
I n t r o d u c t i o n 1

Delphi for Windows

Copyright
Agreement

C h a p t e r 1
I n t r o d u c t i o n

Delphi enables you to create robust database applications quickly and easily. Delphi
database applications can work directly with desktop databases like Paradox, dBASE,
the Local InterBase Server, and ODBC data sources. The Delphi Client/Server edition
also works with remote database servers such as Oracle, Sybase, Microsoft SQL Server,
Informix, InterBase, and ODBC data sources. Delphi client applications can be scaled
easily between mission critical network-based client/server databases, and local
databases on a single machine.

This chapter introduces Delphi’s database tools, including the Data Access and Data
Controls component pages, the Fields Editor, the Database Desktop, and the Database
Forms Expert.

What you should know first
Building a database application is similar to building any other Delphi application. This
book assumes you understand the basic application development techniques covered in
the Delphi User’s Guide, including:

• Creating and managing projects
• Creating forms and managing units
• Working with components, properties, and events
• Writing simple Object Pascal source code

You also need to have a working knowledge of the Database Management System
(DBMS) your Delphi database applications access, whether it is a desktop database such
as dBASE or Paradox, or an SQL server. For information specific to building
client/server applications with Delphi, see Chapter 6, “Building a client/server
application.”

This book assumes you have a basic understanding of relational databases, database
design, and data management. There are many third-party books covering these topics
if you need to learn more about them.

Database Application
Developer’s Guide

Copyright Agreement
Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.Copyright © 1995 Borland International. All rights reserved. All Borland products are trademarks or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.Printed in the U.S.A.1E0R1959596979899-987654321W1

2 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Overview of Delphi’s database features and capabilities
A Delphi database application is built using Delphi database development tools, Delphi
data-access components, and data-aware GUI components. A database application uses
Delphi components to communicate with the Borland Database Engine (BDE), which in
turn communicates with databases. The following figure illustrates the relationship of
Delphi tools and Delphi database applications to the BDE and data sources:

Figure 1.1 Delphi database architecture

The following table summarizes Delphi’s database features.

Table 1.1 Database features summary

Tool Purpose

Data Access components Access databases, tables, stored procedures, and custom component
editors.

Data Control components Provide user interface to database tables.
Database Desktop (DBD) Create, index, and query Paradox and dBASE tables, and SQL

databases. Access and edit data from all sources.

InterBase
for Windows

Borland Database Engine (BDE)/IDAPI

Local Data Sources

 Paradox dBASE

Remote Data Sources

Oracle

Sybase

 Informix

InterBase

Delphi IDE

Database
Desktop (DBD)

ReportSmith

SQL Links ODBC Drivers

TCP/IP, SPX/IPX, etc.

BDE
Configuration

Utility

ReportSmith Drivers

ASCII

. . .

Delphi Application

Report

I n t r o d u c t i o n 3

These features enable you to build database applications with live connections to
Paradox and dBASE tables, and the Local InterBase Server through the BDE. In many
cases, you can create simple data access applications with these components and their
properties without writing a line of code.

The BDE is built into Delphi components so you can create database applications
without needing to know anything about the BDE. The Delphi installation program
installs drivers and sets up configuration for Paradox, dBASE, and the Local InterBase
Server, so you can begin working with tables native to these systems immediately. The
BDE Configuration Utility enables you to tailor database connections and manage
database aliases.

Advanced BDE features are available to programmers who need more functionality.
These features include local SQL, which is a subset of the industry-standard SQL that
enables you to issue SQL statements against Paradox and dBASE tables; low-level API
function calls for direct engine access; and ODBC support for communication with other
ODBC-compliant databases, such as Access and Btrieve.

Delphi includes Borland ReportSmith, so you can embed database report creation,
viewing, and printing capabilities in Delphi database applications. Delphi also includes
the Database Desktop (DBD), a tool that enables you to create, index, and query desktop
and SQL databases, and to copy data from one source to another. For more information
about ReportSmith, see Creating Reports. For more information about the DBD, see
Appendix A, “Using Database Desktop.”

The Local InterBase Server is a single-user, multi-instance, 16-bit, ANSI SQL-compliant,
Windows-based version of Borland’s 32-bit InterBase SQL server that is available for
Novell NetWare, Windows NT, and Unix. For more information, see the Local InterBase
Server User’s Guide.

The following table lists the additional database features available in the Client/server
edition of Delphi. These features extend Delphi’s database capabilities to access remote

ReportSmith Create, view, and print reports.
Borland Database Engine (BDE) Access data from file-based Paradox and dBASE tables, and from

local InterBase server databases.
BDE Configuration Utility Create and manage database connection Aliases used by the BDE.
Local InterBase Server Provides a single-user, multi-instance desktop SQL server for

building and testing Delphi applications, before scaling them up to a
production database, such as Oracle, Sybase, Informix, or InterBase
on a remote server.

InterBase SQL Link Native driver that connect Delphi applications to the Local InterBase
Server.

Table 1.1 Database features summary (continued)

Tool Purpose

4 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

SQL database servers such as Sybase, Microsoft SQL Server, Oracle, Informix, and
InterBase.

SQL Links provide Delphi applications with SQL access to data residing on remote
servers, including Sybase, Microsoft SQL Server, Oracle, and Informix. When an SQL
Link driver is installed, SQL statements are passed directly to the server for parsing and
execution. For more information about using passthrough SQL, see Chapter 5, “Using
SQL in applications.”

What is a database?
Delphi programmers should understand some basic concepts about databases, data,
and data access, before building database applications. A database consists of one or
more tables, where each table contains a series of columns into which records (also
called “rows”) are stored. Each record is identical in structure. For example, a database
of addresses consists of a table with name, street address, city, state, and zipcode
columns. The intersection of a single column and row is referred to as a field. Fields
contain values. The following figure illustrates these concepts:

Figure 1.2 Structure of a table

The current field is one field in a single record. The current record is a single record in a
multi-record set that is the focus of attention. For example, some Delphi database
applications display multiple columns and records in a grid format for editing. As far as
Delphi controls are concerned, only one field in a single record is “current,” meaning
that editing tasks affect only the data in that field.

Different databases vary widely in structure. A database in Paradox consists of one or
more files, each of which contains a single table or index, but an SQL relational database
on a remote server generally consists of a single file that contains all tables, indices, and

Table 1.2 Additional Delphi Client/Server database features

Tool Purpose

SQL Drivers Both SQL Links and ReportSmith provide native drivers that connect Delphi
database applications to remote SQL database servers, such as Oracle, Sybase,
Microsoft SQL Server, Informix, and InterBase.

Visual Query Builder Creates SQL statements by visually manipulating tables and columns.

CustNo Name Street City

1221

1231

1251

1254

Kauai Dive Shoppe

Unisco

Sight Diver

Cayman Divers Wo

4-976 Sugarloaf Highway

PO Box Z-547

1 Neptune Lane

PO Box 541

Kapaa Kauai

Freeport

Kato Paphos

Column names

Records

Current recordCurrent field

I n t r o d u c t i o n 5

other database structures. Delphi’s Data Access and Data Control components
encapsulate the underlying structure of the databases your application uses, so that
your application can present the same interface to an end user whether it accesses a local
Paradox file or a database on a remote SQL server.

The information in most databases is constantly changing. When you access a
networked database from a Delphi application, many users may be accessing and
updating the database at the same time. When any database application accesses a
database, whether to process a query or generate a report, the application receives a
snapshot of the database as it was at the time the application accessed the database. An
application’s view of data may differ from the data currently in the database, so
database applications should always be robust enough to react to such data changes. For
more information about building client/server applications that access remote data, see
Chapter 6, “Building a client/server application.”

What is data?
In this book, “data” refers to information stored in a database. Data may be a single item
in a field, a record that consists of a series of fields, or a set of records. Delphi
applications can retrieve, add, modify, or delete data in a database.

What is data access?
Delphi applications can access data from desktop database tables on a file server or local
disk drive and from remote database servers. To access a data source, a Delphi
application uses Data Access components to establish a connection through the BDE.
The installation program for Delphi installs drivers and sets up configurations for
Paradox, dBASE, and the Local InterBase Server so you can begin working with tables
native to these systems immediately.

To connect to another data source requires the installation of a driver for that specific
database and subsequent configuration of the BDE to recognize the driver. Connecting
to remote database servers requires the Client/Server edition of Delphi that includes
SQL Links to access to Sybase, Microsoft SQL Server, Oracle, Informix, and InterBase on
NT, NetWare, and Unix servers. For more information about installing and configuring
the SQL Link drivers, see the SQL Links User’s Guide.

The BDE uses aliases as convenient shorthand names for often-used data sources,
whether local or remote. The BDE Configuration Utility enables you to define and
modify aliases that Delphi applications can use immediately. For more information
about defining aliases, see Appendix B, “Using the BDE configuration utility.”

Once drivers are installed and network connections established, Delphi applications can
access data from any authorized server. The examples in Chapter 2 demonstrate
techniques for accessing data from a database—specifically, sample data tables that are
shipped and installed as part of the Delphi package. Although the example project in
the next chapter deals with local desktop data, the techniques for accessing remote data
are essentially the same, as subsequent chapters demonstrate.

Note An SQL version of the example project is provided in the DEMOS directory.

6 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Data sources
Delphi database applications get their data through the BDE. The different data sources
(not to be confused with the TDataSource component) that the BDE can use are shown in
Table 1.3.

Understanding Delphi database architecture
Delphi uses object-oriented components to create database applications, just as it does
with non-database applications. Like standard components, database components have
attributes, or properties, that are set by the programmer at design time. These properties
can also be set programmatically at run time.

Database components have default behavior that enables them to perform useful
functions with little or no programming. The Delphi Component palette provides two
database component pages:

• The Data Access page contains Delphi objects that simplify database access by
encapsulating database source information, such as the database to connect to, the
tables in that database to access, and specific field references within those tables.
Examples of the most frequently used data access objects include TTable, TQuery,
TDataSource, and TReport.

• The Data Controls page contains data-aware user interface components for displaying
database information in forms. Data Control components are like standard user
interface components, except that their contents can be derived from or passed to
database tables. Examples of the most frequently used data control components
include TDBEdit, TDBNavigator, and TDBGrid.

Datasets, such as TTable, TQuery, and TStoredProc components, are not visible at run
time, but provide applications their connection to data through the BDE. Data Control
components are attached to dataset components by a TDataSource component, to
provide a visual interface to data.

Table 1.3 Delphi data sources

Data source Description File extension

Paradox Tables created with Paradox or Database
Desktop. Each table is in a separate file.

.DB

dBASE Tables created with dBASE or Database Desktop.
Each table is in a separate file.

.DBF

ASCII files Tables created with Database Desktop. Each table
is in a separate file.

.TXT

Local InterBase Server Database created with InterBase Windows ISQL.
Multiple tables in a single database file.

.GDB

SQL Database Server: Oracle, Sybase,
Microsoft SQL Server, Informix, InterBase

Database created with server-specific tools, or the
DBD, accessed across network with SQL Links.
Delphi Client/Server Edition only.

Depends on server

ODBC data sources Databases such as Microsoft Access, Btrieve,
FoxPro, etc.

Depends on data source

I n t r o d u c t i o n 7

The following figure illustrates how Data Access and Data Control components relate to
data, to one another, and to the user interface in a Delphi database application:

Figure 1.3 Database components architecture

As this figure illustrates, a form usually contains at least three database components: a
dataset component (TTable and TQuery in the figure) that communicates with the BDE; a
TDataSource component that acts as a conduit between a dataset component and the
user interface; and one or more data control components, such as TDBEdit or TDBGrid,
that enable a user to browse, edit, or enter data.

Overview of the Data Access page
The Data Access page of the Delphi Component palette provides a set of database
encapsulation objects that simplify database access.

Figure 1.4 Data Access page of the Component palette

When building a database application, you place data access components on a form,
then assign them properties that specify the database, table, and records to access. They
provide the connection between a data source and Data Control components.

At run time, after an application is built and compiled, data access objects are not visible,
but are “under the hood,” where they manage data access.

BDE

Data

Delphi Form

TTable

TQuery TDataSource

TDataSource

TDBGrid

TDBGrid

TDBEdit

TDBEdit

TDBCheck

TDBCheck

Data Access Components Data Control Components

(User Interface)

8 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The following table lists the data access objects on the Data Access page, and briefly
describes how they are used:

Four data access components deserve special mention. Most forms provide a link to a
database with a TTable or TQuery component (or through a user-defined component
based on the normally hidden abstract class, TDataSet, of which TTable and TQuery are
descendents). Other forms provide a link to a database with TStoredProc, also a
descendent of TDataSet. In turn, all forms must provide a TDataSource component to
link a TTable, TQuery, or TStoredProc component to data control components that
provide the visible user interface to the data.

TTable, TQuery, (and TStoredProc, when it returns a result set) contain a collection of
TField components. Each TField corresponds to a column or field in the table or query.
TFields are created

• Automatically, when TTable, TQuery, or TStoredProc are activated.
• At design time, using the Fields editor.

For more information about TFields and the Fields editor, see Chapter 3, “Using data
access components and tools.” For more information about TStoredProc, see Chapter 6,
“Building a client/server application.”

Understanding TTable
The TTable component is the easiest way for a programmer to specify a database table
for access. To put a TTable component on a form:

1 Select the Data Access page from the Component palette.

2 Click the Table icon.

3 Click on the form to drop the TTable component.

4 Enter the directory where the database resides in the DatabaseName property of the
Object Inspector window. For SQL databases, enter an alias name.

Table 1.4 Data Access components

Component Purpose

TDataSource Acts as a conduit between a TTable, TQuery, TStoredProc component and data-aware
components, such as TDBGrid.

TTable Retrieves data from a database table via the BDE and supplies it to one or more data-
aware components through a TDataSource component. Sends data received from a
component to a database via the BDE.

TQuery Uses SQL statements to retrieve data from a database table via the BDE and supplies it
to one or more data-aware components through a TDataSource component, or uses SQL
statements to send data from a component to a database via the BDE.

TStoredProc Enables an application to access server stored procedures. Sends data received from a
component to a database via the BDE.

TDatabase Sets up a persistent connection to a database, especially a remote database requiring a
user login and password.

TBatchMove Copies a table structure or its data. Can be used to move entire tables from one database
format to another.

TReport Enables printing and viewing of database reports through ReportSmith.

I n t r o d u c t i o n 9

Note An alias can also be used for local Paradox and dBASE tables. You can choose an alias
from a drop-down list in the Object Inspector.

5 Enter the name of the table to use in the TableName property of the Object Inspector
window, or you can also choose a table from the drop-down list instead of entering
the name.

By default, a TTable component accesses every column in a table when you activate it.
When a visual component, such as TDBEdit, is associated with a TTable object, it can
display any field in the table. Multi-column visual components, such as TDBGrid, access
and display columns in the table using the table’s TField list.

If you double-click a TTable component on a form, you invoke the Fields Editor. The
Fields Editor enables you to control the way Data Control components display data. It
can

• Create a static model of a table’s columns, column order, and column type that does
not change even if changes are made to the underlying physical table in the database.

• Provide convenient, readable, and efficient component names for programmatic
access.

• Specify the order in which fields are displayed and which fields to include.

• Specify all display characteristics of fields.

• Add custom validation code.

• Create new fields for display, including calculated fields.

For complete information about the Fields Editor, see Chapter 3, “Using data access
components and tools.”

Understanding TQuery
The TQuery component provides a tool for data access using SQL statements, such as a
SELECT statement, to specify a set of records and a subset of columns from a table.
TQuery is useful for building local SQL queries against Paradox and dBASE data, and
for building client/server applications that run against SQL servers.

To put a TQuery component on a form:

1 Select the Data Access page from the Component palette.

2 Choose the Query icon.

3 Click on the form to drop the TQuery component.

4 Enter the directory where the database resides (or select an alias for SQL databases)
in the DatabaseName property of the Object Inspector window.

5 Enter the SQL statement to use for data access in the SQL property of the Object
Inspector window by clicking the list button to open the String Editor.

The Object Inspector window for TQuery does not contain a separate property for
specifying a table name. Instead, a table name must always specified as part of the SQL
statement in the SQL property.

10 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

With Delphi Client/Server, you can right-click a TQuery component on a form, then
select the Visual Query Builder from the pop-up menu. The Visual Query Builder
enables you to connect to a database and build an SQL statement interactively. For
complete information about the Visual Query Builder, see the online Help.

If you double-click a TQuery component, you invoke the Fields Editor. The Fields Editor
enables you to control the way Data Control components display data. For complete
information on TQuery and the Fields Editor, see Chapter 3, “Using data access
components and tools.”

Understanding TDataSource
Every dataset that supplies a data control component must have at least one
TDataSource component. TDataSource acts as a bridge between one TTable, TQuery, or
TStoredProc component and one or more data control components that provide a visible
user interface to data.

TTable and TQuery can establish connections to a database through the BDE, but they
cannot display database information on a form. Data Control components provide the
visible user interface to data, but are unaware of the structure of the table from which
they receive (and to which they send) data. A TDataSource component bridges the gap.

To put a TDataSource component on a form:

1 Select the Data Access page from the Component palette.

2 Choose the DataSource icon.

3 Click on the form to create the TDataSource component.

4 Enter the name of the TTable or TQuery component to use as a database connection
source in the DataSet property of the Object Inspector. If the form contains any TTable
or TQuery components, you can choose a component from the drop-down list
instead.

Note TDataSource is also used to link tables or queries in a master/detail form. For more
information about master/detail forms, see Chapter 2, “Building a sample database
application: MASTAPP.”

Overview of the Data Controls page
The Data Controls page provides a set of data-aware user-interface components that
you can use to create forms-based database applications.

Figure 1.5 The Data Controls page of the Component palette

Many data controls are data-aware versions of component classes available on the
Standard page of the Component palette. In addition to standard component
functionality, data controls can display data from a field in a database table, or send new
or modified data from a form to a database table.

I n t r o d u c t i o n 11

The following table lists the data controls on the Data Control page.

Data control components make up a consistent visual user interface for Delphi database
applications, whether the application accesses a local database file, or a remote database
server. To see how data control components are used in an application, see the
subsequent chapters of this book. For a complete description of each data control
component and its properties, see the online VCL Reference.

Overview of the Database Forms Expert
The Database Forms Expert automates many of the tasks necessary for creating data-
entry or tabular forms from an existing database table. It can generate simple or
master/detail forms using TTable or TQuery components. The Database Forms Expert
automates such form building tasks as:

• Placing database components on a form.

• Connecting TDataSet components (e.g., TTable and TQuery) to a database.

• Connecting TDataSource components to interactive data control components and
TTable or TQuery data access objects.

• Writing SQL statements for TQuery objects.

• Defining a tab order for components.

Table 1.5 Data Controls components

Component Purpose

TDBNavigator Data-aware navigation buttons that move a table’s current record pointer forward or
backward; start Insert or Edit mode; post new or modified records; cancel Edit
mode; and refresh display to retrieve updated data.

TDBText Data-aware label that can display a field from a currently active record.
TDBEdit Data-aware edit box that can display or edit a field from a currently active record.
TDBCheckBox Data-aware check box that can display or edit a Boolean data field from a currently

active record.
TDBListBox Data-aware list box that can display values from a column in a table.
TDBComboBox Data-aware combo box that can display or edit values from a column in a table.
TDBRadioGroup Data-aware radio group populated with radio buttons that can display or set

column values.
TDBGrid Data-aware custom grid that enables viewing and editing data in a tabular form

similar to a spreadsheet; makes extensive use of TField properties (set in the Fields
Editor) to determine a column’s visibility, display format, ordering, etc.

TDBMemo Data-aware memo box that can display or edit text BLOB data from a currently
active record.

TDBImage Data-aware image box that can display, cut, or paste bitmapped BLOB images to
and from a currently active record.

TDBLookupList Data-aware list box that displays values mapped through another table at run time.
TDBLookupCombo Data-aware combo box that displays values mapped through another table at run

time.

12 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Inexperienced database applications programmers can use the Database Forms Expert
to learn how to build database forms. Experienced database applications programmers
can use it to speed application development. To learn how to use the Database Forms
Expert when building an application, see Chapter 2, “Building a sample database
application: MASTAPP.”

Overview of the Database Desktop
The Database Desktop (DBD) is a database maintenance and data definition tool. It
enables programmers to query, create, restructure, index, modify, and copy database
tables, including Paradox and dBASE files, and SQL tables. You do not have to own
Paradox or dBASE to use the DBD with desktop files in these formats.

The DBD can copy data and data dictionary information from one format to another.
For example, you can copy a Paradox table to an existing database on a remote SQL
server. For a complete description of the DBD, see Appendix A, “Using Database
Desktop.”

Developing applications for desktop and remote servers
Delphi Client/Server enables programmers to develop and deploy database client
applications for both desktop and remote servers. One of Delphi’s strengths is the ease
with which an application developed for the desktop can be adapted to access data on a
remote SQL server. The user interface need not change even if the source of the data
changes. To an end user, a Delphi database application looks the same whether it
accesses a local database file or a remote SQL database.

For simple applications that use TQuery components to access desktop data, the
transition to a remote server may be as simple as changing the data source. For other
applications, more significant changes may be in order. Some of these changes are the
result of differing conventions and concurrency issues between desktop and SQL
databases.

For example, desktop databases like Paradox and dBASE are record-oriented. They
always display records in ascending or descending alphabetic or numeric order. They
lock and access a single record at a time. Each time a user changes a record, the changes
are immediately written to the database. Desktop database users can see a range of
records, and can efficiently navigate forward and backward through that range.

In contrast, data in SQL databases is set-oriented, and designed for simultaneous
multiuser access. Record ordering must be specified as part of an SQL query. To
accommodate multiuser access to data, SQL relies on transactions to govern access.
For more information about working with transactions, see Chapter 6, “Building a
client/server application.”

I n t r o d u c t i o n 13

Database application development methodology
Developing database applications with Delphi is similar to developing other types of
software, but there are important distinctions and challenges that must be addressed.
The methodology presented in this section should be used as a guideline that you can
adapt to meet your specific business needs.

Development scenarios
Since an application’s design usually depends on the structure of the database it will
access, the database must be defined before the application can be developed.

Note Database development (also called data definition) is a part of the overall development
process, but is beyond the scope of this manual. For more information, refer to the
numerous books about relational database design.

There are four possible scenarios for Delphi database application development:

• The database does not yet exist or must be re-defined.
• Use the Database Desktop utility to define Paradox and dBASE tables. For more

information, see Appendix A, “Using Database Desktop.”
• For SQL servers, use the tools provided with the server or the Database Desktop.

For example, for the Local InterBase Server or an InterBase Workgroup Server, use
Windows ISQL. For more information, see the Local InterBase Server User’s Guide
and the InterBase Data Definition Guide.

• The database exists on a desktop or LAN data source (Paradox or dBASE) and the
database will access it there. If the BDE and the data source are on the same machine
as the application, then the application is a standalone (not client/server) application.

• The database exists on a desktop data source, and is being upsized to an SQL server.
This scenario is discussed in Appendix C, “Using local SQL.”

• The database exists on an SQL server and the application will access it there. This is a
standard client/server application. For information specific to developing a client/
server application, Chapter 6, “Building a client/server application.”

Database application development cycle
The goal of database application development is to build a product which meets end
users’ long-term needs. While this goal may seem obvious, it is important not to lose
sight of it throughout the complexities and often conflicting demands of the
development process. To create a successful application it is critical to define the end
users' needs in detail early in the development process.

The three primary stages of database application development are

• Design and prototyping
• Implementation
• Deployment and maintenance

14 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

There are database and application tasks in each of these phases. Depending on the size
and scope of the development project, the database and application tasks may be
performed by different individuals or by the same individual. Often, one team or
individual will be responsible for the database tasks of the project, and another team or
individual will be responsible for the application tasks.

Figure 1.6 Development cycle

For client/server applications, the database and application tasks become more distinct,
since they run on different platforms, often with different operating systems (for
example, a Unix server and Windows 3.1 client).

When development responsibilities are thus divided it is important to clearly delineate
in the design phase which functions will be performed by the database server and
which will be performed by the client application. Usually, the functional lines are clear
cut. But database processes such as stored procedures can sometimes perform functions
that can also be performed by the client application. Depending on the expected
deployment configuration, application requirements, and other considerations, the
design can allocate such functions to either client or server.

It is also important to realize that database application development is by its nature an
iterative process. Users may not fully understand their own needs, or may define
additional needs as development proceeds. User interface elements are always refined
as they are used. Also, changing business needs will change requirements over time.
Generally, a number of iterations through the development cycle will be required before
an application can meet a significant portion of its requirements.

Design phase
The design phase begins with requirements definition. In consultation with
knowledgeable end users, define the functional specifications for the database and
applications. Determine which aspects of the functional requirements will be
implemented in the database design, and which aspects will be implemented in the
applications.

For client/server applications, often certain functions can be performed either by the
server or by the application; for example, a complex mathematical transform function
could be performed either by the client application or by a stored procedure on the
server. The hardware deployment configuration will generally determine whether such

Design
Implementation

Deployment

Development

cycle

I n t r o d u c t i o n 15

functions are best performed on the server or client. For example, if the client platforms
are expected to be low-end desktop PCs, and the server platform is expected to be a
high-end workstation, then it will probably be best to run computation-intensive
functions on the server. If the hardware configuration changes, then it is possible to
move the function between client and server in a later iteration.

Implementation phase
In the implementation phase, you use Delphi to build and test the application conceived
in the design phase. During the implementation phase, you should use a duplicate data
source, that is, a data source that has the same essential structure as the production
database, but with a small subset of representative data. It is not recommended to
develop an application against a production database, since the untested application
may corrupt the data or otherwise interfere with normal database activities.

If your application will ultimately be deployed to use a desktop data source, make
copies of the required tables with the Database Desktop, and populate them with
representative “dummy” data.

If the application will ultimately be deployed to use a remote data source (an SQL
server), then you can take two approaches during the implementation phase:

• Develop and test the application against a non-production database on the Local
InterBase Server.

• Develop and test the application against a non-production database on the server.

The first approach has the advantage that is isolated on the development platform(s),
and so will not interfere with other server activities. It will not consume server resources
or increase network traffic. Its primary disadvantage is that only standard SQL server
features can be used and tested during this phase, if you are using a server other than
InterBase for the deployed application.

The second approach enables you to surface all server-specific features, but will
consume network and server resources during testing. This approach can be dangerous,
since it is conceivable that a programmer error could cause a server to crash during
testing.

Deployment phase
In the deployment phase, the client/server application is put to the acid test: it is handed
over to end users. To ensure that the application’s basic functionality is error-free,
deploy a prototype application before attempting to deploy a production application.

Since the ultimate judges of an application’s efficacy are its users, developers must be
prepared to incorporate changes to applications arising from their suggestions,
changing business needs, and for general enhancement (for example, for usability).
Sometimes application changes may require changes to the database, and conversely,
changes to the database may require application changes. For this reason, application
developers and database developers should work together closely during this phase. As
features and enhancements are incorporated into the application, the application moves
iteratively closer to completion.

16 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Deploying a client/server application requires addressing a number of special issues,
including connectivity and multiuser access. These issues are discussed in Chapter 6,
“Building a client/server application.”

Deploying an application
Deploying an application means giving it to the end users, and providing the necessary
software they need to use the application in a production environment. Non-database
applications require only an .EXE file to run—Delphi applications do not require a run
time interpreter or DLL.

Typically, when deploying a database application, you will create a package that
includes all the files that end users need to run the application and access data sources.
These files include

• The application .EXE file and .DLL files (if any)
• Required ancillary files (for example, a README file or .HLP files for online help)
• BDE support for database access (desktop or server)
• ReportSmith Runtime for running and printing reports
• If the application uses VBX controls, include each VBX along with BIVBX11.DLL

If you are distributing the files on disks, you will generally want to compress them with
a standard file compression utility, and provide the utility on the disk. You may also
want to build a simple installation application to install the files for your users. For
complex applications, you may want to use one of the many commercially-available
installation programs.

Important Before distributing any files, ensure that you have the proper redistribution rights. As
described in the Delphi license agreement, Delphi provides distribution rights for the
BDE (including Paradox and dBASE support). Delphi Client/Server includes
distribution rights for Borland SQL Links for Windows. Licenses for distribution of the
Local InterBase Server are available from Borland.

For information on deploying support for remote server access, see Chapter 6, “Building
a client/server application.” For client/server applications, you also must ensure that
the necessary communications software (for example, TCP/IP interface) is installed on
the client platforms. This software is provided with databases servers. For more
information, see your server documentation.

Deploying BDE support
When you deploy a database application, you must ensure that the client platform has
the correct version of the BDE installed. Delphi includes Redistributable BDE, with its
own installation utility, that can you can redistribute with your applications. When you
deploy an application, simply include a copy of the Redistributable BDE disk.

The Delphi license agreement requires you to make all the files in Redistributable BDE
available to your application users. This requirement enables users to install the new
version of the BDE for Delphi without interfering with existing Paradox and dBASE
applications. You can advise your users to save disk space and install only the drivers

I n t r o d u c t i o n 17

required to run your application, but you must still distribute all the files in the
Redistributable BDE.

For example, if your application needs access only to Paradox files, you can advise your
users not to deploy the dBASE driver. The minimum BDE configuration for accessing a
Paradox database requires about 500 Kbytes.

Note For more information on deployment, refer to the file DEPLOY.TXT installed to the
DELPHI\DOC directory by default.

Language drivers
The BDE provides the ability to localize applications with language drivers. The
language driver DLL loads the drivers specified by Paradox or dBASE tables or in
IDAPI.CFG for server databases. The language drivers are files with extension .LD
installed to the LANGDRV sub-directory of the BDE directory.

Important For language drivers to load correctly, the WIN.INI file must have the following entry,
assuming the default installation directory:

[Borland Language Drivers]
LDPath = C:\DELPHI\IDAPI\LANGDRV

Table 1.6 Redistributable Borland Database Engine files

File name Description

IDAPI01.DLL BDE API DLL
IDBAT01.DLL BDE Batch Utilities DLL
IDQRY01.DLL BDE Query DLL
IDASCI01.DLL BDE ASCII Driver DLL
IDPDX01.DLL BDE Paradox Driver DLL
IDDBAS01.DLL BDE dBASE Driver DLL
IDR10009.DLL BDE Resources DLL
ILD01.DLL Language Driver DLL
IDODBC01.DLL BDE ODBC Socket DLL
ODBC.NEW Microsoft ODBC Driver Manager DLL, version 2.0
ODBCINST.NEW Microsoft ODBC Driver installation DLL, version 2.0
TUTILITY.DLL BDE Tutility DLL
BDECFG.EXE BDE Configuration Utility
BDECFG.HLP BDE Configuration Utility Help
IDAPI.CFG BDE (IDAPI) Configuration File

18 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

ODBC Socket
The BDE comes with an ODBC Socket. It has been certified with Microsoft’s 2.0 ODBC
Driver Manager. If you have a different version of the ODBC Driver Manager:

• Back up your existing ODBC.DLL and ODBCINST.DLL

• Copy the version 2.0 files, ODBC.NEW and ODBCINST.NEW, from your BDE
directory to your WINDOWS\SYSTEM directory.

• Rename these files to ODBC.DLL and ODBCINST.DLL.

Note The ODBC 2.0 Driver Manager does work with ODBC 1.x ODBC drivers.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 19

C h a p t e r

2
Chapter 2Building a sample database

application: MASTAPP
This chapter is a tutorial and introduction to building Delphi database applications.
Examples show how to perform database tasks using Delphi interactively and by
programming in Object Pascal. In each example you build a single form, self-contained
and independent of the others. You can save yourself some work by doing the examples
in sequence. Several examples use the same basic form as a starting point.

Note This material assumes you know how to use Delphi; it tells you what to do to perform
certain tasks. For more details (that is, to find out why), follow the cross-references in the
“For more information” section that follows each example. In particular, see Chapter 3,
“Using data access components and tools.”

The tutorial consists of the following sections:

• “Building forms” describes how to use the Database Form Expert to create database
forms, including single-table and master-detail forms. It also describes how to
enhance forms by adding components and code by hand.

• “Working with fields” describes how to read and write field values, how to search for
values and do table lookups, and how to format data displayed to the user. It also
describes how to work with calculated fields.

• “Using queries and ranges” describes how to use SQL queries and set ranges to select
a subset of the data in one or more tables.

• “Printing reports and forms” describes how to print ReportSmith reports and Delphi
forms.

Building forms
The material in this section focuses on database issues. To learn about general
application building with Delphi, see the User’s Guide. The forms described here are the

20 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

basis for a database application called MASTAPP, designed to meet the record-keeping
needs of the fictitious Marine Adventures & Sunken Treasures company (MAST).
MAST sells diving equipment and arranges diving expeditions. MASTAPP tracks
information about customers, orders, inventory, and vendors.

The tutorial starts with a simple “codeless” form for viewing and editing table data, and
works up to a full-featured invoice form containing several tables, data-aware
components, and other advanced Delphi features. All the forms, tables, and related files
are installed by default in C:\DELPHI\DEMOS\DB\MASTAPP. During a default
installation of Delphi, an alias, DBDEMOS, that points to the MASTAPP directory is
created for you, or you can create your own alias using the BDE configuration utility
(see Appendix B). The following figure shows the forms and tells where they are
described in this chapter:

Figure 2.1 Database forms described in the tutorial

Note For general information about building Delphi forms, see the User’s Guide.

MASTAPP aliases
All TTable and TQuery components used in example code in this chapter set their
DatabaseName property to DBDEMOS. In contrast, the complete demo in the MASTAPP
directory does the following to facilitate porting:

1 The main form (MAIN.PAS) has a TDatabase component with its AliasName property
set to DBDEMOS and DatabaseName property set to MAST.

2 All datasets on all forms have their Database properties set to MAST. Now all forms
can use a different BDE alias simply by changing the main form’s TDatabase
component’s AliasName property.

Master-detail form,
page 24.

Single table form,
page 21.

One-many-many form,
page 27.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 21

Building a single-table form
The steps in this section show how to use the Database Form Expert to build a single-
table form. Of course, anything the expert does, you can do by hand, but the expert
saves a lot of time.

What to do
1 Choose Help|Database Form Expert to open the Form Expert.

2 Specify a table, fields, and field layout as shown in the following figure. The Form
Expert creates the form.

3 Press F9 to run the form. Click the navigator control buttons to move through the
records in the table.

2. Choose a table (PARTS.DB).

3. Specify which fields to use.
Click >> to use all fields.

1. Specify a simple form created using
TTable objects.

4. Choose a field layout (grid).

5. Tell the expert to create the form. 6. This is how the completed form looks by
default.

Figure 2.2 Building a single-table form using the Database Form Expert

22 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

How it works
The Database Form Expert builds a single-table form to match your specifications, and
adds a tool bar of navigation controls. The form shown in the following figure is the
basis for the full-featured BRPARTS.DFM form in the MASTAPP application. The
important relationships in a data-aware form like this one are the links between the
underlying data, the nonvisual components, and the data controls that display data to
the user.

Figure 2.3 A single-table form

The form contains one TTable component. The expert links it to the Parts table by setting
the properties listed in the following table. A TTable component establishes a connection
to a table in a database.

The form contains one TDataSource component. The expert links it to the TTable
component by setting the properties listed in the following table. A TDataSource
component acts as a bridge between one dataset component (TTable in this case) and one
or more data-aware controls that provide a visible interface to data.

Table 2.1 Important TTable properties for a single-table form

Property Value Remarks

Active False When Active is False, data-aware controls do not display data at design
time. To make controls display data at design time, set Active to True.

DataBaseName MAST MAST is an alias that points to where the table resides. Use aliases, not
hard-coded paths, to make applications portable and easy to upsize.

Name Form1 Use the Object Inspector to change names.
TableName PARTS.DB Tells the component which table to link to.

Table 2.2 Important TDataSource properties for a single-table form

Property Value Remarks

AutoEdit True (default) When AutoEdit is True, Delphi puts the TDataSource into Edit state
automatically when the user changes a value in a linked control.
To make a TDataSource read-only, or to control when to enter Edit state,
set AutoEdit to False.

TTable component linked
to a table

TDataSource linked to
the TTable

TDBNavigator control linked
to the table

TDBGrid control linked to
the TDataSource

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 23

The form contains one TDBGrid control. The expert links it to a TDataSource component
by setting the properties listed in the following table. By default, a TDBGrid includes all
the fields (columns) in a table. To limit the columns displayed by a TDBGrid, double-
click on its associated TTable component to invoke the Fields Editor (see page 30).

The form contains one TDBNavigator control. This control moves a table’s current record
pointer forward or backward, starts Insert or Edit state, posts new or modified records,
etc. The expert links this control to the Parts table by setting the properties listed in the
following table.

The expert does more than create a form and components. It also generates a line of code
to open the table at run time in case you do not activate the table at design time. For
example, the expert creates TTable components with the Active property set to False.
That’s why the various TDBEdit controls aren’t displaying data. You could set Active to
True, and the controls would display data from the first record. Instead, the Form
Expert generates the following code to open the table at run time.

procedure TEditPartsForm.FormCreate(Sender: TObject);
begin
Table1.Open;

end;

This code is hooked to the form’s OnCreate event, so Delphi executes it before creating
the form. As a result, the table is opened before the form is displayed.

Note Code created by the Form Expert is like code you type yourself. If you rename
components created by the expert, be sure to update your source file everywhere the
renamed component occurs. Name changes to components that Delphi originates (for
example, in the type declaration) are changed automatically for you by Delphi.

DataSet Table1 Specifies which TTable (or TQuery) is supplying the data.
Name DataSource1 Use the Object Inspector to change names.

Table 2.3 Important TDBGrid properties for a single-table form

Property Value Remarks

DataSource DataSource1 Links the DBGrid control to a TDataSource component, which
supplies the data.

Table 2.4 Important TDBNavigator properties for a single-table form

Property Value Remarks

DataSource DataSource1 Links the control to a TDataSource
component.

VisibleButtons A list of button identifiers and a
corresponding Boolean value that
specifies whether that button is visible.
Example: nbFirst True.

For example, by default nbNext is True, so the
Next Record button is visible; nbDelete is
False, so the Delete button is invisible.

Table 2.2 Important TDataSource properties for a single-table form (continued)

Property Value Remarks

24 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

For more information
For more information about

• Building Delphi forms, see the User’s Guide.
• Naming components, see the User’s Guide.
• The Delphi database architecture, see Chapter 1, “Introduction.”
• TTable components, see page 8.
• The Fields Editor, see page 30.
• TDataSource components, see page 10.

Building a master-detail form
The steps in this section show how to use the Database Form Expert to build a form
containing two tables: a master table and a detail table, linked one-to-many. This form
is the basis for the CUSTORD.DFM form in MASTAPP. The master table is
CUSTOMER.DB and the detail table is ORDERS.DB. You can access both tables using
the MAST alias. The expert links these tables and creates components to display data for
one customer at a time, and for each customer, to display many orders.

What to do
When you use the Database Form Expert, building a master-detail form is much like
building a single-table form (for details, see page 21).

1 Choose Help|Database Form Expert to open the Form Expert.

2 In the first panel, specify a master-detail form that uses TTable objects.

3 In subsequent panels, specify the master table (CUSTOMER.DB), fields (use them
all), and field layout (grid).

4 Specify the detail table (ORDERS.DB), fields (all), and field layout (grid).

5 Specify fields to link the master and detail tables as shown in the following figure,
then tell the expert to create the form.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 25

6 Press F9 to run the form. Click the navigator control buttons to move through the
records in the table.

How it works
The expert builds a master-detail form much as it builds a single-table form (for details,
see page 22). It creates TTable components and TDataSource components for the master
table and the detail table and links them to the underlying data by setting properties.
The expert creates controls to display the data from each table, and sets properties to
link them to the corresponding TDataSource component. The expert also creates a
TDBNavigator control linked to the master table.

1. Choose an index. All Paradox tables have a
primary index by default. ORDERS.DB was also
created to have a secondary index named
ByCustNo that orders records by customer
number. Choose ByCustNo from the combo box.

2. When you choose an index, Delphi updates the
lists of possible linking fields. In each list, choose
CustNo, then click Add.

3. When you click Add, Delphi shows how the
fields are linked. Click Next to continue.

Figure 2.4 Linking fields in a master-detail form

26 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure 2.5 A master-detail form

What distinguishes a master-detail form is the link between the tables. For each record
in the master table, the form displays all corresponding records in the detail table. Such
a link is called a one-to-many relationship (see page 76 for more information). Delphi
creates this relationship by setting properties of the TTable component linked to the
detail table.

The following table lists important properties for each component and control.

Table 2.5 Important detail table properties

Property Remarks

IndexFieldNames Specifies the columns used to order the records in the table. You can also specify an
index by name using the IndexFields property. For more information, see page 74.

MasterFields Specifies which fields in the master table to link to. Use a semicolon to separate
multiple field names. For more information, see page 76.

MasterSource Specifies the TDataSource component linked to the master table. This data source
provides a restricted view of the data in the detail table based on the values of the
fields specified in MasterFields. For more information, see page 76.

Table 2.6 Important component properties for a master-detail form

Component Property Value Remarks

TTable
(master)

Active False When Active is False, data from this table is not
displayed.

DataBaseName MAST An alias that specifies where to find the table. Use
aliases, not hard-coded paths, to make applications
portable and easy to upsize.

Name Table1 (by default). Use the Object Inspector to rename it (for example,
Cust).

TableName CUSTOMER.DB Specifies the master table.

TDataSource
(master)

DataSet Table1 (by default) Specifies which TTable is supplying the data to this
component.

Name DataSource1 (by default) Use the Object Inspector to rename it (for example,
CustSource).

TTable (detail) Active False Data from this table is not displayed at design time.

Master TTable and
TDataSource

Detail TTable and
TDataSource

TDBNavigator control,
linked to master table

TDBGrid control linked to
master table

TDBGrid control linked
to detail table

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 27

For more information
For more information about

• Linking tables, see step 6 on page 25.
• One to many relationships, see “Creating a master-detail form,” on page 76.
• Using the Database Form Expert, see page 21.

Building a one-many-many form
This section describes how to build a form that displays data from three tables linked
one-many-many. For example, one customer may place many orders, and each order
may have many items. Use the Database Form Expert to create a master-detail form
linking the Customer table to the Orders table as described on page 24. Then, to display
and link the Items table, place components and set properties by hand. You can also use
the techniques described here to build a master-detail form from scratch.

What to do
1 Choose Help|Database Form Expert to open the Form Expert.

2 In the first panel, specify a master-detail form that uses TTable objects.

DataBaseName MAST An alias that specifies where to find the table. Use
aliases, not hard-coded paths, to make applications
portable and easy to upsize.

IndexFieldNames CustNo Specifies a column to use to order records in the
table.
ByCustNo is a secondary index based on CustNo.
You can also set the IndexFields property to
ByCustNo.

MasterFields CustNo A list of one or more master table fields to link to.
Use a semicolon to separate field names in the list.

MasterSource DataSource1 (by default) Identifies a TDataSource linked to the master table.

Name Table2 (by default) Use the Object Inspector to rename it (for example,
Orders).

TableName ORDERS.DB Specifies the detail table.

TDataSource
(detail)

DataSet Table2 (by default) Specifies which TTable is supplying the data to this
component.

Name DataSource2 (by default) Use the Object Inspector to rename it (for example,
OrdersSource).

TDBGrid
(master)

DataSource DataSource1 (by default) Links the grid control to a TDataSource control.

TDBGrid
(detail)

DataSource DataSource2 (by default) This data source provides a restricted view of the
data in the Orders (detail) table, based on the values
of the fields linked to the Customer (detail) table.

TDBNavigator DataSource DataSource1 (by default) The expert links the TDBNavigator control to the
master table.

Table 2.6 Important component properties for a master-detail form (continued)

Component Property Value Remarks

28 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

3 In subsequent panels, specify the master table (CUSTOMER.DB), fields (use them
all), and field layout (horizontal).

4 Specify the detail table (ORDERS.DB), fields (all), and field layout (horizontal).

5 Specify fields to link the master and detail tables: choose CustNo for the
IndexFieldNames property and link the CustNo fields in each table. For details, see
step 6 on page 25.

