any .NET assemblies that are referenced in the
imported type library. Importing the type library for the example C# component
above would cause the creation of _TLB, .dcr, and .dcu files for the mscorlib and
System.Windows.Forms assemblies.

The example below demonstrates calling methods on the .NET component, after its
type library has been imported into Delphi. The class and method names come from
the earlier C# example, and the variable MyClass1 is assumed to be previously
declared (e.g. as a member variable of a class, or a local variable of a procedure or
function).

MyClass1 := TMyClass.Create(self);
MyClass1.myMethod1;
MyClass1.myMethod2('Display this message');
MyClass1.Free;

C r e a t i n g s i m p l e C O M s e r v e r s 43-1

C h a p t e r

43
Chapter43Creating simple COM servers

Delphi provides wizards to help you create various COM objects. The simplest COM
objects are servers that expose properties and methods (and possibly events) through
a default interface that clients can call.

Note COM servers and Automation is not available for use in CLX applications. This
technology is for use on Windows only and is not cross-platform.

Two wizards, in particular, ease the process of creating simple COM objects:

• The COM Object wizard builds a lightweight COM object whose default interface
descends from IUnknown or that implements an interface already registered on
your system. This wizard provides the most flexibility in the types of COM objects
you can create.

• The Automation Object wizard creates a simple Automation object whose default
interface descends from IDispatch. IDispatch introduces a standard marshaling
mechanism and support for late binding of interface calls.

Note COM defines many standard interfaces and mechanisms for handling specific
situations. The Delphi wizards automate the most common tasks. However, some
tasks, such as custom marshaling, are not supported by any Delphi wizards. For
information on that and other technologies not explicitly supported by Delphi, refer
to the Microsoft Developer’s Network (MSDN) documentation. The Microsoft Web
site also provides current information on COM support.

43-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f c r e a t i n g a C O M o b j e c t

Overview of creating a COM object
Whether you use the Automation object wizard to create a new Automation server or
the COM object wizard to create some other type of COM object, the process you
follow is the same. It involves these steps:

1 Design the COM object.

2 Use the COM Object wizard or the Automation Object wizard to create the server
object.

3 Define the interface that the object exposes to clients.

4 Register the COM object.

5 Test and debug the application.

Designing a COM object
When designing the COM object, you need to decide what COM interfaces you want
to implement. You can write a COM object to implement an interface that has already
been defined, or you can define a new interface for your object to implement. In
addition, you can have your object support more than one interface. For information
about standard COM interfaces that you might want to support, see the MSDN
documentation.

• To create a COM object that implements an existing interface, use the COM Object
wizard.

• To create a COM object that implements a new interface that you define, use either
the COM Object wizard or the Automation Object wizard. The COM object wizard
can generate a new default interface that descends from IUnknown, and the
Automation object gives your object a default interface that descends from
IDispatch. No matter which wizard you use, you can always use the Type Library
editor later to change the parent interface of the default interface that the wizard
generates.

In addition to deciding what interfaces to support, you must decide whether the
COM object is an in-process server, out-of-process server, or remote server. For in-
process servers and for out-of-process and remote servers that use a type library,
COM marshals the data for you. Otherwise, you must consider how to marshal the
data to out-of-process servers. For information on server types, see, “In-process, out-
of-process, and remote servers,” on page 40-7.

C r e a t i n g s i m p l e C O M s e r v e r s 43-3

U s i n g t h e C O M o b j e c t w i z a r d

Using the COM object wizard
The COM object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from TCOMObject and sets up the class factory
constructor. For more information on the base class, see “Code generated by
wizards” on page 40-22.

• Optionally, adds a type library to your project and adds your object and its
interface to the type library.

Before you create a COM object, create or open the project for the application
containing functionality that you want to implement. The project can be either an
application or ActiveX library, depending on your needs.

To bring up the COM object wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled, ActiveX.

3 Double-click the COM object icon.

In the wizard, you must specify the following:

• CoClass name: This is the name of the object as it appears to clients. The class
created to implement your object has this name with a ‘T’ prepended. If you do
not choose to implement an existing interface, the wizard gives your CoClass a
default interface that has this name with an ‘I’ prepended.

• Implemented Interface: By default, the wizard gives your object a default
interface that descends from IUnknown. After exiting the wizard, you can then use
the Type Library editor to add properties and methods to this interface. However,
you can also select a pre-defined interface for your object to implement. Click the
List button in the COM object wizard to bring up the Interface Selection wizard,
where you can select any dual or custom interface defined in a type library
registered on your system. The interface you select becomes the default interface
for your new CoClass. The wizard adds all the methods on this interface to the
generated implementation class, so that you only need to fill in the bodies of the
methods in the implementation unit. Note that if you select an existing interface,
the interface is not added to your project’s type library. This means that when
deploying your object, you must also deploy the type library that defines the
interface.

• Instancing: Unless you are creating an in-process server, you need to indicate how
COM launches the application that houses your COM object. If your application
implements more than one COM object, you should specify the same instancing
for all of them. For information on the different possibilities, see “COM object
instancing types” on page 43-6.

43-4 D e v e l o p e r ’ s G u i d e

U s i n g t h e C O M o b j e c t w i z a r d

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see “COM
object instancing types” on page 43-6. For information on how to provide thread
support to your application, see Chapter 13, “Writing multi-threaded
applications.”

• Type Library: You can choose whether you want to include a type library for your
object. This is recommended for two reasons: it lets you use the Type Library
editor to define interfaces, thereby updating much of the implementation, and it
gives clients an easy way to obtain information about your object and its
interfaces. If you are implementing an existing interface, Delphi requires your
project to use a type library. This is the only way to provide access to the original
interface declaration. For information on type libraries, see “Type libraries” on
page 40-16 and Chapter 41, “Working with type libraries”.

• Oleautomation: If you have opted to create a type library and are willing to
confine yourself to Automation-compatible types, you can let COM handle the
marshaling for you when you are not generating an in-process server. By marking
your object’s interface as OleAutomation in the type library, you enable COM to
set up the proxies and stubs for you and handles passing parameters across
process boundaries. For more information on this process, see “The marshaling
mechanism” on page 40-8. You can only specify whether your interface is
Automation-compatible if you are generating a new interface. If you select an
existing interface, its attributes are already specified in its type library. If your
object’s interface is not marked as OleAutomation, you must either create an in-
process server or write your own marshaling code.

• Implement Ancestor Interfaces: Select this option if you want the wizard to
provide stub routines for inherited interfaces. There are three inherited interfaces
that will never be implemented by the wizard: IUnknown, IDispatch, and
IAppServer. IUnknown and IDispatch are not implemented because ATL provides
its own implementation of these two interfaces. IAppServer is not implemented
because it is implemented automatically when working with client datasets and
dataset providers.

You can optionally add a description of your COM object. This description appears
in the type library for your object if you create one.

C r e a t i n g s i m p l e C O M s e r v e r s 43-5

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Using the Automation object wizard
The Automation object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from TAutoObject and sets up the class factory
constructor. For more information on the base class, see “Code generated by
wizards” on page 40-22.

• Adds a type library to your project and adds your object and its interface to the
type library.

Before you create an Automation object, create or open the project for an application
containing functionality that you want to expose. The project can be either an
application or ActiveX library, depending on your needs.

To display the Automation wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Automation Object icon.

In the wizard dialog, specify the following:

• CoClass name: This is the name of the object as it appears to clients. Your object’s
default interface is created with a name based on this CoClass name with an ‘I’
prepended, and the class created to implement your object has this name with a ‘T’
prepended.

• Instancing: Unless you are creating an in-process server, you need to indicate how
COM launches the application that houses your COM object. If your application
implements more than one COM object, you should specify the same instancing
for all of them. For information on the different possibilities, see “COM object
instancing types” on page 43-6.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see “COM
object instancing types” on page 43-6. For information on how to provide thread
support to your application, see Chapter 13, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event
handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 43-11.

43-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

You can optionally add a description of your COM object. This description appears
in the type library for your object.

The Automation object implements a dual interface, which supports both early
(compile-time) binding through the VTable and late (runtime) binding through the
IDispatch interface. For more information, see “Dual interfaces” on page 43-13.

COM object instancing types

Many of the COM wizards require you to specify an instancing mode for the object.
Instancing determines how many instances of your object clients can create in a
single executable. If you specify a Single Instance model, for example, then once a
client has instantiated your object, COM removes the application from view so that
other clients must launch their own instances of the application. Because this affects
the visibility of your application as a whole, the instancing mode must be consistent
across all objects in your application that can be instantiated by clients. That is, you
should not create one object in your application that uses Single Instance mode and
another in the same application that uses Multiple Instance mode.

Note Instancing is ignored when your COM object is used only as an in-process server.

When the wizard creates a new COM object, it can have any of the following
instancing types:

Choosing a threading model

When creating an object using a wizard, you select a threading model that your
object agrees to support. By adding thread support to your COM object, you can
improve its performance, because multiple clients can access your application at the
same time.

Instancing Meaning

Internal The object can only be created internally. An external application cannot
create an instance of the object directly, although your application can create
the object and pass an interface for it to clients.

Single Instance Allows clients to create only a single instance of the object for each executable
(application), so creating multiple instances results in launching multiple
instances of the application. Each client has its own dedicated instance of the
server application.

Multiple Instances Specifies that multiple clients can create instances of the object in the same
process space.

C r e a t i n g s i m p l e C O M s e r v e r s 43-7

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Table 43.1 lists the different threading models you can specify.

Note Local variables (except those in callbacks) are always safe, regardless of the threading
model. This is because local variables are stored on the stack and each thread has its
own stack. Local variables may not be safe in callbacks when using free-threading.

The threading model you choose in the wizard determines how the object is
registered in the system Registry. You must make sure that your object
implementation adheres to the threading model you have chosen. For general
information on writing thread-safe code, see Chapter 13, “Writing multi-threaded
applications.”

For in-process servers, setting the threading model in the wizard sets the threading
model key in the CLSID registry entry.

Table 43.1 Threading models for COM objects

Threading model Description Implementation pros and cons

Single The server provides no thread
support. COM serializes client
requests so that the application
receives one request at a time.

Clients are handled one at a time so no
threading support is needed.
No performance benefit.

Apartment
(or Single-threaded
apartment)

COM ensures that only one
client thread can call the object
at a time. All client calls use the
thread in which the object was
created.

Objects can safely access their own
instance data, but global data must be
protected using critical sections or some
other form of serialization.
The thread’s local variables are reliable
across multiple calls.
Some performance benefits.

Free (
also called
multi-threaded
apartment)

Objects can receive calls on any
number of threads at any time.

Objects must protect all instance and
global data using critical sections or some
other form of serialization.
Thread local variables are not reliable
across multiple calls.

Both This is the same as the Free-
threaded model except that
outgoing calls (for example,
callbacks) are guaranteed to
execute in the same thread.

Maximum performance and flexibility.
Does not require the application to
provide thread support for parameters
supplied to outgoing calls.

Neutral Multiple clients can call the
object on different threads at
the same time, but COM
ensures that no two calls
conflict.

You must guard against thread conflicts
involving global data and any instance
data that is accessed by multiple methods.
This model should not be used with
objects that have a user interface (visual
controls).
This model is only available under COM+.
Under COM, it is mapped to the
Apartment model.

43-8 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Out-of-process servers are registered as EXE, and Delphi initializes COM for the
highest threading model required. For example, if an EXE includes a free-threaded
object, it is initialized for free threading, which means that it can provide the
expected support for any free-threaded or apartment-threaded objects contained in
the EXE. To manually override threading behavior in EXEs, use the CoInitFlags
variable, which is described in the online help.

Writing an object that supports the free threading model
Use the free threading (or both) model rather than apartment threading whenever
the object needs to be accessed from more than one thread. A common example is a
client application connected to an object on a remote machine. When the remote
client calls a method on that object, the server receives the call on a thread from the
thread pool on the server machine. This receiving thread makes the call locally to the
actual object; and, because the object supports the free threading model, the thread
can make a direct call into the object.

If the object supported the apartment threading model instead, the call would have to
be transferred to the thread on which the object was created, and the result would
have to be transferred back into the receiving thread before returning to the client.
This approach requires extra marshaling.

To support free threading, you must consider how instance data can be accessed for
each method. If the method is writing to instance data, you must use critical sections
or some other form of serialization, to protect the instance data. Likely, the overhead
of serializing critical calls is less than executing COM’s marshaling code.

Note that if the instance data is read-only, serialization is not needed.

Free-threaded in-process servers can improve performance by acting as the outer
object in an aggregation with the free-threaded marshaler. The free-threaded
marshaler provides a shortcut for COM’s standard thread handling when a free-
threaded DLL is called by a host (client) that is not free-threaded.

To aggregate with the free threaded marshaler, you must

• Call CoCreateFreeThreadedMarshaler, passing your object’s IUnknown interface for
the resulting free-threaded marshaler to use:

CoCreateFreeThreadedMarshaler(self as IUnknown, FMarshaler);

This line assigns the interface for the free-threaded marshaler to a class member,
FMarshaler.

• Using the Type Library editor, add the IMarshal interface to the set of interfaces
your CoClass implements.

• In your object’s QueryInterface method, delegate calls for IDD_IMarshal to the free-
threaded marshaler (stored as FMarshaler above).

Warning The free-threaded marshaler violates the normal rules of COM marshaling to provide
additional efficiency. It should be used with care. In particular, it should only be
aggregated with free-threaded objects in an in-process server, and should only be
instantiated by the object that uses it (not another thread).

C r e a t i n g s i m p l e C O M s e r v e r s 43-9

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Writing an object that supports the apartment threading model
To implement the (single-threaded) apartment threading model, you must follow a
few rules:

• The first thread in the application that gets created is COM’s main thread. This is
typically the thread on which WinMain was called. This must also be the last
thread to uninitialize COM.

• Each thread in the apartment threading model must have a message loop, and the
message queue must be checked frequently.

• When a thread gets a pointer to a COM interface, that pointer may only be used in
that thread.

The single-threaded apartment model is the middle ground between providing no
threading support and full, multi-threading support of the free threading model. A
server committing to the apartment model promises that the server has serialized
access to all of its global data (such as its object count). This is because different
objects may try to access the global data from different threads. However, the object’s
instance data is safe because the methods are always called on the same thread.

Typically, controls for use in Web browsers use the apartment threading model
because browser applications always initialize their threads as apartment.

Writing an object that supports the neutral threading model
Under COM+, you can use another threading model that is in between free threading
and apartment threading: the neutral model. Like the free-threading model, this
model allows multiple threads to access your object at the same time. There is no
extra marshaling to transfer to the thread on which the object was created. However,
your object is guaranteed to receive no conflicting calls.

Writing an object that uses the neutral threading model follows much the same rules
as writing an apartment-threaded object, except that you do need to guard instance
data against thread conflicts if it can be accessed by different methods in the object’s
interface. Any instance data that is only accessed by a single interface method is
automatically thread-safe.

Defining a COM object’s interface
When you use a wizard to create a COM object, the wizard automatically generates a
type library (unless you specify otherwise in the COM object wizard). The type
library provides a way for host applications to find out what the object can do. It also
lets you define your object’s interface using the Type Library editor. The interfaces
you define in the Type Library editor define what properties, methods, and events
your object exposes to clients.

Note If you selected an existing interface in the COM object wizard, you do not need to
add properties and methods. The definition of the interface is imported from the type
library in which it was defined. Instead, simply locate the methods of the imported
interface in the implementation unit and fill in their bodies.

43-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Adding a property to the object’s interface

When you add a property to your object’s interface using the Type Library editor, it
automatically adds a method to read the property’s value and/or a method to set the
property’s value. The Type Library editor, in turn, adds these methods to your
implementation class, and in your implementation unit creates empty method
implementations for you to complete.

To add a property to your object’s interface,

1 In the type library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I.”
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 To expose a read/write property, click the Property button on the toolbar;
otherwise, click the arrow next to the Property button on the toolbar, and then
click the type of property to expose.

3 In the Attributes pane, specify the name and type of the property.

4 On the toolbar, click the Refresh button.

A definition and skeletal implementations for the property access methods are
inserted into the object’s implementation unit.

5 In the implementation unit, locate the access methods for the property. These have
names of the form Get_PropertyName and Set_PropertyName. Add code that gets
or sets the property value of your object. This code may simply call an existing
function inside the application, access a data member that you add to the object
definition, or otherwise implement the property.

Adding a method to the object’s interface

When you add a method to your object’s interface using the Type Library editor, the
Type Library editor can, in turn, add the methods to your implementation class, and
in your implementation unit create empty implementation for you to complete.

To expose a method via your object’s interface,

1 In the Type Library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 Click the Method button.

3 In the Attributes pane, specify the name of the method.

4 In the Parameters pane, specify the method’s return type and add the appropriate
parameters.

C r e a t i n g s i m p l e C O M s e r v e r s 43-11

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

5 On the toolbar, click the Refresh button.

A definition and skeletal implementation for the method is inserted into the
object’s implementation unit.

6 In the implementation unit, locate the newly inserted method implementation.
The method is completely empty. Fill in the body to perform whatever task the
method represents.

Exposing events to clients

There are two types of events that a COM object can generate: traditional events and
COM+ events.

• COM+ events require that you create a separate event object using the event object
wizard and add code to call that event object from your server object. For more
information about generating COM+ events, see “Generating events under
COM+” on page 46-19.

• You can use the wizard to handle much of the work in generating traditional
events. This process is described below.

Note The COM object wizard does not generate event support code. If you want your
object to generate traditional events, you should use the Automation object wizard.

In order for an object to generate events, you need to do the following:

1 In the Automation wizard, check the box, Generate event support code.

The wizard creates an object that includes an Events interface as well as the default
interface. This Events interface has a name of the form ICoClassnameEvents. It is an
outgoing (source) interface, which means that it is not an interface your object
implements, but rather is an interface that clients must implement and which your
object calls. (You can see this by selecting your CoClass, going to the Implements
page, and noting that the Source column on the Events interface says true.)

In addition to the Events interface, the wizard adds the IConnectionPointContainer
interface to the declaration of your implementation class, and adds several class
members for handling events. Of these new class members, the most important are
FConnectionPoint and FConnectionPoints, which implement the IConnectionPoint
and IConnectionPointContainer interfaces using built-in VCL classes.
FConnectionPoint is maintained by another method that the wizard adds,
EventSinkChanged.

2 In the Type Library editor, select the outgoing Events interface for your object.
(This is the one with a name of the form ICoClassNameEvents)

3 Click the Method button from the Type Library toolbar. Each method you add to
the Events interface represents an event handler that the client must implement.

4 In the Attributes pane, specify the name of the event handler, such as MyEvent.

43-12 D e v e l o p e r ’ s G u i d e

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

5 On the toolbar, click the Refresh button.

Your object implementation now has everything it needs to accept client event
sinks and maintain a list of interfaces to call when the event occurs. To call these
interfaces, you can create a method to generate each event on clients.

6 In the Code Editor, add a method to your object for firing each event. For example,

unit ev;
interface
uses

ComObj, AxCtrls, ActiveX, Project1_TLB;
type

TMyAutoObject = class (TAutoObject,IConnectionPointContainer, IMyAutoObject)
private

ƒ
public

procedure Initialize; override;
procedure Fire_MyEvent; { Add a method to fire the event}

7 Implement the method you added in the last step so that it iterates through all the
event sinks maintained by your object’s FConnectionPoint member:

procedure TMyAutoObject.Fire_MyEvent;
var

I: Integer;
EventSinkList: TList;
EventSink: IMyAutoObjectEvents;

begin
if FConnectionPoint <> nil then
begin

EventSinkList :=FConnectionPoint.SinkList; {get the list of client sinks }
for I := 0 to EventSinkList.Count - 1 do
begin

EventSink := IUnknown(FEvents[I]) as IMyAutoObjectEvents;
EventSink.MyEvent;

end;
end;

end;

8 Whenever you need to fire the event so that clients are informed of its occurrence,
call the method that dispatches the event to all event sinks:

if EventOccurs then Fire_MyEvent; { Call method you created to fire events.}

Managing events in your Automation object
For a server to support traditional COM events, it must provide the definition of an
outgoing interface which is implemented by a client. This outgoing interface includes
all the event handlers the client must implement to respond to server events.

C r e a t i n g s i m p l e C O M s e r v e r s 43-13

A u t o m a t i o n i n t e r f a c e s

When a client has implemented the outgoing event interface, it registers its interest in
receiving event notification by querying the server’s IConnectionPointContainer
interface. The IConnectionPointContainer interface returns the server’s
IConnectionPoint interface, which the client then uses to pass the server a pointer to its
implementation of the event handlers (known as a sink).

The server maintains a list of all client sinks and calls methods on them when an
event occurs, as described above.

Automation interfaces
The Automation Object wizard implements a dual interface by default, which means
that the Automation object supports both

• Late binding at runtime, which is through the IDispatch interface. This is
implemented as a dispatch interface, or dispinterface.

• Early binding at compile-time, which is accomplished through directly calling one
of the member functions in the object’s virtual function table (VTable). This is
referred to as a custom interface.

Note Any interfaces generated by the COM object wizard that do not descend from
IDispatch only support VTable calls.

Dual interfaces

A dual interface is a custom interface and a dispinterface at the same time. It is
implemented as a COM VTable interface that derives from IDispatch. For those
controllers that can access the object only at runtime, the dispinterface is available.
For objects that can take advantage of compile-time binding, the more efficient
VTable interface is used.

Dual interfaces offer the following combined advantages of VTable interfaces and
dispinterfaces:

• For VTable interfaces, the compiler performs type checking and provides more
informative error messages.

• For Automation controllers that cannot obtain type information, the dispinterface
provides runtime access to the object.

• For in-process servers, you have the benefit of fast access through VTable
interfaces.

• For out-of-process servers, COM marshals data for both VTable interfaces and
dispinterfaces. COM provides a generic proxy/stub implementation that can
marshal the interface based on the information contained in a type library. For
more information on marshaling, see, “Marshaling data,” on page 43-15.

43-14 D e v e l o p e r ’ s G u i d e

A u t o m a t i o n i n t e r f a c e s

The following diagram depicts the IMyInterface interface in an object that supports a
dual interface named IMyInterface. The first three entries of the VTable for a dual
interface refer to the IUnknown interface, the next four entries refer to the IDispatch
interface, and the remaining entries are COM entries for direct access to members of
the custom interface.

Figure 43.1 Dual interface VTable

Dispatch interfaces

Automation controllers are clients that use the COM IDispatch interface to access the
COM server objects. The controller must first create the object, then query the object’s
IUnknown interface for a pointer to its IDispatch interface. IDispatch keeps track of
methods and properties internally by a dispatch identifier (dispID), which is a
unique identification number for an interface member. Through IDispatch, a
controller retrieves the object’s type information for the dispatch interface and then
maps interface member names to specific dispIDs. These dispIDs are available at
runtime, and controllers get them by calling the IDispatch method, GetIDsOfNames.

Once it has the dispID, the controller can then call the IDispatch method, Invoke, to
execute the appropriate code (property or method), packaging the parameters for the
property or method into one of the Invoke parameters. Invoke has a fixed compile-time
signature that allows it to accept any number of arguments when calling an interface
method.

The Automation object’s implementation of Invoke must then unpackage the
parameters, call the property or method, and be prepared to handle any errors that
occur. When the property or method returns, the object passes its return value back
to the controller.

QueryInterface

AddRef

Release

GetIDsOfNames

GetTypeInfo

GetTypeInfoCount

Invoke

IUnknown
methods

IDispatch
methods

Method1

Method2

Remaining methods
of IMyInterface

IMyInterface
methods

C r e a t i n g s i m p l e C O M s e r v e r s 43-15

M a r s h a l i n g d a t a

This is called late binding because the controller binds to the property or method at
runtime rather than at compile time.

Note When importing a type library, Delphi will query for dispIDs at the time it generates
the code, thereby allowing generated wrapper classes to call Invoke without calling
GetIDsOfNames. This can significantly increase the runtime performance of
controllers.

Custom interfaces

Custom interfaces are user-defined interfaces that allow clients to invoke interface
methods based on their order in the VTable and knowledge of the argument types.
The VTable lists the addresses of all the properties and methods that are members of
the object, including the member functions of the interfaces that it supports. If the
object does not support IDispatch, the entries for the members of the object’s custom
interfaces immediately follow the members of IUnknown.

If the object has a type library, you can access the custom interface through its VTable
layout, which you can get using the Type Library editor. If the object has a type
library and also supports IDispatch, a client can also get the dispIDs of the IDispatch
interface and bind directly to a VTable offset. Delphi’s type library importer
(TLIBIMP) retrieves dispIDs at import time, so clients that use dispinterfaces can
avoid calls to GetIDsOfNames; this information is already in the _TLB unit. However,
clients still need to call Invoke.

Marshaling data
For out-of-process and remote servers, you must consider how COM marshals data
outside the current process. You can provide marshaling:

• Automatically, using the IDispatch interface.

• Automatically, by creating a type library with your server and marking the
interface with the OLE Automation flag. COM knows how to marshal all the
Automation-compatible types in the type library and can set up the proxies and
stubs for you. Some type restrictions apply to enable automatic marshaling.

• Manually by implementing all the methods of the IMarshal interface. This is called
custom marshaling.

Note The first method (using IDispatch) is only available on Automation servers. The
second method is automatically available on all objects that are created by wizards
and which use a type library.

43-16 D e v e l o p e r ’ s G u i d e

M a r s h a l i n g d a t a

Automation compatible types

Function result and parameter types of the methods declared in dual and dispatch
interfaces and interfaces that you mark as OLE Automation must be Automation-
compatible types. The following types are OLE Automation-compatible:

• The predefined valid types such as Smallint, Integer, Single, Double, WideString. For
a complete list, see “Valid types” on page 41-12.

• Enumeration types defined in a type library. OLE Automation-compatible
enumeration types are stored as 32-bit values and are treated as values of type
Integer for purposes of parameter passing.

• Interface types defined in a type library that are OLE Automation safe, that is,
derived from IDispatch and containing only OLE Automation compatible types.

• Dispinterface types defined in a type library.

• Any custom record type defined within the type library.

• IFont, IStrings, and IPicture. Helper objects must be instantiated to map

• an IFont to a TFont
• an IStrings to a TStrings
• an IPicture to a TPicture

The ActiveX control and ActiveForm wizards create these helper objects
automatically when needed. To use the helper objects, call the global routines,
GetOleFont, GetOleStrings, GetOlePicture, respectively.

Type restrictions for automatic marshaling

For an interface to support automatic marshaling (also called Automation
marshaling or type library marshaling), the following restrictions apply. When you
edit your object using the type library editor, the editor enforces these restrictions:

• Types must be compatible for cross-platform communication. For example, you
cannot use data structures (other than implementing another property object),
unsigned arguments, AnsiStrings, and so on.

• String data types must be transferred as wide strings (BSTR). PChar and
AnsiString cannot be marshaled safely.

• All members of a dual interface must pass an HRESULT as the function’s return
value. If the method is declared using the safecall calling convention, this
condition is imposed automatically, with the declared return type converted to an
output parameter.

• Members of a dual interface that need to return other values should specify these
parameters as var or out, indicating an output parameter that returns the value of
the function.

C r e a t i n g s i m p l e C O M s e r v e r s 43-17

R e g i s t e r i n g a C O M o b j e c t

Note One way to bypass the Automation types restrictions is to implement a separate
IDispatch interface and a custom interface. By doing so, you can use the full range of
possible argument types. This means that COM clients have the option of using the
custom interface, which Automation controllers can still access. In this case, though,
you must implement the marshaling code manually.

Custom marshaling

Typically, you use automatic marshaling in out-of-process and remote servers
because it is easier—COM does the work for you. However, you may decide to
provide custom marshaling if you think you can improve marshaling performance.
When implementing your own custom marshaling, you must support the IMarshal
interface. For more information, on this approach, see the Microsoft documentation.

Registering a COM object
You can register your server object as an in-process or an out-of-process server. For
more information on the server types, see“In-process, out-of-process, and
remote servers” on page 40-7.

Note Before you remove a COM object from your system, you should unregister it.

Registering an in-process server

To register an in-process server (DLL or OCX), choose Run|Register ActiveX Server.

To unregister an in-process server, choose Run|Unregister ActiveX Server.

Registering an out-of-process server

To register an out-of-process server, run the server with the /regserver command-line
option. You can set command-line options with the Run|Parameters dialog box. You
can also register the server by running it.

To unregister an out-of-process server, run the server with the /unregserver
command-line option.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Note If the COM server is intended for use under COM+, you should install it in a COM+
application rather than register it. (Installing the object in a COM+ application
automatically takes care of registration.) For information on how to install an object
in a COM+ application, see “Installing transactional objects” on page 46-26.

43-18 D e v e l o p e r ’ s G u i d e

T e s t i n g a n d d e b u g g i n g t h e a p p l i c a t i o n

Testing and debugging the application
To test and debug your COM server application,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 For an in-process server, choose Run|Parameters, type the name of the
Automation controller in the Host Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Automation server.

5 Use the Automation controller to interact with the Automation server.

The Automation server pauses when the breakpoints are reached.

Note As an alternate approach, if you are also writing the Automation controller, you can
debug into an in-process server by enabling COM cross-process support. Use the
General page of the Tools|Debugger Options dialog to enable cross-process support.

C r e a t i n g a n A c t i v e S e r v e r P a g e 44-1

C h a p t e r

44
Chapter44Creating an Active Server Page

If you are using the Microsoft Internet Information Server (IIS) environment to serve
your Web pages, you can use Active Server Pages (ASP) to create dynamic Web-
based client/server applications. Active Server Pages let you write a script that gets
called every time the server loads the Web page. This script can, in turn, call on
Automation objects to obtain information that it includes in a generated HTML page.
For example, you can write a Delphi Automation server, such as one to create a
bitmap or connect to a database, and use this control to access data that gets updated
every time the server loads the Web page.

On the client side, the ASP acts like a standard HTML document and can be viewed
by users on any platform using any Web Browser.

ASP applications are analogous to applications you write using Delphi’s Web broker
technology. For more information about the Web broker technology, see Chapter 33,
“Creating Internet server applications.” ASP differs, however, in the way it separates
the UI design from the implementation of business rules or complex application
logic.

• The UI design is managed by the Active Server Page. This is essentially an HTML
document, but it can include embedded script that calls on Active Server objects to
supply it with content that reflects your business rules or application logic.

• The application logic is encapsulated by Active Server objects that expose simple
methods to the Active Server Page, supplying it with the content it needs.

Note Although ASP provides the advantage of separating UI design from application
logic, its performance is limited in scale. For Web sites that respond to extremely
large numbers of clients, an approach based on the Web broker technology is
recommended instead.

The script in your Active Server Pages and the Automation objects you embed in an
active server page can make use of the ASP intrinsics (built-in objects that provide
information about the current application, HTTP messages from the browser, and
so on).

44-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

This chapter shows how to create an Active Server Object using the Delphi Active
Server Object wizard. This special Automation control can then be called by an
Active Server Page and supply it with content.

Here are the steps for creating an Active Server Object:

• Create an Active Server Object for the application.
• Define the Active Server Object’s interface.
• Register the Active Server Object.
• Test and debug the application.

Creating an Active Server Object
An Active Server Object is an Automation object that has access to information about
the entire ASP application and the HTTP messages it uses to communicate with
browsers. It descends from TASPObject or TASPMTSObject (which is in turn a
descendant of TAutoObject), and supports Automation protocols, exposing itself for
other applications (or the script in the Active Server page) to use. You create an
Active Server Object using the Active Server Object wizard.

Your Active Server Object project can be either an executable (exe) or library (dll),
depending on your needs. However, you should be aware of the drawbacks of using
an out-of-process server. These drawbacks are discussed in “Creating ASPs for in-
process or out-of-process servers” on page 44-7.

To display the Active Server Object wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Active Server Object icon.

In the wizard, give your new Active Server Object a name, and specify the instancing
and threading models you want to support. These details influence the way your
object can be called. You must write the implementation so that it adheres to the
model (for example, avoiding thread conflicts). The instancing and threading models
involve the same choices that you make for other COM objects. For details, see “COM
object instancing types” on page 43-6 and “COM object instancing types” on
page 43-6.

The thing that makes an Active Server Object unique is its ability to access
information about the ASP application and the HTTP messages that pass between the
Active Server page and client Web browsers. This information is accessed using the
ASP intrinsics. In the wizard, you can specify how your object accesses these by
setting the Active Server Type:

• If you are working with IIS 3 or IIS 4, you use Page Level Event Methods. Under
this model, your object implements the methods, OnStartPage and OnEndPage,
which are called when the Active Server page loads and unloads. When your
object is loaded, it automatically obtains an IScriptingContext interface, which it
uses to access the ASP intrinsics. These interfaces are, in turn, surfaced as
properties inherited from the base class (TASPObject).

C r e a t i n g a n A c t i v e S e r v e r P a g e 44-3

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

• If you are working with IIS5 or later, you use the Object Context type. Under this
model, your object fetches an IObjectContext interface, which it uses to access the
ASP intrinsics. Again, these interfaces are surfaced as properties in the inherited
base class (TASPMTSObject). One advantage of this latter approach is that your
object has access to all of the other services available through IObjectContext. To
access the IObjectContext interface, simply call GetObjectContext (defined in the mtx
unit) as follows:

ObjectContext := GetObjectContext;

For more information about the services available through IObjectContext, see
Chapter 46, “Creating MTS or COM+ objects.”

You can tell the wizard to generate a simple ASP page to host your new Active Server
Object. The generated page provides a minimal script (written in VBScript) that
creates your Active Server Object based on its ProgID, and indicates where you can
call its methods. This script calls Server.CreateObject to launch your Active Server
Object.

Note Although the generated test script uses VBScript, Active Server Pages also can be
written using Jscript.

When you exit the wizard, a new unit is added to the current project that contains the
definition for the Active Server Object. In addition, the wizard adds a type library
project and opens the Type Library editor. Now you can expose the properties and
methods of the interface through the type library as described in “Defining a COM
object’s interface” on page 43-9. As you write the implementation of your object’s
properties and methods, you can take advantage of the ASP intrinsics (described
below) to obtain information about the ASP application and the HTTP messages it
uses to communicate with browsers.

The Active Server Object, like any other Automation object, implements a dual
interface, which supports both early (compile-time) binding through the VTable and
late (runtime) binding through the IDispatch interface. For more information on dual
interfaces, see “Dual interfaces” on page 43-13.

Using the ASP intrinsics

The ASP intrinsics are a set of COM objects supplied by ASP to the objects running in
an Active Server Page. They let your Active Server Object access information that
reflects the messages passing between your application and the Web browser, as well
as a place to store information that is shared among Active Server Objects that belong
to the same ASP application.

To make these objects easy to access, the base class for your Active Server Object
surfaces them as properties. For a complete understanding of these objects, see the
Microsoft documentation. However, the following topics provide a brief overview.

44-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Application
The Application object is accessed through an IApplicationObject interface. It
represents the entire ASP application, which is defined as the set of all .asp files in a
virtual directory and its subdirectories. The Application object can be shared by
multiple clients, so it includes locking support that you should use to prevent thread
conflicts.

IApplicationObject includes the following:

Request
The Request object is accessed through an IRequest interface. It provides information
about the HTTP request message that caused the Active Server Page to be opened.

IRequest includes the following:

Table 44.1 IApplicationObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the application using script
commands. This interface has two methods, Remove and RemoveAll,
that you can use to delete one or all objects from the list.

StaticObjects property Lists all the objects that were added to the application with the
<OBJECT> tag.

Lock method Prevents other clients from locking the Application object until you
call Unlock. All clients should call Lock before accessing shared
memory (such as the properties).

Unlock method Releases the lock that was set using the Lock method.

Application_OnEnd event Occurs when the application quits, after the Session_OnEnd event.
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Application_OnStart event Occurs before the new session is created (before Session_OnStart).
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Table 44.2 IRequest interface members

Property, Method, or Event Meaning

ClientCertificate property Indicates the values of all fields in the client certificate that is sent
with the HTTP message.

Cookies property Indicates the values of all Cookie headers on the HTTP message.

Form property Indicates the values of form elements in the HTTP body. These can
be accessed by name.

QueryString property Indicates the values of all variables in the query string from the
HTTP header.

ServerVariables property Indicates the values of various environment variables. These
variables represent most of the common HTTP header variables.

C r e a t i n g a n A c t i v e S e r v e r P a g e 44-5

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Response
The Request object is accessed through an IResponse interface. It lets you specify
information about the HTTP response message that is returned to the client browser.

IResponse includes the following:

TotalBytes property Indicates the number of bytes in the request body. This is an upper
limit on the number of bytes returned by the BinaryRead method.

BinaryRead method Retrieves the content of a Post message. Call the method, specifying
the maximum number of bytes to read. The resulting content is
returns as a Variant array of bytes. After calling BinaryRead, you
can’t use the Form property.

Table 44.3 IResponse interface members

Property, Method, or Event Meaning

Cookies property Determines the values of all Cookie headers on the HTTP message.

Buffer property Indicates whether page output is buffered When page output is
buffered, the server does not send a response to the client until all
of the server scripts on the current page are processed.

CacheControl property Determines whether proxy servers can cache the output in the
response.

Charset property Adds the name of the character set to the content type header.

ContentType property Specifies the HTTP content type of the response message’s body.

Expires property Specifies how long the response can be cached by a browser before
it expires.

ExpiresAbsolute property Specifies the date and time when the response expires.

IsClientConnected property Indicates whether the client has disconnected from the server.

Pics property Set the value for the pics-label field of the response header.

Status property Indicates the status of the response. This is the value of an HTTP
status header.

AddHeader method Adds an HTTP header with a specified name and value.

AppendToLog method Adds a string to the end of the Web server log entry for this
request.

BinaryWrite method Writes raw (uninterpreted) information to the body of the response
message.

Clear method Erases any buffered HTML output.

End method Stops processing the .asp file and returns the current result.

Flush method Sends any buffered output immediately.

Redirect method Sends a redirect response message, redirecting the client browser to
a different URL.

Write method Writes a variable to the current HTTP output as a string.

Table 44.2 IRequest interface members (continued)

Property, Method, or Event Meaning

44-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Session
The Session object is accessed through the ISessionObject interface. It allows you to
store variables that persist for the duration of a client’s interaction with the ASP
application. That is, these variables are not freed when the client moves from page to
page within the ASP application, but only when the client exits the application
altogether.

ISessionObject includes the following:

Server
The Server object is accessed through an IServer interface. It provides various utilities
for writing your ASP application.

IServer includes the following:

Table 44.4 ISessionObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the session using the
<OBJECT> tag. You can access any variable in the list by name, or
call the Contents object’s Remove or RemoveAll method to delete
values.

StaticObjects property Lists all the objects that were added to the session with the
<OBJECT> tag.

CodePage property Specifies the code page to use for symbol mapping. Different locales
may use different code pages.

LCID property Specifies the locale identifier to use for interpreting string content.

SessionID property Indicates the session identifier for the current client.

TimeOut property Specifies the time, in minutes, that the session persists without a
request (or refresh) from the client until the application terminates.

Abandon method Destroys the session and releases its resources.

