At a Glance

In Week 1 you will get a start on learning how to write Windows
programs in C++. The C++ language is not an easy language to learn. It
is, however, the standard programming language in many corporations
and governments around the world. Learning C++ might not be the
easiest task you could attempt to tackle, but it should be very rewarding,
both intellectually, and, eventually, monetarily.

Your first four days will be spent learning about the basics of the C++
language. As you work through the first four chapters, you will write
simple test programs, each of which will help you solidify a particular
feature of the C++ language. | warn you, though, that these programs
will probably not be the type of program that you purchased C++Builder
to write. The test programs for the first four days will be console
applications. These programswork just like DOS programs. They won’t

Week 1

have any flash or glitter. You probably won’t be terribly impressed. These programs will,
however, help to teach you the basics of C++, and that is what the first four days of this book
are about.

Starting on Day 5 you’ll begin to learn about some of the things that make the visual
programming aspect of C++Builder the great tool that it is. We will talk about frameworks
and what a framework means to you as a Windows programmer. On Day 5 you will build
asimple test program using C++Builder’s visual programming tools. After that we will spend
a couple days going over the C++Builder IDE so that you can become familiar with how the
entire C++Builder IDE works together to make your programming tasks easier. This is where
things start to get more interesting. You will get an opportunity to write some working
Windows programs in the last part of this first week. So, with that in mind, let’s get to it.

Week

Day

Getting Your Feet Wet

by Kent Reisdorph

Congratulations—you’ve chosen one of today’s hottest new programming
tools! Before you can jump into using all of what C++Builder has to offer,
though, you'll need to learn a little about C++ first. In this chapter you will find

|

O oo oo

A quick tour of C++Builder

Information about how to write a Win32 console-mode application
An introduction to the C++ language

Facts about C++ variables and data types

Information about functions in C++ (including the main () function)
A discussion of arrays

| 4

Day 1

What Is C++Builder?

By now you know that C++Builder is Borland’s hot new rapid application development
(RAD) product for writing C++applications. With C++Builder you can write C++Windows
programs more quickly and more easily than was ever possible before. You can create Win32
console applications or Win32 GUI (graphical user interface) programs. When creating
Win32 GUI applications with C++Builder, you have all the power of C++ wrapped up ina
RAD environment. What this means is that you can create the user interface to a program
(the user interface means the menus, dialog boxes, main window, and so on) using drag-and-
drop techniques for true rapid application development. You can also drop OCX controls
on forms to create specialized programs such as Web browsers in a matter of minutes.
C++Builder gives you all of this, but you don’t sacrifice program execution speed because you
still have the power that the C++ language offers you.

I can hear you saying, “This is going to be so cool!” And guess what? You're right! But before
you go slobbering all over yourself with anticipation, I also need to point out that the C++
language is not an easy one to master. I don’t want you to think that you can buy a program
like C++Builder and be a master Windows programmer overnight. It takes a great deal of
work to be agood Windows programmer. C++Builder does a great job of hiding some of the
low-level details that make up the guts of a Windows program, but it cannot write programs
for you. In the end, you must still be a programmer, and that means you have to learn
programming. That can be a long, uphill journey some days. The good news is that
C++Builder can make your trek fairly painless and even fun. Yes, you can work and have fun
doing it!

So roll up your sleeves and get your hiking shoes on. C++Builder is cool, so have fun.

A Quick Look at the C++Builder IDE

This section contains a quick look at the C++Builder IDE. We'll give the IDE a once-over
here, and we’ll examine it in more detail on Day 6, “The C++Builder IDE Explored: Projects
and Forms.” Because you are tackling Windows programming, I’ll assume you are advanced
enough to have figured out how to start C++Builder. When you first start the program, you
are presented with both a blank form and the IDE, as shown in Figure 1.1.

The C++Builder IDE (which stands for integrated development environment) is divided into
three parts. The top window might be considered the main window. It contains the speedbar
on the left and the Component Palette on the right. The speedbar gives you one-click access
to tasks like opening, saving, and compiling projects. The Component Palette contains a
wide array of components that you can drop onto your forms. (Components are things like
text labels, edit controls, list boxes, buttons, and the like.) For convenience, the components

Getting Your Feet Wet 5 |

are divided into groups. Did you notice the tabs along the top of the Component Palette? Go
ahead and click on the tabs to explore the different components available to you. To place
a component on your form, you simply click the component’s button in the Component
Palette and then click on your form where you want the component to appear. Don’t worry
about the fact that you don’t yet know how to use components. We’ll get to that in due time.
When you are done exploring, click on the tab labeled Standard, because you’ll need it in a

moment.
'T’Ih%léﬁ-;-uﬂ-der Bl- il jﬂ-:nl- fres Fm Cespesl [dbms Jmb pe
Whonced | bt | | i i | it | o 11] i] i | Dt | B | |

IDE and the initial | i) B Sl [AEllAL slmiwis a2 |]
blank form. Hj_ﬂﬂ

e i i i i

deactiad T

slioncrirgrn o]y

#ﬁijﬂﬂ'_

i

o = FEFEEEH T el

Lo ol i

tramd Te : :

Vit L I o

A © éul R T

L
PREY Bf & u® emBis
E TS |- T — L

,\IEW rll A component is a self-contained piece of bin_ary software tha_t performs some specific

predefined task, such as a text label, an edit control, or a list box.
Below the speedbar and Component Palette and glued to the left side of the screen is the
Object Inspector. It is through the Object Inspector that you modify a component’s
properties and events. You will use the Object Inspector constantly as you work with
C++Builder. The Object Inspector has one or two tabs, depending on the component
currently selected. It always has a Properties tab. A component’s properties control how the
component operates. For example, changing the color property of acomponent will change
the background color of that component. The list of available properties varies from
component to component, although components usually have several common elements
(width and Height properties, for instance).

Day 1

-‘ A property determines the operation of a component.

Usually the Object Inspector has an Events tab in addition to the Properties tab. Events occur
as the user interacts with a component. For example, when a component is clicked, an event
fires and tells Windows that the component was clicked. You can write code that responds
to those events, performing specific actions when an event occurs. As with properties, the
events that you can respond to vary from component to component.

An event is a method that is invoked in a component as a result of that component’s
EW TER . . .
interaction with the user.

To the right of the Object Inspector is the C++Builder workspace. The workspace initially
displays the Form Editor. It should come as no surprise that the Form Editor allows you to
create forms. In C++Builder a form represents a window in your program. The form might
be the program’s main window, a dialog box, or any other type of window. You use the Form
Editor to place, move, and size components as part of the form creation process. Hiding
behind the Form Editor is the Code Editor. The Code Editor is where you type code when
writing your programs. The Object Inspector, Form Editor, Code Editor, and Component
Palette work interactively as you build applications.

Now that you've had a look at what makes up the C++Builder IDE, let’s actually do
something.

Hello World

It’s tradition. Almost all programming books start you off by having you create a program
that displays He11o wor1d on the screen. I'm tempted to do something else, but tradition is
a force to be reckoned with, so He11o world it is. You've got some work ahead of you in the
next few chapters, so | thought I'd give you a taste of C++Builder’s goodies before putting
you to work on learning the seemingly less-glamorous basics of C++. You'll have a little fun
before you have to go on the chain gang. C++Builder (and its cousin, Delphi) possibly allow
you the quickest route to He11o wor1d of any Windows programming environment to date.

Right now you should have C++Builder running, and you should be looking at a blank form.
By default, the form is named Form1. (The form name is significant in C++Builder, but I'll
address that a little later.) To the left of the form, the Object Inspector shows the properties
for the form. Click on the title bar of the Object Inspector. The caption property is
highlighted, and the cursor is sitting there waiting for you to do something. (If the caption
property is not in view, you might have to scroll the Object Inspector window to locate it.
Properties are listed in alphabetical order.) Type He11lo world! to change the form’s caption.

Getting Your Feet Wet 7 |

NoOTE As you modify properties, C++Builder will immediately display the

> results of the property change when appropriate. As you type the new
caption, notice that the window caption of the form is changing to
reflect the text you are typing.

Now click the Run button on the speedbar (the one with the green arrow). (You could also
press F9 or choose Run | Run from the main menu.) C++Builder begins to build the
program. The compiler status dialog box, shown in Figure 1.2, is displayed, and you can
watch as C++Builder whips through the files necessary to build your program. After a brief
wait, the compiler status box disappears, the form is displayed, and the caption shows He11o
wor1d!. In this case, the running program looks almost identical to the blank form. You may
scarcely have noticed when the program was displayed because it is displayed in the exact
location of the form in the Form Editor. (There is a difference, though, because the Form
Editor displays an alignment grid and the running program does not.) Congratulations—
you've just written your first C++ Windows program with C++Builder. Wow, that was easy!

“But what is it?” you ask. It’s not a lot, | agree, but it is a true Windows program. It can be
moved by dragging the title bar, it can be sized, it can be minimized, it can be maximized,
and it can be closed by clicking the Close button.

Figure 1.2. _
The compiler status R R
dialog box. Gl I [T .
e B wimag ¥ [[ncm 1
'-IW!

Okay, so maybe displaying He11o world! just in the caption was cheating a little. Let’s spruce
it up a bit. If you still have the Hello World program running, close it by clicking the Close
button in the upper-right corner of the window. The Form Editor is displayed again, and you
are ready to modify the form (and, as a result, the program).

To make the program more viable, we’re going to add text to the center of the window itself.
To do this, we’'ll add a text label to the form. First, click on the Standard tab of the
Component Palette. The third component button on the palette has an A on it. If you put
your mouse cursor over that button, the tool tip will display Labe1. Click the label button and
then click anywhere on the form. A label component is placed on the form. Now turn your
attention to the Object Inspector. It now displays the properties for Labell (remember that
before it was showing the properties for Form1). Again the caption property is highlighted.

Day 1

Figure 1.3. Hel el =[]
The Hello World
program running.

Click on the title bar of the Object Inspector or on the caption property and type Hello
wor1d!. Now the label on the form shows He11o wor1d!. As long as we're at it, let’s change
thesize of the label’s text aswell. Double-click on the Font property. The property will expand
to show the additional font attributes below it. Locate the size property under Font and
change the font size to 24 (it is currently set to 8). As soon as you press the Enter key or click
on the form, the label instantly changes to the new size.

Because the label is probably not centered on the form, you may want to move it. To move
a component, simply click on it and drag it to the position you want it to occupy. Once you
have the label where you want it, you're ready to recompile and run the program. Click the
Run button again. C++Builder compiles the program again and, after amoment (shorter this
time), the program runs. Now you see Hel1o wor1d! displayed in the center of the form as
well as in the caption. Figure 1.3 shows the Hello World program running.

Hello World!

With this little taste of C++Builder, you can see that writing C++ Windows programs with
C++Builder is going to be a great deal more interesting than it was in the good ol’ days. To
prepare for what you are going to do next, you need to close the current project in the
C++Builder IDE. Choose File | Close All from the main menu. Click No when prompted
to save changes to Projectl, or save the project as Hel1oworld if you are fond of your new
creation.

Hello World, Part II—A WIn32 Console

Application

In the next couple chapters you are going to learn the basics of the C++ language. Along the
way you will write some simple test programs. These test programs will work best as console
applications. Forall intentsand purposes, these programs look like DOS programs when they
run. There are some major differences between a Win32 console app and a DOS program,

Getting Your Feet Wet 9 |

but you need not be concerned about that right now. So, without further ado, let’s create
Hello World as a Win32 console program with C++Builder.

-l A Win32 console application is a 32-bit program that runs in a DOS box under
Windows 95 or Windows NT.

From the main menu, choose File | New. C++Builder displays the Object Repository.
Curiously enough, the Object Repository’s title bar says New Items, but don’t be thrown by
that. The Object Repository contains predefined projects, forms, dialog boxes, and other
objects you can add to your applications or use to begin a new project. I will discuss the Object
Repository in detail on Day 9, “Creating Applications in C++Builder.” For now, click on the
New tab in the Object Repository and double-click Console App to start a hew console
application project. C++Builder creates the project and displays the Code Editor so that you
can enter code for the program. Figure 1.4 shows the Code Editor as it appears when starting
a new console-mode application.

Figure 1.4. B 00 By A P |, s
The C++Builder Pt oo |
Code Editor window. i e

P

ImL BELGOIARY &0, Chal " argvi
return O

o1 | o

I T P-JI'I.-__ | s

You will notice a couple of differences between the C++Builder IDE now and how it looked
earlier when we created a GUI application. First, there is no Form Editor. That’s because a
console application can’t display forms (well, that’s not completely true, but it's accurate
enough for this discussion). Also notice that the Object Inspector is blank. You can only place
components on a form, so the Object Inspector is useless in a console application.

Tip When writing console applications, you can close the Object Inspector
to make more room for the Code Editor window. Close the Object
"ﬂ Inspector by clicking the Close button on the Object Inspector’s title

bar. To bring back the Object Inspector, press F11 or choose
View | Object Inspector from the main menu.

|10

Day 1

When you examine the Code Editor, you should see the following text displayed in the editor
window:

[e e
#include <condefs.h>

#include <stdio.h>

#include <stdlib.h>

#pragma hdrstop
int main(int argc, char **argv)

{

return 0;

This is a do-nothing C++ program, but a valid C++ program nonetheless. We'll
NALYSI

modify the code in just a moment to make this program actually do something, but
first | want you to notice the lines that begin with //. These are comment lines that, in this
program, serve no purpose other than to divide the program’s code visually. (You will
normally use comment lines to document your code.) C++Builder adds these comment lines
automatically when a new console application is first created. (In future code listings I will
eliminate the comment lines to save space.) Notice also that the single statement in this code
ends in a semicolon. (I know it doesn’t make sense right now, but there is only one actual
executable statement in this program.) The semicolon is used at the end of each statement
in a C++ program.

Very early in the process of learning the C and C++ languages, the budding programmer
must learn the difference between an expression and a statement. The “official” definition
of a statement is “an expression that is followed by a semicolon.” The semicolon closes an
expression and makes it a kind of single-line block of code. I'll get into the code block soon,
but for now you should realize that an expression is a unit of code that evaluates to some
quantity. A statement is an expression that is closed. For example, consider the following
statement:

c =a+ b;

In this example, the portion to the right of the equal sign, a + b, is an expression. The entire
line is a statement. | know this may be a bit confusing at the moment, but it should become
clearer as we go along. I'll try to be very careful when | use these two terms. For now, though,
just remember that a statement is followed by a semicolon and is a closed expression.

Also notice the opening and closing braces in the program. In C++, a block of code begins
with the opening brace ({) and ends with the closing brace (3). The bracesare used to delineate
the beginning and end of code blocks associated with loops, functions, if statements, and in
other cases as well. In this program there is only one set of braces because it is a simple
program.

Getting Your Feet Wet 11 |

In order to display He11o wor1d! on the screen, we need to make use of a C++ class called
iostream, SO @ quick tutorial on that class is needed. (You don’t know about classes yet, but
don’tworry about that right now.) The iostream class uses streams to perform basic inputand
output, such as printing text on the screen or getting input from the user. The cout stream
is used to send data to the standard output stream. In a console application, the standard
output stream means the console, or the screen. The cin stream is used to get data from the
console, such as user input. iostream implements two special operators to place information
onastream or to extract information from astream. The insertion operator (<<) is used to insert
data into an output stream, and the extraction operator (>>) is used to extract data from an
input stream. To output information to the console, you would use

cout << "Do something!";

This tells the program to insert the text bo something! onto the standard output stream.
When this line in the program executes, the text will be displayed on the screen.

NoOTE cout is for use in console-mode applications only. A Windows GUI

- application does not have a standard output stream (everything in a
GUI app is graphics based), so the output from cout goes nowhere in a
Windows GUI program. Standard Windows programs use brawText ()
or Textout () to display text on the screen. C++Builder programs can
also use brawText () and Textout (), either using the Windows API or
via the Tcanvas class.

Before you can use cout, you need to tell the compiler where to find the description (called
the declaration) of the iostream class. The declaration for iostream is located in a file called
10STREAM. H. This file is called a header file.

-M Aheader file (or header for short) contains the class declaration of one or more classes.

To tell the compiler to look in 1osTrREAM.H for the class definition of iostream, use the
#include directive as follows:

#include <iostream.h>

A degla_r_ation is a statement of intention or a foreshadow_ing of an event. It precedes

a definition of that event. For example, a voter declares himself to be a Democrat or

Republican. He then defines himself to be a member of that party by voting in that party’s

primary election. In C and C++, the distinction between these two separate states is very
important.

| 12 Day 1

Now the compiler will be able to find the iostream class and will understand what to do when
it encounters the cout statement.

Tip If you forget to include the header file for a class or a function your
program references, you will get a compiler error. The compiler error
"'ﬁ will say something to the effect of undefined symbol 'cout'. If you see

this error message, you should immediately check to be sure that you
have included all of the headers your program needs. To find out what
header file a class or function’s declaration is in, click on the function
or class name and press the F1 key. Windows help will run, and the
help topic for the item under the cursor will be displayed. Toward the
top of the help topic you will see a reference to the header file in which
the function or class is declared.

There’s one more thing I'll mention before we write the console version of Hello World. The
iostream class contains special manipulators that can be used to control how streams are
handled. The only one we are concerned with right now is the end1 (end line) manipulator,
which is used to insert anew line in the output stream. We’ll use end1 to insert a new line after
we output text to the screen.

Now that you have some understanding of the iostreanm class, we can proceed to write Hello
World as a console application. Edit the program until it looks like Listing 1.1. Each of the
lines in the listing has a number that I've put there for identification. Be sure to skip that
number and the space after it when you type in the lines.

Listing 1.1. HELLO.CPP.

#include <condefs.h>

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h> // add this line
#pragma hdrstop

int main(int argc, char **argv)

{
cout << "Hello World!" << endl; // add this line
return 0;

}

- 0 OWoONOOhWN =

—_

Getting Your Feet Wet 13 |

NoTE In C++, whitespace is ignored. For the most part, it doesn’t matter
- where you put spaces or new lines. Obviously you cannot insert spaces

— in the middle of keywords or variable names, but other than that just

about anything goes. For example, the following bits of code are

equivalent:

int main(int argc, char **argv)

{

cout << "Hello World!";

return 0;

}

is the same as

int main(int argc,char** argv){cout<<"Hello World!";return 0;}
Obviously, the first form is more readable and is much preferred.
While coding styles vary, if you emulate the coding conventions you

see in this book, you should be okay when it comes to programming in
the real world.

Now click the Run button on the speedbar. The program compiles and runs. When
the program runsyou will seea DOS box pop up and the wordsHe11o wor1d! ...whoops!
What happened? You probably saw the application for a split second and then watched as it
disappeared. The reason for this is that at the end of the main() function the program
terminates and the console window immediately closes. To remedy this we need to add a
couple of lines to our program to prevent the console window from closing until we’re done
with it. The standard C library includes a function called getch() that is used to get a
keystroke from the keyboard. We'll use that as a means of preventing the console window
fromclosing. Again, edit the program in the editor window until it looks like Listing 1.2. You
don’t need to add the comment lines if you don’t want to. Remember to skip the line
numbers.

Listing 1.2. HELLO.CPP (revised).

#include <condefs.h>

#include <stdio.h>

#include <stdlib.h>

#include <iostream.h>

#include <conio.h> // add this line
#pragma hdrstop

0N O WN =

int main(int argc, char **argv)

continues

|14

Day 1

Listing 1.2. continued

9: {

10: cout << "Hello World!" << endl;

11: // add the following two lines

12: cout << endl << "Press any key to continue...";
13: getch();

14: return 0;

15: }

This time the application runs, He11o wor1d! is displayed, and the console window

stays visible. To end the program and close the console window, you can press any
key on the keyboard.

Youcanalsofind the programs listed in the text at nttp: / /www.mcp. com/sams/codecenter. html.
The examples need to be installed on your hard drive before they can be compiled. While it’s
good practice early on to enter short programs by hand, you may want to load the longer
sample programs from your hard drive in order to avoid inevitable typing errors and the
compiler errors that are sure to follow.

That’s all there is to it. Hello World, Part 11 isn’t too exciting, but you’ll make good use of
console-mode applications as you explore the C++ language in the following pages. That's
why it is necessary for you to understand how to create and run a console-mode application.
Now let’s move on to the basics of the C++ language.

C++ Language Overview

C++isapowerful language. It allows you to do things that are not possible in other languages.
As is true in most of life, that kind of power does not come without responsibility. It could
be said that C++ gives you just enough rope to hang yourself—and while starting out learning
C++, you often will hang yourself. This usually comes in the form of memory overruns and
access violations that will cause crashes in your programs.

I will do my best to describe C++ in the short space allotted. Entire books have been written
on the C++ language (and big ones at that!), so do not expect that | can cover it all in a couple
chapters. | strongly suggest that, after you read this book and experiment with C++Builder
for a period of time, you buy a book that explains C++ in greater detail.

C++allows you to take advantage of object-oriented programming (OOP) to its fullest. OOP
is not just a buzzword. It has real benefits because it allows you to create objects that can be
used in your current program and reused in future programs.

Getting Your Feet Wet 15 |

An object, like components described earlier, is a piece of binary software that
performs a specific programming task. (Components are objects, but not all objects
are components. I'll get into that later.)

An object reveals to the user (the programmer using the object) only as much of itself as
needed in order to simplify its use. All internal mechanisms that the user doesn’t need to know
about are hidden from sight. All of this is rolled up in the concept of object-oriented
programming. OOP allows you to take a modular approach to programming, thus keeping
you from constantly re-inventing the wheel. C++Builder programs are OOP-oriented due to
C++Builder’s heavy use of components. Once acomponent is created (either one of your own
or one of the built-in C++Builder components), it can be reused in any C++Builder program.
Acomponent can also be extended by inheritance to create a new component with additional
features. Best of all, components hide their internal details and let the programmer
concentrate on getting the most out of the component. Objectsand C++ classes are discussed
in detail on Day 4, “Totally Immersed: C++ Classes and Object-Oriented Programming.”

Humble Beginnings

In the beginning there was C...as far as C++ is concerned, anyway. C++ is built on the C
programming language. It has been described as “C with classes.” This foundation in C isstill
very prevalent in C++ programs written today. It's not as if C++ were written to replace C,
butrather to augmentit. The rest of this chapter and much of the next chapter focus primarily
on the part of the C++ language that has its roots in C. Actually, we will be dealing with the
C language here and moving to C++ later, on Day 2, “Wading In Deeper.” You don’t have
to be concerned with which of the information presented is from C and which is from C++
because it’s all rolled up into the language we call C++.

It would be nice if presenting the C++ language could be handled sequentially. That’s not
the case, though, because all of the features we will be discussing are intertwined. Presenting
the C++ language sequentially is not possible, so I'll take the individual puzzle pieces one at
atime and start fitting them together. Toward the end of Day 3, “Up to Your Neck in C++,”
you’ll have a fairly complete picture of the C++ language. Don’t be concerned if you do not
instantly grasp every concept presented. Some of what is required to fully understand C++
can only come with real-world experience.

Variables

Well, we have to start somewhere, so let’s take a look at variables. A variable is essentially a
name assigned to a memory location. Once you have declared a variable, you can then use
it to manipulate data in memory. That probably doesn’t make much sense to you, so let me

Day 1

give you a few examples. The following code snippet uses two variables. At the end of each

line of code is a comment that describes what is happening when that line executes:

int x;
X = 100;
X += 50;

int y = 150;

X +=y;
X++;

// variable declared as an integer variable
// 'x' now contains the value 100

// 'x' now contains the value 150
// 'y' declared and initialized to 150
// 'x' now contains the value 300
// 'x" now contains the value 301

-!5‘ A variable is a location set aside in computer memory to contain some value.

Notice that the value of x changes as the variable is manipulated. I'll discuss the C++ operators

used to manipulate variables a little later.

s

L4

WARNING

Variables that are declared but are not initialized will contain random
values. Because the memory to which the variable points has not been
initialized, there is no telling what that memory location contains. For
instance, look at the following code:
int x;
int y;

=y + 10; // oops!
In this example the variable x could contain any value because y was
not initialized prior to use.

The exception to this rule is that global variables and variables declared
with the static modifier are initialized to e. All other variables contain
random data until initialized or assigned a value.

Variable names can mix upper- and lowercase letters and can include numbers and the
underscore (_), but they cannot contain spaces or other special characters. The variable name
must start with a character or the underscore. Generally speaking, it'’s not agood idea to begin
avariable name with an underscore because compilers often start special variable and function
names with the underscore. The maximum allowed length of a variable name will vary from
compiler to compiler. If you keep your variable names to 31 characters or less, you'll be safe.

In reality, anything more than about 20 characters is too long to be useful anyway.

C++ Data Types
-!5‘ In C++ a data type defines the way the compiler stores information in memory.

Getting Your Feet Wet 17 |

In some programming languages you can get by with assigning any type of value to a variable.
For example, look at the following examples of BASIC code:

.1;
1000;
3.14
457000;

X X X X
nomnnn

In BASIC the interpreter takes care of allocating enough storage to fit any size or type of
number. In C++, however, you must declare a variable’s type before you can use the variable:
int x1 = -1;

int x = 1000;

float y = 3.14;

long z = 457000;

This allows the compiler to do type-checking and to make sure that things are kept straight
when the program runs. Improper use of a data type will result in a compiler error or warning
that can be analyzed and corrected so that you can head off a problem before it starts. Some
data types can have both signed and unsigned versions. A signed data type can contain both
negative and positive numbers, whereas an unsigned data type can contain only positive
numbers. Table 1.1 shows the basic data types in C++, the amount of memory they require,
and the range of values possible for that data type.

Table 1.1. Data types used in C++ (32-bit programs).

Data Type Size in Bytes Possible Range of Values

char 1 -128 10 126

unsigned char 1 0 to 255

short 2 -32,768 10 32,767

unsigned short 2 0 t0 65,535

long 4 -2,147,483,648 t0
2,147,483,648

unsigned long 4 0 10 4,294,967,295

int 4 Same as long

unsigned int 4 Same as unsigned long

float 4 1.2E-38 10 3.4E381

double 8 2.2E-308 10 1.8E3082

bool 1 true Of false

Day 1

NoTE In C++Builder (as well as in Borland C++ 5.0), boo1 is a true data type.
> Some C++ compilers have a BooL keyword, but boo1 is not a data type
in those compilers. In those cases BooL is a typedef that makes the BooL
equivalent to an int. A typedef in effect sets up an alias so that the
compiler can equate one symbol with another. A typedef looks like this:

typedef int BOOL;
This tells the compiler, “BooL is another word for int.”

NoTE Only the double and f1oat data types use floating-point numbers

- (numbers with decimal places). The other data types deal only with
integer values. Although it’s legal to assign a value containing a decimal
fraction to an integer data type, the fractional amount will be discarded
and only the whole-number portion will be assigned to the integer
variable. For example,
int x = 3.75;
will result in x containing a value of 3. Note that the resulting integer
value is not rounded to the nearest whole number; rather, the decimal

fraction is discarded altogether. By the way, you'd be surprised how few
times you need floating-point numbers in most Windows programs.

C++ will perform conversion between different data types when possible. Take the following
code snippet for an example:

short result;

long numi = 200;

long num2 = 200;

result = num1 * num2;

Inthis case | am trying to assign the result of multiplying two 1ong integers to a short integer.
Even though this formula mixes two data types, C++ is able to perform a conversion. Would
you like to take a guess at the result of this calculation? You may be surprised to find out that
the resultis -25,536. This is due to wrapping. If you look at Table 1.1, you’ll see that a short
can have amaximum value of 32, 767. What happens if you take a short with a value of 32, 767
and add 1 to it? You will end up with a value of -32,76s. This is essentially the same as the
odometer on a car turning over from 99,999 to 00,000 when you drive that last mile. To
illustrate, type in and run the program contained in Listing 1.3.

Getting Your Feet Wet 19 |

Listing 1.3. WRAPME.CPP.

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

int main(int argc, char **argv)
{
short x = 32767;
cout << "x = " << x << endl;
X++;
10: cout << "x = " << x << endl;
11: getch();
12: return 0;

©CoONOOOH»WN =

The output will be

32767
-32768

X
X

You won’t go too far wrong if you use the int data type as your data type of choice. You are
unlikely to run into the problem of wrapping because the int data type gives you a range of
-2 billion to +2 billion, plus change. Your programs will be slightly larger, however, because
you will be using more memory than required in many situations.

Okay, where was 1? Oh, yes, | was talking about automatic type conversion. In some cases,
C++ cannot perform a conversion. If that is the case, you will get one of several possible
compiler errors that essentially say cannot convert from X to Y. You may also get a compiler
warning that says, Conversion may lose significant digits.

Learn to treat compiler warnings as errors because the compiler is

Tip trying to tell you that something is not quite right. Ultimately, you
should strive for warning-free compiles. In some cases a warning cannot
w be avoided, but be sure to examine all warnings closely. Do your best to

understand the reason for the warning and correct it if possible.