6 Tell the expert to create the form.

7 Move components around to make room at the bottom of the form. You may have to
change the Align property of some controls from alClient to alNone.

8 Place a TTable component, a TDataSource component, and a TDBGrid component as
shown in the following figure. (The TTable and TDataSource are on the Data Access
components page; the TDBGrid is on the Data Controls page.) These components
represent the third table in the one-many-many link. In this example its the Items
table.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 29

9 To create the link, set properties of these new components as shown in the following
table.

Table 2.7 Important component properties for a one-many-many form

Component Property Value Remarks

TTable
(third table)

Active True False by default. Set Active to True after setting all
other properties to display data in linked controls.

DataBaseName MAST An alias that specifies where to find the table. Use
aliases, not hard-coded paths, to make an application
portable and easier to upsize.

IndexFieldNames OrderNo Specifies a column to use to order records in the table.
ByOrderNo is a secondary index based on OrderNo.
You can also set the IndexFields property to ByOrderNo.

MasterFields OrderNo A list of one or more master table fields to link to. Use a
semicolon to separate field names in the list.

MasterSource DataSource2 (by default) Identifies a TDataSource component linked to the
master table.

Name Table3 (by default). Use the Object Inspector to rename it (for example,
Items).

TableName ITEMS.DB The name of the third table in the link.

TDataSource
 (third table)

DataSet Table3 (by default) Specifies which TTable is supplying the data to this
component.

Name DataSource3 (by default) Use the Object Inspector to rename it (for example,
ItemsSource).

TDBGrid
(third table)

DataSource DataSource3 (by default) This data source provides a restricted view of the data
in the Items table, based on the values of the fields
linked to the Orders table.

TTable3, linked
to ITEMS.DB

TDataSource3,
linked to TTable3

TDBGrid3,
linked to
TDataSource3

Figure 2.6 One-many-many form

30 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

How it works
A one-many-many form links data from three tables. The first table in the link (the
Customer table) is the master table. The second table (Orders) does double duty: it’s the
detail table for the first table and the master table for the third table. The third table
(Items) is a detail table for the second table. In this example, you can link these tables
quickly and easily by setting properties because secondary indexes were specified for
the tables when they were created.

For more information
For more information about

• Using the Database Form Expert, see page 21.

• Creating tables and adding secondary indexes, see Appendix A, “Using Database
Desktop.”

• Linking tables, see step 6 on page 25.

Working with fields
Examples in this section show how use code to control field values and display
attributes. Delphi’s data-aware controls enable end users to view and edit table data, but
to access the underlying data or control how it is displayed, you want to create field
components. Use the Fields Editor to define a list of fields and work with invisible
components of type TField.

Creating Tfield components
This example explains how to use the Fields Editor to define a list of some or all of the
fields (columns) in a table. For each field, Delphi creates a corresponding TField
component. TField components are invisible components that provide access to field
values and display attributes. The following example shows how to use the Fields
Editor to make a grid display four fields selected from the Customer table. It also shows
how to specify the field order.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB in a grid. For detailed instructions, see page 21.

2 To make the grid display data at design time, use the Object Inspector to change the
TTable component’s Active property to True.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 31

3 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty, as shown in the following figure:

4 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Click CustNo to select it, then control-click to select the Company,
Phone, and LastInvoiceDate fields, then click OK to confirm your choices and close
the dialog box. In the form, the grid changes: instead of displaying all fields, it
displays the only the fields you selected.

5 Use the Fields Editor to change the field order as follows: Click LastInvoiceDate in
the list of fields, then drag it to the third place in the list, between Company and
Phone. In the form, the grid changes to display columns in their new order.

6 Close the Fields Editor by choosing Close from the Control menu.

7 Press F9 to run the form. The grid displays the four fields in the order you specified.

How it works
This form is the basis for the full-featured CUSTORD.DFM form in the MASTAPP
application. By choosing fields in the Fields Editor, you can tell a TTable component
which fields to make available to the components that are linked to it. In effect, the
Fields Editor changes the logical structure of the table. The Fields Editor also adds TField
objects to the unit’s type section (for example, CustCustNo: TFloatField;). More
accurately, it adds a descendant of the TField type appropriate for the data type of the
field. For example, when you add the CustNo field to the data set, Delphi adds a
TFloatField object; when you add the Company field, Delphi adds a TStringField, and so
on. This tutorial uses the general term TField when the specific data type is unimportant.

Figure 2.7 The Fields Editor

Figure 2.8 Adding fields to a data set

32 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Note Specifying a list of fields in the Database Form Expert is not the same as using the Fields
Editor to define a dataset. The expert places components and controls in a form to create
an initial layout, but you must use the Fields Editor to specify the fields in a data set. Use
TField components, not visual controls, to access fields programmatically.
Understanding the relationship between a TTable component, TField components, and
data-aware controls is crucial to building database applications with Delphi.

For more information
For more information about

• Data sets, the Fields Editor, and TField components, see “Using TFields and the Fields
Editor” on page 79.

• Using the Database Form Expert, see page 21.

Setting Tfield properties at design time
Because they are invisible, the only way to set the properties of TField components at
design time is by using the Fields Editor. The following example shows how to set the
properties of a TField component at design time.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB in a grid. For detailed instructions, see page 21. (If you’re working
through these examples in sequence, you can use the form from the previous
example and skip to step 5.)

2 To make the grid display data at design time, use the Object Inspector to change the
TTable component’s Active property to True. This step is optional: it lets you see what
happens to the form as you use the Fields Editor.

3 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

4 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Control-click to select only the CustNo, Company, Phone, and
LastInvoiceDate fields, then click OK to confirm your choices and close the dialog
box. In the form, the grid changes: instead of displaying all fields, it displays the only
the fields you selected.

5 Click the CustNo field in the Fields Editor’s field list and view the properties and
values displayed in the Object Inspector. (To open the Object Inspector, choose
View|Object Inspector.) Notice that the component’s Name property is
Table1CustNo. Delphi generates this name automatically by appending the field
name to the name of the associated TTable component. Use this name to refer to the
TField component in code.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 33

6 Change the Align property from taRightJustify (the default) to taCenter. In the form,
the grid changes: values in the CustNo column are centered.

How it works
When you select a field listed in the Fields Editor, you can use the Object Inspector to set
an invisible TField component’s properties, just as you would a visible control. Note that
a field’s display attributes are properties of the TField component, not of the control that
displays the value! You only have to set a property once for the TField component.
Linked controls use the settings automatically. This is a guiding principle of Delphi
database applications: use TField components to work with database fields.

The following table lists important TField design-time properties.

For more information
For more information about

Table 2.8 Important TField design-time properties

Property Remarks

Alignment Specifies how to display the field value: left-justified, right-justified, or centered.
Calculated When True, this field isn’t stored in the table but instead is calculated, record by record,

by Object Pascal code. Write this code in the table’s OnCalcFields event handler.
DisplayLabel The string used by grids as the column header for the corresponding field.
DisplayWidth The number of characters that a grid column uses to display this field in a grid.
DisplayFormat
and EditMask

Provides control over input characters for some fields types as they are displayed and
edited, for example, in working with commonly formatted values such as dates and
telephone numbers.

FieldName The name of the field in the underlying table. Example: CustNo.
Index The field’s logical position in the data set (first position = 0).
Name Formed by appending the field name to the name of the TTable component. Example:

Given a TTable name of Customer and a field name of CustNo, the TField’s name is
CustomerCustNo. This name is used for programmatic access to field’s properties (for
example: CustomerCustNo.Value).

ReadOnly When ReadOnly is True, data in the corresponding field cannot be modified.
Visible When True, the corresponding field appears in grids linked to this TField.

To display a TField component’s properties in the
Object Inspector, choose a field name from the list in
the Fields Editor.

Delphi generates a TField component’s name by
appending the field name to the name of the
associated TTable component. Use this name to
refer to the TField in code.

Figure 2.9 TField component properties

34 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• Setting a TField component’s properties, see page 79.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.

Reading field values
Every line in the Fields Editor’s list of fields represents a Delphi component type TField.
When you add a field to the list in the Fields Editor, you add a new component to the
form (the code appears in the unit’s type section). Delphi provides TField descendents
for every available field type. For example, in the Customer table, CustNo is of type
TFloatField, and Company is of type TStringField. This example shows how to build a
form so you can read field values at run time. You get a field value by reading the Value
property of the corresponding TField component.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB in a grid. For detailed instructions, see page 21.

2 Use the Object Inspector to change the form’s Name property to TutorialForm.

3 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

4 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Control-click to select only the CustNo, Company, Phone, and
LastInvoiceDate fields, then click OK to confirm your choices and close the dialog
box. The Fields Editor remains open.

5 Place a button control and a standard edit box anywhere in the panel that contains
the TDBNavigator control (you may need to resize the panel), then set the edit box
Name property to OutputField.

6 Attach the following code to the button’s OnClick event:

procedure TTutorialForm.Button1Click(Sender: TObject);
begin

 OutputField.Text := Table1Company.Value;
end;

7 Press F9 to run the form. Click a field in the grid, then click the button. The text in the
edit control displays the value of the Company field for the current record.

How it works
The code in step 7 does a simple assignment: the edit control’s Text property gets the
value of the TField component named Table1Company, where the TField’s value is the
value of the corresponding field in the current record of the table.

Note In code, refer to a TField by its component name, don’t use the name of the field in the
table. For example, use Table1Company, not Company.

You can assign the TField component’s value directly to the Text property because
Table1Company is of type TStringField. An edit box’s Text property and a TStringField’s

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 35

Value property are of compatible types, so you don’t need to do a conversion. However,
the following code generates a type mismatch error at compile time, because
Table1CustNo is of type TFloatField.

OutputField.Text := Table1CustNo.Value; {Causes a type mismatch error.}

To display a numeric field’s value in an edit box, convert the value as follows.

OutputField.Text := Table1CustNo.AsString;

This code uses the TField property AsString to read the field value and convert it to a
string before assigning it to the edit box’s Text property. TField components have the
following properties for converting values: AsBoolean, AsDateTime, AsFloat, AsInteger,
and AsString.

The following code shows examples of how to read field values, display them in edit
boxes, and assign them to variables.

var
CustNoDouble: Double;
CustNoInt: Integer;
CustNoString: String;

begin

{Display field value in edit control.}
OutputField.Text := Table1Company.Value; {Compatible types, no conversion.}
OutputField.Text := Table1CustNo.AsString; {Convert field value to compatible type.}

{Assign field value to variables.}
CustNoDouble := Table1CustNo.Value; {Compatible types, no conversion.}
CustNoInt := Table1CustNo.AsInteger; {Convert field value to compatible type.}
CustNoString := Table1CustNo.AsString; {Convert field value to compatible type.}

end;

For more information
For more information about

• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.
• Setting a TField component’s properties, see page 79.

Assigning values to fields
This example shows how to build a form so you can assign field values at run time. You
write to a field by assigning a value to the corresponding TField component.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB in a grid. For detailed instructions, see page 21. (If you’re working
through these examples in sequence, you can use the form from the previous
example and skip to step 5.)

2 Use the Object Inspector to change the form’s Name property to TutorialForm.

36 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

3 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

4 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Control-click to select only the CustNo, Company, Phone, and
LastInvoiceDate fields, then click OK to confirm your choices and close the dialog
box.

5 Place a button control and a standard edit box anywhere in the panel that contains
the TDBNavigator control (you may need to resize the panel).

6 Attach the following code to the button’s OnClick event to change a company’s name
in the CUSTOMER table based on the current value in the standard edit box:

procedure TTutorialForm.Button1Click(Sender: TObject);
begin

Table1.Edit;
 Table1Company.Value := Edit1.Text;
 Table1.Post;

end;

7 Press F9 to run the form. Type a value into the edit box, then click the button and
notice the value of the Company field in the current record in the grid. It should be
the same as the text in the edit box.

How it works
The code in step 6 does three things: it puts the table into Edit state, assigns a value to
the Company field of the current record, and posts the modified record back to the table
(which takes the table out of Edit state). As this example shows, there is a difference
between editing field values interactively using controls and editing field values in
code. By default, the AutoEdit property of a TDataSource component is set to True. A
user can type into a data-aware control to that data source and modify the value
immediately. When the user moves off that record, changes are posted automatically.
But, to modify TField component values based on values entered in a standard edit
control, or to perform table modifications in code, you need to explicitly switch to Edit
state, set the value, and post changes.

Note You can safely call Edit even if you’re already in Edit or Insert state. In such cases, calls
to Edit have no effect.

The TField component and the value you assign must be compatible. In the example, the
edit control’s Text property is compatible with Table1Company, a TStringField.
However, the following code generates a type mismatch error at compile time, because
Table1CustNo is a TFloatField.

Table1CustNo.Value := OutputField.Text; {Causes a type mismatch error.}

To assign the text of an edit control to a numeric field, convert the text as follows.

Table1CustNo.AsString := OutputField.Text;

This code uses the TField property AsString to convert the text before assigning it
toTable1CustNo. TField components have the following properties for converting
values: AsBoolean, AsDateTime, AsFloat, AsInteger, and AsString.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 37

The following code shows examples of how to assign field values, converting them if
necessary.

Table1CustNo.Value := 12340;
Table1CustNo.AsInteger := 4321;
Table1CustNo.AsString := ’5678’;

Table2CustNo.Value := Table1CustNo.Value; {Assign value of one TField to another.}
Table2.Fields[0] := Table1.Fields[0]; {Also assign value of one TField to another.}

For more information
For more information about

• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.
• Setting a TField component’s properties, see page 79.

Defining a calculated field
This example shows how to use the Fields Editor and TField components to define a
calculated field. It calculates the extended price of an item, based on the unit price,
quantity ordered, and discount values in the Items table. For more information about
defining calculated fields, see page 82.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of ITEMS.DB in a grid. For detailed instructions, see page 21.

2 Use the Object Inspector to change the form’s Name property to OrderForm, change
the TTable component’s Name property to Items, and change the TTable component’s
Active property to True.

3 In this form’s CreateForm procedure, change Table1 to Items.

4 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

5 Click Add to open a dialog box listing the fields in the Items table. By default, all fields
are selected. Click OK to add all the fields to the data set and close the dialog box. In
the form, the grid displays a column for each field in the data set.

38 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

6 Click Define to open the Define Field dialog box, then enter specifications for a
calculated field named ExtPrice as shown in the following figure:

7 Click OK to accept values and close the dialog box. In the form, an empty ExtPrice
column appears in the grid. You may have to scroll the grid to the right to see it.

8 Click Define again, then enter specifications for a second calculated field named
ItemsSellPrice. It, too, should be given a CurrencyField data type. Click OK.

9 Double click the OnCalcFields event of the TTable component to open the code
window, then enter the following code.

procedure TOrderForm.ItemsCalcFields(DataSet: TDataSet);
begin

if Parts.FindKey([ItemsPartNo]) then
begin

ItemsDescription.Value := PartsDescription.Value;
ItemsSellPrice.Value := PartsListPrice.Value;

end;
ItemsExtPrice.Value := ItemsQty.Value *
ItemsSellPrice.Value * (100 - ItemsDiscount.Value) / 100;

end;

10 Type F9 to run the form. The ExtPrice column fills with calculated values. A
calculated field does not display values at design time.

How it works
This form is the basis for the full-featured EDORDERS.DFM form in MASTAPP. It
demonstrates the two key aspects of creating a calculated field in Delphi: adding the
calculated field to a TTable component’s data set, and writing code to handle the TTable
component’s OnCalcFields event. Delphi sends an OnCalcFields event each time the
cursor for that table changes. The calculation accesses data through the TField
components created in the Fields Editor, not the controls placed in the form.

The example attaches code to the OnCalcFields event to update the value of the
calculated field. You can use the OnCalcFields event for other purposes; for example, to
do a lookup into another table, perform a complex calculation, or do real-time data

Type the field name here.

Delphi automatically creates a name for the TField component
by combining the name you type with the name of the TTable
component.

Choose a data type from this list.

Check Calculated to specify a calculated field.

Enter the number of characters to display (leave it blank for
this tutorial example).

Figure 2.10 Defining a calculated field

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 39

acquisition. However, in an OnCalcFields event, you can only assign values to calculated
fields.

For more information
For more information about

• Programming calculated fields, see page 82.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.
• Setting a TField component’s properties, see page 79.

Formatting field values at design time
This example shows how to format a field value by setting the DisplayFormat property at
design time.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB. Specify a vertical layout and labels aligned left. For detailed
instructions, see page 21.

2 Use the Object Inspector to change the form’s Name property to EdCustForm, change
the TTable component’s Name property to Cust, and change the TTable component’s
Active property to True. In the form, notice the Tax Rate field’s display format
(example: 8.5).

3 In this form’s CreateForm procedure, change Table1 to Cust.

4 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

5 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Click OK to add all the fields to the data set and close the dialog
box.

6 In the Field Editor’s list of fields, choose Tax Rate, then use the Object Inspector to
view the properties of the TFloatField named CustTaxRate. The DisplayFormat
property is blank.

7 In the Object Inspector, enter the following value for the DisplayFormat property of
CustTaxRate: 0.00%. In the form, the Tax Rate field’s display format changes
(example: 8.50%).

40 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

How it works
Delphi provides several properties that specify a field’s display format. The following
table lists some of the most frequently-used properties. Any data-aware control linked
to a TField component uses the TField’s display properties.

For more information
For more information about

• Formatting field values, see page 83.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.
• Setting a TField component’s properties, see page 79.

Formatting field values at run time
This example shows how to format a field value by setting the DisplayText property in
code.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB. (If you’re working through these examples in sequence, you can
use the form from the previous example and skip to step 6.) Specify a vertical layout
and labels aligned left. For detailed instructions, see page 21.

2 Use the Object Inspector to change the form’s Name property to EdCustForm, change
the TTable component’s Name property to Cust, and change the TTable component’s
Active property to True. In the form, notice the Phone field displays U.S phone
numbers (example: 808-555-0269).

3 In this form’s CreateForm procedure, change Table1 to Cust.

Table 2.9 Important TField design-time properties

Property Remarks

Alignment Displays field value left justified, right justified, or centered within a data-aware control.
Currency True, numeric field displays monetary values.

False, numeric field does not display monetary values.
DisplayFormat Specifies the format of data displayed in a data-aware component. For more

information about valid patterns, see the online help.
DisplayWidth The number of characters that a grid column uses to display this field in a grid.
DisplayFormat
and EditMask

Provides control over input characters for some fields types as they are displayed and
edited; for example, in working with commonly formatted values such as dates and
telephone numbers.

FieldName The name of the field in the underlying table; for example, CustNo.
Index The field’s logical position in the data set (first position = 0).
Name Formed by appending the field name to the name of the TTable component. Example:

Given a TTable name of Customer and a field name of CustNo, the TField’s name is
CustomerCustNo. This name is used for programmatic access to field’s properties (for
example, CustomerCustNo.Value).

Visible When True, the corresponding field can appear in linked grids.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 41

4 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

5 Click Add to open a dialog box listing the fields in the Customer table. By default, all
fields are selected. Click OK to add all the fields to the data set and close the dialog
box.

6 In the Fields Editor’s list of fields, choose Phone, then use the Object Inspector to view
the events of the TStringField named CustPhone.

7 Double-click the OnGetText event to open the code window, then add code to handle
the event as follows.

procedure TEdCustForm.CustPhoneGetText(Sender: TField;
var Text: OpenString; DisplayText: Boolean);

begin
if DisplayText then
begin

Text := CustPhone.Value;
Delete(Text, 4, 1);
Insert('(', Text, 1);
Insert(')', Text, 5);

end;
end;

In this sample code, DisplayText is True, meaning you’re not actually editing the field in
question, but modifying the display of the field. When DisplayText is True, characters
that would be invalid for the user to enter, such as parentheses in this case, can be
inserted into the field for display purposes only.

8 Press F9 to run the form. The Phone field’s display format changes (example:
(808)555-0269).

How it works
Use the OnGetText event to format field values. Delphi calls a TField component’s
OnGetText method whenever it’s about to display the value of a field onscreen, for
example, when redrawing a data-aware component. Delphi ignores a TField
component’s DisplayFormat property when you add code to its OnGetText event.

In this example, CustPhoneGetText copies the phone number string to variable Text, then
uses the Insert and Delete procedures to place parentheses around the first three digits.
This gives U.S. phone numbers a more traditional format: (713) 555-1212, instead of
713-555-1212 as stored in the file. The DisplayText property is True when a TField is
displaying data but is not available for editing. When a TField is in Edit state, DisplayText
is False.

Note DisplayFormat and EditMask are ignored if an OnGetText event handler exists.

For more information
For more information about

• Formatting fields, see page 85.
• Editing display properties, see page 83.

42 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.
• Setting a TField component’s properties, see page 79.

Searching for field values
This example shows how to search for values in keyed (indexed) fields in a table. To
search for values in unkeyed fields, use a query. See “Using queries and ranges” on
page 47 for more information.

What to do
This example shows how to display a record in the Customer table by searching for a
customer number entered by the user.

1 Use the Database Form Expert to build a single-table form that displays fields from
CUSTOMER.DB. Specify a vertical layout and labels aligned left. For detailed
instructions, see page 21.

2 Place a button control in the panel that contains the TDBNavigator control.

3 Double-click the button to open a code window, then add code to handle the button’s
OnClick event as follows.

procedure TForm2.Button1Click(Sender: TObject);
var UserCustNo: String;
begin
UserCustNo := InputBox('Search', 'Enter a Customer Number:', ' ');
if not Table1.FindKey([UserCustNo]) then
MessageDlg('Not found.', mtInformation, [mbOK], 0);

end;

4 Add the Dialogs unit to the uses clause of your form unit. The InputBox function used
in the previous step resides in the Dialogs unit.

5 Press F9 to run the form. Click the button and enter a number in the input dialog box
(try 1560). If that number is a customer number in the table, Delphi displays the
corresponding record. Otherwise, it displays a dialog box.

How it works
FindKey takes an array, where each array value represents a value to search for in the
corresponding key field in the table. FindKey searches for the first array value in the first
key field, the second array value in the second key field, and so on. In this example, the
array contains one value, so FindKey searches for it in the first key field of the table,
which is CustNo.

The following example shows how to search for the name Frank P. Borland in a table
where the key fields are LastName, FirstName, and MiddleInital.

begin
 if not Table1.FindKey(['Borland', 'Frank', 'P.']) then
 MessageDlg('Not found.', mtInformation, [mbOK], 0);
end;

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 43

For more information
For more information about

• Searching for field values, see page 70.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.

Validating data entry
This section describes ways to make sure the user doesn’t enter invalid data into tables.
There are three different approaches to validating data: table-based, field-based, and
record-based.

Most forms use a combination of validation techniques.

• Table-based validation. Build in validity checks when you create tables. Using the
Database Desktop, you can specify a wide range of validity checks, including
minimum and maximum values, formatting pictures, and referential integrity, all
without writing a line of code. Table-based validation rules are enforced by the
database when the data is posted. Multiple exceptions will be raised, one after
another, until all fields match the validation criteria. Delphi enforces some table-
based validation rules before posting (for example, whether a field is required or not).

For more information about the DBD, see Appendix A, “Using Database Desktop.”

• Field-based validation. There are two methods:

Create an OnValidate event handler. The handler is called when the field’s value is
modified, whether by user input or when the field is assigned a value in code.

For fields that must get values from a user (for example, a password or part number)
set the TField’s Required property to True, and write an OnValidate event handler for
the field. Before a record is posted, an exception occurs for any fields that have a nil
value.

• Record-based validation. Use this approach when other fields are involved in
determining if a field is valid. For example, if it is invalid to use a credit card for
purchases under $10, you want to give a user the chance to enter both a payment
method and an invoice amount before performing validation on the payment
method. Otherwise, since a new order starts with a zero invoice amount, you would
require the entry of all line items before permitting specification of a payment
method.

Record-based validation should be performed in a table’s BeforePost event handler.
Raising an exception there prevents posting from occurring. Use the TField
FocusControl method to inform the user which field is invalid. For an example of this
technique, see “Writing code to check field values” on page 46.

44 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using lists and lookups
The following examples show two techniques for using lists to restrict user input. The
first example presents a list of items entered by hand. The second example presents a
lookup filled with items from a field (column) of a table.

Figure 2.11 Lists and lookups

What to do (list)
The following steps describe how to create the drop-down list labeled Terms in the
Edorders form in MASTAPP. The Terms field specifies the payment terms for an order.
Allowed values are Prepaid, Net 30, and COD.

1 Open the MASTAPP project, then open the Edorders form.

2 Place a TTable component. Set its DatabaseName and TableName properties to link it to
the Orders table. Change its Name property to Orders.

3 Place a TDataSource component. Set its DataSet property to the Orders TTable. Change
its Name property to OrdersSource.

4 Place a TDBComboBox control. Set its properties as shown in the following table.

Table 2.10 Important TDBComboBox properties

Property Value Remarks

DataField Terms The name of the field in the table this control is linked to.
DataSource OrdersSource The TDataSource component this control is linked to.
Items Prepaid

Net 30
COD

Each list item is on its own line. In other words, when you enter list
items, press Enter after each item.

The Terms field is a TDBComboBox
control. The list items are hard-coded.
See page 44.

The SoldBy field is a TDBLookupCombo
control. It reads list items from a field
(column) of a table. See page 45.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 45

How it works
A TDBComboBox control works like a standard combo box control, but it’s linked to a
field in a table. Its Items property stores the list items. When the user chooses an item
from the list, that value is assigned to the corresponding data field in the current record.
You can add list items by hand at design time or specify them in code at run time.

For more information
For more information about

• Using lists and combo boxes, see “Using list and combo boxes” on page 109.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.

What to do (lookup)
The following steps describe how to create the drop-down lookup list labeled SoldBy in
the Edorders form in MASTAPP. The combo box labeled SoldBy displays a list of
employee names, but it stores employee numbers. When the user chooses a name from
the list, Delphi looks up the corresponding employee number and writes that value to
the Orders tables.

1 Open the MASTAPP project, then open the Edorders form.

2 Place two TTable components. Set the first component’s DatabaseName and TableName
properties to link it to the Orders table, and change its Name property to Orders. Set
the second component’s DatabaseName and TableName properties to link it to the
Employee table, and change its Name property to Emps.

3 Place two TDataSource components. Set the first component’s DataSet property to the
Orders TTable and change its Name property to OrdersSource. Set the second
component’s DataSet property to the Emps TTable and change its Name property to
EmpsSource.

4 Place a TDBLookupCombo control. Set its properties as shown in the following table.

How it works
The TDBLookupCombo control dynamically accesses a column from a table (specified in
LookupDisplay) and displays it to the user. When the user chooses an item, Delphi finds

Table 2.11 Important TDBComboBox properties

Property Value Remarks

DataSource OrdersSource The TDataSource component this control is linked to.
DataField EmpNo The name of the field in the table this control is linked to.
LookupSource EmpsSource The TDataSource component used to identify the table from which

to look up field values.
LookupDisplay FullName The field (column) this control reads from to display list values to

the user. FullName is a calculated field in the table pointed to by
LookupSource.

LookupField EmpNo The field to search for a value corresponding to the value in the
LookupDisplay field. This value is assigned to the field specified in
DataField.

46 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

the value in the table specified in LookupSource. Then it reads the value of the field
specified in LookupField. Finally, it assigns that value to the field specified in DataField in
the table specified in DataSource.

In this example, Delphi fills a drop-down box with employee names from the FullName
field of the Employee table. FullName is a calculated field defined for the Employee table.
To see how FullName is calculated, select Employee TTable component, then examine its
OnCalcFields event. When the user chooses a name from the list, Delphi reads the
EmpNo field to get the employee number for that name. Then it assigns that value to the
EmpNo field of the Orders table.

For more information
For more information about

• Using lists and combo boxes, see “Using list and combo boxes” on page 109.
• Using the Fields Editor, see page 30.
• Using the Database Form Expert, see page 21.

Writing code to check field values
This example shows how to validate a field value after the user has entered it. The
following steps show how to add code to the Edorders form in MASTAPP to disallow a
sale date later than the current date. The example uses the standard function Now to get
the current timestamp.

What to do
1 Open the MASTAPP project, then open the Edorders form.

2 Double-click the TTable component named Orders to open the Fields Editor.

3 In the Fields Editor’s list of fields, click SaleDate, then use the Object Inspector to
view the events of the TDateTimeField component named OrdersSaleDate.

4 Double-click the OnValidate event to open the code window, then add code to handle
the OnValidate event as follows.

procedure TOrderForm.OrdersSaleDateValidate(Sender: TField);
begin
 if OrdersSaleDate.Value > Now then
raise Exception.Create('Cannot enter a future date');

end;

How it works
To check field values after the user enters them, write code to handle the OnValidate
event of the appropriate TField component. The example code raises an exception if the
date a user enters is later than today’s date. Make sure all fields are either initialized to a
valid value in an OnNewRecord event, or have their TField Required properties set to True.

For more information
For more information about

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 47

• Working with TField components, see page 34.
• Using the Fields Editor, see page 30.

Using queries and ranges
The examples in this section show how to select a set of records from a table. In Delphi,
you can do this by issuing SQL statements or by setting a range (filter). SQL statements
can be either static or dynamic; that is, they can be fixed or include parameters where
values are provided at run time. For more information, see Chapter 5, “Using SQL in
applications.”

What to do (static query)
This example shows how to create and execute a static query and display the results in a
form.

1 Use Form Expert to build a form based on a query of the Customer table (for detailed
instructions, see page 21). Use only the CustNo, Company, and State fields (for
simplicity). Specify a grid layout.

2 Use the Object Inspector to set the TQuery component’s Active property to True. The
grid displays the query results (by default, the query selects all records).

3 Set the TQuery component’s Active property to False. The grid empties. (Active must
be False to change the query.)

4 Use the Object Inspector to display the TQuery component’s SQL property, and type
the following statement after the last line in the SQL statement in the String List
Editor window:

where State = "HI"

5 Click OK to close the String List Editor.

48 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

6 Set the TQuery component’s Active property to True. The grid displays only those
records where the value of the State field is “HI.” (Optional: Press F9 to run the form.)

How it works
Delphi reads the SQL statements assigned to the TQuery component’s SQL property and
passes them to the server without any intermediate interpretation. (Use double quotes
in SQL statements, not single quotes as in Pascal code.) The server executes the query
and returns the results to Delphi, and Delphi displays the result set in the grid.

Note : By default, a TQuery component’s RequestLive property is set to False. When RequestLive
is False, the result set returned by a query is read-only. Users cannot modify data in the
form. If you want users to be able to update data returned by a query of a single table,
then you can set RequestLive to True to request a live result set. If the query is
updateable, CanModify returns True.

For more information
For more information about

• Using TQuery components and SQL in applications, see Chapter 5.
• RequestLive behavior and restrictions, see Chapter 5, “Using SQL in applications.”
• Using the Database Form Expert, see page 21.

What to do (dynamic query)
This example shows how to create and execute a dynamic query and display the results
in a form. A dynamic query consists of SQL statements that include parameters
(variables) whose values can be assigned at design time or run time. Steps 1 through 6
show how to set parameters at design time. Steps 7 through 9 show how to do it at run
time.

1 Use Form Expert to build a form based on a query of the Customer table (for detailed
instructions, see page 21). Use only the CustNo, Company, and State fields (for
simplicity). Specify a grid layout. If you’re working through these examples in
sequence, you can use the form from the previous example.

Type the following line:
Where State = "HI"

Figure 2.12 Setting a TQuery’s SQL property

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 49

2 Use the Object Inspector to display the TQuery component’s SQL property, and type
the following statement after the last line in the SQL statement in the String List
Editor window:

where State = :State

3 The SQL statement in the previous step contains the field name State and the
parameter State (a parameter is an arbitrary string preceded by a colon). Click OK to
close the String List Editor.

4 Right-click the TQuery component, then choose Define Parameters from the pop-up
menu. The Define Parameters dialog box opens, ready for you to assign a field type
and a value to the parameter State.

5 Choose a field type of String, and enter a value of FL, then click OK to close the dialog
box.

6 Set the TQuery component’s Active property to True. The grid displays the query
results (all records where State = FL).

7 Place a button control in the panel that contains the TDBNavigator control.

8 Double-click the button to open a code window, then write the following code to
handle its OnClick event.

procedure TForm2.Button1Click(Sender: TObject);
begin

 Query1.DisableControls;
 try

 Query1.Active := False;
 Query1.Params[0].AsString := 'HI';
 Query1.Active := True;

finally
 Query1.EnableControls;

end;
end;

9 Press F9 to run the form, then click the button. The grid displays the query results (all
records where State = HI).

How it works
In a SQL statement, a string preceded by a colon (like :State in the example) represents a
parameter. At design time, Delphi recognizes parameters and displays them in the

To define the parameter State, choose a
field type of String and enter a value of FL.

Figure 2.13 Defining a query parameter

50 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Define Parameters dialog box. Then at run time, it assigns the specified values to the
corresponding parameters.

You can assign values to query parameters at run time using the Params property. It
stores parameter values in an array, where an index of 0 represents the first parameter,
an index of 1 represents the second parameter, and so on. So, this statement assigns the
value HI to the first parameter.

Query1.Params[0].AsString := 'HI';

You need to set the TQuery component’s Active property to False before setting
parameter values, then set it to True again to update the query. The calls to
DisableControls and EnableControls, respectively, freeze and restore display capabilities of
controls linked to the TQuery component. This disables data-aware control while the
result set is updated.

For more information
For more information about

• Dynamic SQL statement, see page 121.
• Using SQL in applications, see Chapter 5.
• Using TQuery components, see page 115.
• The SQL property, see page 117.
• Using the Database Form Expert, see page 21.

Setting a range
This example explains how to select a set of records by setting a range (also called a
filter). To set a range on a Paradox or dBASE table, work with keyed (indexed) fields. To
set a range on a SQL table, you can specify the fields to be used as indexes using the
IndexFieldNames property.

What to do
1 Use the Database Form Expert to build a single-table form that displays all the fields

of CUSTOMER.DB in a grid. For detailed instructions, see page 21.

2 Use the Object Inspector to change the form’s Name property to CustForm, change
the TTable component’s Name property to Cust, and change the TTable component’s
Active property to True.

3 In this form’s CreateForm procedure, change Table1 to Cust.

4 Open the Fields Editor by double-clicking the TTable component. By default, the list
of fields is empty.

5 Click Add to open a list box for the fields in the Items table. By default, all fields are
selected. Click OK to add all the fields to the data set and close the list box. Close the
Fields Editor. In the form, the grid displays a column for each field in the data set.

6 Place a button control in the panel that contains the TDBNavigator control.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 51

7 Double-click the button to open a code window, then add code to handle the button’s
OnClick event as follows.

procedure CustForm.Button1Click(Sender: TObject);
begin

Cust.DisableControls;
try

Cust.SetRangeStart;
CustCustNo.Value := 3000;
Cust.KeyExclusive := False;

Cust.SetRangeEnd;
CustCustNo.Value := 4000;
Cust.KeyExclusive := True;

Cust.ApplyRange;
finally

Cust.EnableControls;
end;
end;

8 Press F9 to run the form, then click the button. The grid displays records for customer
numbers from 3,000 to 3,999.

How it works
This example sets a range to include records for customer numbers from 3,000 to 3,999.
Setting a range on a table affects the values displayed in data-aware components linked
to that table. That’s why the routine in step 7 begins by calling Cust.DisableControls and
ends by calling Cust.EnableControls. DisableControls disables the display capabilities of
controls linked to the specified table; in effect, it freezes them. EnableControls restores the
controls to an active state.

Important Always use a try. . . finally statement, followed by EnableControls. Otherwise, after an
exception occurs, data controls are inactive.

The call to Cust.SetRangeStart marks the beginning of a code block that sets the
minimum value of the range. The next line assigns a value to the TField component
named CustCustNo. (CustNo is the first and only key field in the Customer table.) Setting
Cust.KeyExclusive to False indicates that the value is not to be excluded in the range. So,
in this example, a customer number 3,000 would be included in the range.

The call to Cust.SetRangeEnd marks the beginning of a code block that sets the maximum
value of the range. The next line assigns a value to CustCustNo. Setting Cust.KeyExclusive
to True indicates that the value is to be excluded from the range. A customer number 4,
000 would not be included.

The call to Cust.ApplyRange puts the range settings into effect. (To cancel a range, call
CancelRange.)

For more information
For more information about

• Setting ranges and filtering data, see page 72.
• Using the Fields Editor, see page 30.

52 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Printing reports and forms
This section describes how to use Delphi to print reports created using ReportSmith,
and how to print a Delphi form. Designing reports with ReportSmith is described in
Creating Reports.

Note To run reports, the TReport component needs to locate the RS_RUN directory. You can
put the RS_RUN directory in your DOS PATH, or you can put an “EXEpath =” entry in
the Delphi RS_RUN.INI file.

What to do: printing reports
This example show how to print a ReportSmith report that lists MAST customers.

1 Choose File|New Form to open the Browse Gallery, then choose Blank form and
click OK to create a blank form.

2 Place a TReport component anywhere in the form. (The TReport component is on the
Data Access components page.)

3 Use the Object Inspector to set the TReport component’s properties as shown in the
following table.

4 Place a button control anywhere in the form.

5 Double-click the button to open a code window, then write code to handle its OnClick
event, as follows.

procedure TForm1.Button1Click(Sender: TObject);
begin
 Report1.Run;

end;

6 Press F9 to run the form.

7 Click the button to run the report. If the TReport component’s Preview property is set
to True, Delphi displays the report onscreen; if Preview is False, Delphi sends the
report to the printer.

How it works
The Run method of TReport opens the run-time version of ReportSmith, which prints or
displays a report as specified by the TReport component’s properties. When you’re
designing a form, you can double-click a TReport component to open the full version of
ReportSmith and build a report.

Table 2.12 Important TReport properties

Property Value Remarks

Preview True When Preview is True, Delphi displays the report onscreen only;
when Preview is False, Delphi sends the report to the printer.

ReportDir C:\DELPHI\
DEMOS\DB\
MASTAPP\REPORTS

The path and directory where the report file resides.

ReportName CUSTLIST.RPT The report file name.

C h a p t e r 2 , B u i l d i n g a s a m p l e d a t a b a s e a p p l i c a t i o n : M A S T A P P 53

For more information
For more information about

• Using TReport components, see page 88.
• Using ReportSmith, see Creating Reports.

What to do: printing forms
You can print a form by calling its Print method. Following is the code called by the
Print button in the main form (MAIN.DFM) of MASTAPP. It prints whichever Delphi
form is displayed “on top,” that is, in front of the others.

procedure TMainForm.PrintTopForm(Sender: TObject);
var TopForm: TForm;
begin
 TopForm := Screen.Forms[1]; {For a single form app, this should be Screen.Forms[0]!}
 if not TopForm.Visible then ShowMessage('Nothing to print!')
 else if MessageDlg(Format('Print "%s" form?', [TopForm.Caption]),
 mtConfirmation, mbOkCancel, 0) = mrOk then TopForm.Print;
end;

How it works
The Print method for the TForm class prints a form as it appears onscreen.

For more information
For more information about

• The TForm class, see the online Help.
• Designing forms, see the User’s Guide.

54 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 55

C h a p t e r

3
Chapter 3Using data access components

and tools
This chapter describes how to use key Delphi features and tools when building database
applications, including:

• The TSession component.
• Dataset components (TTable and TQuery), their properties, and their methods.
• TDataSource components, their properties, and their methods.
• TField objects, their properties, and their methods.
• The Fields Editor to instantiate and control TField objects.
• TReport and TBatchMove components.

This chapter provides an overview and general description of data access components
in the context of application development. For in-depth reference information on
database components, methods, and properties, see the online VCL reference.

Database components hierarchy
The Delphi database component hierarchy is important to show the properties,
methods, and events inherited by components from their ancestors. The most important
database components are

• TSession, a global component created automatically at run time. It is not visible on
forms either at design time or run time.

• TDatabase, component that provides an additional level of control over server logins,
transaction control, and other database features. It appears on the Data Access
component page.

• TDataSet and its descendents, TTable and TQuery, collectively referred to as dataset
components. TTable and TQuery components appear on the Data Access component
page.

56 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• TDataSource, a conduit between dataset components and data-aware components. It
appears on the Data Access component page.

• TFields, components corresponding to database columns, created either dynamically
by Delphi at run time or at design time with the Fields Editor. Data controls use them
to access data from a database. In addition, you can define calculated fields whose
values are calculated based on the values of one or more database columns.

Figure 3.1 Delphi Data Access components hierarchy

This chapter describes most of these components and the tools that Delphi provides to
work with them. The TQuery component is described in Chapter 5, “Using SQL in
applications.” The TDatabase component is described in Chapter 6, “Building a client/
server application.”

Using the TSession component
The TSession component is rarely used, but can be useful for some specialized purposes.
Delphi creates a TSession component named “Session” each time an application runs.
You cannot see nor explicitly create a TSession component, but you can use its methods
and properties to globally affect the application.

Controlling database connections
TSession provides global control over database connections for an application. The
Databases property of TSession is an array of all the active databases in the session. The
DatabaseCount property is an integer specifying the number of active databases
(TDatabase components) in the Session. For more information on TDatabase, see
Chapter 6, “Building a client/server application.”

KeepConnections is a Boolean property that specifies whether to keep inactive database
connections. A database connection becomes inactive when a TDatabase component has
no active datasets. By default, KeepConnections is True, and an application will maintain
its connection to a database even if the connection is inactive. This is generally

TSession

TDataSource

TDatabase

TDataSet

TComponent

TField

TDBDataSet

TTable

TQueryTStringField
TIntegerField

ƒ

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 57

preferable if an application will be repeatedly opening and closing tables in the
database. If KeepConnections is False, a database connection will be closed as soon as the
connection is inactive. The DropConnections method will drop all inactive database
connections.

The NetFileDir property specifies the directory path of the BDE network control
directory. The PrivateDir property specifies the path of the directory in which to store
temporary files (for example, files used to process local SQL statements). You should set
this property if there will be only one instance of the application running at a time.
Otherwise, the temporary files from multiple application instances will interfere with
each other.

Getting database information
TSession has a number of methods that enable an application to get database-related
information. Each method takes a TStrings component as its parameter and returns into
a TStrings the specified information:

For more information on these methods, see the online VCL Reference.

Using datasets
TTable and TQuery component classes are descended from TDataSet through
TDBDataSet. These component classes share a number of inherited properties, methods,
and events. For this reason, it is convenient to refer to them together as datasets, when
the discussion applies to both TTable and TQuery.

This section describes the features of datasets that are common to TTable and TQuery. A
subsequent section discusses features unique to TTable. Chapter 5, “Using SQL in
applications” describes features unique to TQuery.

Note TStoredProc is also a dataset component since it is descended from TDBDataset.
Therefore, much of this section also applies to TStoredProc if the stored procedure
returns a result set rather than a singleton result. For more information on TStoredProc,
see Chapter 6, “Building a client/server application.”

Table 3.1 TSession methods

Method Returns

GetAliasNames Defined BDE alias names.
GetAliasParams Parameters for the specified BDE alias.
GetDatabaseNames Database names and BDE aliases defined.
GetDriverNames Names of BDE drivers installed.
GetDriverParams Parameters for the specified BDE driver.
GetTableNames All table names in the specified database.

58 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Dataset states
A dataset can be in the following states, also referred to as modes:

An application can put a dataset into most states by calling the method corresponding to
the state. For example, an application can put Table1 in Insert state by calling
Table1.Insert or Edit state by calling Table1.Edit. A number of methods return a dataset
to Browse state, depending on the result of the method call. A call to Cancel will always
return a dataset to Browse state.

CalcFields mode is a special case. An application cannot explicitly put a dataset into
CalcFields mode. A dataset automatically goes into CalcFields mode when its
OnCalcFields event is called. In OnCalcFields, an exception will occur if an application
attempts to assign values to non-calculated fields. After the completion of OnCalcFields,
the dataset returns to its previous mode.

The following diagram illustrates the primary dataset states and the methods that cause
a dataset to change from one mode to another.

Table 3.2 Dataset states

State Description

Inactive The dataset is closed.
Browse The default state when a dataset is opened. Records can be viewed but not changed

or inserted.
Edit Enables the current row to be edited.
Insert Enables a new row to be inserted. A call to Post inserts a new row.
SetKey Enables FindKey, GoToKey, and GoToNearest to search for values in database

tables. These methods only pertain to TTable components. For TQuery, searching is
done with SQL syntax.