Session_OnEnd event Occurs when the session is abandoned or times out. The only
intrinsics available are Application, Server, and Session. The event
handler must be written in VBScript or JScript.

Session_OnStart event Occurs when the server creates a new session is created (after
Application_OnStart but before running the script on the Active
Server Page). All intrinsics are available. The event handler must be
written in VBScript or JScript.

Table 44.5 IServer interface members

Property, Method, or Event Meaning

ScriptTimeOut property Same as the TimeOut property on the Session object.

CreateObject method Instantiates a specified Active Server Object.

Execute method Executes the script in a specified .asp file.

GetLastError method Returns an ASPError object that describes the error condition.

C r e a t i n g a n A c t i v e S e r v e r P a g e 44-7

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Creating ASPs for in-process or out-of-process servers

You can use Server.CreateObject in an ASP page to launch either an in-process or
out-of-process server, depending on your requirements. However, launching in-
process servers is more common.

Unlike most in-process servers, an Active Server Object in an in-process server does
not run in the client’s process space. Instead, it runs in the IIS process space. This
means that the client does not need to download your application (as, for example, it
does when you use ActiveX objects). In-process component DLLs are faster and more
secure than out-of-process servers, so they are better suited for server-side use.

Because out-of-process servers are less secure, it is common for IIS to be configured
to not allow out-of-process executables. In this case, creating an out-of-process server
for your Active Server Object would result in an error similar to the following:

Server object error 'ASP 0196'
Cannot launch out of process component
/path/outofprocess_exe.asp, line 11

Also, out-of-process components often create individual server processes for each
object instance, so they are slower than CGI applications. They do not scale as well as
component DLLs.

If performance and scalability are priorities for your site, in-process servers are
highly recommended. However, Intranet sites that receive moderate to low traffic
may use an out-of-process component without adversely affecting the site's overall
performance.

For general information on in-process and out-of-process servers, see, “In-process,
out-of-process, and remote servers,” on page 40-7.

HTMLEncode method Encodes a string for use in an HTML header, replacing reserved
characters by the appropriate symbolic constants.

MapPath method Maps a specified virtual path (an absolute path on the current server
or a path relative to the current page) into a physical path.

Transfer method Sends all of the current state information to another Active Server
Page for processing.

URLEncode method Applies URL encoding rules, including escape characters, to a
specified string

Table 44.5 IServer interface members (continued)

Property, Method, or Event Meaning

44-8 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g a n A c t i v e S e r v e r O b j e c t

Registering an Active Server Object
You can register the Active Server Page as an in-process or an out-of-process server.
However, in-process servers are more common.

Note When you want to remove the Active Server Page object from your system, you
should first unregister it, removing its entries from the Windows registry.

Registering an in-process server

To register an in-process server (DLL or OCX), choose Run|Register ActiveX Server.

To unregister an in-process server, choose Run|Unregister ActiveX Server.

Registering an out-of-process server

To register an out-of-process server, run the server with the /regserver command-
line option. (You can set command-line options with the Run|Parameters dialog
box.) You can also register the server by running it.

To unregister an out-of-process server, run the server with the /unregserver
command-line option.

Testing and debugging the Active Server Page application
Debugging any in-process server such as an Active Server Object is much like
debugging a DLL. You choose a host application that loads the DLL, and debug as
usual. To test and debug an Active Server Object,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 Choose Run|Parameters, type the name of your Web Server in the Host
Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Active Server Object implementation.

5 Use the Web browser to interact with the Active Server Page.

The debugger pauses when the breakpoints are reached.

C r e a t i n g a n A c t i v e X c o n t r o l 45-1

C h a p t e r

45
Chapter45Creating an ActiveX control

An ActiveX control is a software component that integrates into and extends the
functionality of any host application that supports ActiveX controls, such as
C++Builder, Delphi, Visual Basic, Internet Explorer, and (given a plug-in) Netscape
Navigator. ActiveX controls implement a particular set of interfaces that allow this
integration.

For example, Delphi comes with several ActiveX controls, including charting,
spreadsheet, and graphics controls. You can add these controls to the Component
palette in the IDE, and then use them like any standard VCL component, dropping
them on forms and setting their properties using the Object Inspector.

An ActiveX control can also be deployed on the Web, allowing it to be referenced in
HTML documents and viewed with ActiveX-enabled Web browsers.

Delphi provides wizards that let you create two types of ActiveX controls:

• ActiveX controls that wrap VCL classes. By wrapping a VCL class, you can
convert existing components into ActiveX controls or create new ones, test them
out locally, and then convert them into ActiveX controls. ActiveX controls are
typically intended to be embedded in a larger host application.

• Active forms. Active forms let you use the form designer to create a more
elaborate control that acts like a dialog or like a complete application. You develop
the Active form in much the same way that you develop a typical Delphi
application. Active Forms are typically intended for deployment on the Web.

This chapter provides an overview of how to create an ActiveX control in the Delphi
environment. It is not intended to provide complete implementation details of
writing ActiveX control without using a wizard. For that information, refer to your
Microsoft Developer’s Network (MSDN) documentation or search the Microsoft Web
site for ActiveX information.

45-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

Overview of ActiveX control creation
Creating ActiveX controls using Delphi is very similar to creating ordinary controls
or forms. This differs markedly from creating other COM objects, where you first
define the object’s interface and then complete the implementation. To create ActiveX
controls (other than Active Forms), you reverse this process, starting with the
implementation of a VCL control, and then generating the interface and type library
once the control is written. When creating Active Forms, the interface and type
library are created at the same time as your form, and then you use the form designer
to implement the form.

The completed ActiveX control consists of a VCL control that provides the
underlying implementation, a COM object that wraps the VCL control, and a type
library that lists the COM object’s properties, methods, and events.

To create a new ActiveX control (other than an Active Form), perform the following
steps:

1 Design and create the custom VCL control that forms the basis of your ActiveX
control.

2 Use the ActiveX control wizard to create an ActiveX control from the VCL control
you created in step 1.

3 Use the ActiveX property page wizard to create one or more property pages for
the control (optional).

4 Associate the property page with the ActiveX control (optional).

5 Register the control.

6 Test the control with all potential target applications.

7 Deploy the ActiveX control on the Web. (optional)

To create a new Active Form, perform the following steps:

1 Use the ActiveForm wizard to create an Active Form, which appears as a blank
form in the IDE, and an associated ActiveX wrapper for that form.

2 Use the form designer to add components to your Active Form and implement its
behavior in the same way you create and implement an ordinary form using the
form designer.

3 Follow steps 3-7 above to give your Active Form a property page, register it, and
deploy it on the Web.

Elements of an ActiveX control

An ActiveX control involves many elements which each perform a specific function.
The elements include a VCL control, a corresponding COM object wrapper that
exposes properties, methods, and events, and one or more associated type libraries.

C r e a t i n g a n A c t i v e X c o n t r o l 45-3

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

VCL control
The underlying implementation of an ActiveX control in Delphi is a VCL control.
When you create an ActiveX control, you must first design or choose the VCL control
from which you will make your ActiveX control.

The underlying VCL control must be a descendant of TWinControl, because it must
have a window that can be parented by the host application. When you create an
Active form, this object is a descendant of TActiveForm.

Note The ActiveX control wizard lists the available TWinControl descendants from which
you can choose to make an ActiveX control. This list does not include all TWinControl
descendants, however. Some controls, such as THeaderControl, are registered as
incompatible with ActiveX (using the RegisterNonActiveX procedure) and do not
appear in the list.

ActiveX wrapper
The actual COM object is an ActiveX wrapper object for the VCL control. For Active
forms, this class is always TActiveFormControl. For other ActiveX controls, it has a
name of the form TVCLClassX, where TVCLClass is the name of the VCL control class.
Thus, for example, the ActiveX wrapper for TButton would be named TButtonX.

The wrapper class is a descendant of TActiveXControl, which provides support for the
ActiveX interfaces. The ActiveX wrapper inherits this support, which allows it to
forward Windows messages to the VCL control and parent its window in the host
application.

The ActiveX wrapper exposes the VCL control’s properties and methods to clients
via its default interface. The wizard automatically implements most of the wrapper
class’s properties and methods, delegating method calls to the underlying VCL
control. The wizard also provides the wrapper class with methods that fire the VCL
control’s events on clients and assigns these methods as event handlers on the VCL
control.

Type library
The ActiveX control wizards automatically generate a type library that contains the
type definitions for the wrapper class, its default interface, and any type definitions
that these require. This type information provides a way for your control to advertise
its services to host applications. You can view and edit this information using the
Type Library editor. Although this information is stored in a separate, binary type
library file (.TLB extension), it is also automatically compiled into the ActiveX control
DLL as a resource.

Property page
You can optionally give your ActiveX control a property page. The property page
allows the user of a host (client) application to view and edit your control’s
properties. You can group several properties on a page, or use a page to provide a
dialog-like interface for a property. For information on how to create property pages,
see “Creating a property page for an ActiveX control” on page 45-12.

45-4 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a n A c t i v e X c o n t r o l

Designing an ActiveX control
When designing an ActiveX control, you start by creating a custom VCL control. This
forms the basis of your ActiveX control. For information on creating custom controls,
see the Component Writer’s Guide.”

When designing the VCL control, keep in mind that it will be embedded in another
application; this control is not an application in itself. For this reason, you probably
do not want to use elaborate dialog boxes or other major user-interface components.
Your goal is typically to make a simple control that works inside of, and follows the
rules of the main application.

In addition, you should make sure that the types for all properties and methods you
want your object to expose to clients are Automation-compatible, because the
ActiveX control’s interface must support IDispatch. The wizard does not add any
methods to the wrapper class’s interface that have parameters that are not
Automation-compatible. For a list of Automation-compatible types, see “Valid
types” on page 41-12.

The wizards implement all the necessary ActiveX interfaces required using the COM
wrapper class. They also surface all Automation-compatible properties, methods,
and events through the wrapper class’s default interface. Once the wizard has
generated the COM wrapper class and its interface, you can use the Type Library
editor to modify the default interface or augment the wrapper class by implementing
additional interfaces.

Generating an ActiveX control from a VCL control
To generate an ActiveX control from a VCL control, use the ActiveX Control wizard.
The properties, methods, and events of the VCL control become the properties,
methods, and events of the ActiveX control.

Before using the ActiveX control wizard, you must decide what VCL control will
provide the underlying implementation of the generated ActiveX control.

To bring up the ActiveX control wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveX Control icon.

In the wizard, select the name of the VCL control that will be wrapped by the new
ActiveX control. The dialog lists all available controls, which are descendants of
TWinControl that are not registered as incompatible with ActiveX using the
RegisterNonActiveX procedure.

Tip If you do not see the control you want in the drop-down list, check whether you have
installed it in the IDE or added its unit to your project.

C r e a t i n g a n A c t i v e X c o n t r o l 45-5

G e n e r a t i n g a n A c t i v e X c o n t r o l f r o m a V C L c o n t r o l

Once you have selected a VCL control, the wizard automatically generates a name for
the CoClass, the implementation unit for the ActiveX wrapper, and the ActiveX
library project. (If you currently have an ActiveX library project open, and it does not
contain a COM+ event object, the current project is automatically used.) You can
change any of these in the wizard (unless you have an ActiveX library project already
open, in which case the project name is not editable).

The wizard always specifies Apartment as the threading model. This is not a problem
if your ActiveX project usually contains only a single control. However, if you add
additional objects to your project, you are responsible for providing thread support.

The wizard also lets you configure various options on your ActiveX control:

• Enabling licensing: You can make your control licensed to ensure that users of the
control can't open it either for design purposes or at runtime unless they have a
license key for the control.

• Including Version information: You can include version information, such as a
copyright or a file description, in the ActiveX control. This information can be
viewed in a browser. Some host clients, such as Visual Basic 4.0, require Version
information or they will not host the ActiveX control. Specify version information
by choosing Project|Options and selecting the Version Info page.

• Including an About box: You can tell the wizard to generate a separate form that
implements an About box for your control. Users of the host application can
display this About box in a development environment. By default, the About box
includes the name of the ActiveX control, an image, copyright information, and an
OK button. You can modify this default form, which the wizard adds to your
project.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 41, “Working with type libraries.”

• An ActiveX implementation unit, which defines and implements the ActiveX
control, a descendant of TActiveXControl. This ActiveX control is a fully-
functioning implementation that requires no additional work on your part.
However, you can modify this class if you want to customize the properties,
methods, and events that the ActiveX control exposes to clients.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

45-6 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g a n A c t i v e X c o n t r o l b a s e d o n a V C L f o r m

Generating an ActiveX control based on a VCL form
Unlike other ActiveX controls, Active Forms are not first designed and then wrapped
by an ActiveX wrapper class. Instead, the ActiveForm wizard generates a blank form
that you design later when the wizard leaves you in the Form Designer.

When an ActiveForm is deployed on the Web, Delphi creates an HTML page to
contain the reference to the ActiveForm and specify its location on the page. The
ActiveForm can then displayed and run from a Web browser. Inside the browser, the
form behaves just like a stand-alone Delphi form. The form can contain any VCL
components or ActiveX controls, including custom-built VCL controls.

To start the ActiveForm wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveForm icon.

The Active Form wizard looks just like the ActiveX control wizard, except that you
can’t specify the name of the VCL class to wrap. This is because Active forms are
always based on TActiveForm.

As in the ActiveX control wizard, you can change the default names for the CoClass,
implementation unit, and ActiveX library project. Similarly, this wizard lets you
indicate whether you want your Active Form to require a license, whether it should
include version information, and whether you want an About box form.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 41, “Working with type libraries.”

• A form that descends from TActiveForm. This form appears in the form designer,
where you can use it to visually design the Active Form that appears to clients. Its
implementation appears in the generated implementation unit. In the initialization
section of the implementation unit, a class factory is created, setting up
TActiveFormControl as the ActiveX wrapper for this form.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

At this point, you can add controls and design the form as you like.

After you have designed and compiled the ActiveForm project into an ActiveX
library (which has the OCX extension), you can deploy the project to your Web
server and Delphi creates a test HTML page with a reference to the ActiveForm.

C r e a t i n g a n A c t i v e X c o n t r o l 45-7

L i c e n s i n g A c t i v e X c o n t r o l s

Licensing ActiveX controls
Licensing an ActiveX control consists of providing a license key at design-time and
supporting the creation of licenses dynamically for controls created at runtime.

To provide design-time licenses, the ActiveX wizard creates a key for the control,
which it stores in a file with the same name as the project with the LIC extension. This
.LIC file is added to the project. The user of the control must have a copy of the .LIC
file to open the control in a development environment. Each control in the project
that has Make Control Licensed checked has a separate key entry in the LIC file.

To support runtime licenses, the wrapper class implements two methods,
GetLicenseString and GetLicenseFilename. These return the license string for the control
and the name of the .LIC file, respectively. When a host application tries to create the
ActiveX control, the class factory for the control calls these methods and compares
the string returned by GetLicenseString with the string stored in the .LIC file.

Runtime licenses for the Internet Explorer require an extra level of indirection
because users can view HTML source code for any Web page, and because an
ActiveX control is copied to the user’s computer before it is displayed. To create
runtime licenses for controls used in Internet Explorer, you must first generate a
license package file (LPK file) and embed this file in the HTML page that contains the
control. The LPK file is essentially an array of ActiveX control CLSIDs and license
keys.

Note To generate the LPK file, use the utility, LPK_TOOL.EXE, which you can download
from the Microsoft Web site (www.microsoft.com).

To embed the LPK file in a Web page, use the HTML objects, <OBJECT> and
<PARAM> as follows:

<OBJECT CLASSID="clsid:6980CB99-f75D-84cf-B254-55CA55A69452">
 <PARAM NAME="LPKPath" VALUE="ctrllic.lpk">
</OBJECT>

The CLSID identifies the object as a license package and PARAM specifies the
relative location of the license package file with respect to the HTML page.

When Internet Explorer tries to display the Web page containing the control, it parses
the LPK file, extracts the license key, and if the license key matches the control’s
license (returned by GetLicenseString), it renders the control on the page. If more than
one LPK is included in a Web page, Internet Explorer ignores all but the first.

For more information, look for Licensing ActiveX Controls on the Microsoft Web site.

45-8 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Customizing the ActiveX control’s interface
The ActiveX Control and ActiveForm wizards generate a default interface for the
ActiveX wrapper class. This default interface simply exposes the properties,
methods, and events of the original VCL control or form, with the following
exceptions:

• Data-aware properties do not appear. Because ActiveX controls have a different
mechanism for making controls data-aware than VCL controls, the wizards do not
convert properties related to data. See “Enabling simple data binding with
the type library” on page 45-11 for information on how to make your ActiveX
control data-aware.

• Any property, method, or event that type that is not Automation-compatible does
not appear. You may want to add these to the ActiveX control’s interface after the
wizard has finished.

You can add, edit, and remove the properties, methods, and events in an ActiveX
control by editing the type library. You can use the Type Library editor as described
in Chapter 41, “Working with type libraries.”Remember that when you add events,
they should be added to the Events interface, not the ActiveX control’s default
interface.

Note You can add unpublished properties to your ActiveX control’s interface. Such
properties can be set at runtime and will appear in a development environment, but
changes made to them will not persist. That is, when the user of the control changes
the value of a property at design time, the changes are not reflected when the control
is run. If the source is a VCL object and the property is not already published, you
can make properties persistent by creating a descendant of the VCL object and
publishing the property in the descendant.

You may also choose not to expose all of the VCL control’s properties, methods, and
events to host applications. You can use the Type Library editor to remove these from
the interfaces that the wizard generated. When you remove properties and methods
from an interface using the Type Library editor, the Type Library editor does not
remove them from the corresponding implementation class. Edit the ActiveX
wrapper class in the implementation unit to remove these after you have changed the
interface in the Type Library editor.

Warning Any changes you make to the type library will be lost if you regenerate the ActiveX
control from the original VCL control or form.

Tip It is a good idea to check the methods that the wizard adds to your ActiveX wrapper
class. Not only does this give you a chance to note where the wizard omitted any
data-aware properties or methods that were not Automation-compatible, it also lets
you detect methods for which the wizard could not generate an implementation.
Such methods appear with a comment in the implementation that indicates the
problem.

C r e a t i n g a n A c t i v e X c o n t r o l 45-9

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Adding additional properties, methods, and events

You can add additional properties, methods, and events to the control using the type
library editor. The declaration is automatically added to the control’s implementation
unit, type library (TLB) file, and type library unit. The specifics of what Delphi
supplies depends on whether you have added a property or method or whether you
have added an event.

Adding properties and methods
The ActiveX wrapper class implements properties in its interface using read and
write access methods. That is, the wrapper class has COM properties, which appear
on an interface as getter and/or setter methods. Unlike VCL properties, you do not
see a “property” declaration on the interface for COM properties. Rather, you see
methods that are flagged as property access methods. When you add a property to
the ActiveX control’s default interface, the wrapper class definition (which appears in
the _TLB unit that is updated by the Type Library editor) gains one or two new
methods (a getter and/or setter) that you must implement, just as when you add a
method to the interface, the wrapper class gains a corresponding method for you to
implement. Thus, adding properties to the wrapper class’s interface is essentially the
same as adding methods: the wrapper class definition gains new skeletal method
implementations for you to complete.

Note For details on what appears in the generated _TLB unit, see “Code generated when
you import type library information” on page 42-5.

For example, consider a Caption property, of type TCaption in the underlying VCL
object. To Add this property to the object’s interface, you enter the following when
you add a property to the interface via the type library editor:

property Caption: TCaption read Get_Caption write Set_Caption;

Delphi adds the following declarations to the wrapper class:

function Get_Caption: WideString; safecall;
procedure Set_Caption(const Value: WideString); safecall;

In addition, it adds skeletal method implementations for you to complete:

function TButtonX.Get_Caption: WideString;
begin
end;

procedure TButtonX.Set_Caption(Value: WideString);
begin
end;

45-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Typically, you can implement these methods by simply delegating to the associated
VCL control, which can be accessed using the FDelphiControl member of the wrapper
class:

function TButtonX.Get_Caption: WideString;
begin
 Result := WideString(FDelphiControl.Caption);
end;

procedure TButtonX.Set_Caption(const Value: WideString);
begin
 FDelphiControl.Caption := TCaption(Value);
end;

In some cases, you may need to add code to convert the COM data types to native
Delphi types. The preceding example manages this with typecasting.

Note Because the Automation interface methods are declared safecall, you do not have to
implement COM exception code for these methods—the Delphi compiler handles
this for you by generating code around the body of safecall methods to catch Delphi
exceptions and to convert them into COM error info structures and return codes.

Adding events
The ActiveX control can fire events to its container in the same way that an
automation object fires events to clients. This mechanism is described in “Exposing
events to clients” on page 43-11.

If the VCL control you are using as the basis of your ActiveX control has any
published events, the wizards automatically add the necessary support for managing
a list of client event sinks to your ActiveX wrapper class and define the outgoing
dispinterface that clients must implement to respond to events.

You add events to this outgoing dispinterface. To add an event in the type library
editor, select the event interface and click on the method icon. Then manually add the
list of parameters you want include using the parameter page.

Next, you must declare a method in your wrapper class that is of the same type as the
event handler for the event in the underlying VCL control. This is not generated
automatically, because Delphi does not know which event handler you are using:

procedure KeyPressEvent(Sender: TObject; var Key: Char);

Implement this method to use the host application’s event sink, which is stored in the
wrapper class’s FEvents member:

procedure TButtonX.KeyPressEvent(Sender: TObject; var Key: Char);
var

TempKey: Smallint;
begin

TempKey := Smallint(Key); {cast to an OleAutomation compatible type }
if FEvents <> nil then

FEvents.OnKeyPress(TempKey)
Key := Char(TempKey);

end;

C r e a t i n g a n A c t i v e X c o n t r o l 45-11

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Note When firing events in an ActiveX control, you do not need to iterate through a list of
event sinks because the control only has a single host application. This is simpler
than the process for most Automation servers.

Finally, you must assign this event handler to the underlying VCL control, so that it
is called when the event occurs. You make this assignment in the InitializeControl
method:

procedure TButtonX.InitializeControl;
begin

FDelphiControl := Control as TButton;
FDelphiControl.OnClick := ClickEvent;
FDelphiControl.OnKeyPress := KeyPressEvent;

end;

Enabling simple data binding with the type library

With simple data binding, you can bind a property of your ActiveX control to a field
in a database. To do this, the ActiveX control must communicate with its host
application about what value represents field data and when it changes. You enable
this communication by setting the property’s binding flags using the Type Library
editor.

By marking a property bindable, when a user modifies the property (such as a field
in a database), the control notifies its container (the client host application) that the
value has changed and requests that the database record be updated. The container
interacts with the database and then notifies the control whether it succeeded or
failed to update the record.

Note The container application that hosts your ActiveX control is responsible for
connecting the data-aware properties you enable in the type library to the database.
See “Using data-aware ActiveX controls” on page 42-8 for information on how to write
such a container using Delphi.

Use the type library to enable simple data binding,

1 On the toolbar, click the property that you want to bind.

2 Choose the flags page.

45-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

3 Select the following binding attributes:

4 Click the Refresh button on the toolbar to update the type library.

To test a data-binding control, you must register it first.

For example, to convert a TEdit control into a data-bound ActiveX control, create the
ActiveX control from a TEdit and then change the Text property flags to Bindable,
Display Bindable, Default Bindable, and Immediate Bindable. After the control is
registered and imported, it can be used to display data.

Creating a property page for an ActiveX control
A property page is a dialog box similar to the Delphi Object Inspector in which users
can change the properties of an ActiveX control. A property page dialog allows you
to group many properties for a control together to be edited at once. Or, you can
provide a dialog box for more complex properties.

Typically, users access the property page by right-clicking the ActiveX control and
choosing Properties.

The process of creating a property page is similar to creating a form, you

1 Create a new property page.

2 Add controls to the property page.

3 Associate the controls on the property page with the properties of an ActiveX
control.

4 Connect the property page to the ActiveX control.

Note When adding properties to an ActiveX control or ActiveForm, you must publish the
properties that you want to persist. If they are not published in the underlying VCL
control, you must make a custom descendant of the VCL control that redeclares the
properties as published and then use the ActiveX control wizard to create an ActiveX
control from the descendant class.

Binding attribute Description

Bindable Indicates that the property supports data binding. If marked bindable, the
property notifies its container when the property value has changed.

Request Edit Indicates that the property supports the OnRequestEdit notification. This
allows the control to ask the container if its value can be edited by the user.

Display Bindable Indicates that the container can show users that this property is bindable.

Default Bindable Indicates the single, bindable property that best represents the object.
Properties that have the default bind attribute must also have the bindable
attribute. Cannot be specified on more than one property in a dispinterface.

Immediate Bindable Allows individual bindable properties on a form to specify this behavior.
When this bit is set, all changes will be notified. The bindable and request
edit attribute bits need to be set for this new bit to have an effect.

C r e a t i n g a n A c t i v e X c o n t r o l 45-13

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

Creating a new property page

You use the Property Page wizard to create a new property page.

To create a new property page,

1 Choose File|New|Other.

2 Select the ActiveX tab.

3 Double-click the Property Page icon.

The wizard creates a new form and implementation unit for the property page. The
form is a descendant of TPropertyPage, which lets you associate the form with the
ActiveX control whose properties it edits.

Adding controls to a property page

You must add a control to the property page for each property of the ActiveX control
that you want the user to access.

For example, the following illustration shows a property page for setting the
MaskEdit property of an ActiveX control.

Figure 45.1 Mask Edit property page in design mode

The list box allows the user to select from a list of sample masks. The edit controls
allow the user to test the mask before applying it to the ActiveX control. You add
controls to the property page the same as you would to a form.

Associating property page controls with ActiveX control properties

After adding the controls you need to the property page, you must associate each
control with its corresponding property. You make this association by adding code to
the property page’s UpdatePropertyPage and UpdateObject methods.

Updating the property page
Add code to the UpdatePropertyPage method to update the control on the property
page when the properties of the ActiveX control change. You must add code to the
UpdatePropertyPage method to update the property page with the current values of
the ActiveX control’s properties.

45-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

You can access the ActiveX control using the property page’s OleObject property,
which is an OleVariant that contains the ActiveX control’s interface.

For example, the following code updates the property page’s edit control
(InputMask) with the current value of the ActiveX control’s EditMask property:

procedure TPropertyPage1.UpdatePropertyPage;
begin

{ Update your controls from OleObject }
InputMask.Text := OleObject.EditMask;

end;

Note It is also possible to write a property page that represents more than one ActiveX
control. In this case, you don’t use the OleObject property. Instead, you must iterate
through a list of interfaces that is maintained by the OleObjects property.

Updating the object
Add code to the UpdateObject method to update the property when the user changes
the controls on the property page. You must add code to the UpdateObject method in
order to set the properties of the ActiveX control to their new values.

Once again you use the OleObject property to access the ActiveX control.

For example, the following code sets the EditMask property of the ActiveX control
using the value in the property page’s edit box control (InputMask):

procedure TPropertyPage1.UpdateObject;
begin

{Update OleObject from your control }
OleObject.EditMask := InputMask.Text;

end;

Connecting a property page to an ActiveX control

To connect a property page to an ActiveX control,

1 Add DefinePropertyPage with the GUID constant of the property page as the
parameter to the DefinePropertyPages method implementation in the control’s
implementation for the unit. For example,

procedure TButtonX.DefinePropertyPages(DefinePropertyPage: TDefinePropertyPage);
begin

DefinePropertyPage(Class_PropertyPage1);
end;

The GUID constant, Class_PropertyPage1, of the property page can be found in
the property pages unit.

The GUID is defined in the property page’s implementation unit; it is generated
automatically by the Property Page wizard.

2 Add the property page unit to the uses clause of the controls implementation unit.

C r e a t i n g a n A c t i v e X c o n t r o l 45-15

R e g i s t e r i n g a n A c t i v e X c o n t r o l

Registering an ActiveX control
After you have created your ActiveX control, you must register it so that other
applications can find and use it.

To register an ActiveX control, choose Run|Register ActiveX Server.

Note Before you remove an ActiveX control from your system, you should unregister it.

To unregister an ActiveX control, choose Run|Unregister ActiveX Server.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Testing an ActiveX control
To test your control, add it to a package and import it as an ActiveX control. This
procedure adds the ActiveX control to the Delphi component palette. You can drop
the control on a form and test as needed.

Your control should also be tested in all target applications that will use the control.

To debug the ActiveX control, select Run|Parameters and type the client name in the
Host Application edit box.

The parameters then apply to the host application. Selecting Run|Run will run the
host or client application and allow you to set breakpoints in the control.

Deploying an ActiveX control on the Web
Before the ActiveX controls that you create can be used by Web clients, they must be
deployed on your Web server. Every time you make a change to the ActiveX control,
you must recompile and redeploy it so that client applications can see the changes.

Before you can deploy your ActiveX control, you must have a Web Server that will
respond to client messages.

To deploy your ActiveX control, use the following steps:

1 Select Project|Web Deployment Options.

2 On the Project page, set the Target Dir to the location of the ActiveX control DLL
as a path on the Web server. This can be a local path name or a UNC path, for
example, C:\INETPUB\wwwroot.

3 Set the Target URL to the location as a Uniform Resource Locators (URL) of the
ActiveX control DLL (without the file name) on your Web Server, for example,
http://mymachine.borland.com/. See the documentation for your Web Server for
more information on how to do this.

45-16 D e v e l o p e r ’ s G u i d e

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

4 Set the HTML Dir to the location (as a path) where the HTML file that contains a
reference to the ActiveX control should be placed, for example, C:\INETPUB\
wwwroot. This path can be a standard path name or a UNC path.

5 Set desired Web deployment options as described in “Setting options” on
page 45-16.

6 Choose OK.

7 Choose Project|Web Deploy.

This creates a deployment code base that contains the ActiveX control in an
ActiveX library (with the OCX extension). Depending on the options you specify,
this deployment code base can also contain a cabinet (with the CAB extension) or
information (with the INF extension).

The ActiveX library is placed in the Target Directory you specified in step 2. The
HTML file has the same name as the project file but with the HTM extension. It is
created in the HTML Directory specified in step 4. The HTML file contains a URL
reference to the ActiveX library at the location specified in step 3.

Note If you want to put these files on your Web server, use an external utility such
as ftp.

8 Invoke your ActiveX-enabled Web browser and view the created HTML page.

When this HTML page is viewed in the Web browser, your form or control is
displayed and runs as an embedded application within the browser. That is, the
library runs in the same process as the browser application.

Setting options

Before deploying an ActiveX control, specify the Web deployment options that
should be followed when creating the ActiveX library.

Web deployment options include settings to allow you to set the following:

• Including additional files: If your ActiveX control depends on any packages or
other additional files, you can indicate that these should be deployed with the
project. By default, these files use the same options that you specify for the entire
project, but you can override these settings using the Packages or Additional files
tab. When you include packages or additional files, Delphi creates a file with the
.INF extension (for INFormation). This file specifies the various files that need to
be downloaded and set up for the ActiveX library to run. The syntax of the INF file
allows URLs pointing to packages or additional files to download.

C r e a t i n g a n A c t i v e X c o n t r o l 45-17

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

• CAB file compression: A cabinet is a single file, usually with a CAB file extension,
that stores compressed files in a file library. Cabinet compression can dramatically
decrease download time (up to 70%) of a file. During installation, the browser
decompresses the files stored in a cabinet and copies them to the user’s system.
Each file that you deploy can be CAB file compressed. You can specify that the
ActiveX library use CAB file compression on the Project tab of the Web
Deployment options dialog.

• Version information: You can specify that you want version information included
with your ActiveX control. This information is set in the VersionInfo page of the
Project Options dialog. Part of this information is the release number, which you
can have automatically updated every time you deploy your ActiveX control. If
you include additional packages or files, their Version information resources can
get added to the INF file as well.

Depending on whether you include additional files and whether you use CAB file
compression, the resulting ActiveX library may be an OCX file, a CAB file containing
an OCX file, or an INF file. The following table summarizes the results of choosing
different combinations.

Packages and/or
additional files

CAB file
compression Result

No No An ActiveX library (OCX) file.

No Yes A CAB file containing an ActiveX library file.

Yes No An INF file, an ActiveX library file, and any additional files
and packages.

Yes Yes An INF file, a CAB file containing an ActiveX library, and a
CAB file each for any additional files and packages.

45-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g M T S o r C O M + o b j e c t s 46-1

C h a p t e r

46
Chapter46Creating MTS or COM+ objects

Delphi uses the term transactional objects to refer to objects that take advantage of
the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment. They are not available for use in cross-platform
applications due to their dependence on Windows-specific technology.

Delphi provides a wizard that creates transactional objects so that you can take
advantage of the benefits of COM+ attributes or the MTS environment. These
features make creating COM clients and servers, particularly remote servers, easier
to implement.

Note For database applications, Delphi also provides a Transactional Data Module. For
more information, see Chapter 31, “Creating multi-tiered applications.”

Transactional objects make use of a number of low-level services, such as

• Managing system resources, including processes, threads, and database
connections so that your server application can handle many simultaneous users

• Automatically initiating and controlling transactions so that your application is
reliable.

• Creating, executing, and deleting server components when needed.

• Providing role-based security so that only authorized users can access your
application.

• Managing events so that clients can respond to conditions that arise on the server
(COM+ only).

46-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t r a n s a c t i o n a l o b j e c t s

By letting MTS or COM+ provide these underlying services, you can concentrate on
developing the specifics for your particular distributed application. Which
technology you choose (MTS or COM+) depends on the server on which you choose
to run your application. To clients, the difference between the two (or, for that matter,
the fact that the server object uses any of these services) is transparent (unless the
client explicitly manipulates transactional services via a special interface).

Understanding transactional objects
Typically, transactional objects are small, and are used for discrete business
functions. They can implement an application’s business rules, providing views and
transformations of the application state. Consider, for example, the case of a medical
application. Medical records stored in various databases represent the persistent
state of the application, such as a patient’s health history. Transactional objects
update that state to reflect such changes as new patients, test results, and X-ray files.

Transactional objects are distinguished from other COM objects in that they use a set
of attributes supplied by MTS or COM+ for handling issues that arise in a distributed
computing environment. Some of these attributes require the transactional object to
implement the IObjectControl interface. IObjectControl defines methods that are called
when the object is activated or deactivated, where you can manage resources such as
database connections. It also is required for object pooling, which is described in
“Object pooling” on page 46-8.

Note If you are using MTS, your transactional objects must implement IObjectControl.
Under COM+, IObjectControl is not required, but is highly recommended. The
Transactional Object wizard provides an object that derives from IObjectControl.

A client of a transactional object is called a base client. From a base client’s
perspective, a transactional object looks like any other COM object.

Under MTS, the transactional object must be built into a library (DLL), which is then
installed in the MTS runtime environment (the MTS executive, mtxex.exe). That is,
the server object runs in the MTS runtime process space. The MTS executive can be
running in the same process as the base client, as a separate process on the same
machine as the base client, or as a remote server process on a separate machine.

Under COM+, the server application need not be an in-process server. Because the
various services are integrated into the COM libraries, there is no need for a separate
MTS process to intercept calls to the server. Instead, COM itself (or, rather, COM+)
provides the resource management, transaction support, and so on. However, the
server application must still be installed, this time into a COM+ application.

The connection between the base client and the transactional object is handled by a
proxy on the client and a stub on the server, just as with any out-of-process server.
Connection information is maintained by the proxy. The connection between the
base client and proxy remains open as long as the client requires a connection to the
server, so it appears to the client that it has continued access to the server. In reality,
though, the proxy may deactivate and reactivate the object, conserving resources so
that other clients may use the connection. For details on activating and deactivating,
see “Just-in-time activation” on page 46-4.

C r e a t i n g M T S o r C O M + o b j e c t s 46-3

M a n a g i n g r e s o u r c e s

Requirements for a transactional object

In addition to the COM requirements, a transactional object must meet the following
requirements:

• The object must have a standard class factory. This is automatically supplied by
the wizard when you create the object.

• The server must expose its class object by exporting the standard DllGetClassObject
method. Code to do this is supplied by the wizard.

• All object interfaces and CoClasses must be described by a type library, which is
created automatically by the wizard. You can add methods and properties to
interfaces in the type library by using the Type Library editor. The information in
the type library is used by the MTS Explorer or COM+ Component Manager to
extract information about the installed components at runtime.

• The server must only export interfaces that use standard COM marshaling. This is
automatically supplied by the Transactional Object wizard. Delphi’s support of
transactional objects does not allow manual marshaling for custom interfaces. All
interfaces must be implemented as dual interfaces that use COM’s automatic
marshaling support.

• The server must export the DllRegisterServer function and perform self-registration
of its CLSID, ProgID, interfaces, and type library in this routine. This is provided
by the Transactional Object wizard.

When using MTS rather than COM+, the following conditions apply as well:

• MTS requires that the server be a dynamic-link library (DLL). Servers that are
implemented as executable files (.EXE files) cannot execute in the MTS runtime
environment.

• The object must implement the IObjectControl interface. Support for this interface
is automatically added by the Transactional Object wizard.

• A server running in the MTS process space cannot aggregate with COM objects
not running in MTS.

Managing resources
Transactional objects can be administered to better manage the resources used by
your application. These resources include everything from the memory for the object
instances themselves to any resources they use (such as database connections).

In general, you configure how your application manages resources by the way you
install and configure your object. You set your transactional object so that it takes
advantage of the following:

• Just-in-time activation
• Resource pooling
• Object pooling (COM+ only)

46-4 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

If you want your object to take full advantage of these services, however, it must use
the IObjectContext interface to indicate when resources can safely be released.

Accessing the object context

As with any COM object, a transactional object must be created before it is used.
COM clients create an object by calling the COM library function, CoCreateInstance.

Each transactional object must have a corresponding context object. This context
object is implemented automatically by MTS or COM+ and is used to manage the
transactional object. The context object’s interface is IObjectContext. To access most
methods of the object context, you can use the ObjectContext property of the
TMtsAutoObject object. For example, you can use the ObjectContext property as
follows:

if ObjectContext.IsCallerInRole (‘Manager’) ...

Another way to access the Object context is to use methods in the TMtsAutoObject
object:

if IsCallerInRole (‘Manager’) ...

You can use either of the above methods. However, there is a slight advantage of
using the TMtsAutoObject methods rather than referencing the ObjectContext
property when you are testing your application. For a discussion of the differences,
see “Debugging and testing transactional objects” on page 46-25.

Just-in-time activation

The ability for an object to be deactivated and reactivated while clients hold
references to it is called just-in-time activation. From the client's perspective, only a
single instance of the object exists from the time the client creates it to the time it is
finally released. Actually, it is possible that the object has been deactivated and
reactivated many times. By having objects deactivated, clients can hold references to
the object for an extended time without affecting system resources. When an object is
deactivated, all its resources can be released. For example, when an object is
deactivated, it can release its database connection so that other objects can use it.

A transactional object is created in a deactivated state and becomes active upon
receiving a client request. When the transactional object is created, a corresponding
context object is also created. This context object exists for the entire lifetime of the
transactional object, across one or more reactivation cycles. The context object,
accessed by the IObjectContext interface, keeps track of the object during deactivation
and coordinates transactions.