C++ Operators

Operators are used to manipulate data. Operators perform calculations, check for equality,
make assignments, manipulate variables, and other more esoteric duties most programmers

| 20 Day 1

never get into. There are a lot of operators in C++. Rather than present them all here, | will
list only those most commonly used. Table 1.2 contains a list of those operators.

Table 1.2. Commonly used C++ operators.

Operator Description Example
Mathematical Operators

+ Addition X =y + z;

- Subtraction X =y - z;

O Multiplication X =y * z;

/ Division x =y / z;

Assignment Operators

= Assignment X = 10;

+= Assign and sum x += 10; (sameasx = x + 10;)
-= Assign and subtract X -= 10;

*= Assign and multiply X *= 10;

\= Assign and divide X \= 10;

&= Assign bitwise AND X &= 0x02;

1= Assign bitwise or X = 0x02;

Logical Operators
&& Logical AND if (x &% OXFF) {...}
' Logical or if (x !! OXFF) {...}

Equality Operators

== Equal to if (x == 10) {...}
1= Not equal to if (x 1= 10) {...}
< Less than if (x < 10) {...}
> Greater than if (x > 10) {...}
<= Less than or equal to if (x <= 10) {...}

>= Greater than or equal to if (x >= 10) {...}

Getting Your Feet Wet 21 |

Operator Description Example
Unary Operators
* Indirection operator int x = *y;
& Address of operator int* x = &y;
- Bitwise noT X &= ~0x02;
! Logical noT if (lvalid) {...}
++ Increment operator x++; (same as x = x + 1;)
Decrement operator X--3

Class and Structure Operators

Scope resolution MyClass: : SomeFunction()
> Indirect membership myClass->SomeFunction();
Direct membership myClass.SomeFunction();

As you can see, the list of operators is a bit overwhelming, so don’t worry about trying to
memorize each one. As you work with C++ you will gradually learn how to use all of the
operators.

It should be noted that in some cases an operator can be used either pre-increment (++x) or
post-increment (x++). A pre-increment operator tells the compiler, “Increment the variable’s
value and then use the variable.” A post-increment operator tells the compiler, “Use the
variable first and then increment its value.” For example, this code

int x = 10;

cout << "x = " << x++ << endl;
cout << "x = " << x << endl;
cout << "x = " << ++x << endl;
cout << "x = " x << endl;

will result in the following output:

X =10
x = 11
X =12
X =12

A lot of this won’t make sense until you’ve worked with C++ for a while, but be patient and
itwill eventually come to you. As Pontius said to Augustus, “Relax, Augie. Rome wasn’t built
in a day, ya know.”

Day 1

NoTe In C++, operators can be overloaded. This is a technique by which a

- programmer can take one of the standard operators and make it perform
in a specific manner for a specific class. For example, you could overload
the ++ operator for one of your classes and have it increment the value of
a variable by 10, rather than by 1. Operator overloading is an advanced
C++ technique and won’t be covered in any detail in this book.

You will notice that some of the operators use the same symbol. The meaning of the symbol
is different depending on the context. For instance, the asterisk () can be used to perform
multiplication, declare a pointer, or dereference a pointer. This can be confusing at first, and
to be honest, it can be confusing at times no matter how long you've been programming in
C++. Just keep plugging away and eventually it will start to sink in.

You will see many examples of these operators as you go through this book. Rather than trying
to memorize the function of each operator, try instead to learn through careful study of the
example programs and code shippets.

Functions in C++

Functions are sections of code separate from the main program. These code sections are called
(executed) when needed to perform specific actions in a program. For example, you might
have a function that takes two values, performs a complex mathematical calculation on those
two values, and returns the result. Or you might need a function that takes a string, parses
it, and returns a portion of the parsed string.

- ' Functions are sections of code, separate from the main program, that perform a
single, well-defined service.

Functionsarean important part of any programming language, and C++ isno exception. The
simplest type of function takes no parameters and returns void (meaning it returns nothing
at all). Other functions may take one or more parameters, and may return a value. Rules for
naming functions are the same as those discussed earlier for variables. Figure 1.5 shows the
anatomy of a function.

l T |‘ A parameter isavalue passed to a function that is used to alter its operation or indicate
LSRR the extent of its operation.

Before a function can be used, it must have first been declared. The function declaration, or
prototype, tells the compiler how many parameters the function takes, the data type of each
parameter, and the data type of the return value for the function. Listing 1.4 illustrates this
concept.

Getting Your Feet Wet 23 |

A prototype is a declaration of a function’s appearance or a foreshadowing of its
definition.

Figure 1.5. Return Type Function Name Parameter List

Anatomy of a \ l /
function.

int SomeFunction (int x, int y)
Function Body {

L 5 intz=(x*vy);

return z;

}
Return

Statement

Listing 1.4. MULTIPLY.CPP.

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

int multiply(int, int);
void showResult(int);

int main(int argc, char **argv)

{

10: int x, y, result;

11: cout << endl << "Enter the first value: ";
12: cin >> x;

13: cout << "Enter the second value: ";
14: cin >> y;

15: result = multiply(x, y);

16: showResult(result);

17: cout << endl << endl << "Press any key to continue...";
18: getch();

19: return 0;

20: }

©oOoO~NOO~ON =

22: int multiply(int x, int y)
23: {

24: return x * y;

25: }

27: void showResult(int res)

28: {

29: cout << "The result is: " << result << endl;
30: }

This program asks for two numbers from the user (using the standard input stream, cin) in
lines 11 through 14, callsthe mu1tip1y () function to multiply the two numbers together (line
15), and then calls the showresult() function to display the result (line 16). Notice the

|24

Day 1

function prototypes for the muitip1y () and showresult() functions on lines 5 and 6, just
above the main program. The prototypes list only the return type, the function name, and
the data type of the function’s parameters. That is the minimum requirement for a function
declaration.

If desired, the function prototype may contain variable names that can be used to document
what the function does. For example, the function declaration for the muitip1y () function
could have been written like this:

int multiply(int firstNumber, int secondNumber);

In this case it’s pretty obvious what the muitip1y() function does, but it can’t hurt to
document your code both through comments and through the code itself.

Look again at Listing 1.4. Notice that the function definition for the muitip1iy () function
(lines 22 through 25) is outside of the block of code defining the main function (lines 8
through 20). The function definition contains the actual body of the function. In this case
the body of the function is minimal because the function simply multiplies the two function
parameters together and returns the result.

The multip1y () function in Listing 1.4 could be called one of several ways. You can pass
variables, literal values, or even the results of other function calls:

result = multiply(2, 5); // passing literal values
result = multiply(x, y); // passing variables
showResult (multiply(x,y)); // return value used as a
// parameter for another function
multiply(x, y); // return value ignored

Notice in this example that the return value is not used. In this case it doesn’t make much
sense to call the muitip1y() function and ignore the return value, but ignoring the return
value is something that is done frequently in C++ programming. There are many functions
that perform aspecific action and then return a value indicating the status of the function call.
In some cases the return value is not relevant to your program, so you can just ignore it. If
you don’t do anything with the return value, it is simply discarded and no harm is done. For
example, we have been ignoring the return value of the getch () function (which returns the
ASCII value of the key that was pressed) in our sample programs.

Functions can (and frequently do) call other functions. Functions can even call themselves.
This is called recursion, and is one way to get into trouble in C++ programming. Recursion
is best left alone until you’ve put in some time with the C++ language.

Recursion is the process by which a function calls itself.

The material on functions presented in this section deals with standalone functions ina C
or C++ program (they are standalone in that they are not members of a class). Standalone

Getting Your Feet Wet 25 |

functions can be used in C++ exactly as they can be used in C. However, C++ takes functions
a bit further. I'll leave that discussion for now and pick it up again later when we look deeper
into C++.

House RuULES FOR FUNCTIONS

0O A function can take any number of parameters or no parameters at all.

0O A function can be written to return a value, but it is not mandatory that a function
return a value.

O If a function has a return type of void, it cannot return a value. If you attempt to
return a value from a function with a return type of void, a compiler error will be
issued. A function that returns void need not contain a return Statement at all, but
it may if desired. Either way is acceptable. If no return statement is provided, the
function returns automatically when it gets to the end of the function block (the
closing brace).

O If the function prototype indicates that the function returns a value, the function
body should contain a return statement that returns a value. If the function does
not return a value, a compiler warning is issued.

0O Functions can take any number of parameters but can return only one value.

Variables can be passed to functions by value, by pointer, or by reference. (I'll
discuss this a little later.)

The function statement, in declaration (prototype) format:
ret_type function_name(argtype 1 arg_ 1, argtype 2 arg 2, ..., argtype_n arg_n);

The function declaration identifies a function that will be included in the code. It shows the
return data type (ret_type) of the function and the name of the function (function_name),
and identifies the order (arg_1, arg_2, ..., arg_n) and types (argtype_1, argtype 2, ...,
argtype_n) Of data arguments the function will expect.

4 SYNTAX

The function statement, in definition format:

ret_type function_name(argtype 1 arg 1, argtype 2 arg 2, ..., argtype n arg_n) {
Statements;
}
The function definition identifies the code block (statements) that makes up the function
and shows the return data type (ret_type) of the function. function_name identifies the
function. The parameters supplied to the function (arg_1, arg_2, ..., arg_n) and their types
A (argtype_1, argtype_2, ..., ar‘gtype_n) are included.

Day 1

The main() Function

A C++ program must have amain () function. This function serves as the entry point into the
program. You have seen this in each of the sample programs you've seen thus far. Not all C++
programs have a traditional main() function, however. Windows programs written in C and
C++ have an entry-point function called winmain() rather than the traditional main()
function.

NoTE A C++Builder GUI application has a winmain(), but it is hidden from
> you. C++Builder frees you from having to worry about the low-level
details of a Windows program and allows you to concentrate on
creating the user interface and the remainder of the program.

main() is a function like any other function. That is, it has the same basic anatomy. You
already saw that for a 32-bit console application C++Builder creates a defaultmain () function
with the following prototype:

int main(int argc, char** argv);

Thisform of main () takes two parametersand returnsan integer value. Asyou learned earlier,
you pass values to a function when you call the function. In the case of main (), though, you
never call the function directly—it’s automatically executed when the program runs. So how
does the main () function get its parameters? The answer: From the command line. Let me
illustrate.

Let’sassume that you have a Win32 console application that you execute froma DOS prompt
with the following command line:

grep WM_KILLFOCUS -d -i

In this case you are starting a program called grep with command-line arguments of
WM_KILLFOCUS, -d, and -i. Given that example, let me show you how that translates to argc
and argv inside the main() function. First of all, the integer variable argc will contain the
number of parameters passed in the command line. This will always be at least 1 because the
program name counts as a parameter. The variable argv is an array of pointers to strings. This
array will contain each string passed in the command line. For this code example, the
following are true:

argv contains 4

argc[0] contains c:\bc5\bin\grep.com
argc[1] contains wM_KILLFOCUS
argcl[2] contains -d

argc[3] contains -i

Getting Your Feet Wet 27 |

Let’s prove that this works with a little sample program. Create a new console application in
C++Builder and enter the program shown in Listing 1.5.

Listing 1.5. ARGSTEST.CPP.

: #include <iostream.h>
: #include <conion.h>
: #pragma hdrstop

A
cout << "argc = " << argc << endl;
for (int i=0;i<argc;i++)
9: cout << "Parameter " << i << ": " << argv[i] << endl;
10: getch();
11: return 0;
12: }

1
2
3
4:
5: int main(int argc, char **argv)
6
7
8

Save the project as ArasTesTcPP. Rather than clicking the Run button, choose Project | Build
All from the main menu. This will build the project but won’t execute the program. When
the project has finished building, choose Run | Parameters from the main menu. Type the
following in the Run parameters dialog box:

one two three "four five" six

Now click the Run button, and the program will run using the command-line parameters
you specified. An alternative is to run the program from an MS-DOS prompt by using the
following command line:

argstest one two three "four five" six

When the program runs it will display the number of arguments passed and then list each of
the arguments. The output should match that of Figure 1.6. Run the program several times,
providing different command-line arguments each time, and observe the output.

Figure 1.6.
Sample output from
ARGSTEST . EXE.

| 28 Day 1

In most programs the value returned from main () is irrelevant because the return value is not
typically used. In fact, you don’t need your main() function to return a value at all. There is
more than one form of main(). The following all represent valid declarations:

main();

int main();

int main(int argc, char** argv);

void main(); // same as the first form above

void main(int argc, char** argv);

Believe it or not, there are even more possibilities than those listed here. If you are not going
to be using the command-line arguments and are not returning a value frommain (), you can
use the first form of main() listed here. This form returns a void and takes no parameters
(signified by the empty parentheses). In other words, the most basic form of the main()
function takes no parameters and returns no value.

Arrays

You can place any of the intrinsic C++ data types into an array. An array is simply a collection
of values. For example, let’s say you wanted to keep an array of ints that held five integer
values. You would declare the array as follows:

int myArray[5];

In this case the compiler allocates memory for the array as illustrated in Figure 1.7. Because
each int requires 4 bytes of storage, the entire array will take up 20 bytes in memory.

Figure 1.7. myArray[@] myArray[1] myArray[2] myArray[3] myArray[4]
Memory allocation baseAddr baseAddr+4 | baseAddr+8 | baseAddr+12 | baseAddr+16
for an array of

five ints.

Now that you have the array declared, you can fill it with values using the subscript operator

(11) as follows:
myArray[0] = -200;
myArray[1] = -100;
myArray[2] = 0;
myArray[3] = 100;
myArray[4] = 200;

Later in your program you can access the individual elements of the array again using the
subscript operator:

int result = myArray[3] + myArray[4]; // result will be 300

Getting Your Feet Wet 29 |

There is a shortcut method to declaring and filling an array all at one time. It looks like this:
int myArray[5] = { -200, -100, 0, 100, 200 };

To take this one step further, if you know exactly how many elements your array will have,
and if you fill the array when you declare it, you can even leave out the array size when you
declare the array. In that case you would use the following:

int myArray[] = { -200, -100, @, 100, 200 };

This works because the compiler can figure out from the list of values being assigned how
many elements are in the array and how much memory to allocate for the array.

Arrays can be multidimensional. To create a two-dimensional array of integers, you would
use code like this:

int mdArray[3][5];

This allocates storage for 15 ints (a total of 60 bytes, if you're keeping score). You access
elements of the array like you do a simple array, with the obvious difference that you must
supply two subscript operators:

int x = mdArray[1][1] + mdArray[2][1];

Figure 1.8 illustrates how a two-dimensional array might look in memory.

Figure 1.8. myArray[][@] myArray[1[1] myArray[][2] myArray[][3] myArray[][4]
A two-dimensional Array[@][]| baseAddr baseAddr+4 baseAddr+8 baseAddr+12 baseAddr+16
array in memory. Array[1][]| baseAddr+20 | baseAddr+24 baseAddr+28 baseAddr+32 baseAddr+36
Array[2][]| baseAddr+40 | baseAddr+44 baseAddr+48 baseAddr+52 baseAddr+56
= You must be careful not to overwrite the end of an array. One powerful
Iﬁ feature of C++ is direct access to memory. Because of this feature, C++
éf,} will not prevent you from writing to a particular memory location even
W ARNING if that location is memory your program isn’t supposed to have access

to. The following code is legal, but will result in a crash in your
program (or in Windows):

int array[5];

array[5] = 10;

This is a common error to make because you might think the last
element of this array is s when it is really 4. If you overwrite the end of
an array, you have no idea what memory you are overwriting. The

|30

Day 1

results will be unpredictable at best. At worst, you will crash your
program and maybe even crash Windows, too. This type of problem
can be difficult to diagnose because often the affected memory is not
accessed until much later, and the crash occurs at that time (leaving you
wondering what happened). Be careful when writing to an array.

House RuLEs FOR ARRAYS

O Arrays are 0 based. The first element in the array is o, the second element is 1, the
third element is 2, and so on.

O Array sizes must be compile-time constants. The compiler must know at compile
time how much space to allocate for the array. You cannot use a variable to assign
an array size, so the following is not legal and will result in a compiler error:
int x = 10;
int myArray[x]; // compiler error here

Be careful not to overwrite the end of an array.

Allocate large arrays from the heap rather than from the stack. (You’ll learn more
about this later.)

Character Arrays

Odd asit may seem, there isno support in C++ for astring variable (avariable that holds text).
Instead, strings in C++ programs are represented by arrays of the char data type. For instance,
you could assign a string to a char array as follows:

char text[] = "This is a string.";

This allocates 18 bytes of storage in memory and stores the string in that memory location.
Depending on how quick you are, you may have noticed that there are only 17 characters in
this string. The reason that 18 bytes are allocated is that at the end of each string is a
terminating null, and C++ accounts for the terminating null when allocating storage.

m' The terminating null is a special character that is represented with /e, which equates

to a numerical 0.

Getting Your Feet Wet 31 |

When the program encounters a e in the character array, it interprets that location as the end
of the string. To see how this is done, enter and run Listing 1.6 as a console application.

Listing 1.6. NULLTEST.CPP.

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

int main(int argc, char **argv)
{
char str[] = "This is a string.";
cout << str << endl;
str[7] = '\0';
cout << str << endl;
getch();
return 0;

O©CoONOODWN =

_ 4o
wWwnN =
-

Figure 1.9 shows the output from the program in Listing 1.6.

Figure 1.9.
The output from
NULLTEST.CPP.

W‘l Initially, the character array contains the characters, This is a string. followed by
the terminating null. That string is sent to the screen via cout. The next line assigns
the seventh element of the array to \e, which is, of course, the terminating null. The string
is again sent to the screen, but this time only This is is displayed. The reason for this is that
as far as the computer is concerned, the string ends at element 7 in the array. The rest of the
characters are still in storage but can’t be displayed because of the terminating null. Figure
1.10 illustrates how the character array looks before and after the line that changes element

7 to the terminating null.

| 32 Day 1

Figure 1.10. Before
The contents of a [T]n]ils| [i]s] [a| [s]t]r]i]n]g]. o]
character array.

After
[rInfals] [s]spela] [sft[r]s[n]o]. ro]

I could have simply assigned a e in place of '\e" in Listing 1.6. Either is acceptable because
a numerical 0 and the char data type version, '\e', are equivalent.

NoTE There is a difference between single and double quotes in a C++

> program. When assigning the terminal null (or any other character
value) to an element of an array, you must use single quotes. The single
quotes effectively turn the character within the quotes into an integer
value (the ASCII value of the character) that is then stored in the
memory location. When assigning strings to character arrays, you must
use double quotes. If you get it wrong in either case, the compiler will
let you know by issuing a compiler error.

String-Manipulation Functions

If you are coming from a programming language that has a string data type, all of this might
seem like a pain. The truth is, it takes very little time to get used to. You’re not completely
onyourown, by theway. In order toaid in string operations, the standard C library has several
functions for string manipulation. Table 1.3 lists the most frequently used string-
manipulation functionsand a description of each. For acomplete description of each of these
functions and examples of their use, see the C++Builder online help.

Table 1.3. String-manipulation functions.

Function Description

strcat() Concatenates (adds) a string to the end of the target string.
stremp() Compares two strings for equality.

strempi() Compares two strings for equality without case sensitivity.
strepy () Copies the contents of one string to the target string.

strstr() Scans a string for the first occurrence of a substring.

Getting Your Feet Wet 33 |

Function Description
strlen() Returns the length of the string.
strupr() Converts all characters in a string to uppercase.
sprintf() Builds a string based on a variable number of parameters.
NoTE The string operations discussed here are how strings are handled in C.
- Most C++ compilers provide a cstring class that simplifies the difficul-

ties inherent in the C way of handling strings. (C++Builder’s Visual
Component Library contains a class called strings that handles string
operations. Check the C++Builder online help for more information on
strings.) Although the C way of handling strings is a little quirky, it is
by no means obsolete. C++ programmers use C-style string operations
on a daily basis as well as string classes such as cstring.

I won't go into examples of all of the string-manipulation functions listed in the table, but
I'll touch on a couple of the more widely used ones. The strcpy () function is used to copy
one string to another. The source string can be a variable or astring literal. Take the following
code, for example:

// set up a string to hold 29 characters
char buff[30];

// copy a string literal to the buffer
strcpy (buff, "This is a test.");

// display it

cout << buff << endl;

// initialize a second string buffer
char buff2[] = "A second string.";\

// copy the contents of this string to the first buffer
strcpy (buff, buff2);

cout << buff << endl;

Accidentally overwriting the end of acharacter array is even easier to do than with the numeric
arrays discussed earlier. For instance, imagine you had done the following:

char buff[10] = "A string";

/] later....

strcpy (buff, "This is a test."); /] oops!

Here we set up a character array to hold 10 characters and initially assigned a string that
requires 9 bytes (don’t forget about the terminating null). Later on, possibly forgetting how
large the array was, we copied a string to the buffer that requires 16 bytes, overwriting the

|34

Day 1

array by 6 bytes. Six bytes of some memory location somewhere just got tromped on by our
little faux pas. Be careful when copying data to character arrays.

Another frequently used string function is sprintf (). This function allows you to build a
formatted string by mixing text and numbers together. Here is an example that adds two
numbers and then uses sprintf () to build a string to report the result:

char buff[20];

int x = 10 * 20;

sprintf (buff, "The result is: %d", Xx);
cout << buff;

When this section of code executes, the program will display this:
The result is: 200

In this example, the %d tells the sprintf () function, “An integer value will go here.” At the
end of the format string the variable x is inserted to tell sprintf () what value to put at that
location in the string (the contents of the variable x). sprintf () isa unique function in that
it can take a variable number of arguments. You must supply the destination buffer and the
format string, but the number of arguments that come after the format string is variable. Here
is an example of sprintf () that uses three additional arguments:

int x = 20;

int y = 5;

sprintf (buff, "%d + %d = %d", x, y, X +Yy);

cout << buff;

When this piece of code executes, the result displayed on the screen will be this:

20 + 5 = 25
NoTE The single slash is used in strings to indicate special characters. For
- example, '\n" is for a new line, and '\t' represents a tab character. To
put an actual backslash character into a string, you must use a double
backslash:

strcpy(fileName, "c:\\windows\\system\\win.ini");

Forgetting this simple fact has caused many programmers sleepless
nights trying to find a bug in their program. This is a very common
mistake to make. Don’t say | didn’t tell you!

sprintf () hasacousin called wsprintf () thatisa Windows version of sprintf (). You might
see either of these two functions used in Windows programs. wsprintf () is functionally the
same as sprintf (), with one major difference: It does not allow you to put floating-point

Getting Your Feet Wet 35 |

numbers in the formatted string. You can use either function in your C++Builder programs,
butsprintf () ispreferred because it has full floating-point support (and it’s one less character
totype!). Togetareal appreciation of what sprintf () can do for you, consult the C++Builder
online help.

Arrays of Strings

Not only can you have character arrays, but you can have an array of character arrays
(effectively an array of strings). That might sound complicated, but you have already seen this
type of array in the ArRgsTEST program we looked at earlier. You can allocate this kind of array
as follows:
char strings[][20] = {
"This is string 1",
"This is string 2",
"This is string 3",
"This is string 4"

b
Although you can use this type of string array, there are easier ways to handle arrays of strings
in C++Builder. (I'll save that discussion for after you've had a chance to learn more about

C++Builder.)
NoTe If you are going to use arrays of strings extensively, you should look
> into the Standard Template Library (STL). STL provides C++ classes

— . .
that allow you to store and manipulate arrays of strings much more
easily than is possible using C-style character arrays. STL also includes a
string class.

Summary

You've covered a lot of ground today. First you tinkered with the C++Builder IDE by
creatinga GUI Hello World program. Following that you were introduced to console mode
applications where you created Hello World, Part 11. After the initial playing around, you
were put to work learning the basics of C as a foundation to learning C++. You have learned
about the following C and C++ features:

O Variables
O Operators
O Data types

|36

Day 1

|
|
|
|

Functions

The main() function

Arrays

How strings are handled in C and C++

There is a lot of material to absorb in this chapter. Don’t feel bad if it didn’t all sink in. Go
back and review if you are unclear about anything presented in this chapter.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q

A

> O

What’s the difference between a Win32 GUI application and a Win32
console-mode application?

A GUI application is a traditional Windows program. It usually has a title bar,
menu, and window area. A console-mode application is a 32-bit application that
runs in an MS-DOS box in Windows. The console application looks like a DOS
program.

Do my functions have to take parameters and return values?

Functions you write may take parameters and may return a value, but they are not
required to do either. Once a function has been written to return a value, you must
provide a return statement that returns a value or the compiler will issue a warning.

Can | assign a number containing decimal places to an integer data type
variable?

Yes, but the decimal fraction will be dropped (not rounded) and only the whole
number portion will be assigned to the integer variable.

Will C++ make sure | don’t overwrite memory somewhere if | accidentally
write past the end of an array?

No. One of the strengths of C++ is that it gives you the power to access memory
directly. With that power comes responsibility. It’s up to you, the programmer, to
be sure that the memory you are accessing is memory that your program owns. If
you accidentally overwrite memory that you are not supposed to have access to,

Getting Your Feet Wet 37 |

Windows will issue a general protection fault (GPF) or an access-violation error.
The GPF might come immediately, or it may not come until later when the
overwritten memory is used by another part of your program, by another program,
or by Windows itself.

Quiz
1. What is wrong with this program?

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

void displayText();
displayText()
{

cout << "Hello Bubba!" << endl;

}

How many return values can a function return?

What does the strcpy () function do?

What value does a variable have when it is initially declared?
How many functions can a program have?

Can a function call another function?

What is wrong with this program?

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

No gk~ wh

int main(int argc, char** argv)

{
doSomething();

return 0;

}

void doSomething()
{

cout << "I'm doing something now" << endl;

}
8. How many functions called main() can a program have?
9. Look at this line of code:
char buff[20];
How many characters can this string hold?
10. What is the index number of the first element of an array, 0 or 1?

Day 1

Exercises

1. Write a Windows GUI program that displays the words “Welcome to
C++Builder!” on the window when the program runs.

2. Rewrite the program you wrote in exercise 1 and change the displayed text to He1lo
There! (Hint: You only have to change the caption property of the Labe1 compo-
nent.)

3. Write a Windows console-mode application that outputs This is a test to the
screen.

4. Write a Windows console-mode application. In the program, declare two variables
and assign values to those variables. Multiply the two numbers together and display
the result on the screen.

5. Write a console-mode application that calls a function to display Function
entered, sir!! On the screen.

6. Write a console-mode application that takes an integer as a parameter, multiplies it
by itself, and returns the result.

7. Enter and compile the following program:

#include <iostream.h>
#include <conio.h>
#include <math.h>
#include <stdio.h>
#pragma hdrstop

void getSqrRoot(char* buff, int x);
int main(int argc, char** argv)
{

int x;

char buff[30];

cout << "Enter a number: ";

cin >> x;

getSqrRoot (buff, x);

cout << buff;

getch();

}

void getSqrRoot(char* buff, int x)

sprintf (buff, "The sqaure root is: %f", sqrt(x));
}

What does the program do?

Week

Day

Wading In Deeper

by Kent Reisdorph

You've now got a pretty good start on learning C++. In this chapter you will
continue to learn about the C++ language by examining more of the fundamen-
tals of C++ that have their roots in C. Today you will learn about

|

[A

The if and e1se keywords
Loops: for, do, and do-while
The switch statement

Scope

Structures

|40

Day 2

There are some aspects of programming that are common to all programming languages.
One such item that C++ has in common with other programming languages is the if
statement. The if statement is used to test for a condition and then execute sections of code
based on whether that condition is true or faise. Here's an example:
int x;
cout << "Enter a number: ";
cin >> x;
if (x > 10)

cout << "You entered a number greater than 10." << endl;
This code asks for input from the user. If the user enters a number greater than 10, the
expression x > 1o evaluates to true and the message is displayed; otherwise nothing is
displayed. Note that if the conditional expression evaluates to true, the statement immedi-
ately following the if expression is executed.

The if statement is used to test for a condition and then execute sections of code

based on whether that condition is true or false.

NoTE Be sure not to follow the if expression with a semicolon. A semicolon

- by itself represents a blank statement in code. If you accidentally follow
your if expression with a semicolon, the compiler will interpret the
blank statement as the statement to execute if the expression evaluates
to true. Here’s an example:

if (x == 10); // Warning! Extra semi-colon!

DoSomething(x);
In this case, the bosomething () function will always be executed because
the compiler does not see it as being the first statement following the if

expression. Because this code is perfectly legal (albeit useless), the
compiler will not warn you that anything is amiss.

Ifyou have multiple lines of code that should be executed if the conditional expression is true,
you would need braces to block those lines:
if (x > 10) {

cout << "The number is greater than 10" << endl;

DoSomethingWithNumber(x);
}

Wading In Deeper 41 |

If the conditional expression evaluates to faise, the code block associated with the if
expressionisignored, and program execution continues with the first statement following the
code block.