CalcFields Mode when the OnCalcFields event is executed; prevents any changes to fields other
than calculated fields. Rarely used explicitly.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 59

Figure 3.2 Dataset state diagram

The State property specifies the current state of a dataset. The possible values
correspond to the above states and are dsInactive, dsBrowse, dsEdit, dsInsert, dsSetKey, and
dsCalcFields.

The OnStateChange event of TDataSource is called whenever the state of a data source’s
dataset changes. For more information, see “Using TDataSource events” on page 78.

Opening and closing datasets
Before an application can access data through a dataset, the dataset must be open. There
are two ways to open a dataset:

• Set the dataset’s Active property to True, either at design time through the Object
Inspector, or programmatically at run time. For example,

Table1.Active := True;

• Call the dataset’s Open method at run time. For example,

Query1.Open

Both of these statements open the dataset and put it into Browse state.

Similarly, there are two ways to close a dataset:

• Set the dataset’s Active property to False, either at design time through the Object
Inspector, or programmatically at run time. For example,

Query1.Active := False;

Inactive

BrowseInsert SetKey

Edit

Insert
SetKey
EditKey

GotoKey*, FindKey*

Edit

Post Cancel

Delete

Post (Unsuccessful)

Post
(Unsuccessful)

OpenClose

Post (Successful)

Cancel
Delete

(Successful)

Append

Post

*

* TTable only

*

60 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• Call the dataset’s Close method. For example,

Table1.Close;

Both of these statements return a dataset to Inactive state.

Navigating datasets
There are two important concepts in understanding how Delphi handles datasets:
cursors and local buffers. Each active dataset has a cursor, which is essentially a pointer to
the current row in the dataset. A number of rows of data before and after the cursor are
fetched by Delphi into the local buffer. Delphi will always fetch a number of rows into
the local buffer sufficient to display the current row, plus an additional number of rows
to reduce the refresh time as the user scrolls up or down in the dataset:

Many of these methods are encapsulated in the TDBNavigator component. For more
information on TDBNavigator, see Chapter 4, “Using Data Controls.”

The Next and Prior methods
The Next method moves the cursor down (forward) by one row in the table. For
example, the following code for a button’s OnClick event moves to the next row in
Table1:

Table1.Next;

Similarly, the Prior method moves the cursor up (backward) by one row in the dataset.
For example, to move to the previous row in the table, a button’s OnClick text could be:

Table1.Prior

The First and Last methods
As their names imply, the First and Last methods move to a dataset’s first and last rows,
respectively. For example, the following code for a button’s OnClick event moves the
cursor to the first row in Table1:

Table 1.First;

Table 3.3 Navigational methods and properties

Method or property Description

First method Moves the cursor to the first row of a dataset.
Last method Moves the cursor to the last row of the dataset.
Next method Moves the cursor to the next row in the dataset.
Prior method Moves the cursor to the prior row in the dataset.
BOF property True when cursor is known to be at beginning of dataset, otherwise False.
EOF property True when cursor is known to be at end of dataset, otherwise False.
MoveBy(n) method Moves the cursor n rows forward in dataset, where n is a positive or negative

integer.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 61

Similarly, the Last method moves to the last row in the dataset. To move to the last row
in the table, a button’s OnClick text could be:

Table1.Last

The BOF and EOF properties
BOF is a read-only Boolean property that indicates whether a dataset is known to be at
its first row. The BOF property returns a value of True only after:

• An application first opens a table
• A call to a Table’s First method
• A call to a Table’s Prior method fails

Databases are dynamic; while one application is viewing data, another may be inserting
rows before or after the first application’s notion of the current row. For this reason, for a
non-empty table, it is unsafe to assume BOF is True.

For example, consider the following code:

Table1.Open; {BOF = True}
Table1.Next; {BOF = False}
Table1.Prior; {BOF = False}

After this code executes, BOF is False, even if there are no records before the current
row. Once the table is open, Delphi can only determine BOF when an application
explicitly calls First or a call to Prior fails. Similarly, Delphi can only determine EOF
when an application explicitly calls Last or a call to Next fails.

The following code sample demonstrates a common technique for using the BOF
property:

while not Table1.BOF do
begin

DoSomething;
Table1.Prior;

end;

In this code sample, the hypothetical function DoSomething is called on the current
record and then on all the records between the current record and the beginning of the
dataset. The loop will continue until a call to Prior fails to move the current record back.
At that point, BOF will return a value of True and the program will break out of the
loop.

To improve performance during the iteration through the table, call the DisableControls
method before beginning the loop. This prevents data controls from displaying the
iteration through the table, and speeds up the loop. After the loop completes, call the
EnableControls method. Make sure to use a try...finally...end statement with the call to
EnableControls in the finally clause. Otherwise, an exception will leave the application’s
controls inactive.

The same principles apply to the EOF property, which returns a value of True after:

• An application opens an empty dataset
• A call to a Table’s Last method
• A call to a Table’s Next fails

62 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The following code sample provides a simple means of iterating over all the records in a
dataset:

Table1.DisableControls;
try

Table1.First;
while not Table1.EOF do
begin

DoSomething;
Table1.Next;

end;
finally

Table1.EnableControls;
end.

In this case, the Next method and the EOF property are used together to reach the end of
the dataset.

Caution A common error in using such properties in navigating a dataset is to use a repeat. . .
until loop while forgetting to call Table1.Next, as in the following example:

Table1.First;
repeat

DoSomething;
until Table1.EOF;

If code like this were executed, the application would appear to “freeze,” since the same
action would be endlessly performed on the first record of the dataset, and the EOF
property would never return a value of True.

On an empty table, opening or executing any navigational methods will return True for
both BOF and EOF.

The MoveBy function
The MoveBy function enables an application to move through a dataset backward or
forward by a specified number of records. This function takes only one parameter, the
number of records by which to move. Positive integers indicate a forward move, while
negative integers indicate a backward move.

For example, to move two records forward in Table1, use the following:

Table1.MoveBy(2);

When using this function, keep in mind that datasets are fluid entities, and the record
which was five records back a moment ago may now be only four records back, or six
records, or an unknown number of records, because multiple users may by
simultaneously accessing the database and modifying its data.

Note There is no functional difference between calling Table1.Next and calling
Table1.MoveBy(1), just as there is no functional difference between calling Table1.Prior
or calling Table1.MoveBy(–1).

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 63

Modifying data in datasets
The following methods enable an application to insert, update, and delete data in
datasets:

The CanModify property
CanModify is a read-only property that specifies whether an application can modify the
data in a dataset. When CanModify is False, then the dataset is read-only, and cannot be
put into Edit or Insert state. When CanModify is True, the dataset can enter Edit or Insert
state. Even if CanModify is True, it is not a guarantee that a user will be able to insert or
update records in a table. Other factors may come in to play, for example, SQL access
privileges.

TTable has a ReadOnly property that requests write privileges when set to False. When
ReadOnly is True, CanModify will automatically be set to False. When ReadOnly is False,
CanModify will be True if the database allows read and write privileges for the dataset
and the underlying table. For more information, see “Using TTable.”

Posting data to the database
The Post method is central to a Delphi application’s interaction with a database table.
Post behaves differently depending on a dataset’s state.

• In Edit state, Post modifies the current record.
• In Insert state, Post inserts or appends a new record.
• In SetKey state, Post returns the dataset to Browse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Delphi calls Post implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in Edit or Insert state. The
Append and Insert methods also implicitly perform a Post of any pending data.

Note Post is not called implicitly by the Close method. Use the BeforeClose event to post any
pending edits explicitly.

Editing records
A dataset must be in Edit state before an application can modify records in the
underlying table. The Edit method puts a dataset in Edit state. When in Edit state, the

Table 3.4 Methods to insert, update and delete data in datasets

Method Description

Edit Puts the dataset into Edit state. If a dataset is already in Edit or Insert state, a call to Edit has
no effect.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in Insert state.

Insert Posts any pending data, and puts the dataset in Insert state.
Post Attempts to post the new or altered record to the database. If successful, the dataset is put

in Browse state; if unsuccessful, the dataset remains in its current state.
Cancel Cancels the current operation and puts the dataset into Browse state.
Delete Deletes the current record and puts the dataset in Browse state.

64 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Post method will change the current record. If a dataset is already in Edit state, a call to
Edit has no effect.

The Edit and Post methods are often used together. For example,

Table1.Edit;
Table1.FieldByName('CustNo').AsString := '1234';
Table1.Post;

The first line of code in this example places the dataset in Edit mode. The next line of
code assigns the string “1234” to the CustNo field. Finally, the last line posts, or writes to
the database, the data just modified.

Adding new records
To add a new record to a dataset, an application can call either the Insert method or the
Append method. Both methods put a dataset into Insert state. Insert opens a new, empty
record after the current record. Append moves the current record to the end of the
dataset and opens a new, empty record.

When an application calls Post, the new record will be inserted in the dataset in a
position based on its index, if defined. Thus, for indexed tables, Append and Insert
perform similarly. If no index is defined on the underlying table, then the record will
maintain its position—so Append will add the record to the end of the table, and Insert
will insert it at the cursor position when the method was called. In either case, posting a
new record in a data grid may cause all the rows before and after the new record to
change as the dataset follows the new row to its indexed position and then fetches data
to fill the grid around it.

Deleting records
The Delete method deletes the current record from a dataset and leaves the dataset in
Browse mode. The cursor moves to the following record.

Canceling changes
An application can undo changes made to the current record at any time, if it has not yet
directly or indirectly called Post. For example, if a Table is in Edit state, and a user has
changed the data in one or more fields, the application can return the record back to its
original values by calling the Table’s Cancel method. A call to Cancel always returns a
dataset to Browse state.

Working with entire records
The following methods enable an application to work with an entire record in one
statement:

Table 3.5 Methods used to work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end of a
table; analogous to Append. Performs an implicit Post.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 65

Each method takes a comma-delimited array of values as its argument, where each
value corresponds to a column in the underlying table. The values can be literals,
variables, null, or nil. If the number of values in an argument is less than the number of
columns in a dataset, then the remaining values are assumed to be null.

For un-indexed tables, AppendRecord adds a record to the end of the table and
InsertRecord inserts a record after the current cursor position. For indexed tables, both
methods places the record in the correct position in the table, based on the index. In both
cases, the methods move the cursor to the record’s position.

SetFields assigns the values specified in the array of parameters to fields in the dataset.
The application must first perform an Edit to put the dataset in Edit state. To modify the
current record, it must then perform a Post.

Since these methods depend explicitly on the structure of the underlying tables, an
application should use them only if the table structure will not change.

For example, the COUNTRY table has columns for Name, Capital, Continent, Area, and
Population. If Table1 were linked to the COUNTRY table, the following statement
would insert a record into the COUNTRY table:

Table1.InsertRecord(['Japan', 'Tokyo', 'Asia']);

The statement does not specify values for Area and Population, so it will insert Null
values for these columns. The table is indexed on Name, so the statement would insert
the record based on the alphabetic collation of “Japan”.

To update the record, an application could use the following code:

Table1.Edit;
Table1.SetRecord(nil, nil, nil, 344567, 164700000);
Table1.Post;

This code assumes that the cursor will be positioned on the record just entered for Japan.
It assigns values to the Area and Population fields and then posts them to the database.
Notice the three nils that act as place holders for the first three columns, which are not
changed.

Setting the update mode
The UpdateMode property of a dataset determines how Delphi will find records being
updated in a SQL database. This property is important in a multi-user environment
when users may retrieve the same records and make conflicting changes to them.

When a user posts an update, Delphi uses the original values in the record to find the
record in the database. This approach is similar to an optimistic locking scheme.
UpdateMode specifies which columns Delphi uses to find the record. In SQL terms,

InsertRecord([array of values]) Inserts the specified values as a record after the current cursor
position of a table; analogous to Insert. Performs an implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to assigning
values to TFields. Application must perform a Post.

Table 3.5 Methods used to work with entire records (continued)

Method Description

66 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

UpdateMode specifies which columns are included in the WHERE clause of an UPDATE
statement. If Delphi cannot find a record with the original values in the columns
specified (if another user has changed the values in the database), Delphi will not make
the update and will generate an exception.

The UpdateMode property may have the following values:

• WhereAll (the default): Delphi uses every column to find the record being updated.
This is the most restrictive mode.

• WhereKeyOnly: Delphi uses only the key columns to find the record being updated.
This is the least restrictive mode and should be used only if other users will not be
changing the records being updated.

• WhereChanged: Delphi uses key columns and columns that have changed to find the
record being updated.

For example, consider a COUNTRY table with columns for NAME (the key), CAPITAL,
and CONTINENT. Suppose you and another user simultaneously retrieve a record with
the following values:

• NAME = “Philippines”
• CAPITAL = “Nairobi”
• CONTINENT = “Africa”

Both you and the other user notice that the information in this record is incorrect and
should be changed. Now, suppose the other user changes CONTINENT to “Asia,”
CAPITAL to “Manila,” and posts the change to the database. A few seconds later, you
change NAME to “Kenya” and post your change to the database.

If your application has UpdateMode set to WhereKey on the dataset, Delphi compares the
original value of the key column (NAME = “Philippines”) to the current value in the
database. Since the other user did not change NAME, your update occurs. You think the
record is now [“Kenya,” “Nairobi,” “Africa”] and the other users thinks it is
[“Philippines,” “Asia," “Manila”]. Unfortunately, it is actually [“Kenya,” ,” “Asia,”
“Manila”], which is still incorrect, even though both you and the other user think you
have corrected the mistake. This problem occurred because you had UpdateMode set to
its least restrictive level, which does not protect against such occurrences.

If your application had UpdateMode set to WhereAll, the Delphi would check all the
columns when you attempt to make your update. Since the other user changed
CAPITAL and CONTINENT, Delphi would not let you make the update. When you
retrieved the record again, you would see the new values entered by the other user and
realize that the mistake had already been corrected.

Bookmarking data
It is often useful to mark a particular location in a table so that you can quickly return to
it when desired. Delphi provides this functionality through bookmark methods. These
methods enable you to put a bookmark in the dataset, and quickly return to it later.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 67

The three bookmarking methods are

• GetBookmark
• GoToBookmark
• FreeBookmark

These are used together. The GetBookmark function returns a variable of type TBookmark.
A TBookmark contains a pointer to a particular location in a dataset. When given a
bookmark, the GoToBookmark method will move an application’s cursor to that location
in the dataset.

FreeBookmark frees memory allocated for the specified bookmark. A call to GetBookmark
allocates memory for the bookmark, so an application should call FreeBookmark before
exiting, and before every use of a bookmark.

The following code illustrates a typical use of bookmarking:

procedure DoSomething;
var Bookmark: TBookmark;
begin

Bookmark := Table1.GetBookmark; {allocate}
Table1.DisableControls; {Disengage data controls}
try

Table1.First;
while not Table1.EOF do
begin

{Do Something}
Table1.Next;

end;
finally

Table1.GotoBookmark(Bookmark);
Table1.EnableControls;
Table1.FreeBookmark(Bookmark); {deallocate}

end;
end;

Notice the careful positioning of statements in this code. If the call to GetBookmark fails,
controls are not disabled. If it succeeds, the bookmark is always freed and controls are
always enabled.

Disabling, enabling, and refreshing data-aware controls
The DisableControls method disables all data-aware controls linked to a dataset. This
method should be used with caution (for example, when programmatically iterating or
searching through a dataset) to prevent “flickering” of the display as the cursor moves.
As soon as the cursor is repositioned, an application should call the EnableControls
method to re-enable data controls. It is important to re-enable controls with
EnableControls as soon as the application completes its iteration or searching, to keep the
form synchronized with the underlying dataset. Use a try...finally statement as in the
example above.

The Refresh method flushes all local buffers and retrieves data from the specified dataset
again. The dataset must be open. You can use this function to update a table if you think

68 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

the table or the data it contains might have changed. Refreshing a table can sometimes
lead to unexpected results. For example, if a user is viewing a record that has been
deleted, then it will seem to disappear the moment the application calls Refresh.
Similarly, data can appear to change while a user is viewing it if another user changes or
deletes a record after the data was originally fetched and before a call to Refresh.

Using dataset events
Datasets have a number of events that enable an application to perform validation,
compute totals, and perform other tasks depending on the method performed by the
dataset. The events are listed in the following table.

For more information on these events and methods of the TDataSet component, refer to
the online VCL reference.

Abort a method
To abort a method such as an Open or Insert, raise an exception or call the Abort
procedure in any of the Before methods (BeforeOpen, BeforeInsert, and so on). For
example, the following code confirms a delete operation:

procedure TForm1.TableBeforeDelete (Dataset: TDataset);
begin

if MessageDlg('Delete This Record?', mtConfirmation, mbYesNoCancel, 0) = mrYes then
Abort;

end;

Using OnCalcFields
The OnCalcFields event is used to set the values of calculated fields. The AutoCalcFields
property determines when OnCalcFields is called. If AutoCalcFields is True, then
OnCalcFields is called when:

• The dataset is opened.

• Focus moves from one visual component to another, or from one column to another
in a DBDataGrid.

Table 3.6 Dataset events

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.
BeforeClose, AfterClose Called before/after a dataset is closed.
BeforeInsert, AfterInsert Called before/after a dataset enters Insert state.
BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.
BeforePost, AfterPost Called before/after changes to a table are posted.
BeforeCancel, AfterCancel Called before/after the previous state is canceled.
BeforeDelete, AfterDelete Called before/after a record is deleted.
OnNewRecord Called when a new record is created; used to set default values.
OnCalcFields Called when calculated fields are calculated.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 69

• A record is retrieved from the database.

OnCalcFields is also called whenever a non-calculated field’s value changes, regardless
of the setting of AutoCalcFields.

Typically, the OnCalcFields event will be called often, so it should be kept short. Also, if
AutoCalcFields is True, OnCalcFields should not perform any actions that modify the
dataset (or the linked dataset if it is part of a master-detail relationship), because this can
lead to recursion. For example, if OnCalcFields performs a Post, and AutoCalcFields is
True, then OnCalcFields will be called again, leading to another Post, and so on.

If AutoCalcFields is False, then OnCalcFields is called when the dataset’s Post method is
called (or any method that implicitly calls Post, such as Append or Insert).

While the OnCalcFields event is executed, a dataset will be put in CalcFields mode. When
a dataset is in CalcFields mode, you cannot set the values of any fields other than
calculated fields. After OnCalcFields is completed, the dataset will return to its previous
mode.

Using TTable
TTable is one of the most important database component classes. Along with the other
dataset component class, TQuery, it enables an application to access a database table.
This section describes the most important properties that are unique to TTable.

Specifying the database table
TableName specifies the name of the database table to which the TTable component is
linked. You can set this property at design time through the Object Inspector.

The DatabaseName property specifies where Delphi will look for the specified database
table. It can be a BDE alias, an explicit specification, or the DatabaseName defined by any
TDatabase component in the application. For Paradox and dBASE tables, an explicit
specification is a directory path; for SQL tables, it is a directory path and database name.

Instead of an actual directory path or database name, DatabaseName can also be a BDE
alias. The advantage of this is that you can change the data source for an entire
application by simply changing the alias definition in the BDE Configuration Utility. For
more information on using the BDE Configuration Utility, see Appendix B, “Using the
BDE configuration utility.” For more information on the DatabaseName property, see the
online VCL reference.

Note Neither of these properties can be changed when a table is open—that is, when the
table’s Active property is set to a value of True.

The TableType property
The TableType property specifies the type of the underlying database table. This
property is not used for SQL tables.

If TableType is set to Default, the table’s file-name extension determines the table type:

70 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• Extension of .DB or no file-name extension: Paradox table
• Extension of .DBF : dBASE table
• Extension of .TXT : ASCII table

If the value of TableType is not Default, then the table will always be of the specified
TableType, regardless of file-name extension.

Searching a table
TTable has a number of functions that will search for values in a database table:

• Goto functions
• Find functions

The easiest way to search for values is with the Find functions, FindKey and FindNearest.
These two functions combine the functionality of the basic Goto functions, SetKey,
GoToKey, and GoToNearest, which are described first.

In dBASE and Paradox tables, these functions can search only on index fields. In SQL
tables, they can search on any fields, if the field name is specified in the IndexFieldNames
property of the TTable. For more information, see “Indexes” on page 74.

To search a dBASE or Paradox table for a value in a non-index field, use SQL SELECT
syntax with a TQuery component. For more information on using SQL and TQuery
components, see Chapter 5, “Using SQL in applications.”

Using Goto functions
The GoToKey and GoToNearest methods enable an application to search a database table
using a key. SetKey puts a table in “search mode,” more accurately referred to as SetKey
state. In SetKey state, assignments indicate values for which to search for in indexed
fields. GoToKey then moves the cursor to the first row in the table that matches those
field values.

For example, the following code could be used in the OnClick event of a button:

procedure TSearchDemo.SearchExactClick(Sender: TObject);
begin
Table1.SetKey; {First field is the key}
Table1.Fields[0].AsString := Edit1.Text;
Table1.GoToKey;
end;

The first line of code after begin puts Table1 in SetKey state. This indicates that the
following assignment to the table’s Fields property specifies a search value. The first
column in the table, corresponding to Fields[0], is the index. In this example, the value
the application searches for is determined by the text the user types into the edit control,
Edit1. Finally, GoToKey performs the search, moving the cursor to the record if it exists.

GoToKey is a Boolean function that moves the cursor and returns True if the search is
successful. If the search is unsuccessful, it returns False and does not change the position
of the cursor. For example,

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 71

Table1.SetKey;
Table1.Fields[0].AsString := 'Smith';
if not Table1.GotoKey

then ShowMessage('Record Not Found');

If the search does not find a record with a first column matching “Smith,” the
ShowMessage function displays a dialog box with the “Record Not Found” message.

If a table has more than one key column, and you want to search for values in a sub-set
of the keys, set KeyFieldCount to the number of columns on which you are searching. For
example, if a table has three columns in its primary key, and you want to search for
values in just the first, set KeyFieldCount to 1. For tables with multiple-column keys, you
can search only for values in contiguous columns, beginning with the first. That is, you
can search for values in the first column, or the first and second, or the first, second, and
third, but not just the first and third.

GoToNearest is similar, except it finds the nearest match to a partial field value. It can be
used only for columns of string data type. For example,

Table1.SetKey;
Table1.Fields[0].AsString := 'Sm';
Table1.GoToNearest;

If a record exists with “Sm” as the first two characters, the cursor will be positioned on
that record. Otherwise, the position of the cursor does not change and GoToNearest
returns False.

If it is not searching on the primary index of a local table, then an application must
specify the column names to use in the IndexFieldNames property or the name of the
index to use in the IndexName property of the table. For example, if the CUSTOMER
table had a secondary index named “CityIndex” on which you wanted to search for a
value, you would need to set the value of the table’s IndexName property to “CityIndex.”
You could then use the following syntax when you searching on this field:

Table1.IndexName := 'CityIndex';
Table1.Open;
Table1.SetKey;
Table1.FieldByName('City').AsString := Edit1.Text;
Table1.GoToNearest;

Because indexes often have non-intuitive names, you can use the IndexFieldNames
property instead to specify the names of indexed fields.

Each time an application calls SetKey, it must set all the field values for which it will
search. That is, SetKey clears any existing values from previous searches. To keep
previous values, use EditKey.

For example, to extend the above search to find a record with the specified city name in
a specified country, an application could use the following code:

Table1.EditKey;
Table1.FieldByName('Country').AsString := Edit2.Text;

72 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using Find functions
The Find functions, FindKey and FindNearest provide easy way to search a table. They
combine the functionality of SetKey, field assignment, and Goto functions into a single
statement.

Each of these methods takes a comma-delimited array of values as its argument, where
each value corresponds to a column in the underlying table. The values can be literals,
variables, null, or nil. If the number of values in an argument is less than the number of
columns in the database table, then the remaining values are assumed to be null. The
functions will search for values specified in the array in the current index.

FindKey is similar to GotoKey:

• It will put a table in search mode (SetKey state).

• It will find the record in the table that matches the specified values. If a matching
record is found, it moves the cursor there, and returns True.

• If a matching record is not found, it does not move the cursor, and returns False.

For example, if Table1 is indexed on its first column, then the statement:

Table1.FindKey([Edit1.Text]);

will perform the same function as the three statements:

Table1.SetKey; {First field is the key}
Table1.Fields[0].AsString := Edit1.Text;
Table1.GoToKey;

FindNearest is similar to GotoNearest, in that it will move the cursor to the row with the
nearest matching value. This can be used for columns of string data type only.

Both of these functions work by default on the primary index column. To search the
table for values in other indexes, you must specify the field name in the table’s
IndexFieldNames property or the name of the index in the IndexName property.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

The KeyExclusive property
The KeyExclusive property indicates whether a search will position the cursor on or after
the specified record being searched for. If KeyExclusive is False (the default), then
GoToNearest and FindNearest will move the cursor to the record that matches the
specified values. If True, then the search functions will go the record immediately
following the specified key, if found.

Limiting records retrieved by an application
Tables in the real world can be huge, so applications often need to limit the number of
rows they work with. The following methods of TTable enable an application to work
with a subset of the data in a database table:

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 73

• SetRangeStart and EditRangeStart
• SetRangeEnd and EditRangeEnd
• SetRange([Start Values], [End Values])
• ApplyRange
• CancelRange

SetRangeStart indicates that subsequent assignments to field values will specify the start
of the range of rows to include in the application. SetRangeEnd indicates that subsequent
assignments will specify the end of the range of rows to include. Any column values not
specified are not considered. The corresponding methods EditRangeStart and
EditRangeEnd indicate to keep existing range values and update with the succeeding
assignments.

ApplyRange applies the specified range. If SetRangeStart has not been called when
ApplyRange is called, then the start range will be the beginning of the table; likewise, if
SetRangeEnd has not been called, the end range will be the end of the table. CancelRange
cancels the range filter and includes all rows in the table.

The SetRange function combines SetRangeStart, SetRangeEnd, and field assignments into
a single statement that takes an array of values as its argument.

Note With Paradox or dBASE tables, these methods work only with indexed fields. With SQL
databases, they can work with any columns specified in the IndexFieldNames property.

For example, suppose there is a form with a TTable component named Cust, linked to
the CUSTOMER table. CUSTOMER is indexed on its first column (CustNo). The form
also has two Edit components named StartVal and EndVal, and you have used the Fields
Editor to create a TField component for the CustNo column. Then these methods could
be applied (for example, in a button’s OnClick event) as follows:

Cust.SetRangeStart;
CustCustNo.AsString := StartVal.Text;
Cust.SetRangeEnd;
if EndVal.Text <> '' then
 CustCustNo.AsString := EndVal.Text;
Cust.ApplyRange;

Notice that this code first checks that the text entered in EndVal is not null before
assigning any values to Fields. If the text entered for StartVal is null, then all records
from the beginning of the table will be included, since all values are greater than null.
However, if the text entered for EndVal is null, then no records will be included, since
none are less than null.

This code could be re-written using the SetRange function as follows:

if EndVal.Text <> '' then
Cust.SetRange([StartVal.Text], [EndVal.Text]);

Cust.ApplyRange;

Using partial keys
If a key is composed of one or more string fields, these methods support partial keys.
For example, if an index is based on the LastName and FirstName columns, the
following range specifications are valid:

74 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Table1.SetRangeStart;
Table1.FieldByName('LastName').AsString := 'Smith';
Table1.SetRangeEnd;
Table1.ApplyRange;

This will include all records where LastName greater than or equal to “Smith.” The
value specification could also be:

Table1.FieldByName('LastName').AsString := 'Sm';

This would include records which have LastName greater than or equal to”Sm.” The
following would include records with a LastName greater than or equal to “Smith” and
a FirstName greater than or equal to “J”:

Table1.FieldByName('LastName').AsString := 'Smith';
Table1.FieldByName('FirstName').AsString := 'J';

The KeyExclusive property
The KeyExclusive property determines whether the filtered range excludes the range
boundaries. The default is False, which means rows will be in the filtered range if they
are greater than or equal to the start range specified and less than or equal to the end
range specified. If KeyExclusive is True, the methods will filter strictly greater than and
less than the specified values.

Indexes
An index determines how records are sorted when a Delphi application displays data.
By default, Delphi displays data in ascending order, based on the values of the primary
index column(s) of a table.

Delphi supports SQL indexes, maintained indexes for Paradox tables, and maintained
.MDX (production) indexes for dBASE tables. Delphi does not support:

• Non-maintained indexes on Paradox tables.
• Non-maintained or .NDX indexes of dBASE tables.
• The IndexFieldCount property for a dBASE table opened on an expression index.

The GetIndexNames method returns a list of the names of available indexes on the
underlying database table. For Paradox tables, the primary index is unnamed and
therefore not returned by GetIndexNames. To use a primary index on a Paradox table, set
the corresponding TTable’s IndexName to a null string.

IndexFields is an array of field names used in the index. IndexFieldCount is the number of
fields in the index. IndexFieldCount and IndexFields are read-only properties that are
available only during run-time.

Use the IndexName property to sort or search a table on an index other than the primary
index. In other words, to use the primary index of a table, you need do nothing with the
IndexName property. To use a secondary index, however, you must specify it in
IndexName.

For tables in a SQL database, the IndexFieldNames property specifies the columns to use
in the ORDER BY clause when retrieving data. The entry for this property is a

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 75

semicolon-delimited list of field names. Records are sorted by the values in the specified
fields. Sorting can be only in ascending order. Case-sensitivity depends on the server
being used.

For example, to sort customer records in an SQL table by zip code and then by customer
number, enter the following for the IndexFieldNames property:

ZipCode;CustNo

For Paradox and dBASE tables, Delphi will pick an index based on the columns
specified in IndexFieldNames. An error will occur if you specify a column or columns that
cannot be mapped to an existing index.

The IndexName and IndexFieldNames properties are mutually exclusive. Setting one
property clears the value of the other.

The Exclusive property
The Exclusive property indicates whether to open the table with an exclusive lock. If
True, no other user will be able to access it at the same time. You cannot open a table in
Exclusive mode if another user is currently accessing the table.

If the underlying table is in a SQL database, an exclusive table-level lock may allow
others to read data from the table but not modify it. Some servers may not support
exclusive table-level locks, depending on the server. Refer to your server documentation
for more information.

Other properties and methods
In addition to dataset properties shared with TQuery, TTable has a number of unique
methods and properties. For example, the unique methods include

• EmptyTable, which deletes all records (rows) in the table.

• DeleteTable, which deletes the table.

• BatchMove, which copies data and table structures from one table to another, similar
to the operation of TBatchMove.

A few of the more important properties and methods are discussed in this section. For a
complete list and descriptions, see the online VCL Reference.

The ReadOnly and CanModify properties
Before opening a TTable, set ReadOnly False to request read and write privileges for the
dataset. Set ReadOnly to True to request read-only privileges for the dataset. Depending
on the characteristics of the underlying table, the request for read and write privileges
may or may not be granted by the database.

CanModify is a read-only property of datasets that reflects the actual rights granted for
the dataset. When ReadOnly is True, CanModify will automatically be set to False. When
ReadOnly is False, CanModify will be True if the database allows read and write
privileges for the dataset and the underlying table.

76 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

When CanModify is False, then the table is read-only, and the dataset cannot be put into
Edit or Insert state. When CanModify is True, the dataset can enter Edit or Insert state.
Even if CanModify is True, it is not a guarantee that a user will be able to insert or update
records in a table. Other factors may come in to play, for example, SQL access privileges.

The GoToCurrent method
GoToCurrent is a method that synchronizes two TTable components linked to the same
database table and using the same index. This method takes a TTable component as its
argument, and sets the cursor position of the TTable to the current cursor position of the
argument. For example,

Table1.GotoCurrent(Table2);

Creating master-detail forms
The MasterSource and MasterFields are used to define one-to-many relationships between
two tables. The MasterSource property is used to specify a data source from which the
table will get data for the master table. For instance, if you link two tables in a master-
detail relationship, then the detail table can track the events occurring in the master table
by specifying the master table’s TDataSource in this property.

To link tables based on values in multiple column names, use a semicolon delimited list:

Table1.MasterFields := 'OrderNo;ItemNo';

The Field Link Designer
At design time, when you double-click (or click on the ellipsis button) on the
MasterFields property in the Object Inspector, the Field Link Designer dialog box opens.

Figure 3.3 Field Link designer

The Field Link Designer provides a visual way to link master and detail tables. The
Available Indexes combo box shows the currently selected index by which to join the
two tables. For Paradox tables, this will be “Primary” by default, indicating that the
primary index of the detail field will be used. Any other named indices defined on the
table will be shown in the drop-down list.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 77

Select the field you want to use to link the detail table in the Detail Fields list, the field to
link the master table in the Master Fields list, and then choose Add. The selected fields
will be displayed in the Joined Fields list box. For example,

OrderNo -> OrderNo

For tables on a database server, the Available Indexes combo box will not appear, and
you must select the detail and master fields to join manually in the Detail Fields and
Master Fields list boxes.

Using TDataSource
TDataSource acts as a conduit between datasets and data-aware controls. Often the only
thing you will do with a TDataSource component is to set its DataSet property to an
appropriate dataset object. Then you will set data controls’ DataSource property to the
specific TDataSource. You also use TDataSource components to link datasets to reflect
master-detail relationships.

Using TDataSource properties
TDataSource has only a few published properties in addition to the standard Name and
Tag properties.

The DataSet property
The DataSet property specifies the name of the dataset from which the TDataSource will
get its data. You can also set the DataSet property to a dataset on another form to
synchronize the data controls on the two forms. For example,

procedure TForm2.FormCreate (Sender : TObject);
begin

DataSource1.Dataset := Form1.Table1;
end;

The Enabled property
The Enabled property can temporarily disconnect a TDataSource from its TDataSet. When
set to False, all data controls attached to the data source will go blank and become
inactive until Enabled is set to True.

In general, it is recommended to use datasets’ DisableControls and EnableControls
methods to perform this function, because they affect all attached data sources.

The AutoEdit property
The AutoEdit property of TDataSource specifies whether datasets connected to the data
source automatically enter Edit state when the user starts typing in data-aware controls
linked to the dataset. If AutoEdit is True (the default), Delphi automatically puts the
dataset in Edit state when a user types in a linked data-aware control. Otherwise, a
dataset enters Edit state only when the application explicitly calls its Edit method. For
more information on dataset states, see “Dataset states” on page 58.

78 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using TDataSource events
TDataSource has three events associated with it:

• OnDataChange
• OnStateChange
• OnUpdateData

The OnDataChange event
OnDataChange is called whenever the cursor moves to a new record. In other words, if
an application calls Next, Previous, Insert, or any method that leads to a change in the
cursor position, then an OnDataChange is triggered.

This event is useful if an application is keeping components synchronized manually.

The OnUpdateData event
OnUpdateData is called whenever the data in the current record is about to be updated.
For instance, an OnUpdateData event will occur after Post is called but before the data is
actually posted to the database.

This event is useful if an application uses a standard (non-data aware) control and needs
to keep it synchronized with a dataset.

The OnStateChange event
OnStateChange is called whenever the mode (state) of a data source’s dataset changes. A
dataset’s State property records its current state. This event is useful for performing
actions as a TDataSource’s state changes, as the following examples illustrate.

During the course of a normal database session, a dataset’s state will change frequently.
To track these changes, you can use code in OnStateChange such as the following
example that displays the current state in a Label component:

procedure TForm1.DataSource1.StateChange(Sender:TObject);
var
S:String;
begin
case Table1.State of
dsInactive: S := 'Inactive';
dsBrowse: S := 'Browse';
dsEdit: S := 'Edit';
dsInsert: S := 'Insert';
dsSetKey: S := 'SetKey';
end;
Label1.Caption := S;
end;

Similarly, OnStateChange can be used to enable or disable buttons or menu items based
on the current state. For example,

procedure Form1.DataSource1.StateChange(Sender: TObject);
begin

InsertBtn.Enabled := (Table1.State = dsBrowse);

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 79

CancelBtn.Enabled := Table1.State in [dsInsert, dsEdit, dsSetKey];
...

end;

Using TFields and the Fields Editor
TField components correspond to database columns. They are created

• At run time by Delphi whenever a dataset component is active. This creates a
dynamic set of TFields that mirrors the columns in the table at that time.

• At design time through the Fields Editor. This creates a persistent set of TFields that
does not change, even if the structure of the underlying table changes.

There are TField components corresponding to all possible data types, including
TStringField, TSmallintField, TIntegerField, TWordField, TBooleanField, TFloatField,
TCurrencyField, TBCDField, TDateField, TTimeField, and TDateTimeField. This chapter
discusses TFields in general, and the discussion applies to all the different sub-types. For
information on the properties of a specific type, see the online VCL Reference.

What are TField components?
All Delphi data-aware components rely on an underlying object class, TField. Although
not visible on forms, TField components are important because they provide an
application a direct link to a database column. TFields contain properties specifying a
column’s data type, current value, display format, edit format, and other characteristics.
TField components also provide events, such as OnValidate, that can be used to
implement field-based validation rules.

Each column retrieved from a table has a corresponding TField component. By default,
TField components are dynamically generated at design time when the Active property
of a TTable or TQuery component is set to True. At run time, these components are also
dynamically generated. Dynamic generation means Delphi builds TField components
based on the underlying physical structure of a database table each time the connection
to the table is activated. Thus, dynamically generated TFields always correspond to the
columns in the underlying database tables.

To generate a persistent list of TField components for an application, use the Fields
Editor. Using the Fields Editor to specify a persistent list of TField components is smart
programming. Creating TField components with the Fields Editor provides efficient,
readable, and type-safe programmatic access to underlying data. It guarantees that each
time your application runs, it uses and displays the same columns, in the same order,
every time, even if the physical structure of the underlying database has changed.
Creating TField components at design time guarantees that data-aware components and
program code that rely on specific fields always work as expected. If a column on which
a persistent TField component is based is deleted or changed, then Delphi generates an
exception rather than running the application against a non-existent column or
mismatched data.

80 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using the Fields Editor
When TTable and TQuery components are connected to a database and their Active
properties are set to True, they dynamically generate a TField component for each
column in a table or query. Each TField component stores display-related information
about a field. The display information is used by data control components, such as
TDBEdit and TDBGrid, to format data for display in a form. You can make TField
components persistent and edit their display characteristics by invoking the Fields
Editor.

The Fields Editor enables you to:

• Generate a persistent list of TField components.

• Modify the display properties of persistent TField components.

• Remove TField components from the list of persistent components.

• Add new TField components based on existing columns in a table.

• Define calculated TField components that behave just like physical data columns,
except that their values are computed programmatically.

Starting the Fields Editor
To invoke the Fields Editor for a TTable or TQuery component,

• Double-click the mouse on the component, or

• Select the component, right click the mouse, and select Fields Editor from the pop-up
menu.

The Fields Editor opens, with the name of the Form and Table on which it was invoked
in the title bar:

Figure 3.4 Fields Editor

The Fields list box displays the names of persistent TField components associated with
the data access component. The first time you invoke the Fields Editor on a particular a
TTable or TQuery component, the Fields list is empty because all TFields are dynamically
created. If any TField objects are listed in Fields, then data-aware components can only
display data from those fields. You can drag and drop individual TField objects within
the Field list box to change the order in which fields are displayed in controls, like
TDBGrid, that display multiple columns.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 81

The navigator buttons at the bottom of the Fields Editor window enable you to scroll
through the records one at a time, and to jump to the first or last record of the dataset if
it is active.

The Add button enables you to see a list of column names in the physical dataset but not
already included in the Fields list, and to create new TField components for them.

The Define button enables you to create calculated fields. Fields created this way are
only for display purposes. The underlying physical structure of the table or data is not
changed.

The Remove button deletes the selected TFields. The Clear All button deletes all the
TFields shown in the Fields list.

Adding a TField component
The Add button of the Fields Editor enables you to specify which TField components
will be included in a dataset. To see a list of fields currently available to a TTable or
TQuery component, click the Add button. The Add Fields dialog box appears.

Figure 3.5 Fields Editor Add Fields dialog box

The Available Fields list box shows all database fields that do not have persistent TFields
instantiated. Initially, all available fields are selected. Use the mouse to select specific
fields and then choose OK. The selected fields move to the Fields list box in the main
Fields Editor window.

Fields moved to the Available Fields list become persistent. Each time the dataset is
opened, Delphi verifies that each non-calculated field exists or can be created from data
in the database. If it cannot, an exception is raised, warning you that the field is not
valid, and the dataset is not opened.

Deleting a TField component
The Remove button of the Fields Editor deletes the selected TField components from the
Fields list box. Fields removed from the Field list box are no longer in the dataset and
cannot be displayed by data-aware components. Removing a TField component is useful
to display a subset of available fields within a table, or when you want to define your
own field to replace an existing field.

You can re-create deleted TField components with the Add button, but any changes
previously made to its properties or events will be lost.

82 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Defining a new TField component
The Define button of the Fields Editor enables you to create new TField components for
display. You can create a new TField based on a column in the underlying table (for
example, to change the data type of the field), but its main purpose is to create new
TField components whose values are calculated programmatically.

Figure 3.6 Define Field dialog box

Defining a calculated field
A calculated field is used to display values calculated at run time in the dataset’s
OnCalcFields event handler. For example, you might create a string field that displays
concatenated values from two other fields.

To create a calculated field:

1 Choose the Define button in the Fields Editor window.

2 Enter the name of the new field in the Field Name edit box, or select a field name
from the drop-down list. A corresponding TField component name appears
automatically in the Component edit box as you type. This name is the identifier you
use to access the field programmatically.

3 Select the data type for the field from the Field Type list box.

4 Check the Calculated check box if it is not already checked.

5 Choose OK. The newly defined calculated field is automatically added to the Fields
list box in the main Fields Editor window, and the component declaration is
automatically added to the form’s type declaration in the source code.

To edit the properties or events associated with the new TField component, select the
component name in the Fields list box, then edit the properties or events via the Object
Inspector.

Programming a calculated field
Once a calculated field is defined, it has a null value unless you write code to provide
values for the field. Code for a calculated field is placed in the OnCalcFields event for its
dataset. An OnCalcFields event handler can only modify fields that have a Calculated
property of True.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 83

For example, on Form1, the OnCalcFields event for a TTable component named Table1 is

TForm1.Table1CalcFields

To program a value for a calculated field:

1 Select the TTable or TQuery component from the Object Inspector drop-down list.

2 Choose the Object Inspector Events tab.

3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure
for the TTable or TQuery component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

Editing a TField component
You can customize properties and events of persistent TField components at design
time. To do this, select the TField either in the Fields list box of the Fields Editor or the
component list of the Object Inspector. Properties control the way a field is displayed by
a data-aware component, for example, whether it can appear in a TDBGrid, or whether
its value can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

Editing Display properties
To edit the display properties of a selected TField component, click the Properties tab on
the Object Inspector window. The following table summarizes display properties that
can be edited. Not all properties appear for all TField descendents.

Table 3.7 TField properties

Property Purpose

Alignment Displays contents of field left justified, right justified, or centered within a data-aware
component.

Calculated True, field value can be calculated by a CalcFields method at run time.
False, field value is determined from the current record.

Currency True, numeric field displays monetary values.
False, numeric field does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware component.
DisplayLabel Specifies the column name for a field in a TDBGrid.
DisplayWidth Specifies the width, in characters, of a grid column that display this field.
EditFormat Specifies the edit format of data in a data-aware component.
EditMask Limits data-entry in an editable field to specified types and ranges of characters, and

specifies any special, non-editable characters that appear within the field (hyphens,
parentheses, etc.).

FieldName Specifies the actual name of column in the physical table from which the TField
component derives its value and data type.

Index Specifies the order of the field in a dataset.
MaxValue Specifies the maximum numeric value that can be entered in an editable numeric

field.

84 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Not all properties are available to all TField components. For example, a component of
type TStringField does not have Currency, MaxValue, or DisplayFormat properties. A
component of type TFloatField does not have a Size property.

Boolean properties, those that can be toggled between True and False, can be changed
by double-clicking the property in the Object Inspector. Other properties require you to
enter values or pick from drop-down lists in the Object Inspector. All TField properties
can also be manipulated programmatically.