C r e a t i n g M T S o r C O M + o b j e c t s 46-5

M a n a g i n g r e s o u r c e s

Transactional objects are deactivated as soon as it is safe to do so. This is called as-
soon-as-possible deactivation. A transactional object is deactivated when any of the
following occurs:

• The object requests deactivation with SetComplete or SetAbort: An object calls
the IObjectContext SetComplete method when it has successfully completed its work
and it does not need to save the internal object state for the next call from the
client. An object calls SetAbort to indicate that it cannot successfully complete its
work and its object state does not need to be saved. That is, the object’s state rolls
back to the state prior to the current transaction. Often, objects can be designed to
be stateless, which means that objects deactivate upon return from every method.

• A transaction is committed or aborted: When an object's transaction is committed
or aborted, the object is deactivated. Of these deactivated objects, the only ones
that continue to exist are the ones that have references from clients outside the
transaction. Subsequent calls to these objects reactivate them and cause them to
execute in a new transaction.

• The last client releases the object: Of course, when a client releases the object, the
object is deactivated, and the object context is also released.

Note If you install the transactional object under COM+ from the IDE, you can specify
whether object supports just-in-time activation using the COM+ page of the Type
Library editor. Just select the object (CoClass) in the Type Library editor, go to the
COM+ page, and check or uncheck the box for Just In Time Activation. Otherwise, a
system administrator specifies this attribute using the COM+ Component Manager
or MTS Explorer. (The system administrator can also override any settings you
specify using the Type Library editor.)

Resource pooling

Since idle system resources are freed during a deactivation, the freed resources are
available to other server objects. For example, a database connection that is no longer
used by a server object can be reused by another client. This is called resource
pooling. Pooled resources are managed by a resource dispenser.

A resource dispenser caches resources, so that transactional objects that are installed
together can share them. The resource dispenser also manages nondurable shared
state information. In this way, resource dispensers are similar to resource managers
such as the SQL Server, but without the guarantee of durability.

When writing your transactional object, you can take advantage of two types of
resource dispenser that are provided for you already:

• Database resource dispensers
• Shared Property Manager

Before other objects can use pooled resources, you must explicitly release them.

46-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

Database resource dispensers
Opening and closing connections to a database can be time-consuming. By using a
resource dispenser to pool database connections, your object can reuse existing
database connections rather than create new ones. For example, if you have a
database lookup and a database update component running in a customer
maintenance application, you can install those components together, and then they
can share database connections. In this way, your application does not need as many
connections and new object instances can access the data more quickly by using a
connection that is already open but not in use.

• If you are using BDE components to connect to your data, the resource dispenser
is the Borland Database Engine (BDE). This resource dispenser is only available
when your transactional object is installed with MTS. To enable the resource
dispenser, use the BDE administrator to turn on MTS POOLING in the System/
Init area of the configuration.

• If you are using the ADO database components to connect to your data, the
resource dispenser is provided by ADO.

Note There is no built-in resource pooling if you are using InterbaseExpress components
for your database access.

For remote transactional data modules, connections are automatically enlisted on an
object's transactions, and the resource dispenser can automatically reclaim and reuse
connections.

Shared property manager
The Shared Property Manager is a resource dispenser that you can use to share state
among multiple objects within a server process. By using the Shared Property
Manager, you avoid having to add a lot of code to your application for managing
shared data: the Shared Property Manager handles it for you by implementing locks
and semaphores to protect shared properties from simultaneous access. The Shared
Property Manager eliminates name collisions by providing shared property groups,
which establish unique name spaces for the shared properties they contain.

To use the Shared Property Manager resource, you first use the
CreateSharedPropertyGroup helper function to create a shared property group. Then
you can write all the properties to that group and read all the properties from that
group. By using a shared property group, the state information is saved across all
deactivations of a transactional object. In addition, state information can be shared
among all transactional objects installed in the same MTS package or COM+
application. You can install transactional objects into a package as described in
“Installing transactional objects” on page 46-26.

For objects to share state, they all must run in the same process. If you want instances
of different components to share properties, you must install them in the same MTS
package or COM+ application. Because there is a risk that administrators may move
components from one package to another, it's safest to limit the use of a shared
property group to instances of objects that are defined in the same DLL or EXE.

C r e a t i n g M T S o r C O M + o b j e c t s 46-7

M a n a g i n g r e s o u r c e s

Objects sharing properties must have the same activation attribute. If two
components in the same package have different activation attributes, they generally
won't be able to share properties. For example, if one component is configured to run
in a client's process and the other is configured to run in a server process, their objects
will usually run in different processes, even though they're in the same MTS package
or COM+ application.

The following example shows how to add code to support the Shared Property
Manager in a transactional object:

Example: Sharing properties among transactional object instances
This example creates a property group called MyGroup to contain the properties to
be shared among objects and object instances. In this example, there is a Counter
property that is shared. It uses the CreateSharedPropertyGroup helper function to
create the property group manager and property group, and then uses the
CreateProperty method of the Group object to create a property called Counter.

To get the value of a property, you use the PropertyByName method of the Group
object as shown below. You can also use the PropertyByPosition method.

unit Unit1;
interface
uses
 MtsObj, Mtx, ComObj, Project2_TLB;
type
 Tfoobar = class(TMtsAutoObject, Ifoobar)
 private
 Group: ISharedPropertyGroup;
 protected
 procedure OnActivate; override;
 procedure OnDeactivate; override;
 procedure IncCounter;
 end;
implementation
uses ComServ;
{ Tfoobar }
procedure Tfoobar.OnActivate;
var
 Exists: WordBool;
 Counter: ISharedProperty;
begin
 Group := CreateSharedPropertyGroup('MyGroup');
 Counter := Group.CreateProperty('Counter', Exists);
end;
procedure Tfoobar.IncCounter;
var
 Counter: ISharedProperty;
begin
 Counter := Group.PropertyByName['Counter'];
 Counter.Value := Counter.Value + 1;
end;

46-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

procedure Tfoobar.OnDeactivate;
begin
 Group := nil;
end;
initialization
 TAutoObjectFactory.Create(ComServer, Tfoobar, Class_foobar, ciMultiInstance, tmApartment);
end.

Releasing resources
You are responsible for releasing resources of an object. Typically, you do this by
calling the IObjectContext methods SetComplete and SetAbort after servicing a client
request. These methods release the resources allocated by the resource dispenser.

At this same time, you must release references to all other resources, including
references to other objects (including transactional objects and context objects) and
memory held by any instances of the component (freeing the component).

The only time you would not include these calls is if you want to maintain state
between client calls. For details, see “Stateful and stateless objects” on page 46-11.

Object pooling

Just as you can pool resources, under COM+ you can also pool objects. When an
object is deactivated, COM+ calls the IObjectControl interface method, CanBePooled,
which indicates that the object can be pooled for reuse. If CanBePooled is returns True,
then instead of being destroyed on deactivation, the object is moved to the object
pool. It remains in the object pool for a specified time-out period, during which time
it is available for use to any client requesting it. Only when the object pool is empty is
a new instance of the object created. Objects that return False or that do not support
the IObjectControl interface are destroyed when they are deactivated.

Note To take advantage of object pooling, you must use the “Both” threading model. For
information on threading models, see “Choosing a threading model for a
transactional object” on page 46-17.

Object pooling is not available under MTS. MTS calls CanBePooled as described, but
no pooling takes place. If your object will only run under COM+ and you want to
allow object pooling, set the object’s Pooled property to True.

Even if an object’s CanBePooled method returns True, it can be configured so that
COM+ does not move it to the object pool. If you install the transactional object
under COM+ from the IDE, you can specify whether COM+ tries to pool the object
using the COM+ page of the Type Library editor. Just select the object (CoClass) in
the type library editor, go to the COM+ page, and check or uncheck the box for
Object Pooling. Otherwise, a system administrator specifies this attribute using the
COM+ Component Manager or MTS Explorer.

C r e a t i n g M T S o r C O M + o b j e c t s 46-9

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Similarly, you can configure the time a deactivated object remains in the object pool
before it is freed If you are installing from the IDE, you can specify this duration
using the Creation TimeOut setting on the COM+ page of the type library editor.
Otherwise, a system administrator specifies this attribute using the COM+
Component Manager.

MTS and COM+ transaction support
The transaction support that gives transactional objects their name lets you group
actions into transactions. For example, in a medical records application, if you had a
Transfer component to transfer records from one physician to another, you could
include your Add and Delete methods in the same transaction. That way, either the
entire Transfer works or it can be rolled back to its previous state. Transactions
simplify error recovery for applications that must access multiple databases.

Transactions ensure that

• All updates in a single transaction are either committed or get aborted and rolled
back to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial and uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation. Resource managers use transaction-based synchronization protocols to
isolate the uncommitted work of active transactions.

• Committed updates to managed resources (such as database records) survive
failures, including communication failures, process failures, and server system
failures. This is referred to as durability. Transactional logging allows you to
recover the durable state after disk media failures.

An object's associated context object indicates whether the object is executing within
a transaction and, if so, the identity of the transaction. When an object is part of a
transaction, the services that resource managers and resource dispensers perform on
its behalf execute under the transaction as well. Resource dispensers use the context
object to provide transaction-based services. For example, when an object executing
within a transaction allocates a database connection by using the ADO or BDE
resource dispenser, the connection is automatically enlisted on the transaction. All
database updates using this connection become part of the transaction, and are either
committed or aborted.

46-10 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Work from multiple objects can be composed into a single transaction. Allowing an
object to either live in its own transaction or be part of a larger group of objects that
belong to a single transaction is a major advantage of MTS and COM+. It allows an
object to be used in various ways, so that application developers can reuse
application code in different applications without rewriting the application logic. In
fact, developers can determine how objects are used in transactions when installing
the transactional object. They can change the transaction behavior simply by adding
an object to a different MTS package or COM+ application. For details about
installing transactional objects, see “Installing transactional objects” on page 46-26.

Transaction attributes

Every transactional object has a transaction attribute that is recorded in the MTS
catalog or that is registered with COM+.

Delphi lets you set the transaction attribute at design time using the Transactional
Object wizard or the Type Library editor.

Each transaction attribute can be set to these settings:

Requires a
transaction

Objects must execute within the scope of a transaction. When a new
object is created, its object context inherits the transaction from
the context of the client. If the client does not have a transaction
context, a new one is automatically created.

Requires a new
transaction

Objects must execute within their own transactions. When a new
object is created, a new transaction is automatically created for
the object, regardless of whether its client has a transaction. An
object never runs inside the scope of its client's transaction.
Instead, the system always creates independent transactions for
the new objects.

Supports
transactions

Objects can execute within the scope of their client's transactions.
When a new object is created, its object context inherits the
transaction from the context of the client. This enables multiple
objects to be composed in a single transaction. If the client does
not have a transaction, the new context is also created without
one.

Transactions
Ignored

Objects do not run within the scope of transactions. When a new
object is created, its object context is created without a
transaction, regardless of whether the client has a transaction.
This setting is only available under COM+.

Does not support
transactions

The meaning of this setting varies, depending on whether you
install the object under MTS or COM+. Under MTS, this setting
has the same meaning as Transactions Ignored under COM+.
Under COM+, not only is the object context created without a
transaction, this setting prevents the object from being activated if
the client has a transaction.

C r e a t i n g M T S o r C O M + o b j e c t s 46-11

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Setting the transaction attribute
You can set a transaction attribute when you first create a transactional object using
the Transactional Object wizard.

You can also set (or change) the transaction attribute using the Type Library editor.
To change the transaction attribute in the Type Library editor,

1 Choose View|Type Library to open the Type Library editor.

2 Select the class corresponding to the transactional object.

3 Click the COM+ tab and choose the desired transaction attribute.

Warning When you set the transaction attribute, Delphi inserts a special GUID for the
specified attribute as custom data in the type library. This value is not recognized
outside of Delphi. Therefore, it only has an effect if you install the transactional object
from the IDE. Otherwise, a system administrator must set this value using the MTS
Explorer or COM+ Component Manager.

Note: If the transactional object is already installed, you must first uninstall the object and
reinstall it when changing the transaction attribute. Use Run|Install MTS objects or
Run|Install COM+ objects to do so.

Stateful and stateless objects

Like any COM object, transactional objects can maintain internal state across multiple
interactions with a client. For example, the client could set a property value in one
call, and expect that property value to remain unchanged when it makes the next call.
Such an object is said to be stateful. Transactional objects can also be stateless, which
means the object does not hold any intermediate state while waiting for the next call
from a client.

When a transaction is committed or aborted, all objects that are involved in the
transaction are deactivated, causing them to lose any state they acquired during the
course of the transaction. This helps ensure transaction isolation and database
consistency; it also frees server resources for use in other transactions. Completing a
transaction enables the resources held by an object to be reclaimed when the object is
deactivated. See the following section for information on how to control when the
object’s state is released.

Maintaining state on an object requires the object to remain activated, holding
potentially valuable resources such as database connections.

46-12 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Influencing how transactions end

A transactional object uses the IObjectContext methods as shown in the following
table to influence how a transaction completes. These methods, together with the
object’s transaction attribute, allow you to enlist one or more objects into a single
transaction.

Initiating transactions

Transactions can be controlled in three ways:

• They can be controlled by the client.

Clients can have direct control over transactions by using a transaction context
object (using the ITransactionContext interface).

• They can be controlled by the server.

Servers can control transactions explicitly creating an object context for them.
When the server creates an object this way, the created object is automatically
enlisted in the current transaction.

Table 46.1 IObjectContext methods for transaction support

Method Description

SetComplete Indicates that the object has successfully completed its work for the transaction.
The object is deactivated upon return from the method that first entered the
context. The object reactivates on the next call that requires object execution.

SetAbort Indicates that the object's work can never be committed and the transaction
should be rolled back. The object is deactivated upon return from the method
that first entered the context. The object reactivates on the next call that requires
object execution.

EnableCommit Indicates that the object's work is not necessarily done, but that its transactional
updates can be committed in their current form. Use this to retain state across
multiple calls from a client while still allowing transactions to complete. The
object is not deactivated until it calls SetComplete or SetAbort.
EnableCommit is the default state when an object is activated. This is why an
object should always call SetComplete or SetAbort before returning from a method,
unless you want the object to maintain its internal state for the next call from a
client.

DisableCommit Indicates that the object's work is inconsistent and that it cannot complete its
work until it receives further method invocations from the client. Call this
before returning control to the client to maintain state across multiple client
calls while keeping the current transaction active.
DisableCommit prevents the object from deactivating and releasing its
resources on return from a method call. Once an object has called
DisableCommit, if a client attempts to commit the transaction before the object
has called EnableCommit or SetComplete, the transaction will abort.

C r e a t i n g M T S o r C O M + o b j e c t s 46-13

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

• Transactions can occur automatically as a result of the object’s transaction
attribute.

Transactional objects can be declared so that their objects always execute within a
transaction, regardless of how the objects are created. This way, objects do not
need to include any logic to handle transactions. This feature also reduces the
burden on client applications. Clients do not need to initiate a transaction simply
because the component that they are using requires it.

Setting up a transaction object on the client side
A client-based application can control transaction context through the
ITransactionContextEx interface. The following code example shows how a client
application uses CreateTransactionContextEx to create the transaction context. This
method returns an interface to this object.

This example wraps the call to the transaction context in a call to OleCheck which is
necessary because the methods of IObjectContext are exposed by Windows directly
and are therefore not declared as safecall.

procedure TForm1.MoveMoneyClick(Sender: TObject);
begin
 Transfer(CLASS_AccountA, CLASS_AccountB, 100);
end;
procedure TForm1.Transfer(DebitAccountId, CreditAccountId: TGuid; Amount: Currency);
var
 TransactionContextEx: ITransactionContextEx;
 CreditAccountIntf, DebitAccountIntf: IAccount;
begin
 TransactionContextEx := CreateTransactionContextEx;
 try
 OleCheck(TransactionContextEx.CreateInstance(DebitAccountId,
 IAccount, DebitAccountIntf));
 OleCheck(TransactionContextEx.CreateInstance(CreditAccountId,
 IAccount, CreditAccountIntf));
 DebitAccountIntf.Debit(Amount);
 CreditAccountIntf.Credit(Amount);
 except
 TransactionContextEx.Abort;
 raise;
 end;
 TransactionContextEx.Commit;
end;

46-14 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Setting up a transaction object on the server side
To control transaction context from the server side, you create an instance of
ObjectContext. In the following example, the Transfer method is in the transactional
object. In using ObjectContext this way, the instance of the object we are creating will
inherit all the transaction attributes of the object that creates it.We wrap the call in a
call to OleCheck because the methods of IObjectContext are exposed by Windows
directly and are therefore not declared as safecall.

procedure TAccountTransfer.Transfer(DebitAccountId, CreditAccountId: TGuid;
 Amount: Currency);
var
 CreditAccountIntf, DebitAccountIntf: IAccount;
begin
 try
 OleCheck(ObjectContext.CreateInstance(DebitAccountId,
 IAccount, DebitAccountIntf));
 OleCheck(ObjectContext.CreateInstance(CreditAccountId,
 IAccount, CreditAccountIntf));
 DebitAccountIntf.Debit(Amount);
 CreditAccountIntf.Credit(Amount);
 except
 DisableCommit;
 raise;
 end;
 EnableCommit;
end;

Transaction time-out

The transaction time-out sets how long (in seconds) a transaction can remain active.
The system automatically aborts transactions that are still alive after the time-out. By
default, the time-out value is 60 seconds. You can disable transaction time-outs by
specifying a value of 0, which is useful when debugging transactional objects.

To set the time-out value on your computer,

1 In the MTS Explorer or COM+ Component Manager, select Computer, My
Computer.

By default, My Computer corresponds to the local computer.

2 Right-click and choose Properties and then choose the Options tab.

The Options tab is used to set the computer's transaction time-out property.

3 Change the time-out value to 0 to disable transaction time-outs.

4 Click OK to save the setting.

For more information on debugging MTS applications, see “Debugging and testing
transactional objects” on page 46-25.

C r e a t i n g M T S o r C O M + o b j e c t s 46-15

R o l e - b a s e d s e c u r i t y

Role-based security
MTS and COM+ provide role-based security where you assign a role to a logical
group of users. For example, a medical information application might define roles for
Physician, X-ray technician, and Patient.

You define authorization for each object and interface by assigning roles. For
example, in the physicians’ medical application, only the Physician may be
authorized to view all medical records; the X-ray Technician may view only X-rays;
and Patients may view only their own medical record.

Typically, you define roles during application development and assign roles for each
MTS package or COM+ Application. These roles are then assigned to specific users
when the application is deployed. Administrators can configure the roles using the
MTS Explorer or COM+ Component Manager.

If you want to control access to blocks of code rather than entire objects, you can
provide more fine-grained security by using the IObjectContext method,
IsCallerInRole. This method only works if security is enabled, which can be checked
by calling the IObjectContext method IsSecurityEnabled. These methods are
automatically added as methods to your transactional object. For example,

if IsSecurityEnabled then {check if security is enabled }
begin

if IsCallerInRole(‘Physician’) then { check caller’s role }
begin

{ execute the call normally }
end
else

{ not a physician, do something appropriate }
end

end
else

{ no security enabled, do something appropriate }
end;

Note For applications that require stronger security, context objects implement the
ISecurityProperty interface, whose methods allow retrieval of the Window’s security
identifier (SID) for the direct caller and creator of the object, as well as the SID for the
clients which are using the object.

Overview of creating transactional objects
The process of creating transactional object is as follows:

1 Use the Transactional Object wizard to create the transactional object.

2 Add methods and properties to the object’s interface using the Type Library
editor. For details on adding methods and properties using the Type Library editor,
see Chapter 41, “Working with type libraries.”

46-16 D e v e l o p e r ’ s G u i d e

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

3 When implementing your object’s methods, you can use the IObjectContext
interface to manage transactions, persistent state, and security. In addition, if you
are passing object references, you will need to use extra care so that they are
correctly handled. (See “Passing object references” on page 23.)

4 Debug and test the transactional object.

5 Install the transactional object into an MTS package or COM+ application.

6 Administer your objects using the MTS Explorer or COM+ Component Manager.

Using the Transactional Object wizard
Use the Transactional Object wizard to create a COM object that can take advantage
of the resource management, transaction processing, and role-based security
provided by MTS or COM+.

To bring up the Transactional Object wizard,

1 Choose File|New|Other.

2 Select the tab labeled ActiveX.

3 Double-click the Transactional Object icon.

In the wizard, you must specify the following:

• A threading model that indicates how client applications can call your object’s
interface. The threading model determines how the object is registered. You are
responsible for ensuring that the object’s implementation adheres to the selected
model. For more information on threading models, see “Choosing a threading
model for a transactional object” on page 46-17.

• A transaction model

• An indication of whether your object notifies clients of events. Event support is
only provided for traditional events, not COM+ events.

When you complete this procedure, a new unit is added to the current project that
contains the definition for the transactional object. In addition, the wizard adds a
type library to the project and opens it in the Type Library editor. Now you can
expose the properties and methods of the interface through the type library. You
define the interface as you would define any COM object as described in “Defining a
COM object’s interface” on page 43-9.

The transactional object implements a dual interface, which supports both early
(compile-time) binding through the vtable and late (runtime) binding through the
IDispatch interface.

The generated transactional object implements the IObjectControl interface methods,
Activate, Deactivate, and CanBePooled.

C r e a t i n g M T S o r C O M + o b j e c t s 46-17

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

It is not strictly necessary to use the transactional object wizard. You can convert any
Automation object into a COM+ transactional object (and any in-process Automation
object into an MTS transactional object) by using the COM+ page of the Type Library
editor and then installing the object into an MTS package or COM+ application.
However, the transactional object wizard provides certain benefits:

• It automatically implements the IObjectControl interface, adding OnActivate and
OnDeactivate events to the object so that you can create event handlers that
respond when the object is activated or deactivated.

• It automatically generates an ObjectContext property so that it is easy for your
object to access the IObjectContext methods to control activation and transactions.

Choosing a threading model for a transactional object

The MTS runtime environment or COM+ manages threads for you. Transactional
objects should not create threads. They must also never terminate a thread that calls
into a DLL.

When you specify the threading model using the Transactional object wizard, you
specify how objects are assigned to threads for method execution.

Table 46.2 Threading models for transactional objects

Threading model Description Implementation pros and cons

Single No thread support. Client requests
are serialized by the calling
mechanism.
All objects of a single-threaded
component execute on the main
thread.
This is compatible with the default
COM threading model, which is
used for components that do not
have a Threading Model Registry
attribute or for COM components
that are not reentrant. Method
execution is serialized across all
objects in the component and
across all components in a process.

 Allows components to use libraries
that are not reentrant.
Very limited scalability.
Single-threaded, stateful components
are prone to deadlocks. You can
eliminate this problem by using
stateless objects and calling
SetComplete before returning from
any method.

Apartment
(or Single-threaded
apartment)

Each object is assigned to a thread
apartment, which lasts for the life
of the object; however, multiple
threads can be used for multiple
objects. This is a standard COM
concurrency model. Each
apartment is tied to a specific
thread and has a Windows
message pump.

Provides significant concurrency
improvements over the single
threading model.
Two objects can execute concurrently
as long as they are not in the same
activity.
Similar to a COM apartment, except
that the objects can be distributed
across multiple processes.

Both Same as Apartment, except that
callbacks to clients are serialized.

Same advantages as Apartment. In
addition, this model is required if
you want to use Object Pooling.

46-18 D e v e l o p e r ’ s G u i d e

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

Note These threading models are similar to those defined by COM objects. However,
because the MTS and COM+ provide more underlying support for threads, the
meaning of each threading model differs here. Also, the free threading model does
not apply to transactional objects due to the built-in support for activities.

Activities
In addition to the threading model, transactional objects achieve concurrency
through activities. Activities are recorded in an object’s context, and the association
between an object and an activity cannot be changed. An activity includes the
transactional object created by the base client, as well as any transactional objects
created by that object and its descendants. These objects can be distributed across one
or more processes, executing on one or more computers.

For example, a physician’s medical application may have a transactional object to
add updates and remove records to various medical databases, each represented by a
different object. This record object may use other objects as well, such as a receipt
object to record the transaction. This results in several transactional objects that are
either directly or indirectly under the control of a base client. These objects all belong
to the same activity.

MTS or COM+ tracks the flow of execution through each activity, preventing
inadvertent parallelism from corrupting the application state. This feature results in a
single logical thread of execution throughout a potentially distributed collection of
objects. By having one logical thread, applications are significantly easier to write.

When a transactional object is created from an existing context, using either a
transaction context object or an object context, the new object becomes a member of
the same activity. In other words, the new context inherits the activity identifier of
the context used to create it.

Only a single logical thread of execution is allowed within an activity. This is similar
in behavior to a COM apartment threading model, except that the objects can be
distributed across multiple processes. When a base client calls into an activity, all
other requests for work in the activity (such as from another client thread) are
blocked until after the initial thread of execution returns back to the client.

C r e a t i n g M T S o r C O M + o b j e c t s 46-19

G e n e r a t i n g e v e n t s u n d e r C O M +

Under MTS, every transactional object belongs to one activity. Under COM+, you can
configure the way the object participates in activities by setting the call
synchronization. The following options are available:

Generating events under COM+
Many COM-based technologies, such as the ActiveX scripting engine and ActiveX
controls, use event sinks and COM's connection point interfaces to generate events.
Event sinks and connection points are examples of a tightly coupled event model. In
such a model, applications that generate events (called publishers in COM+
terminology, and sinks in previous COM terminology) are aware of those
applications that respond to events (called subscribers), and vice versa. The lifetime
of publishers and subscribers coincides; they must be active at the same time. The
collection of subscribers, and the mechanism that notifies them when events occur,
must be maintained and implemented in the publisher.

COM+ introduces a new system for managing events. Instead of burdening each
publisher with the management and notification of each subscriber, the underlying
system (COM+) steps in and takes over this process. The COM+ Events model is
loosely coupled, allowing publishers and subscribers to be developed, deployed, and
activated independently of each other.

Table 46.3 Call synchronization options

Option Meaning

Disabled COM+ does not assign activities to the object but it may inherit them with the
caller’s context. If the caller has no transaction or object context, the object is not
assigned to an activity. The result is the same as if the object was not installed in
a COM+ application. This option should not be used if any object in the
application uses a resource manager or if the object supports transactions or just-
in-time activation.

Not Supported COM+ never assigns the object to an activity, regardless of the status of its caller.
This option should not be used if any object in the application uses a resource
manager or if the object supports transactions or just-in-time activation.

Supported COM+ assigns the object to the same activity as its caller. If the caller does not
belong to an activity, the object does not either. This option should not be used if
any object in the application uses a resource manager or if the object supports
transactions or just-in-time activation.

Required COM+ always assigns the object to an activity, creating one if necessary. This
option must be used if the transaction attribute is Supported or Required.

Requires New COM+ always assigns the object to a new activity, which is distinct from its
caller’s.

46-20 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

Although the COM+ event model greatly simplifies communication between
publishers and subscribers, it also introduces some additional administrative tasks to
manage the new layer of software that now exists between them. Information on
events and subscribers is maintained in a part of the COM+ Catalog known as the
event store. Tools such as the Component Services manager are used to perform
these administrative tasks. The Component Services tool is completely scriptable,
allowing much of the administration to be automated. For example, an installation
script can perform these tasks during its execution. In addition, the event store can be
administered programmatically using the TComAdminCatalog object. The COM+
components can also be installed directly from Delphi, by selecting Run|Install
COM+ objects.

As with the tightly coupled event model, an event is simply a method in an interface.
Therefore, you must first create an interface for your event methods. You can use
Delphi’s COM+ Event Object wizard to create a project containing a COM+ event
object. Then, using the Component Services administrative tool (or
TComAdminCatalog, or the IDE), create a COM+ application that houses an event
class component. When you create the event class component in the COM+
application, you will select your event object. The event class is the glue that COM+
uses to bind the publisher to the list of subscribers.

The interesting thing about a COM+ event object is that it contains no
implementation of the event interface. A COM+ event object simply defines the
interface that publishers and subscribers will use to communicate. When you create a
COM+ event object with Delphi, you will use the type library editor to define your
interface. The interface is implemented when you create a COM+ application and its
the event class component. The event class then, contains a reference, and provides
access to the implementation provided by COM+. At runtime, the publisher creates
an instance of the event class with the usual COM mechanisms (e.g.
CoCreateInstance). The COM+ implementation of your interface is such that all a
publisher has to do is call a method on the interface (through the instance of the event
class) to generate an event that will notify all subscribers.

Note A publisher need not be a COM component itself. A publisher is simply any
application that creates an instance of the event class, and generates events by calling
methods on the event interface.

The subscriber component must also be installed in the COM+ Catalog. Again, this
can be done either programatically with TComAdminCatalog, the IDE, or with the
Component Services administration tool. The subscriber component can be installed
in a separate COM+ application, or it can be installed in the same application used to
contain the event class component. After installing the component, a subscription
must be created for each event interface supported by the component. After creating
the subscription, select those event classes (i.e. publishers) you want the component
to listen to. A subscriber component can select individual event classes, or all event
classes.

Unlike the COM+ event object, a COM+ subscription object does contain its own
implementation of an event interface; this is where the actual work is done to
respond to the event when it is generated. Delphi’s COM+ Event Subscription Object
wizard can be used to create a project that contains a subscriber component.

C r e a t i n g M T S o r C O M + o b j e c t s 46-21

G e n e r a t i n g e v e n t s u n d e r C O M +

The following figure depicts the interaction between publishers, subscribers, and the
COM+ Catalog.

Figure 46.1 The COM+ Events system

Using the Event Object wizard

You can create event objects using the Event Object wizard. The wizard first checks
whether the current project contains any implementation code, because projects
containing COM+ event objects do not include an implementation. They can only
contain event object definitions. (You can, however, include multiple COM+ event
objects in a single project.)

To bring up the Event Object wizard,

1 Choose File|New|Other.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Event Object icon.

In the Event Object wizard, specify the name of the event object, the name of the
interface that defines the event handlers, and (optionally) a brief description of the
events.

Subscriber

Event Store

COM+ Catalog

COM+ Events

COM+ Application

Subscription
Event

Interface

Event
Interface

COM+ Application

Event Object

Publisher
Event Class

TCOMAdminCatalog or Component Services tool

Manages

Generate
event

Instantiates Delivers
event

46-22 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

When you exit, the wizard creates a project containing a type library that defines
your event object and its interface. Use the Type Library editor to define the methods
of that interface. These methods are the event handlers that clients implement to
respond to events.

The Event object project includes the project file, _ATL unit to import the ATL
template classes, and the _TLB unit to define the type library information. It does not
include an implementation unit, however, because COM+ event objects have no
implementation. The implementation of the interface is the responsibility of the
client. When your server object calls a COM+ event object, COM+ intercepts the call
and dispatches it to registered clients. Because COM+ event objects require no
implementation object, all you need to do after defining the object’s interface in the Type
Library editor is compile the project and install it with COM+

COM+ places certain restrictions on the interfaces of event objects. The interface you
define in the Type Library editor for your event object must obey the following rules:

• The event object’s interface must derive from IDispatch.
• All method names must be unique across all interfaces of the event object.
• All methods on the event object’s interface must return an HRESULT value.
• The modifier for all parameters of methods must be blank.

Using the COM+ Event Subscription object wizard

You can create the subscriber component using Delphi’s COM+ Subscription Object
wizard. To bring up the wizard,

1 Choose File|New|Other.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Subscription Object icon.

In the wizard dialog, enter the name of the class that will implement the event
interface. Choose the threading model from the combo box. In the Interface field, you
can type the name of your event interface, or click on the Browse button to bring up a
list of all event classes currently installed in the COM+ Catalog. The COM+ Event
Interface Selection dialog also contains a browse button. You can use this button to
search for and select a type library containing the event interface. When you select an
existing event class (or type library), the wizard will give you the option of
automatically implementing the interface supported by that event class. If you check
the Implement Existing Interface checkbox, the wizard will automatically stub out
each method in the interface for you. To complete the wizard, enter a brief
description of your event subscriber component, and click on OK.

C r e a t i n g M T S o r C O M + o b j e c t s 46-23

P a s s i n g o b j e c t r e f e r e n c e s

Firing events using a COM+ event object

To fire an event, a publisher first creates an instance of the event class, with the usual
COM mechanisms (e.g. CoCreateInstance). Remember, the event class contains its
own implementation of the event interface, so, generating an event amounts to
simply calling the appropriate method on the interface.

The COM+ Events system takes over from there. Calling an event method causes the
system to look up all the subscribers in the COM+ Catalog, and each subscriber is
notified. On the subscriber’s side, the event appears to be nothing more to a call on
the event method.

When a publisher generates an event, subscribers are notified synchronously, one at
a time. There is no way to specify the order of notification, nor can you rely on the
order being the same each time an event is fired. When an event class is installed in
the COM+ Catalog, the administrator can select the FireInParallel option to request
the event to be delivered using multiple threads. This does not guarantee
simultaneous delivery; it is simply a request to the system to permit this to happen.

The value returned to the publisher is an aggregate of all the return codes from each
subscriber. There is no direct way for a publisher to find out which subscriber failed.
To do so, a publisher must implement a publisher filter. See the Microsoft MSDN
documentation for more information on this subect. The following table summarizes
the possible return codes.

Passing object references
Note Information on passing object references applies only to MTS, not COM+. This

mechanism is needed under MTS because it is necessary to ensure that all pointers to
objects running under MTS are routed through interceptors. Because interceptors are
built into COM+, you do not need to pass object references.

Table 46.4 Event publisher return codes

Return Code Meaning

S_OK All subscribers succeeded.

EVENT_S_SOME_SUBSCRIBERS_FAILED Some subscribers either could not be invoked, or
returned a failure code (note this is not an error
condition).

EVENT_E_ALL_SUBSCRIBERS_FAILED None of the subscribers could be invoked, or all of
the subscribers returned a failure code.

EVENT_S_NOSUBSCRIBERS There are no subscriptions in the COM+ Catalog
(note this is not an error condition).

46-24 D e v e l o p e r ’ s G u i d e

P a s s i n g o b j e c t r e f e r e n c e s

Under MTS, you can pass object references, (for example, for use as a callback) only
in the following ways:

• Through return from an object creation interface, such as CoCreateInstance (or its
equivalent), ITransactionContext.CreateInstance, or IObjectContext.CreateInstance.

• Through a call to QueryInterface.

• Through a method that has called SafeRef to obtain the object reference.

An object reference that is obtained in the above ways is called a safe reference.
Methods invoked using safe references are guaranteed execute within the correct
context.

The MTS runtime environment requires calls to use safe references so that it can
manage context switches and allows transactional objects to have lifetimes that are
independent of client references. Safe references are not necessary under COM+.

Using the SafeRef method
An object can use the SafeRef function to obtain a reference to itself that is safe to pass
outside its context. The unit that defines the SafeRef function is Mtx.

SafeRef takes as input

• A reference to the interface ID (RIID) of the interface that the current object wants
to pass to another object or client.

• A reference to the current object’s IUnknown interface.

SafeRef returns a pointer to the interface specified in the RIID parameter that is safe to
pass outside the current object's context. It returns nil if the object is requesting a safe
reference on an object other than itself, or the interface requested in the RIID
parameter is not implemented.

When an MTS object wants to pass a self-reference to a client or another object (for
example, for use as a callback), it should always call SafeRef first and then pass the
reference returned by this call. An object should never pass a self pointer, or a self-
reference obtained through an internal call to QueryInterface, to a client or to any
other object. Once such a reference is passed outside the object's context, it is no
longer a valid reference.

Calling SafeRef on a reference that is already safe returns the safe reference
unchanged, except that the reference count on the interface is incremented.

When a client calls QueryInterface on a reference that is safe, the reference returned
to the client is also a safe reference.

An object that obtains a safe reference must release the safe reference when finished
with it.

For details on SafeRef see the SafeRef topic in the Microsoft documentation.

C r e a t i n g M T S o r C O M + o b j e c t s 46-25

D e b u g g i n g a n d t e s t i n g t r a n s a c t i o n a l o b j e c t s

Callbacks
Objects can make callbacks to clients and to other transactional objects. For example,
you can have an object that creates another object. The creating object can pass a
reference of itself to the created object; the created object can then use this reference
to call the creating object.

If you choose to use callbacks, note the following restrictions:

• Calling back to the base client or another package requires access-level security on
the client. Additionally, the client must be a DCOM server.

• Intervening firewalls may block calls back to the client.

• Work done on the callback executes in the environment of the object being called.
It may be part of the same transaction, a different transaction, or no transaction.

• Under MTS, the creating object must call SafeRef and pass the returned reference to
the created object in order to call back to itself.

Debugging and testing transactional objects
You can debug local and remote transactional objects. When debugging transactional
objects, you may want to turn off transaction time-outs.

The transaction time-out sets how long (in seconds) a transaction can remain active.
Transactions that are still alive after the time-out are automatically aborted by the
system. By default, the time-out value is 60 seconds. You can disable transaction
time-outs by specifying a value of 0, which is useful when debugging.

For information on remote debugging, see the Remote Debugging topic in Online
help.

When testing a transactional object that you intend to run under MTS, you may first
want to test your object outside the MTS environment to simplify your test
environment.

While developing your server, you cannot rebuild the server when it is still in
memory. You may get a compiler error like, “Cannot write to DLL while executable
is loaded.” To avoid this, you can set the MTS package or COM+ application
properties to shut down the server when it is idle.

To shut down the server when idle,

1 In the MTS Explorer or COM+ Component Manager, right-click the MTS package
or COM+ application in which your transactional object is installed and choose
Properties.

2 Select the Advanced tab.

The Advanced tab determines whether the server process associated with a
package always runs, or whether it shuts down after a certain period of time.

46-26 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g t r a n s a c t i o n a l o b j e c t s

3 Change the time-out value to 0, which shuts down the server as soon as no longer
has a client to service.

4 Click OK to save the setting.

Note When testing outside the MTS environment, you do not reference the ObjectProperty
of TMtsObject directly. The TMtsObject implements methods such as SetComplete and
SetAbort that are safe to call when the object context is nil.

Installing transactional objects
MTS applications consist of a group of in-process MTS objects running in a single
instance of the MTS executive (EXE). A group of COM objects that all run in the same
process is called a package. A single machine can be running several different
packages, where each package is running within a separate MTS EXE.

Under COM+, you work with a similar group, called a COM+ application. In a
COM+ application, the objects need not be in-process, and there is no separate
runtime environment.

You can group your application components into a single MTS package or COM+
application to be managed by a single process. You might want to distribute your
components into different MTS packages or COM+ applications to partition your
application across multiple processes or machines.

To install transactional objects into an MTS package or COM+ application,

1 If your system supports COM+, choose Run|Install COM+ objects. If your system
does not support COM+ but you have MTS installed on your system, choose Run|
Install MTS objects. If your system supports neither MTS nor COM+, you will not
see a menu item for installing transactional objects.

2 In the Install Object dialog box, check the objects to be installed.

3 If you are installing MTS objects, click the Package button to get a list of MTS
packages on your system. If you are installing COM+ objects, click the Application
button. Indicate the MTS package or COM+ application into which you are
installing your objects. You can choose Into New Package or Into New Application
to create a new MTS package or COM+ application in which to install the object.
You can choose Into Existing Package or Into Existing Application to install the
object into an existing listed MTS package or COM+ application.