NoTE C++ contains a lot of shortcuts. One of those shortcuts involves using
just the variable name to test for true. LooK at this code:

if (fileGood) ReadData();

This method is a shortcut for the longer form, which is illustrated with
this line:

if (fileGood == true) ReadData();

This example uses a bool variable, but any data type will do. The
expression evaluates to true as long as the variable contains any non-
zero value. You can test for faise by applying the logical noT (1)
operator to a variable name:

bool fileGood = OpenSomeFile();
if (!fileGood) ReportError();

Learning the C++ shortcuts will help you write code that contains a
degree of elegance. Knowing the shortcuts also helps you understand
C++ code that you read in examples and sample listings.

In some cases you want to perform an action if the conditional expression evaluates to true
and perform some other action if the conditional expression evaluates to faise. In this case
you can implement the e1se statement:

if (x == 20) {

DoSomething(x);
}
else {
DoADifferentThing(x);
}
The e1se statement is used in conjunction with the if statement and identifies
EW TER . . .
sections of code that are executed when the if statement fails (that is, evaluates to

false).

In this example one of the two functions will be called, but not both.

| 42 Day 2
Note that the equality operator is the double equal sign (==) and that
m the assignment operator is the single equal sign (=). A common coding
- = A mistake is to use the assignment operator where you meant to use the
WARNING equality operator. For instance, if the previous example were inadvert-

ently written like this:

if (x = 20) {
DoSomething(x);
}

x would be assigned the value of 20. Because this operation would be
successful, the expression would evaluate to true. A bug like this,
although seemingly obvious, can be hard to spot, so take care when
testing for equality.

You can nest if statements if needed. Nesting is nothing more than following an if statement
with one or more additional if statements. Here’s an example:

if (x > 10)
if (x < 20)
cout << "X is between 10 and 20" << endl;

Keep in mind that these are simplified examples. In the real world you can get lost in the maze
of braces that separate one function block from the next. Take a look at this code snippet,
for instance:

if (x > 100) {
y = 20;
if (x > 200) {

y = 60;
DoSomething(y);
}
}
}
else if (x < -100) {
y = -20;
if (x < -200) {
y = -40;
if (x < -400) {
y = -60;
DoSomething(y);
}
}
}

Even this is a fairly simple example, but you get the idea.

Wading In Deeper

43|

Tip

Tip

~a

< SYNTA><I

The C++Builder Code Editor has a handy function to help you find
matching braces. Position the cursor on the brace for which you want
to find the corresponding brace. Press either the Alt+[or the Alt+] key
combination, and the cursor will be positioned at the brace you are
looking for. It doesn’t matter whether you start on the opening brace or
the closing brace. In either case, the matching brace will be located.

If a section of code contains more than two or three consecutive if
statements testing for different values of the same variable, it might be a
candidate for a switch statement. The switch statement is discussed
later in this chapter in the section “The switch Statement.”

Earlier | mentioned C++ shortcuts. There is a shortcut for the if-el1se combination. Look
at the following code:

if (direction == EAST) lost = true;
else (lost = false);

These two lines can be condensed into a single line:

direction == EAST ? lost = true : lost = false;

Although this shortcut notation might look a little odd at first, you will quickly learn to
recognize it when you see it. The if statement is heavily used in C++. It’s pretty straightfor-
ward, so you won'’t have any trouble with it. The main thing is keeping all of the braces

straight.

The if statement, Form 1:

if (cond_expr) {
true_statements;

}
else {

false_statements;

}

If the conditional expression, cond_expr, is true (nonzero), the block of code represented by
true_statements 15 executed. If the optional e1se clause is specified, the block of code
represented by raise statements isexecuted when the conditional expression, cond_expr, IS

false.

|44

Day 2

The if statement, Form 2;

if (cond_expr_1) {
true_statements_1;

else if (cond_expr_2) {
true_statements_2;

}
else {
false_statements;

}

If the conditional expression cond_expr_1 i true (nonzero), the block of code represented
by true_statements_1 isexecuted. If it is fa1se and the conditional expression cond_expr_2
is true, the block of code represented by true_statements_2isexecuted. If both cond_expr 1

A and cond_expr_2 are false, the block of code represented by raise statements is executed.

Thrown for a Loop

The loop is a common element in all programming languages. A loop can be used to iterate
through an array, to perform an action a specific number of times, to read a file from
disk...the possibilities are endless. | will examine several types of loops here, and for the most
part they work in very similar ways. All loops have these common elements:

O A starting point

O A body, usually enclosed in braces, that contains the statements to execute on each
pass

An ending point
A test for a condition that determines when the loop should end
0O Optional use of the break and continue Statements

-I A loop is an element in a programming language that is used to perform an action

a specific number of times.

The starting point for the loop is one of the C++ loop statements (for, while, or do) followed
by an opening brace. The body contains the statements that will execute each time through
the loop. The body can contain any valid C++ code. The ending point for the loop is the
closing brace.

Most loops work something like this: The loop is entered and the test condition is evaluated.
If the test condition is not met, the body of the loop is executed. When program execution
reaches the bottom of the loop (usually the closing brace), it jumps back to the top of the loop,
where the test condition isagain evaluated. If the test condition is not met, the whole process
is repeated. If the test condition is met, program execution jumps to the line of code

Wading In Deeper 45 |

E It’s easy to accidentally write a loop so that the test condition is never
)i: met. This will result in a program that is locked up or hung. Your only
‘f'f,g recourse at that point is to press Ctrl+Alt+Del and kill the task. The

WARNING Windows Close Program box will come up and will display the name

1 that was run from the IDE, you can choose Run | Reset Process from

immediately following the loop code block. The exception to this description isthe do-while
loop, which tests for the condition at the bottom of the loop rather than at the top.

The test condition tells the loop when to stop executing. In effect the test condition says, for
example, “Keep doing this until x is equal to 10,” or, “Keep reading the file until the end-of-
file is reached.” Once the loop starts it continues to execute the body of the loop until the test
condition is met.

of your program with (Not Responding) next to it. You'll have to select
your program from the list and click End Task to terminate the
runaway program.

TP In C++Builder you typically run a program using the Run button on
the Speed Bar or by pressing F9. If you need to kill a runaway program

the main menu or press Ctrl+F2 on the keyboard.

Given that general overview, let’s take a look at each type of loop individually.

The for Loop

| SYNTAXI

>

The for loop is probably the most commonly used type of loop. It takes three parameters:
the starting number, the test condition that determines when the loop stops, and the
increment expression.

The for loop statement:

for (initial; cond_expr; adjust) {

Statements;

}
The for loop repeatedly executes the block of code indicated by statements as long as the
conditional expression, cond_expr, is true (nonzero). The state of the loop is initialized by
the statement initial. After the execution of statements, the state is modified using the
statement indicated by adjust.

Day 2

That won't make much sense until you see some examples. First take a look at a typical for
loop:
for (int i=0;i<10;i++) {

cout << "This is iteration " << i << endl;
}
This code will result in the statement inside the braces being executed 10 times. The first
parameter, int i=o, tells the for loop that it is starting with an initial value of e. (In this case
I am declaring and assigning a variable inside the for statement. This is perfectly legal and
iscommon in for loops.) The second parameter, i<1o, tells the loop to keep running as long
as the variable i is less than 1e. Because I'm starting with o, I need to stop before i is equal
to 10. The last parameter, i++, increments the variable i by one each time through the loop.

NorTe The use of the variable name i (presumably for iterator) is traditional in
> for loops. Naturally, any variable name can be used, but you will often

— .
see i used in for loops.

Let’s look at a variation of this code. The following code snippet will achieve exactly the
opposite effect as the first example:
for (int i=10;i>0;i--) {

cout << "This is iteration " << i << endl;
}
This time I'm starting with 1e, stopping when i is equal to e, and decrementing i by one on
each pass. This is an example of a loop that counts backward.

NoTE In the previous examples, the opening and closing braces are not strictly

> required. If no opening and closing braces are supplied, the statement
immediately following the for statement is considered the body of the
loop. It’s not a bad idea to include the braces for clarity and readability
even when they aren’t strictly required.

Let’'swritealittle program that illustrates the use of the for loop. You can enter, compile, and
run the program found in Listing 2.1. It’s called ForLoop.cpp, and you can find it at
http://www.mcp.com/sams/codecenter.html. The output from ForLoopr.cpp is shown in
Figure 2.1.

Wading In Deeper 47 |

Listing 2.1. FORLOOP.CPP.

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

int main(int argv, char** argc)

{
cout << endl << "Starting program..." << endl << endl;
int i;
for (i=0;i<10;i++) {

10: cout << "Iteration number " << i << endl;

11: }

12: cout << endl;

13: for (i=10;1>0;i--) {

14: cout << "Iteration number " << i << endl;

O©oOoO~NOO~WN =

}
16: getch();
17: return 0;

Figure 2.1.
The output from
FORLOOP . CPP.

By now you know that the loop starting number can be any value you like (assuming it fits
the range of the data type selected, of course). The test condition can be any C++ expression
that eventually evaluates to true. The test value could be a numeric constant as used in the
examples here, it could be a variable, or it could be the return value of a function call. The
following are examples of valid test conditions:

for (int i=0;i < 100;i++) {...}

for (int i=1;i == numberOfElements;i++) {...}

for (int i=0;i <= GetNumberOfElements();i+=2) {...}

Take a look at the last example. Notice the last parameter of the for statement. In this case
I am incrementing the counter by 2 each time through the loop. The increment parameter
can increment by any amount you want. For instance, this loop counts by 10s:

for (int i=0;i<100;i+=10) {...}

| 48 Day 2

Now that you’ve seen the for loop in action, it won't be too difficult to apply the same
concepts to the while and do-while loops. Let’s take a look at those now.

The while Loop

The while loop differs from the for loop in that it contains only a test condition that is
checked at the start of each iteration. As long as the test condition is true, the loop keeps
running. Here’s an example:
int x;
while (x < 1000) {

X = DoSomeCalculation();

}

Inthisexample 1 am calling a function that | assume will eventually return a value greater than
1,000. As long as the return value from this function is less than 1,000, the while loop
continues to run. When the variable x contains a value greater than or equal to 1,000, the test
condition yields fa1se, and program execution jumps to the first line following the while
loop’s ending brace. A common implementation of awhile loop uses a boo1 as a test variable.
The state of the test variable can be set somewhere within the body of the loop:
bool done = false;
while (!done) {

/| some code here

done = SomeFunctionReturningABool();
// more code

}

At some point it is expected that the variable done will be fa1se and the loop will terminate.
The program in Listing 2.2 illustrates the use of the while loop.

Listing 2.2. WHILETST.CPP.

1: #include <iostream.h>

2: #include <conio.h>

3: #pragma hdrstop

4: int main(int argv, char** argc)

5: {

6: cout << endl << "Starting program..." << endl << endl;
7: int i = 6;

8: while (i-- > 0) {

9: cout << endl << "Today I have " << ij;
10: cout << " problems to worry about.";
11: }
12: cout << "\b!\nYipee!";
13: cout << endl << endl << "Press any key to continue...";
14: getch();
15: return 0;

-
[
—

Wading In Deeper 49 |

< SYNTAXI

A

The do-while Loop

< SYNTAXI

The while loop statement:

while (cond_expr) {

statements;

}
The while loop repeatedly executes the block of code indicated by statements as long as the
conditional expression, cond_expr, is true (nonzero). The state of the loop must be initialized
prior to the while statement, and modification of the state must be explicit in the block of
code. When the conditional expression, cond_expr, evaluates to faise the loop terminates.

The do-while loop is nearly identical to the while loop. The distinction between the two is
important, though. As you can see from Listing 2.2, the while loop checks the conditional
expression at the top of the loop. In the case of the do-while loop, the conditional expression

is checked at the bottom of the loop:

bool done = false;
do {
// some code
done = SomeFunctionReturningABool();

// more code
} while (!done)

Whether you use a while Or a do-while loop depends on what the loop itself does.

The do-while loop statement:

do {

Statements;

} while (cond_expr)
The do loop repeatedly executes the block of code indicated by statements as long as the
conditional expression, cond_expr, is true (nonzero). The state of the loop must be initialized
prior to the do statement, and modification of the state must be explicit in the block of code.

A When the conditional expression, cond_expr, evaluates to false, the loop terminates.

goto

I’ll mention goto just so you know it exists. The goto statement allows you to jump program
execution to a label that you have previously declared by using a term followed by a colon.

The following code snippet illustrates this:

bool done = false;
startPoint:

// do some stuff

if (!done) goto(startPoint);
// loop over, moving on...

| 50 Day 2

Itis not necessary to use braces here because all lines of code between the goto statement and
the label will be executed.

NoOTE The goto statement is considered bad form in a C++ program. Just

> about anything you can accomplish with goto you can accomplish with
awhile Or do-while loop. Very few self-respecting C++ programmers
have goto in their code. If you are moving to C++ from another
language that uses goto statements, you will find that the basic struc-
ture of C++ makes the goto statement unnecessary.

The goto statement:
goto label

4 SYNTAX |

label:

The goto statement unconditionally transfers the program execution sequence to the label
A represented by 1abel.

continue and break

Before we leave this discussion of loops, you need to know about two keywords that help
control program execution in a loop. The continue Statement is used to force program
execution back to the top of the loop. For example, you might have part of a loop that you
don’t want to execute if a particular test returns true. In that case you would use continue
to jump back to the start of the loop and avoid execution of any code below the continue
statement:
bool done = false;
while (!done) {

/| some code

bool error = SomeFunction();

if (error) continue; // jumps to the top of the loop
// other code that will execute only if no error occured

}

The break Statement is used to halt execution of a loop prior to the loop’s normal test
condition being met. For example, you might be searching an array of ints for a particular
number. By breaking execution of your search loop when the number is found, you can
obtain the array index where the number is located:

int index = 0;
int searchNumber = 50;

Wading In Deeper 51 |

for (int i=0;i<numElements;i++) {

if (myArray[i] == searchNumber) {
index = 1i;
break;
if (index)
cout << "Number found at index " << index << endl;
else

cout << "Number not found in array." << endl;

There are many situations in which the continue and break Statements are useful. As with
most of what I've been talking about, it will take some experience programming in C++ before
you discover all the possible uses for continue and break.

The switch Statement

The switch statement could be considered a glorified if statement. It allows you to execute
one of several code blocks based on the result of an expression. The expression might be a
variable, the result of a function call, or any valid C++ expression that evaluates to an
expression. Here is an example of a switch statement:

switch(amountOverSpeedLimit) {

case 0 : {
fine = 0;
break;

b

case 10 : {
fine = 20;
break;

}

case 15 : {
fine = 50;
break;

}

case 20 :

case 25 :

case 30 : {
fine = amountOverSpeedLimit * 10;
break;

b

default : {
fine = GoToCourt();
jailTime = GetSentence();

}

}

Several parts make up a switch statement. First, you can see that there is the expression, which
in this example is the variable amountoverspeedLimit (remember, | warned you about long
variable names!). Next, the case statements test the expression for equality. If
amountOverSpeedLimit equals @ (case o :), the value o is assigned to the variable fine. If

|52

Day 2

‘Ii: switch Will continue on even after finding a match and may execute
4
S

WARNING

4 SYNTAX

amountOverSpeedLimit is equal to 10, a value of 2o is assigned to fine, and so on. In each of
the first three cases you see a break Statement. The break statement is used to jump out of
the switch block—it means that a case matching the expression has been found, and the rest
of the switch statement can be ignored. Finally, you see the default statement. The code
block following the defau1t statement will be executed if no matching cases are found.

Notice that cases 20 and 25 have no statements following them. If the expression
amountOverSpeedLimit evaluates to 2e or 25, those cases fall through and the next code block
encountered will be executed. In this situation, the values 2o, 25, or 30 will all result in the

same code being executed.

Don’t forget your break statements! Without break statements the

code you didn’t intend to be executed. Sometimes that is how you want
your switch to perform, but most of the time it is not.

Inclusion of the default statement is not mandatory. You could write a switch without a
default Statement:

switch (x) {
case 10 : DoSomething(); break;
case 20 : DoAnotherThing(); break;
case 30 : TakeABreak();

}
Note that there is no break statement following the last case statement. Because this is the
last line of the switch, there is no point in including the break statement for this line.

As | said earlier, you might want to use a switch if you find that you have several i f statements
back-to-back. The switch is a bit clearer to others reading your program.

The switch statement:

switch (expr) {
case value 1:
statements_1;
break;
case value 2:
statements_2;
break;

case value n:
statements_n;
break;

Wading In Deeper

53|

default:

}

dflt_statements;
break;

The switch statement offers a way to execute different blocks of code depending on various
values of an expression (expr). The block of code represented by statements_1 is executed
when expr is equal to vaiue 7, the block of code represented by statements_2 when expr is

equal to vaive_2, and so on through the block of code represented by statements_n when
exprisequal to vaive_n. Whenexprisnotequal toany of vaive 7throughvaive n,theblock
A of code at ar1t_statements is executed. The break statements are optional.

Learning About Scope

The term scope refers to the visibility of variables within different parts of your program. Most
variables have local scope. This means that the variable is visible only within the code block
in which it is declared. Take a look at the program in Listing 2.3.

-d The term scope refers to the visibility of variables in different parts of your program.

Listing 2.3. SCOPE.CPP.

©ONOOO A~ WN =

#include <iostream.h>
#include <conio.h>
#pragma hdrstop

int x = 20;

void CountLoops(int);
int main(int, char*¥)

{

int x 4
int i 0;
cout << "In main program x = " << x << endl;
bool done = false;
while (!done) {
int x;
cout << endl << "Enter a number (-1 to exit):
cin >> x;
if (x = -1) {
cout << endl << "In while loop X =
CountLoops(++i);
}
else
done =

0;

" << X

true;

}

cout << "Global x = " << ::x << endl;

cout << endl << "Press any key to continue...";
getch();

(I
3

continues

|54

Day 2

Listing 2.3. continued

26: return 0;

27: }

28: void CountLoops(int x)

29: {

30: cout << ", While loop has executed "
31: << X << " times" << endl;

32: }

The first thing you might notice (if you're still awake by this time) is that the variable x is
declared four times. It is declared on line 4 outside the main () function, on line 8 inside the
main () function, on line 13 inside the while loop, and in the countLoops () function on line
28. If you accidentally declare a variable more than once, the compiler spits out an error that
says Multiple declaration for 'x' and the compile stops. Yet this program compiles and
runs just fine. Why? Because each of the x variables in Listing 2.3 is in a different scope.

Take a closer look at Listing 2.3. The declaration for x on line 13 is inside the body of the
while loop and is local to that block of code. Effectively, it does not exist outside that block.
This variable has local scope. Likewise, the declaration for x on line 28 is local to the
countLoops () function and does not exist outside the function. In this case the declaration
for x is less obvious because it’s part of the function’s parameter list, but it’s a variable
declaration nonetheless.

Now look at the variables x and i declared inside the main () function. These variablesare local
to the code block in which they are declared, plus they are available (in scope) in any code
blocks within the code block in which they are declared. In other words, the x and i variables
are in scope both in the main() function and inside the while loop. That’s easy enough to
figure out in the case of i because there is only one variable named i. But what about x? Once
inside the while loop, there are two variables named x (the one declared in main() and the
one declared in the while loop), and both are in scope. Which one is being used? The one
within the while loop, because it has the most immediate scope.

A recent C++ draft rule change affects the visibility of a variable that is

NoTe declared inside a statement like a for statement. (The C++ draft is a

> document that the C++ standards committee issues. It defines the rules
for the C++ language.) For example, the following code will generate a
compiler error:
for (int i=0;i<10;i++) {

if (array[i] == 40) break;

index = 1ij;

Wading In Deeper 55 |

This code generates a compiler error because the variable i is visible
only inside the for loop code block. In order to get this code to
compile, you would have to declare i outside the for statement:

int i;
for (i=0;i<10;i++) {

if (array[i] == 40) break;
index = 1i;

Although this change won't affect you if you are just learning C++, it
threw many old C++ programmers for a loop when it was first an-
nounced. In the end, it doesn’t really matter which form is the standard
as long as we programmers know what the rules are.

Finally, we get to the declaration of the x that falls outside the main() function (line 4).
Because this variable is declared outside any function, it is called a global variable and is said
to have global scope. What this means is that the global variable x is available anywhere in the
program: inside the main() function, inside the whiie block, and inside the countLoops ()
function.

As mentioned earlier, a local variable will have precedence over a global variable. But what
if you want to access the global variable x from inside the main () function? You use the scope-
resolution operator, : :. Line 23 of Listing 2.3 contains this line:

cout << "Global x = " << ::x << endl;

The scope-resolution operator tells the compiler, “Give me the global variable x and not the
local variable x.” (The scope-resolution operator is also used with classes, but I'll get to that
when | talk about classes later.)

extern Variables

Areal-world application usually has several source files containing the program’s code. (The
terms module, source file, and unit can be used interchangeably. I'll talk about programs using
multiple source files in just a bit.) A global variable declared in one source file is global to that
file butis not visible in any other modules. There are times, however, when you need to make
a variable visible to all modules in your program. Doing this is a two-step process. First,
declare the variable in one source file as you would any global variable. Then, in any other
source file that needs to access the global variable, you declare the variable again, this time
with the extern keyword:

extern int countChickens;

|56

Day 2

The extern keyword tells the compiler, “I’'m going to be using a variable in this source file
that you will find declared inanother source file.” The compiler sortsitall out at compile time
and makes sure you get access to the correct variable.

While global variables are convenient, they aren’t particularly OOP friendly. Usually there
are better solutions (which you will learn about when | discuss classes). In addition, global
variables consume memory for the life of the program. Local variables use up memory only
while they are in scope. Use local variables whenever possible, and keep the use of global
variables to a minimum.

Structures

Astructure isa collection of related data rolled up into a single storage unit. For instance, let’s
say you wanted to keep a mailing list. It would be convenient to be able to have a single data
variable that could be used to hold all the fields needed in a typical mailing list. A structure
will allow you to do that. You first declare a structure and then later create an instance of that
structure when you want to put the structure to use. A structure is declared with the struct
keyword:
struct mailinglListRecord {

char firstName[20];

char lastName[20];

char address[50];

char city[20];

char state[4];

int zip;

bool aFriend;

bool aFoe;

b

Each of the elements of a structure is called a data member. You will notice that each of the
data members must be declared just as it would be if it were a variable in a code block. In this
example | have five char arrays, one int, and two boo1 data members. (My apologies to my
friends around the world if this looks like a U.S.-slanted mailing-list record.) Finally, make
note of the semicolon following the closing brace of the structure declaration. This is a
requirement for structure and class declarations.

A structure is a collection of related data identified as a single storage unit. After a

structure has been declared, an instance of that structure can be created for use. Each
of the elements of a structure is called a data member.

Wading In Deeper 57 |

NoTE You can create instances of a structure when you declare the structure.

- At the end of the structure declaration, insert a variable name (one or
more) between the closing brace and the semicolon that follows the
structure declaration. Here’s an example:

struct point {
int x;
int y;
} upperLeft, lowerRight;

This code declares the structure and creates two instances of the
structure with variable names upperLeft and lowerRight.

Now that I have the structure declared, | need to put it to use. | first need to create an instance
of the structure. Here’s how that looks:

mailinglListRecord record;

This statement allocates memory for the structure (120 bytes, give or take) and assigns that
memory to a variable named record. Now that | have an instance of the structure set up, |
can assign values to the data members:

strcpy(record.firstName, "Bruce");
strcpy(record.lastName, "Reisdorph");
strcpy(record.address, "123 Inspiration Pt.");
strcpy(record.city, "Merced");
strcpy(record.state, "CA");

record.zip = 95031;

record.aFriend = true;

record.aFoe = false;

There is something you haven’t seen yet in this code. In order to access the data members of
a structure, you need to employ the structure member operator, which is a period placed
between the variable name and the data member. (If you forget to add the structure member
operator, you will probably have the compiler whining about undefined symbols.) The
structure member operator allows you to access a particular member of the structure—either
to read the value of the data member or to change the value of the data member.

If you want to, you can instantiate an object and supply its members all at one time:

mailingListRecord rec = {
"Bruce",
"Reisdorph",
"128 Inspiration Pt.",
"Merced",
"CA",
95031,
true,
false
b

|58

Day 2

< SYNTAXl

A

This saves you some typing over the first method I showed you, but is not always practical
in real-world situations. In a real-world program a structure would likely be filled out as a
result of user input or possibly with data read from a file. Assigning data to the structure like
you see here is not practical in those situations.

The struct statement:

struct name {
data_member_1;
data_member_2;

aata_membeh_n;

} instance;
The struct statement declares a grouping of data members (data_member_1, data_member_2,
..., data_member_n) and provides a name for this grouping (name). The optional instance
statement creates an occurrence of this grouping.

Arrays of Structures

Just as you can have arrays of ints, chars, Or longs, you can also have arrays of structures.
Declaring and using an array of structures is not terribly complicated:

mailinglListRecord listArray[5];

strcpy(listArray[0Q].firstName, "Chuck");

listArray[4].aFoe = true; // grrrrr!!

/] etc.

This is only slightly more complicated than using an array of one of the integral data types.
You will notice that the subscript operator and the structure member operator are used back-
to-back.

Headers and Source Files

The source file is an ASCII text file that contains the program’s source code. The compiler
takes the source code file, parses it, and produces machine language that the computer can
execute.

One of the problems with books on programming is that they use simple examples to
communicate concepts and ideas. You will undoubtedly find that things are never that
simple. So far, we have been dealing with very short programs contained in a single source
file. Inthe real world, a program of any consequence will have several source files. A program’s
code is divided into different source files for a number of reasons. One of the primary reasons
isorganization. By keeping related chunks of code together, you can more easily find a certain
section of code when needed.

Wading In Deeper 59 |

So how do the source files all get tied together? First, the compiler compiles each source file
(.cpp) into an object file (. obj). After each module has been compiled, the linker links all the
object files together to make a single executable file (the .exe). The linker also may link in
other needed files such as resource files (.res) and library files (.1ib).

- ' The declarations for classes and structures are often kept in a separate file called a
header file. Headers have a filename extension of .h or .hpp. (I touched on headers

briefly when I discussed the iostream classin Day 1, “Getting Your Feet Wet.”) A header file
should contain only class, structure, and function declarations. You should never put any
code statements in a header.

NoTE There is an exception to the rule that no code should be placed in

- headers. You may put inline functions in headers. An inline function is a
special function in terms of the way the compiler generates code for the
function. You’ll learn more about inline functions on Day 4, “Totally
Immersed: C++ Classes and Object-Oriented Programming,” when |
discuss classes.

Once you have created a header file for a class or structure, you can include that header in
any source code module that needs to see the class or structure declaration. To do that you
use the #include directive:

#include "structur.h"

When you use the #inc1ude directive, it is as if the contents of the file being included
were pasted into the source file at that point. Listing 2.4, in the next section, contains a
program that uses the #inc1ude directive. The header file used in Listing 2.4 is contained in
Listing 2.5.

Tip Header files typically implement a sentry to ensure that the header is
included only once for a program. A sentry essentially tells the com-
""i' piler, “I've already been included once, so don’t include me again.” A

sentry looks like this:

#ifndef _MYCLASS_H
#define _MYCLASS_H
class MyClass {

// class declared here
b
f#endif

Day 2

C++Builder automatically adds sentries to units that you create as a
result of creating new forms or components. You should add sentries to
any headers you create for classes used outside the C++Builder VCL
framework.

A header file can contain more than one class or structure declaration. Using a separate header
foreach class or structure helps keep your project organized and makes it easier to reuse classes
and structures in other programs. Sometimes you will group related classes together in one
header. For instance, you may have a class that implements a helper class to carry out its
duties. In that case, both the main class and the helper class would be declared in the same
header. Ultimately, it’s up to you how you organize your headers.

Don’t be too concerned if this is all a little fuzzy right now. It will probably take some
experience writing real programs for all this to come together for you.

An Example Using Structures

Listing 2.4 contains a program that has the user input three names and addresses and stores
those records in an array of structures. After the names are input, they are displayed on the
screen. The user is asked to choose one of the records. When the user chooses one of
the records, it is displayed on the screen. Listing 2.5 contains the header file for the
mailingListRecord Structure used in the marLL1sT program shown in Listing 2.4.

Listing 2.4. MAILLIST.CPP.