While the purpose of most properties is straight-forward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using the Calculated property, see
“Programming a calculated field.” For more information about using DisplayFormat,
EditFormat, and EditMask, see “Formatting fields.”

Using the Input Mask Editor
The EditMask property provides a way to limit the entries that a user can type into data
aware controls tied to a TField. You can enter a specific edit mask by hand or use the
Input Mask Editor to create a mask.

To use the Input Mask Editor, when you have selected a TField component, double-click
on the EditMask field in the Object Inspector or click the ellipsis button in the Values
column. The Input Mask Editor opens:

Figure 3.7 Input Mask Editor

MinValue Specifies the minimum numeric value that can be entered in an editable numeric field.
Name Specifies the component name of the TField component within Delphi.
ReadOnly True: Field can be displayed in a component, but cannot be edited by a user.

False: Field can be displayed and edited.
Size Specifies the maximum number of characters that can be displayed or entered in a

string-based field, or the size of byte and var byte fields.
Tag Long integer bucket available for programmer use in every component as needed.
Visible True: Field is displayed by a TDBGrid component. User-defined components can also

make display decisions based on this property.
False: Field is not displayed by a TDBGrid component.

Table 3.7 TField properties (continued)

Property Purpose

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 85

To use one of the sample masks, select it in the Sample Masks list box. You can then
customize the mask as desired by editing it in the Input Mask text field. You can test the
allowable input in the Test Input field. For more information, see the online Help.

Note For the TStringField, the EditMask property is also used as a display format.

Formatting fields
Delphi provides built-in display and edit format routines and intelligent default
formatting for TField components. These routines and formats require no action on the
programmer’s part. Default formatting conventions are based on settings in the
Windows Control Panel. For example, using default Windows settings in the United
States, a TFloatField column with the Currency property set to True sets the DisplayFormat
property for the value 1234.56 to $1234.56, while the EditFormat is 1234.56. Only format
properties appropriate to the data type of a TField component are available for a given
component.

All TField component formatting is performed by the following routines:

The format routines use the International settings specified in the Windows Control
Panel for determining how to display date, time, currency, and numeric values. You can
edit the DisplayFormat and EditFormat properties of a TField component to override the
default display settings for a TField, or you can handle the OnGetText and OnSetText
events for a TField to do custom programmatic formatting.

Handling TField events
To edit the events for a selected TField component, click the Events tab on the Object
Inspector window. The following table summarizes events that can be edited:

OnGetText and OnSetText events are primarily useful to programmers who want to do
custom formatting that goes beyond Delphi’s built-in formatting functions, FormatFloat,
FormatDate, and so on.

TFields have a ‘FocusControl method that enables an event to set focus to the first data-
aware control associated with the TField. This is especially important for record-oriented

Table 3.8 TField formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField

FormatInteger TIntegerField, TSmallIntField, TWordField

Table 3.9 Published TField events

Event Purpose

OnChange Called when the value for a TField component changes.
OnGetText Called when the value for a TField component is retrieved for display or editing.
OnSetText Called when the value for a TField component is set.
OnValidate Called to validate the value for a TField component whenever the value is changed

because of an edit or insert operation.

86 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

validation (for example, on BeforePost of a TTable) since a TField may be validated
whether or not its associated data control has focus.

Using TField conversion functions
TFields have built-in functions for conversion among data types. Depending on the
TField type, different conversion functions are available and do different things. The
following table summarizes these functions.

The conversion functions can be used in any expression involving a TField component,
on either side of an assignment statement. For example, the following statement
converts the value of the TField named MyTableMyField to a string and assigns it to the
text of the Edit1 control:

Edit1.Text := MyTableMyField.AsString;

Conversely, this statement assigns the text of the Edit1 control to the TField as a string:

MyTableMyField.AsString := Edit1.Text;

An exception occurs if an unsupported conversion is performed at run time.

Accessing TField properties programmatically
An application can access the value of a database column through a TField component’s
Value property. For example, the following statement assigns the value of the
CustTableCountry TField to the text in the TEdit component Edit3:

Edit3.Text := CustTableCountry.Value;

Table 3.10 TField conversion functions

TField Type AsString AsInteger AsFloat AsDateTime AsBoolean

TStringField String type by
definition

Convert to Integer
if possible

Convert to Float if
possible

Convert to Date if
possible

Convert to
Boolean if
possible

TIntegerField
TSmallIntField
TWordField

Convert to String Integer type by
definition

Convert to Float Not Allowed Not Allowed

TFloatField
TCurrencyField
TBCDField

Convert to String Round to nearest
integer value

Float type by
definition

Not Allowed Not Allowed

TDateTimeField
TDateField
TTimeField

Convert to String.
Content depends
on DisplayFormat
of Field

Not Allowed Convert Date to
number of days
since 01/01/0001
Convert Time to
fraction of 24
hours

DateTime type
by definition
Zero date or time
if not specified

Not Allowed

TBooleanField Convert to String
“True” or “False”

Not Allowed Not Allowed Not Allowed Boolean type by
definition

TBytesField
TVarBytesField
TBlobField
TMemoField
TGraphicField

Convert to String
(Generally only
makes sense for
TMemoField)

Not Allowed Not Allowed Not Allowed Not Allowed

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 87

Any properties of TField components that are available from the Object Inspector can
also be accessed and adjusted programmatically as well. For example, this statement
changes field ordering by setting the Index property of CustTableCountry to 3:

CustTableCountry.Index := 3;

Displaying data with standard controls
You can display database values at run time with standard components as well as data
aware and TField components. Besides accessing TField components created with the
Fields Editor, there are two ways to access column values at run time: the Fields property
and the FieldsByName method. Each accesses the value of the current row of the
specified column in the underlying database table at run time. Each requires a dataset
component in the form, but not a TDataSource component.

In general, you should use the data-aware controls built in to Delphi in database
applications. These components have properties and methods built in to them that
enable them to be connected to database columns, display the current values in the
columns, and make updates to the columns. If you use standard components, you must
provide analogous code by hand.

Using the Fields property
You can access the value of a field with the Fields property of a dataset component, using
as a parameter the ordinal number of the column in the table (starting at 0). To access or
change the field’s value, convert the result with the appropriate conversion function,
such as AsString or AsInteger.

This method requires you to know the order and data types of the columns in the table.
Use this method if you want to iterate over a number of columns or if your application
works with tables that are not available at design time.

For example, the following statement assigns the current value of the seventh column
(Country) in the CustTable table to the Edit1 component:

Edit1.Text := CustTable.Fields[6].AsString;

Conversely, you can assign a value to a column a dataset in Edit mode by assigning the
appropriate Fields property to the value of a component. For example,

CustTable.Fields[6].AsString := Edit1.Text;

To make these assignments occur, you must enter them in an event such as a TButton
OnClick event, or an edit control’s OnEnter event.

Using the FieldByName method
You can access the value of a field with the FieldByName method by specifying the
dataset component name, and then passing FieldByName the name of the column you
want to access. To access or change the field’s value, convert the result with the
appropriate conversion function, such as AsString or AsInteger.

88 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

This method requires you to know the name of the column you want to access or if your
application works with tables that are not available at design time.

For example, the following statement assigns the value of the Country column in the
CustTable table to Edit2:

Edit2.Text := CustTable.FieldByName('Country').AsString;

Conversely, you can assign a value to a column a dataset in Edit mode by assigning the
appropriate FieldByName property to the value of a component. For example,

CustTable.FieldByName('Country').AsString := Edit2.Text;

To make these assignments occur, you must enter them in an event such as a button’s
OnClick or a Edit component’s OnExit event.

Incorporating reports in an application
Delphi applications can include reports created with ReportSmith with the TReport
component. TReport appears on the Data Access component page. To incorporate a
report in an application, simply add a TReport component to the desired form as you
would any other component. Then specify the name of the report (created with
ReportSmith) and other report parameters with properties of the component.

Designing reports with ReportSmith is described in Creating Reports. You can invoke
ReportSmith at design time by double-clicking on a TReport component, or on the
ReportSmith icon in the Delphi program group.

Specify the name of an existing report in the ReportName property and the directory in
the ReportDir property. To load ReportSmith Runtime and print the specified report, use
the Run method (i.e., Report1.Run). The report prints on the default printer defined in
ReportSmith. Preview is a Boolean property that specifies whether to print the report or
just display it: If set to True, Run will display the report onscreen only; if set to False,
Run will print the report.

The AutoUnload property specifies whether to automatically unload the ReportSmith
Runtime executable after a report is run. Generally, if an application runs one report at a
time, AutoUnload should be True. If an application is going to run a series of reports,
then AutoUnload should be False.

The InitialValues property is of type TStrings and specifies the report variables to use
with the report. Each line specifies a report variable as follows:

REPORTVAR = value

For more information about creating and using report variables, see Creating Reports.

Some important methods of TReport are listed in the following table:

Table 3.11 Important TReport methods

Method Purpose

Run Run a report.
RunMacro Send a macro command to ReportSmith.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 89

Using TBatchMove
TBatchMove enables you to perform operations on groups of records or entire tables. The
primary uses of this component are

• Downloading data from a server to a local data source for analysis or other
operations.

• Upsizing a database from a desktop data source to a server. For more information on
upsizing, see Appendix C, “Using local SQL.”

TBatchMove is powerful because it can create tables on the destination that correspond to
the source tables, automatically mapping the column names and data types as
appropriate.

Two TBatchMove properties specify the source and a destination for the batch move
operation: Source specifies a dataset (a TQuery or TTable component) corresponding to
an existing source table. Destination specifies a TTable component corresponding to a
database table. The destination table may or may not already exist.

Batch move modes
The Mode property specifies what the TBatchMove object will do:

The Transliterate property specifies whether to transliterate character data to the
preferred character set for the destination table.

Connect Preconnect the report to a database, so it does not prompt for login.
SetVariable Change a specific report variable.
ReCalcReport Run a report again. Use this when report variables have changed.

Table 3.12 Batch move modes

Property Purpose

batAppend Append records to the destination table. The destination table must already exist.
This is the default mode.

batUpdate Update records in the destination table with matching records from the source table.
The destination table must exist and must have an index defined to match records.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise, append
records to the destination table. The destination table must exist and must have an
index defined to match records.

batCopy Create the destination table based on the structure of the source table. The
destination table must not already exist—if it does, the operation will delete it.

batDelete Delete records in the destination table that match records in the source table. The
destination table must already exist and must have an index defined.

Table 3.11 Important TReport methods (continued)

Method Purpose

90 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Data type mappings
In Copy mode, TBatchMove will create the destination table based on the column data
types of the source table. In moving data between different table types, TBatchMove
translates the data types as appropriate. The mappings from dBASE, Paradox, and
InterBase data types are shown in the following tables.

Note To batch move data to an SQL server database, you must have that database server and
Delphi Client/Server edition with the appropriate SQL Link installed. For more
information, see the SQL Links for Windows User’s Guide:

Table 3.13 Physical data type translations from Paradox tables to tables of other driver types

From Paradox
type

To dBASE
type

To Oracle
type

To Sybase
type

To InterBase
type

To Informix
type

Alpha Character Character VarChar Varying Character
Number Float {20.4} Number Float Double Float
Money Float {20.4} Number Money Double Money {16.2}
Date Date Date DateTime Date Date
Short Number {6.0} Number SmallInt Short SmallInt
Memo Memo Long Text Blob/1 Text
Binary Memo LongRaw Image Blob Byte
Formatted memo Memo LongRaw Image Blob Byte
OLE OLE LongRaw Image Blob Byte
Graphic Binary LongRaw Image Blob Byte
Long Number {11.0} Number Int Long Integer
Time Character {>8} Character {>8} Character {>8} Character {>8} Character {>8}
DateTime Character {>8} Date DateTime Date DateTime
Bool Bool Character {1} Bit Character {1} Character
AutoInc Number{11.0} Number Int Long Integer
Bytes Memo LongRaw Image Blob Byte
BCD N/A N/A N/A N/A N/A

Table 3.14 Physical data type translations from dBASE tables to tables of other driver types

From dBASE
type

To Paradox
type

To Oracle
type

To Sybase
type

To InterBase
type

To Informix
type

Character Alpha Character VarChar Varying Character
Number Short Number SmallInt Short SmallInt
others Number Number Float Double Float
Float Number Number Float Double Float
Date Date Date DateTime Date Date
Memo Memo Long Text Blob/1 Text
Bool Bool Character {1} Bit Character {1} Character
Lock Alpha {24} Character {24} Character {24} Character {24} Character
OLE OLE LongRaw Image Blob Byte

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 91

By default TBatchMove matches columns based on their position in the source and
destination tables. That is, the first column in the source is matched with the first column
in the destination, and so on.

To override the default column mappings, use the Mappings property. This is a list of
column mappings (one per line) in one of two forms. To map the column, ColName, in
the source table to the column of the same name in the destination table:

ColName

Or, to map the column named SourceColName in the source table to the column named
DestColName in the destination table:

DestColName = SourceColName

If source and destination column data types are not the same, TBatchMove will perform
a “best fit”. It will trim character data types, if necessary, and attempt to perform a
limited amount of conversion if possible. For example, mapping a CHAR(10) column to
a CHAR(5) column will result in trimming the last five characters from the source
column.

As an example of conversion, if a source column of character data type is mapped to a
destination of integer type, TBatchMove will convert a character value of ‘5’ to the
corresponding integer value. Values that cannot be converted will generate errors. See
“Handling batch move errors” on page 92.

Binary Binary LongRaw Image Blob Byte
Bytes Bytes LongRaw Image Blob Byte (only for

temp tables)

Table 3.15 Physical data type translations from InterBase tables to tables of other driver types

From Interbase
type

To Paradox
type

To dBASE
type

To Oracle
type

To Sybase
type

To Informix
type

Short Short Number {6.0} Number Small Int SmallInt
Long Number Number {11.0} Number Int Integer
Float Number Float {20.4} Number Float Float
Double Number Float {20.4} Number Float Float
Char Alpha Character Character VarChar Character
Varying Alpha Character Character VarChar Character
Date DateTime Date Date DateTime DateTime
Blob Binary Memo LongRaw Image Byte
Blob/1 Memo Memo Long Text Text

Table 3.14 Physical data type translations from dBASE tables to tables of other driver types (continued)

From dBASE
type

To Paradox
type

To Oracle
type

To Sybase
type

To InterBase
type

To Informix
type

92 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Executing a batch move
Use the Execute method to execute the batch operation at run time. For example, if
BatchMoveAdd is the name of a TBatchMove component, the following statement
executes it:

BatchMoveAdd.Execute

You can also execute a batch move at design time by right clicking the mouse on a
TBatchMove component and choosing Execute. The MoveCount property keeps track of
the number of records that were moved when a batch move is executed.

Handling batch move errors
There are basically two types of errors that can occur in a batch move operation: data
type conversion errors and integrity violations. TBatchMove has a number of properties
that specify how it handles errors. The AbortOnProblem property specifies whether to
abort the operation when a data type conversion error occurs. The AbortOnKeyViol
property indicates whether to abort the operation when an integrity (key) violation
occurs.

The following properties enable a TBatchMove to create additional tables that document
the batch move operation:

• ChangedTableName, if specified, creates a local (Paradox) table containing all records
in the destination table that changed as a result of the batch operation.

• KeyViolTableName, if specified, creates a local (Paradox) table containing all records
from the source table that caused an integrity violation (such as a key violation) as a
result of the batch operation.

• ProblemTableName, if specified, creates a local (Paradox) table containing all records
that could not be posted in the destination table due to data type conversion errors.
For example, the table could contain records from the source table whose data had to
be trimmed to fit in the destination table.

Accessing the BDE directly
Delphi provides a wide range of built-in methods, properties, and functions that
provide an interface to the Borland Database Engine, but applications are not limited to
them. Some advanced applications may require direct access to BDE function calls,
cursors, and so on. While direct BDE calls can provide additional functionality, they
should be performed with caution, as they bypass Delphi’s built-in functionality that
keeps data-aware components synchronized with datasets.

If your application requires direct access to the BDE, you should first get the Borland
Database Engine User’s Guide from Borland. This documentation provides a complete
reference and user’s guide to the BDE.

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 93

The application must include the header files that reference the BDE: DBIPROCS.PAS
and DBITYPES.PAS. Then the code can make direct calls to the BDE application
programming interface.

BDE function calls often require parameters to specify the action to be performed.
Delphi provides access to these through the following properties of dataset components:

• DBHandle is the handle for the database to which they are connected.

• Handle is the handle for the underlying cursor on the database.

• DBLocale and Locale are used for ANSI/OEM conversion for localization of
applications.

After performing a BDE call directly, it is a good idea to call Refresh to ensure that all
data-aware components are synchronized with their datasets.

Application examples
This section provides some brief examples of specific database tasks, illustrating some of
the material presented in the preceding sections.

Creating a master-detail form
In the following example, you will create a simple form in which the user can scroll
through customer records, and display all orders for the current customer. Follow these
steps to create this application:

1 Place two TTable, two TDataSource, and two TDBDataGrid components on a form.

2 Set the properties of the first TTable component as follows:
• DatabaseName: DBDEMO (the alias for the directory with the MAST database).
• TableName: CUSTOMER (the table containing customer records).
• Name: CustTable (for ease-of-use).

3 Name the first TDataSource component “CustDataSource,” and set its Dataset
property to “CustTable.” Set the DataSource property of DBGrid1 to
“CustDataSource.” When you activate CustTable (by setting its Active property to
True), the grid displays the data in the CUSTOMER table.

4 Analogously, set the properties of the second TTable component as follows:
• DatabaseName: DBDEMO.
• TableName: ORDERS (the table containing order records).
• Name: OrdTable (for ease-of-use).

5 Name the second TDataSource component “OrdDataSource,” and set its Dataset
property to “OrdTable.” Set the DataSource property of DBGrid2 to
“OrdDataSource.” When you activate OrdTable (by setting its Active property to
True), the grid displays the data in the ORDERS table.

94 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

6 Compile and run the application now. The form displays data from each table
independently and should look something like this:

7 The next step is to link the ORDERS table (the master table) to the CUSTOMER table
(the detail table) so that the form displays only the orders placed by the current
customer. To do this, exit the application, return to design mode, and set the
MasterSource property of OrdTable to CustDataSource.

8 In the Object Inspector, click on the ellipsis button to the right of the MasterFields
property of OrdTable. The Field Link Designer dialog box will open.
• In the Available Indexes field, choose ByCustNo to link the two tables by the

CustNo field.
• Select CustNo in both the Detail Fields and Master Fields field lists.
• Click on the Add button to add this join condition. In the Joined Fields list,

“CustNo -> CustNo” will appear.
• Choose OK to commit your selections and exit the Field Link Designer.

If you run the application now, you will see that the tables are linked together, and that
when you move to a new record in the CUSTOMER table, you see only those records in
the ORDERS table that belong to the current customer.

The MasterSource property specifies the TDataSource from which OrdTable will take its
master column values. This limits the records it retrieves, based on the current record in
CustTable. To do this, you must specify for OrdTable:

• The name of the column that links the two tables. The column must be present in
each table, and must be identically named.

• The index of the column in the ORDERS table that will be linked to the CUSTOMER
table.

In addition, you must ensure that the ORDERS table has an index on the CustNo field.
Since it is a primary index, there is no need to specifically name it, and you can safely
leave the IndexName field blank in both tables. However, if the table were linked
through a secondary index, you must explicitly designate that index in the IndexName
property.

In this example, the CUSTOMER table has a primary index on the CustNo column, so
there is no need to specify the index name. However, the ORDERS table does not have a

Figure 3.8 Sample form

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 95

primary index on CustNo, so you must explicitly declare it in the IndexName property, in
this case ByCustNo

Note You can also set the IndexFieldNames property to CustNo, and the correct index will be
supplied for you.

Displaying multiple views of a table
Applications often need to display two different views of the same dataset. For instance,
if you have two forms, and each displays different columns of the same row, you need
to find a way to keep these forms synchronized to ensure accurate and up-to-date views
of the data in each form.

There are two main concepts important to working with multiple views of a table:

• The TDataSource component provides access for multiple forms sharing a single
dataset.

• When you want more than one different view of one table, put a TDataSource on each
form that contains data aware components. You only need put a single TTable or
TQuery component on the first form.

The simplest way to do this is to place a TDataSource on each form, and connect the first
data source to the dataset you want to access. At run time you can then set the DataSet
property of the second TDataSource to the TTable on the first form, for example:

Form2.DataSource2.Dataset := Form1.Table1;

Once the second TDataSource is assigned to a valid dataset, both forms will remain
synchronized.

The TWOFORMS.DPR example in \DELPHI\DEMOS\DB\TWOFORMS
demonstrates how to work with multiple forms and a single dataset. The program
opens the COUNTRY table and shows the Name, Capital, and Continent fields on one
form, and the Area and Population fields on a second form. A button on the first form
opens the second form. Both forms have TDBNavigator components, so you can
navigate through the table. The forms look like this:

Figure 3.9 Two forms

✔ To create the program manually,

1 Place a TTable, a TDataSource, a TButton, three TDBEdit, and three TLabel components
on a form.

96 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

2 Give the Button the name “Detail.”

3 Set the Table1’s DatabaseName property to the DBDemos alias, and open the
COUNTRY Table.

4 Connect DataSource1 to Table1, then connect each of the DBEdit component’s
Datasource properties to DataSource1. By performing these steps in this order, you
can drop down a list in the DataField property of the data aware controls.

5 Create a second form, and place a data source, a TBitBtn, two TDBLabels, a
TDBNavigator and two TDBEdit controls on the form. Don’t yet connect the data
source on this form to anything else.

6 Connect the DBEdit components to the DataSource, then enter ‘Area’ for the
DataField property of DBEdit1, and ‘Population’ for DBEdit2.

7 Set the Kind property of the bitbutton to ‘OK’.

8 Name this second form DetailView, then save the whole unit under the name
DETAILS.PAS.

Note When you are creating the second form, you might find it helpful to temporarily create a
TTable component and link the data source to it. This enables you to design the form
using live data, and gives you access to a list of field names for each edit control. Once
you have the form set up properly, you can delete the TTable component and at run time
reconnect the data source to a table on a separate form.

✔ Once you have built the second form, go back to the first form and add DETAILS to the
uses clause in the form unit’s implementation part, and create the following event
handler for the OnClick event of the Detail button:

procedure TForm1.DetailClick(Sender: TObject);
begin
 DetailView.DataSource1.DataSet := Table1;
 DetailView.Visible := True;
end;

This code first assigns the data source on the second form to the table in the first form.
Once this connection is made, then the data source on the second form is “live.” That is,
it will act exactly like the data source on the first form. Then it makes the form visible.

✔ Now, connect the navigators on each form to the appropriate data source.

When you run the program, open the second form by clicking on the Detail button.
Notice that whether you use the navigator in either form, the edit controls on the other
form remain synchronized with the current record.

✔ Close the application and add two more lines of code to the second form’s unit. This
code is called in response to a click on the OK button:

procedure TDetailView.BitBtn1Click(Sender: TObject);
begin
 DataSource1.DataSet := nil;
 Close;
end;

C h a p t e r 3 , U s i n g d a t a a c c e s s c o m p o n e n t s a n d t o o l s 97

This code sets the dataset to nil whenever the second form is closed. While not
necessary, this ensures that the hidden detail view is not responding to events.

98 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 99

C h a p t e r

4
Chapter 4Using Data Controls

To display and edit data from a database, use the components on the Data Controls
page of the Component palette. Data controls include components such as TDBGrid for
displaying and editing all specified records and fields in a table, and TDBNavigator for
navigating among records, deleting records, and posting records when they change.

Figure 4.1 Data Controls Component palette

The following table summarizes the data controls in order from left to right as they
appear on the Component palette:

Table 4.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a spreadsheet-like grid. Columns in the
grid can be specified at design time using the Fields Editor or at run time
(dynamically bound).

TDBNavigator Provides buttons for navigating through data obtained from a data source. At
design time, you can choose to include one or more buttons to navigate through
records, update records, post records, and refresh the data from the data source.

TDBText Displays data from a specific column in the current data record.
TDBEdit Uses an edit box to display and edit data from a specific column in the current data

record.
TDBMemo Displays memo-type database data. Memo fields can contain multiple lines of text

or can contain BLOB (binary large object) data.
TDBImage Displays graphic images and BLOB data from a specific column in the current data

record.
TDBListBox Displays a list of items from which a user can update a specific column in the

current data record.
TDBComboBox Combines a TDBEdit control with an attached list. The application user can update

a specific column in the current data record by typing a value or by choosing a
value from the drop-down list.

100 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Most data controls are data-aware versions of standard components. Some, such as
TDBGrid and TDBNavigator, are data-aware, but differ from standard components in
significant, useful ways. A data-aware control derives display data from a database
source outside the application, and can also optionally post (or return) data changes to a
data source. Data controls are data-aware at design time, meaning that when you connect
a component to an active data source while building an application, you can
immediately see live data in the controls. You can use the Fields Editor to scroll through
records at design time to verify that your application is making the right database
connections without requiring you to compile and run the application, but you cannot
modify data at design time.

This chapter describes basic features common to all Data Control components, then
describes how and when to use individual components.

Data Control component basics
Data controls are linked to database tables through the DataSource property. The
DataSource property specifies the name of the TDataSource component from which a
control gets its data. The TDataSource component is linked to a dataset (for example,
TTable or TQuery) that is, in turn, connected to a database table. A dataset component is
a grouping of TField components that can be dynamically created for you at run time, or
statically specified using the Fields Editor at design time. For more information about
TDataSource, TTable, TQuery, and the Fields Editor, see Chapter 3, “Using data access
components and tools.”

Data controls can only access columns in tables for which there are corresponding TField
components. If the Fields Editor is used to limit a dataset to a subset of columns in a
table, then TField components exist only for those columns. Most data controls provide a
DataField property where you can specify the TField component with which it should be
associated.

When designing a form that accesses data, you must place at least one dataset
component (for example, TTable or TQuery), at least one TDataSource component, and
one or more data controls on the form.

To place a data control on a form and link it to a dataset, follow these steps:

1 Drop the control on the form.

TDBCheckBox Displays a check box. If the value in the indicated column of the current record
matches the text of the check box’s ValueChecked property, the box is checked.

TDBRadioGroup Offers a mutually exclusive set of options to enter into a specific column in the
current data record in the form of radio buttons.

TDBLookupList Displays a list of items from which a user can update a column in the current data
record. The list of items is looked up in a specific column in another dataset.

TDBLookupCombo Combines a TDBEdit control with a dropdown version of TDBLookupList. The
application user can update a field in the current database by typing a value or by
choosing a value from the drop-down list that is looked up in a specific column in
another dataset.

Table 4.1 Data controls (continued)

Data control Description

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 101

2 Set the DataSource property to the name of a TTable or TQuery component already on
the form. You can type the name or choose it from the drop-down list.

3 Set the DataField property to the name of a TField component. You can type the field
name or choose it from the drop-down list.

Note Two data controls, TDBGrid and TDBNavigator, access all available TField components
within a dataset, and therefore do not have DataField properties. For these controls, omit
step 3.

When a data control is associated with a dataset, its Enabled property determines if its
attached TDataSource component receives data from mouse, keyboard, or timer events.
Controls are also disabled if the Enabled property of TDataSource is False, or if the Active
property of the dataset is False.

Updating fields
Most data controls can update fields by default. Update privileges depend on the status
of the control’s ReadOnly property and underlying TField’s and dataset’s CanModify
property. ReadOnly is set to False by default, meaning that data modifications can be
made.

In addition, the data source must be in Edit state if updates are to be permitted. The data
source AutoEdit property, set to True by default, ensures that the dataset enters Edit
mode whenever an attached control starts to modify data in response to keyboard or
mouse events.

In all data controls except TDBGrid, when you modify a field, the modification is copied
to the underlying TField component when you Tab from the control. If you press Esc
before you Tab from a field, then Delphi abandons the modifications, and the value of
the field reverts to the value it held before any modifications were made. In TDBGrid,
modifications are copied only when you move to a different record; you can press Esc in
any record of a field before moving to another record to cancel all changes to the record.

When a record is posted, Delphi checks all data-aware components associated with the
dataset for a change in status. If there is a problem updating any fields that contain
modified data, Delphi raises an exception, and no modifications are made to the record.

Displaying data as labels with TDBText
TDBText is a read-only control similar to the TLabel component on the Standard page of
the Component palette. TDBText gets the text it displays from a specified field in the
current record of a dataset. Because TDBText gets its text from a dataset, the text it
displays is dynamic—the text changes as the user navigates the database table.
Therefore you cannot specify the display text of TDBText at design time as you can with
TLabel. When TDBText is linked to a data field at design time, however, you can see the
current value for that field. For example, the following TDBText box, from the tutorial
example, MASTAPP, displays company names.

102 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure 4.2 TDBText component

A TDBText control is useful when you want to provide display-only data on a form that
allows user input in other controls. For example, suppose a form is created around the
fields in a customer list table, and that once the user enters a street address, city, and
state or province information in the form, you use a dynamic lookup to automatically
determine the zipcode field from a separate table. A TDBText component tied to the
zipcode table could be used to display the zipcode field that matches the address
entered by the user.

Note When you create a TDBText component on a form, make sure its AutoSize property is
True (the default) to ensure that the control resizes itself as necessary to display data of
varying widths. If AutoSize is set to False, and the control is too small, data display is
truncated.

Displaying and editing fields with TDBEdit
TDBEdit is a data-aware version of the TEdit component. TDBEdit displays the current
value of a data field to which it is linked. You can also modify values in this component.

For example, suppose DataSource1 is a TDataSource component that is active and linked
to an open TTable called Customer. You can then create a TDBEdit component
(DBEdit1), and set its properties as follows:

• DataSource: DataSource1
• DataField: CUSTNO

The DBEdit1 component immediately displays the value of the current row in the
CUSTNO column of the CUSTOMER table, both at design time and at run time.

Figure 4.3 TDBEdit component at design time

Editing a field
A user can modify a database field in a TDBEdit component if:

1 The Dataset is in Edit state.
2 The Can Modify property of the Dataset is True.
3 The ReadOnly property of TDBEdit is False.

Note Edits made to a field must be posted to the database by using a navigation or Post button
on a TDBNavigator component.

TDBEdit component

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 103

Viewing and editing data with TDBGrid
TDBGrid enables you to view and edit all records associated with a dataset in a
spreadsheet-like format:

Figure 4.4 TDBGrid component

The appearance of records in TDBGrid depends entirely on whether the TField
components of the dataset are dynamically created by Delphi at run time, or if you use
the Fields Editor to create persistent set of TField components whose properties you can
specify in the Object Inspector at design time.

If Delphi generates a dynamic dataset at run time, then all records are displayed using
default record and field ordering, and default display and edit formats. In most cases,
however, you will want to control field order and appearance. To do so, use the Fields
Editor to instantiate TField components and set their properties at design time.

When you use the Fields Editor to instantiate TField components, you gain a great deal
of flexibility over the appearance of records in a TDBGrid. For example, the order in
which fields appear from left to right in TDBGrid is determined by the way you order
TField components in the Fields list box of the Fields Editor. Similarly, the DisplayFormat
and EditFormat properties of a TField component determine how that field appears in
TDBGrid during display and editing, respectively. You can also ensure that a value is
entered for a field in a new record by setting its Required property to True. You can even
prevent a TField component from being displayed in a grid by setting its Visible property
to False. For more information about using the Fields Editor to control TField properties,
see Chapter 3, “Using data access components and tools.”

To put a TDBGrid on a form and link it to a dataset:

1 Create the control on the form.

2 Set the DataSource property to the name of a TTable or TQuery component already on
the form.

Setting grid options
You can use the TDBGrid Options property at design time to control grid behavior and
appearance at run time. When a TDBGRid component is first placed on a form at design
time, the Options property in the Object Inspector is displayed with a + (plus) sign to
indicate that the Options property can be expanded to display a series of Boolean

Current field Column titles

Record
indicator

104 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

properties that you can set individually. To view and set these properties, double-click
the Options property. The list of options that you can set appears in the Object Inspector
below the Options property. The + sign changes to a – (minus) sign, indicating that you
can collapse the list of properties by double-clicking the Options property.

The following table lists the Options properties that can be set, and describes how they
affect the grid at run time:

For more information about these options, see the online Help reference.

Editing in the grid
At run time. you can use a grid to modify existing data and enter new records, if all the
following default conditions are met:

1 The CanModify property of the Dataset is True.
2 The ReadOnly property of TDBGrid is False.

Table 4.2 Expanded TDBGrid Options properties

Option Purpose

dgEditing True: (Default). Enables editing, inserting, and deleting records in the grid.
False: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor True: When a field is selected, it is in Edit state.
False: (Default). A field is not automatically in Edit state when selected.

dgTitles True: (Default). Displays field names across the top of the grid.
False: Field name display is turned off.

dgIndicator True: (Default). The indicator column is displayed at the left of the grid, and
the current record indicator (an arrow at the left of the grid) is activated to
show the current record. On insert, the arrow becomes an asterisk. On edit, the
arrow becomes an I-beam.
False: The indicator column is turned off.

dgColumnResize True: (Default). Columns can be resized by dragging the column rulers in the
title area. Resizing changes the corresponding width of the underlying TField
component.
False: Columns cannot be resized in the grid.

dgColLines True: (Default). Displays vertical dividing lines between columns.
False: Does not display dividing lines between columns.

dgRowLines True: (Default). Displays horizontal dividing lines between records.
False: Does not display dividing lines between records.

dgTabs True: (Default). Enables tabbing between fields in records.
False: Tabbing exits the grid control.

dgRowSelect True: The selection bar spans the entire width of the grid.
False: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection True: (Default). The selection bar in the grid is always visible, even if another
control has focus.
False: The selection bar in the grid is only visible when the grid has focus.

dgConfirmDelete True: (Default). Prompt for confirmation to delete records (Ctrl+Del).
False: Delete records without confirmation.

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 105

In most data controls, edits to a field are posted as soon as you Tab to another control. By
default in TDBGrid, edits and insertions within a field are posted only when you move
to a different record in the grid. Even if you use the mouse to change focus to another
control on a form, the grid does not post changes until you move off the current row.
When a record is posted, Delphi checks all data-aware components associated with the
dataset for a change in status. If there is a problem updating any fields that contain
modified data, Delphi raises an exception, and does not modify the record.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Rearranging column order at run time
At run time, a user can use the mouse to drag a column to a new location in the grid if its
DragMode property is set to dmManual. Dragging a column to a new position in the grid
affects the order of columns in the grid and the dataset. It does not change the order of
columns in the underlying physical table.

To prevent rearrangement of column order, set the DragMode property to dmAutomatic.

Controlling grid drawing
You can control how individual cells in a grid are drawn. The DefaultDrawing property
controls drawing of cells. By default, DefaultDrawing is set to True, meaning that Delphi
uses the grid’s default drawing method to paint cells and the data they contain. Data is
drawn according to the DisplayFormat or EditFormat properties of the TField component
associated with a given column.

If you set a grid’s DefaultDrawing property to False, Delphi does not draw cells or cell
contents in the grid. You must supply your own drawing routine that is keyed to the
OnDrawDataCell event for TDBGrid.

Using events to control grid behavior
You can modify grid behavior by writing events handlers to respond to specific actions
within the grid. Because a grid typically displays many fields and records at once, you
may have very specific needs to respond to changes to individual columns. For
example, you might want to activate and deactivate a button elsewhere on the form
every time a user enters and exits a specific column.

The following table lists TDBGrid events available in the Object Inspector:

Table 4.3 TDBGrid events

Event Purpose

OnColEnter Specify action to take when a user moves into a column on the grid.
OnColExit Specify action to take when a user leaves a column on the grid.
OnDblClick Specify action to take when a user double clicks in the grid.
OnDragDrop Specify action to take when a user drags and drops in the grid.
OnDragOver Specify action to take when a user drags over the grid.

106 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in a
column. Such a handler would use the SelectedField property to determine to current row
and column. For more information about TDBGrid events and properties, see the online
Help reference.

Navigating and manipulating records with TDBNavigator
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons that
enable a user to scroll forward or backward through records one at a time, go to the first
record, go to the last record, insert a new record, update an existing record, post data
changes, cancel data changes, delete a record, and refresh record display.

Figure 4.5 TDBNavigator component

The following table describes the buttons on the navigator:

OnDrawDataCell Customize drawing of grid cells.
OnEndDrag Specify action to take when a user stops dragging on the grid.
OnEnter Specify action to take when the grid gets focus.
OnExit Specify action to take when the grid loses focus.
OnKeyDown Specify action to take when a user presses any key or key combination on the

keyboard when in the grid.
OnKeyPress Specify action to take when a user presses a single alphanumeric key on the keyboard

when in the grid.
OnKeyUp Specify action to take when when a user releases a key when in the grid.

Table 4.4 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.
Prior Calls the dataset’s Prior method to set the current record to the previous record.
Next Calls the dataset’s Next method to set the current record to the next record.
Last Calls the dataset’s Last method to set the current record to the last record.
Insert Calls the dataset’s Insert method to insert a new record before the current record, and set the

dataset in Insert state.

Table 4.3 TDBGrid events (continued)

Event Purpose

First record

Prior record

Next record

Last record

Insert record Delete current record

Edit current record

Post record edits

Refresh records

Cancel record edits

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 107

Hiding and showing navigator buttons
When you first put a TDBNavigator on a form, all its buttons are visible. You can use the
VisibleButtons property to turn off buttons you do not want to use on a form. For
example, on a form that is intended for browsing rather than editing, you might want to
disable the Edit, Insert, Delete, Post, and Cancel buttons.

The VisibleButtons property in the Object Inspector is displayed with a + sign to indicate
that it can be expanded to display a Boolean value for each button on the navigator. To
view and set these values, double-click the VisibleButtons property. The list of buttons
that can be turned on or off appears in the Object Inspector below the VisibleButtons
property. The + sign changes to a – (minus) sign, indicating that you can collapse the list
of properties by double-clicking the VisibleButtons property.

Button visibility is indicated by the Boolean state of the button value. If a value is set to
True, the button appears in the TDBNavigator. If False, the button is removed from the
navigator at design and run times.

Note As button values are set to False, they are removed from the TDBNavigator on the form,
and the remaining buttons are expanded in width to fill the control. You can drag the
control’s handles to resize the buttons.

For more information about buttons and the methods they call, see the online Help
reference.

Displaying fly-by help
By default, the navigator displays fly-by Help Hints whenever you pass the mouse
cursor over the navigator buttons. The ShowHint property of TDBNavigator, set to False
by default, controls this functionality. Set ShowHints to True to display Help Hints.

You can provide your own hint text for a navigator by entering separate strings for each
hint in the Hints property. The strings you enter override the default hints provided by
the navigator control.

Displaying and editing BLOB text with TDBMemo
TDBMemo is a data-aware component—similar to the Standard TMemo component—
that can display binary large object (BLOB) data. TDBMemo displays multi-line text, and

Delete Deletes the current record. If the ConfirmDelete property is True it prompts for confirmation
before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.
Post Writes changes in the current record to the database.
Cancel Cancels edits to the current record, and returns the dataset to Browse state.
Refresh Clears data control display buffers, then refreshes its buffers from the physical table or

query. Useful if the underlying data may have been changed by another application.

Table 4.4 TDBNavigator buttons (continued)

Button Purpose

108 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

permits a user to enter multi-line text as well. For example, you can use TDBMemo
controls to display memo fields from dBASE and Paradox tables and text data contained
in BLOB fields.

Figure 4.6 TDBMemo component

By default, TDBMemo permits a user to edit memo text. To limit the number of
characters users can enter into the database memo, use the MaxLength property. To
make a TDBMemo component read-only, set its ReadOnly property to True.

Several properties affect how the database memo appears and how text is entered. You
can supply scroll bars in the memo with the ScrollBars property. To prevent word wrap,
set the WordWrap property to False. To permit tabs in a memo, set the WantTabs
property to True. The Alignment property determines how the text is aligned within the
control. Possible choices are taLeftJustify (the default), taCenter, and taRightJustify.

At run time, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at run time. To reduce the time it takes scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data should
automatically displayed. If you set AutoDisplay to False, TDBMemo displays the field
name rather than actual data. Double-click inside the control to view the actual data.

Note A TDBMemo control raises an exception if an attempt is made to access fields that
contain more than 32K of data, or if edited data exceeds 32K in length.

Displaying BLOB graphics with TDBImage
TDBImage is a data-aware component that displays bitmapped graphics contained in
BLOB data fields. It captures BLOB graphics images from a dataset, and stores them
internally in the Windows .DIB format.

Figure 4.7 DBImage component

By default, TDBImage permits a user to edit a graphics image by cutting and pasting to
and from the Clipboard, or if you supply an editing method. You can accomplish the
same task programmatically by using the CutToClipboard, CopyToClipboard, and

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 109

PasteFromClipboard methods. To make a TDBImage component read-only, set its
ReadOnly property to True.

Because the TDBImage can display large amounts of data, it can take time to populate
the display at run time. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data should
automatically displayed. If you set AutoDisplay to False, TDBImage displays the field
name rather than actual data. Double-click inside the control to view the actual data.

Using list and combo boxes
There are four data controls that provide data-aware versions of standard list box and
combo box controls. These useful controls provide the user with a set of default data
values to choose from at run time.

Note These components can be linked only to TTable components. They do not work with
TQuery components.

The following table describes these controls:

TDBComboBox
The TDBComboBox component is similar to a TDBEdit component, except that at run
time it has a drop-down list that enables a user to pick from a predefined set of values.
Here is an example of what a TDBComboBox component looks like at run time:

Figure 4.8 DBComboBox component

The Items property of the component specifies the items contained in the drop-down list.
Use the String List Editor to specify the values for the drop-down list.

Table 4.5 Data-aware list box and combo box controls

Data control Description

TDBListBox Displays a list of items from which a user can update a specific column in the
current data record.

TDBComboBox Combines a TDBEdit control with an attached list. The application user can update
a specific column in the current data record by typing a value or by choosing a
value from the drop-down list.

TDBLookupList Displays a list of items from which a user can update a column in the current data
record. The list of items is looked up in a specific column in another dataset.

TDBLookupCombo Combines a TDBEdit control with a dropdown version of TDBLookupList. The
application user can update a field in the current database by typing a value or by
choosing a value from the drop-down list that is looked up in a specific column in
another dataset.

110 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

At run time, the user can choose an item from the list or (depending on the value of the
Style property) type in a different entry. When the component is linked to a column
through its DataField property, it displays the value in the current row, regardless of
whether it appears in the Items list.

The following properties determine how the Items list is displayed at run time:

• Style determines the display style of the component:
• csDropDown (default): Displays a drop-down list with an edit box in which the

user can enter text. All items are strings and have the same height.
• csSimple: Displays the Items list at all times instead of in a drop-down list. All items

are strings and have the same height.
• csDropDownList: Displays a drop-down list and edit box, but the user cannot enter

or change values that are not in the drop-down list at run time.
• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display

values other than strings (for example, bitmaps). For more information, see the
online VCL reference.

• DropDownCount: the maximum number of items displayed in the list. If the number
of Items is greater than DropDownCount, the user can scroll the list. If the number of
Items is less than DropDownCount, the list will be just large enough to display all the
Items.

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If True, then the Items list will be displayed in alphabetical order.

TDBListBox
TDBListBox is functionally the same as TDBComboBox, but instead of a drop-down list, it
displays a scrollable list of available choices. When the user selects a value at run time,
the component is assigned that value. Unlike TDBComboBox, the user cannot type in an
entry that is not in the list.

Here is an example of how a TDBListBox component appears at run time.

Figure 4.9 TDBListBox component

While navigating through a dataset, a TDBListBox component displays values in the
column by highlighting the corresponding entry in its list. If the current row’s value is
not defined in the Items property, no value is highlighted in the TDBListBox. Changing
the selection changes the underlying value in the database column and is equivalent to
typing a value in a TDBEdit component.

The IntegralHeight property controls the way the list box is displayed. If IntegralHeight is
True (the default), the bottom of the list box moves up to the bottom of the last

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 111

completely-displayed item in the list. If IntegralHeight is False, the bottom of the list box
is determined by the ItemHeight property, and the bottom item might not be completely
displayed.