4 Choose OK to refresh the catalog, which makes the objects available at runtime.

MTS packages can contain components from multiple DLLs, and components from a
single DLL can be installed into different packages. However, a single component
cannot be distributed among multiple packages.

C r e a t i n g M T S o r C O M + o b j e c t s 46-27

A d m i n i s t e r i n g t r a n s a c t i o n a l o b j e c t s

Similarly, COM+ applications can contain components from multiple executables
and different components from a single executable can be installed into different
COM+ applications.

Note You can also install your transactional object using the COM+ Component Manager
or MTS Explorer. Be sure when installing the object with one of these tools that you
apply the settings for the object that appear on the COM+ page of the Type Library
editor. These settings are not applied automatically when you do not install from the
IDE.

Administering transactional objects
Once you have installed transactional objects, you can administer these runtime
objects using the MTS Explorer (if they are installed into an MTS package) or the
COM+ Component Manager (if they are installed into a COM+ application). Both
tools are identical, except that the MTS Explorer operates on the MTS runtime
environment and the COM+ Component Manager operates on COM+ objects.

The COM+ Component Manager and MTS Explorer have a graphical user interface
for managing and deploying transactional objects. Using one of these tools, you can

• Configure transactional objects, MTS packages or COM+ applications, and roles

• View properties of components in an package or COM+ application and view the
MTS packages or COM+ applications installed on a computer

• Monitor and manage transactions for objects that comprise transactions

• Move MTS packages or COM+ applications between computers

• Make a remote transactional object available to a local client

For more details on these tools, see the appropriate Administrator’s Guide from
Microsoft.

46-28 D e v e l o p e r ’ s G u i d e

I n d e x I-1

Symbols
& (ampersand) character 9-36
... (ellipsis) buttons 20-22
.NET Assemblies, using with Delphi 42-17 to 42-22

A
Abort procedure 14-12

preventing edits 24-20
AbortOnKeyViol property 26-53
AbortOnProblem property 26-53
About box, adding to ActiveX controls 45-5
absolute addressing 15-7
abstract methods 4-12
accelerators 9-36
access rights, WebSnap 35-17 to 35-19
Access tables, local transactions 26-32
access violations, strings 5-27
Acquire method 13-8
action bands 9-20

defined 9-18
Action client, defined 9-18
action editor

adding actions 34-5
changing actions 34-6

action items 34-3, 34-5, 34-6 to 34-9
adding 34-5
caution for changing 34-3
chaining 34-9
default 34-6, 34-7
dispatching 35-27
enabling and disabling 34-7
event handlers 34-4
hiding 9-24
page producers and 34-16
responding to requests 34-8
selecting 34-6, 34-7

Action List editor 9-20
action lists 6-5, 9-18, 9-20, 9-26 to 9-53
Action Manager 9-20, 9-24

defined 9-19
action requests 35-25
action responses 35-25
actions 9-26 to 9-32

action classes 9-30
clients 9-19
defined 9-18, 9-19
executing 9-27
predefined 9-31
registering 9-31

target 9-19
updating 9-29

Actions property 34-5
activation attribute, shared properties 46-7
Active Documents 40-11, 40-14

See also IOleDocumentSite interface
Active property

client sockets 39-7
datasets 24-4
server sockets 39-8
sessions 26-18

active scripting 35-20
Active Server Object wizard 44-2 to 44-3
Active Server Objects 44-1 to 44-8

creating 44-2 to 44-7
debugging 44-8
in-process servers 44-7
out-of-process servers 44-7
registering 44-8

Active Server Pages See ASP
ActiveAggs property 29-13
ActiveFlag property 22-20, 22-21
ActiveForms 45-1, 45-6

as database Web applications 31-33
creating 45-2
InternetExpress vs. 31-32
multi-tiered applications 31-32
wizard 45-6

ActiveX 40-13 to 40-14, 45-1
comparison to ASP 44-7
interfaces 40-20
vs. InternetExpress 31-32
Web applications 40-14, 45-1, 45-15 to 45-17

ActiveX controls 18-5, 40-10, 40-13, 40-23,
45-1 to 45-17

adding methods 45-9 to 45-10
adding properties 45-9 to 45-10
.cab files 45-17
component wrappers 42-5, 42-6 to 42-7,

42-8 to 42-9
creating 45-2, 45-4 to 45-6
data-aware 42-8 to 42-9, 45-8, 45-11 to 45-12
debugging 45-15
designing 45-4
elements 45-2 to 45-3
embedding in HTML 34-15
event handling 45-10
from VCL controls 45-4 to 45-6
importing 42-4
interfaces 45-8 to 45-12
licensing 45-5, 45-7

Index

I-2 D e v e l o p e r ’ s G u i d e

persistent properties 45-12
property pages 42-6, 45-3, 45-12 to 45-14
registering 45-15
threading model 45-5
type libraries 40-17, 45-3
using Automation-compatible types 45-4, 45-8
Web applications 40-14, 45-1, 45-15 to 45-17
Web deployment 45-15 to 45-17
wizard 45-4 to 45-5

ActiveX page (Component palette) 42-4
activities, transactional objects 46-18 to 46-19
ActnList unit 9-31
adapter dispatcher requests 35-25
adapter dispatchers 35-9, 35-23
AdapterPageProducer 35-10
adapters 35-2, 35-5 to 35-6
Add Fields dialog box 25-5
Add method

menus 9-44
persistent columns 20-19
strings 5-21

Add New Web Service wizard 38-11
Add to Interface command 31-16
Add To Repository command 8-22
AddAlias method 26-25
AddFieldDef method 24-39
AddFontResource function 18-14
AddIndex method 29-8
AddIndexDef method 24-39
AddObject method 5-22
AddParam method 24-54
AddPassword method 26-22
_AddRef method 4-14, 4-18, 4-20
AddRef method 40-4
Address property, TSocketConnection 31-24
addresses, socket connections 39-4
AddStandardAlias method 26-25
AddStrings method 5-21
ADO 19-1, 24-2, 27-1, 27-2, 27-3

components 27-1 to 27-21
overview 27-2

data stores 27-3, 27-4
deployment 18-7
implicit transactions 27-7
providers 27-3, 27-4
resource dispensers 46-6

ADO commands 27-7 to 27-8, 27-18 to 27-21
asynchronous 27-19
canceling 27-19
executing 27-19
iterating over 23-13
parameters 27-20 to 27-21
retrieving data 27-20
specifying 27-18

ADO connections 27-3 to 27-9
asynchronous 27-5
connecting to data stores 27-3 to 27-7
events 27-8 to 27-9
executing commands 27-6
timing out 27-6

ADO datasets 27-9 to 27-17
asynchronous fetching 27-12
batch updates 27-13 to 27-15
connecting 27-10 to 27-11
data files 27-15 to 27-16
index-based searches 24-28

ADO objects 27-1
Connection object 27-5
RDS DataSpace 27-17
Recordset 27-9, 27-11

ADO page (Component palette) 19-1, 27-2
ADT fields 25-23, 25-24 to 25-26

displaying 20-22, 25-24
flattening 20-22
persistent fields 25-25

ADTG files 27-15
AfterApplyUpdates event 29-32, 30-8
AfterCancel event 24-21
AfterClose event 24-5
AfterConnect event 23-3, 31-28
AfterDelete event 24-20
AfterDisconnect event 23-4, 31-28
AfterDispatch event 34-6, 34-9
AfterEdit event 24-18
AfterGetRecords event 30-8
AfterInsert event 24-19
AfterOpen event 24-4
AfterPost event 24-21
AfterScroll event 24-6
AggFields property 29-14
aggregate fields 25-6, 29-14

defining 25-10 to 25-11
displaying 25-11

Aggregates property 29-12, 29-13
aggregation

client datasets 29-11 to 29-14
COM 40-9
controlling Unknown 4-18, 4-20
inner objects 4-18
interfaces 4-16, 4-18
outer objects 4-18

aliases
BDE 26-3, 26-14, 26-25 to 26-26

local 26-25
specifying 26-14, 26-14 to 26-15

Type Library editor 41-10, 41-18, 41-24
AliasName property 26-14

I n d e x I-3

Align property 9-5
panels 9-47
status bars 10-15
text controls 7-7

Alignment property 10-6
column headers 20-21
data grids 20-20
data-aware memo controls 20-9
decision grids 22-12
fields 25-11
memo and rich edit controls 10-2
status bars 10-15

AllowAllUp property 10-8
speed buttons 9-49
tool buttons 9-51

AllowDelete property 20-29
AllowGrayed property 10-8
AllowInsert property 20-29
alTop constant 9-47
ampersand (&) character 9-36
analog video 12-33
ancestor classes 4-2, 4-5
animation controls 10-19, 12-30 to 12-32

example 12-31
ANSI character sets 17-3
Apache 36-1
Apache applications 33-7

creating 34-2, 35-8
debugging 33-10

Apache DLLs 18-9
Apache server DLLs 33-7

creating 34-2, 35-8
apartment threading 43-9
Append method 24-19, 24-20

Insert vs. 24-19
AppendRecord method 24-22
application adapters 35-9
application mode 36-1
application servers 19-14, 31-1, 31-12 to 31-17

callbacks 31-17
COM-based 31-21
dropping connections 31-28
identifying 31-23
interface 31-16 to 31-17
interfaces 31-28 to 31-30
multiple data modules 31-21
opening connections 31-27
registering 31-11, 31-22
remote data modules 8-21
writing 31-13

Application variable 9-2

applications
Apache 33-7, 34-2, 35-8
bi-directional 17-4
CGI stand-alone 35-8
client/server 31-1

network protocols 26-15
COM 8-16
creating 9-1
cross-platform

creating 15-1 to 15-2
database 15-21 to 15-27
Internet 15-28
porting to Linux 15-2 to 15-16

database 19-1
deploying 18-1
files 18-2
international 17-1
ISAPI 33-6, 33-7, 34-1, 35-8
MDI 8-2
MTS 8-16
multi-tiered 31-1 to 31-42
NSAPI 33-6, 34-1, 34-2, 35-8
SDI 8-2
status information 10-15
Web Broker 34-1 to 34-21
Web server 8-13, 8-14, 35-7
Web-based client applications 31-31 to 31-42

Apply method 26-46
Apply Updates dialog 41-26
ApplyRange method 24-35
ApplyUpdates method 15-27, 26-34

BDE datasets 26-36
client datasets 27-13, 29-7, 29-20, 29-20 to 29-21,

30-3
providers 29-21, 30-3, 30-8
TDatabase 26-36
TXMLTransformClient 32-11

AppNamespacePrefix variable 38-3
AppServer property 29-33, 30-3, 31-17, 31-28
Arc method 12-4
architecture

BDE-based applications 26-1 to 26-2
database applications 19-6 to 19-15,

26-1 to 26-2, 31-4, 31-5
multi-tiered 31-4, 31-5
Web Broker server applications 34-3

array fields 25-23, 25-26 to 25-27
displaying 20-22, 25-24
flattening 20-22
persistent fields 25-26 to 25-27

arrays, safe 41-13

I-4 D e v e l o p e r ’ s G u i d e

as operator
IInterface and 4-16
interfaces 4-16

as reserved word, early binding 31-29
AS_ApplyUpdates method 30-3
AS_ATTRIBUTE 38-6
AS_DataRequest method 30-3
AS_Execute method 30-3
AS_GetParams method 30-3
AS_GetProviderNames method 30-3
AS_GetRecords method 30-3
AS_RowRequest method 30-3
ASCII tables 26-5
ASP 40-13, 44-1 to 44-8

comparison to ActiveX 44-7
comparison to Web broker 44-1
generating pages 44-3
HTML documents 44-1
performance limitations 44-1
scripting language 40-13, 44-3
UI design 44-1

ASP intrinsics 44-3 to 44-7
accessing 44-2 to 44-3
Application object 44-4
Request object 44-4 to 44-5
Response object 44-5
Server object 44-6 to 44-7
Session object 44-6

assembler code 15-15
Assign Local Data command 29-14
Assign method, string lists 5-21
AssignedValues property 20-22
assignment statements, object variables 4-7
AssignValue method 25-17
Associate property 10-5
as-soon-as-possible deactivation 31-7
at reserved word 14-4
atomicity transactions 19-4, 46-9
attachments 38-7
Attributes property

parameters 24-46, 24-53
TADOConnection 27-7

audio clips 12-32
AutoCalcFields property 24-23
AutoComplete property 31-8
auto-dispatching components 38-11, 38-19
AutoDisplay property 20-9, 20-10
AutoEdit property 20-5
AutoHotKeys property 9-36
Automation

Active Server Objects 44-2
early binding 40-18
IDispatch interface 43-14
interfaces 43-13 to 43-15
late binding 43-15

optimizing 40-18
type checking 43-13
type compatibility 41-12, 43-16 to 43-17
type descriptions 40-12

Automation controllers 40-12, 42-1, 42-13 to 42-16,
43-14

creating objects 42-13
dispatch interfaces 42-14
dual interfaces 42-13
events 42-14 to 42-16
example 42-9 to 42-12

Automation objects 40-12
component wrappers 42-7 to 42-8

example 42-9 to 42-12
wizard 43-5 to 43-9
See also COM objects

Automation servers 40-10, 40-12 to 40-13
accessing objects 43-14
type libraries 40-17
See also COM objects

AutoPopup property 9-52
AutoSelect property 10-3
AutoSessionName property 26-17, 26-30, 34-19
AutoSize property 9-5, 10-2, 18-14, 20-8
averages, decision cubes 22-5
.avi clips 10-19, 12-30, 12-33
.avi files 12-33

B
Background 9-22
backgrounds 17-8
Bands property 9-52, 10-9
base clients 46-2
base unit 5-34, 5-36
base64 binary data 38-4
BaseCLX ,defined 3-1, 5-1
batch files, Linux 15-18
batch operations 26-8, 26-49 to 26-53

appending data 26-50, 26-51
copying datasets 26-51
deleting records 26-51
different databases 26-51
error handling 26-52 to 26-53
executing 26-52
mapping data types 26-51 to 26-52
modes 26-8, 26-50
setting up 26-49 to 26-50
updating data 26-50, 26-51

batch updates 27-13 to 27-15
applying 27-15
canceling 27-15

BatchMove method 26-8
BDE resource dispensers 46-6
BDE Administration utility 26-14, 26-55

I n d e x I-5

BDE datasets 19-1, 24-2, 26-2 to 26-12
applying cached updates 26-36
batch operations 26-49 to 26-53
copying 26-51
databases 26-3 to 26-4
decision support components and 22-5
local database support 26-5 to 26-8
sessions 26-3 to 26-4
types 26-2

BDE page (Component palette) 19-1
BeforeApplyUpdates event 29-32, 30-8
BeforeCancel event 24-21
BeforeClose event 24-5
BeforeConnect event 23-3, 31-28
BeforeDelete event 24-20
BeforeDisconnect event 23-4, 31-28
BeforeDispatch event 34-5, 34-7
BeforeEdit event 24-18
BeforeGetRecords event 30-8
BeforeInsert event 24-19
BeforeOpen event 24-4
BeforePost event 24-21
BeforeScroll event 24-6
BeforeUpdateRecord event 26-34, 26-41, 29-22,

30-11
BeginDrag method 7-2
BeginRead method 13-9
BeginTrans method 23-7
BeginWrite method 13-9
Beveled 10-6
beveled panels 10-18
bevels 10-18
bi-directional applications 17-4

methods 17-6
bi-directional cursors 24-49
binary operators 5-44
BinaryOp method 5-44
bitmap buttons 10-7
bitmap objects 12-3
bitmaps 10-18, 12-18 to 12-19

adding scrollable 12-17
associating with strings 5-22, 7-14
blank 12-17
brushes 12-9
brushes property 12-8, 12-9
destroying 12-21
drawing on 12-18
draw-item events 7-17
in frames 9-16
internationalizing 17-8
replacing 12-20
ScanLine property 12-9
scrolling 12-17
setting initial size 12-17

temporary 12-17, 12-18
toolbars 9-50
when they appear in application 12-2

BLOB fields 20-2
displaying values 20-9
fetch on demand 30-5
getting values 26-4
viewing graphics 20-10

BLOBs 20-9
caching 26-4

blocking connections 39-10, 39-11
event handling 39-10

BlockMode property 39-10, 39-11
bmBlocking 39-11
BMPDlg unit 12-21
bmThreadBlocking 39-10, 39-11
Bof property 24-6, 24-7, 24-9
Bookmark property 24-9
bookmarks 24-9 to 24-10

filtering records 27-11 to 27-12
support by dataset types 24-9

BookmarkValid method 24-10
Boolean fields 20-2, 20-13
borders, panels 10-13
BorderWidth property 10-13
Borland Database Engine 8-12, 19-1, 24-2,

26-1 to 26-55
aliases 26-3, 26-14, 26-16, 26-25 to 26-26

availability 26-25
heterogeneous queries 26-10
specifying 26-14, 26-14 to 26-15

API calls 26-1, 26-4
batch operations 26-49 to 26-53
cached updates 26-33 to 26-48

update errors 26-38
closing connections 26-20
connecting to databases 26-12 to 26-16
datasets 26-2
default connection properties 26-18
deploying 18-8
driver names 26-14
drivers 26-14
heterogeneous queries 26-9 to 26-10
implicit transactions 26-31
license requirements 18-15
managing connections 26-19 to 26-21
ODBC drivers 26-16
opening database connections 26-19
retrieving data 24-48, 26-2, 26-10
sessions 26-16
table types 26-5
utilities 26-55
Web applications 18-9

bounding rectangles 12-11
.bpl files 16-1, 16-2, 18-3

I-6 D e v e l o p e r ’ s G u i d e

briefcase model 19-14
brokering connections 31-27
Brush property 10-18, 12-4, 12-8
brushes 12-8 to 12-9

bitmap property 12-9
colors 12-8
styles 12-8

building packages 16-10 to 16-13
business rules 31-2, 31-13

ASP 44-1
transactional objects 46-2

business-to-business communication 37-1
ButtonAutoSize property 22-10
buttons 10-6 to 10-8

adding to toolbars 9-47 to 9-49, 9-50
assigning glyphs to 9-48
disabling on toolbars 9-50
navigator 20-29
toolbars and 9-46

ButtonStyle property, data grids 20-20, 20-21,
20-22

ByteType 5-24

C
CacheBlobs property 26-4
cached updates 29-16 to 29-24

ADO 27-13 to 27-15
applying 27-15
canceling 27-15

BDE 26-33 to 26-48
applying 26-11, 26-35 to 26-38

multiple tables 26-40, 26-45
error handling 26-38 to 26-40
updating read-only datasets 26-11

client datasets 19-10 to 19-14, 29-16,
29-20 to 29-24

applying 26-11, 29-20 to 29-21
multiple tables 26-40, 26-45

transactions 23-6
update errors 29-23 to 29-24, 30-11
updating read-only datasets 26-11

master/detail relationships 29-18
overview 29-17 to 29-18
providers 30-8
update objects 29-19

CachedUpdates property 15-27, 26-33
calculated fields 24-23, 25-6

assigning values 25-8
client datasets 29-11
defining 25-7 to 25-8
lookup fields and 25-9

call synchronization 46-19

callbacks
limits in multi-tiered applications 31-11
multi-tiered applications 31-17
transactional objects 46-25

CanBePooled method 46-8
Cancel method 24-18, 24-21, 27-19
Cancel property 10-7
CancelBatch method 15-27, 27-13, 27-15
CancelRange method 24-35
CancelUpdates method 15-27, 26-34, 27-13, 29-6
CanModify property

data grids 20-26
datasets 20-5, 24-17, 24-38
queries 26-11

Canvas property 10-19
canvases

adding shapes 12-11 to 12-12, 12-14
common properties, methods 12-4
drawing lines 12-5, 12-10, 12-28 to 12-29

changing pen width 12-6
event handlers 12-26

drawing vs. painting 12-4, 12-22
overview 12-1 to 12-3
refreshing the screen 12-2

Caption property
column headers 20-21
decision grids 22-12
group boxes and radio groups 10-13
invalid entries 9-34
labels 10-4
TForm 10-15

cascaded deletes 30-6
cascaded updates 30-6
case sensitivity

indexes 29-9
Linux 15-18

CASE tool 11-1
Cast method 5-42
CastTo method 5-43
CDaudio disks 12-33
CellDrawState function 22-13
CellRect method 10-16
cells (grids) 10-16
Cells function 22-13
Cells property 10-16
CellValueArray function 22-13
CGI applications 33-5, 33-6, 36-1

creating 34-1, 35-8
change log 29-5, 29-20, 29-34

saving changes 29-6
undoing changes 29-5

ChangeCount property 15-27, 26-33, 29-6
ChangedTableName property 26-53

I n d e x I-7

CHANGEINDEX 29-8
Char data type 17-3
character sets 5-22, 17-2, 17-2 to 17-4

ANSI 17-3
default 17-2
international sort orders 17-8
multibyte 17-3
multibyte conversions 17-3
OEM 17-3

character types 17-3
Chart Editing dialog 22-16 to 22-18
Chart FX 18-5
check boxes 10-8

data-aware 20-13 to 20-14
TDBCheckBox 20-2

CHECK constraint 30-13
Checked property 10-8
check-list boxes 10-10
CheckSynchronize routine 13-5
ChildName property 31-31
Chord method 12-4
circular references 9-4
class completion 4-10
class factories 40-6

added by wizard 43-3
class library, defined 3-1
classes 4-1 to 4-11

ancestor 4-2, 4-5
defining 4-9 to 4-11
descendant 4-5, 4-9
inheritance 4-5
instantiating 4-8
TObject 3-6
transitory 3-6

Classes view 11-4, 11-5
Clear method

fields 25-17
string lists 5-21, 5-22

ClearSelection method 7-10
click events 12-25, 12-26
client applications

architecture 31-4
as Web server applications 31-31
COM 40-3, 40-10, 42-1 to 42-17
creating 31-22 to 31-30, 42-1 to 42-17
interfaces 39-2
multi-tiered 31-2, 31-4
network protocols 26-15
sockets and 39-1
supplying queries 30-6
thin 31-2, 31-32
transactional objects 46-2
type libraries 41-20, 42-2 to 42-6
user interfaces 31-1
Web Services 38-20 to 38-22

client connections 39-3
accepting requests 39-8
opening 39-7
port numbers 39-5

client datasets 29-1, 31-3
aggregating data 29-11 to 29-14
applying updates 29-20 to 29-21
calculated fields 29-11
connecting to other datasets 19-10 to 19-14,

29-24 to 29-32
constraints 29-7, 29-30

disabling 29-30
copying data 29-14 to 29-15
creating tables 29-33 to 29-34
deleting indexes 29-9
deploying 18-7
editing 29-5
file-based applications 29-33 to 29-35
filtering records 29-2 to 29-5
grouping data 29-9 to 29-10
index-based searches 24-28
indexes 29-8 to 29-10

adding 29-8
limiting records 29-29
loading files 29-34
merging changes 29-34
merging data 29-15
navigation 29-2
parameters 29-27 to 29-29
providers and 29-24 to 29-32
refreshing records 29-31
resolving update errors 29-21, 29-23 to 29-24
saving changes 29-6
saving files 29-35
sharing data 29-15
specifying providers 29-25 to 29-26
supplying queries 29-32 to 29-33
switching indexes 29-9
types 29-18 to 29-19
undoing changes 29-5
updating records 29-20 to 29-24
with internal source dataset 29-21, 29-35
with unidirectional datasets 28-11

client requests 33-5 to 33-6, 34-9
client sockets 39-3, 39-6 to 39-7

assigning hosts 39-5
connecting to servers 39-9
error messages 39-8
event handling 39-9
identifying servers 39-7
properties 39-7
requesting services 39-6
socket objects 39-6

clients See client applications

I-8 D e v e l o p e r ’ s G u i d e

Clipboard 7-8, 7-10, 20-9
clearing selection 7-10
graphics and 12-21 to 12-23
graphics objects 12-3, 20-10
testing contents 7-11
testing for images 12-23

Clipbrd unit 7-8
CloneCursor method 29-15
Close method

connection components 23-4
database connections 26-20
datasets 24-4
sessions 26-18

CloseDatabase method 26-20
CloseDataSets method 23-12
CLSIDs 40-6, 40-16

license package file 45-7
CLX

defined 3-1
exception classes 14-10 to 14-11
system events 15-12
units 15-8 to 15-11
VCL vs. 3-2
WinCLX vs. VisualCLX 15-5 to 15-6

CLX applications
creating 15-2
database applications 15-21 to 15-27
deploying 18-6
Internet applications 15-28
overview 15-1
porting 15-2 to 15-16

clx60.bpl 18-6
CoClasses 40-6

ActiveX controls 45-5
CLSIDs 40-6
component wrappers 42-1, 42-3

limitations 42-2
creating 40-6, 41-19, 42-5, 42-13
declarations 42-5
naming 43-3, 43-5
Type Library editor 41-10, 41-17, 41-23
updating 41-21

code
porting to Linux 15-12 to 15-16
templates 8-3

Code editor
event handlers and 6-4
opening packages 16-10
overview 2-4

Code Insight templates 8-3
code pages 17-3
ColCount property 20-29
collections pane 11-4, 11-5
color depths 18-12

programming for 18-14

color grids 12-6
Color property 10-4, 10-18

brushes 12-8
column headers 20-21
data grids 20-20
decision grids 22-12
pens 12-5, 12-6

colormaps, menus and toolbars 9-23
colors

internationalization and 17-8
pens 12-6

Cols property 10-16
column headers 10-14, 20-17, 20-21
columns 10-16

decision grids 22-12
default state 20-16, 20-22
deleting 20-17
including in HTML tables 34-20
persistent 20-16, 20-17 to 20-18

creating 20-18 to 20-22
deleting 20-19
inserting 20-19
reordering 20-19

properties 20-17, 20-20 to 20-21
resetting 20-22

Columns editor
creating persistent columns 20-18
deleting columns 20-19
reordering columns 20-19

Columns property 10-10, 20-18
grids 20-16
radio groups 10-13

ColWidths property 7-16, 10-16
COM 8-16

aggregation 40-9
applications 40-3 to 40-10, 40-19

distributed 8-16
clients 40-3, 40-10, 41-20, 42-1 to 42-17
containers 40-10, 42-1
controllers 40-10, 42-1
definition 40-2
early binding 40-17
extensions 40-2, 40-10 to 40-12
overview 40-1 to 40-24
proxy 40-8, 40-9
specification 40-2
stubs 40-9
wizards 40-19 to 40-24, 43-1

COM interfaces 40-3 to 40-5, 43-3
adding to type libraries 41-21
Automation 43-13 to 43-15
dispatch identifiers 43-14
dual interfaces 43-13 to 43-14
implementing 40-6, 40-24
interface pointer 40-5

I n d e x I-9

IUnknown 40-4
marshaling 40-8 to 40-9
modifying 41-21 to 41-23, 43-9 to 43-13
optimizing 40-18
properties 41-9
type information 40-16

COM interfaces, raising exceptions 41-9
COM Interop 42-17 to 42-22
COM library 40-2
COM objects 40-3, 40-5 to 40-9, 43-1 to 43-18

aggregating 40-9
component wrappers 42-1, 42-2, 42-3,

42-6 to 42-12
creating 43-2 to 43-17
debugging 43-18
designing 43-2
instancing 43-6
interfaces 40-3, 43-9 to 43-15
registering 43-17
threading models 43-6 to 43-9
type checking 40-18
wizard 43-3 to 43-4, 43-6 to 43-9

COM servers 40-3, 40-5 to 40-9, 43-1 to 43-18
designing 43-2
in-process 40-7
optimizing 40-19
out-of-process 40-7
remote 40-7
threading models 43-8

COM+ 8-16, 40-11, 40-15, 46-1
applications 46-6, 46-26
call synchronization 46-19
Component Manager 46-27
configuring activities 46-19
event objects 46-21 to 46-22
event subscriber objects 46-22
events 42-15 to 42-16, 46-19 to 46-23
in-process servers 40-7
interface pointers 40-5
MTS vs. 46-2
object pooling 46-8 to 46-9
transactional objects 40-15
transactions 31-18
See also transactional objects

combo boxes 10-11, 15-6, 20-2, 20-12
data-aware 20-10 to 20-13
lookup 20-21
owner-draw 7-13

measure-item events 7-16
COMCTL32.DLL 9-46
command objects 27-18 to 27-21

iterating over 23-13
Command Text editor 24-44
CommandCount property 23-13, 27-7
Commands property 23-13, 27-7

commands, action lists 9-19
CommandText property 24-44, 27-16, 27-17, 27-18,

27-20, 28-6, 28-7, 28-8, 29-32
CommandTimeout property 27-6, 27-19
CommandType property 27-16, 27-17, 27-18, 28-6,

28-7, 28-8, 29-32
Commit method 23-8
CommitTrans method 23-8
CommitUpdates method 15-27, 26-34, 26-36
common controls 9-54
common dialog boxes 9-17
communications 39-1

protocols 26-15, 33-3, 39-2
standards 33-3

Compare method 5-46
CompareBookmarks method 24-10
CompareOp method 5-47
compiler directives 15-13, 15-14

libraries 8-11
packages 16-11
package-specific 16-11
string and character types 5-30
strings 5-30

compiler options 8-3
compiling code 2-4
component library, defined 3-1
Component palette 6-7

ActiveX page 42-4
adding components 16-6
ADO page 19-1, 27-2
BDE page 19-1
Data Access page 19-2, 31-2
Data Controls page 19-15, 20-1, 20-2
DataSnap page 31-2, 31-5, 31-6
dbExpress page 19-2, 28-2
Decision Cube page 19-15, 22-1
frames 9-15
InterBase page 19-2
InternetExpress page 6-8
pages listed 6-7
WebServices page 31-2

Component palette pages 6-7
component templates 9-13

and frames 9-15, 9-16
component wrappers

ActiveX controls 42-6 to 42-7, 42-8 to 42-9
Automation objects 42-7 to 42-8

example 42-9 to 42-12
COM objects 42-1, 42-2, 42-3, 42-6 to 42-12

components 3-7
custom 6-9
grouping 10-12 to 10-14
installing 6-9, 16-6
memory management 4-9
ownership 4-9

I-10 D e v e l o p e r ’ s G u i d e

renaming 4-4 to 4-5
resizing 10-6
standard 6-7 to 6-9
streaming 3-8

Components property 3-8
ComputerName property 31-24
conditional directives, terminating 15-14
ConfigMode property 26-25
configuration files, Linux 15-18
connected line segments 12-10
Connected property 23-3

connection components 23-4
connection components

database 19-8 to 19-9, 23-1 to 23-15, 26-3, 31-6
accessing metadata 23-13 to 23-15
ADO 27-3 to 27-9
BDE 26-12 to 26-16
binding 26-14 to 26-15, 27-3 to 27-4,

28-3 to 28-5
dbExpress 28-2 to 28-5
executing SQL commands 23-10 to 23-12,

27-6
implicit 23-2, 26-3, 26-13, 26-19, 26-20, 27-3
statements per connection 28-3

DataSnap 19-14, 31-3, 31-5, 31-9 to 31-11, 31-22,
31-23 to 31-30

Connection Editor 28-5
connection names 28-4 to 28-5

changing 28-5
defining 28-5
deleting 28-5

connection parameters 26-14 to 26-15
ADO 27-4
dbExpress 28-4, 28-5
login information 23-5, 27-4

Connection property 27-3, 27-10
Connection String Editor 27-4
ConnectionBroker 29-26
ConnectionName property 28-4
ConnectionObject property 27-5
connections

client 39-3
database 23-3 to 23-6, 31-7, 31-8

asynchronous 27-5
closing 26-20
managing 26-19 to 26-21
naming 28-4 to 28-5
network protocols 26-15
opening 26-18, 26-19
persistent 26-19
temporary 26-20

database servers 23-3, 26-15
DCOM 31-9, 31-24
dropping 31-28

HTTP 31-10 to 31-11, 31-25
opening 31-27, 39-7
protocols 31-9 to 31-11, 31-23
SOAP 31-11, 31-26
TCP/IP 31-9 to 31-10, 31-24, 39-3
terminating 39-8

ConnectionString property 23-2, 23-5, 27-4, 27-10
ConnectionTimeout property 27-6
ConnectOptions property 27-5
consistency, transactions 19-4, 46-9
console applications 8-4

CGI 33-6
CONSTRAINT constraint 30-13
ConstraintErrorMessage property 25-11, 25-22,

25-23
constraints

controls 9-5
data 25-22 to 25-23

client datasets 29-7, 29-30
creating 25-22
disabling 29-30
importing 25-23, 29-30, 30-13

Constraints property 9-5, 29-7, 30-13
constructors 4-9

multiple 9-9
contained objects 40-9
Contains list (packages) 16-7, 16-9
Content method, page producers 34-15
content producers 34-4, 34-14

event handling 34-16, 34-17, 34-18
Content property, web response objects 34-13
ContentFromStream method, page

producers 34-15
ContentFromString method, page producers 34-15
ContentStream property, Web response

objects 34-13
context IDs 8-28
context menus

Menu designer 9-40
toolbars 9-52

context numbers (Help) 10-16
ContextHelp 8-32
controlling Unknown 4-18, 4-20
controls 3-9

as ActiveX control implementation 45-3
data-aware 20-1 to 20-32
displaying data 20-4, 25-18
generating ActiveX controls 45-2, 45-4 to 45-6
grouping 10-12 to 10-14
owner-draw 7-13, 7-15

declaring 7-13
ControlType property 22-9, 22-16

I n d e x I-11

conversion
PChar 5-28
string 5-28

conversion families 5-33
conversions, field values 25-17, 25-19 to 25-20
Convert function 5-33, 5-34, 5-35, 5-37, 5-40
converting measurements

classes 5-37 to 5-40
complex conversions 5-36
conversion factor 5-37
conversion families 5-33, 5-34

example creating 5-34
registering 5-35

currency 5-37
utilities 5-33 to 5-40

ConvUtils unit 5-33
cool bars 9-46, 10-9

adding 9-51 to 9-52
configuring 9-52
designing 9-46 to 9-53
hiding 9-53

coordinates, current drawing position 12-26
Copy (Object Repository) 8-22
CopyFile function 5-11
CopyFrom TStream 5-4
CopyRect method 12-4
CopyToClipboard method 7-10

data-aware memo controls 20-9
graphics 20-10

Count property
string lists 5-20
TSessionList 26-30

Create Data Set command 24-39
Create method 4-9
Create Submenu command (Menu designer) 9-37,

9-40
CREATE TABLE 23-11
Create Table command 24-39
CreateDataSet method 24-39
CreateObject method 44-3
CreateParam method 29-28
CreateSharedPropertyGroup 46-6
CreateSuspended parameter 13-12
CreateTable method 24-39
CreateTransactionContextEx example 46-13
creator classes, CoClasses 42-5, 42-13
critical sections 13-8

warning about use 13-8, 13-9
cross-platform applications 15-1 to 15-28

actions 9-20
creating 15-2
database 15-21 to 15-27
Internet 15-28
multi-tiered 31-11
porting to Linux 15-2 to 15-16

crosstabs 22-2 to 22-3, 22-11
defined 22-2
multidimensional 22-3
one-dimensional 22-3
summary values 22-3

crtl.dcu 18-7
currency

conversion example 5-37
formats 17-8
internationalizing 17-8

Currency property fields 25-12
cursors 24-5

bi-directional 24-49
cloning 29-15
linking 24-36, 28-12 to 28-13
moving 24-7, 24-29, 24-30

to first row 24-6, 24-9
to last row 24-6, 24-8
with conditions 24-11

synchronizing 24-42
unidirectional 24-50

CursorType property 27-13
CurValue property 30-11
custom components 6-9
custom controls 3-10
Custom property 31-41
custom variants 5-40 to 5-53

binary operations 5-44 to 5-45
clearing 5-48 to 5-49
comparison operators 5-46 to 5-47
copying 5-48
creating 5-41, 5-42 to 5-50
enabling 5-50
loading and saving values 5-49
memory 5-48
methods 5-51 to 5-53
properties 5-51 to 5-53
storing data 5-41 to 5-42, 5-45, 5-48
typecasting 5-42 to 5-44, 5-45, 5-50
unary operators 5-47 to 5-48
writing utilities 5-50 to 5-51

CustomConstraint property 25-11, 25-22, 29-7
CutToClipboard method 7-10

data-aware memo controls 20-9
graphics 20-10

D
data

analyzing 19-15 to 19-16, 22-2
changing 24-17 to 24-23
default values 20-10, 25-22
displaying 25-18, 25-18

current values 20-8
disabling repaints 20-6
in grids 20-16, 20-28

I-12 D e v e l o p e r ’ s G u i d e

display-only 20-8
entering 24-19
formats, internationalizing 17-8
graphing 19-15
printing 19-16
reporting 19-16
synchronizing forms 20-4

data access
components 19-1

threads 13-5
cross-platform 18-7, 19-2
mechanisms 8-13, 19-1 to 19-2, 24-2

Data Access page (Component palette) 19-2, 31-2
data binding 45-11
Data Bindings editor 42-8
data brokers 29-26, 31-1
data compression, TSocketConnection 31-25
data constraints See constraints
data context, Web Service applications 38-7
Data Controls page (Component palette) 19-15,

20-1, 20-2
Data Definition Language 23-10, 24-43, 26-9, 28-11
Data Dictionary 25-13 to 25-14, 26-53 to 26-54, 31-3

constraints 30-13
data fields 25-6

defining 25-6 to 25-7
data filters 24-13 to 24-16

blank fields 24-14
client datasets 29-3 to 29-5

using parameters 29-29
defining 24-13 to 24-16
enabling/disabling 24-13
operators 24-14
queries vs. 24-13
setting at runtime 24-16
using bookmarks 27-11 to 27-12

data formats, default 25-15
data grids 20-2, 20-15, 20-15 to 20-27, 20-28

customizing 20-17 to 20-22
default state 20-16
displaying data 20-16, 20-17, 20-28

ADT fields 20-22
array fields 20-22

drawing 20-26
editing data 20-6, 20-26
events 20-27
getting values 20-17
inserting columns 20-18
properties 20-29
removing columns 20-17, 20-19
reordering columns 20-19
restoring default state 20-22
runtime options 20-24 to 20-25

data integrity 19-5, 30-13
Data Manipulation Language 23-10, 24-43, 26-9

data members 3-3
data modules 19-6

accessing from forms 8-20
creating 8-17
database components 26-16
editing 8-17
remote vs. standard 8-17
sessions 26-17
Web 35-2, 35-3, 35-5
Web applications and 34-2
Web Broker applications 34-5

data packets 32-4
application-defined information 29-15, 30-6
controlling fields 30-4
converting to XML documents 32-6 to 32-8
copying 29-14 to 29-15
editing 30-7, 31-37
ensuring unique records 30-5
fetching 29-26 to 29-27, 30-7 to 30-8
including field properties 30-6
limiting client edits 30-5
mapping to XML documents 32-2
read-only 30-5
refreshing updated records 30-6
XML 31-31, 31-33, 31-36, 31-36 to 31-37