#include <iostream.h>
#include <conio.h>
#include <stdlib.h>
#pragma hdrstop
#include "structur.h"
void displayRecord(int, mailinglListRecord mlRec);
int main(int, char*¥)
{
/1
// create an array of mailingListRecord structures
/1
mailinglListRecord listArray[3];
cout << endl;
int index = 0;
// get three records
/1
do {
18: cout << "First Name: ";
cin.getline(listArray[index].firstName,

O©CoO~NOOOGD»WN =

-
NO O WON=S

-
©

Wading In Deeper

61|

sizeof (listArray[index].firstName) - 1);
cout << "Last Name: ";
cin.getline(listArray[index].lastName,

sizeof (listArray[index].lastName) - 1);
cout << "Address: ";
cin.getline(listArray[index].address,

sizeof (listArray[index].address) - 1);
cout << "City: ";
cin.getline(listArray[index].city,

sizeof (listArray[index].city) - 1);
cout << "State: ";
cin.getline(listArray[index].state,

sizeof (listArray[index].state) - 1);
char buff[10];
cout << "Zip: ";
cin.getline(buff, sizeof(buff) - 1);
listArray[index].zip = atoi(buff);
index++;
cout << endl;

while (index < 3);

/1

// clear the screen

/1

clrscr();

/1

// display the three records

/1

for (int i=0;i<3;it++) {
displayRecord(i, listArray[i]);

}
/1
// ask the user to choose a record
/1
cout << "Choose a record: ";
char rec;
/1
// be sure only 1, 2, or 3 was selected
/1
do {
rec = getch();
rec -= 49;
} while (rec < @ || rec > 2);
/1

// assign the selected record to a temporary variable
/1

mailingListRecord temp = listArray[rec];
clrscr();

cout << endl;

/1

// display the selected record

/1

displayRecord(rec, temp);

getch();

return 0;

continues

|62

Day 2

Listing 2.4. continued

75: }

76: void displayRecord(int num, mailingListRecord mlRec)
77: {

78: cout << "Record " << num + 1 << ":" << endl;
79: cout << "Name: " << mlRec.firstName << " "
80: cout << mlRec.lastName;

81: cout << endl;

82: cout << "Address: " << mlRec.address;

83: cout << endl << " "3

84: cout << mlRec.city << ", ";

85: cout << mlRec.state << " "j

86: cout << mlRec.zip;

87: cout << endl << endl;

88: }

Listing 2.5. STRUCTUR.H.

1: #ifndef _STRUCTUR_H

2: #define _STRUCTUR.H

3: struct mailinglListRecord {
4: char firstName[20];

5: char lastName[20];

6: char address[50];

7: char city[20];

8 char state[5];
9: int zip;
0: };
1: #endif

There are a couple new things presented in this program and some variations on material
we've already covered.

First, this program uses the get1ine () function of the cin class to get input from the user (on
line 19, for instance). | did this because the cin extraction operator, >>, is not very friendly
when it comes to whitespace. The second parameter of get1ine () is used to limit the number
of characters that will be placed in the buffer (in this case the buffer is a data member of the
mailingListRecord Structure). | supply avalue here because | don’t want to overwrite the end
of the arrays in the structure. The sizeof () operator is used to determine the size of the
destination buffer so we know how many characters we can safely store in the buffer.

The atoi() function on line 36 is also new to you. This function takes a character string and
convertsitto an integer value. This is necessary to convert the text in the zip code field (which
I got from the user as a string) to an integer value that can be stored in the zip data member
of the mailingListRecord Structure.

Wading In Deeper 63 |

The displayRecord() function, which begins on line 76, takes two parameters. The first
parameter, num, isan int that contains the index number of the record to display. Thisvariable
isused only to display the record number. On line 78 1 add 1 to numwhen I display it because
usersare accustomed to lists beginning with 1 rather than with 0. (1aim to please!) The second
parameter of the displayRecord() function is an instance of the mailingListRecord Struc-
ture. Inside the displayRecord () function I use the local instance of the structure passed in
(which represents a copy of the structure) to display the contents of the structure.

NoTE In this case | am passing the mailingListRecord structure by value.

> What this means is that a copy of the structure is created each time the
displayRecord() function is called. This is not very efficient because of
the overhead required to pass a structure by value. The overhead comes
in the form of the extra time and memory required to make a copy of
the structure each time the function is called. It would be better to
pass the structure by reference, but | haven’t talked about that yet,
because the structure is passed by value in this program. You will
learn about passing by reference tomorrow when we discuss functions
in C++.

Note that the disp1ayRecord () function is called from both the for loop when all the records
are displayed (line 49) and again from the main body of the program to display the actual
record chosen (line 72). That’s precisely why the code to display a record has been placed in
a function. By putting it in a function, | only have to write the code once and can avoid
duplicating the code unnecessarily.

Tip
Any time you find yourself repeating code more than a couple times in

""'ﬂ your programs, think about moving that code to a function. Then you
can call the function when you need that code executed.

There is another segment of this program that deserves mention. Look at this do-while loop,
which begins on line 59:

do {
rec = getch();
rec -= 49;
} while (rec < @ || rec > 2);

This code first gets a character from the keyboard using the getch () function. As you have

|64

Day 2

NoTE

seen, | have been using getch () at the end of my programs to keep the program from closing
prematurely, but have been ignoring the return value. The getch() function returns the
ASCII value of the key pressed. Because the ASCI1 value of the 1 key is 49, | want to subtract
49 from the value of the key pressed to obtain the equivalent index number for that record
in the records array. If the user presses 1, an ASCII 49 is returned, and 49-49 is 0, which
is the first index of the array. If the user presses 2, the calculation yields 1 (50-49), and so on.
The do-while loop ensures that the user presses a key between 1 and 3. If a key other than
1, 2, or 3 is pressed, the loop continues to fetch keystrokes until a valid key is pressed.

Finally, I want to point out line 66 in Listing 2.4:
mailingListRecord temp = listArray[rec];

This code is not necessary in this program, but I included it to illustrate a point. This code
creates an instance of the mailingListRecord structure and assigns to it the contents of one
of thestructuresin thearray. Asimple assignment is possible here because the compiler knows
how to copy one structure to another. It does a simple member-to-member copy and copies
all structure members to the newly created instance of the structure.

- Our discussion of structures up to this point describes how a structure
works in C. In C++ a structure operates like it does in C, but C++
extends structures to allow them to contain functions as well as data
members. In fact, a structure in C++ is essentially a class where all data
members and functions have public access. That won't make sense
until later on when | discuss classes on Day 4, but you can file this
tidbit away for future reference.

Now you know about structures. Chances are you won’t use a lot of structures in your
programs. This section is important, though, because it serves as sort of a primer for
discussing classes in Day 3, “Up to Your Neck in C++.”

Summary

This chapter contains essential information on some of C++’s basic operations. You need
what is presented here in order to program in C++Builder. First you learned about the
different types of loops in C++; then you learned about the switch statement and how to use
it. | talked a little about scope and what that means to your variables. Then you found out
what structures are and how they can be used in your programs. Tomorrow we’ll tackle some
of the big stuff.

Wading In Deeper 65 |

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q
A

Q
A

>0 >» O

> O

Quiz

How many levels deep can | nest if statements?

There’s no limit. There is, however, a practical limit. If you have too many nested
if statements it gets very hard to keep all those brackets straight!

Will loops automatically terminate if something goes wrong?

No. If you accidentally write an endless loop, that loop will continue to run until
you do something to stop it. You can stop a program stuck in an endless loop by
bringing up the Windows Task Manager (or the Close Program box) and ending
the errant task. If you executed the program via the C++Builder IDE, you can
choose Run | Reset Program from the main menu to kill the program.

Does a switch statement have to include a default section?
No. The default section is optional.
Can | have more than one variable with the same name?

Yes, provided they are in different scopes. You cannot have two variables named x
that are both declared within a code block. You can, however, have a global
variable named x and a local variable with the same name.

Can | use a structure by itself, without an object?

No. Before you can use a structure you have to create an instance of the structure
and access the structure through the instance variable.

1. What statements are executed in the event that an if expression evaluates to true?

o gk~ wn

What do the three parameters of a for statement represent?

Besides syntax, what is the difference between a while loop and a do-while loop?
What do the break and continue Statements do?

What is a global variable?

Can a structure contain a mixture of data types (char, int, 1ong, and so on)?

|66

Day 2

7. How do you access the members of a structure?
8. Is it legal to have arrays of structures?

Exercises

1. Write a program that counts from 200 to 300 by 5s and displays the results.

2. Write a program that asks the user to input the day of the week and then displays
the name of the day using a switch Statement.

3. Seeif you can figure out what the \b and \n do in this line from Listing 2.2:
cout << "\b!\nYipee!";

Hint: Check the C++ Programmer’s Guide Help file for the section about escape
sequences.
4. Write a structure containing data members representing employee information.

Include first name, last name, address, hire date, and a data member indicating
whether the employee is in the company’s insurance plan.

Week 1

Day

Up to Your Neck in C++

by Kent Reisdorph

“Don’t worry, I've got you.” Do you remember hearing those words when you
were learning to ride a bike? The C++ language is often unforgiving. With the
information in this chapter, you will be branching out into the concepts of C++
that most people trip over. Although | can’t promise to be there to pick you up
if you fall, | can at least point out some of the bumps in the road you might
encounter. Today you will learn about

O Pointers

O References

O The new and delete Operators
O Functions in C++

|68

Day 3

Pointers: Welcome to My Nightmare

EW TER

NoTE The name of an array variable, when used without the subscript

Pointers are one of the most confusing aspects of the C++ language. They are also one of the
most powerful features of C++. My goal in this section is not to teach you the textbook
definition of pointers, but rather to teach you pointers in the context of how you will use them
in your C++Builder programs. So what is a pointer? It’s a variable that holds the address of
anothervariable. There, that wasn’tso bad, was it? | wish it were that simple! Because a pointer
holds the address of another variable, it is said to “point to” the second variable. This is called
indirection because the pointer does not have a direct association with the actual data, but
rather an indirect association.

-5‘ A pointer is a variable that holds the address of another variable.

Because the pointer does not have a direct association with the actual data,
indirection is the term used when referring to this indirect association.

Let’slook at an example. Earlier we talked about arrays. Let’s say that you had an array of ints.
You could access the individual elements of the array using the subscript operator, as | talked
about on Day 1, “Getting Your Feet Wet”:

int array[] = { 5, 10, 15, 20, 25 };
int someVariable = array[3]; // the value 20

You could also use a pointer to accomplish the same thing:

int array[] = { 5, 10, 15, 20, 25 };

int* ptr = array;

int someVariable = ptr[3];

In this example, the memory location of the beginning of the array is assigned to the pointer
named ptr. Note that the pointer is a pointer of the data type int and that the indirection
operator (the = symbol) is used when you declare a pointer. You can declare a pointer to any
of the integral data types (int, char, long, short, and so on), as well as a pointer to objects
(structures or classes). After the assignment the pointer contains the memory address of the
start of the array, and as such points to the array.

- operator, returns the memory address of the first element of the array.
Put another way, the variable name of an array is a pointer, to the start
of the array. That makes it possible to assign an array to a pointer, as in
the preceding example.

Up to Your Neck in C++ 69 |

In this case you can now use the pointer, ptr, just as you would the array name itself. | can
hear you wondering, though: “But why would you want to?” The truth is that in this example
there is no real benefit to using a pointer. The real benefit of pointers is when it comes to
creating objects dynamically in memory. In that case, a pointer is necessary to access the
object. | really can’t go on with this discussion, though, until I digress a moment and talk
about the two ways you can create variables and objects.

Local Versus Dynamic Memory Usage

So far all my sample programs have used local allocation of objects—that is, the memory
required for a variable or object is obtained from the program’s stack.

- Local allocation means that the memory required for a variable or object is obtained
EW TER)
from the program’s stack.

The stack is an area of working memory set aside by the program when the program

EW TER
starts.

Any memory the program needs for things such as local variables, function calls, and so on
is taken from the stack. Thismemory isallocated as needed and then freed when itis no longer
needed. Usually this happens when the program enters a function or other local code block.
Memory for any local variables the function uses is allocated when the function is entered.
When the function returns, all of the memory allocated for the function’s use is freed. It all
happens for you automatically; you don’t have to give any thought to how or if the memory
is freed.

Local allocation has its good points and its bad points. On the plus side, memory can be
allocated from the stack very quickly. The downside is that the stack is of a fixed size and
cannot be changed as the program runs. If your program runs out of stack space, weird things
start to happen. Your program might just crash, it might start behaving oddly, or it might
seem to perform normally but crash when the program terminates. This is less of a problem
in the 32-bit world than it is in 16-bit programming, but it’s still a consideration.

For things like variables of the built-in data types and small arrays, there is no point in doing
anything other than local allocation. But if you are going to be using large arrays, structures,
or classes, you will probably want to use dynamic allocation from the heap. Thisamounts to
your free physical RAM plus all of your free hard disk space. In other words, you could easily
have 100MB of heap memory available on a typical Windows system. The good news here
isthat you have virtually unlimited memory available for your programs. The bad news is that
memory allocated dynamically requires some additional overhead, and as such is just a
smidgen slower than memory allocated from the stack. In most programs the extra overhead
is not noticed in the least. An additional drawback of dynamic allocation is that it requires
more from the programmer. Not a lot more, mind you, but a little.

| 70 Day 3

Dynamic allocation means that memaory required for an object is allocated from the
' heap.

-!5‘ The heap in a Windows program refers to all of your computer’s virtual memory.

Dynamic Allocation and Pointers

FEW TERI‘ In a C++ program, memory is allocated dynamically by using the new operator.

I’'m going to talk about new a little later in the chapter, but you need a little sampler as |
continue the discussion about pointers. Earlier | talked about structures and used the
mailingListRecord Structure asan example. Allocating a structure from the stack looks like
this:

mailingListRecord listArray;

strcpy(listArray.firstName, "Ian");

strcpy(listArray.lastName, "Spencer");

/] etc.

That'swhat | did earlier when | talked about structures. Now I'll create the array dynamically
rather than locally:

mailinglListRecord* listArray;

listArray = new mailingListRecord;

strcpy(listArray->firstName, "Ian");

strcpy(listArray->lastName, "Spencer");

/] etc.

The first line declares a pointer to amailingListRecord structure. The next line initializes the
pointer by creating a new instance of amailingListRecord Structure dynamically. Thisis the
process by which you dynamically create and access objects in C++.

And Now Back to Our Program

Now you begin to see where pointers fit into the scheme of things. WWhen you create an object
dynamically, the new operator returns a pointer to the object in memory. You need that
pointer to be able to do anything with the object. Figure 3.1 illustrates how the pointer points
to the object in memory. Note that although the memory for the dynamically created object
is allocated from heap memory, the actual pointer is a local variable and is allocated from the
stack.

Up to Your Neck in C++ 71 |

Figure 3.1. mailinglListRecord
. . structure in memor
A pointer to an object y
in memory. mailingListRecord*
listArray heap memory
0x00780E50
stack memory / firstName
listArray lastName
address
city
listArray points to state
address 0x00780E50, zip
which is an instance

of the mailingListRecord
structure in memory

Let’s go back to a code snippet you saw earlier:

mailinglListRecord* listArray;

listArray = new mailinglListRecord;
strcpy(listArray->firstName, "Ian");
strcpy(listArray->lastName, "Spencer");
/1 etc.

On the third line you see that the firstname data member of the structure is accessed using
the indirect member operator (->) rather than the structure member operator. (We discussed
the structure member operator yesterday in the section titled “Structures.” The term direct
member operator is also used and is more representative than structure member operator, so
I will use direct member operator from now on.) When you create an object dynamically, you
must access the object’s data members and functions using this operator.

Creating an array of structures dynamically requires a bit more work. Again, here’s the stack-
based version:

mailinglListRecord listArray[3];
listArray[0].zip = 57441;

And the dynamic version:

mailinglListRecord* listArray[3];
for (int i=0;i<3;i++)

listArray[i] = new mailinglListrecord;
listArray[0Q]->zip = 57441;
Note that | have to create a new instance of the structure for each element of the array. Notice
also that to access a data member of the array, | use the indirect membership operator
combined with the subscript operator.

Day 3

Uninitialized pointers contain random values just like any other
‘ m uninitialized variable. Attempting to use an uninitialized pointer can
= 5 wreak havoc on a program. In many cases, a pointer is declared and
WARNING immediately initialized:

MyArray* array = new MyArray;

Sometimes, however, you will declare a pointer and then not initialize
it until sometime later in the program. If you attempt to use the
pointer before initializing it, the pointer will point to some random
memory location, and modifying that memory could cause all sorts of
nasty problems. Often the problems caused by modifying unknown
memory do not show up immediately, making the bug appear to be
random. To be safe, you should initialize a pointer to e when you
declare it:

MyArray* array = 0;

If you attempt to use a NULL pointer (any pointer set to NULL Or @), you
will immediately get an access violation or GPF from Windows.
Although this may not sound like a good thing, it is certainly the lesser
of two evils. It is far better to have an immediate error at the point of
the infraction than to have a random problem that may show up
further down the road.

Dereferencing a Pointer

Frequently you will need to dereference a pointer in order to retrieve the contents of the
memory location (the object) that a pointer points to. Take the following example:

int x = 20;

int* ptrx = &x;

// later...

int z = *ptrx;

I can just imagine your frustration right now. What a mess! Take heart; it’s not quite as bad
as it might appear. The first line in this example declares an int variable called x and assigns
itavalue of 20. The next line declares a pointer to an int and assigns to the pointer the address
of the variable x. This is done by using the address-of operator (&). In this example, the address-
of operator tells the compiler, “Give me the address of the variable x, not the value of x itself.”
After the assignment, ptrx contains the memory address of x. Later on in the program you
might need to get the value of the object pointed to by ptrx. You might think to try this:

int z = ptrx; /1 wrong!

Up to Your Neck in C++ 73 |

That won't work, however, because you are trying to assign a memory address to a regular
variable. When you try to compile this line, the compiler will spit back an error stating, cannot
convert int* to int. That makes sense because you are dealing with two different types of
variables. So you need to dereference the pointer using the indirection operator:

int z = *ptrx;

This could be considered the opposite of the address-of operator. Here you don’t want the
actual value of ptrx because the actual value isa memory address. Instead you want the value
of the object pointed to by that memory address. So, in this case, the indirection operator tells
the compiler, “Give me the value of the object ptrx points to, not the actual value of ptrx.”

- Dereferencing a pointer means to retrieve the contents of the memory location (the
EW TER . . .
object) that a pointer points to.

NoTE As you can see, the indirection operator is used to declare a pointer

- (int* x;) and also to dereference a pointer (int z = *x;). The com-
piler can tell from the context in which the indirection operator is used
what to do in each case. You don’t have to worry that the compiler
won’t know what you intend.

NoTE C++ syntax is largely a personal thing. | prefer to use the indirection
> operator next to the data type when declaring a pointer, and next to the
— pointer when dereferencing a pointer:
int* x;

SomeClass* aClass = new SomeClass;

char* s = new char[256];

int z = *x;

SomeClass temp = *aClass;

Others prefer to place the indirection operator next to the variable
name:

int *x;

// or even...

int * x;

I happen to think that the syntax | use makes the most sense, but
others could probably argue that their way is best, too. In the end,
settle on the method you like best and then stick to it.

| 74 Day 3

Putting It Together

Let’s try to tie together what you have learned in the previous section. I'll take the maTLLIST
program from Day 2, “Wading In Deeper,” and modify it so that it uses dynamic memory
allocation. This will require a few changes. First, take a look at the modified program, and
then I'll explain the changes. Listing 3.1 contains the modified maTLLIST program.

Listing 3.1. POINTER.CPP.

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

#pragma hdrstop

#include "structur.h"

void displayRecord(int, mailingListRecord mlRec);
int main(int, char*¥)

{

©CoO~NOOOD»WN =

/1

10: // create an array of pointers to

11: // the mailinglListRecord structure

12: /1

13: mailingListRecord* listArray[3];

14: /1

15: /] create an object for each element of the array
16: /1

17: for (int i=0;i<3;i++)

18: listArray[i] = new mailinglListRecord;
19: cout << endl;

20: int index = 0;

21: /1

22: // get three records

23: /1

24: do {

25: cout << "First Name: ";

26: cin.getline(listArray[index]->firstName,
27: sizeof (listArray[index]->firstName) - 1);
28: cout << "Last Name: ";

29: cin.getline(listArray[index]->lastName,
30: sizeof (listArray[index]->lastName) - 1);
31: cout << "Address: ";

32: cin.getline(listArray[index]->address,

33: sizeof (listArray[index]->address) - 1)
34: cout << "City: ";

35: cin.getline(listArray[index]->city,

36: sizeof (listArray[index]->city) - 1);

37: cout << "State: ";

38: cin.getline(listArray[index]->state,

39: sizeof (listArray[index]->state) - 1);
40: char buff[10];

41: cout << "Zip: ";

Up to Your Neck in C++

75|

{

cin.getline(buff, sizeof (buff) - 1);
listArray[index]->zip = atoi(buff);
index++;

cout << endl;

while (index < 3);

/1l

// display the three records
/1l

clrscr();

/1l

// must dereference the pointer to pass an object

// to the displayRecord function.

/1

for (int i=0;i<3;it++) {
displayRecord(i, *listArray[i]);

}
/1
// ask the user to choose a record
/1
cout << "Choose a record: ";
char rec;
: do {
rec = getch();
rec -= 49;
} while (rec < @ || rec > 2);
/1

// assign the selected record to a temporary variable

// must dereference here, too
/1

mailinglListRecord temp = *listArray[rec];
clrscr();

cout << endl;

/1

// display the selected recrord
/1

displayRecord(rec, temp);
getch();

return 0;

cout << "Record " << num + 1 << ":" << endl;
cout << "Name: " << mlRec.firstName << "
cout << mlRec.lastName;

cout << endl;

cout << "Address: " << mlRec.address;
cout << endl << " "y
cout << mlRec.city << ", ";

cout << mlRec.state << "
cout << mlRec.zip;
cout << endl << endl;

: void displayRecord(int num, mailingListRecord mlRec)

| 76 Day 3

-!| First,online 13 1 declared the 1istArray array asanarray of pointers. Following that,
NALYSI . . .
- I created objects for each element of the array. This takes place in the for loop on

lines 17 and 18. After that, | changed the direct membership operators (.) to indirect
membership operators (->). | also have to dereference the pointers on line 57 and again on
line 72. This is necessary because an object is expected and we cannot use a pointer in place
of an object. Notice that the disp1ayrecord function (starting on line 82) doesn’t change. |
haven’t changed the fact that the mailingListRecord Structure is passed to the function by
value, so the code in the function doesn’t need to be modified.

If you've had previous experience with C++, you may have noticed that this program has a
bug init. I'll let you in on the secret before the end of the chapter.

References

A reference is a special type of pointer that allows you to treat a pointer like a regular
EW TER object.

References, like pointers, can be confusing. A reference is declared using the reference operator.
The symbol for the reference operator is the ampersand (&) which is the same symbol used
for the address-of operator (don’t worry, the compiler knows how to keep it all straight). As
I said, a reference allows you to treat a pointer like an object. Here’s an example:
MyStruct* pStruct = new MyStruct;

MyStruct& ref = *pStruct;

ref.X = 100;

Notice that with references you use the direct member operator rather than the indirect
member operator as you do with pointers. Now you can get rid of all of those pesky ->
operators! Although you won’t use references a lot, they can be very handy when you need
them. By the way, this code snippet could be condensed a little. Here’s how | would write
it in a real program:

MyStruct& ref = *new MyStruct;

ref.X = 100;

Although this might look odd, it does exactly the same thing as the first example. Combining
statements like this is common and avoids unnecessary overhead.

Let’s go once more to the maiLL1sT example. This time I'll modify it by implementing a
reference in the do-while loop. Actually, I'll be modifying the poInTER example found in
Listing 3.1. The new program, found in Listing 3.2, illustrates this change.

Up to Your Neck in C++ 77 |

Listing 3.2. REFERENC.CPP.

1: #include <iostream.h>

2: #include <conio.h>

3: #include <stdlib.h>

4: #pragma hdrstop

5: #include "structur.h"

6: void displayRecord(int, mailinglListRecord mlRec);
7: int main(int, char*¥)

8
9

{

: cout << endl;
10: /1
11: // create an array of mailingListRecord structures
12: /1
13: mailingListRecord* listArray[3];
14: /1
15: /] create objects for each record
16: /1
17: for (int 1=0;i<3;i++)
18: listArray[i] = new mailinglListRecord;
19: int index = 0;
20: /1
21: // get three records
22: /1
23: do {
24: // create a reference to the current record
25: mailingListRecord& rec = *listArray[index];
26: cout << "First Name: ";
27: cin.getline(rec.firstName, sizeof(rec.firstName) - 1);
28: cout << "Last Name: ";
29: cin.getline(rec.lastName, sizeof(rec.lastName) - 1);
30: cout << "Address: ";
31: cin.getline(rec.address, sizeof(rec.address) - 1);
32: cout << "City: ";
33: cin.getline(rec.city, sizeof(rec.city) - 1);
34: cout << "State: ";
35: cin.getline(rec.state, sizeof(rec.state) - 1);
36: char buff[10];
37: cout << "Zip: ";
38: cin.getline(buff, sizeof (buff) - 1);
39: rec.zip = atoi(buff);
40: index++;
41: cout << endl;
42: }
43: while (index < 3);
44 /1
45: // display the three records
46: /1
47: clrscr();
48: /1
49: // must dereference the pointer to pass an object
50: // to the displayRecord function.
51: /1

continues

| 78 Day 3

Listing 3.2. continued

52: for (int i=0;i<3;i++) {

53: displayRecord(i, *listArray[il]);
54: }

55: /1

56: // ask the user to choose a record
57: /1

58: cout << "Choose a record: ";

59: char rec;

60: do {

61: rec = getch();

62: rec -= 49;

63: } while (rec < @ || rec > 2);

64: /1

65: // assign the selected record to a temporary variable
66: // must dereference here, too

67: /1

68: mailingListRecord temp = *listArray[rec];
69: clrscr();

70: cout << endl;

71: /1

72: // display the selected recrord
73: /1

74: displayRecord(rec, temp);
75: getch();
76: return 0;

77:

78: void displayRecord(int num, mailingListRecord mlRec)
79: {

80: cout << "Record " << num + 1 << ":" << endl;
81: cout << "Name: " << mlRec.firstName << " "
82: cout << mlRec.lastName;

83: cout << endl;

84: cout << "Address: " << mlRec.address;

85: cout << endl << " "3

86: cout << mlRec.city << ", ";

87: cout << mlRec.state << " "j

88: cout << mlRec.zip;

89: cout << endl << endl;

90: }

The only real change is in the do-while loop. Notice that a reference to a
mailingListRecord Structure is declared. Each time through the loop, the reference

is assigned a different object (the next element in the array). Notice that | got rid of the
indirect membership operators and replaced them with the direct membership operators. As
| said earlier, a reference allows you to treat a pointer as an object. What that does for us in
this case is clean up the code a little and make it easier to read. Oh, for those of you keeping
score, this program has the same bug in it as does the poInTER example. I'll remedy that at the
end of the chapter.

Up to Your Neck in C++ 79 |

Although it might appear that references are preferred over pointers, that is not the case.
References have some peculiarities that make them unsuitable in many cases. For one thing,
references cannot be declared and then later assigned a value. They must be initialized when
declared. For instance, the following code snippet will result in a compiler error:
MyStruct* pStruct = new MyStruct;

MyStruct& ref;

ref = *pStruct;

ref.X = 100;

Another problem with references is that they cannot be set to e or nuLL as pointers can. That
means you’ll have to take special care to ensure that a reference is not deleted twice. References
and pointers can often serve the same purpose, but neither is perfect in every programming
situation.

Passing Function Parameters by
Reference and by Pointer

Earlier | talked about passing objects to functions by value. | said that in the case of structures
and classes, it is usually better to pass those objects by reference rather than by value. Any
object can be passed by reference. Thisincludes the primitive data typessuch as int and 1ong,
as well as instances of a structure or class. To review, when you pass function parameters by
value, a copy of the object is made, and the function works with the copy. When you pass
by reference, a pointer to the object is passed and not the object itself. This has two primary
implications. First, it means that objects passed by reference can by modified by the function.
Second, passing by reference eliminates the overhead of creating a copy of the object.

The fact that an object can be modified by the function is the most important aspect of
passing by reference. Take this code, for instance:

void IncrementPosition(int& xPos, int& yPos)
{
XPos++;
yPos++;
}
int x = 20;
int y = 40;
IncrementPosition(x, y);
// x now equals 21 and y equals 41

Notice that when the function returns, both of the parameters passed have been incremented
by one. This is because the function is modifying the actual object via the pointer (remember
that a reference is a type of pointer).

Day 3

Tip Remember that a function can return only one value. By passing
parameters by reference you can achieve the effect of a function
""ﬁ returning more than one value. The function still only returns one

value, but the objects passed by reference are updated, so the function
effectively returns multiple values.