TDBLookupCombo
The TDBLookupCombo component is similar to TDBComboBox, except that it derives its
list of values dynamically from a second dataset at run time, and it can display multiple
columns in its drop-down list. With this control, you can ensure that users enter valid
values into forms by providing an interface from which they can choose values. Here is
an example of how a TDBLookupCombo component appears at run time:

Figure 4.10 TDBLookupCombo component

The lookup list for TDBLookupCombo must be derived from a second dataset. To display
values from a column in the same table as the first dataset, drop a second data source
and dataset component on the form and point them at the same data as the first data
source and dataset.

Three properties establish the lookup list for TDBLookupCombo, and determine how it is
displayed:

• LookupSource specifies a second data source from where the control populates its list.

• LookupField specifies a field in the LookupSource dataset which links that dataset to the
primary dataset. This must be a column in the dataset pointed to by LookupSource,
and it must contain the same values as the column pointed to by the DataField
property (although the column names do not have to match).

• LookupDisplay, if set, defines the columns that TDBLookupCombo displays. If you do
not specify values in LookupDisplay, TDBLookupCombo displays the values found in
the column specified by LookupField. Use this property to display a column other than
that specified by LookupField, or to display multiple columns in the drop-down list. To
specify multiple columns, separate the different column names with a semicolon.

A TDBLookupCombo component appears similar to a TDBComboBox at both design time
and run time, except when you want it to display multiple columns in its lookup list.
How the control displays multiple columns depends on the Options property settings:

• loColLines: When True, uses lines to separate the columns displayed in the lookup list.

• loRowLines: When True, uses lines to separate the rows displayed in the lookup list.

• loTitles: When True, column names appear as titles above the columns displayed in
the lookup list.

112 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

As a simple example, an order entry form could have a TDBLookupCombo component to
specify the customer number of the customer placing the order. The user placing the
order can simply click on the drop down “pick list” instead of having to remember the
customer number. The value displayed could be the customer name.

To build this form,

1 Choose File|New Project to create a new form.

2 Create a TDataSource component onto the form, then set its Name property to
“OrdSource.”

3 Drop a TTable component on the form, and set the Name property to “OrdTable,” the
DatabaseName property to “DBDEMOS,” the TableName property to “ORDERS.DB,”
and the Active property to True.

4 Create a second TDataSource component on the form, then set its Name property to
“CustSource.”

5 Create a second TTable component on the form, and set the Name property to
“CustTable,“ the DatabaseName property to “DBDEMOS,” the TableName property to
“CUSTOMER.DB,” and the Active property to True.

6 Create a TDBGrid component and link it to OrdSource so it displays the contents of
the ORDERS table.

7 Create a TDBLookupCombo component, and set its DataSource property to “CustNo.”
The database lookup combo box is now linked to the CustNo column of the ORDERS
table.

8 Specify the lookup values of the TDBLookupCombo component:
• Set LookupSource to “CustSource” (so it looks up values in the CUSTOMER table).
• Set LookupField to “CustNo” (so it looks up and gets values from the CustNo

column).
• In LookupDisplay, type Company;Addr1 (this displays the corresponding company

name and address in the drop-down list).

9 Set the loColLines and LoTitles properties (under the Option property) of the
TDBLookupCombo to True.

At run time, the TDBLookupCombo component displays a drop-down list of company
names and addresses. If the user selects a new company from the list, the control is
assigned the value of the corresponding customer number (CustNo). When the user
scrolls off the current order in the database grid, Delphi posts the new customer number
and information to the row.

TDBLookupList
TDBLookupList is functionally the same as TDBLookupCombo, but instead of a drop-down
list, it displays a scrollable list of the available choices. When the user selects one at run
time, the component is assigned that value. Like TDBLookupCombo, the user cannot type
in an entry that is not in the list. Here is an example of how a TDBLookupList component
appears at run time:

C h a p t e r 4 , U s i n g D a t a C o n t r o l s 113

Figure 4.11 TDBLookupList component

While navigating through a dataset, a TDBLookupList component highlights the item in
the list that corresponds to the value in the currently selected row. If the current row’s
value is not defined in the Items property, no value is highlighted in the TDBLookupList
component. Changing the selection changes the underlying value in the database
column and is equivalent to typing a value in a TDBEdit component.

TDBCheckBox
TDBCheckBox is a data-aware version of the Standard TCheckBox component. It can be
used to set the values of fields in a dataset. For example, a customer invoice form might
have a check box control that when checked, specifies that the customer is entitled to a
special discount, or when unchecked means that the customer is not entitled to a
discount

Figure 4.12 TDBCheckBox component

Like the other data controls, TDBCheckBox is attached to a specific field in a dataset
through its DataSource and DataField properties. Use the Caption property to display a
label for the check box on your form.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set to
True, but you can make it any alphanumeric value appropriate to your needs. You can
also enter a semicolon-delimited list of items as the value of ValueChecked. If any of the
items matches the contents of that field in the current record, the check box is checked.
For example, you can specify a ValueChecked string like:

DBCheckBox1.ValueChecked := 'True;Yes;On';

If the field for the current record contains values of “True,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is case-insensitive.
If a user checks a box for which there are multiple ValueChecked strings, the first string is
the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if the
control is not checked when the user moves to another record. By default, this value is
set to False, but you can make it any alphanumeric value appropriate to your needs. You
can also enter a semicolon-delimited list of items as the value of ValueUnchecked. If any
of the items matches the contents of that field in the current record, the check box is
unchecked.

If the DataField of the check box is a logical field, the check box is always checked if the
contents of the field is True, and it is unchecked if the contents of the field is False. In this

114 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

case, strings entered in the ValueChecked and ValueUnchecked properties have no effect
on logical fields.

A TDBCheckBox component is grayed out and disabled whenever the field for the
current record does not contain one of the values listed in the ValueChecked or
ValueUnchecked properties.

TDBRadioGroup
TDBRadioGroup is a data-aware version of the standard TRadioGroup component. It lets
you set the value of a data field with a radio button control where there is a limited
number of possible values for the field. The radio group consists of one button for each
value a field can accept.

TDBRadioGroup is attached to a specific field in a dataset through its DataSource and
DataField properties. A radio button for each string value entered in the Items property is
displayed on the form, and the string itself is displayed as a label to the right of the
button.

Figure 4.13 A TDBRadioGroup component

For the current record, if the field associated with a radio group matches one of the
strings in the Items or property, that radio button is selected. For example, if three
strings, “Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current
record contains the value “Blue,” then the third button in the group is selected.

Note If the field does not match any strings in Items, a radio button may still be selected if the
field matches a string in the Values property. If the field for the current record does not
match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated with
buttons in numeric sequence. The first string is associated with the first button , the
second string with the second button, and so on. For example, to continue the example
for the three buttons labeled “Red,” “Yellow,” and “Blue,” if three strings, “Magenta,”
“Yellow,” and “Cyan,” are listed for Values, and the user selects the first button (labeled
“Red”), then Delphi posts “Magenta” to the database.

If strings for Values are not provided, the label from a selected radio button (from Items)
is returned to the database when a record is posted. Users can modify the value of a data
field by clicking the appropriate radio button. When the user scrolls off the current row,
Delphi posts the value indicated by the radio button string to the database.

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 115

C h a p t e r

5
Chapter 5Using SQL in applications

SQL (Structured Query Language) is an industry-standard language for database
operations. Delphi enables your application to use SQL syntax directly through the
TQuery component. Delphi applications can use SQL to access data from:

• Paradox or dBASE tables, using local SQL. The allowable syntax is a sub-set of ANSI-
standard SQL and includes basic SELECT, INSERT, UPDATE, and DELETE
statements. For more information on local SQL syntax, see Appendix C, “Using local
SQL.”

• Databases on the Local InterBase Server. Any statement in InterBase SQL is allowed.
For information on syntax and limitations, see the InterBase Language Reference.

• Databases on remote database servers (Delphi Client/Server only). You must have
installed the appropriate SQL Link. Any standard statement in the server’s SQL is
allowed. For information on SQL syntax and limitations, see your server
documentation.

Delphi also supports heterogeneous queries against more than one server or table type
(for example, data from an Oracle table and a Paradox table). For more information, see
“Creating heterogenous queries” on page 124.

Using TQuery
TQuery is a dataset component, and shares many characteristics with TTable, as
described in Chapter 3, “Using data access components and tools.” In addition, TQuery
enables Delphi applications to issue SQL statements to a database engine (either the
BDE or a server SQL engine).

The SQL statements can be either static or dynamic, that is, they can be set at design time
or include parameters that vary at run time.

116 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

When to use TQuery
For simple database operations, TTable is often sufficient and provides portable
database access through the BDE. However, TQuery provides additional capabilities
that TTable does not. Use TQuery for:

• Multi-table queries (joins).
• Complex queries that require sub-SELECTs.
• Operations that require explicit SQL syntax.

TTable does not use SQL syntax; TQuery uses SQL, which provides powerful relational
capabilities but may increase an application’s overall complexity. Also, use of non-
standard (server-specific) SQL syntax may decrease an application’s portability among
servers; for more information, see Chapter 6, “Building a client/server application.”

How to use TQuery
To access a database, set the DatabaseName property to a defined BDE alias, a directory
path for desktop database files, or a file name for a server database. If the application has
a TDatabase component, DatabaseName can also be set to a local alias that it defines. For
more information, see “Using the TDatabase component” in Chapter 6, “Building a
client/server application.”

To issue SQL statements with a TQuery component:

• Assign the TQuery component’s SQL property the text of the SQL statement. You can
do this:
• At design time, by editing the TQuery’s SQL property in the Object Inspector,

choosing the SQL property, and entering the SQL statements in the String List
Editor dialog box. With Delphi Client/Server, you can also use the Visual Query
Builder to construct SQL syntax.

• At run time, by closing any current query with Close, clearing the SQL property
with Clear, and then specifying the SQL text with the Add method.

• Execute the statement with the TQuery component’s Open or ExecSQL method. Use
Open for SELECT statements. Use ExecSQL for all other SQL statements. The
differences between Open and ExecSQL are discussed in a subsequent section.

• To use a dynamic SQL statement, use the Prepare method, provide parameters and
then call Open or ExecSQL. Prepare is not required, but will improve performance for
dynamic queries executed multiple times.

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 117

The following diagram illustrates the lifetime of a TQuery component and the methods
used to work with it:

Note Prepare applies only to dynamic queries. It is not required, but is recommended in most
cases. For more information, see “Dynamic SQL statements” on page 121.

The SQL property
The SQL property contains the text of the SQL statement to be executed by a Query
component. This property is of type TStrings, which means that it is a series of strings in
a list. The list acts very much as if it were an array, but it is actually a special class with
unique capabilities. For more information on TStrings, see the online VCL reference.

A Query component can execute two kinds of SQL statements:

• Static SQL statements
• Dynamic SQL statements

A static SQL statement is fixed at design time and does not contain any parameters or
variables. For example, this statement is a static SQL statement:

SELECT * FROM CUSTOMER WHERE CUST_NO = 1234

A dynamic SQL statement, also called a parameterized statement, includes parameters for
column or table names. For example, this is a dynamic SQL statement:

SELECT * FROM CUSTOMER WHERE CUST_NO = :Number

The variable Number, indicated by the leading colon, is a parameter which must be
provided at run time and may vary each time the statement is executed.

Creating the query text
You can enter the SQL text for a TQuery at design time by double-clicking on the SQL
property in the Object Inspector, or choosing the ellipsis button. The String List Editor
opens, enabling you to enter an SQL statement.

Fetch Data

Set Parameters

Prepare

Set SQL text

Close Open
ExecSQL

Unprepare

Figure 5.1 TQuery methods and flow

118 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure 5.2 Editing SQL statements in the String List Editor

Choose OK to assign the text you enter to the SQL property of the query. Choose Load
to include text from a file or Save to save the text to a file.

To specify SQL text at run time, an application should first close the query with Close
and clear the SQL property with Clear. For example,

Query1.Close; {This closes the query}
Query1.SQL.Clear; {This clears the contents of the SQL property}

It is always safe to call Close—if the query is already closed, the call will have no effect.
Use the SQL property’s Add method to add the SQL statements to it. For example,

Query1.SQL.Add('SELECT * FROM COUNTRY');
Query1.SQL.Add('WHERE NAME = ''ARGENTINA''');

An application should always call Clear before specifying an SQL statement. Otherwise,
Add will simply append the statements to the existing one.

Note The SQL property may contain only one complete SQL statement at a time. In general,
multiple statements are not allowed. Some servers support multiple statement “batch”
syntax; if the server supports this, then such statements are allowed.

You can also use the LoadFromFile method to assign the text in an SQL script file to the
SQL property. For example,

Query1.SQL.LoadFromFile('C:\MYQUERY.TXT');

Using the Visual Query Builder
Delphi Client/Server includes a Visual Query Builder that enables you to construct SQL
SELECT statements visually. To invoke the Visual Query Builder, right click on a
TQuery component and select Run Visual Query Builder. A dialog box prompts you to
select the database to work with; select the desired database and choose OK. Another
dialog box will prompt you to enter the tables you want to query; select the desired
tables, choosing Add after each, and then choose Close. The Visual Query Builder
window will then become active with the select tables.

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 119

Figure 5.3 Working in the Visual Query Builder

For information on how to use the Visual Query Builder, refer to its online Help. After
you have you constructed a query and exited the Visual Query Builder, the SQL
statement you constructed will be entered in the SQL property of the selected TQuery
component.

Executing a query
At design time, you can execute a query by changing its Active property in the Object
Inspector to True. The results of the query will be displayed in any data controls
connected to the Query component (through a data source).

At run time, an application can execute a query with either the Open or the ExecSQL
methods. Use Open for SQL statements that return a result set (SELECT statements). Use
ExecSQL for all other SQL statements (INSERT, UPDATE, DELETE, and so on). For
example,

Query1.Open; {Returns a result set}

If the SQL statement does not return a cursor and a result set from the database, use
ExecSQL instead of Open. For example,

Query1.ExecSQL; {Does not return a result set}

If you don’t know at design time whether a query will return a result set, use a
try...except block with Open in the try part and ExecSQL in the except part.

The UniDirectional property
Use the UniDirectional property to optimize access to a database table through a TQuery
component. If you set UniDirectional to True, you can iterate through a table more
quickly, but you will only be able to move in a forward direction. UniDirectional is False
by default.

120 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Getting a live result set
A TTable component always returns a live result set to an application. That is, the user
sees the data “live” from the database, and can make changes to it directly through data
controls. A TQuery can return two kinds of result sets:

• “Live” result sets: As with TTable components, users can edit data in the result set
with data controls. The changes are sent to the database when a Post occurs, or when
the user tabs off a control, as described in Chapter 4, “Using Data Controls.”

• “Read only” result sets: Users cannot edit data in the result set with data controls.

By default, a query always returns a read-only result set. To get a live result set, an
application must request it by setting the RequestLive property of TQuery to True.
However, for the BDE to be able to return a live result set, the SELECT syntax of the
query must conform to the guidelines given below. If an application requests a live
result set, but the syntax does not conform to the requirements, the BDE returns a read-
only result set (for local SQL) or an error return code (for passthrough SQL). If a query
returns a live result set, Delphi will set the CanModify property to True.

If an application needs to update the data in a read-only result set, it must use a separate
TQuery to construct an UPDATE statement. By setting the parameters of the update
query based on the data retrieved in the first query, the application can perform the
desired update operation.

Syntax requirements for live result sets
To return a live result set, a query must have RequestLive set to True. The SQL syntax
must conform to that of Local SQL, as described in Appendix C, “Using local SQL.”
Additionally, the syntax must meet the requirements described below.

A query of a Paradox or dBASE table can return a live result set if it:

• Involves only a single table.

• Does not have an ORDER BY clause.

• Does not use aggregates such as SUM or AVG.

• Does not use calculated fields in the SELECT list.

• The WHERE clause may consist only of comparisons of column names to scalar
constants. The comparison operators may be LIKE, >, <, >=, and <=. The clause may
contain any number of such comparisons linked by AND or OR operators.

A query of a server table using passthrough SQL can return a live result set if it:

• Involves a single table.

Table 5.1 Types of query result sets

RequestLive CanModify Type of result set

False False Read-only result set
True—SELECT syntax meets requirements True Live result set
True—SELECT syntax does not meet requirements False Read-only result set

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 121

• Does not have an ORDER BY clause.
• Does not use aggregates such as SUM or AVG.

In addition, if the table is on a Sybase server, it must have a unique index.

Dynamic SQL statements
A dynamic SQL statement (also called a parameterized query) contains parameters that
can vary at run time.

Supplying values to parameters
At design time, you can supply values to parameters with the Parameters Editor. Invoke
the Parameters Editor by selecting a TQuery component, right-clicking the mouse, and
then selecting Parameters Editor. The Parameters Editor opens.

Figure 5.4 Parameters Editor

Select the desired data type for the parameter in the Data Type combo box. Enter a value
in the Value text field or select Null Value to set the parameter’s value to null. When you
click OK, the query will be prepared and values will be bound to the parameters. Then,
when you set the query’s Active property to True, the results of the SQL query with the
specified parameter values will be shown in any data controls connected to the query.

At run time, an application can supply values to parameters with the following TQuery
properties:

• The Params property, using the order that the parameters appear in the SQL
statement.

• The ParamByName method, using the parameter names specified in the SQL
statement.

• The DataSource property to set values from another dataset for columns that match
the names of parameters that have no values.

Preparing a query
The Prepare method sends a parameterized query to the database engine for parsing and
optimization. A call to Prepare is not required to use a parameterized query. However, it
is strongly recommended, since it will improve performance for dynamic queries that

122 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

will be executed more than once. If a query is not explicitly prepared, each time it is
executed, Delphi automatically prepares it.

Prepare is a Boolean property of TQuery that indicates if a query has been prepared. The
Parameters Editor automatically prepares a query when you use it to set parameter
values at design time.

If a query has been executed, an application must call Close before calling Prepare again.
Generally, an application should call Prepare once—for example, in the OnCreate event
of the form—then set parameters using the Params property, and finally call Open or
ExecSQL to execute the query. Each time the query is to be executed with different
parameter values, an application must call Close, set the parameter values, and then
execute the query with Open or ExecSQL.

Preparing a query consumes some database resources, so it is good practice for an
application to unprepare a query once it is done using it. The UnPrepare method
unprepares a query. When you change the text of a query at run time, Delphi
automatically closes and unprepares the query.

Using the Params property
When you enter a query, Delphi creates a Params array for the parameters of a dynamic
SQL statement. Params is a zero-based array of TParam objects with an element for each
parameter in the query; that is, the first parameter is Parms[0], the second Params[1], and
so on.

For example, suppose a TQuery component named Query2 has the following statement
for its SQL property:

INSERT
INTO COUNTRY (NAME, CAPITAL, POPULATION)
VALUES (:Name, :Capital, :Population)

An application could use Params to specify the values of the parameters as follows:

Query2.Params[0].AsString := 'Lichtenstein';
Query2.Params[1].AsString := 'Vaduz';
Query2.Params[2].AsInteger := 420000;

These statements would bind the value “Lichtenstein” to the :Name parameter,
“Vaduz” to the :Capital parameter, and 420000 to the :Population parameter.

Using the ParamByName method
ParamByName is a function that enables an application to assign values to parameters
based on their names. Instead of providing the ordinal location of the parameter, you
must supply its name.

For example, an application could use ParamByName could specify values for the
parameters in the preceding example as follows:

Query2.ParamByName('Name').AsString := 'Lichtenstein';
Query2.ParamByName('Capital').AsString := 'Vaduz';

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 123

Query2.ParamByName('Population').AsInteger := 420000;

These statements would have the same effect as the three previous statements that used
the Params array directly.

Using the DataSource property
For parameters of a query not bound to values at design time, Delphi will check the
query’s DataSource property. This property specifies the name of a TDataSource
component. If DataSource is set, and the unbound parameter names match any column
names in the specified DataSource, Delphi binds the current values of those fields to the
corresponding parameters. This capability enables applications to have linked queries.

The LINKQRY sample application illustrates the use of the DataSource property to link a
query in a master-detail form. The form contains a TQuery component (named Orders)
with the following in its SQL property:

SELECT Orders.CustNo, Orders.OrderNo, Orders.SaleDate
FROM Orders
WHERE Orders.CustNo = :CustNo

As illustrated below, the form also contains:

• ATDataSource named OrdersSource, linked to Orders by its DataSet property.
• ATTable component (named Cust).
• ATDataSource named CustSource linked to Cust.
• Two data grids; one linked to CustSource and the other to OrdersSource.

Orders’ DataSource property is set to CustSource. Because the parameter :CustNo does
not have any value assigned to it, at run time Delphi will try to match it with a column
name in CustSource, which gets its data from the Customer table through Cust. Because
there is a CustNo column in Cust, the current value of CustNo in the Cust table is
assigned to the parameter, and the two data grids are linked in a master-detail
relationship. Each time the Cust table moves to a different row, the Orders query
automatically re-executes to retrieve all the orders for the current customer.

Figure 5.5 Form with linked queries

124 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Dynamic SQL example
Here’s a simple form that uses a dynamic query and provides substitution parameters
programmatically:

• Start a new project and place the required controls on the form. For this example,
place an edit control, Edit1, a button, Button1, and a data-aware grid control,
DBGrid1, on the form. Now create a TQuery component, Query1, and a data source,
DataSource1, and set the DataSource property of DBGrid1 to “DataSource1” and the
Dataset property of DataSource1 to “Query1.”

Set the DatabaseName property of Query1 to DBDEMOS. Double-click on its SQL
property in the Object Inspector and enter the following SQL statement. Remember
to precede the substitution parameter with a colon:

SELECT * FROM country WHERE name LIKE :CountryName

• Prepare the query in the OnCreate event of the form:

procedure TForm1.FormCreate(Sender: TObject);
begin

Query1.Prepare;
end;

• Provide parameters in response to some event. In this example, double-click on
Button1 to edit the OnClick event and use the contents of Edit1.Text as a substitution
parameter:

procedure TForm1.Button1Click(Sender: TObject);
begin

Query1.Close;
Query1.Params[0].AsString := Edit1.Text;
Query1.Open;

end;

Creating heterogenous queries
Some applications may require queries of tables in more than one database. Such
queries are called heterogenous queries, and are not supported by standard SQL. A
heterogenous query may join tables on different servers, and even different types of
servers. For example, a heterogeneous query might involve a table in a Oracle database,
a table in a Sybase database, and a local dBASE table.

Delphi supports heterogeneous queries, as long as the query syntax conforms to the
requirements of local SQL, as described in Appendix C, “Using local SQL.”

To perform a heterogeneous query, you must define a BDE standard alias that
references a local directory, and use the alias for the DatabaseName of the query
component. You must also define BDE aliases for each of the databases being queried.
In the query text, precede each table name with the alias for its database.

C h a p t e r 5 , U s i n g S Q L i n a p p l i c a t i o n s 125

You can define BDE aliases with the BDE Configuration Utility, described in
Appendix B, “Using the BDE configuration utility.” For example, suppose you define an
alias called Oracle1 for an Oracle database that has a CUSTOMER table, and Sybase1 for a
Sybase database that has an ORDERS table. A simple query against these two tables
would be

SELECT CUSTOMER.CUSTNO, ORDERS. ORDERNO
FROM :Oracle1:CUSTOMER, :Sybase1:ORDERS

126 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 127

C h a p t e r

6
Chapter 6Building a client/server application

Delphi Client/Server enables you to develop applications that can access remote SQL
servers such as Oracle, Sybase, Informix, and InterBase, as well as local Paradox and
dBASE databases. A remote server is one that is physically removed from the client
machine on which the Delphi application runs. The server and client must be connected
by a network. Delphi also includes the Local InterBase Server, a full-featured SQL server
that runs on Microsoft Windows.

There are a number of issues that are particularly important when developing a client/
server application:

Portability versus optimization: Will the application use any server-specific SQL
syntax? To what degree will the database be optimized for a particular server?

Transactions: What kind of transaction control will the application require?

Server features: Will the application require the use of server features such as stored
procedures? How will these be surfaced?

Connectivity: What communication protocol will the application use? Does the
application need to be deployed to support multiple communication protocols?

Deployment: What executables, libraries, and other files does the application require
and how are these delivered to the end user?

Portability versus optimization
In a client/server system, the database running on the server and the application
running on the client define the overall system, referred to as the database/application.
While these two elements are often designed separately and considered distinct, they
must be integrated to build a successful client/server application. One of the important
considerations is portability versus optimization.

128 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Portability refers to the ease with which an database/application can run on different
servers. Optimization refers to the extent to which an application takes advantage of the
special features of a particular system.

Client portability is not an issue with Delphi, because Delphi applications will run on
any 16-bit or 32-bit Windows platform. However, server portability and
communications portability can be considerations.

Because Delphi applications use the Borland Database Engine, they can be easily
integrated with dBASE and Paradox applications (for desktop data sources) and other
clients for server data sources.

Server portability
It may be desirable to design an application so that it can be easily ported to different
types of servers, either because the end-users require multiple heterogeneous server
support, or because the application will be used by different groups of end-users with
different types of servers. In designing a client-server application, there is an inherent
trade-off between portability and optimization, because making use of server-specific
features results in increased application performance but decreased portability.

A Delphi application that uses only TTable components for data access will be fully
portable among different server types. An application may benefit from improved
performance by using TQuery components and passthrough SQL, and as long as the
SQL syntax is ANSI standard, there will be little loss of portability.

As soon as SQL syntax departs from the ANSI standard, the application will no longer
be fully portable. If server portability is a consideration, you must carefully weigh
whether the gain in using server-specific syntax is worth the cost in portability.
Maintainability of an application may be reduced by optimization for a specific server
type, because each server-specific implementation may require separate maintenance.

An application can be further optimized by using server-specific features such as stored
procedures. However, this will usually require server-specific implementation in the
database, and perhaps the application, depending on how the features are surfaced.

It is also important to consider that servers’ transaction processing may differ in subtle
yet important ways. This and other distinctions among SQL servers may complicate
portability. Before attempting to create a portable database/application, you should
build an application that runs reliably against one type of server database. In some
cases, it may be necessary to build the application separately against each of the target
server types.

Client/server communication portability
Depending on the application requirements, it may be necessary to support multiple
communication protocols, such as TCP/IP and Novell SPX. Providing for multiple
communication protocols is simply a matter of ensuring that the client platforms have
the proper communication software installed. This portability issue does not typically
surface until the deployment phase, but it should be addressed in the implementation

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 129

phase to ensure that the initial test deployment packages include the proper client
communication software.

Using the Local InterBase Server
The Local InterBase Server (LIBS) is a version of the Borland InterBase server that runs
on Windows 3.1. It provides all of the features of a SQL server for local, single-user
operation. For more information on the Local Interbase Server, see the Local InterBase
Server User’s Guide. The Local Interbase Server can be used in primarily two ways for
client/server development:

• As a local environment for developing a client/server application, regardless of the
server to be used.

• As an intermediate step in upsizing, between the desktop and server, providing a
local SQL engine for development of SQL-specific features. For more information on
upsizing, see “Upsizing” on page 140.

• As a local database engine for deployment of standalone desktop SQL applications.

Building an application to access any server
If you are developing a client/server application, you can use the Local InterBase Server
for local development, even if the production database will run on some other server
type.

If the production database already exists on a database server, you can use the Local
InterBase Server as follows:

• Use your server’s tools to create an SQL data definition script for the database.
Remove any non-standard SQL syntax that will not work with InterBase. Generally,
this means removing stored procedure definitions and other advanced features and
mapping data types to InterBase data types.

• Use Windows ISQL to create a local InterBase database then execute the SQL script to
define the database. For information on using Windows ISQL, see the Local InterBase
Server User’s Guide.

• Populate the database with representative data using the techniques described in
“Upsizing.”

• Create a Delphi database application that uses the Local InterBase Server database as
a data source.

• Once the application has been sufficiently tested against the development database,
change the TDataSource to use an alias that points to the target server. It is
recommended to first test the application against a duplicate of the production
database to surface server-specific features such as stored procedures.

If the production database does not already exist, you can first define a prototype
database on the LIBS, and develop the application locally. Simultaneously, you can

130 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

define a congruent database on the target server. Finally, you can redirect the
application to access the database on the target server.

Building an application to access InterBase
To build an application that accesses a production database that already exists on an
InterBase workgroup server, follow this procedure:

• Use the InterBase database backup utility to create a backup of the database, using
the “Backup Metadata Only” option. This will save the structure of the database, but
not the data (which may be huge). For information on how to do this, see the Local
InterBase Server User’s Guide.

• Restore the database to the Local InterBase Server. This will be the development
platform.

• Populate the database with a modest amount of representative data. Your application
will access this data during the development and testing process. Because it is
“dummy” data that is not connected to the production database, there is no chance
that the production database will be corrupted. Your application can access any
server features present in the production database, including stored procedures.

• Once the application has been sufficiently tested against the development database,
change the TDataSource to use an alias that refers to the production server. It is
recommended to first test the application against a duplicate of the production
database on the server.

Using InterBase in upsizing
One upsizing path is to use the Local Interbase Server (LIBS) as an intermediate data
source. This enables you to address all the SQL development issues separately from
connectivity and client/server issues. The steps include

• Defining the database on the Local InterBase Server, using the techniques described
in “Upsizing” on page 140.

• Developing the application against the LIBS database.

• Migrating the LIBS database to the target server.

• Redirecting the application to access the target server.

Connecting to a database server
Borland SQL Links for Windows enables a Delphi application to connect through the
BDE to a remote database server. SQL Links drivers provide connections to Oracle,
Sybase, Informix, Microsoft SQL Server, and InterBase.

Through the BDE Configuration Utility, you can set up an alias for each data source to
which your application needs to connect. These aliases then become available to choose
as the value of the DatabaseName property of TTable and TQuery components. For more

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 131

information on the BDE Configuration Utility, see Appendix B, “Using the BDE
configuration utility.”

Connectivity
Delphi client applications can use any network protocol (such as TCP/IP or Novell
SPX/IPX) supported by the server, as long as both the server and the client machines
have the proper communication software installed. You must configure the SQL Link
driver for the desired protocol. For more information, see the SQL Links for Windows
User’s Guide.

Establishing an initial connection between client and server can often be problematic,
especially when using TCP/IP, because there are a number of critical factors that must
all be in place before a connection can be established.

Using TCP/IP
TCP/IP is a widely-used communication protocol that enables applications to connect
to many different database servers. When using TCP/IP, you must ensure:

• The TCP/IP communication software and the proper Winsock driver are installed on
the client.

• The server’s IP address is registered in the client’s HOSTS file or that Directory
Network Services (DNS) is properly configured.

• The server’s port number is entered in the client’s SERVICES file.

• The application is searching the proper directory paths for the DLLs it needs. Check
the PATH statement in AUTOEXEC.BAT.

For more information, see the SQL Links for Windows User’s Guide and your server
documentation.

Connection parameters
The Params property of a connected TDatabase object contains a TString list of all the SQL
Link parameters required to connect to a server of the specified type. You can edit these
parameters by clicking on the ellipsis button to the right of the Params property in the
Object Inspector. The String List Editor opens with the parameters For example, here are
the parameters for connection to an InterBase server:

132 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure 6.1 InterBase parameters in the String List Editor

You can modify these parameters and add others as needed to customize the connection
performed by the application. For more information, see the SQL Links for Windows
User’s Guide.

Using ODBC
A Delphi application can access ODBC data sources such as DB2, Btrieve, or Microsoft
Access through the Borland Database Engine (BDE). To do this, you must set up an
ODBC driver connection using the BDE Configuration Utility. An ODBC driver
connection requires:

• A vendor-supplied ODBC driver.
• The Microsoft ODBC Driver Manager.
• A BDE alias, established with the BDE Configuration Utility or with Delphi.

The BDE configuration setting AUTO ODBC (on the System page) enables an alias to
automatically configure for use of ODBC. When AUTO ODBC is True, datasource and
driver information will automatically be imported from the ODBC.INI file.

For more information, see the online help for the BDE Configuration Utility.

Handling server security
Most database servers include security features to limit database access. Generally, the
server will require a user name and password login before a user can access a database.
If a server requires a login, then Delphi will prompt you at design time when you
attempt to connect to a database on the server (for example, when you specify a
TableName for a TTable component).

By default, a Delphi application opens the standard Login dialog box, whenever an
application opens a connection to a database server. If a connection has already been
established, the Login dialog box does not appear.

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 133

Figure 6.2 Database Login dialog box

A Delphi application can handle server login several different ways:

• If the LoginPrompt property of a TDatabase component is True (the default), the
standard Delphi Login dialog box will be opened when the application attempts to
establish a database connection.

• By setting LoginPrompt to False, and including the USERNAME and PASSWORD
parameters in the Params property of the TDatabase component. For example,

USERNAME = SYSDBA
PASSWORD = masterkey

This is generally not recommended since it compromises server security.

• Use the OnLogin event of TDatabase to set login parameters. The OnLogin event gets a
copy of the TDatabase's login parameters array. Use the Values property to change
these parameters:

LoginParams.Values['SERVER NAME'] := 'MYSERVERNAME';
LoginParams.Values['USER NAME'] := 'MYUSERNAME';
LoginParams.Values['PASSWORD'] := 'MYPASSWORD';

When control returns from your DatabaseLogin event handler, these parameters will
be used to establish a connection.

Using the TDatabase component
The TDatabase component is not required for database access, but it provides additional
control over factors that are important for client/server applications, including the
ability to:

• Create a persistent database connection.
• Customize database server logins.
• Create BDE aliases local to an application.
• Control transactions and specify transaction isolation level.

The DataSets property of TDatabase is an array of pointers to the active datasets in the
TDatabase. The DatasetsCount property is an integer that specifies the number of active
datasets.

134 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The Connected property
The Connected property of a TDatabase component specifies whether an application
remains connected to a database server even when no tables are open. If an application
will be opening and closing several tables in a single database, it will be more efficient to
set the Database object’s Connected property to True. That way, the application will
remain connected to the database even if it does not have any tables open. It can then
open and close tables repeatedly without incurring the overhead of connecting to the
database each time.

A TDatabase object’s Connected property can be overridden by the application-global
TSession object. This object has a Boolean KeepConnections property that specifies
whether to maintain database connections even if no tables are open. If KeepConnections
is False, a TDatabase object’s Connected property determines if connections are
maintained when no TTables or TQueries are open. If KeepConnections is True (the
default), database connections are always maintained. Specifically,

• Database connections will be maintained until the application exits or until the
Session’s DropConnections method is called .

• Setting a TDatabase object’s Connected property to False will have no effect.

Creating application-specific aliases
The TDatabase object enables you to create BDE aliases specific to an application. To
name the alias, enter a name in the DatabaseName property. Any dataset components can
then use the local alias by using the specified DatabaseName.

To customize the parameters for a local alias, double-click on the TDatabase component.
The Database Properties Editor opens:

Figure 6.3 Database Properties Editor

This tool enables you to customize application-specific aliases local based on existing
aliases.

The three text fields at the top of the dialog box correspond to the DatabaseName,
AliasName, and DriverName properties.

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 135

• DatabaseName is the name of the database connection that can be used by dataset
components instead of a BDE alias, directory path, or database name. In other words,
this is the name of the local alias defined by the component that will show up in the
DatabaseName drop-down list of dataset components.

• AliasName is the name of an existing BDE alias configured with the BDE
Configuration Utility. This is where the component gets its default parameter
settings. This property will be cleared if DriverName is set.

• DriverName is the name of a BDE driver, such as STANDARD (for dBASE and
Paradox), ORACLE, SYBASE, INFORMIX or INTERBASE. This property will be
cleared if AliasName is set, because an AliasName specifies a driver type.

Choose the Defaults button to retrieve the default parameters for the selected alias. The
values will be displayed in the Parameters list box. Any changes you make to the
defaults are used instead of the default values for any database connection in the
application that uses that DatabaseName.

The check boxes labeled “Loginprompt” and “Keep inactive connection” correspond to
the LoginPrompt and KeepConnections properties of the TDatabase component.

Understanding transaction control
SQL database servers handle requests in logical units of work called transactions. A
transaction is a group of SQL statements that must all be performed successfully before
the server will finalize (or commit) changes to the database. Either all the statements will
succeed, or all will fail.

Transaction processing ensures database consistency even if there are hardware failures,
and maintains the integrity of data while allowing concurrent multiuser access. For
example, an application might update the ORDERS table to indicate that an order for a
certain item was taken, and then update the INVENTORY table to reflect the reduction
in inventory available. If there were a hardware failure after the first update but before
the second, the database would be in an inconsistent state, since the inventory would
not reflect the order entered. Under transaction control, both statements would be
committed at the same time. Transaction control becomes even more important in a
multiuser application.

In SQL, transactions are explicitly ended with a command to either accept or discard the
actions performed. The COMMIT statement permanently commits the transaction,
making changes visible to all users. The ROLLBACK statement undoes all changes
made to the database in the transaction. Different database servers implement
transaction processing differently. For the specifics of how your server handles
transaction processing, refer to your server documentation.

Handling transactions in applications
Delphi applications can control transactions:

• Implicitly: Delphi will automatically start and commit transactions as needed when
an application calls the Post method (explicitly or implicitly in another method).

136 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

• Explicitly: depending on the level of control the application requires, either with
• The StartTransaction, Commit, and Rollback methods of TDatabase. This is the

recommended approach.
• Passthrough SQL in a TQuery component. The application must use server-

specific SQL transaction control statements. You must understand how your
server performs transaction handling.

Transaction control statements are only meaningful when the database is on an SQL
server. The StartTrans, Commit, and Rollback methods will raise an exception if the
underlying database is Paradox or dBASE.

Implicit transaction control
Delphi applications that use only the built-in methods can rely on implicit transaction
control. Any Delphi operations on a server database that are not under explicit
transaction control will be under implicit control. Delphi will commit each individual
write operation (Post, AppendRecord, and so on) as a separate transaction, so it will
commit database changes on a row-by-row basis. This minimizes update conflicts, but
can lead to heavy network traffic.

When using implicit transaction control, keep the SQLPASSTHRUMODE setting at
SHARED AUTOCOMMIT, the default. For more information, see “Setting the SQL
passthrough mode.”

Implicit transaction control happens automatically, but does not provide much
flexibility. If an application needs multi-row transactions or passthrough SQL, then it
should use explicit transaction control.

Explicit transaction control
The recommended approach for transaction control is to use the methods of TDatabase,
because this will result in clearer code and a more portable application. The methods for
transaction control are

• StartTransaction: Begins a transaction at the isolation level specified by the
TransIsolation property of TDatabase. If a transaction is currently active, Delphi will
raise an exception.

• Commit: Commits the currently active transaction on the database. If no transaction is
active, Delphi will raise an exception.

• Rollback: Rolls back the currently active transaction. All changes to the database since
the last Commit will be undone.

Some applications may require additional server-specific transaction control features. In
this case, use a TQuery component with passthrough SQL statements for transaction
control. Ensure that SQLPASSTHRUMODE is set to NOT SHARED so that the
passthrough SQL does not affect other transactions.

Setting the SQL passthrough mode
SQLPASSTHRUMODE in the BDE Configuration utility determines if passthrough SQL
and standard BDE calls share the same database connection. For transactions, this

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 137

translates to whether passthrough transactions and other transactions “know” about
each other. Only applications that use passthrough SQL need be concerned with
SQLPASSTHRUMODE.

SQLPASSTHRUMODE can have the following settings:

• SHARED AUTOCOMMIT (the default)
• SHARED NOAUTOCOMMIT
• NOT SHARED

With SHARED AUTOCOMMIT, each operation on a single row is committed. This
mode most closely approximates desktop database behavior, but is inefficient on SQL
servers because it starts and commits a new transaction for each row, resulting in a
heavy load of network traffic.

With SHARED NOAUTOCOMMIT, the application must explicitly start and commit
transactions. This setting can result in conflicts in busy, multiuser environments where
many users are updating the same rows.

NOT SHARED means that passthrough SQL and Delphi methods use separate database
connections.

Note To control transactions with passthrough SQL, you must set SQLPASSTHRU MODE to
NOT SHARED. Otherwise, passthrough SQL and Delphi’s methods may interfere with
each other, leading to unpredictable results.

Transaction isolation levels
A transaction’s isolation level determines how it interacts with other simultaneous
transactions accessing the same tables. In particular, the isolation level affects what a
transaction reads from the tables being accessed by other transactions.

Some servers enable you to set the transaction isolation level explicitly in passthrough
SQL. If not specified, passthrough SQL operations will use a server’s default isolation
level. For more information, see your server documentation.

Transactions (both explicit and implicit) using Delphi’s built-in methods will use the
TransIsolation property of TDatabase to specify transaction isolation level. TransIsolation
can have the following values:

• tiDirtyRead: The transaction can read uncommitted changes to the database by other
transactions. This is the lowest isolation level.

• tiReadCommitted: The transaction can read only committed changes to the database by
other transactions. This is the default isolation level.

• tiRepeatableRead: The transaction cannot read other transactions’ changes to
previously read data. This guarantees that once a transaction reads a records, it will
not change if it reads it again. This the highest isolation level.

Database servers may support these isolation levels differently or not at all. If the
requested isolation level is not supported by the server, then Delphi will use the next
highest isolation level. The actual isolation level used by each type of server is shown in

138 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Table 6.1, “Server transaction isolation levels.” For a detailed description of how each
isolation level is implemented, see your server documentation.

If an application is using ODBC to interface with a server, the ODBC driver must also
support the isolation level. For more information, see your ODBC driver
documentation.

Using stored procedures
A stored procedure is a server-based program that can take input parameters and return
output parameters to an application. Stored procedures are associated with a database,
and are actually part of metadata, like tables or domains. The TStoredProc component
enables Delphi applications to execute server stored procedures.

The DatabaseName property of TStoredProc specifies the database in which the stored
procedure is defined. This property is the same as for TTable and TQuery--it can be a
BDE alias or an explicit directory path and database name. The StoredProcName specifies
the name of the stored procedure. A drop-down list will display a list of all procedures
defined in the specified database.

A TStoredProc can return either a singleton result or a result set with a cursor, if the
server supports it.

Note InterBase “select” procedures are called with the SELECT statement as if querying a
table. To get output from such procedures, use a TQuery component with the
appropriate SELECT syntax.

Input and output parameters
A stored procedure has a Params array for its input and output parameters similar to a
TQuery component. The order of the parameters in the Params array is determined by
the stored procedure definition. An application can set the values of input parameters
and get the values of output parameters in the array similar to TQuery parameters. You
can also use ParamByName to access the parameters by name. If you are not sure of the
ordering of the input and output parameters for a stored procedure, use the Parameters
Editor.

To invoke the Parameters Editor, select the TStoredProc component and then right-click
the mouse. The following dialog box opens:

Table 6.1 Server transaction isolation levels

TransIsolation
setting Oracle

Sybase and
Microsoft SQL
servers Informix InterBase

Dirty read Read committed Read committed Dirty Read Read committed
Read committed
(Default)

Read committed Read committed Read committed Read committed

Repeatable read Repeatable read
(READ ONLY)

Read committed Repeatable Read Repeatable Read

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 139

Figure 6.4 TStoredProc Parameters Editor

The Parameters Editor displays the input and output parameters for the procedure. To
prepare the stored procedure with the default parameter types and field types, simply
choose OK. You can set values of input parameters at design time by choosing the
parameter in the Parameters list and entering a value in the Value field. To specify null
input parameter values, select the Null value check box. The Parameters Editor is
explained in more detail in Chapter 5, “Using SQL in applications.”

Note Delphi will attempt to get information on input and output parameters from the server.
For some servers (such as Sybase), this information may not be accessible. In such cases,
you must enter the names and data types of the input and output parameters in the
Parameters Editor at design time.

Executing a stored procedure
Before an application can execute a stored procedure, you must prepare the stored
procedure, which can be done:

• At design time with the Parameters Editor.
• At run time with the Prepare method of TStoredProc.

To prepare a stored procedure at run time, use the Prepare method, before executing it.
For example,

StoredProc1.Prepare;

To execute a prepared stored procedure, use the ExecProc method. Values can be
assigned to and from a TStoredProc component just as for TQuery components, by using
the Params array. For example, the following code could be in a button’s OnClick event:

StoredProc1.Params[0].AsString := Edit1.Text;
StoredProc1.ExecProc;
Edit2.Text := StoredProc1.Params[1].AsString;

The first parameter, Params[0], is an input parameter of type String. It is assigned the
text entered by the user in Edit1. Then, assuming StoredProc1 has been prepared at
design time with the Parameters Editor, the stored procedure is run with ExecProc.
Finally, the output parameter, Params[1], is displayed by Edit2.