Data property 29-5, 29-14, 29-15, 29-34
data sources 19-7, 20-3 to 20-5

disabling 20-4
enabling 20-4
events 20-4 to 20-5

data stores 27-3
data types, persistent fields 25-6
data-aware controls 19-15, 20-1 to 20-32, 25-18

associating with datasets 20-3 to 20-4
common features 20-2
disabling repaints 20-6, 24-8
displaying data 20-6 to 20-7

current values 20-8
in grids 20-16, 20-28

displaying graphics 20-10
editing 20-5 to 20-6, 24-18
entering data 25-15
grids 20-15
inserting records 24-19
list 20-2
read-only 20-8
refreshing data 20-7
representing fields 20-8

database applications 8-12, 19-1
architecture 19-6 to 19-15, 31-31
deployment 18-6
distributed 8-13
file-based 19-9 to 19-10, 27-15 to 27-16,

29-33 to 29-35
multi-tiered 31-3 to 31-4

I n d e x I-13

porting 15-24
scaling 19-11
XML and 32-1 to 32-11

database components 8-12, 26-3, 26-12 to 26-16
applying cached updates 26-36
identifying databases 26-14 to 26-15
sessions and 26-13, 26-20 to 26-21
shared 26-16
temporary 26-20

dropping 26-20
database connections 23-3 to 23-6

dropping 23-4, 23-4
limiting 31-8
maintaining 23-4
persistent 26-19
pooling 31-7, 46-6

Database Desktop 26-55
database drivers

BDE 26-3, 26-14
dbExpress 28-3 to 28-4

database engines, third-party 18-7
Database Explorer 26-14, 26-55
database management systems 31-1
database navigator 20-2, 20-29 to 20-32, 24-5, 24-6

buttons 20-29
deleting data 24-20
editing 24-18
enabling/disabling buttons 20-30, 20-31
help hints 20-31

Database parameter 28-4
Database Properties editor 26-14

viewing connection parameters 26-15
database servers 23-3, 26-15

connecting 19-8 to 19-9
constraints 25-22, 25-23, 30-13
describing 23-3
types 19-2

DatabaseCount property 26-21
DatabaseName property 23-2, 26-3, 26-14

heterogenous queries 26-9
databases 19-1 to 19-5

accessing 24-1
adding data 24-22
aliases and 26-14
choosing 19-3
connecting 23-1 to 23-15
file-based 19-3
generating HTML responses 34-18 to 34-21
identifying 26-14 to 26-15
implicit connections 23-2
logging in 19-4, 23-4 to 23-6
naming 26-14
relational 19-1
security 19-4
transactions 19-4 to 19-5

types 19-2
unauthorized access 23-4
Web applications and 34-18

Databases property 26-21
DataCLX, defined 3-1
data-entry validation 25-16
DataField property 20-11

lookup list and combo boxes 20-12
DataRequest method 29-32, 30-3
dataset fields 25-23, 25-27 to 25-28

displaying 20-24
persistent 24-37

dataset page producers 34-19
converting field values 34-19

DataSet property
data grids 20-16
providers 30-2

dataset providers 19-12
DataSetCount property 23-13
DataSetField property 24-38
datasets 19-7, 24-1 to 24-56

adding records 24-19 to 24-20, 24-22
ADO-based 27-9 to 27-17
BDE-based 26-2 to 26-12
categories 24-24 to 24-25
changing data 24-17 to 24-23
closing 24-4 to 24-5

posting records 24-21
without disconnecting 23-12

connecting to servers 29-36
creating 24-38 to 24-41
current row 24-5
cursors 24-5
custom 24-3
decision components and 22-5 to 22-7
deleting records 24-20
editing 24-18
fields 24-1
filtering records 24-13 to 24-16
HTML documents 34-21
iterating over 23-13
marking records 24-9 to 24-10
modes 24-3 to 24-4
navigating 20-29, 24-5 to 24-9, 24-16
opening 24-4
posting records 24-21
providers and 30-2
queries 24-24, 24-42 to 24-50
read-only, updating 26-11
searching 24-11 to 24-12

extending a search 24-30
multiple columns 24-11, 24-12
partial keys 24-30
using indexes 24-11, 24-12, 24-28 to 24-30

simple, creating 29-35

I-14 D e v e l o p e r ’ s G u i d e

states 24-3 to 24-4
stored procedures 24-24, 24-50 to 24-56
tables 24-24, 24-25 to 24-42
undoing changes 24-21
unidirectional 28-1 to 28-20
unindexed 24-22

DataSets property 23-13
DataSnap page (Component palette) 31-2, 31-5,

31-6
DataSource property

ActiveX controls 42-8
data grids 20-16
data navigators 20-32
lookup list and combo boxes 20-12
queries 24-47

DataType property parameters 24-46, 24-52, 24-53
date fields, formatting 25-15
dates, internationalizing 17-8
DAX 40-2, 40-22 to 40-24
dBASE tables 26-5

accessing data 26-9
adding records 24-19, 24-20
DatabaseName 26-3
indexes 26-6
local transactions 26-32
password protection 26-21 to 26-24
renaming 26-8

DBChart component 19-15
DBCheckBox component 20-2, 20-13 to 20-14
DBComboBox component 20-2, 20-11 to 20-12
DBConnection property 29-17
DBCtrlGrid component 20-2, 20-28 to 20-29

properties 20-29
DBEdit component 20-2, 20-8
dbExpress 18-7, 19-2, 28-1 to 28-2

components 28-1 to 28-20
cross-platform applications 15-21 to 15-27
debugging 28-19 to 28-20
deploying 28-1
drivers 28-3 to 28-4
metadata 28-13 to 28-18

dbExpress applications 18-9
dbExpress page (Component palette) 19-2, 28-2
dbGo 27-1
DBGrid component 20-2, 20-15 to 20-27

events 20-27
properties 20-20

DBGridColumns component 20-16
DBImage component 20-2, 20-10
DBListBox component 20-2, 20-11 to 20-12
DBLogDlg unit 23-4
DBLookupComboBox component 20-2,

20-12 to 20-13
DBLookupListBox component 20-2, 20-12 to 20-13

DBMemo component 20-2, 20-9
DBMS 31-1
DBNavigator component 20-2, 20-29 to 20-32
DBRadioGroup component 20-2, 20-14
DBRichEdit component 20-2, 20-9 to 20-10
DBSession property 26-3
DBText component 20-2, 20-8
dbxconnections.ini 28-4, 28-5
dbxdrivers.ini 28-3 to 28-4
DCOM 40-7, 40-8

connecting to application server 29-26, 31-24
distributing applications 8-16
InternetExpress applications 31-36
multi-tiered applications 31-9

DCOM connections 31-9, 31-24
DCOMCnfg.exe 31-36
.dcp files 16-2, 16-13
.dcu files 16-2, 16-12, 16-13
DDL 23-10, 24-43, 24-49, 26-9, 28-11
debugging

Active Server Objects 44-8
ActiveX controls 45-15
code 2-5
COM objects 43-18
dbExpress applications 28-19 to 28-20
service applications 8-10
transactional objects 46-25 to 46-26
Web server applications 33-9 to 33-10, 34-2,

35-8
Decision Cube Editor 22-8 to 22-9

Cube Capacity 22-20
Dimension Settings 22-8
Memory Control 22-9

Decision Cube page (Component palette) 19-15,
22-1

decision cubes 22-7 to 22-9
design options 22-9
dimension maps 22-6, 22-7, 22-8, 22-20, 22-21
dimensions

opening/closing 22-10
paged 22-21

displaying data 22-10, 22-11
drilling down 22-5, 22-10, 22-12, 22-21
getting data 22-5
memory management 22-9
pivoting 22-5, 22-10
properties 22-7
refreshing 22-7
subtotals 22-5

decision datasets 22-5 to 22-7
decision graphs 22-13 to 22-18

customizing 22-16 to 22-18
data series 22-18
dimensions 22-14

I n d e x I-15

display options 22-15
graph types 22-17
pivot states 22-9, 22-10
runtime behaviors 22-20
templates 22-17

decision grids 22-11 to 22-13
dimensions

drilling down 22-12
opening/closing 22-11
reordering 22-12
selecting 22-12

events 22-13
pivot states 22-9, 22-10, 22-12
properties 22-12
runtime behaviors 22-19

decision pivots 22-10
dimension buttons 22-10
orientation 22-10
properties 22-10
runtime behaviors 22-19

decision queries, defining 22-6
Decision Query editor 22-6
decision sources 22-9 to 22-10

events 22-9
properties 22-9

decision support components 19-15 to 19-16,
22-1 to 22-21

adding 22-4 to 22-5
assigning data 22-5 to 22-7
design options 22-9
memory management 22-20
runtime 22-19 to 22-20

declarations
methods 12-15
variables 4-7

DECnet protocol (Digital) 39-1
default

project options 8-3
values 20-10

Default checkbox 8-3
Default property action items 34-7
DEFAULT_ORDER index 29-8
DefaultColWidth property 10-16
DefaultDatabase property 27-4
DefaultDrawing property 7-13, 20-26
DefaultExpression property 25-22, 29-7
DefaultPage property 35-28
DefaultRowHeight property 10-16
Delete command (Menu designer) 9-40
Delete method 24-20

string lists 5-21, 5-22
DELETE statements 26-41, 26-44, 30-10
Delete Table command 24-41
Delete Templates command (Menu designer) 9-40,

9-42

Delete Templates dialog box 9-42
DeleteAlias method 26-26
DeleteFile function 5-8
DeleteFontResource function 18-14
DeleteIndex method 29-9
DeleteRecords method 24-41
DeleteSQL property 26-41
DeleteTable method 24-41
Delphi ActiveX framework (DAX) 40-2,

40-22 to 40-24
delta packets 30-8, 30-9

editing 30-8, 30-9
screening updates 30-11
XML 31-36, 31-37 to 31-38

Delta property 29-5, 29-20
$DENYPACKAGEUNIT compiler directive 16-11
DEPLOY document 18-8, 18-15
deploying

ActiveX controls 18-5
applications 18-1
Borland Database Engine 18-8
CLX applications 18-6
database applications 18-6
dbExpress 28-1
DLL files 18-6
fonts 18-14
general applications 18-1
MIDAS applications 18-9
package files 18-3
Web applications 18-9

deploying applications packages 16-14
descendant classes 4-5, 4-9
DESIGNONLY compiler directive 16-11
design-time packages 16-1, 16-5 to 16-6
destination datasets, defined 26-49
Destroy method 4-9
destructors 4-9
developer support 1-3
device contexts 12-1, 12-2
DeviceType property 12-32
.dfm files 17-8

generating 17-12
.dfm vs. .xfm files 15-4
diacritical marks 17-8
Diagram Editor 11-4, 11-9
Diagrams view 11-4, 11-6
dialog boxes

common 9-17
internationalizing 17-7, 17-8
multipage 10-14

digital audio tapes 12-33
DimensionMap property 22-6, 22-7
Dimensions property 22-12
Direction property parameters 24-46, 24-53

I-16 D e v e l o p e r ’ s G u i d e

directives 15-14
$ELSEIF 15-14
$ENDIF 15-14
$H compiler 5-30
$IF 15-14
$IFDEF 15-13
$IFEND 15-14
$IFNDEF 15-14
$LIBPREFIX compiler 8-11
$LIBSUFFIX compiler 8-11
$LIBVERSION compiler 8-11
$P compiler 5-30
$V compiler 5-31
$X compiler 5-31
conditional compilation 15-13
Linux 15-14
string-related 5-30

directories, Linux and 15-20
DirtyRead 23-9
DisableCommit method 46-12
DisableConstraints method 29-30
DisableControls method 20-6
DisabledImages property 9-50
disconnected model 19-14
dispatch actions 35-10
dispatch interfaces 43-13, 43-14 to 43-15

calling methods 42-14
identifiers 43-14
type compatibility 43-16
type libraries 41-9
Type Library editor 41-16

dispatcher 34-2, 34-5 to 34-6, 35-23
auto-dispatching objects 34-6
DLL-based applications and 34-3
handling requests 34-9
selecting action items 34-6, 34-7

dispatchers 35-28
dispatching requests, WebSnap 35-22
dispIDs 40-16, 43-14

binding to 43-15
dispinterfaces 31-29, 43-13, 43-14 to 43-15

dynamic binding 41-9
type libraries 41-9

DisplayFormat property 20-26, 25-12, 25-16
DisplayLabel property 20-17, 25-12
DisplayWidth property 20-16, 25-12
distributed applications

database 8-13
MTS and COM+ 8-16

distributed COM 40-7, 40-8
distributed data processing 31-2
DllGetClassObject 46-3
DllRegisterServer 46-3

DLLs
COM servers 40-7

threading models 43-7
creating 8-11
deployment 18-9
embedding in HTML 34-15
HTTP servers 33-6
installing 18-6
internationalizing 17-10, 17-12
MTS 46-2
packages 16-1, 16-2

DLLs See shared objects
DML 23-10, 24-43, 24-49, 26-9
.dmt files 9-41, 9-43
docking 7-4
docking site 7-5
Document Literal style 38-1
Documentation view 11-4, 11-9
DocumentElement property 37-4
DOM 37-2, 37-2 to 37-3

implementations 37-3, 37-4
registering vendors 37-3

Down property 10-8
speed buttons 9-48

.dpk files 16-2, 16-7

.dpkw files 16-2
drag cursors 7-2
drag object 7-3
drag-and-dock 7-4 to 7-6
drag-and-drop 7-1 to 7-4

customizing 7-3
DLLs 7-4
getting state information 7-3
mouse pointer 7-4

DragMode property 7-1
grids 20-20

draw grids 10-16
Draw method 12-4
drawing modes 12-29
drawing tools

assigning as default 9-48
changing 12-13
handling multiple in an application 12-12
testing for 12-12, 12-13

DrawShape 12-15
drill-down forms 20-15
drintf unit 26-54
driver names 26-14
DriverName property 26-14, 28-3
DropConnections method 26-13, 26-20
drop-down lists 20-21
drop-down menus 9-37
DropDownCount property 10-11, 20-11
DropDownMenu property 9-52

I n d e x I-17

DropDownRows property
data grids 20-20, 20-21
lookup combo boxes 20-13

dual interfaces 43-13 to 43-14
Active Server Objects 44-3
calling methods 42-13
parameters 43-16
transactional objects 46-3, 46-16
type compatibility 43-16

durability
resource dispensers 46-5
transactions 19-5, 46-9

dynamic array types 38-4
dynamic binding 31-29
dynamic columns 20-16

properties 20-16
dynamic fields 25-2 to 25-3

E
EAbort 14-12
early binding 31-29

Automation 40-18, 43-13
COM 40-17

EBX register 15-7, 15-16
edit controls 7-6, 10-1 to 10-3, 20-2, 20-8

multi-line 20-9
rich edit formats 20-9
selecting text 7-9

Edit method 24-18
edit mode 24-18

canceling 24-18
EditFormat property 20-26, 25-12, 25-16
editing code 2-2
editing script 35-21
EditKey method 24-28, 24-30
EditMask property 25-15

fields 25-12
editors

Diagram Editor 11-4, 11-9
Imlementation Editor 11-4, 11-7
Unit Code Editor 11-4, 11-8

editors pane 11-4, 11-7
EditRangeEnd method 24-34
EditRangeStart method 24-34
Ellipse method 12-4, 12-11
ellipses, drawing 12-11
ellipsis (...), buttons in grids 20-22
Embed HTML tag (<EMBED>) 34-15
EmptyDataSet method 24-41, 29-27
EmptyStr variable 5-27
EmptyTable method 24-41

EnableCommit method 46-12
EnableConstraints method 29-30
EnableControls method 20-6
Enabled property

action items 34-7
data sources 20-4, 20-5
data-aware controls 20-7
menus 7-11, 9-44
speed buttons 9-48

encapsulation 4-2
encryption, TSocketConnection 31-25
end user adapters 35-9, 35-13
endpoints, socket connections 39-6
EndRead method 13-9
EndWrite method 13-9
enumerated types 38-4

constants vs. 12-13
declaring 12-12
Type Library editor 41-10, 41-17, 41-24

EOF marker 5-5
Eof property 24-6, 24-7, 24-8
EReadError 5-2
ERemotableException 38-18
error messages, internationalizing 17-8
ErrorAddr variable 14-4
errors, sockets 39-9
Euro conversions 5-37, 5-40
event handlers 4-4, 6-3 to 6-6

associating with events 6-5
deleting 6-6
drawing lines 12-26
locating 6-4
menu templates and 9-44
menus 6-6, 7-12
responding to button clicks 12-13
Sender parameter 4-8, 6-5
shared 6-5 to 6-6, 12-15
writing 4-5, 6-4

event objects 13-10
event sinks 43-13

defining 42-14 to 42-15
events 6-3 to 6-6

ActiveX controls 45-10
ADO connections 27-8 to 27-9
application-level 9-2
associating with handlers 6-5
Automation controllers 42-10, 42-14 to 42-16
Automation objects 43-5
COM 43-11, 43-12
COM objects 43-11 to 43-13
COM+ 42-15 to 42-16, 46-19 to 46-23
data grids 20-27

I-18 D e v e l o p e r ’ s G u i d e

data sources 20-4 to 20-5
data-aware controls

enabling 20-7
default 6-4
field objects 25-16
interfaces 43-11
internal 3-4
login 23-5
mouse 12-24 to 12-27

testing for 12-27
shared 6-5
signalling 13-10
system 3-4
timeout 13-11
types 3-4
user 3-4
VCL component wrappers 42-2
waiting for 13-10
XML brokers 31-38

Events view 11-4, 11-9
EWriteError 5-2
except keyword 14-4
Exception 14-10, 14-13

defined 3-5
exception handlers 14-4 to 14-8

default 14-5
Delphi 14-4 to 14-5
order 14-6

exception handling 14-1, 14-4 to 14-8
default 14-11 to 14-12
Delphi 14-2, 14-4 to 14-5
scope 14-6 to 14-7

exception objects 14-1, 14-6
CLX 14-10 to 14-11
defining classes 14-13
Delphi 14-3, 14-5

exceptions 3-6, 14-1 to 14-13
COM interfaces 41-9
flow of control 14-2, 14-4, 14-6 to 14-7
handlers 14-4 to 14-8
Linux 15-19
raising 14-3, 14-7 to 14-8
reraising 14-7 to 14-8
resources and 14-8
silent 14-12 to 14-13
threads 13-6
unhandled 14-11 to 14-12
VCL 14-9 to 14-13

exclusive locks, tables 26-6
Exclusive property 26-6
ExecProc method 24-55, 28-11
ExecSQL method 24-48, 24-49, 28-11

update objects 26-47

executable files
COM servers 40-7
internationalizing 17-10, 17-12
on Linux 15-19

Execute method
ADO commands 27-19, 27-20
client datasets 29-28, 30-3
connection components 23-10 to 23-11
dialogs 9-17
providers 30-3
TBatchMove 26-52
threads 13-4

ExecuteOptions property 27-12
ExecuteTarget method 9-31
Expandable property 20-24
Expanded property

columns 20-23, 20-24
data grids 20-20

Expression property 29-12
ExprText property 25-10

F
factory 35-5
Fetch Params command 29-28
FetchAll method 15-27, 26-34
FetchBlobs method 29-27, 30-3
FetchDetails method 29-27, 30-3
fetch-on-demand 29-27
FetchOnDemand property 29-27
FetchParams method 29-28, 30-3
field attributes 25-13 to 25-14

assigning 25-14
in data packets 30-6
removing 25-14

field definitions 24-39
Field Link designer 24-36
field objects 25-1 to 25-29

accessing values 25-20 to 25-21
defining 25-5 to 25-11
deleting 25-11
display and edit properties 25-11
dynamic 25-2 to 25-3

persistent vs. 25-2
events 25-16
persistent 25-3 to 25-16

dynamic vs. 25-2
properties 25-1, 25-11 to 25-16

runtime 25-13
sharing 25-13

field types, converting 25-17, 25-19 to 25-20
FieldByName method 24-32, 25-21
FieldCount property, persistent fields 20-18

I n d e x I-19

FieldDefs property 24-39
FieldKind property 25-12
FieldName property 25-6, 25-12, 31-40

data grids 20-20, 20-21
decision grids 22-12
persistent fields 20-17

fields 25-1 to 25-29
abstract data types 25-23 to 25-29
activating 25-17
adding to forms 12-27 to 12-28
assigning values 24-22
changing values 20-6
default formats 25-15
default values 25-22
displaying values 20-11, 25-18
entering data 24-19, 25-15
hidden 30-5
limiting valid data 25-22 to 25-23
listing 23-14
mutually-exclusive options 20-2
null values 24-22
persistent columns and 20-18
properties 25-1
read-only 20-6
retrieving data 25-18
updating values 20-5

Fields editor 8-20, 25-3
applying field attributes 25-14
creating persistent fields 25-4 to 25-5,

25-5 to 25-11
defining attribute sets 25-13
deleting persistent fields 25-11
list of fields 25-4
navigation buttons 25-4
removing attribute sets 25-14
reordering columns 20-20
title bar 25-4

Fields property 25-21
FieldValues property 25-20
file lists

dragging items 7-2, 7-3
dropping items 7-3

file permissions, Linux 15-19
file streams

changing the size of 5-5
creating 5-7
end of marker 5-5
exceptions 5-2
file I/O 5-6 to 5-8
getting a handle 5-11
opening 5-7
portable 5-6

FileAge function 5-10
file-based applications 19-9 to 19-10

client datasets 29-33 to 29-35

FileExists function 5-8
FileGetDate function 5-10
FileName property, client datasets 19-10, 29-34,

29-35
files 5-5 to 5-14

copying 5-11
date-time routines 5-10
deleting 5-8
finding 5-8
graphics 12-19 to 12-21
handles 5-6, 5-8, 5-11
incompatible types 5-6
manipulating 5-8 to 5-11
modes 5-7
position 5-5
reading and writing strings 5-3
renaming 5-10
resource 9-45 to 9-46
routines

date-time routines 5-10
runtime library 5-8, 5-11
Windows API 5-6

seeking 5-4
sending over the Web 34-13
size 5-5
types

text 5-6
typed 5-6
untyped 5-6

working with 5-5 to 5-14
files streams 5-6 to 5-8
FileSetDate function 5-10
fill patterns 12-8
FillRect method 12-4
Filter property 24-13, 24-14 to 24-15
Filtered property 24-13
FilterGroup property 27-13, 27-14
FilterOnBookmarks method 27-11
FilterOptions property 24-16
filters 24-13 to 24-16

blank fields 24-14
case sensitivity 24-16
client datasets 29-3 to 29-5

using parameters 29-29
comparing strings 24-16
defining 24-13 to 24-16
enabling/disabling 24-13
operators 24-14
options for text fields 24-16
queries vs. 24-13
ranges vs. 24-31
setting at runtime 24-16
using bookmarks 27-11 to 27-12

finally blocks 14-8 to 14-9
Delphi 14-9

I-20 D e v e l o p e r ’ s G u i d e

__finally keyword 14-9
FindClose procedure 5-8
FindDatabase method 26-20
FindFirst function 5-8
FindFirst method 24-16
FindKey method 24-28, 24-30

EditKey vs. 24-30
FindLast method 24-16
FindNearest method 24-28, 24-30
FindNext function 5-8
FindNext method 24-16
FindPrior method 24-16
FindResourceHInstance function 17-11
FindSession method 26-30
First Impression 18-5
First method 24-6
FixedColor property 10-16
FixedCols property 10-16
FixedOrder property 9-52, 10-9
FixedRows property 10-16
FixedSize property 10-9
FlipChildren method 17-6
FloodFill method 12-4
fly-by help 10-16
fly-over help 20-31
focus 3-10

fields 25-17
moving 10-6

FocusControl method 25-17
FocusControl property 10-4
Font property 10-2, 10-4, 12-4

column headers 20-21
data grids 20-21
data-aware memo controls 20-9

fonts 18-14
height of 12-5

Footer property 34-21
FOREIGN KEY constraint 30-13
foreign translations 17-1
form files 3-8, 15-17, 17-12
form linking 9-4
Format property 22-12
formatting data, international applications 17-8
forms 9-1

accessing from other forms 4-6
adding fields to 12-27 to 12-28
adding to projects 9-1 to 9-4
adding unit references 9-4
as object types 4-2 to 4-4
code editor and 4-2
creating at runtime 9-7
displaying 9-6
drill down 20-15
global variable for 9-6

IDE 4-2
instantiating 4-3
linking 9-4
main 9-3
master/detail tables 20-15
memory management 9-6
modal 9-6
modeless 9-6, 9-8
passing arguments to 9-8 to 9-9
querying properties, example 9-10
referencing 9-4
retrieving data from 9-9 to 9-12
sharing event handlers 12-15
synchronizing data 20-4
using local variables to create 9-8

Formula One 18-5
Found property 24-17
FoxPro tables, local transactions 26-32
FrameRect method 12-4
frames 9-13, 9-14 to 9-16

and component templates 9-15, 9-16
graphics 9-16
resources 9-16
sharing and distributing 9-16

Free method 4-9, 15-11
free threading 43-8
FreeBookmark method 24-10
free-threaded marshaler 43-8
FromCommon 5-38

G
$G compiler directive 16-11, 16-13
Generate event support code 43-11
GetAliasDriverName method 26-27
GetAliasNames method 26-27
GetAliasParams method 26-27
GetBookmark method 24-10
GetConfigParams method 26-27
GetData method, fields 25-17
GetDatabaseNames method 26-27
GetDriverNames method 26-27
GetDriverParams method 26-27
GetFieldByName method 34-9
GetFieldNames method 23-14, 26-27
GetGroupState method 29-10
GetHandle 8-27
GetHelpFile 8-27
GetHelpStrings 8-27
GetIDsOfNames method 43-14
GetIndexNames method 23-14, 24-27
GetNextPacket method 15-27, 26-34, 29-26, 29-27,

30-3
GetOptionalParam method 29-16, 30-6

I n d e x I-21

GetOwner method 3-7
GetParams method 30-3
GetPassword method 26-22
GetProcedureNames method 23-14
GetProcedureParams method 23-15
GetProperty method 5-52
GetRecords method 30-3, 30-7
GetSessionNames method 26-30
GetSOAPHeaders function 38-16
GetSOAPServer method 31-17, 31-30
GetStoredProcNames method 26-27
GetTableNames method 23-14, 26-27
GetVersionEx function 18-15
GetViewerName 8-26
GetXML method 32-10
Global Offset Table (GOT) 15-16
global routines 5-1
Glyph property 9-48, 10-7
GNU assembler 15-12
GNU make utility 15-19
GotoBookmark method 24-10
GotoCurrent method 24-42
GotoKey method 24-28, 24-29
GotoNearest method 24-28, 24-29
Graph Custom Control 18-5
graphic controls 3-9
Graphic property 12-18, 12-21
graphics

adding controls 12-17
adding to HTML 34-15
associating with strings 5-22
changing images 12-20
copying 12-22
deleting 12-22
displaying 10-18
drawing lines 12-5, 12-10, 12-28 to 12-29

changing pen width 12-6
event handlers 12-26

drawing vs. painting 12-4, 12-22
file formats 12-3
files 12-19 to 12-21
in frames 9-16
internationalizing 17-8
loading 12-19
owner-draw controls 7-13
pasting 12-23
programming overview 12-1 to 12-3
replacing 12-20
resizing 12-20, 20-10
rubber banding example 12-24 to 12-29
saving 12-20
types of objects 12-3

graphics boxes 20-2
graphics objects, threads 13-5
GridLineWidth property 10-16

grids 10-16, 20-2
adding rows 24-19
color 12-6
customizing 20-17 to 20-22
data-aware 20-15, 20-28
default state 20-16
displaying data 20-16, 20-17, 20-28
drawing 20-26
editing data 20-6, 20-26
getting values 20-17
inserting columns 20-18
removing columns 20-17, 20-19
reordering columns 20-19
restoring default state 20-22
runtime options 20-24 to 20-25

group boxes 10-13
Grouped property, tool buttons 9-51
GroupIndex property 10-8

menus 9-45
speed buttons 9-48

grouping components 10-12 to 10-14
grouping levels 29-10

maintained aggregates 29-13
GroupLayout property 22-10
Groups property 22-10
GUI applications 9-1
GUIDs 4-16, 40-4, 41-8

H
$H compiler directive 5-30
Handle property 5-8, 39-7

device context 12-1, 12-2
HandleException method 14-11
handles

resource modules 17-11
socket connections 39-7

HandleShared property 26-16
HandlesTarget method 9-31
HasConstraints property 25-12
HasFormat method 7-11, 12-23
header controls 10-14
Header property 34-21
headers

HTTP requests 33-4
owner-draw 7-13
SOAP 38-16 to 38-18, 38-23

Height property 9-5
list boxes 20-11
TScreen 18-13

Help
context sensitive 10-16
hints 10-16
tool-tip 10-16
type information 41-8

I-22 D e v e l o p e r ’ s G u i d e

Help hints 20-31
Help Manager 8-24, 8-25 to 8-34
Help selectors 8-30, 8-33
Help systems 8-24

interfaces 8-25
registering objects 8-30
tool buttons 9-52

Help viewers 8-24
HelpContext 8-32
HelpContext property 8-31, 10-16
helper objects 5-1
HelpFile property 8-32, 10-16
HelpIntfs unit 8-25
HelpKeyword 8-32
HelpKeyword property 8-31
HelpSystem 8-32
HelpType 8-31, 8-32
heterogeneous queries 26-9 to 26-10

Local SQL 26-9
hidden fields 30-5
Hint property 10-16
hints 10-16
Hints property 20-31
horizontal track bars 10-5
HorzScrollBar 10-5
host names 39-4

IP addresses vs. 39-5
Host property, TSocketConnection 31-24
hosts 31-24, 39-4

addresses 39-4
URLs 33-3

hot keys 10-6
HotImages property 9-50
HotKey property 10-6
HTML commands 34-14

database information 34-19
generating 34-15

HTML documents 33-5
ASP and 44-1
databases and 34-18
dataset page producers 34-19
datasets 34-21
embedded ActiveX controls 45-1
embedding tables 34-21
generated for ActiveForms 45-6
HTTP response messages 33-6
InternetExpress applications 31-33
page producers 34-14 to 34-18
style sheets 31-40
table producers 34-20 to 34-21
templates 31-39, 31-41 to 31-42, 34-14 to 34-16

HTML forms 31-40
HTML Result tab 35-2
HTML Script tab 35-2

HTML tables 34-15, 34-21
captions 34-21
creating 34-20 to 34-21
setting properties 34-20

HTML templates 31-41 to 31-42, 34-14 to 34-18,
35-4

default 31-39, 31-41
HTMLDoc property 31-39, 34-15
HTMLFile property 34-15
HTML-transparent tags

converting 34-14, 34-16
parameters 34-14
predefined 31-41 to 31-42, 34-15
syntax 34-14

HTTP 33-3
connecting to application server 31-25
message headers 33-3
multi-tiered applications 31-10 to 31-11
overview 33-5 to 33-6
request headers 33-4, 34-9, 44-4
request messages See request messages
response headers 34-13, 44-5
response messages See response messages
SOAP 38-1
status codes 34-12

HTTP requests, images 35-26
HTTP responses

actions 35-25
images 35-27

httpsrvr.dll 31-10, 31-13, 31-25
HyperHelp viewer 8-24, 8-34
hypertext links, adding to HTML 34-15

I
IApplicationObject interface 44-4
IAppServer interface 29-31, 29-33, 30-3 to 30-4,

31-5
calling 31-28
extending 31-16
local providers 30-3
remote providers 30-3
state information 31-19
transactions 31-18
XML brokers 31-34

IAppServerSOAP interface 31-5, 31-26
IConnectionPoint interface 43-13
IConnectionPointContainer interface 43-13
icons 10-18

adding to menus 9-22
graphics object 12-3
toolbars 9-50
tree views 10-11

ICustomHelpViewer 8-24, 8-25, 8-27, 8-29
implementing 8-25, 8-26

I n d e x I-23

IDataIntercept interface 31-25
IDE, setting project options 8-3
identifiers, invalid 9-34
ideographic characters 17-3, 17-4

abbreviations and 17-7
IDispatch interface 40-9, 40-20, 43-13,

43-14 to 43-15
Automation 40-12
identifiers 43-14, 43-15

IDL (Interface Definition Language) 40-17, 40-19
Type Library editor 41-8

IDL compiler 40-19
IDL files, exporting from type library 41-27
IDOMImplementation 37-3
IETF protocols and standards 33-3
IExtendedHelpViewer 8-25, 8-29
$IFDEF directive 15-13
$IFEND directive 15-14
$IFNDEF directive 15-14
IHelpManager 8-25, 8-33
IHelpSelector 8-25, 8-29, 8-30
IHelpSystem 8-25, 8-33
IIDs 40-4
IInterface 4-14 to 4-15, 4-18

TInterfacedObject 4-15
IInvokable 4-21, 38-2
IIS 44-1

version 44-2
Image HTML tag () 34-15
image requests 35-26
ImageIndex property 9-50, 9-52
ImageList 9-21
ImageMap HTML tag (<MAP>) 34-15
images 10-18, 20-2

adding 12-17
adding control for 7-14
adding to menus 9-38
brushes 12-9
changing 12-20
controls for 12-2, 12-17
displaying 10-18
erasing 12-22
in frames 9-16
internationalizing 17-8
regenerating 12-2
saving 12-20
scrolling 12-17
tool buttons 9-50

Images property, tool buttons 9-50
IMarshal interface 43-15, 43-17
IME 17-7
ImeMode property 17-7
ImeName property 17-7
Implementation Editor 11-4, 11-7
implements keyword 4-16, 4-18

$IMPLICITBUILD compiler directive 16-11
Import ActiveX Control command 42-2, 42-4
Import Type Library command 42-2, 42-3
ImportedConstraint property 25-12, 25-23
$IMPORTEDDATA compiler directive 16-11
Increment property 10-5
incremental fetching 29-26, 31-19
incremental search 20-11
Indent property 9-48, 9-50, 9-52, 10-11
index definitions 24-39

copying 24-40
index files 26-6
Index Files editor 26-7
Index property, fields 25-12
index-based searches 24-11, 24-12, 24-28 to 24-30
IndexDefs property 24-39
indexes 24-26 to 24-38

batch moves and 26-51
client datasets 29-8 to 29-10
dBASE tables 26-6 to 26-7
deleting 29-9
grouping data 29-9 to 29-10
listing 23-14, 23-15, 24-27
master/detail relationships 24-36
ranges 24-31
searching on partial keys 24-30
sorting records 24-26 to 24-28, 29-8
specifying 24-27 to 24-28

IndexFieldCount property 24-27
IndexFieldNames property 24-28, 28-7, 29-8

IndexName vs. 24-28
IndexFields property 24-27
IndexFiles property 26-6
IndexName property 26-6, 28-7, 29-9

IndexFieldNames vs. 24-28
IndexOf method 5-20, 5-21
INFINITE constant 13-11
Inherit (Object Repository) 8-23
inheritance 4-2, 4-5

single 4-12
inheriting from classes 3-5 to 3-6
.ini files 15-20, 3-6, 5-11 to 5-13
InitWidget property 15-11
inner objects 40-9
in-process servers 40-7

ActiveX 40-13
ASP 44-7
MTS 46-2

input controls 10-4
input focus, fields 25-17
Input Mask editor 25-15
input method editor 17-7
input parameters 24-51
input/output parameters 24-51
Insert command (Menu designer) 9-40

I-24 D e v e l o p e r ’ s G u i d e

Insert From Resource command (Menu
designer) 9-40, 9-46

Insert from Resource dialog box 9-46
Insert From Template command (Menu

designer) 9-40, 9-42
Insert method 24-19

Append vs. 24-19
menus 9-44
strings 5-21

INSERT statement 23-12
INSERT statements 26-41, 26-44, 30-10
Insert Template dialog box 9-42
InsertObject method 5-22
InsertRecord method 24-22
InsertSQL property 26-41
Install COM+ objects command 46-26
Install MTS objects command 46-26
installation programs 18-2
Installing transactional objects 46-26
InstallShield Express 2-5, 18-1

deploying
applications 18-2
BDE 18-9
packages 18-3

instancing
COM objects 43-6
remote data modules 31-14

IntegralHeight property 10-10, 20-11
integrated debugger 2-5
integrity violations 26-52
InterBase page (Component palette) 19-2
InterBase tables 26-9
InterBaseExpress 15-23
interceptors 40-5
Interface Definition Language See IDL
interface pointers 40-5
interfaces 4-12 to 4-21

ActiveX 40-20
customizing 45-8 to 45-12

adding methods 43-10 to 43-11
adding properties 43-10
aggregation 4-16, 4-18
application servers 31-16 to 31-17,

31-28 to 31-30
as operator 4-16
assignment compatibility 4-13
Automation 43-13 to 43-15
CLSIDs 4-21
COM 4-21, 8-16, 40-1, 40-3 to 40-5, 41-9, 42-1,

43-3, 43-9 to 43-15
declarations 42-5
events 43-11

COM+ event objects 46-22
components and 4-20

controlling Unknown 4-20
CORBA 4-21
custom 43-15
delegation 4-17
Delphi 4-12
dispatch 43-14
distributed applications 4-21
DOM 37-2
dynamic binding 4-16, 41-9, 43-13
Dynamic Invocation Interface 4-21
dynamic querying 4-14
early binding 31-29
extending single inheritance 4-12, 4-13
Help system 8-25
IIDs 4-16, 4-20
IInterface 4-14
implementing 4-12, 4-15, 40-6, 43-3
internationalizing 17-7, 17-8, 17-12
invokable 4-21, 38-2 to 38-9
late binding 31-29
lifetime management 4-14, 4-18
marshaling 4-21
memory management 4-15, 4-18
naming 4-12
object destruction 4-18
optimizing code 4-19
outgoing 43-11, 43-12
polymorphism 4-12, 4-13
procedures 4-14
reference counting 4-14, 4-15, 4-19, 4-20
reusing code 4-16
SOAP 4-21
syntax 4-12
type libraries 40-12, 40-18, 42-5, 43-9
Type Library editor 41-9, 41-15, 41-21, 43-9
Web Services 38-1
XML nodes 37-5

InternalCalc fields 25-6, 29-11
indexes and 29-9

internationalizing applications 17-1
abbreviations and 17-7
converting keyboard input 17-7
localizing 17-11

Internet Engineering Task Force 33-3
Internet Information Server (IIS) 44-1

version 44-2
Internet servers 33-1 to 33-10
Internet standards and protocols 33-3
InternetExpress 31-33 to 31-42

vs. ActiveForms 31-32
InternetExpress page (Component palette) 6-8
intranets, host names 39-4
InTransaction property 23-7

I n d e x I-25

IntraWeb 36-1 to 36-8
application mode 36-1
documentation 36-8
page mode 36-1
standalone mode 36-1

invocation registry 38-3, 38-12
creating invokable classes 38-12

invokable classes, creating 38-12
invokable interfaces 4-21, 38-2 to 38-9

calling 38-20 to 38-22
implementing 38-11 to 38-13
namespaces 38-3
overloaded methods 38-2
registering 38-3