As | said, the other reason to pass parameters by reference is to eliminate the overhead of
making a copy of the object each time the function is called. When dealing with primitive
data types, there is no real overhead involved in making a copy. When dealing with structures
and classes, however, the overhead is something to be considered. You should pass structures
of any consequence by reference, as the following code demonstrates:

/| structure passed by reference
void someFunction(MyStructure& s)

// do some stuff with 's'
return;

}

MyStructure myStruct;

// do some stuff, then later...

someFunction(myStruct);

Notice that the function call looks exactly the same whether the object is being passed by

reference or by value.

Do you see a potential problem with passing by reference? If you pass by reference, you avoid
the overhead of making a copy of the object, but now the object can be modified by the
function. Sometimes you don’t want the object to be modified by the function. So what if you
want to pass by reference but make sure the object is not modified? Read on and Il tell you.

The const Keyword

FEW TERI‘ The const keyword will allow you to declare a variable as constant.

Once a variable is declared with const, it cannot be changed. The solution, then, is to pass
by reference and make the object const:

void someFunction(const MyStruct& s)

// do some stuff with 's'
return;
}
MyStructure myStruct;
/] later
someFunction(myStruct);

Up to Your Neck in C++ 81 |

Now you are free to pass by reference and not worry that your object might be modified by
the function. Note that the function call itself stays the same and that only the function
definition (and declaration) is modified with the const keyword.

NoTe If you attempt to modify a const object, you will get a compiler error
- stating, cannot modify a const object. The following code will

generate that error message:

void someFunction(const MyStruct& s)

{ s.dataMember = 100; // cannot modify a const object
return;

}

Once you declare an object as const, the compiler will make sure you

don’t modify the object.

Note that the object is const only within the function. The object can be modified both
before and after the function returns (provided it was not initially declared as const).

Passing by pointer is essentially the same as passing by reference. Passing by pointer has a
couple of syntactical headaches that make it less desirable than passing by reference. Let’s take
the 1ncrementPosition () function from the first example in this section and modify it to pass
by pointer rather than by reference:

void IncrementPosition(int* xPos, int* yPos)

{

*XPos++; // dereference, then increment

*yPos++;
}
Note that the pointer has to be dereferenced before it can be incremented. Most of the time
your needs will be best served by passing by reference, but you may pass by pointer if a
situation dictates the need. When passing char arrays, you will usually pass by pointer rather
than by reference because you can use a pointer to a char array and the name of the array
interchangeably. When passing character arrays, it is better to pass by pointer.

The new and delete Operators

Up to this point | have been talking primarily about aspects of the C++ language that come
from C. From this point on we’ll be looking at features that are specific to the C++ language.
The new and delete operators are two important C++ language features.

|82

Day 3

NoTE If the new operator fails to allocate the requested memory, it returns

As mentioned in the preceding section, memory in a C++ program is allocated dynamically
using operator new. You free memory using the delete operator. Unless you have previously
programmed in C, you might not appreciate the simplicity of newand delete. In C programs,
you Use malloc(), calloc(), realloc(), and free() to dynamically allocate memory.
Windows really complicates things by offering a whole raft of local and global memory-
allocation functions. Although this is not exactly difficult, it can be confusing to say the least.
C++ removes those headaches through the use of new and delete.

A new World Order

You've already seen new in action, so let’s review. As discussed earlier, you can allocate
memory locally (from the stack) or dynamically (from the heap). The following code snippet
shows examples of allocating two character arrays. One is allocated from the stack (local
allocation), and the other is allocated from the heap (dynamic allocation):

char buff[80];
char* bigBuff = new char[4096];

In the first case the buffer size is insignificant, so it doesn’t really matter whether the stack
or the heap is used. In the second case a large char array is needed, so it makes sense to allocate
it from the heap rather than from the stack. This preserves stack space. In the case of arrays
(remember, a string is just an array of type char), the dynamic and local flavors can be used
interchangeably. That is, they use the same syntax:

strcpy (buff, "Ricky Rat");

strcpy (bigBuff, "A very long string that goes on and on...");

// later on...

strcpy (bigBuff, buff);

Remember that the name of an array when used by itself points to the first memory location
of the array. A pointer also points to the first memory location of the array, so that is why the
two forms can be used interchangeably.

> NULL. In theory, you should check the pointer after calling new to ensure
that it contains a non-zero value:

char* buff = new char[1024];

if (buff) strcpy(buff, "Buteo Regalis");

else ReportError(); // something went wrong

In reality, if the new operator fails in a 32-bit Windows program, the
entire system is in trouble, and neither your program nor any other will
be running for long.

Up to Your Neck in C++ 83 |

If you are attempting to allocate very large chunks of memory (several
megabytes in size) or are trying to allocate memory at critical points in
your program, you should check the pointer for validity before con-
tinuing. For routine memory-allocation chores, you can probably get
by without checking to ensure that the new operator succeeded.

delete

All memory allocated must be deallocated (released or freed) after you are done with the
memory. With local objects, this happens for you automatically, and you don’t have to worry
about it. The memory manager allocates the memory your object needs from the stack and
then frees that memory when the object goes out of scope (usually when a function returns
orwhen the code block in which the object was declared ends). When using dynamic memory
allocation, the programmer must take the responsibility of freeing any memory allocated with
the new operator.

Freeing memory allocated with new is accomplished with the de1ete operator.

’% All calls to new need to have a matching delete. If you do not free all
N . memory allocated with the new operator, your program will leak
ACE & memory. You need to be diligent in matching new/delete pairs.
WARNING

Using the de1ete operator is frightfully easy:

SomeObject* myObject = new SomeObject;

// do a bunch of stuff with myObject

delete myObject; // so long!

That'sall there isto it! Thereisn’talot to the de1lete operator, but there are a couple of things
about pointers and delete that you should be aware of. The first is that you must not delete
a pointer that has already been deleted, or you will get access violations and all sorts of other
fun stuff. Second, it is okay to delete a pointer that has been set to . So what does that mean
in the real world? Let me explain.

Sometimes you declare a pointer just in case it might be used, but you don’t know for sure
whether it will be used in a given instance of your program. For example, let’s say you have
an object that is created if the user chooses a certain menu item. If the user never chooses that

|84

Day 3

"'ﬂ of your program and delete it in another part of the program. A

menu item, the object never gets created. So far, so good. The problem is that you need to
delete the pointer if the object was created, but not delete the pointer if the object was not
created. Deleting an initialized pointer is asking for trouble because you have no idea what
memory the pointer points to. There are two ways to work around this.

I said earlier that it is a good idea to initialize pointers to e if you don’t use them right away.
This isagood idea for two reasons. The first reason | explained earlier (uninitialized pointers
contain random values, which is undesirable). The second reason is because it’s okay to delete
anuLL pointer—you can call de1ete for that pointer and not worry about whether it was ever
used:

Monster* swampThing = 0;

// later when it's time to exit the program...

delete swampThing; // so long, sucker!

In this case you don’t really care whether memory for the object was ever allocated because
the call to delete is safe whether the pointer points to an object or is NuLL.

Tip You may run into situations where delete could be called more than
once for an object. For instance, you may create an object in one part

situation might exist where the section of code that deletes the object
might never be executed. In that case you will also want to delete the
object when the program closes (for insurance). To avoid the possibility
of a pointer getting deleted twice, get into the habit of setting the
pointer to NuLL or o after deleting it:

Monster* borg = new Monster;
// later....

delete borg;

borg = 0;

Now, if delete is called twice for the object, it won’t matter because it’s
okay to delete a nuLL pointer.

Another way around the double-delete problem is to check the pointer for a non-zero value
before calling delete:

if (swampThing) delete swampThing;

This assumes that you have been diligent in setting deleted pointers to e in other parts of the
program. It doesn’t matter which method you use, but be sure to use one of them in any case
where a pointer could accidentally be deleted twice.

Up to Your Neck in C++ 85 |

NoTe If you use a reference when dynamically creating an object, the syntax
> for delete requires a twist. Here’s an example that illustrates this point:
MyStruct& ref = *new MyStruct;
ref.X = 100;
/] later...

delete &ref;

Note that you need the address-of operator to delete the pointer in the
case of a reference. Remember that a reference cannot be set to o, so
you must be careful not to delete a reference twice.

Another Mystery Solved

Have you figured it out yet? “Huh?” you say? The bug in the poINTER and REFERENC
programs... have you figured out what it is? You got it! The program leaks memory. | created
an array of structures allocated from the heap but never freed the memory. So what | need
is a couple of lines to clean things up just before the program ends:

getch(); // existing line
for (int i=0;i<3;i++)
delete listArray[i];
There! Now | have a properly behaving program. I just ran through the array of pointers and
deleted each one. Nuthin’ to it.

new[] and delete[]

When you call new to create an array, you are actually using the new[] version of the new
operator. It’s not important that you know the inner details of how that works, but you do
need to know how to properly delete arrays that are dynamically allocated. Earlier | gave you
an example of dynamically creating a character array. Here is the same code snippet except
with the delete[] statement added:

char buff[80];

char* bigBuff = new char[4096];

strcpy (buff, "Ricky Rat");

strcpy (bigBuff, "Some very long string.");

// later on...

delete[] bigBuff;

Notice that the statement calls delete[] and not just plain delete. | won’tgo into a technical
description of what happens here, but this ensures that all elements in the array get properly
deleted. Be sure that if you dynamically allocate an array you call the delete[] operator to
free the memory.

|86

Day 3

House RuLes: PoiNTERS AND DYNAMIC MEMORY ALLOCATION

O oo o d

Be sure to initialize pointers to o if they are not used right away.
Be sure not to delete a pointer twice.

It is OK to delete pointers set to NuLL OF o.

Set pointers to NnuLL or o after deleting them.

Dereference pointers to obtain the object the pointer points to.

Functions in C++

Afunction in C++ can do everything that a function can do in C. In addition, C++ functions
can do things that functions in C cannot. Specifically, this section looks at the following:

O

O
O
O

Function overloading
Default parameters
Class member functions
Inline functions

Function Overloading
C++ allows you to have functions that have the same name but take different parameters.

MI Function overloading is when you have two or more functions with the same name

but with different parameter lists.

MI Functions that share a common name are called overloaded functions.

On Day 1 I showed you an example program which contained a function called mu1tiply().
Not surprisingly, this function multiplied two values together. The function took two
integers, multiplied them, and returned the result. But what if you wanted to have the
function multiply two floating-point numbers? In C you would have to have two functions:

// declarations for a program written in c
int multiplyInt(int numi, int num2);

float multiplyFloat(float numi, float num2);
short multiplyShort(short numi, short num2);

Wouldn't it be a lot easier if you could just have a function called mu1tip1y () that would be
smart enough to know whether you wanted to multiply shorts, ints, or 1ongs? In C++ you

Up to Your Neck in C++ 87 |

can create such a scenario thanks to function overloading. Here’s how the declarations for an
overloaded function look:

// declarations in C++

int multiply(int numi, int num2);

float multiply(float numi, float num2);

short multiply(short numi, short num2);

You still have to write separate functions for each of these declarations, but at least you can
use the same function name. The compiler takes care of calling the correct function based on
the parameters you pass the function. For example:

float x 1.5;

float y 10.5;
float result = multiply(x, vy);

The compiler sees that two f1oats are passed to the function and calls the version of the
multiply () function that takes two floating-point values for parameters. Likewise, if two ints
are passed, the compiler calls the version of muitip1y () that takes two integers.

NoTE It is the parameter list that makes overloaded functions work. You can

- vary either the type or the number of parameters a function takes (or
both), but you cannot create an overloaded function by changing just
the return value. For example, the following does not constitute an
overloaded function:

int DoSomething();
void DoSomething();

If you try to compile a program containing these lines, you will get a
compiler error that says, Type mismatch in redeclaration of
'‘DoSomething()'. The two functions need to vary by more than just the
return value in order to have overloaded functions.

NoTE Compilers keep track of overloaded functions internally through a

- process called name mangling. Name mangling means that the compiler
creates a function name that takes into account the parameter list of the
function. Internally, the compiler refers to the mangled name rather
than the plain text name you would recognize. For example, for the
multiply function taking two float values, the mangled name might be
multiply$qff

|88

Day 3

Let’s take a quick detour and talk about something you will need to use on occasion when
dealing with overloaded functions.

Meet the Cast

Using overloaded functions works fine as long as you use the proper data types when calling
an overloaded function. But what if you mix and match? In this case, you will need to cast
a variable or literal value.

-9‘ A cast tells the compiler to temporarily treat one data type as if it were another.

A cast looks like this:
float x = (float)10 * 5.5;

In this case the cast tells the compiler, “Make the number 10 a f10at.” (The second number
isautomatically interpreted as a f1oat because it contains a decimal place.) Take a look at the
following code snippet:

int anInt = 5;

float aFloat
float result

10.5;

multiply(anInt, aFloat);

In this case you will geta compiler error because there isan ambiguity between the parameters
passed and the function declarations. The compiler error, in effect, says, “I can’t figure out
from the parameters passed which version of muitip1y() to call.” The same error will be
produced if you use code like this:

int result = multiply(10, 10);

// is 10 a float, int or short?

Here the compiler cannot figure out whether the numeric constants are to be interpreted as
floats, intS, Of shortS. When this occurs, you basically have two choices. First, you can
simply avoid using literal values in the function call. If you want to multiply two ints, you
can declare two int variables and pass those to the function:

int x = 10;

int y = 10;

int result = multiply(x, y);

Now there is no ambiguity because x and y are both obviously ints. That’s probably overkill
for simple situations, though. The other thing you can do is to cast the numeric constants
to tell the compiler what type to expect:

int result = multiply((int)10@, (int)10);

Up to Your Neck in C++ 89 |

Now the compiler knows to treat the literal values as ints. A cast is also used to temporarily
force the compiler to treat one data type as if it were something else. Let’s go back to the first
example in this section and this time cast one of the variables to remove the ambiguity:
int x = 5;

float y = 10.5;

float result = multiply((float)x, y);

In this case x is an int, but you are casting it to a f1oat, thereby telling the compiler to treat
itasaf1loat. The compiler happily calls the f1o0at version of multiply () and goes on its way.

Ultimately, you want to write overloaded functions so that ambiguities do not exist and
casting is not necessary. In some cases that is not possible, and in those cases casting will be
required.

Default Parameters for Functions

A function in C++ can have default parameters which, as the name implies, supply
a default value for a function if no value is specified when the function is called.

A function implementing a default parameter might look like this:

// declaration, parameter 'eraseFirst' will be false by default
void Redraw(bool eraseFirst = false);

// definition

void Redraw(bool eraseFirst)

{
if (eraseFirst) {
// erase code

}

// drawing code
}
When this function is called, it can be called with or without a parameter. If the parameter
issupplied at the time the function is called, the function behaves as a regular function would.
If the parameter is not supplied when the function is called, the default parameter is used
automatically. Given this example, the following two lines of code are identical:
Redraw();
Redraw(false);
Note that when a parameter has a default value, it can be omitted from the function call
altogether. You can mix default and non-default parameters in the same function:

int PlaySound(char* name, bool loop = false, int loops = 10);
// call function

int res;

res = PlaySound("chime.wav"); /] does not loop sound
res = PlaySound("ding.wav", true); /] plays sound 10 times
res = PlaySound("bell.wave", true, 5); // plays sound 5 times

Day 3

Default parameters are helpful for many reasons. For one thing, they make your life easier.
You may have a function that you call with the same parameters 99 percent of the time. By
giving it default parameters, you shorten the amount of typing required each time you make
a call to the function. Whenever you want to supply parameters other than the defaults, all
you have to do is plug in values for the default parameters.

NoOTE Any default parameters must come at the end of the function’s param-
- eter list. The following is not a valid function declaration:

int MyFunction(int x, int y = 10, int t = 5, int z);

In order for this function declaration to compile, the default parameters
must be moved to the end of the function list:

int MyFunction(int x, int z, int y = 10, int t = 5);

If you don’t put the default parameters at the end of the parameter list,
the compile will generate a compiler error.

Class Member Functions

le TER‘ As you will find out in this section, classes can contain their own functions. Such
functions are called member functions because they are members of a class.

Class member functions follow the same rules as regular functions: They can be overloaded,
they can have default parameters, they can take any number of parameters, and so on.

Class member functions can be called only through an object of the class to which the
function belongs. To call a class member function, you use the direct member operator (in
the case of local objects) or the indirect member operator (for dynamically created objects)
just like you did when accessing data members of a structure on Day 2. For example, let’s say
that you had a class called Airp1ane that was used to track an airplane for aircraft-control
software. That class would probably have the capability to retrieve the current speed of agiven
aircraft via a function called Getspeed (). The following example illustrates how you would
call the getspeed() function of an Airplane object:

Airplane plane; // create a class instance

int speed = plane.GetSpeed();

cout << "The airplane's current speed is " << speed << endl;

Thiscode uses the direct membership operator to call the cetspeed () function. Class member
functions are defined like regular functions except that the class name and scope-resolution
operator precede the function name. For example, the definition of the getspeed () function
might look like this in the source file:

Up to Your Neck in C++ 91 |

int Airplane::GetSpeed()
{

return speed; // speed is a class member variable

}

In this case, the scope-resolution operator tells the compiler that the cetspeed () function is
a member of the Airp1ane class. I'll talk more about class member functions when | discuss

classes tomorrow.

NoTe Tradition has it that class member function names begin with upper-
- case letters. There is no hard and fast rule about this, but you will find
— that most C++ programs follow this tradition. As a further note, | am

not a fan of the underscore character in function names. For example, |
much prefer the function name GetvideoRect () over the name
get_video_rect(). Regardless of what naming convention you use for
your functions, be consistent and use the same naming convention
throughout your programs.

Inline Functions

Normally a function only appears in the executable file once. Each section of code that uses
the function calls the function. This means that program execution jumps from the point
of the function call to the point in the program where the function resides. The statements
in the function are executed, and then the function returns. When the function returns,
program execution jumps back to the statement following the function call.

Aninline function, as its name implies, is placed inline in the compiled code wherever

EW TER .
a call to that function occurs.

Inline functions are declared like regular functions but are defined with the in1ine keyword.
Each time the compiler encounters a call to an inline function in the source code, it places
a separate copy of the function’s code in the executable program at that point. Inline
functions execute quickly because no actual function call takes place (the code is already
inlined in the program).

NoTe Inline functions should be reserved for functions that are very small or
- for those that need to be executed very quickly. Large functions or
— those that are called from many places in your program should not be

inlined because your executable file will be larger as a result.

92 Day 3
I
Inline functions are usually class member functions. Often the inline function definition (the
function itself) is placed in the header file following the class declaration. (Thisis the one time
that you can place code in your header files.) Because the Getspeed() function mentioned
previously is so small, it can be inlined easily. Here’s how it would look:
inline int Airplane::GetSpeed() {
return speed; // speed is a class member variable
}
An inline function can also be defined within a class declaration. Because | haven’t talked
about classes yet, though, I'll hold that discussion for tomorrow.
Summary

Wow, that’s some pretty heavy stuff! Because you are reading this, you must still be left
standing. That’s good news. Today we got out the big guns and took on pointers and
references. Once you get a handle on pointers, you are well on your way to understanding
C++. As part of the discussion on pointers you learned about local versus dynamic memory
allocation, which led to a discussion about the new and de1ete operators. Today ends with
an explanation of how C++ extends the use of functions over what the C language provides.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q Pointers and references confuse me. Am | alone?

A Absolutely not! Pointers and references are complicated and take some time to fully
understand. You will probably have to work with C++ a while before you get a
handle on pointers and references.

Q Do I always have to delete an object that I created dynamically with the new
operator?

A Yes and no. All objects created with new must have a corresponding delete, or the
program will leak memory. Some objects, however, have parent objects that will
take the responsibility for deleting them. So the question is not whether an object
created with new should be deleted, but rather who should delete it. You will always
want to call delete for classes you write. Later, when you learn about VCL (on

Up to Your Neck in C++ 93 |

Day 5, “C++ Class Frameworks and the Visual Component Model”), you will see
that VCL parent objects take the responsibility for deleting their children.

Should I create my objects on the stack or on the heap?

That depends on the object. Large objects should be created on the heap in order
to preserve stack space. Small objects and primitive data types should be created on
the stack for simplicity and speed of execution.

What'’s the point of having overloaded functions?

Overloaded functions provide you a means by which you can have several functions
that perform the same basic operation and have the same function name, but take
different parameters. For example, you might have an overloaded function called
brawobject (). One version might take a circ1e class as a parameter, another might
take a square class as a parameter, and a third could take a class called Po1ygon as a
parameter. By having three functions with the same name, you avoid the need to
have three different function names.

Should I use a lot of inline functions?

That depends on the function, of course. In general, though, the answer is no.
Inline functions should be reserved for functions that are very small or seldom
used, or where execution speed is critical.

> O

> O

> O

Quiz

1. What is a pointer?
What does it mean to dereference a pointer?
What is the return value of operator new?

Should instances of classes and structures be passed to functions by reference or by
value?

What does the const keyword do?

6. Does the following qualify as an overloaded function? Why or why not?

void MyFunction(int x);
long MyFunction(int x);

Mo

o

7. Which is better to use, a reference or a pointer?

8. What is a class member function?

9. How does the compiler treat an inline function as opposed to a regular function?
10. What, if anything, is wrong with the following code snippet?

char* buff = new char[200];
// later...
delete buff;

|94

Day 3

Exercises

1.

Write a program that declares a structure, dynamically creates an instance of the
structure, and fills the structure with data. (Hint: Don’t forget to delete the
pointer.)

Modify the program from Exercise 1 to use a reference rather than a pointer.

. Rewrite the rRererenc program in Listing 3.2 so that the mailingListRecord

structure is passed to the displayRecord() function by reference rather than by
value.

What is wrong with the following function declaration?
void SomeFunction(int parami, int param2 = @, int param3);

Explain to a five-year-old the difference between pointers and references.

Week 1

Day

Totally Immersed: C++
Classes and Object-
Oriented Programming

by Kent Reisdorph

Today you get to the good stuff. In this chapter you will learn about classes.
Classes are the heart of C++ and a major part of object-oriented programming.
Classes are also the heart of the Visual Component Library (VCL), which you
will use when you start writing Windows GUI applications. (VCL is discussed
in detail on Day 5, “C++ Class Frameworks and the Visual Component
Model.”) First you will find out what a class is and how it’s expected to be used.
Along the way you will learn the meaning of C++ buzzwords like inheritance,
object, and data abstraction. At the end of the chapter you will get an
introduction to file input and output in C++.

| 96 Day 4

So, uh...What’s a Class?

A class, like a structure, is a collection of data members and functions that work together to
accomplish a specific programming task. In this way a class is said to encapsulate the task.
Classes have the following features:

O The capability to control access
0 Constructors

O Destructors

O Data members

O Member functions

O A hidden, special pointer called this

Before diving into an examination of those features, let me give you a quick example of how
a class might work. Let’s use a typical Windows control as an example—a check box, for
instance. A class that represents a check box could have data members for the caption of the
check box and for the state (checked or unchecked). This class would also have functions that
would allow you to set and query both the check box caption and the check state. These
functions might be named Getcheck (), SetCheck (), GetCaption(), and SetCaption(). Once
the class has been written, you can create an instance of the class to control a check box in
Windows. (It’s not quite that simple, but this is just an example, after all.) If you have three
check boxes, you could have three instances of the checkBox class that could then be used to
control each check box individually. Here’s an example:

MyCheckBox check1(ID_CHECK1);

MyCheckBox check2(ID_CHECK2);

MyCheckBox check3(ID_CHECK3);

check1.SetCaption("Thingamabob Option");

check1.SetCheck(true);

check2.SetCaption("Doohickey Options");

check2.SetCheck(false);

check3.SetCaption("Whodyacallum Options");

check3.SetCheck(true);

if (check1.GetCheck()) DoThingamabobTask();

if (check2.GetCheck()) DoDoohickeyTask();
/] etc.

In this example, each instance of the class is a separate object. Each instance has its own data
members, and the objects operate independently of one another. They are all objects of the

same type, but are separate instances in memory. With that brief introduction, let’s roll up
our sleeves once more and go to work on understanding classes.

Totally Immersed: C++ Classes and Object-Oriented Programming 97 |

Anatomy of a Class

Aclass, likeastructure, hasadeclaration. The class declaration is usually contained in a header
file. In simple cases, both the class declaration and the definition can be contained in asingle
source file, but you typically won’t do that for real applications. Usually you create a class
source file with a filename closely matching the class name and with a . cpp extension. Because
Windows 95 and Windows NT both support long filenames, you can use filenames that
exactly match your class name if you want. The header file for the class usually has the same
name as the source file but with the extension .n. For example, if you had a class called
MyClass, you would have a source file named mycLAss.cpp and a header named mMYCLASS . H.

Class Access Levels

Classes can have three levels of access: private, public, or protected. Each of these
access levels is defined in this section.

Class access levels control how a class is utilized by users of the class. As a sole programmer,
you might be the class’s creator but also a user of the class. In team programming
environments, one programmer might be the creator of the class and other programmers are
users of the class.

NoTE Let me clarify a couple comments | made on Day 2, “Wading In

> Deeper.” | said that a structure is a class in which all data members and
functions are public. In fact, in C++ this is the only thing that distin-
guishes a structure from a class. A structure can have functions as well
as data members. A structure cannot use the access-modifier keywords
(private, protected, and private) because a structure can only have
public access. | also said that you probably won’t use structures very
much in your C++ programs. Because a class and a structure are nearly
the same, you will probably prefer to use classes over structures.

To understand what role levels of access play in class operation, you first need to understand
how classes will be used. In any class there is the public part of the class, which the outside
world has access to, and there is the private part of a class. The private part of a class is the
internal implementation of the class—the inner workings, so to speak.

Day 4

Part of a well-designed class includes hiding anything from public view that the user of the
class doesn’t need to know.

- I Data abstraction is the hiding of internal implementations within the class from
SEER outside view.

Data abstraction prevents the user from knowing more than he or she needs to know about
the class, but also prevents the user from messing with things that shouldn’t be messed with.
For instance, when you get in your car and turn the key to start the car, do you want to know
every detail about how the car operates? Of course not. You only want to know as much as
you need to know to operate the car safely. So in this analogy the steering wheel, pedals, gear
shift lever, speedometer, and so on represent the public interface between the car and the
driver. The driver knows which of those components to manipulate in order to make the car
perform the way he wants.

Conversely, the engine, drive train, and electrical system of the car are hidden from public
view. The engine is tucked neatly away where you never have to look at it if you don’t want
to. (That’s what service stations are for!) It's a detail that you don’t need to know about, so
itis hidden from you—Kept private, if you prefer. Imagine how much trouble driving would
be if you had to keep track of everything the car was doing at all times: Is the carburetor getting
enough gas? Does the differential have enough grease? Is the alternator producing adequate
voltage for both the ignition and the radio to operate? Are the intake valves opening properly?
Arggghhhh!!'Who needs it! In the same way, a class keeps its internal implementation private
so the user of the class doesn’t have to worry about what’s going on under the hood. The
internal workings of the class are kept private, and the user interface is public.

The protected access level is a little harder to explain. Protected class members, like private
class members, cannot be accessed by users of the class. They can, however, be accessed by
classes that are derived from this class. I will talk about protected access more a little later, in
the section “Member Functions.”

The C++ language has three keywords that pertain to class access. The keywords are (not
surprisingly) public, private, and protected. You specify a class member’s access level when
you declare the class. A class is declared with the c1ass keyword. A class declaration looks like
a structure declaration with the access modifiers added:

class Vehicle {
public:
bool haveKey;
bool Start();
void SetGear(int gear);
void Accelerate(int acceleration);
void Break(int factor);
void Turn(int direction);

Totally Immersed: C++ Classes and Object-Oriented Programming 99 |

void ShutDown();
protected:
void StartupProcedure();
private:
void StartElectricalSystem();
void StartEngine();
int currentGear;
bool started;
int speed;
};

Notice how you break the class organization down into the three access levels. You may not
use all three levels of access in a given class. You are not required to use any of the access levels
if you don’t want, but typically you will have a public and a private section at the least.

NoTe Class-member access defaults to private. If you do not add any access
> keywords, all data and functions in the class will be private. A class
where all data members and functions are private is not very useful in
most cases.
Constructors

Classes in C++ have a special function called the constructor.

The constructor is a function that is automatically called when an instance of a class
is created.

The constructor is used to initialize any class member variables, allocate memory the class will
need, or do any other startup tasks. The vehic1e example you just saw does not have a
constructor. Ifyou do not provide a constructor, the C++Builder compiler will create adefault
constructor for you. While this is OK for simple classes, you will almost always provide a
constructor for classes of any significance. The constructor must have the same name as the
name of the class. This is what distinguishes it as a constructor. Given that, let’s add a
constructor declaration to the venic1le class:

class Vehicle {
public:
Vehicle(); // constructor
bool haveKey;
bool Start();
void SetGear(int gear);
void Accelerate(int acceleration);
void Break(int factor);
void Turn(int direction);
void ShutDown();

| 100

Day 4

protected:

void StartupProcedure();
private:

void StartElectricalSystem();

void StartEngine();

int currentGear;

bool started;

int speed;

b
Notice that the constructor does not have a return type. A constructor cannot return a value,

s0 no return type is specified. If you try to add a return type to the constructor declaration,
you will get a compiler error.