On some servers, stored procedures can return a result set similar to a query.
Applications can use data aware controls to display the output of such stored
procedures. You do this in the same way as you display output from TQuery

140 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

components: create a TDataSource component and assign its name to a data grid’s
DataSource property.

Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; that is, different procedures with
the same name. The Overload property enables an application to specify the procedure to
execute. If Overload is zero (the default), there is assumed to be no overloading. If
Overload is one (1), then Delphi will execute the first stored procedure with the
overloaded name; if it is two (2), it will execute the second, and so on.

Upsizing
Migrating a desktop application to a client/server application is called upsizing.
Upsizing is a complex topic and a full treatment of it is beyond the scope of this book.
However, this section will address some of the most important aspects of upsizing a
Delphi application.

Upsizing has two major facets:

• Upsizing the database from the desktop to the server
• Upsizing the application to address client/server considerations

Upsizing requires a shift in perspective from the desktop world to the client/server
world. Desktop databases and SQL server databases are different in many respects.
Desktop databases are designed for one user at a time, while servers are designed for
multiuser access. Desktop databases are conceptually record-oriented, while server
databases are conceptually set-oriented. Desktop databases typically store each table in
a separate file, while servers store all the tables in a database together.

Client/server applications must also address some entirely new issues, the most
complex of which are connectivity, network usage, and transaction handling.

Upsizing the database
Upsizing a database includes the following steps:

• Defining metadata on the server, based on the existing desktop database structure.
• Migrating the data from the desktop to the server.
• Addressing issues such as:

• Data type differences
• Data Security and Integrity
• Transaction control
• Data Access Rights
• Data Validation
• Locking

Delphi provides two ways to upsize a database:

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 141

• Use the Database Desktop utility and choose Tools|Utilities|Copy to copy a table
from desktop table to SQL format. For more information, see Appendix A, “Using
Database Desktop.”

• Build a Delphi application that uses a TBatchMove component. For more information
on TBatchMove, see Chapter 3, “Using data access components and tools.”

Both of these options will copy table structures and migrate data from the desktop
source to the server destination. Depending on the database, it may be necessary to
make changes to the tables created by these methods. For example, the datatype
mappings may not be exactly as desired.

Additionally, you must add to the database any of the following features if required:

• Integrity constraints (primary and foreign keys)
• Indexes
• Check constraints
• Stored procedures and triggers
• Other server-specific features

Depending on the database, it may be most efficient to define the metadata first by using
an SQL script and the server’s data definition tools and then migrate the data using one
of the two methods previously mentioned. If you define the table structure manually,
then Database Desktop and TBatchMove will copy only the data.

Upsizing the application
In principle, a Delphi application designed to access local data can access data on a
remote server with few changes to the application itself. If a congruent data source has
been defined on an SQL server, you can re-direct the application to access it rather than
the local data source, simply by changing the DatabaseName property of TTable or
TQuery components in the application.

In practice, however, there are a number of important differences between accessing
local and remote data sources. Client/server applications must also address a number
of issues that are not relevant to desktop applications.

Any Delphi application can use either TTable or TQuery for data access. Desktop
applications will generally use the TTable component. When upsizing to a SQL server, it
may be more efficient to use TQuery objects instead in some instances. Depending on the
specific application, TQuery may be preferable if the application will be retrieving a
large number of records from database tables.

If the application uses mathematical or aggregate functions, it may be more efficient to
perform these functions on the server with stored procedures. The use of stored
procedures may be faster because servers are typically more powerful. This also reduces
the amount of network traffic required, particularly for functions that process a large
number of rows.

For example, an application might need to compute the standard deviation of values of
a large number of records. If this function were performed on the client, all the values
would have to be retrieved from the server to the client, resulting in a lot of network
traffic. If the function were performed by a stored procedure, all the computation would

142 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

be performed on the server, so the application would only retrieve the answer from the
server.

Deploying support for remote server access
Deployment of general database application is discussed in Chapter 1, “Introduction.”
In addition to the files required to deploy a desktop database application, deployment
of a client/server application requires installation of the appropriate Borland SQL Links.
These are not part of the Borland Database Engine, and must be installed separately.
They are redistributable, according to the terms of the license agreement.

Note For more information on deploying Delphi applications, refer to the file DEPLOY.TXT,
installed to the DELPHI\DOC directory by default.

Each server type has a set of files for the SQL Link. In addition, a file used by all the SQL
Links is BLROM800.LD, the Roman8 language driver using binary collation sequence.

Oracle
The following files provide the SQL Links interface with Oracle servers. In addition,
applications will require Oracle client files for interface to low-level communication
protocols such as TCP/IP. Refer to your server documentation.

Sybase and Microsoft SQL servers
The following files provide the SQL Links interface with Sybase servers. In addition,
applications will require Sybase client files for interface to low-level communication
protocols such as TCP/IP. Refer to your server documentation.

Table 6.2 Oracle SQL Link files

File name Description

SQLD_ORA.DLL Borland SQL Link Oracle Driver
SQLD_ORA.HLP Online help file
SQL_ORA.CNF BDE Configuration File for Oracle Driver
ORA6WIN.DLL Oracle Version 6.x client-side DLL
ORA7WIN.DLL Oracle Version 7.x client-side DLL
SQL13WIN.DLL Oracle client-side DLL
SQLWIN.DLL Oracle client-side DLL
COREWIN.DLL Oracle client-side DLL
ORAWE850.LD Language driver based on DOS code page 850

Table 6.3 Sybase SQL Link files

File name Description

SQLD_SS.DLL Borland SQL Link Sybase Driver
SQLD_SS.HLP Borland SQL Link Sybase Driver Help
SQL_SS.CNF BDE Configuration File for Sybase Driver

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 143

Informix
The following files provide the SQL Links interface with Informix servers. In addition,
applications will require Informix client files for interface to low-level communication
protocols such as TCP/IP. Refer to your server documentation.

InterBase
The following files provide the SQL Links interface to remote InterBase servers. These
files are distinct from those required to access the Local InterBase Server..

W3DBLIB.DLL Sybase/Microsoft SQL Server client-side DLL
DBNMP3.DLL Sybase/Microsoft SQL Server client-side DLL for Named Pipes
SYDC437.LD Language driver based on DOS code page 850
SYDC850.LD Language driver based on DOS code page 437

Table 6.4 Informix SQL Link files

File name Description

SQLD_INF.DLL Borland SQL Link Informix Driver
SQLD_INF.HLP Online help file
SQL_INF.CNF BDE Configuration File for Informix Driver
LDLLSQLW.DLL Informix client-side DLL
ISAM.IEM Informix error message file
OS.IEM Informix error message file
RDS.IEM Informix error message file
SECURITY.IEM Informix error message file
SQL.IEM Informix error message file

Table 6.5 InterBase SQL Link files

File name Description

SQLD_IB.DLL Borland SQL Link InterBase Driver
SQLD_IB.HLP Borland SQL Link InterBase Driver Help
SQL_IB.CNF BDE Configuration File for InterBase Driver
CONNECT.EXE InterBase connection diagnostic tool
CONNECT.HLP InterBase Windows connection diagnostic help file
GDS.DLL InterBase API DLL
REMOTE.DLL InterBase Networking interface DLL
INTERBAS.MSG InterBase error message file

Table 6.3 Sybase SQL Link files (continued)

File name Description

144 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

TCP/IP Interface
The following files provide InterBase client applications their interface to Winsock 1.1
compliant TCP/IP products.

For TCP/IP products that are not Winsock 1.1 compliant, InterBase client applications
will require one of the following files. During installation, Delphi will prompt you to
select the TCP/IP stack for which to install support. If the deployed application needs to
support a different TCP/IP stack, you must copy the corresponding file from the
installation disks.

Other communication protocols
The InterBase workgroup server for NetWare supports Novell SPX/IPX protocol. Two
client files are required: NWIPXSPX.DLL and NWCALLS.DLL.

The InterBase Workgroup Server for Windows NT supports Microsoft Named Pipes
protocol. No additional client files are required to support Named Pipes, but the client
machine must have Microsoft LAN Manager or Windows for Workgroups 3.1.1
installed.

Table 6.6 Winsock 1.1 client files

File name Description

MVWASYNC.EXE Asynchronous communication module
VSL.INI TCP/IP transport initialization file
WINSOCK.DLL Windows Socket DLL
MSOCKLIB.DLL Maps Windows socket calls to VSL driver

Table 6.7 Non-Winsock compliant TCP support files

File name TCP/IP Product

M3OPEN.EXE 3Com 3+Open TCP
Microsoft LAN Manager
Digital Pathworks for DOS

M3OPEN.DLL 3Com 3+Open TCP Version 2.0
MBW.EXE Beame & Whiteside TCP/IP
MFTP.EXE FTP PC/TCP
MHPARPA.DLL HP ARPA Service for DOS
MNETONE.EXE Ungermann-Bass Net/One
MNOVLWP.DLL Novell LAN WorkPlace for DOS
MPATHWAY.DLL Wollongong Pathway Access for DOS
MPCNFS.EXE Sun PC NFS
MPCNFS2.EXE Sun PC NFS v3.5
MPCNFS4.DLL Sun PC NFS v4.0
MWINTCP.EXE Wollongong WIN TCP\IP for DOS

C h a p t e r 6 , B u i l d i n g a c l i e n t / s e r v e r a p p l i c a t i o n 145

Deploying ReportSmith support
To deploy an application that uses a TReport, you must include the .RPT files and
ReportSmith Runtime in your deployment package. By default, Delphi installs the files
required for ReportSmith Runtime in the RS_RUN directory. These files require two to
three megabytes of disk space. For more information about running reports, see Creating
Reports.

Note For more information on deploying ReportSmith reports, refer to the file DEPLOY.TXT,
installed to the DELPHI\DOC directory by default.

146 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 147

A p p e n d i x

A
Appendix AUsing Database Desktop

This appendix describes Database Desktop and provides a synopsis of Database
Desktop features. The complete Database Desktop User’s Guide is available on the
Delphi CD-ROM, and all features are described in Database Desktop Help.

What is Database Desktop?
Database Desktop provides an easy way to create, restructure, and query tables to help
you develop database applications with Delphi. You can use Database Desktop either as
a standalone application on a single computer running Windows or as a multiuser
application on a network.

This appendix contains information on using Database Desktop to work with data
tables in a variety of formats.

The Database Desktop window
This section discusses the Database Desktop window and its menus.

Starting Database Desktop
To start Database Desktop, double-click the Database Desktop icon in the Delphi
program group or choose File|Run in the Program Manager and run DBD.EXE.

Database Desktop has several command-line options that let you control its
configuration. For information on each option and its use, search for “command-line
configuration” in the keyword list in Database Desktop Help.

148 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The Database Desktop window
The first time you start Database Desktop, the Database Desktop window opens. All
Database Desktop windows are opened in and contained by this window.

Figure A.1 The Database Desktop application window

Files you open in Database Desktop appear in their own type of windows. Tables
appear in Table windows, queries appear in Query windows, and SQL statements
appear in the SQL Editor.

Below the menu is a tool bar. The tool bar changes when the active window changes.
The following figure shows the application window tool bar.

Figure A.2 Application window tool bar

Managing files
In Database Desktop you work with three types of files: QBE queries, .SQL files, and
tables. Other files are created automatically by Database Desktop.

For a list of file extensions used by Database Desktop, search for “file-name extensions”
in the keyword list in Database Desktop Help, and choose the topic “Types of Files.”

Opening files
To open a QBE query, SQL statement, or table, follow these steps:

1 Choose File|Open.
2 Choose the type of file to open—QBE query, SQL statement, or table.

Tool bar

Status line

Menu

Open
Table

Open QBE
Query

Open SQL
Statement

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 149

3 Specify the file to open.

The Select File dialog box appears. For detailed information on the Select File dialog box,
search for “Select File dialog box” in the keyword list in Database Desktop Help.

Note To access tables stored on a network, you must specify the location of the network
control file. You do this by running the BDE Configuration Utility; double-click the BDE
Configuration Utility icon in the Delphi program group. See online Help in the BDE
Configuration Utility for more details.

Setting up a working directory
The working directory is where Database Desktop looks first for files. The Working
Directory setting controls what files are listed in File|Open and File|Save dialog boxes.
So, for example, if you want to open C:\DBD\SAMPLES\BOOKORD.DB, make
C:\DBD\SAMPLES your working directory so that you see BOOKORD.DB when you
choose File|Open|Table.

To specify a working directory, choose File|Working Directory, then type the path to
the directory.

SQL You cannot set your working directory to an alias on a remote server.

Setting up a private directory
You should store temporary tables, such as Answer, in a private directory so they do not
get overwritten by other users or applications. Choose File|Private Directory to
establish a private directory.

Files stored in your private directory are listed in File|Open and File|Save dialog boxes,
preceded by :PRIV: . Private directory files are visible and available to you, but not to
other network users.

Aliases
You can assign an alias as a shorthand for a directory using the Alias Manager dialog
box. For example, if you have a collection of tables and queries in one directory (called
C:\DBD\PROJECTS\CUSTLIST), you can specify the alias :MYWORK: rather than
type the entire path.

Using aliases, you can avoid typing long path names, and you can use the Path list in
File|Open and File|Save dialog boxes to list files in any directory for which you have
defined an alias.

To create an alias, choose File|Aliases. For information on creating, changing, or
removing an alias, search for “aliases” in the keyword list in Database Desktop Help.

Creating tables
This section describes tables and discusses how to create and restructure Paradox,
dBASE, and SQL tables in Database Desktop.

150 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Understanding tables
A database is an organized collection of information or data. An address book is an
example of a database. It organizes data about people into specific categories: names,
phone numbers, and addresses.

In a relational database, the data is organized into tables. Each row of a table contains
information about a particular item; this is called a record. Each column contains one
piece of the information that makes up a record; this is called a field.

Figure A.3 A table

Relational tables
Relational database applications such as dBASE and Paradox give you a way to link
tables by comparing values stored in comparable fields in separate tables. The
advantage of a relational database is that you can easily extract or combine data from
several tables to get exactly the information you need, without changing the structure of
the database. Also, a few small and discrete tables are more convenient to use and
maintain than one large table.

The sample database files CUSTOMER.DB and BOOKORD.DB are examples of
relational tables. These tables can be linked through the fields containing customers’ ID
numbers (Cust ID in the Customer table, Cust in Bookord). When the tables are linked, you
can extract information from both tables into one table. For example, you can search for
and extract a list of quantities ordered (from the Bookord table) and the respective last
names (from Customer). The results are returned in an Answer table (see page 170).

Planning tables
Planning is the first step in creating a table. Decide what you want the table to contain
and how you want to lay it out. For tips on planning tables, search for “planning” in the
keyword list in Database Desktop Help, and choose the topic “Planning Tables.”

This column is one field. It contains one
kind of information about a record.

This row is one
record. It contains
one value for each
field.

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 151

Creating a new table
To create a new table,

1 Choose File|New|Table. Or right-click the Open Table tool bar button, and choose
New.

The Table Type dialog box appears.

2 If you want a table type other than Paradox for Windows, click the arrow next to the
list box and select from the drop-down list.

3 Choose OK. The Create Table dialog box appears. This dialog box may have a
slightly different appearance for different table types, but it will function the same.

For a step-by-step description of creating a table, search for “creating tables” in the
keyword list in Database Desktop Help, and choose the topic “Creating a New Table.”

Choose the type of table you want to
create. Some options discussed in this
appendix are available only to Paradox
for Windows 5.0 tables.

Figure A.4 Table Type dialog box

Press any key or double-
click to key the table.

When the dialog box is
opened, the Validity
Checks table property is
selected and all types of
validity checks are
available.

Choose this to borrow the
structure of another table.

The status box gives you guidelines as
you create the table.

Enter the field name, type,
and size in the Field Roster.

Figure A.5 The Create Table dialog box

152 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Defining fields
Use the Field Roster in the Create Table dialog box (page 151) to define the fields of the
new table. You can use the mouse, arrow keys, Enter, Tab, or Shift+Tab to move among the
columns. (Shift+Tab moves backwards.)

Field names
Type field names in the Field Name column of the Field Roster.

For information on rules governing field names, search for “field names” in the
keyword list in Database Desktop Help, and choose the topic for the type of table you
are using (Paradox, dBASE, or SQL).

Adding, deleting, and rearranging fields
You can add, delete, and rearrange fields in the Field Roster.

For detailed information on changing fields, search for “fields” in the keyword list in
Database Desktop Help.”

Specifying field type
To specify the field type in the Create Table dialog box,

1 Select the Type column of the field you want.

2 Type the symbol (or name, for SQL tables) for the field type or select from the drop-
down list. You can use the list in two ways:
• Right-click the Type column again and click to select the field type.
• Press Spacebar to see the list, then choose the field type.

For information on field types and sizes, search for “field types” in the keyword list in
Database Desktop Help, and choose the topic for the type of table you are using
(Paradox, dBASE, or SQL).

Using indexes
The BDE uses indexes to keep track of the location of records in tables. This makes it
easy to maintain a sorted order of a table and view like values together.

When you create an index for a Paradox or dBASE table, Database Desktop creates a file
that contains the indexed field’s values and their locations. Database Desktop uses the
index file to locate and sort the records in a table.

Indexes work differently for Paradox, dBASE, and SQL tables.

Keys in Paradox tables
In Paradox tables, the primary index is called the key. A Paradox table’s key establishes
the primary index and sort order for the table. A key also requires each value in the
field(s) that defines the key to be unique. For example, if the Cust ID field is identified as
the key of the Customer table, each value in the Cust ID field must be unique. Likewise, if
the Cust, Date, and Item # fields are identified as the key of the Bookord table, the field

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 153

values (taken as an ordered group) must be unique. This guards against duplication of
data within the table. Keys are required for linking tables and for using the data
integrity features of Paradox tables.

To create a key, display the Create Table (page 151) or the Restructure Table (page 160)
dialog box. Then move to the Key column in the Field Roster and double-click (or press
any key). The key field indicator (*) appears. Database Desktop keys the table on the
selected field.

Follow these rules when defining keys:

• A table can have only one primary key. This key can be made up of one or more
fields.

• If a key is defined as a single field, that field must be the first field in the Field Roster.

• If you identify more than one field as keyed, you create a composite key. These fields,
taken as a group, must be unique for each record of the table. The composite key
must be the first fields in the Field Roster.

A dBASE table’s index
When working with dBASE tables, Database Desktop uses an index to organize the
records in a table according to the values in one or more fields.

When you create an index on a dBASE table, a file is created that contains the indexed
field’s values and their corresponding record numbers. Database Desktop refers to the
index file when locating and displaying the records in a table.

Although Database Desktop supports both .MDX files and .NDX files, it is
recommended that you use a dBASE production index (the .MDX file which uses the
table’s name as its file name) whenever possible. Although you can create
nonproduction .MDX files as well as .NDX files, Database Desktop automatically
maintains the production index.

For more information on dBASE indexes, search for “dBASE indexes” in the keyword
list in Database Desktop Help.

Note Delphi does not support all dBASE index types. For more information, see Chapter 3,
“Using data access components and tools.”

An SQL table’s index
SQL tables use unique and non-unique indexes, but they do not use the primary keys
that Paradox tables use. You can create multiple indexes for an SQL table; for each
index, you specify whether it is unique or non-unique. Depending on the server, you
may also be able to specify whether the index is case-sensitive and whether it is
ascending or descending. SQL indexes, unlike Paradox and dBASE indexes, are always
maintained.

You can use Database Desktop to create and modify indexes on SQL tables, but you
cannot specify which index to use in Database Desktop.

When you use an SQL table in Database Desktop, the table should have a unique index.
If it does not have a unique index you may not be able to view new records that you

154 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

insert, depending on the server. To add a unique index to an existing table, choose
Utilities|Restructure.

For more information on SQL indexes, see “Creating indexes on SQL tables” on
page 155.

Defining secondary indexes
A secondary index is a field or group of fields other than the key field that can be used to
sort the table or to link the table to other tables. Database Desktop enables you to create
secondary indexes for Paradox tables.

You can use a secondary index to see an alternate view order for a Paradox table. For
example, to view the Customer table by City, while keeping the table’s key order intact,
you can use a secondary index on City to temporarily change the view order of the
records.

For information on creating a secondary index, search for “secondary indexes” in the
keyword list in Database Desktop Help, and choose the topic “Defining a Secondary
Index.”

Specifying validity checks
Validity checks govern the values you can enter in a field. The five types of validity
checks are listed in Table A.1.

Note Validity checks work only on Paradox tables, not on dBASE tables. For SQL tables, the
only validity check you can specify in Database Desktop is whether a field is required
(not Null).

For detailed information on validity checks, search for “validity checks” in the keyword
list in Database Desktop Help.

Note A “Required field” validity check will set a Delphi TField’s Required property to True
when the table is accessed from a Delphi application.

Table A.1 Paradox validity checks

Validity check Meaning

Required field Every record in the table must have a value in this field. SQL tables can also use
this validity check (equivalent to NOT NULL).

Minimum The values entered in this field must be equal to or greater than the minimum you
specify here.

Maximum The values entered in this field must be less than or equal to the maximum you
specify here.

Default The value you specify here is automatically entered in this field. You can replace it
with another value.

Picture You specify a character string that acts as a template for the values that can be
entered in this field. The values entered in this field are automatically formatted
according to this picture.
For information on pictures, search for “picture strings” in the keyword list in
Database Desktop Help, and choose the topic “Picture String Characters.”

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 155

Borrowing a table structure
When creating a table similar to one you already have, you can borrow its structure.
Then you can either use it as is or change it. You must begin from a blank table structure
to borrow another table’s structure.

To borrow a table structure, choose Borrow from the Create Table dialog box.

For detailed information on borrowing, search for “borrow a table’s structure” in the
keyword list in Database Desktop Help.

Creating an SQL table
When you create an SQL table, you can define the table structure (fields & types),
specify required fields, and define indexes. The Create Table dialog box for SQL tables
looks as shown in Figure A.6.

Figure A.6 The Create Table dialog box for SQL tables

For information on valid field types for your SQL server, search for “field types” in the
keyword list in Database Desktop Help, and choose the topic for your server.

Creating indexes on SQL tables
You can use Database Desktop to create and modify indexes on SQL tables.

To create an index for an SQL table, display the Create Table (page 155) or the
Restructure Table (page 160) dialog box. Then, choose Define Index. Database Desktop
displays the Define Index dialog box, shown in Figure A.7.

The Dec field is the number of decimal places

Choose these to create,
modify, or delete an
index from the SQL
table

Check to make the
selected field a required
field

156 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure A.7 The Define Index dialog box for SQL indexes

When you use an SQL table in Database Desktop, the table should have a unique index.
If it does not have a unique index, you may not be able to view new records you insert.

For detailed information on using the Define Index dialog box, search for “Define Index
Dialog Box” in the keyword list in Database Desktop Help, and choose the topic “Define
Index Dialog Box (SQL Tables).”

Naming SQL indexes
For most database servers, index names must be unique within the database (or in some
other predefined workspace). When you create an index on an SQL table, Database
Desktop prompts you to prefix the index name with the table name to ensure that the
index name is unique.

Sybase
note

Sybase index names need only be unique within a table, not within the entire database,
so Database Desktop does not prefix Sybase index names with table names.

When you create an SQL index and choose OK from the Define Index dialog box,
Database Desktop supplies the prefix “<table>_” for the index name as follows:

Figure A.8 Save Index As dialog box

You can include the table name with the index name or omit it:

• If you type the index name following “<table>_”, Database Desktop prefixes the
index name with the table name and an underscore.

• If you delete “<table>_”, Database Desktop omits the table name from the index
name. If the index name is not unique, an error will occur when Database Desktop
saves the table.

Displays the fields for the index.
Select the field you want in the
Fields list and use the Add Field
arrow to add it to the Indexed Fields
list. To remove a selected field, use
the Remove Field arrow.

The Add Field and Remove Field arrows

Lists all
fields in
your table

This index on the Customer table will
be named “customer_last_name.”

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 157

This index naming scheme also affects restructuring , as described in “Restructuring an
SQL table” on page 160.

Defining referential integrity for Paradox tables
Referential integrity means that a field or group of fields in one table (the “child” table)
must refer to the key of another table (the “parent” table). Database Desktop enables
you to define referential integrity rules for Paradox tables.

Figure A.9 Referential integrity

Database Desktop accepts only those values that exist in the parent table’s key as valid
values for the specified field(s) of the child table. You can establish referential integrity
only between like fields that contain matching values. For example, you can establish
referential integrity between Customer and Orders on their CustomerNo fields. In both
cases, the values contained in the specified fields are the same. The field names don’t
matter as long as the field types and sizes are identical.

Note You can establish referential integrity only between tables in the same directory.

Using referential integrity, Database Desktop checks the validity of a value before
accepting it in the table. If you establish referential integrity between Customer and
Orders on their CustomerNo fields, then enter a value in the CustomerNo field of Orders,
Database Desktop searches the CustomerNo field of Customer and

• Accepts the value in Orders if it exists in Customer
• Rejects the value in Orders if it doesn’t exist in Customer

Procedure
To define a referential integrity relationship,

1 In the Create Table (page 151) or Restructure Table (page 160) dialog box, choose
Referential Integrity from the Table Properties list. The Define button becomes
available.

CUSTOMER CustomerNo Name City

Database Desktop prohibits you
from entering a value in the Orders
Customer No field that doesn’t
match an existing value in the
Customer Customer No field.ORDERS OrderNo CustomerNo Name

158 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

2 Choose Define to open the Referential Integrity dialog box.

3 Choose the parent table from the Table list. The table’s key field appears in the
Parent’s Key area of the referential integrity diagram.

4 Double-click the child table’s field in the Fields list (or Tab to it and click the Add
Field arrow or press Alt+A). The field name appears in the Child Fields area of the
referential integrity diagram.

5 Choose the update rule you want.

6 Choose whether you want to enforce strict referential integrity.

7 Choose OK to name and save the referential integrity relationship.

For detailed information on defining referential integrity, search for “Referential
Integrity” or “Referential Integrity Dialog Box” in the keyword list in Database Desktop
Help.

Creating table lookup
Table lookup helps you enter data in one Paradox table that already exists in the first
field of another Paradox table—the lookup table. Table lookup lets you

• Require that the values you enter into a field exist in the first field of another table
• Refer to another table to look up the acceptable values for a field
• Copy values in the lookup table to the table you’re editing

Table lookup is primarily a data entry tool. Unlike referential integrity, it doesn’t track
or control changes you make to the lookup table. Table lookup ensures that data is
copied accurately from one table to another; referential integrity ensures that the ties
between data in separate tables cannot be broken.

The referential
integrity diagramThe Add Field arrow

The Remove Field arrow

Choose the “parent” table whose
key you want to refer to.

Figure A.10 Referential Integrity dialog box

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 159

For detailed information on table lookup, search for “table lookup” in the keyword list
in Database Desktop Help, and choose the topic “Looking up Table Values.”

Note Table lookup rules have no effect on Delphi applications accessing a table.

Establishing passwords for Paradox tables
Sometimes it’s important to ensure that the Paradox table you create is protected from
access by unauthorized users. Not only can you establish a password for a Paradox table
as a whole, but you can also assign specific rights to the table or individual fields.

For detailed information on creating and using passwords, search for “passwords” in
the keyword list in Database Desktop Help.

Restructuring tables
Database Desktop enables you to restructure Paradox and dBASE tables to:

• Add or rename fields
• Change field types or sizes
• Modify indexes
• Modify table language drivers

Restructuring a table is very much like creating it for the first time. You will not be able
to restructure a table if Delphi or any other application has the table open. For detailed
information on restructuring tables, see the Database Desktop Help; choose Help|
Contents|Tasks|Creating and Restructuring|Restructuring a Table.

Note Restructuring a table may require corresponding modifications in Delphi applications
that access the table. For example, removing a column or changing its data type will
raise an exception if an application has a persistent TField component for the modified
column.

To restructure a table, choose Utilities|Restructure, then choose the table you want. If
the table you want to restructure is already open in the active window, use Table|
Restructure. The Restructure Table dialog box opens. The following figure shows an
example of a Paradox table in the Restructure Table dialog box:

160 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure A.11 The Restructure Table dialog box for Paradox tables

Restructuring an SQL table
When you restructure an SQL table, you can add, modify, and drop indexes. You cannot
otherwise change the structure of a table on a server. The Restructure Table dialog box
for SQL tables looks as shown in Figure A.12.

Figure A.12 The Restructure Table dialog box for SQL tables

Prefixing the index name with the table name
Database Desktop prefixes some index names with the table name, as described in
“Creating indexes on SQL tables” on page 155. These index names are also affected
when you restructure an SQL table as follows:

Pack a table to reuse disk space left over from deleting records. Some restructure operations automatically pack
your table. You can check Pack Table and choose OK when you want to be sure Paradox packs the table.

Work in the Restructure
Table dialog box the same
way you work in the Create
Table dialog box.

The Dec field is the number of decimal places

Choose these to create,
modify, or delete an
index from the SQL
table

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 161

• If you create a new index during a restructure, Database Desktop prompts you to
prefix the index name with the table name.

• If you modify an index during a restructure, Database Desktop does not modify the
index name, unless you rename the index as part of your modification.

• If you choose Save As during a restructure, Database Desktop prefixes all index
names with the new table name, if you have not explicitly entered an index name. For
example, suppose the EMPLOYEE table contains the following indexes:

EMPLOYEE_DEPT_NO
EMPLOYEE_EMP_NO
FULL_NAME
JOB

If you restructure the table and save it as MY_DEPT, Database Desktop renames the
indexes as follows:

MY_DEPT_DEPT_NO
MY_DEPT_EMP_NO
MY_DEPT_FULL_NAME
MY_DEPT_JOB

Viewing tables
To open a table, choose File|Open|Table. Or, if the application window is empty, click
the Open Table button in the tool bar. In the Open Table dialog box, choose the table to
open. The table you chose opens in a Table window, and the tool bar appears as shown
in the following figure:

Figure A.13 The Table window tool bar

When you first open a table, its data appears in a Table window in View mode. Each
Table window contains an independent view of a table, so different views of a single
table can be open at the same time. Up to 24 tables can be open at one time.

To be able to simultaneously access tables stored on a network, you must provide
Database Desktop the location of the network control file. You do this by running the BDE
Configuration Utility; double-click the BDE Configuration Utility icon in the Delphi
program group. See online Help in the BDE Configuration Utility for more details.

A Delphi application can specify the network control file in the NetFileDir property of
TSession. This enables a Delphi application access to tables stored on a network.

Copy

Cut Paste

Restructure

First
Record

Previous
Record

Next
Set

Previous
Set

Next
Record

Last
Record

Field
View

Edit
Data

162 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using scroll lock
To lock one or more columns in place as you move horizontally through the table’s
columns, use a scroll lock. All columns to the left of the lock remain stationary as you
move through the table’s columns.

The scroll lock is a triangle in the lower left corner of the Table window. To place a lock,
drag the triangle to the right side of the column(s) you want to lock. An active scroll lock
appears as two triangles when you release the mouse button, as shown in Figure A.14.

Figure A.14 A scroll lock in the Table window

Customizing a table view
The view of a table is how it appears onscreen; you can modify and save a custom view
of a table. Changing the view makes it easier to see specific fields; the actual structure of
the table (its definition of field order and size) remains the same. To customize a view,
you can rearrange, resize, and lock columns, and resize rows or table headings.

The following figure shows the hot zones on an open table view. Hot zones indicate areas
on a table where you can drag to modify the view of the table. As the pointer passes
over a hot zone, the pointer changes shape.

When you position the pointer over
the scroll lock triangle, it changes to
a double-headed arrow.

As you drag, the pointer changes
to two arrows.

After you release the mouse button,
an active scroll lock appears.

As you scroll, these columns
remain stationary.

As you scroll, these columns
change.

The scroll lock triangle
in the lower left corner.

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 163

Figure A.15 Hot zone pointers in the Table window

Rearranging and resizing columns
To move a column, position the pointer on a column’s heading. When the pointer
changes shape (shown at left), drag the column to its new position.

To resize a column, position the pointer on its right boundary line (either the heading
area or the top row of data). When the pointer changes shape (shown at left), drag the
boundary line to increase or decrease the width of the column.

Resizing rows
To resize the height of all of the rows in a table, drag the line under the first record
number. Move the line up to decrease the row height, or down to increase the row
height.

Resizing column headings
To resize the height of all the column headings, drag the line under the table name. The
table name is located above the left-most column (which contains the record numbers).

Saving a custom view
You can save a custom view, undo changes to a view, and restore the default view by
using the commands on the Properties menu.

The pointer when changing the heading or row height

To change the heading height,
drag the table name up or down.

To change the row height,
drag this line up or down.

The pointer when changing
the column width The pointer when moving a column

To resize a column, drag its
right grid line in its top row.

To move a column, drag its
heading to the left or right.

164 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

For detailed information on the Properties menu commands, search for “Properties
menu” in the keyword list in Database Desktop Help.

Editing data
This section introduces Database Desktop’s editing features. For detailed information
on editing data, search for “editing data” or “Edit mode” in the keyword list in Database
Desktop Help.

Using Edit mode
To change data in a table, you must be in Edit mode. To enter Edit mode, do one of the
following:

• Click the Edit Data button in the tool bar.

• Choose View|Edit Data.

i • Press F9.

In Edit mode, you can select any field and begin typing to replace its existing entry.
When you enter Edit mode, the Edit Data button remains pressed in and the status line
tells you Edit mode is active.

Note In Database Desktop you cannot edit data in the following field types:

• Paradox: Memo, Formatted Memo, Graphic, OLE, Autoincrement, Binary, or Bytes

• dBASE: Memo, OLE, or Binary

• SQL: any BLOB (binary large object) field or a text field that allows more than 255
characters

Figure A.16 The Customer table in Edit mode

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 165

Selecting fields and records
When you move to a field or click it, the field is highlighted. This indicates that the field
is selected. In Edit mode, if you type anything into a selected field, you’ll replace the
existing entry with the value you type. The cut, copy, and paste operations affect the
entire field entry when it’s selected.

You can select more than one field at a time, or select a portion of a single field entry.

For detailed information on selecting fields and records, search for “selecting data” in
the keyword list in Database Desktop Help.

Field view
In Edit mode, you can change a field’s entry in one of two ways:

• Select the field and type a new value. When you begin typing, the new value replaces
the old entry.

• Select the field and edit the existing entry using field view.

For information on field view, search for “Field View” in the keyword list in Database
Desktop Help.

Adding, subtracting, and emptying records
Use the commands on the Utilities menu to add, subtract, or empty a table’s records.

• Add: You can add the records from one table to another table. You can use Add on all
table types. Choose Utilities|Add. Database Desktop opens the Add dialog box.

For detailed information on adding records, see Database Desktop Help; choose
Help|Contents|Tasks|Using Table Utilities|Adding Records.

• Subtract: You can remove records that exist in one table from a different table by
using the Subtract utility. You can subtract records only from a keyed Paradox table.
Choose Utilities|Subtract. Database Desktop opens the Subtract dialog box.

For detailed information on subtracting records, see Database Desktop Help; choose
Help|Contents|Tasks|Using Table Utilities|Subtracting Records.

SQL You cannot use an SQL table as the source of a Subtract operation.

• Empty: Use the Empty utility to remove all records from a table, leaving the table’s
structure (including all keys, indexes, validity checks, and so on) intact. You can use
Empty on Paradox, dBASE, and SQL tables. Choose Utilities|Empty. Database
Desktop opens the Empty dialog box.

For detailed information on emptying tables, see Database Desktop Help; choose
Help|Contents|Tasks|Using Table Utilities|Emptying Tables.

166 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Sorting, copying, renaming, and deleting objects
You can use Database Desktop to sort tables and to copy, rename, and delete objects.

Sorting tables
When you sort a table, you tell Database Desktop to rearrange the order of the records in
the table and display them in the order you specify.

• If a table is keyed, Database Desktop creates a new, unkeyed table containing the
sorted data. The original table remains unchanged.

• If a table is not keyed, the sort changes the actual location of the records in the table.

SQL You cannot sort SQL tables.

To sort a table, choose Utilities|Sort, then choose the table you want to sort from the
Select File dialog box. Database Desktop opens the Sort Table dialog box.

For detailed information on sorting tables, see Database Desktop Help; choose Help|
Contents|Tasks|Using Table Utilities|Sorting Tables.

Copying objects
You can copy Paradox and dBASE tables, queries, SQL tables, and .SQL files from
within Database Desktop. To copy an object, choose Utilities|Copy. Database Desktop
opens the Copy dialog box.

When you copy a table, Database Desktop copies both the structure of the table and the
data contained in it. You can copy tables from one table type to another. For example,
you can copy a Paradox table to a dBASE or SQL table. To copy to an SQL table type,
you must have an SQL database server and the appropriate SQL Link.

For detailed information on copying objects, see Database Desktop Help; choose Help|
Contents|Tasks|Using Table Utilities|Copying Tables.

Renaming objects
You can rename tables, queries, and .SQL files from within Database Desktop. You
cannot rename SQL tables.

To rename an object, choose Utilities|Rename. Database Desktop opens the Rename
dialog box. For detailed information on renaming objects, see Database Desktop Help;
choose Help|Contents|Tasks|Using Table Utilities|Renaming Tables.

Deleting objects
You can delete tables, queries, SQL tables, and .SQL files from within Database Desktop.

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 167

To delete an object, choose Utilities|Delete. Database Desktop opens the Delete dialog
box. For detailed information on deleting objects, see Database Desktop Help; choose
Help|Contents|Tasks|Using Table Utilities|Deleting Tables.

Executing SQL statements
This section describes how to use the SQL Editor to enter and execute SQL statements.

What is the SQL Editor?
Programmers familiar with SQL can use the SQL Editor window to directly enter,
execute, or save an SQL statement. You can save the SQL statement to a file, and then
later load, modify, or execute it.

In the SQL Editor, you can enter SQL statements to be executed by a SQL database
server. The syntax must conform to your server’s dialect. This is referred to as
passthrough SQL. The SQL server performs all error or syntax checking and executes the
statement without any involvement by Database Desktop.

You can also use the SQL Editor to run SQL statements against Paradox or dBASE
tables. This is known as local SQL, and the allowable syntax is a subset of ANSI
standard SQL. For more information, see Appendix C, “Using local SQL.”

Figure A.17 The SQL Editor

If you execute a SELECT statement in the SQL Editor, Database Desktop displays the
resulting data in an Answer table, as shown in Figure A.18.

You type SQL statements in
the SQL Editor

168 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure A.18 The SQL Editor and an Answer table

The SQL Editor has the tool bar shown in Figure A.19.

Figure A.19 SQL Editor Toolbar

Opening the SQL Editor
To open the SQL Editor, do one of the following:

Specifying an alias
Before running an SQL statement, you must specify the alias that the statement will run
against. To specify an alias, do one of the following:

• Choose SQL|Select Alias.
• Click the Select Alias tool bar button.

Database Desktop opens the Select Alias dialog box, where you can choose one of the
aliases you created in the Alias Manager dialog box. You cannot include an alias in the
text of the SQL statement.

To do this Do this

Enter (and execute) a new SQL statement Choose File|New|SQL Statement
Or right-click the Open SQL Script tool bar button and choose New

Open (and edit or execute) an existing .SQL file Choose File|Open|SQL Statement
Or click the Open SQL Script tool bar button
Or right-click the Open SQL Script tool bar button and choose Open

View the SQL equivalent of an open QBE query Choose Query|Show SQL
Or click the Open SQL Script tool bar button

Database Desktop displays the
query results in an Answer table

You type the SELECT statement
in the SQL Editor

Copy

Cut Paste

Run SQL

Search Select Alias

Search
 Next

Answer
Table Options

A p p e n d i x A , U s i n g D a t a b a s e D e s k t o p 169

Running an SQL statement
You can enter multiple SQL statements if your server allows it and you include only one
SELECT statement.

To run an SQL statement that you have typed in the SQL Editor window, click the Run
SQL tool bar button or choose SQL|Run SQL.

Figure A.20 SQL statement in the SQL Editor

If your SQL statement is a query, the query results are displayed in an Answer table, as
shown in Figure A.18 on page 168.

Saving an SQL statement
To save the SQL statement in the active window, choose File|Save or File|Save As.
When you save an SQL statement to your local hard disk, Database Desktop places it in
an unformatted text file with an .SQL extension.

Querying table data with QBE
A query is a question you ask about information in one or more tables. In addition to
standard SQL queries, Database Desktop enables you to use a technique called query by
example (QBE) to extract and manipulate data in tables. With QBE, you make the query
image look like an example of the records you want to search for.

The following figure shows a query that gives examples of the fields you want to see
(and a range of values within one of those fields), and the answer Database Desktop
gives.

170 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Figure A.21 A query and its results

The result of a query is a temporary table called Answer. The Answer table is overwritten
each time a query is run.

SQL If you have Borland SQL Links, you can use QBE to view and query tables on SQL
servers. For more information, see the Database Desktop Help Contents.

For details on using QBE, see Database Desktop Help; choose Help|Contents|Tasks|
Using Query-By-Example.

This example
searches for book
prices greater than
$28 and less than $65
(the checkmarks
specify which fields
appear in the Answer
table).

The Answer table
displays the checked
fields for records that
match the example.

A p p e n d i x B , U s i n g t h e B D E c o n f i g u r a t i o n u t i l i t y 171

A p p e n d i x

B
Appendix BUsing the BDE configuration utility

The Borland Database Engine configuration utility (BDECFG.EXE) enables you to
configure BDE aliases and change the settings reflecting your specific environment in
the BDE configuration file, IDAPI.CFG.

To run the BDE Configuration Utility, double-click the BDE configuration utility icon in
the Delphi program group. The BDE Configuration Utility opens:

Figure B.1 BDE Configuration Utility main window

Creating and managing aliases
It is usually best to use an alias in your application instead of a hard-coded file or
directory name. Setting up a standard alias consists of assigning a name to, and
specifying the path name for a directory containing Paradox or dBASE files or the
directory path and database name on a SQL server.

172 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Adding a new alias
To add a new alias,

1 Select the Alias Manager (Aliases page) and choose the New Alias button. The Add
New Alias dialog box appears. The type can be STANDARD or SQL-specific.

2 Enter the new alias name and select the SQL-specific alias type. Then choose OK to
begin the setup process. The Alias Manager displays all the configuration parameters
you can change to customize the new alias.

3 If desired, edit the settings for the category you selected. If you leave any categories
blank, the Alias Manager assumes you want to use the default for driver type.

4 When you are finished, select File|Save to save the new alias in the default
configuration file; select File|Save as to save the new alias in a configuration file with
a different name.

Figure B.2 Sample Add New Alias dialog box

Figure B.3 Customizing the new alias

A p p e n d i x B , U s i n g t h e B D E c o n f i g u r a t i o n u t i l i t y 173

Note The other pages contain settings that can also be customized. See online help for
specifics.

If you save the new alias in a configuration file with a different name, the BDE
Configuration Utility displays:

Figure B.4 BDE non-system configuration dialog box

Choose Yes if you want to activate this configuration file next time you start your
application. Choose No if you want to keep using the current default configuration file.

Your changes take effect the next time you start your application.

Modifying an existing alias
To modify an existing alias,

1 Scan the list of Alias Names available through the current configuration file. If the
alias you want to modify was stored in a different configuration file, use File|Open
to load that configuration file.

2 Highlight the name of the alias you want to modify. The configuration for that alias
appears in the Parameters section of the Alias Manager page.

3 Highlight the configuration parameter you want to change, and enter the desired
value. If you leave any categories blank, the Alias Manager assumes you want to use
the driver’s default value.

4 When you are finished, select File|Save to save the new alias in the default
configuration file; select File|Save As to save the new alias in a configuration file
with a different name.

When you modify a driver parameter, all aliases that use the default setting for that
parameter inherit the new setting.

Your changes take effect the next time you start your application.