Invoke method 43-14
invokers 38-11
IObjectContext interface 40-15, 44-3, 46-4

methods to end transactions 46-12
IObjectControl interface 40-15, 46-2
IOleClientSite interface 42-16
IOleDocumentSite interface 42-16
IP addresses 39-4, 39-7

host names vs. 39-5
hosts 39-4

IProvideClassInfo interface 40-17
IProviderSupport interface 30-2
IPX/SPX protocols 39-1
IRequest interface 44-4
IResponse interface 44-5
is reserved word 4-8
ISAPI 36-1
ISAPI applications 33-6, 33-7

creating 34-1, 35-8
debugging 33-10
request messages 34-3

ISAPI DLLs 18-9
IsCallerInRole method 31-7, 46-15
IScriptingContext interface 44-2
ISecurityProperty interface 46-15
IServer interface 44-6
ISessionObject interface 44-6
ISOAPHeaders interface 38-16, 38-23
isolation transactions 19-5, 46-9
ISpecialWinHelpViewer 8-25
IsSecurityEnabled 46-15
IsValidChar method 25-17
ItemHeight property 10-10

combo boxes 20-12
list boxes 20-11

ItemIndex property 10-10
radio groups 10-13

Items property
list boxes 10-10
radio controls 20-14
radio groups 10-13

ITypeComp interface 40-18
ITypeInfo interface 40-18
ITypeInfo2 interface 40-18
ITypeLib interface 40-18
ITypeLib2 interface 40-18
IUnknown interface 4-21, 40-3, 40-4, 40-20

Automation controllers 43-14
IVarStreamable 5-49
IXMLNode 37-4 to 37-6, 37-7

J
javascript libraries 31-33, 31-35

locating 31-34, 31-35
just-in-time activation 31-7, 46-4 to 46-5

enabling 46-5

K
KeepConnection property 23-4, 23-12, 26-18
KeepConnections property 26-13, 26-18
key fields 24-33

multiple 24-32, 24-33
key violations 26-53
keyboard events, internationalization 17-7
keyboard input 3-10
keyboard mappings 17-7, 17-8
keyboard shortcuts 10-6

adding to menus 9-36 to 9-37
KeyExclusive property 24-30, 24-34
KeyField property 20-13
KeyFieldCount property 24-30
KeyViolTableName property 26-53
keyword-based help 8-28
KeywordHelp 8-32
keywords, finally 14-9
Kind property, bitmap buttons 10-7
Kylix 15-1

L
labels 10-3, 17-8, 20-2

columns 20-17
Last method 24-6
late binding 31-29

Automation 43-13, 43-15
Layout property 10-7
-LEpath compiler directive 16-13
Left property 9-5
LeftCol property 10-16
LeftPromotion method 5-45, 5-47
Length function 5-28
$LIBPREFIX directive 8-11
LibraryName property 28-4
$LIBSUFFIX directive 8-11
$LIBVERSION directive 8-11

I-26 D e v e l o p e r ’ s G u i d e

.lic file 45-7
license agreement 18-16
license keys 45-7
license package file 45-7
licensing

ActiveX controls 45-5, 45-7
Internet Explorer 45-7

lifetime management
components 4-20
interfaces 4-14, 4-18

lines
drawing 12-5, 12-10, 12-10, 12-28 to 12-29

changing pen width 12-6
event handlers 12-26

erasing 12-29
Lines property 10-2
LineSize property 10-5
LineTo method 12-4, 12-7, 12-10
Link HTML tag (<A>) 34-15
linker switches, packages 16-13
Linux

batch files 15-18
cross-platform applications 15-1 to 15-28
directories 15-20
Registry 15-18
Windows vs. 15-18 to 15-19

list boxes 10-10, 20-2, 20-12
data-aware 20-10 to 20-13
dragging items 7-2, 7-3
dropping items 7-3
owner-draw 7-13

draw-item events 7-17
measure-item events 7-16

populating 20-11
storing properties, example 9-9

list controls 10-9 to 10-12
List property 26-30
list views, owner draw 7-13
listening connections 39-3, 39-8, 39-9

closing 39-8
port numbers 39-5

ListField property 20-13
lists 5-14 to 5-22

accessing 5-16
accessing items 5-16
adding 5-15
adding items 5-15
collections 5-16
deleting 5-15
deleting items 5-15
persistent 5-16
rearranging 5-16
rearranging items 5-16
string 5-16, 5-17 to 5-22
using in threads 13-5

ListSource property 20-12
-LNpath compiler directive 16-13
LoadFromFile method

ADO datasets 27-15
client datasets 19-10, 29-34
graphics 12-19
strings 5-17

LoadFromStream method, client datasets 29-34
LoadPackage function 16-4
LoadParamListItems procedure 23-15
LoadParamsFromIniFile method 28-5
LoadParamsOnConnect property 28-5
local databases 19-3

accessing 26-5
aliases 26-25
BDE support 26-5 to 26-8
renaming tables 26-8

Local SQL 26-9, 26-10
heterogeneous queries 26-9

local transactions 26-32 to 26-33
locale settings 5-24
locales 17-2

data formats and 17-8
resource modules 17-9

LocalHost property
client sockets 39-7

localization 17-12
localizing applications 17-2
resources 17-9, 17-10, 17-12

localizing applications 17-12
LocalPort property, client sockets 39-7
Locate method 24-11
Lock method 13-8
locking objects

nesting calls 13-8
threads 13-8

LockList method 13-8
LockType property 27-13
LogChanges property 29-5, 29-35
logging in, Web connections 31-26
logical values 20-2, 20-13
Login dialog box 23-4
login events 23-5
login information, specifying 23-5
login pages, WebSnap 35-15 to 35-16
login scripts 23-4 to 23-6
login support, WebSnap 35-13 to 35-19
LoginPrompt property 23-4
logins, requiring 35-17
long strings 5-23
lookup combo boxes 20-2, 20-12 to 20-13

in data grids 20-21
lookup fields 20-12
populating 20-21
secondary data sources 20-12

I n d e x I-27

lookup fields 20-12, 25-6
caching values 25-10
defining 25-9 to 25-10
in data grids 20-21
performance 25-10
specifying 20-21

lookup list boxes 20-2, 20-12 to 20-13
lookup fields 20-12
secondary data sources 20-12

Lookup method 24-12
lookup values 20-18
LookupCache property 25-10
LookupDataSet property 25-10, 25-12
LookupKeyFields property 25-10, 25-12
LookupResultField property 25-12
.lpk file 45-7
LPK_TOOL.EXE 45-7
-LUpackage compiler directive 16-13

M
Macros view 11-4, 11-9
main form 9-3
main VCL thread 13-4

OnTerminate event 13-7
MainMenu component 9-33
maintained aggregates 19-16, 29-11 to 29-14

aggregate fields 25-10
specifying 29-12
subtotals 29-13
summary operators 29-12
values 29-14

make utility, Linux 15-19
Man pages 8-24
manifest file 9-54
mappings, XML 32-2 to 32-4
Mappings property 26-51
Margin property 10-7
marshaling 40-8

COM interfaces 40-8 to 40-9, 43-4,
43-15 to 43-17

custom 43-17
IDispatch interface 40-13, 43-15
transactional objects 46-3
Web Services 38-4

masks 25-15
master/detail forms 20-15

example 24-36 to 24-37
master/detail relationships 20-15, 24-35 to 24-38,

24-47 to 24-48
cascaded deletes 30-6
cascaded updates 30-6
client datasets 29-18
indexes 24-36
multi-tiered applications 31-18

nested tables 24-37 to 24-38, 31-19
referential integrity 19-5
TSimpleDataSet 29-36
unidirectional datasets 28-12 to 28-13

MasterFields property 24-35, 28-13
MasterSource property 24-35, 28-13
Max property

progress bars 10-15
track bars 10-5

MaxDimensions property 22-20
MaxLength property 10-2

data-aware memo controls 20-9
data-aware rich edit controls 20-9

MaxRecords property 31-37
MaxRows property 34-20
MaxStmtsPerConn property 28-3
MaxSummaries property 22-20
MaxTitleRows property 20-24
MaxValue property 25-12
MBCS 5-22
MDAC 18-7
MDI applications 8-2 to 8-3

active menu 9-45
creating 8-2
merging menus 9-44 to 9-45

measurement types, adding 5-34
measurements

converting 5-33 to 5-40
units 5-35

media devices 12-32
media players 6-7, 12-32 to 12-34

example 12-33
member functions 3-4
members pane 11-4, 11-7
Members view 11-4, 11-7
memo controls 7-6, 10-2
memo fields 20-2, 20-9

rich edit 20-9 to 20-10
memory management

components 4-9
decision components 22-9, 22-20
forms 9-6
interfaces 4-20

menu components 9-33
Menu designer 6-6, 9-33 to 9-37

context menu 9-40
menu items 9-35 to 9-37

adding 9-35, 9-44
defined 9-32
deleting 9-35, 9-40
editing 9-39
grouping 9-36
moving 9-38
naming 9-34, 9-44
nesting 9-37

I-28 D e v e l o p e r ’ s G u i d e

placeholders 9-40
separator bars 9-36
setting properties 9-39 to 9-40
underlining letters 9-36

Menu property 9-45
menus 9-32 to 9-44

accessing commands 9-36
action lists 9-19
adding 9-34, 9-37
adding images 9-38
colormaps 9-23
customizing 9-24
defined 9-19
disabling items 7-11
displaying 9-39, 9-40
handling events 6-6, 9-44
importing 9-45
internationalizing 17-7, 17-8
moving among 9-41
moving items 9-38
naming 9-34
owner-draw 7-13
pop-up 7-11, 7-12
reusing 9-40
saving as templates 9-41, 9-43
shortcuts 9-36 to 9-37
styles 9-23
templates 9-34, 9-40, 9-41, 9-42

merge modules 18-3
MergeChangeLog method 29-6, 29-34
message headers (HTTP) 33-3, 33-4
message loop, threads 13-5
message-based servers See Web server

applications
metadata 23-13 to 23-15

dbExpress 28-13 to 28-18
modifying 28-11 to 28-12
obtaining from providers 29-27

metafiles 10-18, 12-1, 12-19
when to use 12-3

Method property 34-10
methods 3-4, 4-1, 12-15

abstract 4-12
adding to ActiveX controls 45-9 to 45-10
adding to interfaces 43-10 to 43-11
declaring 12-15
deleting 6-6
event handlers 4-4

MethodType property 34-7, 34-10
Microsoft Server DLLs 33-6, 33-7

creating 34-1, 35-8
request messages 34-3

Microsoft Transaction Server 8-16
Microsoft Transaction Server See MTS
midas.dll 29-1, 31-3

midaslib.dcu 18-7, 31-3
MIDI files 12-33
MIDL 40-19 See IDL
MIME messages 33-6
MIME types and constants 12-22
Min property

progress bars 10-15
track bars 10-5

MinSize property 10-6
MinValue property 25-12
MM film 12-33
mobile computing 19-14
modal forms 9-6
Mode property 26-50

pens 12-5
modeless forms 9-6, 9-8
ModelMaker 11-1 to 11-10

Classes view 11-4, 11-5
collections pane 11-4, 11-5
Diagram Editor 11-4, 11-9
Diagrams view 11-4, 11-6
Documentation view 11-4, 11-9
editors pane 11-4, 11-7
Events view 11-4, 11-9
Implementation Editor 11-4, 11-7
Macros view 11-4, 11-9
members pane 11-4, 11-7
Members view 11-4, 11-7
models 11-2 to 11-3
Patterns view 11-4, 11-9
starting 11-2
Unit Code Editor 11-4, 11-8
Unit Difference view 11-4, 11-9
Units view 11-4, 11-5

models, ModelMaker 11-2 to 11-3
Modified property 10-2
Modifiers property 10-6
ModifyAlias method 26-26
ModifySQL property 26-41
modules

Type Library editor 41-11, 41-19, 41-25
types 8-17
Web types 35-2

most recenty used lists (MRU) 9-25
mouse buttons 12-25

clicking 12-25, 12-26
mouse-move events and 12-27

mouse events 12-24 to 12-27
defined 12-24
dragging and dropping 7-1 to 7-4
parameters 12-25
state information 12-25
testing for 12-27

mouse pointer, drag-and-drop 7-4

I n d e x I-29

MouseToCell method 10-16
.mov files 12-33
Move method, string lists 5-21, 5-22
MoveBy method 24-7
MoveCount property 26-52
MoveFile function 5-10
MovePt 12-29
MoveTo method 12-4, 12-7
.mpg files 12-33
MRU (most recently used) lists 9-25
MSI technology 18-3
MTS 8-16, 31-7, 40-11, 40-15, 46-1

COM+ vs. 46-2
in-process servers 46-2
object references 46-23 to 46-25
requirements 46-3
runtime environment 46-2
transactional objects 40-15
transactions 31-18
See also transactional objects

MTS executive 46-2
MTS Explorer 46-27
MTS packages 46-6, 46-26
multibyte character codes 17-3
multibyte character set 17-3
multibyte characters (MBCS) 15-16

cross-platform applications 15-13
multidimensional crosstabs 22-3
multi-line text controls 20-9
multimedia applications 12-30 to 12-34
multipage dialog boxes 10-14
multiple document interface 8-2 to 8-3
multiprocessing, threads 13-1
multi-read exclusive-write synchronizer 13-8

warning about use 13-9
MultiSelect property 10-10
multi-threaded applications, sessions 26-13,

26-29 to 26-30
Multitier page (New Items dialog) 31-2
multi-tiered applications 19-3, 19-13, 31-1 to 31-42

advantages 31-2
architecture 31-4, 31-5
building 31-11 to 31-30
callbacks 31-17
components 31-2 to 31-3
cross-platform 31-11
deploying 18-9
master/detail relationships 31-18
overview 31-3 to 31-4
parameters 29-28
server licenses 31-3
Web applications 31-31 to 31-42

MyBase 29-33

N
Name property

fields 25-12
menu items 6-6
parameters 24-52, 24-53

named connections 28-4 to 28-5
adding 28-5
deleting 28-5
loading at runtime 28-5
renaming 28-5

namespaces, invokable interfaces 38-3
naming a thread 13-13 to 13-15
navigator 20-2, 20-29 to 20-32, 24-5, 24-6

buttons 20-29
deleting data 24-20
editing 24-18
enabling/disabling buttons 20-30, 20-31
help hints 20-31
sharing among datasets 20-32

NDX indexes 26-7
nested details 24-37 to 24-38, 25-27 to 25-28, 31-19

fetch on demand 30-5
nested tables 24-37 to 24-38, 25-27 to 25-28, 31-19
.Net, Web Services 38-1
NetCLX 8-14

defined 3-1
NetFileDir property 26-24
Netscape Server DLLs, creating 34-2
network control files 26-24
networks, connecting to databases 26-15
neutral threading 43-9
New Field dialog box 25-5

defining fields 25-7, 25-9, 25-10
Field properties 25-6
Field type 25-6
Lookup definition 25-6

Dataset 25-9
Key Fields 25-9
Lookup Keys 25-9
Result Field 25-9

Type 25-6
New Items dialog 8-21, 8-22, 8-23
New Thread Object dialog 13-2
newsgroups 1-3
NewValue property 26-39, 30-11
Next method 24-7
NextRecordSet method 24-56, 28-9
non-blocking connections 39-10 to 39-11
no-nonsense license agreement 18-16
non-production index files 26-6
NOT NULL constraint 30-13
NOT NULL UNIQUE constraint 30-13
notebook dividers 10-14

I-30 D e v e l o p e r ’ s G u i d e

NotifyID 8-26
NSAPI 36-1
NSAPI applications 33-6

creating 34-1, 34-2, 35-8
debugging 33-10
request messages 34-3

null values, ranges 24-32
null-terminated routines 5-26 to 5-27
null-terminated strings 5-22
numbers, internationalizing 17-8
numeric fields, formatting 25-15
NumericScale property 24-46, 24-52, 24-53
NumGlyphs property 10-7

O
Object Broker 31-27
object contexts 46-4

ASP 44-3
transactions 46-9

object fields 25-23 to 25-29
types 25-24

Object HTML tag (<OBJECT>) 34-15
Object Inspector 4-4, 6-2

selecting menus 9-41
object pooling 46-8 to 46-9

disabling 46-8
remote data modules 31-8 to 31-9

Object Repository 8-21 to 8-24
adding items 8-22
database components 26-16
sessions 26-17
specifying shared directory 8-22
using items from 8-22 to 8-23

Object Repository dialog 8-21
ObjectBroker property 31-24, 31-25, 31-26, 31-27
ObjectContext property, example 46-14
object-oriented programming

defined 4-1
Delphi 4-1 to 4-21
inheritance 4-5

objects 4-1 to 4-11
accessing 4-5 to 4-6
creating 4-8, 4-9
customizing 4-5
destroying 4-9
dragging and dropping 7-1
events 4-4
inheritance 3-5 to 3-6, 4-5
instantiating 4-3
multiple instances 4-3
properties 4-2
records vs. 4-1
scripting 35-22
type declarations 4-7
See also COM objects

Objects property 10-16
string lists 5-22, 7-16

ObjectView property 20-22, 24-37, 25-24
.ocx files 18-5
ODBC drivers

using with ADO 27-1, 27-2, 27-3
using with the BDE 26-15, 26-16

ODL (Object Description Language) 40-17, 41-1
OEM character sets 17-3
OEMConvert property 10-3
OldValue property 26-39, 30-11
OLE

containers 6-7
merging menus 9-44

OLE DB 27-1, 27-2, 27-3
OleObject property 45-14
OLEView 40-19
OnAccept event 39-8, 39-10

server sockets 39-10
OnAction event 34-8
OnAfterPivot event 22-10
OnBeforePivot event 22-10
OnBeginTransComplete event 23-7, 27-9
OnCalcFields event 24-23, 25-7, 25-8, 29-11
OnCellClick event 20-27
OnChange event 25-16
OnClick event 10-7

buttons 4-3
menus 6-6

OnColEnter event 20-27
OnColExit event 20-27
OnColumnMoved event 20-20, 20-27
OnCommitTransComplete event 23-8, 27-9
OnConnect event 39-9
OnConnectComplete event 27-8
OnConstrainedResize event 9-5
OnDataChange event 20-4
OnDataRequest event 29-32, 30-3, 30-12
OnDblClick event 20-27
OnDecisionDrawCell event 22-13
OnDecisionExamineCell event 22-13
OnDeleteError event 24-20
OnDisconnect event 27-8, 39-7, 39-8
OnDragDrop event 7-3, 20-27
OnDragOver event 7-2, 20-27
OnDrawCell event 10-16
OnDrawColumnCell event 20-26, 20-27
OnDrawDataCell event 20-27
OnDrawItem event 7-17
OnEditButtonClick event 20-22, 20-27
OnEditError event 24-18
OnEndDrag event 7-3, 20-27
OnEndPage method 44-2
OnEnter event 20-27
OnError event 39-9

I n d e x I-31

one-to-many relationships 24-35, 28-12
OnException event 14-11
OnExecuteComplete event 27-9
OnExit event 20-27
OnFilterRecord event 24-13, 24-15 to 24-16
OnGetData event 30-7
OnGetDataSetProperties event 30-6
OnGetTableName event 26-11, 29-22, 30-12
OnGetText event 25-16
OnGetThread event 39-10
OnHandleActive event 39-9
OnHTMLTag event 31-42, 34-16, 34-17, 34-18
OnIdle event handler 13-5
OnInfoMessage event 27-9
OnKeyDown event 20-27
OnKeyPress event 20-27
OnKeyUp event 20-27
OnLayoutChange event 22-9
OnListening event 39-9
OnLogin event 23-5
OnMeasureItem event 7-16
OnMouseDown event 12-24, 12-25

parameters passed to 12-24, 12-25
OnMouseMove event 12-24, 12-26

parameters passed to 12-24, 12-25
OnMouseUp event 12-14, 12-24, 12-26

parameters passed to 12-24, 12-25
OnNewDimensions event 22-9
OnNewRecord event 24-19
OnPaint event 10-19, 12-2
OnPassword event 26-13, 26-22
OnPopup event 7-12
OnPostError event 24-21
OnReceive event 39-8, 39-11
OnReconcileError event 15-27, 26-34, 29-21, 29-23
OnRefresh event 22-7
OnRequestRecords event 31-37
OnResize event 12-2
OnRollbackTransComplete event 23-9, 27-9
OnScroll event 10-4
OnSend event 39-8, 39-11
OnSetText event 25-16
OnStartDrag event 20-27
OnStartPage method 44-2
OnStartup event 26-18
OnStateChange event 20-5, 22-9, 24-4
OnSummaryChange event 22-9
OnTerminate event 13-7
OnTitleClick event 20-27
OnTranslate event 32-7, 32-8
OnUpdateData event 20-4, 30-8, 30-9
OnUpdateError event 15-27, 26-34, 26-38 to 26-40,

29-23, 30-11
OnUpdateRecord event 26-34, 26-37 to 26-38,

26-41, 26-47

OnValidate event 25-16
OnWillConnect event 23-5, 27-8
Open method

connection components 23-3
datasets 24-4
queries 24-48
server sockets 39-8
sessions 26-18

OpenDatabase method 26-18, 26-19
OpenSession method 26-29, 26-30
optional parameters 29-15, 30-7
options, mutually exclusive 9-48
Options property 10-16

data grids 20-24
decision grids 22-13
providers 30-5 to 30-6
TSimpleDataSet 29-17

Oracle tables 26-12
Oracle8, limits on creating tables 24-40
ORDER BY clause 24-26
Orientation property

data grids 20-29
track bars 10-5

Origin property 12-28, 25-12
outer objects 40-9
outlines, drawing 12-5
out-of-process servers 40-7

ASP 44-7
output parameters 24-51, 29-27
Overload property 26-12
overloaded stored procedures 26-12
Owner property 3-8, 4-9
owner-draw controls 5-22, 7-13

declaring 7-13
drawing 7-15, 7-17
list boxes 10-10, 10-11
sizing 7-16

OwnerDraw property 7-13
ownership 3-8

P
$P compiler directive 5-30
Package Collection Editor 16-14
package collection files 16-14
package files 18-3
packages 16-1 to 16-16

collections 16-14
compiler directives 16-11
compiling 16-10 to 16-13

options 16-11
Contains list 16-7, 16-9
creating 8-11, 16-7 to 16-12
custom 16-5
default settings 16-8
deploying applications 16-14

I-32 D e v e l o p e r ’ s G u i d e

design-only option 16-7
design-time 16-1, 16-5 to 16-6
DLLs 16-1, 16-2
duplicate references 16-9
dynamically loading 16-4
editing 16-8
file name extensions 16-1
installing 16-6
internationalizing 17-10, 17-12
linker switches 16-13
naming 16-8
options 16-8
referencing 16-4
Requires list 16-7, 16-9
runtime 16-1, 16-3 to 16-5, 16-7
source files 16-2
using 8-11
using in applications 16-3 to 16-5
weak packaging 16-12

PacketRecords property 15-27, 26-34, 29-26
page controls 10-14

adding pages 10-14
page dispatchers 35-9, 35-23
page mode 36-1
page modules 35-2, 35-4
page producers 34-14 to 34-18, 35-2, 35-4,

35-6 to 35-7
chaining 34-17
Content method 34-15
ContentFromStream method 34-15
ContentFromString method 34-15
converting templates 34-16
data-aware 31-39 to 31-42, 34-19
event handling 34-16, 34-17, 34-18
templates 35-4
types 35-10

pages, Component palette 6-7
PageSize property 10-5
paint boxes 10-19
paintboxes 6-7
PanelHeight property 20-29
panels

adding speed buttons 9-47
attaching to form tops 9-47
beveled 10-18
speed buttons 10-8

Panels property 10-15
PanelWidth property 20-29
panes 10-6

resizing 10-6
PAnsiString 5-28
Paradox tables 26-3, 26-5

accessing data 26-9
adding records 24-19, 24-20
batch moves 26-53

DatabaseName 26-3
directories 26-24
local transactions 26-32
network control files 26-24
password protection 26-21 to 26-24
renaming 26-8
retrieving indexes 24-27

parallel processes, threads 13-1
ParamBindMode property 26-12
ParamByName method

queries 24-47
stored procedures 24-54

ParamCheck property 24-45, 28-12
parameter collection editor 24-45, 24-52
parameterized queries 24-43, 24-45 to 24-47

creating
at design time 24-45
at runtime 24-47

parameters
binding modes 26-12
client datasets 29-27 to 29-29

filtering records 29-29
dual interfaces 43-16
from XML brokers 31-37
HTML tags 34-14
input 24-51
input/output 24-51
mouse events 12-24, 12-25
output 24-51, 29-27
result 24-51
TXMLTransformClient 32-10

Parameters property 27-21
TADOCommand 27-20
TADOQuery 24-45
TADOStoredProc 24-52

ParamName property 31-40
Params property

client datasets 29-27, 29-28
queries 24-45, 24-47
stored procedures 24-52
TDatabase 26-15
TSQLConnection 28-4
XML brokers 31-37

ParamType property 24-46, 24-53
ParamValues property 24-47
ParentColumn property 20-24
ParentConnection property 31-31
ParentShowHint property 10-16
partial keys

searching 24-30
setting ranges 24-33

passthrough SQL 26-31, 26-32

I n d e x I-33

passwords
dBASE tables 26-21 to 26-24
implicit connections and 26-13
Paradox tables 26-21 to 26-24

PasteFromClipboard method 7-10
data-aware memo controls 20-9
graphics 20-10

PathInfo property 34-6
pathnames, Linux 15-19
paths (URLs) 33-3
patterns 12-9
Patterns view 11-4, 11-9
.pce files 16-14
PChar, string conversions 5-28
pdoxusrs.net 26-24
Pen property 12-4, 12-5
PenPos property 12-4, 12-7
pens 12-5

brushes 12-5
colors 12-6
default settings 12-5
drawing modes 12-29
getting position of 12-7
position, setting 12-7, 12-26
style 12-6
width 12-6

penwin.dll 16-12
persistent columns 20-16, 20-17 to 20-18

creating 20-18 to 20-22
deleting 20-17, 20-19
inserting 20-19
reordering 20-19

persistent fields 20-16, 25-3 to 25-16
ADT fields 25-25
array fields 25-26 to 25-27
creating 25-4 to 25-5, 25-5 to 25-11
creating tables 24-39
data packets and 30-4
data types 25-6
dataset fields 24-37
defining 25-5 to 25-11
deleting 25-11
listing 25-4, 25-5
naming 25-6
ordering 25-5
properties 25-11 to 25-16
special types 25-5, 25-6
switching to dynamic 25-4

persistent objects 3-7
persistent subscriptions 42-16
per-user subscriptions 42-16
PickList property 20-21
picture objects 12-3
Picture property 10-18, 12-17

in frames 9-16

pictures 12-17
changing 12-20
loading 12-19
replacing 12-20
saving 12-20

Pie method 12-4
Pixel property 12-4
pixels, reading and setting 12-9
Pixels property 12-5, 12-9
pmCopy constant 12-29
pmNotXor constant 12-29
Polygon method 12-4, 12-12
polygons 12-12

drawing 12-12
PolyLine method 12-4, 12-10
polylines 12-10

drawing 12-10
polymorphism 4-2

interfaces 4-12, 4-13
pop-up menus 7-11 to 7-12

displaying 9-39
drop-down menus and 9-37

PopupMenu component 9-33
PopupMenu property 7-12
Port property 39-8

TSocketConnection 31-24
porting applications

porting code 15-12 to 15-16
to Linux 15-2 to 15-16

ports 39-5
client sockets 39-7
multiple connections 39-5
server sockets 39-8
services and 39-2

Position property 10-5, 10-15
position-independent code (PIC) 15-7, 15-15, 15-16
Post method 24-21

Edit and 24-18
Precision property

fields 25-12
parameters 24-46, 24-52, 24-53

Prepared property
queries 24-48
stored procedures 24-55
unidirectional datasets 28-9

Preview tab 35-2
primary indexes, batch moves and 26-51
PRIMARY KEY constraint 30-13
printing 5-32
Prior method 24-7
priorities, using threads 13-1, 13-3
Priority property 13-3
private section 4-7
PrivateDir property 26-24
problem tables 26-53

I-34 D e v e l o p e r ’ s G u i d e

ProblemCount property 26-53
ProblemTableName property 26-53
ProcedureName property 24-50
programming templates 8-3
progress bars 10-15
project files

changing 2-2
distributing 2-5

Project Manager 9-4
project options 8-3

default 8-3
Project Options dialog box 8-3
project templates 8-23
projects, adding forms 9-1 to 9-4
properties 3-3, 4-2

adding to ActiveX controls 45-9 to 45-10
adding to interfaces 43-10
COM 40-3, 41-9

Write By Reference 41-9
COM interfaces 41-9
HTML tables 34-20
setting 6-2 to 6-3

properties, memo and rich edit controls 10-2
property editors 6-3
Property Page wizard 45-13
property pages 45-12 to 45-14

ActiveX controls 42-6, 45-3, 45-14
adding controls 45-13 to 45-14
associating with ActiveX control

properties 45-13
creating 45-13 to 45-14
imported controls 42-4
updating 45-13
updating ActiveX controls 45-14

Proportional property 12-3
protected blocks 14-1

cleanup code 14-8, 14-9
Delphi 14-2
nesting 14-6 to 14-7

protected section 4-7
protocols

choosing 31-9 to 31-11
connection components 31-9 to 31-11, 31-23
Internet 33-3, 39-1
network connections 26-15

Provider property 27-4
ProviderFlags property 30-5, 30-10
ProviderName property 19-12, 29-25, 30-3, 31-23,

31-37, 32-9
providers 30-1 to 30-13, 31-3

applying updates 30-4, 30-8, 30-11
associating with datasets 30-2
associating with XML documents 30-2, 32-8
client datasets and 29-24 to 29-32
client-generated events 30-12

data constraints 30-13
error handling 30-11
external 19-11, 29-18, 29-25, 30-1
internal 29-18, 29-25, 30-1
local 29-25, 30-3
remote 29-26, 30-3, 31-6
screening updates 30-11
supplying data to XML

documents 32-9 to 32-11
using update objects 26-11
XML 32-8 to 32-9

providing 30-1, 31-4
proxy 40-8, 40-9

transactional objects 46-2
PString 5-28
public section 4-6
published section 4-7
PVCS Version Manager 2-5
PWideString 5-28

Q
Qt painter 5-31
Qt widgets, creating 15-11
qualifiers 4-5 to 4-6
queries 24-24, 24-42 to 24-50

BDE-based 26-2, 26-9 to 26-11
concurrent 26-17
live result sets 26-10 to 26-11

bi-directional cursors 24-49
executing 24-49
filtering vs. 24-13
heterogeneous 26-9 to 26-10
HTML tables 34-21
master/detail relationships 24-47 to 24-48
optimizing 24-48 to 24-49, 24-50
parameterized 24-43
parameters 24-45 to 24-47

binding 24-45
from client datasets 29-29
master/detail relationships 24-47 to 24-48
named 24-45
properties 24-46
setting at design time 24-45
setting at runtime 24-47
unnamed 24-45

preparing 24-48 to 24-49
result sets 24-49
specifying 24-43 to 24-44, 28-6
specifying the database 24-42
TSimpleClientDataSet 29-37
unidirectional cursors 24-50
update objects 26-48
Web applications 34-21

I n d e x I-35

Query Builder 24-44
query part (URLs) 33-3
Query property, update objects 26-48
QueryInterface method 4-14, 4-18, 4-20, 40-4

aggregation 40-9

R
radio buttons 10-8, 20-2

data-aware 20-14
grouping 10-13
selecting 20-14

radio groups 10-13
raise reserved word 14-3
range errors 14-10
ranges 24-31 to 24-35

applying 24-35
boundaries 24-33
canceling 24-35
changing 24-34
filters vs. 24-31
indexes and 24-31
null values 24-32, 24-33
specifying 24-31 to 24-34

Rave Reports 21-1
RC files 9-45
RDBMS 19-3, 31-1
RDSConnection property 27-17
Read method, TFileStream 5-2
ReadBuffer method, TFileStream 5-2
ReadCommitted 23-10
README document 18-16
read-only

datasets, updating 19-11
fields 20-6
tables 24-38

ReadOnly property 10-2
data grids 20-20, 20-26
data-aware controls 20-6
data-aware memo controls 20-9
data-aware rich edit controls 20-9
fields 25-12
tables 24-38

ReasonString property 34-12
rebars 9-46, 9-51
ReceiveBuf method 39-8
Receiveln method 39-8
RecNo property, client datasets 29-2
Reconcile method 15-27, 26-34
RecordCount property, TBatchMove 26-52
records

adding 24-19 to 24-20, 24-22
appending 24-20, 26-8, 26-50, 26-51
batch operations 26-8, 26-50, 26-51
copying 26-8, 26-51
deleting 24-20, 24-41, 26-8, 26-51

displaying 20-28
fetching 28-8, 29-26 to 29-27

asynchronous 27-12
filtering 24-13 to 24-16
finding 24-11 to 24-12, 24-28 to 24-30
iterating through 24-8
marking 24-9 to 24-10
moving through 20-29, 24-5 to 24-9, 24-16
objects vs. 4-1
operations 26-8
posting 20-6, 24-21

data grids 20-26
when closing datasets 24-21

reconciling updates 29-23
refreshing 20-7, 29-31
repeating searches 24-30
search criteria 24-11, 24-12
sorting 24-26 to 24-28
synchronizing current 24-42
Type Library editor 41-10, 41-18, 41-24
updating 24-22 to 24-23, 26-8, 26-50, 26-51, 30-8,

31-37 to 31-38
client datasets 29-20 to 29-24
delta packets 30-8, 30-9
identifying tables 30-12
multiple 30-6
queries and 26-11
screening updates 30-11

XML documents and 32-11
RecordSet property 27-20
Recordset property 27-11
RecordsetState property 27-11
RecordStatus property 27-13, 27-14
Rectangle method 12-5, 12-11
rectangles, drawing 12-11
Reduced XML Data 37-2
reference counting 4-19

COM objects 40-4
interfaces 4-20

reference fields 25-23, 25-28 to 25-29
displaying 20-24

references
forms 9-4
packages 16-4

referential integrity 19-5
Refresh method 20-7, 29-31
RefreshLookupList property 25-10
RefreshRecord method 29-31, 30-3
Register method 12-3
RegisterComponents procedure 16-6
RegisterConversionType function 5-34, 5-35
RegisterHelpViewer 8-34

I-36 D e v e l o p e r ’ s G u i d e

registering
Active Server Objects 44-8
ActiveX controls 45-15
COM objects 43-17
conversion families 5-34

registering Help objects 8-30
RegisterNonActiveX procedure 45-3
RegisterPooled procedure 31-9
RegisterTypeLib function 40-18
RegisterViewer function 8-30
RegisterXSClass method 38-5
RegisterXSInfo method 38-5
Registry 17-8
REGSERV32.EXE 18-5
relational databases 19-1
Release 8-27
_Release method 4-14, 4-18, 4-20
Release method 40-4

TCriticalSection 13-8
release notes 18-16
releasing mouse buttons 12-26
relocatable code 15-15
remotable classes 38-4, 38-6 to 38-9

built-in 38-6
example 38-7 to 38-9
exceptions 38-18 to 38-19
headers 38-16
lifetime management 38-7
registering 38-5

remotable type registry 38-5, 38-18
remote applications, TCP/IP 39-1
remote connections 39-3

multiple 39-5
opening 39-7, 39-8
sending/receiving information 39-10
terminating 39-8

Remote Data Module wizard 31-13 to 31-14
remote data modules 8-21, 31-3, 31-6, 31-12,

31-13 to 31-21
child 31-21
COM-based 31-21
instancing 31-14
multiple 31-21, 31-30 to 31-31
parent 31-21
pooling 31-8 to 31-9
stateless 31-8, 31-9, 31-19 to 31-21
threading models 31-14, 31-15

Remote Database Management system 19-3
remote database servers 19-2
remote servers 26-9, 40-7

maintaining connections 26-19
unauthorized access 23-4

RemoteHost property 39-7
RemotePort property 39-7
RemoteServer property 29-25, 29-26, 31-22, 31-27,

31-34, 31-37, 32-9
RemoveAllPasswords method 26-22
RemovePassword method 26-22
RenameFile function 5-10, 5-11
RepeatableRead 23-10
reports 21-1

using QuickReport 19-16
Repository See Object Repository
Request for Comment (RFC) documents 33-3
request headers 34-9
request messages 34-3, 44-4

action items and 34-6
contents 34-11
dispatching 34-5
header information 34-9 to 34-11
HTTP overview 33-5 to 33-6
processing 34-5
responding to 34-8 to 34-9, 34-13
types 34-10
XML brokers 31-38

request objects, header information 34-4
RequestLive property 26-10
RequestRecords method 31-37
requests

adapters 35-25
dispatching 35-22
images 35-26

Requires list (packages) 16-7, 16-9
ResetEvent method 13-10
resizing controls 10-6, 18-13
ResolveToDataSet property 30-4
resolving 30-1, 31-4
resource dispensers 46-5

ADO 46-6
BDE 46-6

Resource DLLs
dynamic switching 17-11
wizard 17-9

resource files 9-45 to 9-46
loading 9-46

resource modules 17-8, 17-9, 17-10
resource pooling 46-5 to 46-8
resources

isolating 17-8
localizing 17-9, 17-10, 17-12
releasing 14-8
strings 17-8

resourcestring reserved word 17-8
response headers 34-13

I n d e x I-37

response messages 34-3, 44-5
contents 34-12, 34-13, 34-13 to 34-21
creating 34-11 to 34-13, 34-13 to 34-21
database information 34-18 to 34-21
header information 34-11 to 34-12
sending 34-8, 34-13
status information 34-12

response templates 34-14
responses

actions 35-25
adapters 35-25
images 35-27

RestoreDefaults method 20-22
result parameters 24-51
Resume method 13-12
retaining aborts 27-7
retaining commits 27-7
ReturnValue property 13-10
RevertRecord method 15-27, 26-34, 29-6
RFC documents 33-3
rich edit controls 10-2
rich text controls 7-6, 20-9 to 20-10
RightPromotion method 5-45, 5-47
role-based security 46-15
Rollback method 23-9
RollbackTrans method 23-9
root directories (Linux) 15-20
rounded rectangles 12-11
RoundRect method 12-5, 12-11
routines, null-terminated 5-26 to 5-27
RowAttributes property 34-20
RowCount property 20-13, 20-29
RowHeights property 7-16, 10-16
RowRequest method 30-3
rows 10-16, decision grids 22-12
Rows property 10-16
RowsAffected property 24-49
RPC 40-9
RTTI, invokable interfaces 38-2
rubber banding example 12-24 to 12-29
$RUNONLY compiler directive 16-11
runtime library 5-1
runtime packages 16-1, 16-3 to 16-5

S
safe arrays 41-13
safe references 46-24
SafeArray 41-13
safecall calling convention 41-9, 45-10
SafeRef method 46-24
Save as Template command (Menu designer) 9-40,