A class can have more than one constructor. This is possible through function overloading,
which I discussed on Day 3, “Up to Your Neck in C++.” For instance, a class might have a
constructor that takes no parameters (a default constructor) and a constructor that takes one
or more parameters in order to initialize data members to certain values. For example, let’s
say you have a class called rect that encapsulates a rectangle (rectangles are frequently used
in Windows programming). This class could have several constructors. It could have a default
constructor that sets all the data members to e, and another constructor that allows you to
set the class’s data members through the constructor. First, let’s take a look at how the class
declaration might look:

class Rect {
public:
Rect();
Rect(int _left, int _top, int _bottom, int _right);
int GetWidth();
int GetHeight();
void SetRect(int _left, int _top, int _bottom, int _right);
private:
int left;
int top;
int bottom;
int right;
}s

The definitions for the constructors, then, would look something like this:

Rect::Rect()
{
left = 0;
top = 0;
bottom = 0;
right = 0;

Rect::Rect(int _left, int _top, int _bottom, int _right)

left = _left;
top = _top;
bottom = _bottom;
right = _right;

}

Totally Immersed: C++ Classes and Object-Oriented Programming 101 |

The first constructor is a default constructor by virtue of the fact that it takes no parameters.
It simply initializes each data member to . The second constructor takes the parameters
passed and assigns them to the corresponding class data members. The variable names in the
parameter list are local to the constructor, so each of the variable names begins with an
underscore to differentiate between the local variables and the class data members.

Tip Remember that an uninitialized variable will contain random data.
This is true for class data members as well as other variables. To be safe,
""i you should set class member variables to some initial value.

-!,‘ Instantiation is the creation of an object, an instance, or a class.

It'simportant to understand that you can’t call a constructor directly. So how do you use one
of these constructors over the other? You do that when you create or instantiate an object or
a class. The following code snippet creates two instances of the rect class. The first uses the
default constructor, and the second uses the second form of the constructor:

Rect recti; // object created using default constructor

Rect rect2(0, 0, 100, 100); // created using 2nd constructor

You can have as many constructors as you like, but be sure that your constructors don’t have
ambiguous parameter lists (as per the rules on function overloading).

Initializer Lists

Kle TERI\‘ C++ provides a means by which you can initialize class data members in what
is called an initializer list.

The following is the proper way to initialize data members of a class. Rather than trying to
explain how to use an initializer list, let me show you an example. Let’s take the two
constructors for the rect class and initialize the data members with an initializer list rather
than in the body of the function as | did before. It looks like this:
Rect::Rect() :

left(0),

top(0),

bottom(0),
right(o)

| 102 Day 4
Rect::Rect(int _left, int _top, int _right , int _bottom) :
left(_left),
top(_top),
bottom(_bottom),
right(_right)
{
}
Notice two things in this code snippet. First, notice that the initializer list is preceded by a
colon. (The colonisat the end of the function header, so you may not have noticed it.) Notice
also that each variable in the initializer list is followed by a comma except the last variable.
Forgetting either of these two things will cause compiler errors.
NoTE On Day 3 | talked about references. You can have a class data member
- that is a reference, but the reference can only be initialized in the
— initializer list of the class and nowhere else. Here’s an example:
class MyClass {
public:
MyClass();
// other public stuff
private:
OtherClass& other;
// other private stuff
I
MyClass::MyClass() :
other(*new OtherClass) // must do this here!
{
}
Attempts to initialize the reference anywhere else will result in compiler
errors.
In most cases it doesn’t matter whether you initialize your data members in the body of the
constructor or the initializer list. | have done it both ways, but | prefer the initializer list.
Destructors
o Tem The destructor is a special function that is automatically called just before the object

is destroyed.

The destructor could be considered the opposite of the constructor. It is usually used to free any
memory allocated by the class or do any other cleanup chores. A class is not required to have
a destructor, but if it does, it can have only one. A destructor has no return value and takes no
parameters. The destructor’s name must be the name of the class preceded by a tilde (-).

Totally Immersed: C++ Classes and Object-Oriented Programming 103 |

As mentioned, the destructor is called just before the class is destroyed. The class may be
destroyed because it was allocated from the stack and is going out of scope, or it might be
destroyed as a result of delete being called for the class (if the class was created dynamically).
In either case, the destructor will be called as the last thing before the class breathes its last
breath.

The following shows the updated code for the Rrect class:

class Rect {

public:
Rect();
Rect(int _left, int _top, int _bottom, int _right);
~Rect(); // destructor added

int GetWidth();
int GetHeight();
void SetRect(int _left, int _top, int _bottom, int _right);
private:
int left;
int top;
int bottom;
int right;
char* text; // new class member added
b
Rect::Rect() :
left(0),
top(0),
bottom(0),
right(o)
{
text = new char[256];
strcpy(text, "Any Colour You Like");
}
// code omitted
Rect::~Rect()

delete[] text;
}
The modified version of the rect class allocates storage for a char array named text in its
constructor and frees that storage in the destructor. (I can’t think of a good reason for a class
that handles rectangles to have a text data member, but you never know!) Again, use the
destructor for any cleanup tasks that need to be done before the instance of the class is
destroyed.

Data Members

Data members of a class are simply variables that are declared in the class declaration. They
could be considered variables that have class scope. Data members in classes are essentially
the same as data members in structures except that you can control their access by declaring
them as private, public, or protected. Regardless of a data member’s access, it is available for

| 104

Day 4

NoOTE Some OOP extremists say that data members should never be public.

use in all functions of the class. Depending on the data member’s access level, it might be
visible outside the class as well. Private and protected data members, for instance, are private
to the class and cannot be seen outside the class. Public data members, however, can be
accessed from outside the class, but only through an object. Take the rect class declared
previously, for example. It has no public data members. You could try the following, but
you’d get a compiler error:

Rect rect(10, 10, 200, 200);

int x = rect.left; // compiler error!

The compiler error will say Rect: :1eft is not accessible. The compiler is telling you that
left isa private data member and you can’t get to it. If 1eft were in the public section of the
class declaration, this code would compile.

You can use getters and setters to change private data members. That is, getters are functions
that get the value of a private data member, and setters are functions that set the value of a
private datamember. Both gettersand setters are public member functions that act on private
data members.

To illustrate, let’s say that for the rect class you had the following getters and setters for the
left data member:

int Rect::GetLeft()
{

return left;

void Rect::SetLeft(int newLeft)

left = newLeft;
b

Now, when you want to obtain the value of the 1eft member of the rRect class, use this:

TRect rect;
int x = rect.GetLeft();

In some cases this is overkill. Setters have one main advantage, though—they allow you to
validate input. By validating input, you can control the values your data members contain.

- They would say that you should use getters and setters to access all data
members. On the other end of the spectrum is the group that says to
make all your data members public. The truth lies somewhere in
between. Some data members are noncritical and may be left public if
it is more convenient. Other data members are critical to the way the
class operates and should not be made public. If you are going to err, it
is better to err on the side of making data members private.

Totally Immersed: C++ Classes and Object-Oriented Programming 105 |

Each instance of your class gets its own copy of the class’s data members in memory. The
exception to this is that if any class data members are declared with the static storage
modifier, all instances of the class will share the same copy of that data member in memory.
In that case only one copy of that data member will exist in memory. If any one instance of the
class changes a static data member, it changes in all the classes. Use of static data members
in classes is not common, so don’t worry about it if this doesn’t make sense right now.

House RuLes: CLass DATA MEMBERS

O Use as many data members as you need for vital class operations, but use local
variables where possible.

0 Don’t make all data members public.

Use getters and setters for data members that you want to remain private but that
you need to be able to access.

Validate data in your setters to ensure that improper values are not being input.

O Initialize all data members either in the initializer list or in the body of your
constructor.

O Don'’t forget to delete any data members that dynamically allocate memory.

Member Functions

Class member functions are functions that belong to your class. They are local to the class and
do notexist outside the class. Class member functions can be called only from within the class
itself or through an instance of the class. They have access to all public, protected, and private
data members of the class. Member functions can be declared in the private, protected, or
public sections of your class. Good class design requires that you think about which of these
sections your member functions should go into.

Public member functions represent the user interface to the class. It is through the public
member functions that users of the class access the class in order to gain whatever
functionality the class provides. For example, let’s say you have a class that plays and records
wave audio. Public member functions mightinclude functionslike open (), P1ay (), Record(),
Save (), Rewind(), and so on.

Private member functions are functions that the class uses internally to do its thing. These
functions are not intended to be called by users of the class; they are private in order to be
hidden from the outside world. Frequently a class has startup chores to perform when the class
is created. (For example, you have already seen that the constructor is called when a class is
created.) In some classes the startup processing might be significant, requiring many lines of

| 106 Day 4
code. To remove clutter from the constructor, a class might have an 1nit () function that is
called from the constructor to perform those startup tasks. This function would never be
called directly by a user of the class. In fact, more than likely bad things would happen if this
function were to be called by a user at the wrong time, so the function is private in order to
protect both the integrity of the class and the user.
Protected member functions are functions that cannot be accessed by the outside world but can
be accessed by classes that are derived from this class. | haven’t talked yet about classes being
derived from other classes, so I'll save this discussion for a little later when it will make more
sense. | discuss deriving classes in the section “Inheritance.”
? The in1ine function, Form 1:
.‘5 ClassName {
P public:
5 ReturnType FunctionName();
v }s
inline ReturnType ClassName::FunctionName() {
Statements
}
The function Functionname is declared within the body of the class czassnvame. The function
definition (the function itself) is defined outside the class declaration using the inline
keyword. Functionname must be proceeded by c1assnvame and the scope resolution operator.
The in1ine function, Form 2:
ClassName {
public:
ReturnType FunctionName ()
{
statements
}
b
Thefunction Functionname isdeclared and defined entirely within the czassnvame declaration.
The function is an inline function by virtue of the fact that it is contained within the
A ciassname declaration. The in1ine keyword is not required.

As with data members, member functions can be declared with the static modifier. A static
member function operates more like a regular function than a member function. Specifically,
a static member function cannot access data members of the class. (I'll tell you why this
restriction exists in just a bit.) Most of the time you will not use static member functions, but
sometimes you will be required to. For instance, some Windows API functions use callbacks
to perform repeated tasks. If you used this kind of function in your class, the callback function
would have to be declared as static.

Totally Immersed: C++ Classes and Object-Oriented Programming 107 |

House RuLes: CLass MEMBER FuNCTIONS

0O Make public only those functions that users will need in order to properly utilize
the class.

Make private any functions that users do not need to know about.

O Make protected any functions that derived classes may need access to but that
users do not need to know about.

O Use static member functions only under special circumstances.

Declare any class member functions that have to be executed quickly as inline
functions. Remember to keep inline functions short.

0O Place any code duplicated more than twice in a function.

What’s this?

-!I All classes have a hidden data member called this. this isa pointer to the instance of
EW TER
the class in memory. (A discussion on the this pointer quickly starts to look like a

“Who’s on First?” comedy sketch, but I'll try anyway.)

Obviously this (pun intended) will require some explanation. First, let’s take a look at how
the Rect class would look if this were not a hidden data member:

class Rect {
public:
Rect();
Rect(int _left, int _top, int _bottom, int _right);
~Rect();
int GetWidth();
int GetHeight();
void SetRect(int _left, int _top, int _bottom, int _right);
private:
Rect* this; // if 'this' were not invisible
int left;
int top;
int bottom;
int right;
char* text;

b3
Thisiseffectively what the rect class looks like to the compiler. When a class object is created,
the this pointer automatically gets initialized to the address of the class in memory:

TRect* rect = new TRect(20, 20, 100, 100);
// now 'rect' and 'rect->this' have the same value
// because both point to the object in memory

| 108

Day 4

,ﬂ Never modify the this pointer. You can use it to pass a pointer to your
\ g N class to other functions, or as a parameter in constructing other classes,

- but don’t change its value. Learn to treat this as a read-only variable.
WARNING

“But,” you ask, “what does this mean?” Remember that each class instance gets its own copy
of the class’s data members. But all class instances share the same set of functions for the class
(there’s no point in duplicating that code for each instance of the class). How does the
compiler figure out which instance goes with which function call? Each class member
function has a hidden this parameter that goes with it. To illustrate, let’s say you have a
function for the rect class called Getwidth (). It would look like this (no pun intended):

int Rect::GetWidth()

{
return right - left;

}

That’s how the function looks to you and me. To the compiler, though, it looks something
like this:

int Rect::GetWidth(Rect* this)
{

return this->right - this->left;
}
That’s not exactly accurate from a technical perspective, but it’s close enough for this
discussion. From this code you can see that this is working behind the scenes to keep
everything straight for you. You don’t have to worry about how that happens, but only that
it does happen.

Although this works behind the scenes, it is still a variable that you can access from within
the class. Asan illustration, let’s take a quick peek into VCL. Most of the time you will create
components in VCL by dropping them on the form at design time. When you do that,
C++Builder creates a pointer to the component and does all sorts of housekeeping chores on
your behalf, saving you from concerning yourself with the technical end of things.
Sometimes, however, you will create acomponent at runtime. VCL has this funny insistence
(as all good frameworks do) on wanting to keep track of which child objects belong to which
parent. For instance, let’s say you wanted to create a button on a form when another button
is clicked. You need to tell VCL who the parent of the new button is. The code would look
like this:

void _ fastcall TMyForm::Button1Click(TObject *Sender)

TButton* button = new TButton(this);
button->Parent = this;

Totally Immersed: C++ Classes and Object-Oriented Programming 109 |

button->Caption = "New Button";
button->Left = 100;

button->Top = 100;
button->Show();

// more code

}
In this code you can see that this is used in the constructor (this sets the owner property of
the button, but I'll get into that later when | cover VCL components on Day 8, “VCL

Components”) and also that it is assigned to the parent property of the newly created button.
This will be how you use the this pointer the vast majority of the time in your C++Builder

applications.
NoTe Earlier | said that static member functions can’t access class data
- members. This is true because static member functions do not have a

hidden this parameter as regular class member functions do. Without
this, a function cannot access class members.

Don’t get too hung up on this...er, this (whatever!). When you begin to use VCL, it will
quickly become clear when you are required to use this in your C++Builder applications.

An Example

Right now it would be nice if you had an example that uses classes. The following listings
contain a program that implements classes. This program allows you to play air traffic
controller by issuing commands to three aircrafts. Listing 4.1 is the header for the Airplane
class, Listing 4.2 isthe source code for the Airp1ane class, and Listing 4.3 is the main program.

Listing 4.1. AIRPLANE.H.

R
#ifndef airplaneH
#define airplaneH
#define AIRLINER
#define COMMUTER
#define PRIVATE
#define TAKINGOFF
: #define CRUISING
#define LANDING
#define ONRAMP
#define MSG_CHANGE

0 OVWoO~NOOO~WN =
SWN—=-ON=6

—_

continues

| 110

Day 4

Listing 4.1. continued

12
13
14
15

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

51

#define MSG_TAKEOFF 1
#define MSG_LAND 2
#define MSG_REPORT 3
class Airplane {
public:
Airplane(const char* _name, int _type
~Airplane();

AIRLINER);

virtual int GetStatus(char* statusString);

int GetStatus()
{

return status;
int Speed()
return speed;
int Heading()
return heading;
%nt Altitude()

return altitude;

}
void ReportStatus();

bool SendMessage(int msg, char* response,

int spd = -1, int dir = -1, int alt
char* name;
protected:
virtual void TakeOff(int dir);
virtual void Land();
private:
int speed;
int altitude;
int heading;
int status;
int type;
int ceiling;
}s
#endif

-1);

Listing 4.2. AIRPLANE.CPP.

OO wWN =

: #include <stdio.h>

#include <iostream.h>

#include "airplane.h"

/1

/] Constructor performs initialization
/1

Totally Immersed: C++ Classes and Object-Oriented Programming 111 |

7: Airplane::Airplane(const char* _name, int _type)
8: type(_type),

9: status (ONRAMP) ,

10: speed(0),

11: altitude(0),

12: heading(0)

18: {

14: switch (type) {

15: case AIRLINER : ceiling = 35000; break;
16: case COMMUTER : ceiling = 20000; break;
17: case PRIVATE : ceiling = 8000;

18: }

19: name = new char[50];

20: strcpy(name, _name);

21: }

22: //

23: // Destructor performs cleanup.

24: |/

25: Airplane::~Airplane()

26: {

27: delete[] name;

28: }

29: //

30: // Gets a message from the user.

31: //

32: bool

33: Airplane::SendMessage(int msg, char* response,
34: int spd, int dir, int alt)

35: {

36: /1

37: // Check for bad commands.

38: /1

39: if (spd > 500) {

40: strcpy(response, "Speed cannot be more than 500.");
41: return false;

42: }

43: if (dir > 360) {

44: strcpy(response, "Heading cannot be over 360 degrees.");
45: return false;

46: }

47: if (alt < 100 && alt != -1) {

48: strcpy(response, "I'd crash, bonehead!");

49: return false;

50: }

51: if (alt > ceiling) {

52: strcpy(response, "I can't go that high.");
53: return false;

54: }

55: /1

56: // Do something base on which command was sent.
57: /1

58: switch (msg) {

continues

| 112 Day 4

Listing 4.2. continued

59: case MSG_TAKEOFF : {

60: // Can't take off if already in the air!
61: if (status != ONRAMP) {

62: strcpy(response, "I'm already in the air!");
63: return false;

64: }

65: TakeOff (dir);

66: break;

67: }

68: case MSG_CHANGE : {

69: // Can't change anything if on the ground.
70: if (status == ONRAMP) {

71: strcpy(response, "I'm on the ground");
72: return false;

73: }

74: // Only change if a non-negative value was passed.
75: if (spd != -1) speed = spd;

76: if (dir != -1) heading = dir;

77: if (alt != -1) altitude = alt;

78: status == CRUISING;

79: break;

80: }

81: case MSG_LAND : {

82: if (status == ONRAMP) {

83: strcpy(response, "I'm already on the ground.");
84: return false;

85: }

86: Land();

87: break;

88: }

89: case MSG_REPORT : ReportStatus();

90: }

91: /1

92: // Standard reponse if all went well.

93: /1

94: strcpy(response, "Roger.");

95: return true;

96: }

97: //

98: // Perform takeoff.

99: //

100: void

101: Airplane::TakeOff(int dir)

102: {

103: heading = dir;

104: status = TAKINGOFF;
105: }

106: //

107: // Perform landing.
108: //

109: void

110: Airplane::Land()

111: {

Totally Immersed: C++ Classes and Object-Oriented Programming

113 |

112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

speed = heading = altitude = 0;
status == ONRAMP;
}
/1
// Build a string to report the airplane's status.
/1
int
Airplane::GetStatus(char* statusString)
{
sprintf(statusString, "%s, Altitude: %d, Heading: %d, "
"Speed: %d\n", name, altitude, heading, speed);
return status;
}
/1
// Get the status string and output it to the screen.
/1
void
Airplane::ReportStatus()

char buff[100];
GetStatus(buff);
cout << endl << buff << endl;

}

Listing 4.3. AIRPORT.CPP.

O oO~NOOUD»WN =

#include <vcl\condefs.h>

#include <iostream.h>

#include <conio.h>

#pragma hdrstop

USERES("Airport.res");

USEUNIT ("airplane.cpp");

#include "airplane.h"

int getInput(int max);

void getItems(int& speed, int& dir, int& alt);

: int main(int argc, char **argv)

{
char returnMsg[100];

/1
// Set up an array of Airplanes and create
// three Airplane objects.

/1

Airplane* planes[3];

planes[@] = new Airplane("TWA 1040");

planes[1] = new Airplane("United Express 749", COMMUTER);
planes[2] = new Airplane("Cessna 3238T", PRIVATE);

/1

// Start the loop.

/1

continues

| 114

Day 4

Listing 4.3. continued

25:

do {

int plane, message, speed, altitude, direction;
speed = altitude = direction = -1;
/!

// Get a plane to whom a message will be sent.
// List all of the planes and let the user pick one.
/!
cout << endl << "Who do you want to send a message to?";
cout << endl << endl << "@. Quit" << endl;
for (int i=0;i<3;i++)
cout << i + 1 << ", " << planes[i]->name << endl;
/!
// Call the getInput() function to get the plane number.
/!
plane = getInput(4);
/!
// If the user chose item @ then break out of the loop.
/!

if (plane == -1) break;

1

// The plane acknowledges.

1

cout << endl << planes[plane]->name << ", roger.";
cout << endl << endl;

/!

// Allow the user to choose a message to send.
/!
cout << "What message do you want to send?" << endl;
cout << endl << "@. Quit" << endl;;
cout << "1. State Change" << endl;
cout << "2. Take Off" << endl;
cout << "3. Land" << endl;
cout << "4. Report Status" << endl;
message = getInput(5);
/!
// Break out of the loop if the user chose 0.
/!
if (message == -1) break;
/!
// If the user chose item 1 then we need to get input
// for the new speed, direction, and altitude. Call
// the getItems() function to do that.
/!
if (message == 0)
getItems(speed, direction, altitude);
/!
/1 Send the plane the message.
/!
bool goodMsg = planes[plane]->SendMessage (
message, returnMsg, speed, direction, altitude);

Totally Immersed: C++ Classes and Object-Oriented Programming 115 |

75: /1

76: // Something was wrong with the message
77: /1

78: if (!goodMsg) cout << endl << "Unable to comply.";
79: /1

80: // Display the plane's response.

81: /1

82: cout << endl << returnMsg << endl;
83: } while (1);

84: /1

85: // Delete the Airplane objects.

86: /1

87: for (int i=0;i<3;i++) delete planes[i];
88:

89: int getInput(int max)

90: {

91: int choice;

92: do {

93: choice = getch();

94: choice -= 49;

95: } while (choice < -1 || choice > max);
96: return choice;

97: }

98: void getItems(int& speed, int& dir, int& alt)
99: {

100: cout << endl << "Enter new speed: ";
101: getch();

102: cin >> speed;

103: cout << "Enter new heading: ";

104: cin >> dir;

105: cout << "Enter new altitude: ";

106: cin >> alt;
107: cout << endl;

Let’slook firstat the hegderfile _in Listi_ng_4.1. First notige all t_he lines that begin Wi_th
#define. What I am doing here isassociating one text string with another. At compile

time, the compiler just doesasearch-and-replace and replacesall occurrences of the first string
with the second. #defines are used because it’s much easier to remember a text string than
it is to remember a number. Which of the following do you prefer?
if (type == AIRLINER)
/] or
if (type == 0)
Tradition has it that names for #defines be in uppercase, but you can use any mixture of
upper- and lowercase letters. | like all uppercase because it tells me at a glance that this is a
defined constant and not a variable.

| 116 Day 4
NoTE Another way of declaring constants is to declare a variable using the
> const modifier. Here’s an example:

const int airliner = 0,

Using a const variable is probably the more modern method of
defining constants.

The next thing to note in the header is that the class includes some inline functions. These
functions are so small that it makes sense to inline them. You might also notice that the
Airplane class has one overloaded function called etstatus (). When called with a character
array parameter, it will return a status string as well as the status data member. When called
without a parameter, it just returns status. Note that there is only one public data member.
The rest of the data members are kept private. The only way to access the private data
members is via the public functions. For instance, you can change the speed, altitude, and
heading of an airplane only by sending it a message. To use an analogy, consider that an air
traffic controller cannot physically change an aircraft’s heading. The best he can do is send
a message to the pilot and tell him to change to a new heading.

Now turn your attention to Listing 4.2. This is the definition of the Airp1ane class. The
constructor performs initialization, including dynamically allocating storage for the char
array that holds the name of the airplane. That memory is freed in the destructor. The
sendMessage () function does most of the work. A switch statement determines which
message was sent and takes the appropriate action. Notice that the Takeoff() and Land()
functions cannot be called directly (they are protected), but rather are called through the
SendMessage () function. Again, you can’t make an aircraft take off or land; you can only send
it a message telling it what you want it to do. The Reportstatus () function calls Getstatus ()
to get a status string, which it outputs.

The main program is shown in Listing 4.3. The program first sets up an array of Airplane
pointers and creates three instances of the Airp1ane class. Then a loop starts. You can send
messages to any of the airplanes by calling the object’s senduessage () function. When you
send a message, you get a response back from the airplane. The do-while loop cheats a little
in this program. Notice that the test condition issimply 1. This means that the loop will keep
running indefinitely. In this case it's not a problem because | am using the break Statement
to break out of the loop rather than relying on the test condition. Run the program and play
with it to get a feel for how it works.

Inheritance

One of the most powerful features of classes in C++ is that they can be extended through
inheritance.

Totally Immersed: C++ Classes and Object-Oriented Programming 117 |

Kle . h‘ Inheritance means taking an existing class and adding functionality by deriving a new
class from it.

The class you start with is called the base class, and the new class you create is called
the derived class.

Let’s take the Airp1ane class as an example. The civilian and military worlds are quite
different, as you know. In order to represent a military aircraft, | can derive a class from
Airplane and add functionality to it:

class MilitaryPlane : public Airplane {
public:
MilitaryPlane(char* name, int _type);
virtual int GetStatus(char* statusString);
protected:
virtual void TakeOff();
virtual void Land()
virtual void Attack();
virtual void SetMission();
private:
Mission theMission;
b
AwilitaryPlane haseverything an Airplane has, plus a few more goodies. Note the first line
of the class definition. The colon after the class name is used to tell the compiler that | am
inheriting from another class. The class name following the colon is the base class from which
I am deriving. The pub1ic keyword, when used here, means that | am claiming access to all
the public functions and data members of the base class.

NoTE When you derive a class from another class, the new class gets all the

- functionality of the base class plus whatever new features you add. You
can add data members and functions to the new class, but you cannot
remove anything from what the base class offers.

You’ll notice that in the private section there is a line that declares a variable of the mission
class. Themission class could encapsulate everything that deals with the mission of a military
aircraft: the target, navigation waypoints, ingress and egress altitudes and headings, and so
on. Thisillustrates the use of adata member that is an instance of another class. In fact, you’ll
see that a lot when programming in C++Builder.

There’s something else here that | haven't discussed yet. Note the virtual keyword. This
specifies that the function is a virtual function.

| 118 Day 4

Avirtual function is a function that will be automatically called if a function by that
' name exists in the derived class.

Forexample, note that the Takeoff () functionisavirtual functionin the Airp1ane class. Refer
to Listing 4.2. Notice that Takeoff() is called by sendmessage() in response to the
MSG_TAKEOFF message. If the militaryplane class did not provide its own Takeoff () function,
the base class’s Takeoff () function would be called. Because the militaryplane class does
provide a Takeoff () function, that function, rather than the function in the base class, will
be called.

-‘ Replacing a base class function in a derived class is called overriding the function.

In order for overriding to work, the function signature must exactly match that of the
function in the base class. In other words, the return type, function name, and parameter list
must all be the same as the base class function.

You can override a function with the intention of replacing the base class function, or you
can override a function to enhance the base class function. Take the Takeoff () function, for
example. If you wanted to completely replace what the Takeoff () function of Airplane does,
you would override it and supply whatever code you wanted:

void MilitaryPlane::TakeOff(int dir)
{

// new code goes here

}

But if you wanted your function to take the functionality of the base class and add to it, you
would first call the base class function and then add new code:

void MilitaryPlane::TakeOff(int dir)
{

Airplane::TakeOff (dir);

// new code goes here

b

By calling the base class function, you get the original functionality of the function. You could
then add code before or after the base class call to enhance the function. The scope-resolution
operator is used to tell the compiler that you are calling the Takeoff () function of the
Airplane class. Note that the Takeoff () function is in the protected section of the Airplane
class. Ifitwere inthe private section, thiswould not work because even a derived class cannot
access the private members of its ancestor class. By making the Takeof () function protected,
it is hidden from the outside world but still accessible to derived classes.

Totally Immersed: C++ Classes and Object-Oriented Programming 119 |

NoTe The scope-resolution operator is required only when you have derived
> and base class functions with the same name and the same function
signature. You can call a public or protected function of the base class
at any time without the need for the scope-resolution operator,
provided they aren’t overridden. For example, if you wanted to check
the status of the aircraft prior to takeoff, you could do something like
this:
void MilitaryPlane::TakeOff(int dir)

if (GetStatus() != ONRAMP) Land(); // gotta land first!
Airplane::TakeOff (dir);
// new code goes here

}

In this case, the getstatus() function exists only in the base class, so
there is no need for the scope-resolution operator. In the case of the
Land () function, the militaryrPiane version will be called because it has
the most immediate scope.