Page Settings modified

Driver Manager Those BDE uses to determine how an application creates, sorts, and handles tables.
System Manager Those BDE uses to start an application.
Date Manager Those used to convert string values into date values.
Time Manager Those used to convert string values into time values.
Number Manager Those used to convert string values to number values.

174 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Deleting an alias
To delete an alias,

1 Scan the list of Alias Names available through the current configuration file. If the
alias you want to delete was stored in a different configuration file, use File|Open to
load that configuration file.

2 Highlight the name of the alias you want to modify, and select the Delete Alias
button.

3 Select File|Save to save your changes in the default configuration file; select File|
Save As to save your changes in a different configuration file.

Note If an application attempts to use an alias that has been deleted, Delphi will raise an
exception. If a Delphi form was saved with a table or query open, Delphi will attempt to
open the dataset when the form is loaded and the exception will occur at that time. In
many cases, modifying an alias can also cause an exception in Delphi forms if the
changes to the alias require changes to the Delphi application.

A p p e n d i x C , U s i n g l o c a l S Q L 175

A p p e n d i x

C
Appendix CUsing local SQL

The BDE enables limited access to database tables through local SQL (also called “client-
based SQL”). Local SQL is a subset of ANSI-standard SQL enhanced to support Paradox
and dBASE naming conventions for tables and fields (called “columns” in SQL). Two
categories of SQL statements are supported:

• Data Manipulation Language (DML) for selecting, inserting, updating, and deleting
table data.

• Data Definition Language (DDL) for creating, altering, and dropping tables, and for
creating and dropping indexes.

This appendix describes naming conventions, syntax enhancements, and syntax
limitations for local SQL. For a complete introduction to ANSI-standard SQL, see one of
the many third-party books available at your local computer book store.

Naming conventions for tables
ANSI-standard SQL confines each table name to a single word comprised of
alphanumeric characters and the underscore symbol (_). Local SQL is enhanced to
support full file and path specifications for table names. Table names with path or file-
name extensions must be enclosed in single or double quotes. For example,

SELECT * FROM 'PARTS.DBF'

SELECT * FROM "C:\SAMPLE\PARTS.DBF"

Local SQL also supports BDE aliases for table names. For example,

SELECT * FROM :PDOX:TABLE1

Finally, local SQL permits table names to duplicate SQL keywords as long as those table
names are enclosed in single or double quotes. For example,

SELECT PASSID FROM "PASSWORD"

176 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Naming conventions for columns
ANSI-standard SQL confines each column name to a single word of alphanumeric
characters and the underscore symbol (_). Local SQL is enhanced to support Paradox
and dBASE multi-word column names and column names that duplicate SQL
keywords as long as those column name are

• Enclosed in single or double quotes.
• Prefaced with an SQL table name or table correlation name.

For example, the following column name is two words:

SELECT E."Emp Id" FROM EMPLOYEE E

In the next example, the column name duplicates the SQL DATE keyword:

SELECT DATELOG."DATE" FROM DATELOG

Data manipulation
With some restrictions, local SQL supports the following statements for data
manipulation:

SELECT, for retrieving existing data

INSERT, for adding new data to a table

UPDATE, for modifying existing data

DELETE, for removing existing data from a table

The following sections describe parameter substitution, aggregate, string, and date
functions, and operators available to DML statements in local SQL.

Parameter substitutions in DML statements
Variables or parameter markers (?) can be used in DML statements in place of values.
Variables must always be preceded by a colon (:). For example,

SELECT LAST_NAME, FIRST_NAME
FROM "CUSTOMER.DB"
WHERE LAST_NAME > :var1 AND FIRST_NAME < :var2

Supported set (aggregate) functions
The following ANSI-standard SQL set (or “aggregate”) functions are available to local
SQL for use with data retrieval:

• SUM(), for totaling all numeric values in a column

• AVG(), for averaging all non-NULL numeric values in a column

• MIN(), for determining the minimum value in a column

A p p e n d i x C , U s i n g l o c a l S Q L 177

• MAX(), for determining the maximum value in a column

• COUNT(), for counting the number of values in a column that match specified
criteria

Note Expressions are not allowed in set functions.

Supported string functions
Local SQL supports the following ANSI-standard SQL string manipulation functions
for retrieval, insertion, and updating:

• UPPER(), to force a string to uppercase

• LOWER(), to force a string to lowercase

• SUBSTRING(), to return a specified portion of a string

• TRIM(), to remove repetitions of a specified character from the left, right, or both
sides of a string

Supported date function
Local SQL supports the EXTRACT() function for isolating a single numeric field from a
date/time field on retrieval using the following syntax:

EXTRACT (extract_field FROM field_name)

For example, the following statement extracts the year value from a DATE field:

SELECT EXTRACT(YEAR FROM HIRE_DATE)
FROM EMPLOYEE

You can also extract MONTH, DAY, HOUR, MINUTE, and SECOND using this
function.

Note EXTRACT does not support the TIMEZONE_HOUR or TIMEZONE_MINUTE clauses.

Supported operators
Local SQL supports the following arithmetic operators:

+, –, *, /

Local SQL supports the following comparison operators:

<, >, =, <>, IS NULL

Local SQL supports the following logical operators:

AND, OR, NOT

Local SQL supports the following string concatenation operator:

||

178 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Using SELECT
The SELECT statement is used to retrieve data from one or more tables. A SELECT that
retrieves data from multiple tables is called a “join.” Local SQL supports the following
form of the SELECT statement:

SELECT [DISTINCT] column_list
FROM table_reference
[WHERE search_condition]
[ORDER BY order_list]
[GROUP BY group_list]
[HAVING having_condition]

Except as noted below, all clauses are handled as in ANSI-standard SQL. Clauses in
square brackets are optional.

The column_list indicates the columns from which to retrieve data. For example, the
following statement retrieves data from two columns:

SELECT PART_NO, PART_NAME
FROM PARTS

Using the FROM clause
The FROM clause specifies the table or tables from which to retrieve data. table_reference
can be a single table, a comma-delimited list of tables, or can be an inner or outer join as
specified in the SQL-92 standard. For example, the following statement specifies a single
table:

SELECT PART_NO
FROM "PARTS.DBF"

The next statement specifies a left outer join for table_reference:

SELECT * FROM PARTS LEFT OUTER JOIN INVENTORY
ON PARTS.PART_NO = INVENTORY.PART_NO

Using the WHERE clause
The optional WHERE clause reduces the number of rows returned by a query to those
that match the criteria specified in search_condition. For example, the following statement
retrieves only those rows with PART_NO greater than 543:

SELECT * FROM PARTS
WHERE PART_NO > 543

The WHERE clause can now include the IN predicate, followed by a parenthesized list
of values. For example, the next statement retrieves only those rows where a part
number matches an item in the IN predicate list:

SELECT * FROM PARTS
WHERE PART_NO IN (543, 544, 546, 547)

Important A search_condition cannot include subqueries.

A p p e n d i x C , U s i n g l o c a l S Q L 179

Using the ORDER BY clause
The ORDER BY clause specifies the order of retrieved rows. For example, the following
query retrieves a list of all parts listed in alphabetical order by part name:

SELECT * FROM PARTS
ORDER BY PART_NAME ASC

The next query retrieves all part information ordered in descending numeric order by
part number:

SELECT * FROM PARTS
ORDER BY PART_NO DESC

Calculated fields can be ordered by correlation name or ordinal position. For example,
the following query orders rows by FULL_NAME, a calculated field:

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME, PHONE
FROM CUSTOMERS
ORDER BY FULL_NAME

Using the GROUP BY clause
The GROUP BY clause specifies how retrieved rows are grouped for aggregate
functions. In local SQL, any column names that appear in the GROUP BY clause must
also appear in the SELECT clause.

Heterogeneous joins
Local SQL supports joins of tables in different database formats; such a join is called a
“heterogeneous join.” For example, it is possible to retrieve data from a Paradox table
and a dBASE table as follows:

SELECT DISTINCT C.CUST_NO, C.STATE, O.ORDER_NO
FROM "CUSTOMER.DB" C, "ORDER.DBF" O
WHERE C.CUST_NO = O.CUST_NO

You can also use BDE aliases in place of table names.

Using INSERT
In local SQL, INSERT is restricted to a list of values:

INSERT INTO CUSTOMER (FIRST_NAME, LAST_NAME, PHONE)
VALUES(:fname, :lname, :phone_no)

Insertion from one table to another through a subquery is not allowed.

Using UPDATE
There are no restrictions on or extensions to the ANSI-standard UPDATE statement.

Using DELETE
There are no restrictions on or extensions to the ANSI-standard DELETE statement.

180 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Data definition
Local SQL supports data definition language (DDL) for creating, altering, and dropping
tables, and for creating and dropping indexes. All other ANSI-standard SQL DDL
statements are not supported. In particular, views are not supported.

Local SQL does not permit the substitution of variables for values in DDL statements.

Using CREATE TABLE
CREATE TABLE is supported with the following limitations:

• Column definitions based on domains are not supported.

• Constraints are limited to PRIMARY KEY for Paradox. Constraints are unsupported
in dBASE.

For example, the following statement creates a Paradox table with a PRIMARY KEY
constraint on the LAST_NAME and FIRST_NAME columns:

CREATE TABLE "employee.db"
(
LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC(10,2)
DEPT_NO SMALLINT,
PRIMARY KEY(LAST_NAME, FIRST_NAME)
)

The same statement for a dBASE table should omit the PRIMARY KEY definition:

CREATE TABLE "employee.db"
(
LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC(10,2)
DEPT_NO SMALLINT
)

The following table lists SQL syntax for data types used with CREATE TABLE, and
describes how those types are mapped to Paradox and dBASE types by the BDE:

Table C.1 Data type mappings

SQL Syntax BDE Logical Paradox dBASE

SMALLINT fldINT16 fldPDXSHORT fldDBNUM
INTEGER fldINT32 fldPDXLONG fldDBNUM
DECIMAL(x,y) fldBCD fldPDXBCD N/A
NUMERIC(x,y) fldFLOAT fldPDXNUM fldDBNUM(x,y)
FLOAT(x,y) fldFLOAT fldPDXNUM fldDBFLOAT(x,y)
CHARACTER(n) fldZSTRING fldPDXALPHA fldDBCHAR

x = precision (default: specific to driver); y = scale (default: 0);
n = length in bytes (default: 0); s = BLOB subtype (default: 1)

A p p e n d i x C , U s i n g l o c a l S Q L 181

The following table specifies how BLOB subtypes translate from SQL to Paradox and
dBASE through the BDE:

Using ALTER TABLE
Local SQL supports the following subset of the ANSI-standard ALTER TABLE
statement. You can add new columns to an existing table using this ALTER TABLE
syntax:

ALTER TABLE table ADD column_name data_type [, ADD column_name data_type . . .]

For example, the following statement adds a column to a dBASE table:

ALTER TABLE "employee.dbf" ADD BUILDING_NO SMALLINT

You can delete existing columns from a table using the following ALTER TABLE syntax:

ALTER TABLE table DROP column_name [, DROP column_name . . .]

For example, the next statement drops two columns from a Paradox table:

ALTER TABLE "employee.db" DROP LAST_NAME, DROP FIRST_NAME

ADD and DROP operations can be combined in a single statement. For example, the
following statement drops two columns and adds one:

VARCHAR(n) fldZSTRING fldPDXALPHA fldDBCHAR
DATE fldDATE fldPDXDATE fldDBDATE
BOOLEAN fldBOOL fldPDXBOOL fldDBBOOL
BLOB(n,s) See Subtypes below See Subtypes below See subtypes below
TIME fldTIME fldPDXTIME N/A
TIMESTAMP fldTIMESTAMP fldPDXTIMESTAMP N/A
MONEY fldFLOAT,

fldstMONEY
fldPDXMONEY fldDBFLOAT(20,4)

AUTOINC fldINT32,
fldstAUTOINC

fldPDXAUTOINC N/A

BYTES(n) fldBYTES(n) fldPDXBYTES fldDBBYTES
(in-memory tables only)

Table C.2 BLOB subtype mappings

SQL Subtype BDE Logical Paradox dBASE

 1 fldstMEMO fldPDXMEMO fldDBMEMO
 2 fldstBINARY fldPDXBINARY fldDBBINARY
 3 fldstFMTMEMO fldPDXFMTMEMO N/A
 4 fldstOLEOBJ fldPDXOLEBLOB fldDBOLEBLOB
 5 fldstGRAPHIC fldPDXGRAPHIC N/A

Table C.1 Data type mappings

SQL Syntax BDE Logical Paradox dBASE

x = precision (default: specific to driver); y = scale (default: 0);
n = length in bytes (default: 0); s = BLOB subtype (default: 1)

182 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

ALTER TABLE "employee.dbf" DROP LAST_NAME, DROP FIRST_NAME, ADD FULL_NAME CHAR[30]

Using DROP TABLE
DROP TABLE deletes a Paradox or dBASE table. For example, the following statement
drops a Paradox table:

DROP TABLE "employee.db"

Using CREATE INDEX
CREATE INDEX enables users to create indexes on tables using the following syntax:

CREATE INDEX index_name ON table_name (column [, column . . .])

Using CREATE INDEX is the only way to create indexes for dBASE tables. For example,
the following statement creates an index on a dBASE table:

CREATE INDEX NAMEX ON "employee.dbf" (LAST_NAME)

Paradox users can only create secondary indexes with CREATE INDEX. Primary
Paradox indexes can only be created by specifying a PRIMARY KEY constraint when
creating a new table with CREATE TABLE.

Using DROP INDEX
Local SQL provides the following variation of the ANSI-standard DROP INDEX
statement for deleting an index. It is modified to support dBASE and Paradox file
names.

DROP INDEX table_name.index_name | PRIMARY

The PRIMARY keyword is used to delete a primary Paradox index. For example, the
following statement drops the primary index on EMPLOYEE.DB:

DROP INDEX "employee.db".PRIMARY

To drop any dBASE index, or to drop secondary Paradox indexes, provide the index
name. For example, the next statement drops a secondary index on a Paradox table:

DROP INDEX "employee.db".NAMEX

A p p e n d i x D , T h e M A S T d a t a b a s e 183

A p p e n d i x

D
Appendix DThe MAST database

This appendix describes the MAST sample database provided with Delphi and used for
the MASTAPP sample application. The basic MAST database is in Paradox format. A
SQL version that uses the Local InterBase Server is also provided. See README.TXT for
a complete list of sample databases and applications.

MAST is the fictional Marine Adventures and Sunken Treasures company. MAST’s
customers are dive shops around the world. They sell products and supplies to these
shops; the shops place orders for equipment. The following tables are used to track
MAST’s sales:

Each table contains a primary key. To link tables, some fields and data must be
duplicated among tables. A table must have a primary key or secondary index assigned
to the duplicate field before it can be linked to another table. Fields that are duplicated
between tables use referential integrity to make sure their values match in all tables.

The following tables describe each of the MAST database tables by showing the fields
contained in the table, the type of each field, the size of the alphanumeric fields, and the
fields that are key fields.

Table D.1 MAST tables

Table name Information in table

CUSTOMER.DB Customer dive shop data, including customer number, name, etc.
EMPLOYEE.DB MAST employee information
ITEMS.DB Specific items that makes up customer orders
NEXTORD.DB Table that maintains the next unique order number
ORDERS.DB Orders placed by customer dive shops
PARTS.DB Inventory information about items on hand at MAST
VENDOR.DB MAST suppliers that sell goods to MAST

184 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The CUSTOMER table is structured as follows:

In CUSTOMER, the CustNo field is a primary key because orders in the ORDERS table
must be linked to customers. The secondary index on Company is named
"ByCompany". ORDERS itself contains only information about each order placed by a
customer.

The structure of the EMPLOYEE table is as follows:

The ITEMS table is structured as follows:

OrderNo is a secondary index and is used in the master-detail link in the Orders form.

The NEXTORD tables is a single-column table used to generate unique, sequential order
numbers. In a multi-user environment using Paradox tables, the only way to guarantee

Field Type Size Key

CustNo Numeric *
Company Alphanumeric 30
Addr1 Alphanumeric 30
Addr2 Alphanumeric 30
City Alphanumeric 15
State Alphanumeric 20
Zip Alphanumeric 10
Country Alphanumeric 20
Phone Alphanumeric 15
FAX Alphanumeric 15
TaxRate Numeric
Contact Alphanumeric 20
LastInvoiceDate Timestamp

Field Type Size Key

EmpNo Long integer *
LastName Alphanumeric 20
FirstName Alphanumeric 15
PhoneExt Alphanumeric 4
HireDate Timestamp
Salary Numeric

Field Type Size Key

ItemNo Numeric *
OrderNo Numeric
PartNo Numeric
Qty Long integer
Discount Numeric

A p p e n d i x D , T h e M A S T d a t a b a s e 185

that an order number is unique is to store the last-used number in a table, and increment
it each time a new number is fetched. The table is structured as follows:

The ORDERS table is structured as follows:

In ORDERS, the link to CUSTOMER is through the CustNo field. A secondary index is
defined on CustNo to ensure that ORDERS and CUSTOMERS can be sorted and linked
in the same order. To be sure that values entered as CustNo in ORDERS match exactly
one record in CUSTOMER, referential integrity is used to constrain values entered in the
CustNo field to valid customer numbers already in the CUSTOMER table.

The primary key in ITEMS is a composite of the OrderNo and ItemNo fields; these fields
also have secondary indexes. This enables ITEMS to link to ORDERS (using OrderNo)
in the MASTAPP Orders form. Referential integrity is used to validate the information
in PARTS.

Field Type Size Key

NewKey Numeric

Field Type Size Key

OrderNo Numeric *
CustNo Numeric
SaleDate Timestamp
ShipDate Timestamp
EmpNo Long integer
ShipToContact Alphanumeric 20
ShipToAddr1 Alphanumeric 30
ShipToAddr2 Alphanumeric 30
ShipToCity Alphanumeric 15
ShipToState Alphanumeric 20
ShipToZip Alphanumeric 10
ShipToCountry Alphanumeric 20
ShipToPhone Alphanumeric 15
ShipVIA Alphanumeric 7
PO Alphanumeric 15
Terms Alphanumeric 6
PaymentMethod Alphanumeric 7
ItemsTotal Money
TaxRate Numeric
Freight Money
AmountPaid Money

186 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

The PARTS table tracks the inventory of products. PARTS is structured as follows so
that it can be linked to VENDORS:

PartNo is the primary key for this table. Because PartNo is a secondary index, the two
tables can be linked. VendorNo is the primary key of VENDORS, so it is a secondary
index in PARTS and is defined to use referential integrity to make sure values entered in
VendorNo match a single VendorNo entry in the VENDORS table.

The VENDORS table has the following structure:

Using these tables, a customer’s information is entered only once, and then referred to in
other tables. Likewise, order, item, inventory, and vendor information is entered only
once, reducing storage requirements, and the chance for data entry error.

Field Type Size Key

PartNo Numeric *
VendorNo Numeric
Description Alphanumeric 30
OnHand Numeric 20
OnOrder Numeric
Cost Money
ListPrice Money

Field Type Size Key

VendorNo Numeric *
VendorName Alphanumeric 30
Address1 Alphanumeric 30
Address2 Alphanumeric 30
City Alphanumeric 20
State Alphanumeric 20
Zip Alphanumeric 10
Country Alphanumeric 15
Phone Alphanumeric 15
FAX Alphanumeric 15
Preferred Logical

I n d e x 187

Symbols
" (quotation mark), naming

conventions 175, 176
* operator 177
+ (plus) sign in property lists 103
+ operator 177
/ operator 177
: (colon) in SQL statements 117,

176
< operator 177
<> operator 177
= operator 177
> operator 177
? (question mark) in SQL

statements 176
|| operator 177
– (minus) sign in property

lists 104
– operator 177
’ (apostrophe), naming

conventions 175, 176

A
abandoning changes 64, 101, 107
Abort procedure 68
AbortOnKeyViol property 92
AbortOnProblem property 92
accessing

data 79, 89, 100, 115, 116
at run time 87–88
field values 30, 32
optimizing access 119
remote servers 127, 141

data sources 5, 99
networks and 5

property values 40, 86
Active property

datasets 59, 101
queries 50, 119

Add command (Database
Desktop) 165

Add Fields window 81
Add method 118
Add New Alias dialog box 172
ADD operations 181
adding See creating
AfterCancel event 68
AfterClose event 68
AfterDelete event 68

Index
AfterEdit event 68
AfterInsert event 68
AfterOpen event 68
AfterPost event 68
aggregate functions 141,

176–177, 179
Alias Manager 172
Alias Manager dialog box

(Database Desktop) 149
aliases 5, 149, 171–174

changing 173
defined 149
deleting 174
local SQL and 175
predefined 20
queries 168

heterogenous 124
retrieving defaults 135
retrieving information 57
saving 172, 173
specifying 134, 172

Aliases command (Files) 149
Aliases page (BDE Configuration

Utility) 172
AliasName property 135
alignment, text 108
Alignment property 33, 83, 108
ALTER TABLE keyword 181
altering See changing
ancestor objects 55
AND operator 177
ANSI/OEM conversion 93
ANSI-standard SQL naming

conventions 175–176
Answer tables 170
apostrophe (’), naming

conventions 175, 176
Append method 64
AppendRecord method 65
applications 79, 93

building 19
client/server 14, 118
deploying 16–18

remote servers 142–145
developing 12–16

client/server 127–129
fundamentals 13

displaying multiple
views 95–97

multiuser 5, 135, 147
updating data 65

optimizing 128
sample

LINKQRY 123
MASTAPP 20, 183
TWOFORMS 95

starting 173
upsizing 140–142

ApplyRange method 51, 73
arithmetic operators 177
arrays 65, 72, 73

indexes 74
queries 122
stored procedures 139

AsBoolean property 35
ASCII files 6, 70
AsDateTime property 35
AsFloat property 35
AsInteger property 35
assigning values 37, 154

at run time 87, 88
calculated fields 68–69, 82–83
default 109, 154
names as 122
required 154
run-time 35
to buttons 114
to combo boxes 109

assignment statements 86
AsString property 35
asynchronous communication

module 144
attaching to servers 5, 8, 56

remote databases 130–133
Connected property

and 134
connection

parameters 131–132
login parameters 133

attributes See display attributes;
properties

AUTO ODBC setting 132
AutoCalcFields property

OnCalcFields event and 68
AutoDisplay property 108, 109
AutoEdit property 22, 77, 101
automatically translating data 12
AutoSize property 102
AutoUnload property 88
averages 176
AVG function 176

188 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

B
batAppend constant 89
batAppendUpdate constant 89
batch move operations 8, 75,

89–92
error handling 92

BatchMove method 75
batCopy constant 89
batDelete constant 89
batUpdate constant 89
BDE (Borland Database

Engine) 2, 16–18, 92
retrieving information 57

BDE Configuration Utility 5,
171–174

starting 171
BDE Configuration Utility

Window 171
BeforeCancel event 68
BeforeClose event 63, 68
BeforeDelete event 68
BeforeEdit event 68
BeforeInsert event 68
BeforeOpen event 68
BeforePost event 68
binary collation sequence 142
binary large objects See BLOBs
bitmaps 99, 108, 110
BLOB data 107

type compatibility 181
BLOBs 99, 108
BLROM800.LD 142
BOF property 61
bookmarks 66–67
Boolean properties 84
Boolean types 86
Borland Database Engine See

DBE
Borland SQL Links 142, 170
borrowing table structures 155
Browse mode (datasets) 58
BRPARTS.DFM 22
Btrieve databases 132
buffers 60

clearing 107
flushing 67

building applications 19
building databases 12–16, 147
building forms 19–30

multi-table 24–30
single-table 21–24

buttons 78
See also specific type
adding 99, 100
assigning values to 114

associating strings with 114
navigator 106–107

enabling/disabling 107

C
CalcFields mode (datasets) 58,

69
calculated fields 9, 37–39, 58

assigning values 68–69, 82–83
defining 81, 82, 83
ordering 179
updating 38

Calculated property 33, 83
Cancel method 64
Cancel navigator button 107
canceling current operation 64,

101, 107
canceling method calls 68
CancelRange method 51, 73
CanModify property 63, 75, 120
Caption property

check boxes 113
case

conversions 177
sensitivity 75

centering data 83
ChangedTableName

property 92
changing

See also editing
aliases 173
component names 23
data 63–66, 100, 101

abandoning changes 64,
101, 107

committing changes 135,
136, 137

edit boxes and 36
rolling back changes 136
single-table queries 48

datasets 78
events 82, 83, 85
property values 82, 83–84
table structures 159–161
tables 181
values See updating values

character sets 89
character strings See string lists;

strings
check boxes 100, 113
checking for null values 73
child tables 157
Clear method 118
clearing data buffers 107

client platforms 16
client/server applications 14,

118, 127–145
deploying 142–145
developing 127–129
handling security 132–133
transaction control 135–138

client-based SQL 175
Clipboard 108
Close method

datasets 60
queries 118, 122

code 23, 87
changing data 36
optimizing 61

collation sequence 142
colon (:) in SQL statements 117,

176
column headings See field names
columns

See also field names; fields
combo boxes and

multiple 111
outlining 104

combo boxes 99, 109–112
assigning values 109
multiple columns 111
sorting items 110
user input and 44–46

Commit method 136
COMMIT statements 135
commiting changes 135, 136, 137
communication protocols 128,

131
comparison operators 177
Component palette 6
components 2

data-aware 10, 87, 100
disabling/enabling 67

database 6, 8, 11, 55–56, 133
dataset 100
field 30–32
referencing 34
renaming 23

composite keys 153
concatenation operator 177
configuration files 171
configuration options 173
configuring drivers 131
confirming deletions 68, 104
Connect method 89
CONNECT.EXE 143
CONNECT.HLP 143
Connected property 134

I n d e x 189

connections (server) 5, 56
inactive 56
remote databases 8, 130–133

Connected property
and 134

connection
parameters 131–132

login parameters 133
controls

See also components
data 99–114
read-only 101, 108

graphics 109
conversions

batch move operations
and 91

case 177
numbers to strings 35
strings to date/time 173
strings to numbers 36, 173

Copy command (Database
Desktop) 166

Copy dialog box (Database
Desktop) 166

copying
data 75, 166
table structures 8, 75
text 108

CopyToClipboard method 108
COREWIN.DLL 142
COUNT function 177
counting function 177
CREATE INDEX keyword 182
Create Table dialog box

(Database Desktop) 151–152
SQL tables 155

CREATE TABLE keyword 180
creating

forms 19–30
multi-table 24–30, 93–95
single-table 21–24

indexes 182
new tables 89, 151, 155
Paradox tables 151, 158
SQL tables 155

csDropDown constant 110
csDropDownList constant 110
csOwnerDrawFixed

constant 110
csOwnerDrawVariable

constant 110
csSimple constant 110
Currency property 83
current date and time 46
current field 4, 165
current operation,

canceling 101, 107

current record 4, 60, 104, 165
indicator 104
setting 106

current values 34, 102
cursors 60

moving 60–62, 72, 78
flickering screens and 67

CUSTOMER.DB 24, 183
customizing tables 162–164
CUSTORD.DFM 24, 31
cutting graphics 108
cutting text 108
CutToClipboard method 108

D
data

accessing 79, 89, 100, 115, 116
at run time 87–88
field values 30, 32
optimizing access 119
remote servers 127, 141

adding 100–101, 154
automatically 158
predefined values 109
to grids 103

automatically translating 12
changing 63–66, 100, 101

abandoning changes 64,
101, 107

committing changes 135,
136, 137

edit boxes and 36
rolling back changes 136
single-table queries 48

confirming deletions 68, 104
copying 75, 166
defined 5
deleting See deleting
displaying 9, 83, 161–164

at run time 87
current values 34, 102
in grids 83, 103, 105
multiple views 95–97

display-only 82, 84, 102, 107
truncated 102

editing 63–64, 83, 99, 102
canceling current

operation 64, 101, 107
Database Desktop

and 164–165
in grids 104
restrictions 164

filtering 50–51
formatting 39–42, 83, 85

at run time 40–42
invalid, restricting 43
porting 127–129

retrieving 8, 72–74
from multiple tables 178,

179
specific values 179
specifying conditions 178

searching for 42–43, 70–72
in unkeyed fields 47
nearest match 71, 72

sorting 74, 152, 166, 173
typing to replace 164
updating 63, 65–66, 101, 107

batch move operations 89
calculated fields 38
handing events 78
multiuser applications 65
read-only results 120
Refresh method and 67

validating 43–47
Data Access page (Component

palette) 7–10
data buffers 60

clearing 107
flushing 67

data controls 99–114
inactive 51, 77
linking to datasets 67, 100,

101
Data Controls page (Component

palette) 10–11, 99–100
data definition 13
Data Definition Language

180–182
data entry forms 102, 158, 183
data grids 99, 103–106

adding 103
displaying data 83
editing data 104
inserting records 104
linking to datasets 103
options 103–104

Data Manipulation Language
(DML) 176–179

data masks 84
data sources 2, 77–78

accessing 5, 99
networks and 5

adding 100
changing datasets 78
handling events 78
lists 111
supported 6

data templates 83, 84, 154
data types See types
data-aware components 10, 87,

100
disabling/enabling 67

190 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

database components 6, 8, 11,
55–56, 133

Database Desktop 147–170
adding tables 149–161
copying data 166
defining fields 152
deleting records 165
editing data 164–165
executing SQL

statements 167–169
inserting records 165
managing files 148–149
opening tables 161
overview 12
password protection 159
saving SQL statements 169
sorting data 152, 166
specifying field types 152
starting 147
viewing data 161–164

Database Desktop window 148
database engines 2, 16, 115, 129
Database Form Expert 21

building multi-table forms 24
Fields Editor vs. 32
opening tables at run time 23
renaming components 23
running forms 21
starting 21

Database Form Expert
command (Help) 21

Database Management System
(DBMS) 1

database navigator 99, 106–107
buttons 106–107

enabling/disabling 107
Database Properties Editor 134
database servers 5, 6, 127

aliases and 149
connecting to See connections
developing applications See

client/server applications
database tools 1
DatabaseLogin event 133
DatabaseName property 29, 69,

116, 135
heterogenous queries 124
stored procedures 138

databases 4–6, 89
accessing data 100
architecture 6–12
building 12–16, 147
defined 4
overview 2–4
printing reports 8, 52–53
relational 150

retrieving information 57
sample 183–186

Databases property 56
DataField property 45, 100

check boxes 113
combo boxes 110

dataset components 100
DataSet property 23, 77
datasets 57–69, 113

changing 78
closing 59
current state 59
data sources and 77
defining 32
handling events 68–69
linking to data controls 67,

100, 101
linking to data grids 103
modes 58–59
moving through 60–62
opening 59
rights and privileges 75

DataSource property 100, 123
date functions 177
Date Manager page (BDE

Configuration Utility) 173
dates 40, 85, 173

conversion functions 86
getting current 46
returning 177

DAY constant 177
.DB files 6, 70
DB2 databases 132
dBASE tables 5, 6, 70, 175

batch move operations
and 90

deleting 182
indexes 74, 153, 182
memo fields 108
naming 175
retrieving data 73
searching for data 70, 72
setting ranges 50
specifying directories 69, 149
type compatibility 180–181

DBD.EXE 147
DBDEMOS alias 20
.DBF files 6, 70
DBHandle function 93
DBIPROCS.PAS 93
DBITYPES.PAS 93
DBLocale function 93
DBMS 1
DBNMP3.DLL 143
DDL See Data Definition

Language
default settings 85, 173

default values 109, 154
DefaultDrawing property 105
Define Field dialog box 38
Define Index dialog box

(Database Desktop) 155, 156
Define Parameters dialog box 49
Delete buttons 23
Delete command (Database

Desktop) 167
Delete dialog box (Database

Desktop) 167
DELETE keyword 179
Delete method 64
Delete navigator button 107
DeleteTable method 75
deleting

aliases 174
characters from strings 177
fields 81, 181
graphics 108
indexes 182
queries 166
records 64, 75, 104, 165

batch move operations 89
tables 75, 166, 182
text 108

DEPLOY.TXT 142
deploying applications 16–18

remote servers 142–145
designing forms 100
desktop databases 12

upsizing 130, 140–142
destination tables 89–92
detail tables 24, 76–77, 93–95
developing applications 12–16

client/server 127–129
fundamentals 13

dgAlwaysShowEditor
constant 104

dgAlwaysShowSelection
constant 104

dgColLines constant 104
dgColumnResize constant 104
dgConfirmDelete constant 104
dgEditing constant 104
dgIndicator constant 104
dgRowLines constant 104
dgRowSelect constant 104
dgTabs constant 104
dgTitles constant 104
.DIB files 108
directories

private (:PRIV:) 149
specifying paths 57, 69

aliases and 149
working (:WORK:) 149

I n d e x 191

DisableControls method 50, 51,
61, 67

disabling data-aware
components 67

disabling navigator buttons 107
display attributes 30, 83–84
DisplayFormat property 33, 39,

41, 83, 103
displaying data 9, 83, 161–164

at run time 87
current values 34, 102
in grids 83, 103, 105
multiple views 95–97

displaying large images 109
displaying property values 32,

103
DisplayLabel property 33, 83
display-only data 82, 84, 102, 107

truncated 102
DisplayText property 40
DisplayWidth property 33, 83
distributing applications 16–18
distribution rights 16
dmAutomatic constant 105
DML statements See Data

Manipulation Language
dmManual constant 105
domains 138
double quote ("), naming

conventions 175, 176
DragMode property 105
drawing routines 105
Driver Manager page (BDE

Configuration Utility) 173
DriverName property 135
drivers

configuring 131
language 142, 143
ODBC 132, 138
retrieving information 57

DROP INDEX keyword 182
DROP operations 181
DROP TABLE keyword 182
DropConnections method 57
drop-down lists See combo

boxes; lists boxes
DropDownCount constant 110
dropping See deleting
dsBrowse constant 59
dsCalcFields constant 59
dsEdit constant 59
dsInactive constant 59
dsInsert constant 59
dsSetKey constant 59
DSQL 121–124

defined 117

dynamic queries 48
dynamic SQL statements

121–124
defined 117

E
edit boxes 99, 102

See also combo boxes
changing data 36

Edit Data command (Database
Desktop) 164

Edit method 63
Edit mode 107

Database Desktop 164, 165
datasets 58, 63, 77

CanModify property
and 63

Edit navigator button 107
EditFormat property 83, 103
editing

See also changing
data 63–64, 83, 99, 102

canceling current
operation 64, 101, 107

Database Desktop
and 164–165

in grids 104
restrictions 164

graphics 108
text 108

editing methods 108
EditMask property 33, 41, 83, 84
editors

Database Properties 134
Fields See Fields Editor
Input Mask 84
Parameters 121, 122, 138
SQL 167–169
String List 109, 117

EditRangeEnd method 73
EditRangeStart method 73
EDORDERS.DFM 38
EMPLOYEE.DB 183
Empty command (Database

Desktop) 165
EmptyTable method 75
EnableControls method 50, 51,

61, 67
Enabled property 77, 101
entering SQL statements

117–119, 120
at run time 118, 122

EOF property 61
errors 92
Esc key 101

events 83, 101
changing 82, 83, 85
data grids 105–106
data sources 78
datasets 68–69

Events tab (Object Inspector
window) 85

example applications See sample
applications

exceptions 51, 101
exclusive locks 75
Exclusive property 75
ExecProc method 139
ExecSQL method 119
Execute method 92
executing SQL statements 116,

117, 119, 169
at run time 118

experts See Database Form
Expert

expressions
aggregate functions and 177

EXTRACT function 177

F
fetching data See retrieving data
field components 30–32
Field Link Designer 76–77
Field Link Designer dialog

box 76
field names 83

ANSI-standards 176
assigning as values 122
disabling 104
resizing columns 163

field properties 32–34
changing 83

field types See types
field values See values
field view 165
FieldByName method 87–88
FieldName property 33, 83
fields 4, 30–43

adding 31, 79, 181
Fields Editor 81

calculated 9, 37–39, 58
assigning values 68–69,

82–83
defining 81, 82, 83
ordering 179
updating 38

current 4, 165
default settings 85
defining 152
deleting 81, 181
display-only 82, 84

192 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

entering data 154
automatically 158

handling events 85
key 83, 152

partial keys and 73
specifying 50

moving 163
at run time 105

numeric 83, 154, 176
displaying values 83

in edit boxes 35, 36
placing scroll locks 162
reordering 31, 103, 163

at run time 105
Fields Editor 80

resizing 104, 163
selecting 104, 165

Tab key and 101, 104
setting display attributes

83–84
updating See updating data

Fields Editor 30–32, 80–83, 100
activating 9
adding fields 31, 81
changing property values 82
closing 31
Database Form Expert vs. 32
defining calculated fields 37
deleting fields 81
editing events 82
overview 10
reordering fields 80
setting property values 32
starting 80

Fields Editor window 80
Fields property 87
file servers 5, 127

aliases and 149
connecting to See connections
developing applications See

client/server applications
files

See also applications;
databases

configuration 171
distributing 16, 17
opening 148
script 118
temporary 57, 92, 149, 170
text 6, 70

filters 50–51
finding field values 42, 70–72

nearest match 71, 72
FindKey method 72
FindNearest method 72
First method 60
First navigator button 106

flickering screens 67
floating-point numbers 86
flushing data buffers 67
focus, setting 85
FocusControl method 85
Form Expert See Database Form

Expert
FormatDateTime routine 85
FormatFloat routine 85
FormatInteger routine 85
formatting data 39–42, 83, 85

at run time 40–42
formatting text 40
forms 19–30

data entry 102, 158, 183
designing 100
multi-table 24–30, 76

creating 93–95
order entry 93, 112
printing 53
running 21
single-table 21–24

FreeBookmark method 67
freeing memory 67
functions

See also methods; routines
aggregate 141, 176–177, 179
date 177
mathematical 141
search 70
string manipulation 177

G
.GDB files 6
GDS.DLL 143
GetAliasNames method 57
GetAliasParams method 57
GetBookmark method 67
GetDatabaseNames method 57
GetDriverNames method 57
GetDriverParams method 57
GetIndexNames method 74
GetTableNames method 57
GoToBookmark method 67
GoToCurrent method 76
GoToKey method 70
GoToNearest method 70, 71, 72
graphics 108

displaying large 109
editing 108

grids See data grids

H
Handle function 93
handles 93

headings See field names
Help Hints 107
heterogeneous joins 179
heterogenous queries 124
hierarchy 7, 55
Hints property 107
horizontal dividing lines,

enabling/disabling 104
HOUR constant 177

I
icons

Data Access page 7
Data Controls page 10

IDAPI.CFG 171
IDAPI.CNF 17
IDAPI01.DLL 17
IDAPICFG.EXE 17, 171
IDAPICFG.HLP 17
IDASCI01.DLL 17
IDBAT01.DLL 17
IDDBAS01.DLL 17
IDODBC01.DLL 17
IDPDX01.DLL 17
IDQRY01.DLL 17
IDR10009.DLL 17
ILD01.DLL 17
image boxes 99
images 108

scrolling through 109
inactive data controls 51, 77
inactive database connections 56
Inactive mode (datasets) 58
Index property 33, 83
indexes 74–75, 152–154, 180

See also key fields
creating 182
deleting 182
naming 156
primary 74
secondary 71, 72, 74, 154, 182
SQL tables 153–154, 155–157,

160
IndexFieldCount property 74
IndexFieldNames property 50,

71
IndexFields property 74
IndexName property 71, 74
Informix servers 143
Informix tables 6, 90, 91

transactions 138
inheritance 55
InitialValues property 88
inner joins 178
input focus 85

I n d e x 193

Input Mask Editor 84
Input Mask Editor window 84
INSERT keyword 179
Insert method 64
Insert mode (datasets) 58, 64,

106
CanModify property and 63

Insert navigator button 106
InsertRecord method 65
instantiating TField 103
integers 86
IntegralHeight property 110
integrity violations 92
interactive SQL 129
INTERBAS.MSG 143
InterBase Server (LIBS) 127,

129–130
InterBase tables 5, 6, 130

accessing 143
batch move operations

and 91
transactions 138

InterBase Workgroup Server for
Windows NT 144

International settings 85
invalid data, restricting 43
invoices 44, 113
IS NULL operator 177
ISAM.IEM 143
isolation levels

(transactions) 137–138
ISQL 129
ItemHeight property

combo boxes 110
list boxes 111

Items property 45
combo boxes 109
list boxes 110, 113
radio buttons 114

ITEMS.DB 183
iteration 61, 62, 87

J
joins 178

heterogeneous 179

K
KeepConnections property 56,

134
key fields 83, 152

See also indexes
partial keys and 73
specifying 50

key violations 92

keyboard events 101, 106
KeyExclusive property 72

ranges and 74
KeyFieldCount method 71
KeyViolTableName property 92
keywords

See also SQL keywords
naming conventions

and 175, 176

L
labels 101–102
language drivers 142, 143
large images 109
Last method 60
Last navigator button 106
LDLLSQLW.DLL 143
left justifying data 83
LIBS See InterBase Server
linking data controls to

datasets 67, 100, 101
linking data grids to datasets 103
linking queries 123
linking tables 94, 150

one-many-many links 27
one-to-many links 24, 76

LINKQRY sample
application 123

list boxes 99, 100, 109, 110
See also combo boxes

lists 111
scrolling through 110, 112
sorting items 110
string See string lists
user input and 44–45

live results 48, 120
See also SQL queries

LoadFromFile method 118
local buffers 60

clearing 107
flushing 67

Local Interbase Server (LIBS) See
InterBase Server

Locale function 93
locating field values 42, 70–72

nearest match 71, 72
locking tables 75
loColLines constant 111
logical operators 177
Login dialog box 132
login parameters 133
LoginPrompt property 133
lookup lists 111
lookup tables 45–46, 158
LookupDisplay property 45, 111

LookupField property 45, 111
LookupSource property 45, 111
loops 61, 62
loRowLines constant 111
loTitles constant 111
LOWER function 177
lowercase conversions 177

M
M3OPEN.DLL 144
M3OPEN.EXE 144
maintaining database

connections 134
Mappings property 91
masks 84
MAST sample database 183–186
MASTAPP sample

application 20, 183
master tables 24, 76–77, 93–95
MasterFields property 76
MasterSource property 76, 94
mathematical functions 141
MAX function 177
maximum values 51, 83, 154, 177
MaxLength property 108
MaxValue property 83
MBW.EXE 144
memo boxes 99
memo fields 108
memory, freeing 67
memos 107–108

scrolling through 108
menu items 78
messages 71
metadata 138, 141
methods

See also functions; procedures
bookmarks 67
canceling calls 68
editing 108

MFTP.EXE 144
MHPARPA.DLL 144
Microsoft Access databases 132
Microsoft Named Pipes

protocol 144
Microsoft SQL servers 6, 142

transactions 138
MIN function 176
minimum values 51, 83, 154, 176
minus (–) sign in property

lists 104
MINUTE constant 177
MinValue property 84
MNETONE.EXE 144
MNOVLWP.DLL 144

194 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Mode property 89
modifying See changing
monetary values 83, 85
MONTH constant 177
mouse events 101, 105
MoveBy method 62
MoveCount property 92
moving

cursors 60–62, 72, 78
fields 163

at run time 105
text 108

moving among fields 104, 165
Tab key and 101, 104

moving through images 109
moving through lists 110, 112
moving through memos 108
moving through tables 60–62,

104
Database Desktop and 162,

165
MPATHWAY.DLL 144
MPCNFS.EXE 144
MPCNFS2.EXE 144
MPCNFS4.DLL 144
MSOCKLIB.DLL 144
multi-line text 107
multiple query statements 118
multi-table forms 24–30, 76

creating 93–95
Paradox tables 157, 158

multi-table queries 124, 178
heterogeneous joins 179

multiuser applications 5, 135,
147

See also client/server
applications; networks

updating data 65
MVWASYNC.EXE 144
MWINTCP.EXE 144

N
Name property 32, 33, 84
naming

directories 149
fields 176
indexes 156
tables 175

navigator See database navigator
nbDelete constant 23
nbNext constant 23
NetFileDir property 57
networks 127, 144, 149

accessing 5
temporary files and 149

Next method 60
Next navigator button 106
Next Record buttons 23
NEXTORD.DB 183
nil values 65
NOT operator 177
NOT SHARED setting 137
Novell SPX/IPX interface 131,