9-43
Save Attributes command 25-13
Save Template dialog box 9-43

SaveConfigFile method 26-26
SavePoint property 29-6
SaveToFile method 12-20

ADO datasets 27-15
client datasets 19-10, 29-35
strings 5-17

SaveToStream method, client datasets 29-35
scalability 19-11
ScaleBy property, TCustomForm 18-13
Scaled property, TCustomForm 18-13
ScanLine property

bitmap 12-9
bitmap example 12-18

schema information 28-13 to 28-18
fields 28-16
indexes 28-17
stored procedures 28-15, 28-18
tables 28-15

ScktSrvr.exe 31-9, 31-13, 31-24
SCM 8-5
scope (objects) 4-5 to 4-6
screen

refreshing 12-2
resolution 18-12

programming for 18-12, 18-13
Screen variable 9-2, 17-7
script objects 35-22
scripting 35-7

server-side 35-19 to 35-22
scripts

active 35-20
editing and viewing 35-21
generating in WebSnap 35-21
URLs 33-3

scroll bars 10-4
text windows 7-7 to 7-8

scrollable bitmaps 12-17
ScrollBars property 7-7, 10-16

data-aware memo controls 20-9
SDI applications 8-2 to 8-3
Sections property 10-14
security

databases 19-4, 23-4 to 23-6
DCOM 31-36
multi-tiered applications 31-2
registering socket connections 31-10
SOAP connections 31-26
transactional data modules 31-7, 31-9
transactional objects 46-15
Web connections 31-10, 31-25

Seek method, ADO datasets 24-28
Select Menu command (Menu designer) 9-40, 9-41
Select Menu dialog box 9-41
SELECT statements 24-43

I-38 D e v e l o p e r ’ s G u i d e

SelectAll method 10-3
Selecting 35-10
Selection property 10-16
SelectKeyword 8-30
selectors, Help 8-30
SelEnd property 10-5
SelLength property 7-9, 10-2
SelStart property 7-9, 10-2, 10-5
SelText property 7-9, 10-2
SendBuf method 39-8
Sender parameter 6-5

event handlers 4-8
example 12-7

Sendln method 39-8
SendStream method 39-8
separator bars (menus) 9-36
server applications

architecture 31-5
COM 40-5 to 40-9, 43-1 to 43-18
interfaces 39-2
multi-tiered 31-5 to 31-11, 31-12 to 31-17
registering 31-11, 31-22
services 39-1
Web Services 38-9 to 38-20

server connections 39-3
port numbers 39-5

server sockets 39-7 to 39-8
accepting client requests 39-7, 39-10
error messages 39-8
event handling 39-9
socket objects 39-7
specifying 39-6, 39-7

server types 35-8
ServerGUID property 31-23
ServerName property 31-23
servers

Internet 33-1 to 33-10
Web application debugger 35-8

server-side scripting 35-7, 35-19 to 35-22
service applications 8-5 to 8-10

debugging 8-10
example 8-8
example code 8-6, 8-8

Service Control Manager 8-5, 8-10
Service Start name 8-9
service threads 8-8
services 8-5 to 8-10

example 8-8
example code 8-6, 8-8
implementing 39-1 to 39-2, 39-7
installing 8-5
name properties 8-9

network servers 39-1
ports and 39-2
requesting 39-6
uninstalling 8-6

Session variable 26-3, 26-16
SessionName property 26-3, 26-13, 26-29, 34-19
sessions 26-16 to 26-30

activating 26-18
associated databases 26-20 to 26-21
closing 26-18
closing connections 26-20
creating 26-28, 26-29
current state 26-18
databases and 26-13
datasets and 26-3 to 26-4
default 26-3, 26-13, 26-16 to 26-17
default connection properties 26-18
getting information 26-27
implicit database connections 26-13
managing aliases 26-25
managing connections 26-19 to 26-21
methods 26-13
multiple 26-13, 26-28, 26-29 to 26-30
multi-threaded applications 26-13,

26-29 to 26-30
naming 26-29, 34-19
opening connections 26-19
passwords 26-21
restarting 26-18
Web applications 34-18

Sessions property 26-30
sessions service 35-10, 35-13, 35-14 to 35-15
Sessions variable 26-17, 26-29
SetAbort method 46-5, 46-8, 46-12
SetBrushStyle method 12-8
SetComplete method 31-17, 46-5, 46-8, 46-12
SetData method 25-17
SetEvent method 13-10
SetFields method 24-22
SetKey method 24-28

EditKey vs. 24-30
SetLength procedure 5-28
SetOptionalParam method 29-15
SetPenStyle method 12-7
SetProvider method 29-25
SetRange method 24-33
SetRangeEnd method 24-32

SetRange vs. 24-33
SetRangeStart method 24-31

SetRange vs. 24-33
SetSchemaInfo method 28-13
Shape property 10-18

I n d e x I-39

shapes 10-18, 12-11 to 12-12, 12-14
drawing 12-11, 12-14
filling 12-8
filling with bitmap property 12-9
outlining 12-5

shared objects
defined 15-18
DLLs vs.

shared property groups 46-6
Shared Property Manager 46-6 to 46-8

example 46-7 to 46-8
sharing forms and dialogs 8-21 to 8-24
shell scripts, Linux 15-18
Shift states 12-25
ShortCut property 9-36
Show method 9-7, 9-8
ShowAccelChar property 10-4
ShowButtons property 10-11
ShowColumnHeaders property 10-12
ShowFocus property 20-29
ShowHint property 10-16, 20-31
ShowLines property 10-11
ShowModal method 9-6
ShowRoot property 10-11
ShutDown 8-26, 8-27
signalling events 13-10
signals, Linux 15-19
simple datasets 29-35 to 29-37

setting up 29-36
when to use 29-36

Simple Object Access Protocol See SOAP
single document interface 8-2 to 8-3
single inheritance 4-12
single-tiered applications 19-3, 19-9, 19-12

file-based 19-10
Size property

fields 25-12
parameters 24-46, 24-52, 24-53

slow processes, using threads 13-1
so files See shared objects
SOAP 38-1

application wizard 38-10
connecting to application servers 31-26
connections 31-11, 31-26
fault packets 38-18
headers 38-16 to 38-18, 38-23
multi-tiered applications 31-11

SOAP Data Module wizard 31-16
SOAP data modules 31-6
SOAPServerIID property 31-26, 31-30

socket components 39-6 to 39-8
socket connections 31-9 to 31-10, 31-24, 39-3

closing 39-8
endpoints 39-4, 39-6
multiple 39-5
opening 39-7, 39-8
sending/receiving information 39-10
types 39-3

socket dispatcher application 31-9, 31-13, 31-24
socket objects 39-6

client sockets 39-6
clients 39-6
server sockets 39-7

sockets 39-1 to 39-11
accepting client requests 39-3
assigning hosts 39-4
describing 39-4
error handling 39-9
event handling 39-8 to 39-10, 39-11
implementing services 39-1 to 39-2, 39-7
network addresses 39-4
providing information 39-4
reading from 39-11
reading/writing 39-10 to 39-11
writing to 39-11

SoftShutDown 8-26
software license requirements 18-15
sort order 17-8

client datasets 29-8
descending 29-9
setting 24-28
TSQLTable 28-7

Sorted property 10-10, 20-12
SortFieldNames property 28-7
source code

editing 2-2
optimizing 12-15
reusing
viewing, specific event handlers 6-4

source datasets, defined 26-49
source files

changing 2-2
packages 16-2, 16-7, 16-10
sharing (Linux) 15-17

SourceXml property 32-6
SourceXmlDocument property 32-6
SourceXmlFile property 32-6
Spacing property 10-7
SparseCols property 22-9
SparseRows property 22-9

I-40 D e v e l o p e r ’ s G u i d e

speed buttons 10-8
adding to toolbars 9-47 to 9-49
assigning glyphs 9-48
centering 9-47
engaging as toggles 9-49
event handlers 12-13
for drawing tools 12-13
grouping 9-48 to 9-49
initial state, setting 9-48
operational modes 9-47

splitters 10-6
SPX/IPX 26-15
SQL 19-2, 26-9

executing commands 23-10 to 23-12
local 26-9
standards 30-13

Decision Query editor and 22-7
SQL Builder 24-44
SQL Explorer 26-55, 31-3

defining attribute sets 25-14
SQL Links, drivers 26-9, 26-15, 26-32
SQL Monitor 26-55
SQL property 24-44

changing 24-49
SQL queries 24-43 to 24-44

copying 24-44
executing 24-49
loading from files 24-44
modifying 24-44
optimizing 24-50
parameters 24-45 to 24-47, 26-43

binding 24-45
master/detail relationships 24-47 to 24-48
setting at design time 24-45
setting at runtime 24-47

preparing 24-48 to 24-49
result sets 24-49
update objects 26-47

SQL servers, logging in 19-4
SQL statements

client-supplied 29-32, 30-6
decision datasets 22-5, 22-6
executing 28-10 to 28-11
generating

providers 30-4, 30-10 to 30-11
TSQLDataSet 28-9

parameters 23-11
passthrough SQL 26-32
provider-generated 30-12
update objects and 26-41 to 26-45

SQLConnection property 28-3, 28-19
SQLPASSTHRUMODE 26-32
standalone mode 36-1
standard components 6-7 to 6-9

StartTransaction method 23-7
state information

communicating 30-8, 31-19 to 31-21
managing 46-5
mouse events 12-25
shared properties 46-6
transactional objects 46-11

State property 10-8
datasets 24-3, 25-8
grid columns 20-16
grids 20-16, 20-18

stateless objects 46-11
static binding 31-29

COM 40-17
static text control 10-3
status bars 10-15

internationalizing 17-7
owner draw 7-13

status information 10-15
StatusCode property 34-12
StatusFilter property 15-27, 26-33, 27-13, 29-6,

29-19, 30-8
StdConvs unit 5-33, 5-34, 5-36
Step property 10-15
StepBy method 10-15
StepIt method 10-15
stored procedures 19-5, 24-24, 24-50 to 24-56

BDE-based 26-2, 26-11 to 26-12
parameter binding 26-12

creating 28-12
dbExpress 28-8
executing 24-55
listing 23-14
overloaded 26-12
parameters 24-51 to 24-54

design time 24-52 to 24-53
from client datasets 29-29
properties 24-52 to 24-53
runtime 24-54

preparing 24-55
specifying the database 24-50

StoredProcName property 24-50
StrByteType 5-24
streaming, components 3-8
streams 5-2 to 5-5

copying data 5-4
position 5-4
reading and writing data 5-2
seeking 5-4
size 5-4
storage media 5-4

Stretch property 20-10
StretchDraw method 12-5
string fields, size 25-6
string grids 10-16, 10-17

I n d e x I-41

String List editor 5-17
displaying 20-11

string lists 5-17 to 5-22
adding objects 7-15
adding to 5-21
associated objects 5-22
copying 5-21
creating 5-18 to 5-19
deleting strings 5-21
finding strings 5-20
iterating through 5-20
loading from files 5-17
long-term 5-18
moving strings 5-21
owner-draw controls 7-14 to 7-15
persistent 5-16
position in 5-20, 5-21
saving to files 5-17
short-term 5-18
sorting 5-21
substrings 5-20

strings 5-22 to 5-31
2-byte conversions 17-3
associating graphics 7-14
compiler directives 5-30
declaring and initializing 5-27
local variables 5-29
memory corruption 5-31
mixing and converting types 5-28
null-terminated 5-26 to 5-27
PChar conversions 5-28
reference counting issues 5-29
routines

case sensitivity 5-24
Multi-byte character support 5-24

size 7-9
sorting 17-8
starting position 7-9
translating 17-2, 17-7, 17-8
truncating 17-3
variable parameters 5-30

Strings property 5-20
StrNextChar function, Linux 15-13
Structured Query Language See SQL
stubs

COM 40-9
transactional objects 46-2

Style property 7-13, 10-10
brushes 10-18, 12-8
combo boxes 10-11, 20-11
list boxes 10-10
pens 12-5
tool buttons 9-51
Web items 31-41

style sheets 31-40

StyleRule property 31-41
styles, TApplication 15-6
Styles property 31-41
StylesFile property 31-41
submenus 9-37
subscriber objects 42-15 to 42-16
Subtotals property 22-12
summary values

crosstabs 22-3
decision cubes 22-20
decision graphs 22-15
maintained aggregates 29-14

support services 1-3
SupportCallbacks property 31-17
Suspend method 13-12
Synchronize method 13-5
synchronizing data, on multiple forms 20-4

T
tab controls 10-14

owner-draw 7-13
tab sets 10-14
Table HTML tag (<TABLE>) 34-15
table producers 34-20 to 34-21
TableAttributes property 34-20
TableName property 24-26, 24-39, 28-7
TableOfContents 8-30
tables 24-24, 24-25 to 24-42

BDE-based 26-2, 26-5 to 26-8
access rights 26-6
appending records 26-8
batch operations 26-8
binding 26-5
closing 26-5
copying records 26-8
deleteing records 26-8
exclusive locks 26-6
index-based searches 24-28
updating records 26-8

creating 24-38 to 24-41
indexes 24-39
persistent fields 24-39

dbExpress 28-7
defining 24-39
deleting 24-41
displaying in grids 20-16
emptying 24-41
field and index definitions 24-39

preloading 24-40
indexes 24-26 to 24-38
inserting records 24-19 to 24-20, 24-22
listing 23-14
master/detail relationships 24-35 to 24-38
nested 24-37 to 24-38

I-42 D e v e l o p e r ’ s G u i d e

non-database grids 10-16
ranges 24-31 to 24-35
read-only 24-38
searching 24-28 to 24-30
sorting 24-26, 28-7
specifying the database 24-25
synchronizing 24-42

TableType property 24-39, 26-5 to 26-6
tabs, draw-item events 7-17
Tabs property 10-14
tabular display (grids) 10-16
tabular grids 20-28
TAction 9-22
TActionClientItem 9-25
TActionList 9-20
TActionMainMenuBar 9-18, 9-19, 9-20, 9-21, 9-22,

9-24
TActionManager 9-18, 9-20, 9-21
TActionToolBar 9-18, 9-19, 9-20, 9-21, 9-22, 9-24
TActiveForm 45-3, 45-6
TAdapterDispatcher 35-23
TAdapterPageProducer 35-21
TADOCommand 27-2, 27-7, 27-10, 27-18 to 27-21
TADOConnection 19-8, 23-1, 27-2, 27-3 to 27-9,

27-10
connecting to data stores 27-3 to 27-5

TADODataSet 27-2, 27-9, 27-10, 27-16 to 27-17
TADOQuery 27-2, 27-9, 27-10

SQL command 27-18
TADOStoredProc 27-2, 27-9, 27-10
TADOTable 27-2, 27-9, 27-10
Tag property 25-12
TApplication 8-25, 8-32, 9-1

Styles 15-6
TApplicationEvents 9-2
TASM code, Linux 15-12
TASPObject 44-2
TBatchMove 26-49 to 26-53

error handling 26-52 to 26-53
TBCDField, default formatting 25-15
TBDEClientDataSet 26-2
TBDEDataSet 24-2
TBevel 10-18
TBitBtn control 10-7
TBrush 10-18
tbsCheck constant 9-51
TByteDynArray 38-4
TCanvas, using 5-22
TClientDataSet 29-18
TClientDataset 8-20
TClientSocket 39-6
TComObject, aggregation 4-18
TComplexVariantType 5-42
TComponent 3-5, 3-7, 4-9

defined 3-5

TControl 3-5, 3-9
defined 3-6

TConvType values 5-34
TConvTypeInfo 5-38
TCoolBand 10-9
TCoolBar 9-46
TCP/IP 26-15, 39-1

clients 39-6
connecting to application server 31-24
multi-tiered applications 31-9 to 31-10
servers 39-7

TCurrencyField, default formatting 25-15
TCustomADODataSet 24-2
TCustomClientDataSet 24-2
TCustomContentProducer 34-14
TCustomIniFile 5-13
TCustomizeDlg 9-24
TCustomVariantType 5-40, 5-42 to 5-50
TDatabase 19-8, 23-1, 26-3, 26-12 to 26-16

DatabaseName property 26-3
temporary instances 26-20

dropping 26-20
TDataSet 24-1

descendants 24-2 to 24-3
TDataSetProvider 30-1, 30-2
TDataSetTableProducer 34-21
TDataSource 20-3 to 20-5
TDateField, default formatting 25-15
TDateTimeField, default formatting 25-15
TDBChart 19-15
TDBCheckBox 20-2, 20-13 to 20-14
TDBComboBox 20-2, 20-10, 20-11 to 20-12
TDBCtrlGrid 20-2, 20-28 to 20-29

properties 20-29
TDBEdit 20-2, 20-8
TDBGrid 20-2, 20-15 to 20-27

events 20-27
properties 20-20

TDBGridColumns 20-16
TDBImage 20-2, 20-10
TDBListBox 20-2, 20-10, 20-11 to 20-12
TDBLookupComboBox 20-2, 20-10, 20-12 to 20-13
TDBLookupListBox 20-2, 20-10, 20-12 to 20-13
TDBMemo 20-2, 20-9
TDBNavigator 20-2, 20-29 to 20-32, 24-5, 24-6
TDBRadioGroup 20-2, 20-14
TDBRichEdit 20-2, 20-9 to 20-10
TDBText 20-2, 20-8
TDCOMConnection 31-24
TDecisionCube 22-1, 22-5, 22-7 to 22-9

events 22-7
TDecisionDrawState 22-13
TDecisionGraph 22-1, 22-2, 22-13 to 22-18

I n d e x I-43

TDecisionGrid 22-1, 22-2, 22-11 to 22-13
events 22-13
properties 22-12

TDecisionPivot 22-1, 22-2, 22-10
properties 22-10

TDecisionQuery 22-1, 22-5, 22-6
TDecisionSource 22-1, 22-9 to 22-10

events 22-9
properties 22-9

TDependency_object 8-9
TDragObject 7-3
TDragObjectEx 7-3
TDrawGrid 10-16
technical support 1-3
TEdit 10-1
temperature units 5-36
templates 8-21, 8-23

component 9-13
decision graphs 22-17
deleting 9-42
HTML 34-14 to 34-18
menus 9-34, 9-40, 9-41, 9-42
page producers 35-4
programming 8-3
Web Broker applications 34-3

Terminate method 13-6
Terminated property 13-6
test server, Web Application Debugger 35-8
TEvent 13-10
text

copying, cutting, pasting 7-10
deleting 7-10
in controls 7-6
internationalizing 17-7
owner-draw controls 7-13
printing 10-2
searching for 10-2
selecting 7-9, 7-9 to 7-10
working with 7-6 to 7-12

text controls 10-1 to 10-3
Text property 10-2, 10-11, 10-15
TextHeight method 12-5
TextOut method 12-5
TextRect method 12-5
TextWidth method 12-5
TField 24-1, 25-1 to 25-29

events 25-16
methods 25-17
properties 25-1, 25-11 to 25-16

runtime 25-13
TFiler 5-3
TFileStream 5-2, 5-6

file I/O 5-6 to 5-8
TFloatField, default formatting 25-15
TFMTBcdField, default formatting 25-15

TForm 4-2, 9-1
scroll-bar properties 10-5

TFrame 9-14
TGraphicControl 3-5
THeaderControl 10-14
themes, Windows XP 9-54
thin client applications 31-2, 31-32
thread classes, defining 13-2
thread function 13-4
thread objects 13-2

defining 13-2
initializing 13-3
limitations 13-2

Thread Status box 13-13
thread variables 13-6
thread-aware objects 13-5
ThreadID property 13-13
threading models 43-6 to 43-9

ActiveX controls 45-5
Automation objects 43-5
COM objects 43-4
remote data modules 31-14
system registry 43-7
transactional data modules 31-15
transactional objects 46-17 to 46-18

thread-local variables 13-6
OnTerminate event 13-7

threads 13-1 to 13-15
activities 46-18
avoiding simultaneous access 13-7
BDE and 26-13
blocking execution 13-7
converting unnamed to named 13-13
coordinating 13-4, 13-7 to 13-11
creating 13-12
critical sections 13-8
data access components 13-5
exceptions 13-6
executing 13-12
freeing 13-3, 13-4
graphics objects 13-5
ids 13-13
initializing 13-3
ISAPI/NSAPI programs 34-3, 34-18
limits on number 13-12
locking objects 13-8
message loop and 13-5
naming 13-13 to 13-15
priorities 13-1, 13-3

overriding 13-12
process space 13-4
returning values 13-10
service 8-8
stopping 13-12
terminating 13-6

I-44 D e v e l o p e r ’ s G u i d e

using lists 13-5
VCL thread 13-4
waiting for 13-10

multiple 13-10
waiting for events 13-10

thread-safe objects 13-5
threadvar 13-6
three-tiered applications See multi-tiered

applications
THTMLTableAttributes 34-20
THTMLTableColumn 34-21
THTTPRio 38-21
THTTPSoapDispatcher 38-9, 38-11
THTTPSoapPascalInvoker 38-9, 38-11
TIBCustomDataSet 24-2
TIBDatabase 19-9, 23-1
TickMarks property 10-5
TickStyle property 10-5
tiers 31-1
TImage, in frames 9-16
TImage component 10-18
TImageList 9-50
time, internationalizing 17-8
time conversion 5-35
time fields, formatting 25-15
timeout events 13-11
timers 6-7
TIniFile 5-11, 5-12
TInterfacedObject 4-15, 4-19

deriving from 4-15
implementing IInterface 4-15

TInvokableClass 38-12
accessing headers 38-16

TInvokeableVariantType 5-51 to 5-52
Title property, data grids 20-21
.TLB files 40-18, 41-2, 41-27
TLCDNumber 10-3
TLIBIMP command-line tool 40-19, 42-2, 42-5,

43-15
TLocalConnection 29-25, 31-5
TMainMenu 9-20
TMaskEdit 10-1
TMemIniFile 5-11, 5-12, 15-20
TMemo 10-1
TMemoryStream 5-2
TModels 38-15
TMTSDataModule 31-6
TMultiReadExclusiveWriteSynchronizer 13-9
TNestedDataSet 24-38
TObject 3-5, 4-9

defined 3-5
ToCommon 5-38
toggles 9-49, 9-51

TOleContainer 42-16 to 42-17
Active Documents 40-14

TOleControl 42-6
TOleServer 42-6
tool buttons 9-50

adding images 9-50
disabling 9-50
engaging as toggles 9-51
getting help with 9-52
grouping/ungrouping 9-51
in multiple rows 9-50
initial state, setting 9-50
wrapping 9-50

toolbars 9-46, 10-9
action lists 9-19
adding 9-49 to 9-51
adding panels as 9-47 to 9-49
colormaps 9-23
context menus 9-52
creating 9-20
customizing 9-24
default drawing tool 9-48
defined 9-19
designing 9-46 to 9-53
disabling buttons 9-50
hiding 9-53
inserting buttons 9-47 to 9-49, 9-50
owner-draw 7-13
setting margins 9-48
speed buttons 10-8
styles 9-23
transparent 9-50, 9-52

tool-tip help 10-16
Top property 9-5, 9-47
TopRow property 10-16
TPageControl 10-14
TPageDispatcher 35-23
TPageProducer 34-14
TPaintBox 10-19
TPanel 9-46, 10-13
TPersistent, defined 3-5
tpHigher constant 13-3
tpHighest constant 13-3
tpIdle constant 13-3
tpLower constant 13-3
tpLowest constant 13-3
tpNormal constant 13-3
TPopupMenu 9-52
TPrinter 5-32
TPropertyPage 45-13
tpTimeCritical constant 13-3
TPublishableVariantType 5-53
TQuery 26-2, 26-9 to 26-11

decision datasets and 22-6
TQueryTableProducer 34-21

I n d e x I-45

track bars 10-5
transaction attributes

setting 46-11
transactional data modules 31-15

transaction isolation level 23-9 to 23-10
local transactions 26-32
specifying 23-10

transaction parameters, isolation level 23-10
Transactional Data Module wizard 31-15
transactional data modules 31-6, 31-7 to 31-8

database connections 31-6, 31-8
interface 31-17
pooling 31-7
security 31-9
threading models 31-15
transaction attributes 31-15

Transactional Object wizard 46-16 to 46-19
transactional objects 40-11, 40-15, 46-1 to 46-27

activities 46-18 to 46-19
administering 40-15, 46-27
callbacks 46-25
characteristics 46-2 to 46-3
creating 46-15 to 46-19
deactivation 46-5
debugging 46-25 to 46-26
dual interfaces 46-3
installing 46-26 to 46-27
managing resources 46-3 to 46-9
marshaling 46-3
object contexts 46-4
pooling database connections 46-6
releasing resources 46-8
requirements 46-3
security 46-15
sharing properties 46-6 to 46-8
stateless 46-11
transactions 46-5, 46-9 to 46-14
type libraries 46-3

transactions 19-4 to 19-5, 23-6 to 23-10
ADO 27-7, 27-9

retaining aborts 27-7
retaining commits 27-7

applying updates 23-6, 31-17
atomicity 19-4, 46-9
attributes 46-10 to 46-11
automatic 46-13
BDE 26-31 to 26-33

controlling 26-31 to 26-32
implicit 26-31

cached updates 26-35
client-controlled 46-13
committing 23-8 to 23-9
composed of multiple objects 46-10
consistency 19-4, 46-9
durability 19-5, 46-9

ending 23-8 to 23-9, 46-12
IAppServer 31-18
isolation 19-5, 46-9

levels 23-9 to 23-10
local 26-32 to 26-33
local tables 23-6
MTS and COM+ 46-9 to 46-14
multi-tiered applications 31-17 to 31-18
nested 23-7

committing 23-8
object contexts 46-9
overlapped 23-7
rolling back 23-9
server-controlled 46-14
spanning multiple databases 46-9
starting 23-7 to 23-8
timeouts 46-14, 46-25
transaction components 23-8
transactional data modules 31-7, 31-15,

31-17 to 31-18
transactional objects 46-5, 46-9 to 46-14
using SQL commands 23-6, 26-32

transformation files 32-1 to 32-6
TXMLTransform 32-7
TXMLTransformClient 32-10
TXMLTransformProvider 32-9
user-defined nodes 32-5, 32-7 to 32-8

TransformGetData property 32-9
TransformRead property 32-8
TransformSetParams property 32-10
TransformWrite property 32-8
transient subscriptions 42-16
TransIsolation property 23-10

local transactions 26-32
translating character strings 17-2, 17-7, 17-8

2-byte conversions 17-3
translation 17-7
translation tools 17-1
Transliterate property 25-12, 26-50
transparent backgrounds 17-8
Transparent property 10-4
transparent toolbars 9-50, 9-52
TReader 5-3
tree views 10-11

owner-draw 7-13
TRegIniFile 15-20
TRegistry 5-11
TRegistryIniFile 5-11, 5-13
TRegSvr 18-5, 40-19
TRemotable 38-6
TRemotableXS 38-6
TRemoteDataModule 31-6
triangles 12-12
TRichEdit 10-1
triggers 19-5

I-46 D e v e l o p e r ’ s G u i d e

try blocks 14-2
try...except statements 14-4
try...finally statements 14-9
TScreen 9-1
TScrollBox 10-5, 10-13
TSearchRec 5-9
TServerSocket 39-7
TService_object 8-9
TSession 26-16 to 26-30

adding 26-28, 26-29
TSharedConnection 31-31
TSimpleDataSet 28-2, 29-18, 29-26, 29-29,

29-35 to 29-37
advantages and disadvantages 29-36
internal provider 30-1

TSoapAttachment 38-7
TSoapConnection 31-26
TSoapDataModule 31-6
TSOAPHeader 38-16
TSocketConnection 31-24
TSQLConnection 19-9, 23-1, 28-2 to 28-5

binding 28-3 to 28-5
monitoring messages 28-19

TSQLDataSet 28-2, 28-6, 28-7, 28-8
TSQLMonitor 28-19 to 28-20
TSQLQuery 28-2, 28-6
TSQLStoredProc 28-2, 28-8
TSQLTable 28-2, 28-7
TSQLTimeStampField, default formatting 25-15
TStoredProc 26-2, 26-11 to 26-12
TStream 5-2
TStringList 5-17 to 5-22, 8-28
TStrings 5-17 to 5-22
TTabControl 10-14
TTable 26-2, 26-5 to 26-8

decision datasets and 22-6
TTextBrowser 10-3
TTextViewer 10-3
TThread 13-2
TThreadList 13-5, 13-8
TTimeField, default formatting 25-15
TToolBar 9-20, 9-46, 9-49
TToolButton 9-46
TTreeView 10-11
TTypedComObject, type library

requirement 40-17
TUpdateSQL 26-40 to 26-48

providers and 26-11
TVarData record 5-41
TWebActionItem 34-3
TWebAppDataModule 35-2
TWebAppPageModule 35-2
TWebConnection 31-25
TWebContext 35-23
TWebDataModule 35-2
TWebDispatcher 35-23, 35-27

TWebPageModule 35-2
TWebResponse 34-3
TWidgetControl 3-5, 3-10, 15-5
TWinControl 3-10, 15-5, 17-7

defined 3-6
two-phase commit 31-18
two-tiered applications 19-3, 19-9, 19-12, 29-36
TWriter 5-3
TWSDLHTMLPublish 38-9, 38-19
TWSDLHTMLPublisher 38-11
TXMLDocument 37-4, 37-9
TXMLTransform 32-6 to 32-8

source documents 32-6
TXMLTransformClient 32-9 to 32-11

parameters 32-10
TXMLTransformProvider 30-1, 30-2, 32-8 to 32-9
type declarations

classes 4-7
enumerated types 12-12

type definitions, Type Library editor 41-10
type information 40-16, 41-1

dispinterfaces 43-13
Help 41-8
IDispatch interface 43-14
importing 42-2 to 42-6

type libraries 40-11, 40-12, 40-16 to 40-19,
41-1 to 41-28

_TLB unit 40-24, 41-2, 41-20, 42-2, 42-5 to 42-6,
43-15

accessing 40-18, 41-20, 42-2 to 42-6
Active Server Objects 44-3
ActiveX controls 45-3
adding

methods 41-22 to 41-23
properties 41-22 to 41-23

adding interfaces 41-21
benefits 40-18 to 40-19
browsers 40-18
browsing 40-19
contents 40-16, 41-1, 42-5 to 42-6
creating 40-17, 41-19 to 41-20
deploying 41-27 to 41-28
exporting as IDL 41-27
generated by wizards 41-1
IDL and ODL 40-17
importing 42-2 to 42-6
including as resources 41-27 to 41-28, 45-3
interfaces 40-18
modifying interfaces 41-21 to 41-23
opening 41-20
optimizing performance 41-9
registering 40-19, 41-27
registering objects 40-18
saving 41-26
tools 40-19

I n d e x I-47

transactional objects 46-3
type checking 40-18
uninstalling 40-19
unregistering 40-19
valid types 41-12 to 41-13
when to use 40-17

Type Library editor 40-17, 41-2 to 41-27
adding interfaces 41-21
aliases 41-10, 41-18

adding 41-24
application servers 31-16
binding attributes 45-12
CoClasses 41-10, 41-17

adding 41-23
COM+ page 46-5, 46-8
dispatch interfaces 41-16
dispinterfaces 41-9
elements 41-8 to 41-11

common characteristics 41-8
enumerated types 41-10, 41-17

adding 41-24
error messages 41-5, 41-8, 41-26
interfaces 41-9, 41-15

modifying 41-21 to 41-23
methods, adding 41-22 to 41-23
modules 41-11, 41-19

adding 41-25
Object list pane 41-5
Object Pascal vs. IDL 41-12, 41-13 to 41-19
opening libraries 41-20
parts 41-3 to 41-8
properties, adding 41-22 to 41-23
records 41-18
records and unions 41-10

adding 41-24
saving and registering type

information 41-25 to 41-27
selecting elements 41-5
status bar 41-5
syntax 41-12, 41-13 to 41-19
text page 41-8, 41-22
toolbar 41-3 to 41-5
type definitions 41-10
type information pages 41-6 to 41-8
unions 41-18
updating 41-26

type reserved word 12-12
types

Automation 43-16 to 43-17
Char 17-3
MIME 12-22
type libraries 41-12 to 41-13
Web Services 38-4 to 38-9

U
UCS standard 15-16
UDDI 38-15
UDDI browser 38-14 to 38-15

launching 38-15
locating businesses 38-15

UDP protocol 39-1
UML 11-1, 11-6, 11-9
UnaryOp method 5-47
Unassociate Attributes command 25-14
undocking controls 7-6
UndoLastChange method 29-6
Unicode characters 17-4

strings 5-23
unidirectional cursors 24-50
unidirectional datasets 28-1 to 28-20

binding 28-6 to 28-8
connecting to servers 28-2
editing data 28-11
executing commands 28-10 to 28-11
fetching data 28-8
fetching metadata 28-13 to 28-18
limitations 28-1
preparing 28-9
types 28-2

UniDirectional property 24-50
unindexed datasets 24-19, 24-22
unions, Type Library editor 41-10, 41-18, 41-24
Unit Code Editor 11-4, 11-8
Unit Difference view 11-4, 11-9
units

accessing from other units 4-6
CLX 15-8 to 15-11
including packages 16-4
VCL 15-8 to 15-11

Units view 11-4, 11-5
units, in conversion 5-34
Universal Description, Discovery, and Integration

See UDDI
Unlock method 13-8
UnlockList method 13-8
UnregisterPooled procedure 31-9
UnRegisterTypeLib function 40-19
update errors

resolving 29-21, 29-23 to 29-24, 30-8, 30-11
response messages 31-38

update objects 26-40 to 26-48, 29-19
executing 26-46 to 26-48
parameters 26-43, 26-47, 26-48
providers and 26-11
queries 26-48
SQL statements 26-41 to 26-45
using multiple 26-45 to 26-48

I-48 D e v e l o p e r ’ s G u i d e

Update SQL editor 26-42 to 26-43
Options page 26-42
SQL page 26-42

UPDATE statements 26-41, 26-44, 30-10
UpdateBatch method 15-27, 27-13, 27-15
UpdateMode property 30-10

client datasets 29-22
UpdateObject method 45-13, 45-14
UpdateObject property 26-11, 26-33, 26-41, 26-45
UpdatePropertyPage method 45-13
UpdateRecordTypes property 15-27, 26-33, 29-19
UpdatesPending property 15-27, 26-33
UpdateStatus property 15-27, 26-33, 27-13, 29-19,

30-9
UpdateTarget method 9-31
URI vs.URL 33-4
URL property 31-25, 31-26, 34-9, 38-22
URLs 33-3

host names 39-4
IP addresses 39-4
javascript libraries 31-34, 31-35
SOAP connections 31-26
vs. URIs 33-4
Web browsers 33-5
Web connections 31-25

Use Unit command 8-20, 9-4
user interfaces 9-1

databases 19-15 to 19-16
forms 9-1 to 9-4
isolating 19-6
layout 9-5
multi-record 20-14
organizing data 20-7 to 20-8, 20-14 to 20-15
single record 20-7

user list service 35-10, 35-13
uses clause 4-6, 15-6

adding data modules 8-20
avoiding circular references 9-4
including packages 16-4

UseSOAPAdapter property 31-26

V
$V compiler directive 5-31
validating data entry 25-16
Value property

aggregates 29-14
fields 25-18
parameters 24-46, 24-53

ValueChecked property 20-13
values, default data 20-10
Values property

radio groups 20-14
ValueUnchecked property 20-13, 20-14
VarCmplx unit 5-42

variables
declaring 4-7
objects 4-7 to 4-8

Variant type 5-40
variants, custom 5-40 to 5-53
VCL

CLX vs. 3-2
defined 3-1
main thread 13-4
messages 15-12
overview 3-1 to 3-3
TComponent branch 3-7
TControl branch 3-9
TObject branch 3-6
TPersistent branch 3-7
TWinControl branch 3-10
units 15-8 to 15-11

vcl60.bpl 16-1, 16-9, 18-6
penwin.dll 16-12

VendorLib property 28-4
version control 2-5
version information

ActiveX controls 45-5
type information 41-8

vertical track bars 10-5
VertScrollBar 10-5
video casettes 12-33
video clips 12-30, 12-32
viewing scripts 35-21
ViewStyle property 10-12
visibility 4-6 to 4-7
Visible property 3-3

cool bars 9-53
fields 25-12
menus 9-44
toolbars 9-53

VisibleButtons property 20-30, 20-31
VisibleColCount property 10-16
VisibleRowCount property 10-16
VisualCLX

defined 3-2
packages 16-9
WinCLX vs. 15-5 to 15-6

visualclx package 16-1
VisualSpeller Control 18-5
vtables 40-5

COM interface pointer 40-5
component wrappers 42-6
creator classes and 42-5, 42-13
dual interfaces 43-13
type libraries and 40-17
vs dispinterfaces 41-9

I n d e x I-49

W
W3C 37-2
WaitFor method 13-10, 13-11
WantReturns property 10-3
WantTabs property 10-3

data-aware memo controls 20-9
data-aware rich edit controls 20-9

.wav files 12-33
wchar_t widechar 15-16
weak packaging 16-12
$WEAKPACKAGEUNIT compiler directive 16-11
Web application debugger 33-9, 34-2, 35-8
Web application modules 35-2, 35-3 to 35-4
Web application object 34-3
Web applications

ActiveX 31-32, 40-14, 45-1, 45-15 to 45-17
ASP 40-13, 44-1
database 31-31 to 31-42
deploying 18-9

Web Broker 8-14
Web Broker server applications 33-1 to 33-3,

34-1 to 34-21
accessing databases 34-18
adding to projects 34-3
architecture 34-3
creating 34-1 to 34-3
creating responses 34-8
event handling 34-5, 34-7, 34-9
managing database connections 34-18
overview 34-1 to 34-4
posting data to 34-11
querying tables 34-21
response templates 34-14
sending files 34-13
templates 34-3
Web dispatcher 34-5

Web browsers. URLs 33-5
Web connections 31-10 to 31-11, 31-25
Web data modules 35-2, 35-3, 35-5

structure 35-5
Web deployment 45-15 to 45-17

multi-tiered applications 31-33
Web Deployment Options dialog box 45-16
Web dispatcher

auto-dispatching objects 31-37
handling requests 34-3

Web items 31-39
properties 31-40 to 31-41

Web modules 34-2 to 34-3, 34-5, 35-2, 35-2 to 35-5
adding database sessions 34-18
DLLs and, caution 34-3
types 35-2

Web page editor 31-39 to 31-40
Web page modules 35-2, 35-4
Web pages 33-5

InternetExpress page producer 31-39 to 31-42
Web scripting 35-7
Web server application 36-1
Web server applications 8-13, 8-14, 33-1 to 33-10

ASP 44-1
debugging 33-9 to 33-10
multi-tiered 31-33 to 31-42
overview 33-6 to 33-10
resource locations 33-3
standards 33-3
types 33-6

Web servers 31-33, 33-1 to 33-10, 44-6
client requests and 33-5
debugging 34-2
types 35-8

Web Service Definition Language See WSDL
Web Services 38-1 to 38-22

adding 38-11 to 38-13
attachments 38-7
clients 38-20 to 38-22
complex types 38-4 to 38-9
data context 38-7
exceptions 38-18 to 38-19
fail-over support 38-14
headers 38-16 to 38-18, 38-23
implementation classes 38-11 to 38-13
importing 38-13 to 38-14
namespaces 38-3
registering implementation classes 38-12
servers 38-9 to 38-20
wizard 38-10 to 38-14
writing servers 38-9 to 38-19

Web site (technical support) 1-3
WebDispatch property 31-38, 38-11
WebPageItems property 31-39
WebServices page (Component palette) 31-2
WebServices page (New Items dialog) 31-2
WebSnap 33-1 to 33-3

access rights 35-17 to 35-19
login pages 35-15 to 35-16
login support 35-13 to 35-19
requiring logins 35-17
server-side scripting 35-19 to 35-22

wide characters 17-4
wide strings 5-22 to 5-23
widechar 15-16
WideString 15-16
widget controls 3-10

I-50 D e v e l o p e r ’ s G u i d e

widgets
creating 15-11
Windows controls vs. 15-5

Width property 9-5, 10-15
data grid columns 20-16
data grids 20-21
pens 12-5, 12-6
TScreen 18-13

WIN32 (cross-platform applications) 15-14
WIN64 (cross-platform applications) 15-14
WinCLX

defined 3-2
VisualCLX vs. 15-6

Windows, Graphics Device Interface (GDI) 12-1
windows, resizing 10-6
Windows applications, porting to

Linux 15-2 to 15-19
Windows services 36-1
Windows XP themes 9-54
wininet.dll 31-25, 31-27
wizards 8-21

Active Server Object 40-21, 44-2 to 44-3
ActiveForm 40-22, 45-6
ActiveX controls 40-21, 45-4 to 45-5
ActiveX library 40-22
Add New Web Service 38-11
Automation object 40-21, 43-5 to 43-9
COM 40-19 to 40-24, 43-1
COM object 40-21, 41-19, 43-3 to 43-4,

43-6 to 43-9
COM+ Event object 40-22, 46-21 to 46-22
COM+ Event subscriber object 46-22
Property Page 45-13
property page 40-22
Remote Data Module 31-13 to 31-14
Resource DLL 17-9
SOAP Data Module 31-16
Transactional Data Module 31-15
transactional object 40-22, 46-16 to 46-19
Type Library 40-22, 41-19 to 41-20
Web Services 38-10 to 38-14
XML Data Binding 37-6 to 37-10

WM_PAINT messages 12-2
word wrapping 7-7
WordWrap property 7-7, 10-3

data-aware memo controls 20-9
Wrap property 9-50
Wrapable property 9-50
Write By Reference, COM interface properties 41-9
Write method, TFileStream 5-2
WriteBuffer method, TFileStream 5-2

WSDL 38-2
files 38-19
importing 38-3, 38-13 to 38-14, 38-20
publishing 38-18, 38-19 to 38-20

WSDL administrator 38-20
WSDL publisher 38-11

X
$X compiler directive 5-31
XDR file 37-2
Xerox Network System (XNS) 39-1
.xfm files 4-4, 15-4, 15-17
XML 32-1, 37-1

database applications 32-1 to 32-11
defining mappings 32-4
document type declaration 37-2
mappings 32-2 to 32-4
parsers 37-2
processing instructions 37-2
SOAP and 38-1

XML brokers 31-34, 31-36 to 31-38
HTTP messages 31-38

XML Data Binding wizard 37-6 to 37-10
XML documents 32-1, 37-1 to 37-10

attributes 32-5, 37-5
child nodes 37-6
components 37-4, 37-9
converting to data packets 32-6 to 32-8
generating interfaces for 37-7
mapping nodes to fields 32-2
nodes 37-2, 37-4 to 37-6
properties for nodes 37-7
publishing database information 32-9
root node 37-4, 37-7, 37-9
transformation files 32-1

XML files 27-15
XML schemas 37-2
XMLBroker property 31-40
XMLDataFile property 30-2, 32-8
XMLDataSetField property 31-40
XMLMapper 32-2, 32-4 to 32-6
XP themes 9-54
XSBuiltIns unit 38-5, 38-6
XSD file 37-2
XSLPageProducer 35-4

Z
-Z compiler directive 16-13

Create, Debug and Maintain web-based applications as quickly and
easily as your normal Borland® Delphi™ applications using IntraWeb.
Want to show a form? Call it’s .Show method. Want to show a message?
Call WebApplication.ShowMessage. Could it be any easier? Using
IntraWeb you can deploy your applications as stand alone services,
ISAPI DLLs,or Apache DSOs.