When you derive a class from another class, you must be sure to call the base class’s
constructor so that all ancestor classes are properly initialized. Calling the base class
constructor isdone in the initializer list. Here’s how the constructor formilitaryplane might
look:

MilitaryPlane:: MilitaryPlane(char* _name)
: Airplane(_name, MILITARY) // call base class

// body of constructor

}

Be sure to call the base class constructor whenever you derive a class from a base class. Figure
4.1 illustrates the concept of inheritance.

Figure 4.1.
An example of
inheritance. MilitaryPlane Amgaeat CivilianPlane

MilitaryFighter MilitaryCargo

| Airliner || Commuter || SingleEngine

| F16 || c130 | | PrivatePlane

| TwinEngine |

CargoPlane |

| 120 Day 4

You can see from Figure 4.1 that the class called F16 is descended from the class called
MilitaryFighter. Ultimately, F16 is derived from Airplane Since Airplane is the base class for
all classes.

Multiple Inheritance

-!9‘ The act of deriving a class from two or more base classes is called multiple inheritance.

Multiple inheritance is not used frequently, but it can be very handy when needed. For
example, let’s say you had a class called aArmaments that kept track of the armaments for a
particular aircraft. It might look like this:

class Armaments {
public:
Armaments();
LoadArms();
private:
bool isArmed;
int numSidewinders;
int numSparrows;
/] etc.
}s

Now let’s say that you were to create a class to represent a military fighter. You could inherit
from both militaryPlane and Armaments:

class Fighter : public MilitaryPlane, public Armaments {
public:
Fighter(char* name);
private:
/1 other stuff
}s

Now you have a class that contains all the public elements of militarypiane and all the public
elements of Armaments. This would allow you to do the following:

Fighter fighter("F16");
fighter.LoadArms();
fighter.SendMessage(...);
/] etc.

The two base classes are blended to form a single class.

NoTE You should call the base class constructor for all base classes. The
> following illustrates:

F16::F16(char* _name)
: MilitaryPlane(_name, F16), Armaments()

{

Totally Immersed: C++ Classes and Object-Oriented Programming 121 |

// body of constructor
}
If a class has a default constructor, it is not strictly necessary to call the
base class constructor for that class. In most situations, though, you will
call the base class constructor for all ancestor classes.

Let me give you one other example. In the United States, the Military Air Command (MAC)
is responsible for moving military personnel from place to place. MAC is sort of like the U.S.
military’s own personal airline. Since personnel are ultimately cargo, this requires a military
cargo plane. But since people are special cargo, you can’t just throw them in the back of a cargo
plane designed to haul freight (not usually, anyway). So what is needed is a military cargo plane
that also has all the amenities of a commercial airliner. Look back to Figure 4.1. It appears
that to get what we want, we can derive from both militarycargoand Airliner—and we can.
Figure 4.2 illustrates.

Figure 4.2. Airplane
An example of
multiple inheritance.
MilitaryPlane i"i":.mpel':nieal
MilitaryCargo Airliner
MACPlane

While you may not use multiple inheritance very often, it is a very handy feature to have
available when you need it.

04TYEO2.

| 122 Day 4
NoTE Classes in VCL do not support multiple inheritance. You can still use
> mult_iple_ inheritance in any classes you write for use in your C++Builder
applications.

Basic File 1/0

It won’t be long before you are going to need the ability to read and write files in your
applications. I saved this discussion for now because you needed an understanding of classes
in order to understand how file input and output is handled in C++.

If you are going to be doing heavy database operations with C++Builder, you might be
relieved to know that you don’t have to worry about dealing with reading and writing
database files directly. That is all handled for you behind the scenes through C++Builder’s
VCL database components. VCL also provides support for reading and writing the contents
of edit controls, list boxes, and other basic Windows controls. The Windows API provides
functions for reading configuration files (. n1 files). Many OCX and ActiveX controls know
how to save and load files specific to the type of action the control performs.

As you can see, many of the objects you will use in C++Builder will handle file 1/O for you.
Still, there will be times when you have to read and write your own files, and you’ll need a
basic understanding of file 1/0 in order to do that.

Basic file 1/0 is accomplished via three C++ classes:

O The ofstream class, which handles file output
O The ifstream class, which handles file input
O The fstream class, which handles both file input and output

These classes are derived from the iostream class. You have had some experience with
iostream already, although you may not know it. The cout and cin classes | have been using
for console input and output are also derived from iostream. iostrean itself is derived from
a class called ios, which is the base class for all stream input and output in C++.

Does this sound complicated? Well, it is. Sometimes the labyrinth of the streaming classes
can be pretty confusing. What | am going to do here is give you a cursory glance at file 1/0,
but then we’ll have to move on. You'll be relieved to know that basic file 1/O is not terribly
complicated. If you need to do sophisticated file operations, you’ll need to dig into the class
library help files or get a good book on C++ (such as Teach Yourself Borland C++ 4.5 in 21
Days, Second Edition by Sams Publishing) that deals with file 1/0O in detail.

Totally Immersed: C++ Classes and Object-Oriented Programming 123 |

Basic File Input

Reading a text file in C++ is a fairly painless task. Listing 4.4 contains a program that reads
its own source file and displays each line as it reads it from disk. First, enter the program as
it appears in the listing (remember, don’t type the line numbers). Then save the project with
the name reapFiLE. If you don’t save the program with this name, the program will not run
properly. Compile and run the program. Since the program reads its own source file, the
output from the program will be the contents of Listing 4.4.

Listing 4.4. READFILE.CPP.

#include <condefs.h>
#include <stdio.h>
f#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <conio.h>
#pragma hdrstop

©ONOOO A~ WN =

int main(int argc, char **argv)
10: {

11: char buff[80];

12: ifstream infile;

13: infile.open("readfile.cpp");
14: if (!infile) return 0;

15: while (!infile.eof()) {

16: infile.getline(buff, sizeof (buff));

17: cout << buff << endl;

18:

19: infile.close();

20: cout << endl << "Press any key to continue...";

21: getch();
22: return 0;

-‘ The code on line 12 creates an instance of the ifstrean class called infile. Line 13
opens the file Reapr1LE.cPp for input. Line 14 checks to see if the file was opened

successfully. If it wasn’t, the program terminates. Line 15 starts a loop. Notice that the loop
expressionisacall to the eof () function of the istreamclass. This function returns true when
the file encounters the end of the file. On line 16, one line of text is read from the file using
the get1ine () function. The line of text is placed in the character array called buff. After that,
the contents of the character array are sent to the screen. Finally, line 19 closes the file. Notice
that on line 4 | #inc1ude the 10sTREAM.H header file so the compiler can see the declaration
for the ifstream class. As you can see from this example, reading a text file does not require
a lot of programming, thanks to C++ and the ifstream class.

| 124

Day 4

NoTE The program in Listing 4.4 contains a minor bug. Due to the way the

"'ﬂ directory, you would have to use this:

One of the ifstream constructors takes a char* as a parameter so that you can provide a
filename when you instantiate the class. Using this constructor, lines 12 and 13 could be
condensed into a single line:

ifstream infile("readfil.cpp");

If you create the object this way, the call to open() is unnecessary because the file will
automatically be opened from the constructor.

Tip Don’t forget about the double backslash in constant strings! For
example, if you wanted to open the win. in1 file in the Windows

ifstream infile("c:\\windows\\win.ini");
I know I’'ve mentioned this before, but I'll guarantee you that at some

point you’ll goof this up, so I want to drill it into your head while I've
got the opportunity.

The call to c1ose() on line 19 of Listing 4.4 is not strictly needed. The ifstream destructor
checks whether the file was left open. If it was, the destructor calls c1ose () to ensure that the
file is closed before the instance of the class is destroyed. In my programs | almost always call
close() eventhoughitis notstrictly required. Explicitly calling c1ose () has the added benefit
of documenting that the file is no longer needed.

- end of the file is determined, the program will print one blank line
before the loop terminates. In order to avoid the extra line, the loop
would have to be written like this:

while (!infile.getline(buff, sizeof(buff)).eof()) {
cout << buff << endl;

}

Chaining functions like this is perfectly legal, but it's confusing to new
C++ programmers. To make the code easier to understand, I allowed
the bug to live rather than squashing it.

Because the file-handling classes are derived from iostream, you can use the insertion and
extraction operators just as you do when writing to the console using cout and reading from
the console using cin. The reason getline() is used in Listing 4.4 is because the extraction

Totally Immersed: C++ Classes and Object-Oriented Programming 125 |

operator (>>) stops at the first whitespace it encounters. (Whitespace includes blank spaces,
tabs, and so on.) The get1ine () function, on the other hand, reads from the file until an eor
(end-of-line) character is detected, which is what you want when reading lines of text. When
reading single values without whitespace, the extraction operator is very useful. The following
code snippet reads a file containing numbers and outputs the numbers to the screen:

ifstream infile("somefil.dat");
while (!infile.eof()) {

int x;
infile >> x; // read number from file and assign it to x
cout << x << endl;

}

Note that the file being read is still a text file and not a binary file. The extraction operator
knows how to read text from the file and convert it into an integer.

Basic File Output

In some ways, file output is easier than file input. The insertion operator (<<) makes it easy.
The procedure is nearly identical to what is done when reading a file. Instead of creating an
instance of the ifstream class, you create an instance of the ofstream class and start throwing
things at it. Listing 4.5 contains a program that creates a new file, writes 10 lines of text to
it, and closes it. Following that, the file is reopened in read mode, and the contents are read
and displayed.

Listing 4.5. WRITEFIL.CPP.

#include <condefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include <conio.h>

#pragma hdrstop

©CoONOOOH»WN =

10: int main(int argc, char **argv)

11: {

12: char buff[81];

13: cout << "Creating File..." << endl;
14: ofstream outfile("test.dat");

15: if (loutfile) return 0;

16: cout << "Writing File..." << endl;

17: for (int i=0;i<10;i++) {

18: outfile << "This is line #" << i + 1 << endl;
19: }

continues

| 126 Day 4

Listing 4.5. continued

20: outfile.close();

21: cout << "Opening File for Input..." << endl;
22: ifstream infile("test.dat");

23: if (!infile) return 0;

24: cout << "Reading File..." << endl << endl;

25: while (!infile.eof()) {

26: infile.getline(buff, sizeof (buff));

27: cout << buff << endl;

28:

29: infile.close();

30: cout << endl << "Press any key to continue...";

31: getch();
32: return 0;

- l Line 14 cre_ates an instance of the ofstrean class aqd creates a file caIIe_d TEST.DAT.

Once the file has been created, a loop writes 10 lines of text to the file. Line 18
illustrates the use of the insertion operator to write to the file. Notice that a text string is
written, followed by an integer value (i + 1). The integer is converted to a string and inserted
in the output stream. Last but not least, the end1 manipulator is inserted to terminate the
string. Thisis repeated for each iteration of the loop. Line 20 closes the file after the loop ends.
In this case it is necessary to close the file because we are going to reopen it to read the file.
If we do close the file, it cannot be opened for reading. In lines 25-28 | use code similar to
what was used in the rReaprILE.cpp example to display the contents of the file. When the
program in Listing 4.5 runs, the output looks like this:

Creating File...
-I Writing File...

Opening File for Input...

Reading File...

This is line #1

This is line #2

This is line #3

This is line #4

This is line #5

This is line #6

This is line #7

This is line #8

This is line #9

This is line #10

Press any key to continue...

Specifying File Modes

Files can be opened in several different modes. For example, the default action when a file
isopened using the ofstreamclass is to create a new file. This means that if you use the default
open mode, you will overwrite the file if it already exists. Often that is not what you want.

Totally Immersed: C++ Classes and Object-Oriented Programming 127 |

For example, sometimes you want to append data to the end of an existing file rather than
create a new file. In that case you can append data to the end of a file by opening the file in
append mode. To specify append mode, you must use one of the ios class’s open_mode
specifiers in the ofstream constructor when you create the object:

ofstream outfile("test.dat", ios::app); // open in append mode

This file will be opened in append mode and any new data written to the file will be written
to the end of the file. There are several specifiers you can use when opening files. Table 4.1
lists the open_mode enumeration’s values and their descriptions.

Table 4.1. ios class open_mode specifiers.

Specifier Description

app The file is opened and any new data will be appended to the end of
the file.

ate Seek to the end of the file when the file is opened.

in The file is opened for input (reading). This is the default for the
ifstream class.

out The file is opened for output (writing). This is the default for the
ofstream class.

binary The file is opened in binary mode. The default is to open the file in

text mode. In text mode, when the file is read, carriage-return/
linefeed (cr/LF) pairs are converted to a single linefeed character
(LF). When the file is written, linefeed characters are converted to
CR/LF pairs before being written to the file. In binary mode no
conversion of cr/LR pairs takes place.

trunc Opens the file and clears the contents. If neither app nor ate are
specified, trunc is the default.
nocreate The file will not be created if it does not exist. open() will fail if the

file does not exist. Opening an ifstream with this flag can be used
to check for the existence of a file.

noreplace Similar to nocreate except that open will fail unless either app or ate
is specified.

You can or together two or more of the values listed in Table 4.1 if needed. For example, let’s
say you wanted to open afile in binary mode and that you wanted to append data to the end
of the file. In that case the constructor would look like this:

ofstream outfile("test.dat", ios::app , ios::binary);

| 128

Day 4

NoOTE Binary files are treated differently than text files (see the binary Specifier

This will open the file in binary mode and move the file pointer to the end of the file. Any
new data will be written to the end of the file.

- in Table 4.1). To read binary files, you will have to have an under-
standing of the read(), write(), put(), and get () functions. We don’t
have the time to go into each of those functions at this point. If you
need more information on binary file operations, you might want to
get a good book on C++ that covers file 1/0 in detail.

Basic file 1/0 is pretty easy, really. But as | said earlier, if you need to do complicated file
1/0, you are going to have to tie into the online help or get hold of a good book on file I/O
in C++ (again, Teach Yourself Borland C++ 4.5 in 21 Days, Second Edition by Sams Publishing
is a good bet).

Summary

Today you have learned about classes in C++. A well-designed class is easy to use and saves
many programming hours. I'd even go so far as to say that a well-designed class is a joy to
use—especially when it’s of your own creation. Early in the chapter you learned about some
of the features of functions that are specific to C++. You learned about function overloading,
virtual functions, inline functions, and default parameters in functions. All these are heavily
used in designing classes in C++. Finally, the chapter finished up with an introduction to basic
file 1/0 operations.

The lessons of these first four days are important to understand as you continue through this
book. If it doesn’t make complete sense to you, don’t despair. As we continue through the
following days, you will see these concepts repeated and put to use in programs that have more
practical application than the console apps we’ve been working with thus far.

= Learning C++ can and will lead to brain overload! It's natural, and you
Iﬁ shouldn’t worry about it. You might put down this book for the
‘ff_g evening, turn out the lights, and think, “I’ll never get it.” Trust me, you

WARNING will.

Totally Immersed: C++ Classes and Object-Oriented Programming 129 |

Sometimes it’s necessary to take a couple days off and let it all soak in.
In fact, if I thought I could get by with it I'd make Day 5 a blank
chapter called “A Day of Rest.” Take it a little at a time, and one of
these days you’ll be just like Archimedes—you’ll be running around
your office or your house shouting “Eureka!” because the light just
came on in your noggin. But keep track of your clothes, will you? The
neighbors could be watching.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q

A

Q
A

Q
A

How can | keep a class member function private to the outside world but
allow derived classes to call it?

Make it protected. A protected function is not accessible to users of your class but
is accessible to derived classes.

What does data abstraction mean?

Data abstraction means hiding the details of the class that the users of the class
don’t need to see. A class might have dozens of data members and functions, but
only a few that the user can see. Make visible (public) only the functions that a user
needs to know about to use the class.

What is an object?

Effectively speaking, an object is any block of code that can be treated as a separate
entity in your programs. An object in C++ generally means a class. In C++Builder,
that definition is expanded to include VCL components. OCX and ActiveX
controls could also be considered objects.

Can my class have more than one constructor?

Yes. Your class can have as many constructors as needed, provided that you follow
the rules of function overloading.

| 130

Day 4

Q Do | have to understand every aspect of file 1/0 to program in C++Builder?
A No. C++Builder has plenty of built-in file 1/O through its use of components. A

basic understanding of file 1/0O is a good idea in any case. As always, it depends on
what your program does.

Q Can I open afile in such a way that I can read from and write to the file as

needed?

A Yes. In addition to the file 1/0 classes I discussed in this chapter, there is also a class

Quiz
1.
2.
3.

called fstream. This class allows you to read from a file, write to the file, and
reposition the file pointer as needed.

How do classes and structures differ in C++?
What is the purpose of having private data members and functions?

How can you keep data members private, yet allow users to read and set their
values?

How and when is a class’s destructor called?

5. What does it mean to override a function of the base class?

How can you override a base class function and still get the benefit of the operation
the base class function performs?

What does an initializer list do?
Can a class contain other class instances as data members?

How can you get the functionality of two separate classes all rolled into a single
class?

Exercises

1.

Write a class that takes a person’s height in inches and returns the height in feet.

2. Derive a class from the class in exercise 1 that also returns the height in meters,

centimeters, or millimeters. (Hint: There are 25.4 millimeters in an inch.)
Write a program that takes user input and writes it to a data file.

Modify the program in exercise 3 so that it reads the data file and displays the
output after the file is written.

Take a day off from work. You've earned it!

Week 1

Day 5

C++ Class Frameworks
and the Visual
Component Model

by Kent Reisdorph

Today | am going to talk about class frameworks. I will tell you what a framework
is and let you know what your options are for writing Windows programs in
today’s fast-paced software industry. In doing so, | will look at the following:

O Borland’s Object Windows Library (OWL)

O Microsoft’s Microsoft Foundation Class Library (MFC)

O Borland’s Visual Component Library (VCL)

| 132

Day 5

Frameworks 101

“In the beginning there was C....” If you recall, | started my discussion of the C++
programming language with that statement. The same is true of Windows programming—
in the beginning, the vast majority of Windows programs were written in C. In fact, the
Windows Application Programming Interface (API) is just a huge collection of C func-
tions—hundreds of them. There are still undoubtedly thousands of programmers out there
writing Windows programs in C.

Somewhere along the line, some folks at Borland decided, “There has got to be an easier way!”
(Actually, the framework revolution may have started on several different fronts at once, but
Borland was certainly a leader in the field.) It was apparent that Windows programming was
very well suited to the C++ language, and vice versa. By creating classes that encapsulate
common Windows programming tasks, a programmer could be much more productive.
Once aclass was created to encapsulate the various duties of awindow, for instance, that class
could be used over and over again. The framework revolution began.

But | haven't actually told you what a framework is yet.

A framework is a collection of classes that simplifies programming in Windows by

encapsulating often-used programming techniques. Frameworks are also called class
libraries.

Popular frameworks have classes that encapsulate windows, edit controls, list boxes, graphics
operations, bitmaps, scrollbars, dialog boxes, and on and on.

So What’s the Big Deal?

That’s a good question. The bottom line is that frameworks make Windows programming
much easier than it would be in straight C. Let me give you an example. Listing 5.1 contains
a portion of a Windows program written in C. This section of code loads a bitmap file from
disk and displays the bitmap in the center of the screen. None of this will make sense to you
right now, but that’s not the point.

Listing 5.1. C code to load and display a bitmap.

HPALETTE hPal;
BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;
LPBITMAPINFO 1lpbi = 0;
HFILE hFile;

DWORD nClrUsed, nSize;
HDC hDC;

NoO o~ wN =

C++ Class Frameworks and the Visual Component Model 133 |

: if (hFile != HFILE_ERROR) _1lclose(hFile);

: HPALETTE oldPal = SelectPalette(hDC, hPal, FALSE);

: RealizePalette(hDC);

: HDC hMemDC = CreateCompatibleDC(hDC) ;

: HBITMAP oldBitmap =(HBITMAP)SelectObject(hMemDC, hBitmap);
: BitBlt(hDC, 0, @, (WORD)bih.biWidth, (WORD)bih.biHeight,

: HBITMAP hBitmap;
: void _huge *bits;
: do

{
if ((hFile = _lopen(data.FileName, OF_READ)) == HFILE_ERROR) break;

if (_hread(hFile, &bfh, sizeof(bfh)) 1= sizeof (bfh)) break;

if (bfh.bfType != 'BM') break;
if (_hread(hFile, &bih, sizeof(bih)) != sizeof(bih)) break;
nClrUsed =

(bih.biClrUsed) ? bih.biClrUsed : 1 << bih.biBitCount;
nSize =

sizeof (BITMAPINFOHEADER) + nClrUsed * sizeof (RGBQUAD);
1lpbi = (LPBITMAPINFO) GlobalAllocPtr(GHND, nSize);
if (!1lpbi) break;
hmemcpy (1pbi, &bih, sizeof(bih));
nSize = nClrUsed * sizeof (RGBQUAD) ;
if (_hread(hFile, &lpbi->bmiColors, nSize) != nSize) break;
if (_llseek(hFile, bfh.bfOffBits, @) == HFILE_ERROR) break;
nSize = bfh.bfSize-bfh.bfOffBits;
if ((bits = GlobalAllocPtr(GHND, nSize)) == NULL) break;
if (_hread(hFile, bits, nSize) != nSize) break;
hDC = GetDC(hWnd);
hBitmap = CreateDIBitmap(hDC, &(1lpbi->bmiHeader), CBM_INIT,
bits, lpbi, DIB_RGB_COLORS);
if (hBitmap) {
LPLOGPALETTE 1ppal;
DWORD nsize = sizeof (LOGPALETTE)
+ (nClrUsed-1) * sizeof (PALETTEENTRY);
lppal = (LPLOGPALETTE) GlobalAllocPtr(GHND, nSize);
if (1lppal) {
lppal->palVersion = 0x0300;
lppal->palNumEntries = (WORD) nClrUsed;
hmemcpy (1lppal->palPalEntry, lpbi->bmiColors,
nClrUsed * sizeof (PALETTEENTRY));
hPal = CreatePalette(lppal);
(void) GlobalFreePtr(lppal);
}

}
} while(FALSE);

hMemDC, @, @, SRCCOPY);

: SelectObject(hMemDC, oldBitmap);

: DeleteDC(hMemDC) ;

: SelectPalette(hDC, oldPal, FALSE);

: ReleaseDC(hwnd, hDC);

: if (bits) (void) GlobalFreePtr(bits);
: if (1lpbi) (void) GlobalFreePtr(lpbi);

| 134

Day 5

That looks just a little intimidating, doesn’t it? The fact is, | even had to get some help from
my friends on the BCPPLIB forum of CompuServe (thanks, Paul!). Now look at the
equivalent using Borland’s Object Windows Library, shown in Listing 5.2.

Listing 5.2. OWL code to load and display a bitmap.

TDib dib("test.bmp");

TPalette pal(dib);

TBitmap bitmap(dib, &pal);

TClientDC dc(*this);

dc.SelectObject(pal);

dc.RealizePalette();

: TMemoryDC memdc(dc);

memdc.SelectObject(bitmap);

dc.BitBlt(@, 0, bitmap.Width(), bitmap.Height(), memdc, 0, 0);

©CoO~NOOOD»WN =

So which would you rather use? You don’t even have to know what these code snippets do
to make that decision. It’s easy to see that the OWL version is shorter and more readable.
(VCL makes the task even easier by providing a bitmap component that you drop on a form.
| don’t want to get ahead of myself, though, so I'll save that discussion for a little later.)

These examples sum up what frameworks are all about. Frameworks hide details from you
that you don’t need to know about. Everything that is contained in Listing 5.1 is performed
behind the scenes in the OWL code in Listing 5.2. You don’t need to know every detail about
what goes on behind the scenes when OWL does its thing, and you probably don’t want to
know. All you want to do is take the objects that make up a framework and put them to use
in your programs.

A good framework takes full advantage of OOP. Some do that better than others. Borland’s
Object Windows Library and Visual Component Model are tremendous examples of object-
oriented programming. They provide the proper abstraction needed for you to rise above the
clutter and get down to the serious business of programming.

So What’s the Catch?

A little skeptical, are you? Good. You're bright enough to figure out that if you have all of
that ease of use, you must be giving something up. Truth is, you are right. You might think
thata program written with a framework will be larger and slower than its counterpart written
in C. That's partially correct. Applications written with frameworks don’t necessarily have
to be slower than programs written in C, though. There is some additional overhead inherent
in the C++ language, certainly, but for the most part it is not noticeable in a typical Windows
program.

C++ Class Frameworks and the Visual Component Model 135 |

The primary trade-off is that Windows programs written in C++ tend to be larger than their
straight C counterparts. For example, let’s say you had a simple Windows program written
in C that was 75KB in size. The equivalent program written with one of the framework
libraries might end up being 200KB in size. That’s a significant difference, yet this example
demonstrates the worst-case scenario. The difference in final program size between a C
application and a C++ application written with a framework is going to be most noticeable
in very small programs. As your programs increase in size and become more sophisticated,
the difference in size is much less noticeable.

One of the differences is simply the difference between C and C++. C++ carries additional
overhead for features such as exception handling, runtime type information (RTT]I), and
other C++ goodies. In my opinion, the difference in code size is an acceptable trade-off for
the features that C++ provides. Now, before you label me as a code-bloat proponent, let me
say that I am as conscientious as the next guy when it comes to code bloat. I believe that we
should all write the tightest code we can, given the tools we use. | am also a realist, and |
understand that time-to-market is a driving force in the software industry today. I am willing
to trade some code size for the power that C++ and an application framework give me.

Frameworks Teach Object-Oriented Programming

and Design

If you end up getting serious about this crazy game we call Windows programming, you will
eventually end up peeking into the source code of your favorite framework. Sooner or later
you’ll want to know how the big boys do things. The OWL or VCL source code is a great
place to go for that kind of information.

NoOTE The MFC source code is probably not the best place to go to see good

- object-oriented design in action. MFC lacks the elegance, abstraction,
and overall design that makes a top-notch framework. In addition, it
tends to break OOP rules from time to time. MFC may well be the
most popular framework, but that doesn’t mean it is the best frame-
work from an OOP standpoint.

Some weekend when the leaves are all raked, the house trim has been painted, the laundry
is all done, the kids are shipped off for a weekend at grandma’s, and you think you have a
pretty good handle on C++, you should spend some time browsing your favorite framework’s
source code. It can be intimidating at first, but after a while you start to see what the designers
were up to. Don’t strain yourself. Attempt to understand the things that bump up against

| 136

Day 5

the limits of your knowledge regarding C++. Leave the complicated stuff for next month. But
notice how the framework designers use private, protected, and public access in classes.
Notice how and when they implement inline functions. Notice how things that should be
kept hidden from the user aren’t in public view. Studying a good C++ class library can teach
you a great deal about C++ and object-oriented design.

The C++ Framework Wars

The frameworks need to be separated into two categories: C++ frameworks and VCL. First
I'll discuss the C++ frameworks and then I'll move onto VCL. There are really only two viable
C++ frameworks, and they are Borland’s OWL and Microsoft's MFC.

Borland’s Object Windows Library

Borland took the lead role in the framework race with OWL a few years back. First there was
OWL 1.0. This first version of OWL was a separate product sold by Borland for use with its
Borland C++ 3.0 compiler. (Actually, the very first OWL was written for Turbo Pascal and
was later converted to C++.) OWL 1.0 was a good framework, but because of some
proprietary syntax and other issues, it wasn’t the design that Borland would eventually stick
with for the future of OWL. OWL 1.0 did, however, do the entire Windows programming
community aservice—it got the framework ball rolling. Although OWL 1.0 was not the first
framework ever written, it certainly was the first to gain mass-market appeal.

After OWL 1 came OWL 2.0. OWL 2 was a masterpiece. It implemented many of the latest
C++ language features—not because they were new, but because they made sense. Best of all,
OWL 2 was included as part of the Borland C++ 4.0 compiler. From this point on, Borland
would include OWL as part of its Borland C++ package. Borland C++ compilers have always
been first to implement new C++ features, and OWL 2 put those features to good use. OWL
2 also did away with the proprietary syntax that plagued OWL 1. OWL 2 was all standard
C++ that could be compiled with any C++ compiler—at least in theory. As it was, there were
few C++ compilers implementing the latest and greatest C++ features, so OWL 2 was
typically used only with Borland compilers.

Borland released a revision to OWL 2.0 called OWL 2.5. For the most part, the changes were
minor. They were minor in the sense that they didn’t add a lot to OWL 2 itself; a few bug
fixes here and there and a few new classes. But in one way OWL 2.5 was a major release—
itadded OLE (object linking and embedding) supportin a new set of classes called the Object
Components Framework (OCF). OCF is not technically part of OWL. It works very well
with OWL, but at the same time it can be used independently of OWL.

C++ Class Frameworks and the Visual Component Model 137 |

The latest and greatest OWL is 5.0. OWL 5 represents significant enhancements to
OWL 2.5. The primary changes come in new OWL classes that encapsulate the new Win32
custom controls. OCF was also updated in the OWL 5.0 release.