144
Now function 46
null values 65, 121

checking for 73
stored procedures 139

Number Manager page (BDE
Configuration Utility) 173

numbers
conversion functions 86
converting

strings to 36, 173
to strings 35

numeric fields 83, 154, 176
displaying values 83

in edit boxes 35, 36
NWCALLS.DLL 144
NWIPXSPX.DLL 144

O
object hierarchy 7, 55
Object Inspector

displaying property
values 32, 33, 103

ODBC data sources 6
ODBC driver 132, 138
ODBC.NEW 17
ODBCINST.NEW 17
OEM conversion 93
OnCalcFields event 38, 58,

68–69, 82
OnColEnter event 105
OnColExit event 105
OnDataChange event 78
OnDblClick event 105
OnDragDrop event 105
OnDragOver event 105
OnDrawDataCell event 105, 106
one-many-many links 27
OnEndDrag event 106
OnEnter event 106
one-to-many links 24, 76
OnExit event 106
OnGetText event 85
OnKeyDown event 106
OnKeyPress event 106
OnKeyUp event 106
OnLogin event 133

OnNewRecord event 68
OnSetText event 85
OnStateChange event 59, 78
OnUpdateData event 78
OnValidate event 43, 46
Open command (Database

Desktop) 148, 161
Open method

datasets 59
queries 119

Open Table dialog box (Database
Desktop) 161

opening
datasets 59
files 148
queries 168
tables 161

at run time 23
operators (local SQL

statements) 177
optimizing applications 128
optimizing code 61
optimizing queries 121
Options property

combo boxes 111
data grids 103

OR operator 177
ORA6WIN.DLL 142
ORA7WIN.DLL 142
Oracle servers 142
Oracle tables 6, 90, 91

stored procedures 140
transactions 138

ORAWE850.LD 142
order entry forms 93, 112
ORDERS.DB 24, 183
OS.IEM 143
outer joins 178
outlining records and fields 104
output 53
Overload property 140
overloading stored

procedures 140

P
Paradox tables 5, 6, 70, 175

batch move operations
and 90

creating 151, 158
deleting 182
indexes 74, 152, 154, 182
key fields 152
memo fields 108
multi-table forms 157

lookup tables and 158
naming 175

I n d e x 195

password protection 159
referential integrity 157–158
restructuring 159
retrieving data 73
searching for data 70, 72
setting ranges 50
specifying directories 69, 149
type compatibility 180–181
validity checks 154

ParamByName method 122
ParamByName property 138
parameterized statements 117
parameters

connection 131–132
login 133
retrieving information 57
SQL statements 117, 121, 176

arrays and 122
assigning names 122
null values 121
setting at run time 121

stored procedures 138–139
Parameters Editor 121, 122, 138
Params property 50, 122, 131
parent tables 157
parsing query statements 121
partial keys 73
PARTS.DB 183
passthrough SQL 120, 136, 167

transactions 136, 137
isolation levels 137

passwords 159
PasteFromClipboard

method 108
pasting graphics 108
pasting text 108
picture strings 83, 84, 154
placing bookmarks 66–67
placing locks 75
platforms 128
plus (+) sign in property lists 103
pointers 60
porting data 127–129
Post method 63, 64

Edit method and 64
OnCalcFields event and 69

Post navigator button 107
posting records 63, 64, 102

automatically 107
data grids 105

predefined aliases 20
predefined values 109
Prepare method 116, 121–122,

139
Preview property 52

primary indexes 74, 152, 182
Print method 53
printing forms 53
printing reports 8, 52–53
Prior method 60
Prior navigator button 106
private directories (:PRIV:) 149
Private Directory command

(Database Desktop) 149
PrivateDir property 57
privileges 75
ProblemTableName property 92
procedures

See also methods; routines
stored 8, 57, 138–140

executing 139
overloading 140

project files 16
projects See applications
properties 6, 83

accessing 40, 86
Boolean 84
changing 82, 83–84
field 32–34, 83
values, displaying 32, 103

Properties menu (Database
Desktop) 163

Properties tab (Object Inspector
window) 83

protocol (communications) 128,
131

Q
QBE (defined) 169
queries 9, 47–50, 169–170

See also SQL queries
deleting 166
dynamic 48
multi-table 124, 178

heterogeneous joins 179
opening 168
renaming 166
single-table 48
specifying table names 9
static 47

query by example (defined) 169
Query component 115, 117
question mark (?) in SQL

statements 176
quotation mark ("), naming

conventions 175, 176

R
radio buttons 100, 114
ranges 50–51, 73

canceling 51
maximum values 51
minimum values 51

RDS.IEM 143
read-only controls 101, 108

graphics 109
read-only privileges 75
ReadOnly property 33, 75, 84

CanModify property and 63
read-only results 48, 120

See also SQL queries
ReCalcReport method 89
records

adding 64, 65, 106, 165
batch move operations 89
data grids and 104

current 4, 60, 104, 165
indicator, setting 104
setting 106

data grids and 103, 105
deleting 64, 75, 104, 165

batch move operations 89
moving through 60–62
ordering 152, 179
outlining 104
posting 63, 64, 102, 105

automatically 107
resizing 163
selecting 104, 106, 165

specific sets 47, 50
updating See updating data

Redistributable BDE 16
redrawing screens 105, 108, 109
referencing components 34
referential integrity 157–158
Referential Integrity dialog box

(Database Desktop) 158
Refresh method 67
Refresh navigator button 107
relational databases 150

See also databases
releasing memory 67
remote servers 5, 127

aliases and 149
connecting to 8, 130–133, 134
deploying applications

142–145
developing applications 12,

15
REMOTE.DLL 143
removing See deleting
Rename command (Database

Desktop) 166

196 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

Rename dialog box (Database
Desktop) 166

renaming
components 23
queries 166
tables 166

reordering fields 31, 103, 163
at run time 105
Fields Editor 80

repeat. . . until loops 62
ReportDir property 52, 88
ReportName property 52, 88
reports 8, 88–89

printing 52–53
ReportSmith 8, 52, 88

deploying applications 145
printing reports 52–53

ReportSmith Runtime 145
RequestLive property 48, 120
Required property 43
required values 154
reserved words

See also SQL keywords
naming conventions

and 175, 176
resizing fields 104, 163
resizing records 163
restoring previous values 64,

101, 107
Restructure command (Database

Desktop) 159
Restructure Table dialog box

(Database Desktop) 159, 160
restructuring tables 159–161
retrieving data 8, 72–74

from multiple tables 178, 179
specific values 179
specifying conditions 178

right justifying data 83
Rollback method 136
ROLLBACK statements 135
rolling back changes 136
rounding 86
routines

See also functions; methods;
procedures

drawing 105
rows See records
RS_RUN directory 52
Run method 52, 88
Run SQL command (Database

Desktop) 169
Run Visual Query Builder

command 118
RunMacro method 88

running SQL statements 116,
117, 119, 169

at run time 118

S
sample applications

LINKQRY 123
MASTAPP 20, 183
TWOFORMS 95

sample database 183–186
saving

aliases 172, 173
SQL statements 118, 169

screens
flickering 67
redrawing 105, 108, 109

script files 118
scroll bars 108
scroll locks 162
ScrollBars property 108
scrolling through images 109
scrolling through lists 110, 112
scrolling through text 108
search conditions (SQL

queries) 178
search functions 70
search mode 70
searching for data 42–43, 70–72

in unkeyed fields 47
nearest match 71, 72

SECOND constant 177
secondary indexes 154

deleting 182
searching on 71, 72, 74

security 132–133
SECURITY.IEM 143
Select Alias command (Database

Desktop) 168
Select Alias dialog box

(Database Desktop) 168
SELECT keyword 178
SELECT statements 118, 120,

178–179
selecting

See also searching for data
fields 104, 165

Tab key and 101, 104
records 104, 106, 165

specific sets 47, 50
selection bars (grids) 104
servers 5, 6, 127

aliases and 149
connecting to See connections
developing applications See

client/server applications

Session component 56
set functions 176–177, 179
SetFields method 65
SetKey method 70, 71
SetKey mode (datasets) 58, 70
SetRange method 73
SetRangeEnd method 51, 73
SetRangeStart method 51, 73
setting locks 75
setting property values 32
SetVariable method 89
SHARED AUTOCOMMIT

setting 137
SHARED NOAUTOCOMMIT

setting 137
Show SQL command (Database

Desktop) 168
ShowHint property 107
ShowMessage function 71
single quote (’), naming

conventions 175, 176
single-table forms 21–24
single-table queries 48
Size property 84
Sort command (Database

Desktop) 166
sort order 74
Sort Table dialog box (Database

Desktop) 166
Sorted constant 110
sorting data 74, 152, 166

configuration options 173
sorting items in lists 110
source tables 89–92
specifying aliases 134, 172
spreadsheets 99
SQL database servers 6
SQL Editor (Database

Desktop) 167–169
saving statements 169
starting 168

SQL Editor window (Database
Desktop) 167

SQL keywords
ALTER TABLE 181
COMMIT 135
CREATE INDEX 182
CREATE TABLE 180
DELETE 179
DROP INDEX 182
DROP TABLE 182
INSERT 179
naming conventions 175, 176
ROLLBACK 135
SELECT 178
UPDATE 179

I n d e x 197

SQL Links 142
SQL property 116, 117, 118
SQL queries 9, 115–125

adding new fields 181
creating indexes 182
deleting fields 181
entering statements 117–119,

120
at run time 118, 122

heterogenous 124
linking 123
live vs. read-only results 120
local (client-based) 175–182

data definition 180–182
data manipulation

176–179
naming conventions

175–176
operators 177

multi-table 124, 178
heterogeneous joins 179

optimizing 121
preparing 121–122
retrieving specific values 179
running statements 116, 117,

119, 167–169
at run time 118

saving statements 118, 169
specifying search

conditions 178
specifying table names 9
tutorial 47–50
type compatibility 180–181
updating 50

SQL script files 118
SQL Statement command

(Database Desktop) 168
SQL tables

creating 155
indexes 74, 153–154,

155–157, 160
naming 156

naming 175
restructuring 160
retrieving data 73
searching for data 70, 72
setting ranges 50
sorting data 166
specifying directories 69
updating data 65
validity checks 154

SQL.IEM 143
SQL_IB.CNF 143
SQL_INF.CNF 143
SQL_ORA.CNF 142
SQL_SS.CNF 142
.SQL files 169

SQL13WIN.DLL 142
SQLD_IB.DLL 143
SQLD_IB.HLP 143
SQLD_INF.DLL 143
SQLD_INF.HLP 143
SQLD_ORA.DLL 142
SQLD_ORA.HLP 142
SQLD_SS.DLL 142
SQLD_SS.HLP 142
SQLPASSTHRUMODE

setting 136, 136–137
SQLWIN.DLL 142
starting

applications 173
BDE Configuration

Utility 171
Database Form Expert 21
Fields Editor 80
Input Mask Editor 84
Parameters Editor 138

StartTrans method 136
StartTransaction method 136
State property 59
static queries 47
static SQL statement

(defined) 117
stored procedures 8, 57, 138–140

executing 139
overloading 140
parameters 138–139

StoredProcName property 138
String List Editor 109

entering SQL statements 117
string lists 117

associating with buttons 114
sorting items 110

string manipulation
functions 177

strings 73
concatenating 177
conversion functions 86
converting

case 177
to date/time 173
to numbers 36, 173

picture 83, 84, 154
removing repeating

characters 177
returning parts of 177

Structured Query Language See
SQL

Style property
combo boxes 110

subqueries 178, 179
SUBSTRING function 177

substrings, returning 177
Subtract command (Database

Desktop) 165
SUM function 176
sums 176
supported data sources 6
Sybase servers 121, 142
Sybase tables 6, 90, 91, 156

transactions 138
SYDC437.LD 143
SYDC850.LD 143
System Manager page (BDE

Configuration Utility) 173

T
Tab key 101
tabbing through fields 101, 104
Table Type dialog box (Database

Desktop) 151
Table window (Database

Desktop) 161
TableName property 22, 69
tables 4, 180

adding 8
Database Desktop

149–161
Answer 170
changing 181
child 157
configuration options 173
creating new 89, 151, 155

Paradox 151, 158
SQL 155

customizing views 162–164
deleting 75, 166, 182
destination 89–92
detail 24, 76–77, 93–95
linking 94, 150

one-many-many links 27
one-to-many links 24, 76

locking 75
locking columns 162
lookup 45–46, 158
master 24, 76–77, 93–95
moving through 60–62, 104

Database Desktop
and 162, 165

multiple views 95–97, 180
naming, ANSI standards 175
opening 161

at run time 23
parent 157
placing bookmarks 66–67
renaming 166
retrieving information 57
source 89–92

198 D a t a b a s e A p p l i c a t i o n D e v e l o p e r ’ s G u i d e

specifying for queries 9
structure

borrowing 155
changing 159–161
copying 8, 75

types 69–70
TableType property 69
taCenter constant 33
Tag property 84
taRightJustify constant 33
TBatchMove component 8,

89–92
TBCDField type 86
TBlobField type 86
TBookmark type 67
TBooleanField type 86
TBytesField type 86
TCP/IP interface 16, 131, 144
TCurrencyField type 85, 86
TDatabase component 8,

133–135
TDataSet class 8
TDataSource component 6, 8, 10,

77–78, 100
multiple views and 95

TDateField type 85, 86
TDateTimeField type 85, 86
TDBCheckBox component 100,

113
TDBComboBox component 99,

109–110
TDBEdit component 99, 102
TDBGrid component 99,

103–106
adding 101, 103

TDBImage component 99, 108
TDBListBox component 99, 109,

110
TDBLookupCombo

component 100, 109, 111–112
TDBLookupList component 100,

109, 112
TDBMemo component 99,

107–108
TDBNavigator component 99,

106–107
adding 101
enabling/disabling

buttons 107
TDBRadioGroup

component 100, 114
TDBText component 99, 101–102
telephone numbers 40, 41
templates

data entry 83, 84, 154
temporary files 57, 92, 149, 170

.TXT files 6
text 108

See also data
adding 107
aligning 108
editing 108
formatting 40
scrolling through 108
wordwrapping 108

text files 6, 70
text strings See string lists; strings
TField component 30, 33, 40,

79–87, 100
disabling 103
instantiating 103
overview 8
referencing 34

TFloatField type 84, 85, 86
TGraphicField type 86
tiDirtyRead constant 137
time 85, 173

conversion functions 86
returning 177

Time Manager page (BDE
Configuration Utility) 173

timer events 101
timestamps 46
TIMEZONE_HOUR clause 177
TIMEZONE_MINUTE

clause 177
TIntegerField type 85, 86
tiReadCommitted constant 137
tiRepeatableRead constant 137
TMemoField type 86
tool bars 22

Database Desktop
windows 148, 161, 168

totaling numeric values 176
TQuery component 57, 100,

115–117
overview 6, 8, 9–10
TDataSource and 10
TTable vs. 116, 120

transactions 100, 128, 135–138
implicit vs. explicit

control 136
isolation levels 137–138

TransIsolation property 137
translating data 12
Transliterate property 89
TReport component 8, 52, 88–89
TRIM function 177
truncated data 102
try...except blocks 119
try...finally blocks 51, 61, 67
TSession component 56–57, 134

TSmallIntField type 85, 86
TStoredProc component 8, 57,

138
TStringField type 84, 86
TStrings type 117
TTable component 6, 8–9, 57,

69–77, 100
multiple views and 96
TDataSource and 10
TQuery vs. 116, 120

TTimeField type 85, 86
TUTILITY.DLL 17
tutorial 19–53
TVarBytesField type 86
TWOFORMS.DPR 95
TWordField type 85, 86
.TXT files 70
types 31

batch move operations
and 90–91

converting 86
editing 164
specifying 152
SQL-compatible 180–181

typing to replace entries 164

U
UniDirectional property 119
unique indexes 153, 156
UnPrepare method 122
UPDATE keyword 179
UPDATE statements 120
UpdateMode property 65–66
updating data 63, 65–66, 101,

107
batch move operations 89
calculated fields 38
handling events 78
multiuser applications 65
read-only results 120
Refresh method and 67

updating queries 50
UPPER function 177
uppercase conversions 177
upsizing desktop databases 130,

140–142
Utilities menu (Database

Desktop) 165

V
validity checks 43–47, 154

types 43
Value property 86
ValueChecked property 113

I n d e x 199

values
accessing 30, 32
assigning 37, 154

at run time 87, 88
calculated fields 68–69,

82–83
default 109, 154
names as 122
required 154
run-time 35
to buttons 114
to combo boxes 109

averaging 176
changing

edit boxes and 36
changing See updating data
converting

numbers to strings 35
string to date/time 173
string to numbers 36, 173

counting 177
currency 83, 85
display formats 85
displaying current 34, 102
finding 42, 70–72

nearest match 71, 72
minimum/maximum 83, 154

aggregate functions
176–177

specifying 51
nil 65
null 65, 121

checking for 73
stored procedures 139

predefined 109
property

accessing 40, 86
changing 82, 83–84
displaying 32, 103
setting 32

restoring previous 64, 101,
107

retrieving specific 179
rounding 86
totaling 176
typing to replace entries 164
updating See updating data

Values property 114
ValueUnchecked property 113
variables

local SQL statements 176, 180
VBX controls 16
VENDOR.DB 183
vertical dividing lines, enabling/

disabling 104
viewing See displaying

views 95–97, 180
Visible property 33, 84, 103
VisibleButtons property 23, 107
Visual Basic controls 16
Visual Query Builder 10, 118–119
Visual Query Builder

window 118
VSL.INI 144

W
W3DBLIB.DLL 143
WhereAll constant 66
WhereChanged constant 66
WhereKeyOnly constant 66
Windows for Workgroups 144
Windows ISQL 129
Winsock 1.1 compliant TCP/IP

products 144
WINSOCK.DLL 144
WordWrap property 108
wordwrapping text 108
working directories

(:WORK:) 149
Working Directory command

(Database Desktop) 149
write privileges 75

Database Application
Developer’s Guide

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Delphi ™

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1995 Borland International. All rights reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders.

Printed in the U.S.A.

1E0R195
9596979899-987654321
W1

i

Chapter 1
Introduction 1
What you should know first 1
Overview of Delphi’s database features

and capabilities 2
What is a database?. 4

What is data? .5
What is data access? 5
Data sources . .6

Understanding Delphi database
architecture. . 6

Overview of the Data Access page. 7
Understanding TTable 8
Understanding TQuery 9
Understanding TDataSource 10

Overview of the Data Controls page. 10
Overview of the Database Forms Expert 11
Overview of the Database Desktop 12

Developing applications for desktop and
remote servers 12

Database application development
methodology. 13

Development scenarios 13
Database application development cycle 13

Design phase 14
Implementation phase. 15
Deployment phase 15

Deploying an application 16
Deploying BDE support 16

Language drivers. 17
ODBC Socket 18

Chapter 2
Building a sample database

application: MASTAPP 19
Building forms 19

MASTAPP aliases 20
Building a single-table form. 21
Building a master-detail form. 24
Building a one-many-many form 27

Working with fields 30
Creating Tfield components 30
Setting Tfield properties at design time 32
Reading field values 34
Assigning values to fields 35
Defining a calculated field. 37
Formatting field values at design time 39
Formatting field values at run time 40

Searching for field values. 42
Validating data entry 43

Using lists and lookups 44
Writing code to check field values 46

Using queries and ranges 47
Setting a range 50

Printing reports and forms 52

Chapter 3
Using data access components

and tools 55
Database components hierarchy 55
Using the TSession component 56

Controlling database connections 56
Getting database information 57

Using datasets . 57
Dataset states . 58
Opening and closing datasets 59
Navigating datasets 60

The Next and Prior methods 60
The First and Last methods 60
The BOF and EOF properties 61
The MoveBy function 62

Modifying data in datasets 63
The CanModify property 63
Posting data to the database 63
Editing records 63
Adding new records 64
Deleting records 64
Canceling changes 64
Working with entire records 64
Setting the update mode. 65

Bookmarking data 66
Disabling, enabling, and refreshing

data-aware controls 67
Using dataset events. 68

Abort a method 68
Using OnCalcFields 68

Using TTable. . 69
Specifying the database table 69
The TableType property 69
Searching a table 70

Using Goto functions 70
Using Find functions. 72
The KeyExclusive property 72

Limiting records retrieved by an
application . 72

Using partial keys 73
The KeyExclusive property 74

Contents

ii

Indexes . 74
The Exclusive property 75
Other properties and methods 75

The ReadOnly and CanModify
properties . 75

The GoToCurrent method 76
Creating master-detail forms 76

The Field Link Designer. 76
Using TDataSource 77

Using TDataSource properties 77
The DataSet property 77
The Enabled property 77
The AutoEdit property 77

Using TDataSource events 78
The OnDataChange event 78
The OnUpdateData event. 78
The OnStateChange event 78

Using TFields and the Fields Editor 79
What are TField components? 79
Using the Fields Editor. 80

Starting the Fields Editor 80
Adding a TField component 81
Deleting a TField component. 81
Defining a new TField component 82
Defining a calculated field 82
Programming a calculated field 82

Editing a TField component. 83
Editing Display properties 83
Using the Input Mask Editor 84
Formatting fields 85
Handling TField events 85
Using TField conversion functions 86

Accessing TField properties
programmatically. 86

Displaying data with standard controls. 87
Using the Fields property 87
Using the FieldByName method 87

Incorporating reports in an application 88
Using TBatchMove 89

Batch move modes 89
Data type mappings 90
Executing a batch move 92
Handling batch move errors 92

Accessing the BDE directly 92
Application examples 93

Creating a master-detail form. 93
Displaying multiple views of a table. 95

Chapter 4
Using Data Controls 99
Data Control component basics 100

Updating fields 101

Displaying data as labels with TDBText. . . . 101
Displaying and editing fields with

TDBEdit. 102
Editing a field. 102

Viewing and editing data with TDBGrid . . . 103
Setting grid options 103
Editing in the grid104
Rearranging column order at run time105
Controlling grid drawing. 105
Using events to control grid behavior 105

Navigating and manipulating records
with TDBNavigator 106

Hiding and showing navigator buttons 107
Displaying fly-by help 107

Displaying and editing BLOB text with
TDBMemo . 107

Displaying BLOB graphics with
TDBImage . 108

Using list and combo boxes 109
TDBComboBox. 109
TDBListBox . .110
TDBLookupCombo111
TDBLookupList 112

TDBCheckBox 113
TDBRadioGroup 114

Chapter 5
Using SQL in applications 115
Using TQuery 115

When to use TQuery 116
How to use TQuery116
The SQL property 117

Creating the query text 117
Using the Visual Query Builder 118

Executing a query 119
The UniDirectional property 119

Getting a live result set 120
Syntax requirements for live result sets120

Dynamic SQL statements 121
Supplying values to parameters121
Preparing a query 121
Using the Params property. 122
Using the ParamByName method 122
Using the DataSource property 123
Dynamic SQL example124

Creating heterogenous queries 124

Chapter 6
Building a client/server application 127
Portability versus optimization 127

Server portability 128

iii

Client/server communication
portability . 128

Using the Local InterBase Server 129
Building an application to access any

server . 129
Building an application to access

InterBase . 130
Using InterBase in upsizing. 130

Connecting to a database server 130
Connectivity . 131

Using TCP/IP 131
Connection parameters 131
Using ODBC. 132
Handling server security 132

Using the TDatabase component. 133
The Connected property. 134
Creating application-specific aliases 134

Understanding transaction control 135
Handling transactions in applications. 135

Implicit transaction control 136
Explicit transaction control 136
Setting the SQL passthrough mode 136

Transaction isolation levels 137
Using stored procedures. 138

Input and output parameters 138
Executing a stored procedure. 139
Oracle overloaded stored procedures 140

Upsizing . 140
Upsizing the database 140
Upsizing the application. 141

Deploying support for remote server access . 142
Oracle. 142
Sybase and Microsoft SQL servers 142
Informix . 143
InterBase . 143

TCP/IP Interface 144
Other communication protocols 144

Deploying ReportSmith support 145

Appendix A
Using Database Desktop 147
What is Database Desktop? 147
The Database Desktop window 147

Starting Database Desktop 147
The Database Desktop window 148
Managing files. 148

Opening files 148
Setting up a working directory. 149
Setting up a private directory 149
Aliases . 149

Creating tables. 149
Understanding tables 150

Relational tables 150
Planning tables 150

Creating a new table. 151
Defining fields 152

Field names .152
Adding, deleting, and rearranging

fields .152
Specifying field type152

Using indexes. 152
Keys in Paradox tables. 152
A dBASE table’s index. 153
An SQL table’s index. 153

Defining secondary indexes 154
Specifying validity checks 154
Borrowing a table structure 155
Creating an SQL table155

Creating indexes on SQL tables 155
Naming SQL indexes 156

Defining referential integrity for Paradox
tables . 157

Procedure . .157
Creating table lookup158

Establishing passwords for Paradox
tables . 159

Restructuring tables. 159
Restructuring an SQL table. 160

Prefixing the index name with the
table name160

Viewing tables 161
Using scroll lock 162
Customizing a table view. 162

Rearranging and resizing columns 163
Resizing rows163
Resizing column headings 163
Saving a custom view 163

Editing data . 164
Using Edit mode164
Selecting fields and records 165
Field view . .165
Adding, subtracting, and emptying

records. .165
Sorting, copying, renaming, and

deleting objects. 166
Sorting tables166
Copying objects 166
Renaming objects 166
Deleting objects 166

Executing SQL statements 167
What is the SQL Editor? 167
Opening the SQL Editor 168
Specifying an alias168
Running an SQL statement. 169
Saving an SQL statement169

iv

Querying table data with QBE 169

Appendix B
Using the BDE configuration utility 171
Creating and managing aliases 171

Adding a new alias 172
Modifying an existing alias 173
Deleting an alias 174

Appendix C
Using local SQL 175
Naming conventions for tables 175
Naming conventions for columns 176
Data manipulation 176

Parameter substitutions in DML
statements . 176

Supported set (aggregate) functions 176
Supported string functions 177
Supported date function. 177
Supported operators 177

Using SELECT 178
Using the FROM clause178
Using the WHERE clause178
Using the ORDER BY clause 179
Using the GROUP BY clause179
Heterogeneous joins179

Using INSERT 179
Using UPDATE 179
Using DELETE179

Data definition. 180
Using CREATE TABLE180
Using ALTER TABLE181
Using DROP TABLE 182
Using CREATE INDEX182
Using DROP INDEX 182

Appendix D
The MAST database 183

Index 187

v

1.1 Database features summary 2
1.2 Additional Delphi Client/Server database

features . 4
1.3 Delphi data sources. 6
1.4 Data Access components 8
1.5 Data Controls components 11
1.6 Redistributable Borland Database Engine

files . 17
2.1 Important TTable properties for a

single-table form 22
2.2 Important TDataSource properties for

a single-table form 22
2.3 Important TDBGrid properties for a

single-table form 23
2.4 Important TDBNavigator properties for a

single-table form 23
2.5 Important detail table properties. 26
2.6 Important component properties for a

master-detail form 26
2.7 Important component properties for a

one-many-many form 29
2.8 Important TField design-time properties . . . 33
2.9 Important TField design-time properties . . . 40
2.10 Important TDBComboBox properties. 44
2.11 Important TDBComboBox properties. 45
2.12 Important TReport properties 52
3.1 TSession methods. 57
3.2 Dataset states 58
3.3 Navigational methods and properties 60
3.4 Methods to insert, update and delete data

in datasets . 63
3.5 Methods used to work with entire records. . 64
3.6 Dataset events 68
3.7 TField properties 83

3.8 TField formatting routines85
3.9 Published TField events 85
3.10 TField conversion functions86
3.11 Important TReport methods. 88
3.12 Batch move modes 89
3.13 Physical data type translations from

Paradox tables to tables of other
driver types . .90

3.14 Physical data type translations from
dBASE tables to tables of other
driver types . .90

3.15 Physical data type translations from
InterBase tables to tables of other
driver types . .91

4.1 Data controls99
4.2 Expanded TDBGrid Options properties . . . 104
4.3 TDBGrid events 105
4.4 TDBNavigator buttons 106
4.5 Data-aware list box and combo box

controls . 109
5.1 Types of query result sets 120
6.1 Server transaction isolation levels. 138
6.2 Oracle SQL Link files 142
6.3 Sybase SQL Link files 142
6.4 Informix SQL Link files. 143
6.5 InterBase SQL Link files 143
6.6 Winsock 1.1 client files 144
6.7 Non-Winsock compliant TCP support

files . 144
A.1 Paradox validity checks. 154
C.1 Data type mappings. 180
C.2 BLOB subtype mappings. 181
D.1 MAST tables 183

Tables

vi

1.1 Delphi database architecture 2
1.2 Structure of a table 4
1.3 Database components architecture 7
1.4 Data Access page of the Component palette . . 7
1.5 The Data Controls page of the Component

palette. . 10
1.6 Development cycle 14
2.1 Database forms described in the tutorial . . . 20
2.2 Building a single-table form using the

Database Form Expert 21
2.3 A single-table form. 22
2.4 Linking fields in a master-detail form. 25
2.5 A master-detail form. 26
2.6 One-many-many form. 29
2.7 The Fields Editor 31
2.8 Adding fields to a data set. 31
2.9 TField component properties 33
2.10 Defining a calculated field 38
2.11 Lists and lookups. 44
2.12 Setting a TQuery’s SQL property 48
2.13 Defining a query parameter 49
3.1 Delphi Data Access components

hierarchy . 56
3.2 Dataset state diagram 59
3.3 Field Link designer 76
3.4 Fields Editor . 80
3.5 Fields Editor Add Fields dialog box 81
3.6 Define Field dialog box 82
3.7 Input Mask Editor 84
3.8 Sample form . 94
3.9 Two forms . 95
4.1 Data Controls Component palette 99
4.2 TDBText component 102
4.3 TDBEdit component at design time 102
4.4 TDBGrid component. 103
4.5 TDBNavigator component 106
4.6 TDBMemo component. 108
4.7 DBImage component. 108
4.8 DBComboBox component 109
4.9 TDBListBox component 110
4.10 TDBLookupCombo component 111
4.11 TDBLookupList component 113
4.12 TDBCheckBox component 113

4.13 A TDBRadioGroup component 114
5.1 TQuery methods and flow. 117
5.2 Editing SQL statements in the String

List Editor . 118
5.3 Working in the Visual Query Builder 119
5.4 Parameters Editor 121
5.5 Form with linked queries. 123
6.1 InterBase parameters in the String List

Editor . 132
6.2 Database Login dialog box. 133
6.3 Database Properties Editor. 134
6.4 TStoredProc Parameters Editor 139
A.1 The Database Desktop application

window . 148
A.2 Application window tool bar 148
A.3 A table . 150
A.4 Table Type dialog box 151
A.5 The Create Table dialog box 151
A.6 The Create Table dialog box for SQL

tables. . 155
A.7 The Define Index dialog box for SQL

indexes. . 156
A.8 Save Index As dialog box. 156
A.9 Referential integrity 157
A.10 Referential Integrity dialog box 158
A.11 The Restructure Table dialog box for

Paradox tables 160
A.12 The Restructure Table dialog box for

SQL tables. . 160
A.13 The Table window tool bar 161
A.14 A scroll lock in the Table window 162
A.15 Hot zone pointers in the Table window . . . 163
A.16 The Customer table in Edit mode 164
A.17 The SQL Editor. 167
A.18 The SQL Editor and an Answer table 168
A.19 SQL Editor Toolbar 168
A.20 SQL statement in the SQL Editor 169
A.21 A query and its results 170
B.1 BDE Configuration Utility main window . . 171
B.2 Sample Add New Alias dialog box. 172
B.3 Customizing the new alias 172
B.4 BDE non-system configuration

dialog box . 173

Figures

	MAIN MENU
	READER TIPS
	TABLES
	1.1 Database features summary
	1.2 Additional Delphi Client/Server database features
	1.3 Delphi data sources
	1.4 Data Access components
	1.5 Data Controls components
	1.6 Redistributable Borland Database Engine files
	2.1 Important TTable properties for a single-table form
	2.2 Important TDataSource properties for a single-table form
	2.3 Important TDBGrid properties for a single-table form
	2.4 Important TDBNavigator properties for a single-table form
	2.5 Important detail table properties
	2.6 Important component properties for a master-detail form
	2.7 Important component properties for a one-many-many form
	2.8 Important TField design-time properties
	2.9 Important TField design-time properties
	2.10 Important TDBComboBox properties
	2.11 Important TDBComboBox properties
	2.12 Important TReport properties
	3.1 TSession methods
	3.2 Dataset states
	3.3 Navigational methods and properties
	3.4 Methods to insert, update and delete data in datasets
	3.5 Methods used to work with entire records
	3.6 Dataset events
	3.7 TField properties
	3.8 TField formatting routines
	3.9 Published TField events
	3.10 TField conversion functions
	3.11 Important TReport methods
	3.12 Batch move modes
	3.13 Physical data type translations from Paradox tables to tables of other driver types
	3.14 Physical data type translations from dBASE tables to tables of other driver types
	3.15 Physical data type translations from InterBase tables to tables of other driver types
	4.1 Data controls
	4.2 Expanded TDBGrid Options properties
	4.3 TDBGrid events
	4.4 TDBNavigator buttons
	4.5 Data-aware list box and combo box controls
	5.1 Types of query result sets
	6.1 Server transaction isolation levels
	6.2 Oracle SQL Link files
	6.3 Sybase SQL Link files
	6.4 Informix SQL Link files
	6.5 InterBase SQL Link files
	6.6 Winsock 1.1 client files
	6.7 Non-Winsock compliant TCP support files
	A.1 Paradox validity checks
	C.1 Data type mappings
	C.2 BLOB subtype mappings
	D.1 MAST tables

	FIGURES
	1.1 Delphi database architecture
	1.2 Structure of a table
	1.3 Database components architecture
	1.4 Data Access page of the Component palette
	1.5 The Data Controls page of the Component palette
	1.6 Development cycle
	2.1 Database forms described in the tutorial
	2.2 Building a single-table form using the Database Form Expert
	2.3 A single-table form
	2.4 Linking fields in a master-detail form
	2.5 A master-detail form
	2.6 One-many-many form
	2.7 The Fields Editor
	2.8 Adding fields to a data set
	2.9 TField component properties
	2.10 Defining a calculated field
	2.11 Lists and lookups
	2.12 Setting a TQuery's SQL property
	2.13 Defining a query parameter
	3.1 Delphi Data Access components hierarchy
	3.2 Dataset state diagram
	3.3 Field Link designer
	3.4 Fields Editor
	3.5 Fields Editor Add Fields dialog box
	3.6 Define Field dialog box
	3.7 Input Mask Editor
	3.8 Sample form
	3.9 Two forms
	4.1 Data Controls Component palette
	4.2 TDBText component
	4.3 TDBEdit component at design time
	4.4 TDBGrid component
	4.5 TDBNavigator component
	4.6 TDBMemo component
	4.7 DBImage component
	4.8 DBComboBox component
	4.9 TDBListBox component
	4.10 TDBLookupCombo component
	4.11 TDBLookupList component
	4.12 TDBCheckBox component
	4.13 A TDBRadioGroup component
	5.1 TQuery methods and flow
	5.2 Editing SQL statements in the String List Editor
	5.3 Working in the Visual Query Builder
	5.4 Parameters Editor
	5.5 Form with linked queries
	6.1 InterBase parameters in the String List Editor
	6.2 Database Login dialog box
	6.3 Database Properties Editor
	6.4 TStoredProc Parameters Editor
	A.1 The Database Desktop application window
	A.2 Application window tool bar
	A.3 A table
	A.4 Table Type dialog box
	A.5 The Create Table dialog box
	A.6 The Create Table dialog box for SQL tables
	A.7 The Define Index dialog box for SQL indexes
	A.8 Save Index As dialog box
	A.9 Referential integrity
	A.10 Referential Integrity dialog box
	A.11 The Restructure Table dialog box for Paradox tables
	A.12 The Restructure Table dialog box for SQL tables
	A.13 The Table window tool bar
	A.14 A scroll lock in the Table window
	A.15 Hot zone pointers in the Table window
	A.16 The Customer table in Edit mode
	A.17 The SQL Editor
	A.18 The SQL Editor and an Answer table
	A.19 SQL Editor Toolbar
	A.20 SQL statement in the SQL Editor
	A.21 A query and its results
	B.1 BDE Configuration Utility main window
	B.2 Sample Add New Alias dialog box
	B.3 Customizing the new alias
	B.4 BDE non-system configuration dialog box

	CHAPTER 1: Introduction
	What you should know first
	Overview of Delphi's database features and capabilities
	What is a database?
	What is data?
	What is data access?
	Data sources

	Understanding Delphi database architecture
	Overview of the Data Access page
	Understanding TTable
	Understanding TQuery
	Understanding TDataSource

	Overview of the Data Controls page
	Overview of the Database Forms Expert
	Overview of the Database Desktop

	Developing applications for desktop and remote servers
	Database application development methodology
	Development scenarios
	Database application development cycle
	Design phase
	Implementation phase
	Deployment phase

	Deploying an application
	Deploying BDE support
	Language drivers
	ODBC Socket

	CHAPTER 2: Building a sample database application: MASTAPP
	Building forms
	MASTAPP aliases
	Building a single-table form
	Building a master-detail form
	Building a one-many-many form

	Working with fields
	Creating Tfield components
	Setting Tfield properties at design time
	Reading field values
	Assigning values to fields
	Defining a calculated field
	Formatting field values at design time
	Formatting field values at run time
	Searching for field values

	Validating data entry
	Using lists and lookups
	Writing code to check field values

	Using queries and ranges
	Setting a range

	Printing reports and forms

	CHAPTER 3: Using data access components
and tools
	Database components hierarchy
	Using the TSession component
	Controlling database connections
	Getting database information

	Using datasets
	Dataset states
	Opening and closing datasets
	Navigating datasets
	The Next and Prior methods
	The First and Last methods
	The BOF and EOF properties
	The MoveBy function

	Modifying data in datasets
	The CanModify property
	Posting data to the database
	Editing records
	Adding new records
	Deleting records
	Canceling changes
	Working with entire records
	Setting the update mode

	Bookmarking data
	Disabling, enabling, and refreshing data-aware controls
	Using dataset events
	Abort a method
	Using OnCalcFields

	Using TTable
	Specifying the database table
	The TableType property
	Searching a table
	Using Goto functions
	Using Find functions
	The KeyExclusive property

	Limiting records retrieved by an application
	Using partial keys
	The KeyExclusive property

	Indexes
	The Exclusive property
	Other properties and methods
	The ReadOnly and CanModify properties
	The GoToCurrent method

	Creating master-detail forms
	The Field Link Designer

	Using TDataSource
	Using TDataSource properties
	The DataSet property
	The Enabled property
	The AutoEdit property

	Using TDataSource events
	The OnDataChange event
	The OnUpdateData event
	The OnStateChange event

	Using TFields and the Fields Editor
	What are TField components?
	Using the Fields Editor
	Starting the Fields Editor
	Adding a TField component
	Deleting a TField component
	Defining a new TField component
	Defining a calculated field
	Programming a calculated field

	Editing a TField component
	Editing Display properties
	Using the Input Mask Editor
	Formatting fields
	Handling TField events
	Using TField conversion functions

	Accessing TField properties programmatically

	Displaying data with standard controls
	Using the Fields property
	Using the FieldByName method

	Incorporating reports in an application
	Using TBatchMove
	Batch move modes
	Data type mappings
	Executing a batch move
	Handling batch move errors

	Accessing the BDE directly
	Application examples
	Creating a master-detail form
	Displaying multiple views of a table

	CHAPTER 4: Using Data Controls
	Data Control component basics
	Updating fields

	Displaying data as labels with TDBText
	Displaying and editing fields with TDBEdit
	Editing a field

	Viewing and editing data with TDBGrid
	Setting grid options
	Editing in the grid
	Rearranging column order at run time
	Controlling grid drawing
	Using events to control grid behavior

	Navigating and manipulating records with TDBNavigator
	Hiding and showing navigator buttons
	Displaying fly-by help

	Displaying and editing BLOB text with TDBMemo
	Displaying BLOB graphics with TDBImage
	Using list and combo boxes
	TDBComboBox
	TDBListBox
	TDBLookupCombo
	TDBLookupList

	TDBCheckBox
	TDBRadioGroup

	CHAPTER 5: Using SQL in applications
	Using TQuery
	When to use TQuery
	How to use TQuery
	The SQL property
	Creating the query text
	Using the Visual Query Builder

	Executing a query
	The UniDirectional property

	Getting a live result set
	Syntax requirements for live result sets

	Dynamic SQL statements
	Supplying values to parameters
	Preparing a query
	Using the Params property
	Using the ParamByName method
	Using the DataSource property
	Dynamic SQL example

	Creating heterogenous queries

	CHAPTER 6: Building a client/server application
	Portability versus optimization
	Server portability
	Client/server communication portability

	Using the Local InterBase Server
	Building an application to access any server
	Building an application to access InterBase
	Using InterBase in upsizing

	Connecting to a database server
	Connectivity
	Using TCP/IP

	Connection parameters
	Using ODBC
	Handling server security

	Using the TDatabase component
	The Connected property
	Creating application-specific aliases

	Understanding transaction control
	Handling transactions in applications
	Implicit transaction control
	Explicit transaction control
	Setting the SQL passthrough mode

	Transaction isolation levels

	Using stored procedures
	Input and output parameters
	Executing a stored procedure
	Oracle overloaded stored procedures

	Upsizing
	Upsizing the database
	Upsizing the application

	Deploying support for remote server access
	Oracle
	Sybase and Microsoft SQL servers
	Informix
	InterBase
	TCP/IP Interface
	Other communication protocols

	Deploying ReportSmith support

	APPENDIX A: Using Database Desktop
	What is Database Desktop?
	The Database Desktop window
	Starting Database Desktop
	The Database Desktop window
	Managing files
	Opening files
	Setting up a working directory
	Setting up a private directory
	Aliases

	Creating tables
	Understanding tables
	Relational tables
	Planning tables

	Creating a new table
	Defining fields
	Field names
	Adding, deleting, and rearranging fields
	Specifying field type

	Using indexes
	Keys in Paradox tables
	A dBASE table's index
	An SQL table's index

	Defining secondary indexes
	Specifying validity checks
	Borrowing a table structure
	Creating an SQL table
	Creating indexes on SQL tables
	Naming SQL indexes

	Defining referential integrity for Paradox tables
	Procedure
	Creating table lookup

	Establishing passwords for Paradox tables
	Restructuring tables
	Restructuring an SQL table
	Prefixing the index name with the table name

	Viewing tables
	Using scroll lock
	Customizing a table view
	Rearranging and resizing columns
	Resizing rows
	Resizing column headings
	Saving a custom view

	Editing data
	Using Edit mode
	Selecting fields and records
	Field view
	Adding, subtracting, and emptying records

	Sorting, copying, renaming, and deleting objects
	Sorting tables
	Copying objects
	Renaming objects
	Deleting objects

	Executing SQL statements
	What is the SQL Editor?
	Opening the SQL Editor
	Specifying an alias
	Running an SQL statement
	Saving an SQL statement

	Querying table data with QBE

	APPENDIX B: Using the BDE configuration utility
	Creating and managing aliases
	Adding a new alias
	Modifying an existing alias
	Deleting an alias

	APPENDIX C: Using local SQL
	Naming conventions for tables
	Naming conventions for columns
	Data manipulation
	Parameter substitutions in DML statements
	Supported set (aggregate) functions
	Supported string functions
	Supported date function
	Supported operators
	Using SELECT
	Using the FROM clause
	Using the WHERE clause
	Using the ORDER BY clause
	Using the GROUP BY clause
	Heterogeneous joins

	Using INSERT
	Using UPDATE
	Using DELETE

	Data definition
	Using CREATE TABLE
	Using ALTER TABLE
	Using DROP TABLE
	Using CREATE INDEX
	Using DROP INDEX

	APPENDIX D: The MAST database
	INDEX
	Symbols - A
	B - C
	D
	E - F
	G - I
	J - M
	N - P
	Q - R
	S
	T
	U - V
	W