INTRAWEB INTRAWEB 55 True RAD Web Development!

A revolutionary new way to create
WEB APPLICATIONS !

Features :

• Delphi 5/6/7 Pro or Enterprise & Borland Kylix™

• Borland C++Builder™ 5/6!

• Pure Delphi, no JavaScript to write!

• TFrame support.

• Includes integrated web server,

• Integrated WYSIWYG HTML Editor.

• No Java or ActiveX to download or install on clients.

• TChart support from Steema Software.

• Optionally integrates with Web Broker and Web Snap

• Over 50 visual components.

• Many third party IntraWeb components available.

• Easy deployment, easy debugging!

• Not auto state management, but transparent!

Delphi Magazine
 “In a nutshell, IntraWeb does

things the Delphi way. So am I

impressed? Yes, very much so.”

SDGN Magazine
“Intraweb is a very nice tool to build web applica-

tions in a fast and simple way and in a language

Delphi developers feel at home with. With this tool

you will be very comfortable and it feels good, right

from the start.”

Integrated WYSIWYG HTML Editor!

AtoZed Software WWW.ATOZEDSOFTWARE.COM

Delphi Informant
“There’s nothing settled in this category, which features

what must be considered the year’s most exciting new

product. Buzz worthy newcomer, IntraWeb from AToZed

Software, makes an impressive debut in fi rst place with

41% of the votes, knocking last year’s winner”

No other development tool creates web applications as fast
and as easy as IntraWeb!

From Design Time to Browser in Seconds!

PC Plus Magazine
“Makes development of web

applications as easy as falling

off a log...”

Download the fully functional trial version today!Download the fully functional trial version today!

PCPlus gives

IntraWeb 9 out of 10!

	Developer’s Guide
	Contents
	Tables
	Figures
	Ch 1: Introduction
	What’s in this manual?
	Manual conventions
	Developer support services

	Part I: Programming with Delphi
	Ch 2: Developing applications with Delphi
	Integrated development environment
	Designing applications
	Creating projects
	Editing code
	Compiling applications
	Debugging applications
	Deploying applications

	Ch 3: Using the component library
	Understanding the component library
	Properties, methods, and events
	Properties
	Methods
	Events
	User events
	System events
	Internal events

	Objects, components, and controls
	TObject branch
	TPersistent branch
	TComponent branch
	TControl branch
	TWinControl/TWidgetControl branch

	Ch 4: Using the object model
	What is an object?
	Examining a Delphi object
	Changing the name of a component

	Inheriting data and code from an object
	Scope and qualifiers
	Private, protected, public, and published declarations

	Using object variables
	Creating, instantiating, and destroying objects
	Components and ownership

	Defining new classes
	Using interfaces
	Using interfaces across the hierarchy
	Using interfaces with procedures
	Implementing IInterface
	TInterfacedObject
	Using the as operator with interfaces
	Reusing code and delegation
	Using implements for delegation
	Aggregation

	Memory management of interface objects
	Using reference counting
	Not using reference counting

	Using interfaces in distributed applications

	Ch 5: Using BaseCLX
	Using streams
	Using streams to read or write data
	Stream methods for reading and writing
	Reading and writing components
	Reading and writing strings

	Copying data from one stream to another
	Specifying the stream position and size
	Seeking to a specific position
	Using Position and Size properties

	Working with files
	Approaches to file I/O
	Using file streams
	Creating and opening files using file�streams
	Using the file handle

	Manipulating files
	Deleting a file
	Finding a file
	Renaming a file
	File date-time routines
	Copying a file

	Working with ini files and the system Registry
	Using TIniFile and TMemIniFile
	Using TRegistryIniFile
	Using TRegistry

	Working with lists
	Common list operations
	Adding list items
	Deleting list items
	Accessing list items
	Rearranging list items

	Persistent lists

	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Short-term string lists
	Long-term string lists

	Manipulating strings in a list
	Counting the strings in a list
	Accessing a particular string
	Locating items in a string list
	Iterating through strings in a list
	Adding a string to a list
	Moving a string within a list
	Deleting a string from a list
	Associating objects with a string list

	Working with strings
	Wide character routines
	Commonly used long string routines
	Commonly used routines for null�terminated�strings
	Declaring and initializing strings
	Mixing and converting string types
	String to PChar conversions
	String dependencies
	Returning a PChar local variable
	Passing a local variable as a PChar

	Compiler directives for strings

	Creating drawing spaces
	Printing
	Converting measurements
	Performing conversions
	Performing simple conversions
	Performing complex conversions

	Adding new measurement types
	Creating a simple conversion family and�adding�units
	Declare variables
	Register the conversion family
	Register measurement units
	Use the new units

	Using a conversion function
	Declare variables
	Register the conversion family
	Register the base unit
	Write methods to convert to and from�the�base�unit
	Register the other units
	Use the new units

	Using a class to manage conversions
	Creating the conversion class
	Declare variables
	Register the conversion family and the�other�units
	Use the new units

	Defining custom variants
	Storing a custom variant type’s data
	Creating a class to enable the custom�variant�type
	Enabling casting
	Implementing binary operations
	Implementing comparison operations
	Implementing unary operations

	Copying and clearing custom variants
	Loading and saving custom variant values
	Using the TCustomVariantType descendant

	Writing utilities to work with a custom�variant�type
	Supporting properties and methods in�custom�variants
	Using TInvokeableVariantType
	Using TPublishableVariantType

	Ch 6: Working with components
	Setting component properties
	Setting properties at design time
	Using property editors

	Setting properties at runtime

	Calling methods
	Working with events and event handlers
	Generating a new event handler
	Generating a handler for a component’s�default�event
	Locating event handlers
	Associating an event with an existing event�handler
	Using the Sender parameter
	Displaying and coding shared events

	Associating menu events with event handlers
	Deleting event handlers

	Cross-platform and non-cross-platform components
	Adding custom components to the Component�palette

	Ch 7: Working with controls
	Implementing drag and drop in controls
	Starting a drag operation
	Accepting dragged items
	Dropping items
	Ending a drag operation
	Customizing drag and drop with a drag object
	Changing the drag mouse pointer

	Implementing drag and dock in controls
	Making a windowed control a docking site
	Making a control a dockable child
	Controlling how child controls are docked
	Controlling how child controls are undocked
	Controlling how child controls respond to�drag�and�dock�operations

	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding the clipboard object
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application
	Adding images to a string list
	Drawing owner-drawn items

	Sizing owner-draw items
	Drawing owner-draw items

	Ch 8: Building applications, components, and libraries
	Creating applications
	GUI applications
	User interface models
	SDI applications
	MDI applications
	Setting IDE, project, and compiler options

	Programming templates
	Console applications
	Service applications
	Service threads
	Service name properties
	Debugging service applications

	Creating packages and DLLs
	When to use packages and DLLs

	Writing database applications
	Distributing database applications

	Creating Web server applications
	Creating Web Broker applications
	Creating WebSnap applications
	Creating Web Services applications

	Writing applications using COM
	Using COM and DCOM
	Using MTS and COM+

	Using data modules
	Creating and editing standard data modules
	Naming a data module and its unit file
	Placing and naming components
	Using component properties and events�in�a�data�module
	Creating business rules in a data module

	Accessing a data module from a form
	Adding a remote data module to an application�server project

	Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and�main�form

	Enabling Help in applications
	Help system interfaces
	Implementing ICustomHelpViewer
	Communicating with the Help Manager
	Asking the Help Manager for information
	Displaying keyword-based Help
	Displaying tables of contents
	Implementing IExtendedHelpViewer
	Implementing IHelpSelector
	Registering Help system objects
	Registering Help viewers
	Registering Help selectors

	Using Help in a VCL application
	How TApplication processes VCL Help
	How VCL controls process Help

	Using Help in a CLX application
	How TApplication processes CLX Help
	How CLX controls process Help

	Calling a Help system directly
	Using IHelpSystem
	Customizing the IDE Help system

	Ch 9: Developing the application user interface
	Controlling application behavior
	Working at the application level
	Handling the screen

	Setting up forms
	Using the main form
	Hiding the main form
	Adding forms
	Linking forms
	Avoiding circular unit references

	Managing layout

	Using forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Creating a form instance using a�local�variable

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Reusing components and groups of components
	Creating and using component templates
	Working with frames
	Creating frames
	Adding frames to the Component palette
	Using and modifying frames
	Sharing frames

	Developing dialog boxes
	Using open dialog boxes

	Organizing actions for toolbars and menus
	What is an action?
	Setting up action bands
	Creating toolbars and menus
	Adding color, patterns, or pictures to�menus,�buttons,�and toolbars
	Adding icons to menus and toolbars
	Selecting menu and toolbar styles
	Creating dynamic menus
	Creating toolbars and menus that users�can�customize
	Hiding unused items and categories in�action�bands
	Creating most recently used (MRU) lists

	Using action lists
	Setting up action lists
	What happens when an action fires
	Responding with events
	How actions find their targets

	Updating actions
	Predefined action classes
	Writing action components
	Registering actions

	Creating and managing menus
	Opening the Menu Designer
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Adding separator bars
	Specifying accelerator keys and keyboard�shortcuts

	Creating submenus
	Creating submenus by demoting existing�menus
	Moving menu items
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items�and�event handlers

	Manipulating menu items at runtime
	Merging menus
	Specifying the active menu: Menu property
	Determining the order of merged menu items: GroupIndex property

	Importing resource files

	Designing toolbars and cool bars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial�conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Adding a cool bar component
	Setting the appearance of the cool bar

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars
	Demo programs

	Common controls and XP themes

	Ch 10: Types of controls
	Text controls
	Edit controls
	Memo and rich edit controls

	Text viewing controls
	Labels

	Specialized input controls
	Scroll bars
	Track bars
	Up-down controls
	Spin edit controls (CLX only)
	Hot key controls (VCL only)
	Splitter controls

	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars
	Cool bars (VCL only)

	List controls
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views
	Icon views (CLX only)
	Date-time pickers and month calendars

	Grouping controls
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls

	Display controls
	Status bars
	Progress bars
	Help and hint properties

	Grids
	Draw grids
	String grids

	Value list editors (VCL only)
	Graphic controls
	Images
	Shapes
	Bevels
	Paint boxes
	Animation control

	Ch 11: Designing classes and components with ModelMaker
	ModelMaker fundamentals
	ModelMaker models
	Using ModelMaker with the IDE
	Creating models

	Using ModelMaker views
	Collections pane
	Classes view
	Units view
	Diagrams view

	Members pane
	Editors pane
	Implementation Editor
	Unit Code Editor
	Diagram Editor
	Other Editors

	For more information

	Ch 12: Working with graphics and multimedia
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects
	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens
	Using brushes
	Reading and setting pixels

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in�your�application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the clipboard with graphics
	Copying graphics to the clipboard
	Cutting graphics to the clipboard
	Pasting graphics from the clipboard

	Rubber banding example
	Responding to the mouse
	Responding to a mouse-down action
	Adding a field to a form object to track�mouse�actions
	Refining line drawing

	Working with multimedia
	Adding silent video clips to an application
	Example of adding silent video clips

	Adding audio and/or video clips to an application
	Example of adding audio and/or video clips (VCL only)

	Ch 13: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main VCL/CLX thread
	Using thread-local variables
	Checking for termination by other threads
	Handling exceptions in the thread function

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications
	Naming a thread
	Converting an unnamed thread to�a�named�thread
	Assigning separate names to similar threads

	Ch 14: Exception handling
	Defining protected blocks
	Writing the try block
	Raising an exception

	Writing exception handlers
	Exception-handling statements
	Handling classes of exceptions
	Scope of exception handlers
	Reraising exceptions

	Writing finally blocks
	Writing a finally block

	Handling exceptions in VCL applications
	VCL exception classes
	Default exception handling in VCL
	Silent exceptions
	Defining your own VCL exceptions

	Ch 15: Developing cross-platform applications
	Creating CLX applications
	Porting VCL applications
	Porting techniques
	Platform-specific ports
	Cross-platform ports
	Windows emulation ports

	Modifying VCL applications
	WinCLX versus VisualCLX
	What VisualCLX does differently

	Features that do not port directly or are missing
	Comparing WinCLX and VisualCLX units
	Differences in CLX object constructors
	Handling system and widget events
	Writing portable code
	Using conditional directives
	Terminating conditional directives
	Including inline assembler code

	Programming differences on Linux

	Transferring applications between Windows�and�Linux
	Sharing source files between Windows�and�Linux
	Environmental differences between Windows�and�Linux
	Registry
	Look and feel

	Directory structure on Linux

	Cross-platform database applications
	dbExpress differences
	Component-level differences
	User interface-level differences
	Porting database applications to Linux
	Updating data in dbExpress applications

	Cross-platform Internet applications
	Porting Internet applications to Linux

	Ch 16: Working with packages and components
	Why use packages?
	Packages and standard DLLs

	Runtime packages
	Loading packages in an application
	Loading packages with the LoadPackage�function

	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Understanding the structure of a package
	Naming packages
	Requires clause
	Contains clause

	Editing package source files manually
	Compiling packages
	Package-specific compiler directives
	Compiling and linking from the command line
	Package files created when compiling

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers
	Package collection files

	Ch 17: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	~Character sets
	OEM and ANSI character sets
	Multibyte character sets
	Wide characters
	Including bi-directional functionality in�applications
	BiDiMode property
	Locale-specific features

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource DLLs
	Using resource DLLs
	Dynamic switching of resource DLLs

	Localizing applications
	Localizing resources

	Ch 18: Deploying applications
	Deploying general applications
	Using installation programs
	Identifying application files
	Application files
	Package files
	Merge modules
	ActiveX controls
	Helper applications
	DLL locations

	Deploying CLX applications
	Deploying database applications
	Deploying dbExpress database applications
	Deploying BDE applications
	Borland Database Engine

	Deploying multi-tiered database applications (DataSnap)

	Deploying Web applications
	Deploying on Apache servers
	Enabling modules
	CGI applications

	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing�forms�and�controls
	Accommodating varying color depths

	Fonts
	Operating systems versions

	Software license requirements
	DEPLOY
	README
	No-nonsense license agreement
	Third-party product documentation

	Part II: Developing database applications
	Ch 19: Designing database applications
	Using databases
	Types of databases
	Database security
	Transactions
	Referential integrity, stored procedures, and�triggers

	Database architecture
	General structure
	The user interface form
	The data module

	Connecting directly to a database server
	Using a dedicated file on disk
	Connecting to another dataset
	Connecting a client dataset to another dataset�in�the same application
	Using a multi-tiered architecture

	Combining approaches

	Designing the user interface
	Analyzing data
	Writing reports

	Ch 20: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Changing the associated dataset at runtime
	Enabling and disabling the data source
	Responding to changes mediated by�the�data�source

	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Choosing how to organize the data
	Displaying a single record
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing text in a rich edit�memo�control
	Displaying and editing graphics fields in�an�image�control
	Displaying and editing data in list and combo boxes
	Handling Boolean field values with check�boxes
	Restricting field values with radio controls

	Displaying multiple records

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Setting column properties at design time
	Defining a lookup list column
	Putting a button in a column
	Restoring default values to a column

	Displaying ADT and array fields
	Setting grid options
	Editing in the grid
	Controlling grid drawing
	Responding to user actions at runtime

	Creating a grid that contains other data�aware controls
	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons�at�design�time
	Hiding and showing navigator buttons�at�runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	Ch 21: Creating reports with Rave Reports
	Overview
	Getting started
	The Rave Visual Designer
	Component overview
	VCL/CLX components
	Engine components
	Render components
	Data connection components
	Rave project component

	Reporting components
	Project components
	Data objects
	Standard components
	Drawing components
	Report components
	Bar code components

	Getting more information

	Ch 22: Using decision support components
	Overview
	About crosstabs
	One-dimensional crosstabs
	Multidimensional crosstabs

	Guidelines for using decision support components
	Using datasets with decision support components
	Creating decision datasets with TQuery�or�TTable
	Creating decision datasets with the Decision�Query editor

	Using decision cubes
	Decision cube properties and events
	Using the Decision Cube editor
	Viewing and changing dimension settings
	Setting the maximum available dimensions�and�summaries
	Viewing and changing design options

	Using decision sources
	Properties and events

	Using decision pivots
	Decision pivot properties

	Creating and using decision grids
	Creating decision grids
	Using decision grids
	Opening and closing decision grid fields
	Reorganizing rows and columns in decision�grids
	Drilling down for detail in decision grids
	Limiting dimension selection in decision�grids

	Decision grid properties

	Creating and using decision graphs
	Creating decision graphs
	Using decision graphs
	The decision graph display
	Customizing decision graphs
	Setting decision graph template defaults
	Customizing decision graph series

	Decision support components at runtime
	Decision pivots at runtime
	Decision grids at runtime
	Decision graphs at runtime

	Decision support components and memory�control
	Setting maximum dimensions, summaries,�and�cells
	Setting dimension state
	Using paged dimensions

	Ch 23: Connecting to databases
	Using implicit connections
	Controlling connections
	Connecting to a database server
	Disconnecting from a database server

	Controlling server login
	Managing transactions
	Starting a transaction
	Ending a transaction
	Ending a successful transaction
	Ending an unsuccessful transaction

	Specifying the transaction isolation level

	Sending commands to the server
	Working with associated datasets
	Closing all datasets without disconnecting�from�the server
	Iterating through the associated datasets

	Obtaining metadata
	Listing available tables
	Listing the fields in a table
	Listing available stored procedures
	Listing available indexes
	Listing stored procedure parameters

	Ch 24: Understanding datasets
	Using TDataSet descendants
	Determining dataset states
	Opening and closing datasets
	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records
	The Bookmark property
	The GetBookmark method
	The GotoBookmark and BookmarkValid methods
	The CompareBookmarks method
	The FreeBookmark method
	A bookmarking example

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using�filters
	Enabling and disabling filtering
	Creating filters
	Setting the Filter property
	Writing an OnFilterRecord event handler
	Switching filter event handlers at runtime

	Setting filter options
	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data
	Canceling changes
	Modifying entire records

	Calculating fields
	Types of datasets
	Using table type datasets
	Advantages of using table type datasets
	Sorting records with indexes
	Obtaining information about indexes
	Specifying an index with IndexName
	Creating an index with IndexFieldNames

	Using Indexes to search for records
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Repeating or extending a search

	Limiting records with ranges
	Understanding the differences between�ranges�and�filters
	Specifying ranges
	Modifying a range
	Applying or canceling a range

	Creating master/detail relationships
	Making the table a detail of another dataset
	Using nested detail tables

	Controlling Read/write access to tables
	Creating and deleting tables
	Creating tables
	Deleting tables

	Emptying tables
	Synchronizing tables

	Using query-type datasets
	Specifying the query
	Specifying a query using the SQL property
	Specifying a query using the CommandText�property

	Using parameters in queries
	Supplying parameters at design time
	Supplying parameters at runtime

	Establishing master/detail relationships using parameters
	Preparing queries
	Executing queries that don’t return a result set
	Using unidirectional result sets

	Using stored procedure-type datasets
	Working with stored procedure parameters
	Setting up parameters at design time
	Using parameters at runtime

	Preparing stored procedures
	Executing stored procedures that don’t return�a�result set
	Fetching multiple result sets

	Ch 25: Working with field components
	Dynamic field components
	Persistent field components
	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Programming a calculated field
	Defining a lookup field
	Defining an aggregate field

	Deleting persistent field components
	Setting persistent field properties and events
	Setting display and edit properties at�design�time
	Setting field component properties at�runtime
	Creating attribute sets for field components
	Associating attribute sets with field components
	Removing attribute associations
	Controlling and masking user input
	Using default formatting for numeric, date,�and�time�fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard�controls
	Converting field values
	Accessing field values with the default dataset�property
	Accessing field values with a dataset’s Fields�property
	Accessing field values with a dataset’s FieldByName method

	Setting a default value for a field
	Working with constraints
	Creating a custom constraint
	Using server constraints

	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Using persistent field components
	Using the dataset’s FieldByName method
	Using the dateset’s FieldValues property
	Using the ADT field’s FieldValues property
	Using the ADT field’s Fields property

	Working with array fields
	Using persistent fields
	Using the array field’s FieldValues property
	Using the array field’s Fields property

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	Ch 26: Using the Borland Database Engine
	BDE-based architecture
	Using BDE-enabled datasets
	Associating a dataset with database and�session�connections
	Caching BLOBs
	Obtaining a BDE handle

	Using TTable
	Specifying the table type for local tables
	Controlling read/write access to local tables
	Specifying a dBASE index file
	Renaming local tables
	Importing data from another table

	Using TQuery
	Creating heterogeneous queries
	Obtaining an editable result set
	Updating read-only result sets

	Using TStoredProc
	Binding parameters
	Working with Oracle overloaded stored�procedures

	Connecting to databases with TDatabase
	Associating a database component with�a�session
	Understanding database and session component interactions
	Identifying the database
	Opening a connection using TDatabase
	Using database components in data modules

	Managing database sessions
	Activating a session
	Specifying default database connection behavior
	Managing database connections
	Working with password-protected Paradox�and�dBASE�tables
	Specifying Paradox directory locations
	Working with BDE aliases
	Retrieving information about a session
	Creating additional sessions
	Naming a session
	Managing multiple sessions

	Using transactions with the BDE
	Using passthrough SQL
	Using local transactions

	Using the BDE to cache updates
	Enabling BDE-based cached updates
	Applying BDE-based cached updates
	Applying cached updates using a database
	Applying cached updates with dataset component methods
	Creating an OnUpdateRecord event handler
	Handling cached update errors

	Using update objects to update a dataset
	Creating SQL statements for update components
	Using multiple update objects
	Executing the SQL statements

	Using TBatchMove
	Creating a batch move component
	Specifying a batch move mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping data types
	Executing a batch move
	Handling batch move errors

	The Data Dictionary
	Tools for working with the BDE

	Ch 27: Working with ADO components
	Overview of ADO components
	Connecting to ADO data stores
	Connecting to a data store using TADOConnection
	Accessing the connection object

	Fine-tuning a connection
	Forcing asynchronous connections
	Controlling time-outs
	Indicating the types of operations the�connection�supports
	Specifying whether the connection automatically initiates transactions

	Accessing the connection’s commands
	ADO connection events
	Events when establishing a connection
	Events when disconnecting
	Events when managing transactions
	Other events

	Using ADO datasets
	Connecting an ADO dataset to a data store
	Working with record sets
	Filtering records based on bookmarks
	Fetching records asynchronously
	Using batch updates
	Loading data from and saving data to files
	Using TADODataSet

	Using Command objects
	Specifying the command
	Using the Execute method
	Canceling commands
	Retrieving result sets with commands
	Handling command parameters

	Ch 28: Using unidirectional datasets
	Types of unidirectional datasets
	Connecting to the database server
	Setting up TSQLConnection
	Identifying the driver
	Specifying connection parameters
	Naming a connection description
	Using the Connection Editor

	Specifying what data to display
	Representing the results of a query
	Representing the records in a table
	Representing a table using TSQLDataSet
	Representing a table using TSQLTable

	Representing the results of a stored procedure

	Fetching the data
	Preparing the dataset
	Fetching multiple datasets

	Executing commands that do not return records
	Specifying the command to execute
	Executing the command
	Creating and modifying server metadata

	Setting up master/detail linked cursors
	Accessing schema information
	Fetching metadata into a unidirectional dataset
	Fetching data after using the dataset for�metadata
	The structure of metadata datasets

	Debugging dbExpress applications
	Using TSQLMonitor to monitor SQL commands
	Using a callback to monitor SQL commands

	Ch 29: Using client datasets
	Working with data using a client dataset
	Navigating data in client datasets
	Limiting what records appear
	Editing data
	Undoing changes
	Saving changes

	Constraining data values
	Specifying custom constraints

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in�client�datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Adding application-specific information to�the�data

	Using a client dataset to cache updates
	Overview of using cached updates
	Choosing the type of dataset for caching updates
	Indicating what records are modified
	Updating records
	Applying updates
	Intervening as updates are applied
	Reconciling update errors

	Using a client dataset with a provider
	Specifying a provider
	Requesting data from the source dataset or�document
	Incremental fetching
	Fetch-on-demand

	Getting parameters from the source dataset
	Passing parameters to the source dataset
	Sending query or stored procedure parameters
	Limiting records with parameters

	Handling constraints from the server
	Refreshing records
	Communicating with providers using custom�events
	Overriding the source dataset

	Using a client dataset with file-based data
	Creating a new dataset
	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	Using a simple dataset
	When to use TSimpleDataSet
	Setting up a simple dataset

	Ch 30: Using provider components
	Determining the source of data
	Using a dataset as the source of the data
	Using an XML document as the source of�the�data

	Communicating with the client dataset
	Choosing how to apply updates using a dataset provider
	Controlling what information is included in�data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events
	Handling server constraints

	Ch 31: Creating multi-tiered applications
	Advantages of the multi-tiered database model
	Understanding multi-tiered database applications
	Overview of a three-tiered application
	The structure of the client application
	The structure of the application server
	The contents of the remote data module
	Using transactional data modules
	Pooling remote data modules

	Choosing a connection protocol
	Using DCOM connections
	Using Socket connections
	Using Web connections
	Using SOAP connections

	Building a multi-tiered application
	Creating the application server
	Setting up the remote data module
	Configuring TRemoteDataModule
	Configuring TMTSDataModule
	Configuring TSoapDataModule

	Extending the application server’s interface
	Adding callbacks to the application server’s�interface
	Extending a transactional application server’s interface

	Managing transactions in multi-tiered applications
	Supporting master/detail relationships
	Supporting state information in remote data�modules
	Using multiple remote data modules

	Registering the application server
	Creating the client application
	Connecting to the application server
	Specifying a connection using DCOM
	Specifying a connection using sockets
	Specifying a connection using HTTP
	Specifying a connection using SOAP
	Brokering connections

	Managing server connections
	Connecting to the server
	Dropping or changing a server connection

	Calling server interfaces
	Using early binding with DCOM
	Using dispatch interfaces with TCP/IP�or�HTTP
	Calling the interface of a SOAP-based server

	Connecting to an application server that uses�multiple data modules

	Writing Web-based client applications
	Distributing a client application as an ActiveX�control
	Creating an Active Form for the client application

	Building Web applications using InternetExpress
	Building an InternetExpress application
	Using the javascript libraries
	Granting permission to access and launch�the�application server

	Using an XML broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web pages with an InternetExpress�page producer
	Using the Web page editor
	Setting Web item properties
	Customizing the InternetExpress page�producer�template

	Ch 32: Using XML in database applications
	Defining transformations
	Mapping between XML nodes and data�packet�fields
	Using XMLMapper
	Loading an XML schema or data packet
	Defining mappings
	Generating transformation files

	Converting XML documents into data packets
	Specifying the source XML document
	Specifying the transformation
	Obtaining the resulting data packet
	Converting user-defined nodes

	Using an XML document as the source for a provider
	Using an XML document as the client of a provider
	Fetching an XML document from a provider
	Applying updates from an XML document�to�a�provider

	Part III: Writing Internet applications
	Ch 33: Creating Internet server applications
	About Web Broker and WebSnap
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving client requests
	Responding to client requests

	Types of Web server applications
	ISAPI and NSAPI
	CGI stand-alone
	Apache
	Web App Debugger
	Converting Web server application target types

	Debugging server applications
	Using the Web�Application�Debugger
	Launching your application with the Web Application Debugger
	Converting your application to another type of Web server application

	Debugging Web applications that are DLLs
	User rights necessary for DLL debugging

	Ch 34: Using Web Broker
	Creating Web server applications with Web Broker
	The Web module
	The Web Application object

	The structure of a Web Broker application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action�items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of�the�request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	Ch 35: Creating Web Server applications using WebSnap
	Fundamental WebSnap components
	Web modules
	Web application module types
	Web page modules
	Web data modules

	Adapters
	Fields
	Actions
	Errors
	Records

	Page producers

	Creating Web server applications with WebSnap
	Selecting a server type
	Specifying application module components
	Selecting Web application module options

	Advanced HTML design
	Manipulating server-side script in HTML files

	Login support
	Adding login support
	Using the sessions service
	Login pages
	Setting pages to require logins
	User access rights
	Dynamically displaying fields as edit or text boxes
	Hiding fields and their contents
	Preventing page access

	Server-side scripting in WebSnap
	Active scripting
	Script engine
	Script blocks
	Creating script
	Wizard templates
	TAdapterPageProducer

	Editing and viewing script
	Including script in a page
	Script objects

	Dispatching requests and responses
	Dispatcher components
	Adapter dispatcher operation
	Using adapter components to generate�content
	Receiving adapter requests and generating�responses
	Image request
	Image response

	Dispatching action items
	Page dispatcher operation

	Ch 36: Creating Web server applications using IntraWeb
	Using IntraWeb components
	Getting started with IntraWeb
	Creating a new IntraWeb application
	Editing the main form
	Writing an event handler for the button
	Running the completed application

	Using IntraWeb with Web Broker and WebSnap
	For more information

	Ch 37: Working with XML documents
	Using the Document Object Model
	Working with XML components
	Using TXMLDocument
	Working with XML nodes
	Working with a node’s value
	Working with a node’s attributes
	Adding and deleting child nodes

	Abstracting XML documents with the Data�Binding wizard
	Using the XML Data Binding wizard
	Using code that the XML Data Binding�wizard�generates

	Ch 38: Using Web Services
	Understanding invokable interfaces
	Using nonscalar types in invokable interfaces
	Registering nonscalar types
	Using remotable objects
	Representing attachments
	Managing the lifetime of remotable objects
	Remotable object example

	Writing servers that support Web Services
	Building a Web Service server
	Using the SOAP application wizard
	Adding new Web Services
	Editing the generated code
	Using a different base class

	Using the WSDL importer
	Browsing for Business services
	Understanding UDDI
	Using the UDDI browser

	Defining and using SOAP headers
	Defining header classes
	Sending and receiving headers
	Handling scalar-type headers
	Communicating the structure of your headers to other applications

	Creating custom exception classes for Web�Services
	Generating WSDL documents for a Web�Service application

	Writing clients for Web Services
	Importing WSDL documents
	Calling invokable interfaces
	Obtaining an invokable interface from�the�generated�function
	Using a remote interfaced object

	Processing headers in client applications

	Ch 39: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and�an�IP�address

	Using ports

	Using socket components
	Getting information about the connection
	Using client sockets
	Specifying the desired server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections

	Part IV: Developing COM-based applications
	Ch 40: Overview of COM technologies
	COM as a specification and implementation
	COM extensions
	Parts of a COM application
	COM interfaces
	The fundamental COM interface, IUnknown
	COM interface pointers

	COM servers
	CoClasses and class factories
	In-process, out-of-process, and remote�servers
	The marshaling mechanism
	Aggregation

	COM clients

	COM extensions
	Automation servers
	Active Server Pages
	ActiveX controls
	Active Documents
	Transactional objects
	Type libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM objects with wizards
	Code generated by wizards

	Ch 41: Working with type libraries
	Type Library editor
	Parts of the Type Library editor
	Toolbar
	Object list pane
	Status bar
	Pages of type information

	Type library elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library editor
	Valid types
	Using Delphi or IDL syntax
	Creating a new type library
	Opening an existing type library
	Adding an interface to the type library
	Modifying an interface using the type�library
	Adding properties and methods to an�interface�or dispinterface
	Adding a CoClass to the type library
	Adding an interface to a CoClass
	Adding an enumeration to the type library
	Adding an alias to the type library
	Adding a record or union to the type library
	Adding a module to the type library
	Saving and registering type library information
	Apply Updates dialog
	Saving a type library
	Refreshing the type library
	Registering the type library
	Exporting an IDL file

	Deploying type libraries

	Ch 42: Creating COM clients
	Importing type library information
	Using the Import Type Library dialog
	Using the Import ActiveX dialog
	Code generated when you import type�library�information

	Controlling an imported object
	Using component wrappers
	ActiveX wrappers
	Automation object wrappers

	Using data-aware ActiveX controls
	Example: Printing a document with Microsoft�Word
	Preparing Delphi for this example
	Importing the Word type library
	Using a VTable or dispatch interface object�to�control�Microsoft Word
	Cleaning up the example

	Writing client code based on type library�definitions
	Connecting to a server
	Controlling an Automation server using�a�dual�interface
	Controlling an Automation server using�a�dispatch�interface
	Handling events in an automation controller

	Creating clients for servers that do not have�a�type�library
	Using .NET assemblies with Delphi
	Requirements for COM interoperability
	.NET components and type libraries
	Accessing user-defined .NET components

	Ch 43: Creating simple COM servers
	Overview of creating a COM object
	Designing a COM object
	Using the COM object wizard
	Using the Automation object wizard
	COM object instancing types
	Choosing a threading model
	Writing an object that supports the free�threading�model
	Writing an object that supports the apartment�threading�model
	Writing an object that supports the neutral�threading�model

	Defining a COM object’s interface
	Adding a property to the object’s interface
	Adding a method to the object’s interface
	Exposing events to clients
	Managing events in your Automation object

	Automation interfaces
	Dual interfaces
	Dispatch interfaces
	Custom interfaces

	Marshaling data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the application

	Ch 44: Creating an Active Server Page
	Creating an Active Server Object
	Using the ASP intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for in-process or out�of�process�servers

	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the Active Server Page�application

	Ch 45: Creating an ActiveX control
	Overview of ActiveX control creation
	Elements of an ActiveX control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX control
	Generating an ActiveX control from a VCL control
	Generating an ActiveX control based on a�VCL�form
	Licensing ActiveX controls
	Customizing the ActiveX control’s interface
	Adding additional properties, methods,�and�events
	Adding properties and methods
	Adding events

	Enabling simple data binding with the�type�library

	Creating a property page for an ActiveX control
	Creating a new property page
	Adding controls to a property page
	Associating property page controls with�ActiveX�control�properties
	Updating the property page
	Updating the object

	Connecting a property page to an ActiveX�control

	Registering an ActiveX control
	Testing an ActiveX control
	Deploying an ActiveX control on the Web
	Setting options

	Ch 46: Creating MTS or COM+ objects
	Understanding transactional objects
	Requirements for a transactional object

	Managing resources
	Accessing the object context
	Just-in-time activation
	Resource pooling
	Database resource dispensers
	Shared property manager
	Releasing resources

	Object pooling

	MTS and COM+ transaction support
	Transaction attributes
	Setting the transaction attribute

	Stateful and stateless objects
	Influencing how transactions end
	Initiating transactions
	Setting up a transaction object on�the�client�side
	Setting up a transaction object on the�server�side

	Transaction time-out

	Role-based security
	Overview of creating transactional objects
	Using the Transactional Object wizard
	Choosing a threading model for a transactional�object
	Activities

	Generating events under COM+
	Using the Event Object wizard
	Using the COM+ Event Subscription object�wizard
	Firing events using a COM+ event object

	Passing object references
	Using the SafeRef method
	Callbacks

	Debugging and testing transactional objects
	Installing transactional objects
	Administering transactional objects

	Index
	Symbols - A
	B
	C
	D
	E
	F
	G
	H
	I
	J - L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X - Z