OWL’sstrengthsare considerable. First, itis an architectural wonder. Itis obvious that OWL
was very well thought out from the beginning. I can’t say enough about my admiration for
OWL designers Carl Quinn, Bruneau Babet, and the other OWL team members. OWL is
very OOP friendly and follows all the OOP rules. Its level of abstraction strikesa good balance
between ease of use and power. OWL has one major advantage over its competitors: It can
be used in both 16-bit and 32-bit programs. Borland has even emulated some of the
32-bit custom controls for use in 16-bit programs. While these emulations are not perfectin
all cases, they are usable and give you a method of getting the 32-bit look and feel even in
16-bit programs.

OWL also has its weaknesses. Ironically, one of OWL's strengths leads, in some people’s
minds, to one of its weaknesses. OWL has done a great job of encapsulating the Windows
environment and that is certainly a strength. Part of the problem with that level of
encapsulation is that OWL is complex, and it is sometimes difficult to find your way around
when you are first learning OWL. The complexity of OWL is considered by some to be one
of its weaknesses. It takes time to master, no question about it. But once you have mastered
OWL, you can be very efficient in writing Windows programs.

The Microsoft Foundation Class Library

Sometime between OWL 1 and OWL 2, the Microsoft Foundation Class (MFC) Library
was born. MFC is included as part of Microsoft’s Visual C++ compiler package. Actually,
versions of MFC ship with compilers by Symantec, Watcom, and, believe it or not, Borland
(there may be others as well). Typically Microsoft has not licensed the most current version
of MFC to other compiler vendors (Symantec and Watcom), but Borland C++5.01 included
MFC version 4.1, which at the time was the latest version of MFC (a newer version, 4.2, came
out shortly thereafter).

It could be said that MFC is a different type of class library than OWL. MFC is less abstract
and lies closer to the Windows API. MFC'’s strengths come in three primary areas. First, it
is relatively easy to learn. (Understand that no C++ framework dealing with Windows
programming is going to be easy to learn, but MFC is a little easier to pick up than the
competition.) It is easier to learn primarily because it is less abstract in some areas. If you are
new to Windows programming, you will probably find OWL and MFC about equal when
it comes to learning the framework. If you are coming from a C programming background
and already know the Windows API, MFC is almost certainly going to be easier to learn.

| 138

Day 5

Another strength of MFC, according to some, is that it isa thin wrapper around the Windows
API. Again, for Windows programmers who are moving from programming in C to
programming in C++ with MFC, this is an advantage. They can begin to use MFC and feel
somewhat at home.

Finally, MFC has the distinct advantage of belonging to Microsoft. The advantage is that as
new Windows features and technologies come along, MFC can be first to implement them.
Microsoft can release a new technology, and MFC can already have support for that
technology when it is announced. That certainly doesn’t hurt!

MFC has its weaknesses too. First and foremost, it is a thin wrapper around the Windows
API. “Wait a minute!” you say. “I thought you said that was one of MFC’s strengths!” Yes,
I did. It’s also one of its weaknesses. Some folks would consider MFC'’s close tie to the API
astrength. I consider it a weakness. The whole idea behind a class library is to shield the user
from things he or she doesn’t need to know about. MFC fails that test in many cases. Folks
who are coming from Windows programming in C consider that a strength. You can form
your own opinion. Along those same lines, MFC is not OOP friendly. Sometimes it appears
to be a hastily implemented collection of classes that don’t work and play well together rather
than something planned and designed from the ground up to work as a unit.

Another problem with MFC is that the latest version is 32-bit only, as is the Visual C++ 4.0
compiler. Although you can still write 16-bit programs using Microsoft’s Visual C++ 1.5
(which comes with Visual C++ 4.0), you will likely find a disappointing development
environment.

So Who’s Winning?

Without question, MFC is more widely used than OWL. Part of the reason is that both MFC
and the Visual C++ compiler bear the Microsoft name. It’s no secret that Microsoft is king
of the hill in the PC software industry. Itis also no secret that Microsoft has marketing power
that other companies can only dream about. In addition, there is a prevailing attitude of (to
slightly modify a coined phrase) “No one ever got fired for buying Microsoft.”

I firmly believe that OWL is the better framework. Few who have used both OWL and MFC
extensively would argue that point. But MFC is undoubtedly the C++ framework of choice
today. There are many reasons, some of which I've alluded to already. Other reasons include
a perceived lack of direction on Borland’s part in recent years. Some managers prefer to play
it safe and buy a product produced by “the big M” regardless of technical merit. Hopefully
that attitude won’t eventually lead us to a software industry with a gross lack of competition.
This industry desperately needs companies like Borland that will push the envelope.

So what is the future of C++ frameworks? It’s nearly impossible to guess at this point. It could
be that both MFC and OWL are losing to the new kid on the block—components. Let’s take
a look at the Visual Component Library now.

C++ Class Frameworks and the Visual Component Model 139 |

The Visual Component Library: The New
Kid on the Block

In 1995 Borland introduced a revolutionary new product called Delphi. It was an instant hit.
Delphi offered rapid application development (RAD) using something called components.
Components are objects that can be dropped on a form and manipulated via properties,
methods, and events. It’s visual programming, if you will.

The concept of form-based programming was first popularized by Microsoft’s Visual Basic.
Unlike Visual Basic, though, Delphi used a derivative of Pascal as its programming language.
This new language, called Object Pascal, introduced OOP to the Pascal language. In a sense,
Object Pascal is to Pascal what C++ is to C. Delphi and Object Pascal represented the
marriage of object-oriented programming and form-based programming. In addition,
Delphi could produce standalone executables. Real programs. Programs that did not require
aruntime DLL in order to run; programs that were compiled, not interpreted; programs that
ran tens of times faster than Visual Basic programs. The programming world was impressed.

Delphi didn’t just throw Object Pascal at you and let you flounder. It also introduced the
Visual Component Library (VCL). VCL isan application framework for Windows program-
ming in Object Pascal. But VCL is not really comparable to OWL and MFC. Yes, it is a
framework, but the core is very different. It is different primarily because it was designed
around the concept of properties, methods, and events.

You may be wondering why I’'m talking about Delphi. The reason is simple—it’s because the
very same VCL that is the heart of Delphi is also the heart of C++Builder. That may come
as a shock to you. If you are coming from a C++ background, you might be scratching your
head right now, wondering how that works. If you are coming from a Pascal background,
you’re probably grinning from ear to ear. If you are coming to C++Builder from any other
type of background, you probably don’t care either way. In the end, it doesn’t really matter
because it works. Let’s look a little deeper into VCL.

Components

As | talked about on Day 1, “Getting Your Feet Wet,” VCL components are objects that
perform a specific programming task. VCL components are wrapped up in Object Pascal
classes. From this point on in this book, we will be encountering components on a daily basis.
I won’t spend a lot of time explaining every detail of components right now because you will
see by example how components work as you go through the rest of the book. Tomorrow I'll
explain components in more detail.

| 140

Day 5

NoTE If you have the C++Builder options configured to save the desktop

Properties, Methods, and Events

On Day 1 I gave you a brief introduction to the properties, methods, and events model. These
three ingredients make up the public interface of components in VCL (the part of the
component the user will see). Let’s take a look at these elements one at a time.

Properties

Properties are elements of a component that control how the component operates. Many
components have common properties. All visual components, for example, have a Top and
a Left property. These two properties control where the component will be positioned on
aform. In the case of form components, the Top and Left properties control where the form
will be placed on the screen when the form is displayed. All components have an owner
property, which VCL uses to keep track of the child components a particular parent form or
component owns.

A picture is always worth a thousand words, so let’s fire up C++Builder again and I'll show
you properties in action. When you start C++Builder, you are greeted with a blank form and
the Object Inspector.

- when you close C++Builder, you may see the last project you were
working on when you start C++Builder. If that's the case, choose
File| New Application from the main menu to get a blank form.

Right now the Object Inspector should look something like Figure 5.1. If necessary, click on
the Properties tab of the Object Inspector window so that the form’s properties are displayed.
The component’s properties are arranged in alphabetical order. If more properties exist than
can be displayed at one time, the Object Inspector will have a scrollbar so that you can view
additional properties. The Object Inspector window can be moved and sized. | like my
Object Inspector as tall as my screen permits so that | can see the maximum number of
properties at one time. Scroll down through the properties until you locate the Left property
and then click on it. Change the value for the Left property (any number between 0 and 600
will do) and press Enter on the keyboard. Notice how the form moves as you change the value.

This illustrates an important aspect of properties—they are more than simple data members
of a class. Each property has an underlying data member associated with it, but the property
itself is not a class data member. Changing a property often leads to code executed behind
the scenes.

C++ Class Frameworks and the Visual Component Model 141 |

Figure 5.1.
The Object Inspector
window.

T

-d Properties are often tied to access methods that execute when the property is modified.

NoTE Things start to get a little confusing at this point. As I said, VCL is
- written in Pascal. Pascal uses the term method where C++ uses the term
— function. To further muddy the waters, Pascal uses the term function to

refer to a method that returns a value, and the term procedure to refer to
a method that does not return a value. | would be happy enough to call
them all functions (being the old C++ hacker that I am), but when
discussing VCL 1 will use the Pascal parlance. For the most part I will
use the generic term method.

Properties can be changed at design time (when you are designing your form) and at runtime
(when the program is running through code you write). In either case, if the property has an
access method, that access method will be called and executed when the property is modified.
You have already seen an example of changing a property at design time when you changed
the Left property and watched the form move on the screen. That is one of the strengths of
VCL and how it is used in C++Builder: You can instantly see on the screen what the result
of your design change will be. Not all properties are able to show a visible change on the form
at design time, however, so this does not happen in every case. Still, when possible the results
of the new property value are immediately shown on the form.

Tochange a property at runtime, you simply make an assignment to the property. When you
make an assignment, VCL works behind the scenes to call the access method for that
property. To change the Left property at runtime, you would use code like this:

MainForm->Left = 200;

| 142 Day 5

In the case of the Left property (as well as the Top property), VCL moves and repaints the
form. (You Windows API programmers can figure out that this eventually translates into calls
to the Windows API functions setwindowPos () and InvalidateRect().)

NoOTE Notice that the previous code line uses the indirect member operator

- (->) to set the property. All VCL components are allocated from the
heap. The indirection operator is always used to access a component’s
properties and methods. Classes you write for use in your C++Builder
applications can be allocated either from the heap or from the stack,
but all VCL component classes, and all classes derived from them,
must be allocated from the heap.

Properties actually have two access specifiers, which are used when properties are read
EW TER o
or modified. There is a read specifier and a write specifier.

Suffice it to say that the access specifiers associate read and write methods (functions) with
the property. When the property is read or written to, the functions associated with the
property are called automatically. When you make an assignment as in the previous example,
you are accessing the write specifier. In effect, VCL checks to see whether an access method
exists for the write specifier. If so, the access method is called. If no access method exists, VCL
simply assigns the new value to the data member associated with the property.

When you reference a property (use the property as the right side of an equation), you are
accessing the read specifier:

int x = MainForm->Left;

In this case, VCL calls the read specifier to read the value of the Lef+ property. In many cases,
the read specifier does very little more than return the current value for a property.

The properties of the property (sorry, I couldn’t resist!) are determined by the writer of the
component. A property can be read-only. A read-only property can be read—its value can
be retrieved—»but not written to. In other words, you can fetch the value of the property, but
you can’t change it. In rare cases, a property could be made write-only (a property that can
be written to but not read is not very useful in most cases). This is obviously the opposite of
a read-only property.

Finally, some properties can be specified to be runtime-only. A runtime-only property is one
that can only be accessed at runtime but not at design time. Since a runtime-only property
does not apply at design time, it is not displayed in the Object Inspector. A runtime-only
property can be declared as read-only, too, which means that it can only be accessed at
runtime and can only be read (but not written to).

C++ Class Frameworks and the Visual Component Model 143 |

Some properties use an array as the underlying data member. To illustrate let’s put a memo
component on our blank form. Go to the C++Builder Component Palette, choose the
Standard tab, and click on the Memo button. (The tool tip will tell when you are over the
Memo button.) Now move to the form and click on the form where you want the top-left
corner of the memao to appear. As soon as you place the memo component on the form, the
Object Inspector switches to show you the properties of the component just placed on the
form, in this case a Tmemo. Locate the Lines property and click on it. Notice that the property
value contains the text (Tstrings) and that there is a little button with an ellipsis (...) to the
right of the property value.

NoTe The ellipsis button tells you that this property can be edited by invok-

- ing a property editor dialog box. For an array of strings, for instance, a
dialog box will be displayed in which you can type the strings. In the
case of the Font property, clicking the ellipsis button will invoke the
Choose Font dialog box. The exact type of the property editor is
property specific, although certain properties can share a common
editor. You can bring up the property editor by clicking the ellipsis
button or by double-clicking the property value.

The Lines property foramemo component isan array of strings. When you double-click the
Value column, the string editor is displayed and you can then type the strings you want to
be displayed in the memo component when the application runs. If you don’t want any
strings displayed in the memo component, you will need to clear the property editor of any
strings.

Properties can be instances of other VCL classes. The Font property is an obvious example.
A font includes things like the typeface, the color, the font size, and so on. Locate the Font
property in the Object Inspector. (It doesn’t matter whether you have the memo component
or the form selected.) Notice that there is a plus sign before the word “Font.” This tells you
that there are individual properties within this property that can be set. If you double-click
on the property name, you will see that the Object Inspector expands the property to reveal
the individual elements of that property. You can now edit the elements of the Font property
individually. The same settings can be edited by invoking the Property Editor. Either method
can be used, and in the end the results are the same.

Some properties are sets, or collections of other properties.

The sty1e property within the Font object is a good example of a set. Notice that sty1e has
aplussignin front of it. If you double-click on the sty1e property, you will see that the sty1e

| 144 Day 5

node expands to reveal the contents of the set. In this case the set consists of the various styles
available for fonts: bold, italic, underline, and strikeout. By double-clicking a style, you can
turn that style on or off (set the value to true Or fa1se). Some properties can be enumerations.

M An enumeration is a list of possible choices for a property.

When you click on an enumeration property, adrop-down arrow button appears to the right
of the value. To see the choices in the enumeration, click the drop-down button to display
the list of choices. Alternatively, you can double-click the value column for the property. As
you double-click on the property’s value, the Object Inspector will cycle through (or
enumerate) the choices. The cursor property gives a good example of an enumerated
property. Locate the cursor property and click the arrow button to expose the list of possible
cursors you can choose from.

As long as you've got C++Builder running and a blank form displayed, you might as well
spend some time examining the various components and their properties. Go ahead; I'll wait.

House RuLes: PROPERTIES

O Properties appear to be class data members and are accessed like class data
members.

Properties are not class data members. They are a special category of class member.

O Properties often invoke an access method when they are written to (assigned a
value), but not always. It depends on how the particular component is written.

O Properties cannot be used as parameters in function calls.

Properties usually have default values. The default value is the value that initially
shows up in the Object Inspector when a component is first utilized and is the
value that will be used if no specific value is assigned.

Properties can be designed as read-only, write-only, or runtime-only.

Runtime-only properties do not show up in the Object Inspector and can be
modified only at runtime.

O Properties can include
0O Simple data types

Arrays

Sets

Enumerations

VCL class objects

O 0o o d

C++ Class Frameworks and the Visual Component Model 145 |

Methods

Methods in VCL components are functions (ahem...procedures and functions) that can be
called to make the component perform certain actions. For example, all visual components
have a method called show(), which displays the component, and a method called Hide (),
which hides the component. Calling these methods is exactly the same as calling class member
functions as we did on Day 3, “Up to Your Neck in C++™:

MyWindow->Show() ;

// do some stuff, then later...

MyWindow->Hide();

In C++ parlance, methods are member functions of acomponent class. Methods in VCL can
be declared as public, protected, or private just as functions in C++ can be public, protected,
or private. These keywords mean the same thing in Object Pascal classes as they do in C++
classes. Public methods can be accessed by users of the component. In this example, both the
show () and Hide () methods are public. Protected methods cannot be accessed by users of the
component, but can be accessed by classes (components) derived from a component. And,
of course, private methods can be accessed only within a class itself.

Just like C++ functions, some methods take parameters and return values, and others do not.
It depends entirely on how the method was written by the component writer. For example,
the cetTextBuf () method retrieves the text of a TEdit component. This method could be used
to get the text from an edit control as follows:

char buff[256];
int numChars = EditControl->GetTextBuf (buff, sizeof (buff));

As you can see, this particular method takes two parameters and returns an integer. When
this method is called, the contents of the edit control are placed in buff, and the return value
will be the number of characters retrieved from the edit control.

For now, that’s all you need to know to use methods. I'll get into more detail later when |
talk about writing components.

House RuLes: MEeTHODS

Methods can be private, protected, or public.

Methods are called using the indirect membership operator.
Methods may take parameters and may return values.

Some methods take no parameters and return no value.

A procedure is a method that does not return a value.

A function is a method that returns a value.

Only public methods can be called by component users.

O o oo o oo

| 146

Day 5

Events

Windows is said to be an event-driven environment. Event-driven means that a

program is driven by events that occur within the Windows environment. Events
include mouse movements, mouse clicks, and keypresses.

Programmers moving from DOS or mainframe programming environments may have some
difficulty with the concept of something being event driven. A Windows program continu-
ally polls Windows for events. Events in Windows include a menu being activated, a button
being clicked, a window being moved, a window needing repainting, a window being
activated, and so forth. Windows notifies a program of an event by sending a Windows
message. There are somewhere in the neighborhood of 175 possible messages that Windows
can send to an application. That’s a lot of messages! Fortunately, you don’t have to know
about each and every one of them to program in C++Builder; there are only a couple dozen
that are used frequently.

InVCL, an event is anything that occurs in the component that the user might need to know
about. Each component is designed to respond to certain events. Usually this means a
Windows event, but it can mean other things as well. For example, a button component is
designed to respond to a mouse click, as you would expect. But a nonvisual control such as
a database component might respond to non-Windows events such as the user reaching the
end of the table.

When you respond to a component’s event, you are said to handle the event.

NoTE You don’t have to handle every event that a component defines. In fact,

Events are handled through functions called event handlers.

VCL makes it incredibly easy to handle events. The events that a component has been
designed to handle are listed under the Events tab in the Object Inspector window. An event
name is descriptive of the event to which it responds. For instance, the event to handle a
mouse click is called onc1ick.

- you rarely do. If you do not respond to a particular event, the event
message is either discarded or handled in a default manner, as described
by either VCL or the component itself. You can handle any events you
have an interest in and ignore the rest.

Thiswill make more sense if you can put itinto practice. To begin, let’sstarta new application
from scratch. Choose File | New Application from the main menu. If you are prompted to
save the current project, click No. Now you should again have a blank form. First, let’s set
up the main form:

C++ Class Frameworks and the Visual Component Model 147 |

1.
2.

Change the name property to puerorm (PME for “properties, methods, and events™).
Change the caption property to PNE Test Program.

Next we need to add a memo component to the form:

1.
2.
3.

Choose the Standard tab on the Component Palette and click the Memo button.
Click on the form to place a memo component on the form.

Change the name property to memo. Be sure the memo component is selected so you
don’t accidentally change the name of the form rather than the memo component.

Double-click on the Lines property in the value column. The String list editor will
be displayed.

Delete the word memo and type A test program using properties, methods, and
events. Click OK to close the String list editor.

Resize the memo component so that it occupies most of the form. Leave room for a
button at the bottom.

Your form should now look something like the form shown in Figure 5.2.

Figure 5.2. m
The form with a]""'" N
memo component |
added. 1
|
i

Now let’s place a button on the form:
1.

ok~

Choose the Standard tab on the Component Palette and click the Button compo-
nent button.

Click on the form below the memo component to place the button on the form.
Change the name property for the button to Button.

Change the caption property to show/Hide.

Center the button on the form.

| 148 Day 5

Tip You can center components visually, but for a more exact method you
can use the Alignment Palette. Choose View | Alignment Palette from
"‘é the main menu and then click the Center horizontally in window

button on the Alignment Palette to center a component horizontally on
the form.

We will use this button to alternately show and hide the memo component. Now we need
to write some code so that the button does something when clicked. Be sure the button
component is selected and then click on the Events tab in the Object Inspector. A list of the
events that a button component is designed to handle is presented. The top event should be
the onc1ick event. Double-click on the value column of the onc1ick event. What happens
next is one of the great things about visual programming. The Code Editor comes to the top

and displays the onc1ick function, ready for you to type code. Figure 5.3 shows the Code
Editor with the onc1ick handler displayed.

Figure 5.3. T —
The C++Builder s =

= b Whamciord | b | /el | Chii i | B i | o 11 | Bt | g | it | 3¢ | i |
Code Editor with the iR N] [1kl sl et o sl 1=] | I
onClick handler gl
displayed. s -

Py, Dov | |

i Haleri 'I :J
e wmid _ Lkl TOPEFarm: (BaskancLisk [Toaiers. Themien
Tl |

i |

R bt 1

A

R - J
.

il

1 M

e]

[re— [
- sl § _"l-I

= o

NoTE This function looks like the class member functions I discussed on Day
> 3 and, in fact, that’s exactly what it is. The only difference is that
C++Builder functions use the _ fastcal1 keyword (note that two

C++ Class Frameworks and the Visual Component Model 149 |

underscores proceed the fastcall keyword). It's not important that
you understand what __ fastcal1 does, but just that every C++Builder
function uses this calling convention.

You’ll probably want to make the Code Editor window a little wider so you can see all of the
text that is displayed. Before you go on, save the project. Choose File | Save from the main
menu. Thefirst thing you are prompted for is the name of the unit (source file). Type PMEMain
and click OK. Next you are prompted for a filename for the project. Type pMeTest and press
Enter or click OK. Now on to the good stuff....

Notice that the function is already set up for you and all you have to do is type the code. If
you take a good look at the function, you will see that the function is called Buttonc1ick, that
it is a member function of the TPMEForm class, that it returns void, and that it takes a pointer
toaTobject called sender as a parameter. (I'll talk about the sender parameter in just a bit.)
All that is left to do now is type code that alternately shows or hides the button each time the
button is clicked. We’ll borrow a little code from our earlier discussion of methods. Edit the
Buttonclick function until it looks like this:

void _ fastcall TPMEForm::ButtonClick(TObject *Sender)
{

static bool isVisible;
isVisible = !isVisible;

if (isVisible) Memo->Hide();
else Memo->Show();

}
This code sets up a static variable named isvisible.

-M A static variable is one that retains its value between function calls.

Static variables are the exception to the rule regarding uninitialized variables—static variables
are initially set to e. In this case, isvisible iS a bool variable, so it is initially set to faise.

The second line of code in this function flips the boo1 variable between true and false by
applying a logical noT to the present value of the variable. It works like this: Initially the static
variable isset to false. Thefirst time the function executes, the variable isassigned NOT false,
which is, of course, true. The next time the function executes, the variable is assigned not
true, and so on. So each time the function executes, isvisible contains the opposite value
it had on the previous function call. After that, the if/e1se pair calls either show() Or Hide ()
depending on the value of isvisible.

| 150 Day 5
NoTE Remember when you changed the name property of the memo compo-
- nent to memo? When you did that, C++Builder went to work behind the

scenes. C++Builder first derived a class from tmemo. Then it created a
dynamic instance of the new class and gave it the variable name memo.

In the code in this section, memo is a pointer to the object. That is why
the show() and Hide () functions are accessed using the indirect member
operator.

That’sall thereistoit! But does it work? Let’s find out. Click the Run button on the speedbar.
After being compiled, the program runs and is displayed. It’s the moment of truth. Click the
button, and the memo component is hidden. Click the button again, and the memo
componentisagain displayed. It works! Hallelujah! After playing with that foraminute, close
the program (use the Close Program button in the upper-left corner of the title bar) and you
are back to the Code Editor.

Hmmm...all that messing with the static boo1 variable is a bit cumbersome. Think back to
the discussion about properties. Wouldn't it be nice if the memo component had a property
that could tell us whether the component was currently visible? Is there such a beast? Of
course there is! It's called, predictably, visible. Let’s make use of it. Again, edit the function
until it looks like this:

void _ fastcall TPMEForm::ButtonClick(TObject *Sender)

if (Memo->Visible) Memo->Hide();

else Memo->Show();
}
Again click the Run button. The program is displayed and, lo and behold, the button does
what it’s supposed to. How about that? We managed to use properties, methods, and events
in the same example.

Are you getting the fever yet? Hold on, because there’s lots more to come. Oh, and wipe that
silly grin off your face...your boss thinks you’re working!

As you can seg, the Buttonclick () function takes a pointer to a Tobject called sender. Every
event-handling function will have at least a sender parameter. Depending on the event being
handled, the function might have one or more additional parameters. For instance, the
onMousebown event handler looks like this:
void __ fastcall TPMEForm::ButtonMouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift, Integer X, Integer Y)

{
}

C++ Class Frameworks and the Visual Component Model 151 |

In this case, you are getting information on the button that was pressed, which keyboard keys
were pressed at the time the mouse was clicked, and the x,y coordinate of the cursor when
the mouse button was clicked. The event-handling function contains all the information you
need to deal with the particular event that the event handler is designed to handle.

So what exactly is sender? sender is a pointer to the component that is sending the message
to the message handler. In this example, the sender parameter is extra baggage because we
know that the Show/Hide button is the sender. sender exists to allow you to have more than
one component use the same event handler. To illustrate, let’s create a new button and have
one of our buttons be the Show button and the other be the Hide button:

1. If the Code Editor is on top, press F12 to switch back to the Form Editor.

2. Click on the Show/Hide button to select it. Change both the name and caption
properties to show.

3. Add a new button to the form to the right of the Show button. Arrange the
buttons, if desired, to give an even look to the form.

4. Change the name property for the new button to Hide. The caption property will
also change to Hide (you'll have to press Enter before the caption property will
change).

5. Click the Show button and then click on the Events tab in the Object Inspector.
Notice that the onc1ick event now says showclick. Edit it to say Buttonclick again.
(The initial event handler name is a default name. You can change it to any name
you like.)

6. Click the Hide button and find the onc1ick event in the Object Inspector (it
should be selected already). Next to the value is a drop-down arrow button. Click
the arrow button and then choose Buttonc1ick from the list that drops down (there
should only be one function name in the list at this point).

7. Double-click on the value Buttonclick. You are presented with the Code Editor
with the cursor in the Buttonciick () function. Modify the code so that it reads like
this:
void _ fastcall TPMEForm::ButtonClick(TObject *Sender)

if (Sender == Hide) Memo->Hide();
else Memo->Show();
}

8. Bake at 425 degrees for 1 hour or until golden brown. (Just making sure you're still

awake.)

Right now your form should look similar to Figure 5.4. Compile and run the program. Click
each of the buttons to be sure that they do as advertised.

| 152 Day 5

Figure 5.4. B [l feash Yew [d P Csspresl [dmme |wh b
The form with all b it b | | (i B | i ol | e 11| B | | bt | D¢ | i
components added. tu i el [e I

- VELDEL R R T

T

What we have done here is create a single event-handling function that handles the onc1ick
event of both buttons. We use the sender parameter to determine which of the two buttons
sent the onc1ick event and then either hide or show the memo component as needed. We
could have created a separate onc1ick handler for each button, but with this method the code
is a little more compact. Besides, it’s a good illustration of how sender can be used.

You can see from this exercise that once you have created an onc1ick event handler for a
particular component, you can attach that same handler to the onciick event of any
component on the form. I'll discuss more of the details of events as we move through the
book.

House RuLes: EVENTS

You may respond to any of a component’s events as needed.

You are not required to respond to all events a component defines.
Events are handled by event-handling functions called event handlers.
Several components may share a common event handler.

Event handler names produced by C++Builder are default names and may be
changed by the programmer.

Be sure to change an event handler’s name only in the Object Inspector.

O The sender parameter of an event handler can be used to determine which
component fired the event.

I R O B

|

C++ Class Frameworks and the Visual Component Model 153 |

0O Double-clicking the event handler’s name in the Object Inspector will display the
Code Editor and take you to the section of code containing the event handler.

0O Each event handler contains the function parameters needed to properly
handle that event.

C++Builder and VCL

As | have said, VCL is a library written in Object Pascal. VCL is written in Object Pascal
because it was written for Delphi. It made perfect sense for the people at Borland to take an
already-existing class library and adapt it for use in C++Builder. There was no point in
starting from scratch to build C++Builder when they could hit the ground running by
implementing Delphi’s VCL. An added benefit is that users of Delphi can easily move to
C++Builder, and vice versa. Because both are using the same VCL, you don’t have to learn
a new framework when moving around in the Delphi/C++Builder family.

C++Builder is a C++ compiler, and VCL is an Object Pascal library. How does that work,
exactly? Truthfully, you shouldn’t be concerned about how it works at the compiler level, but
rather how it affects the way you program in C++Builder. The bottom line is that VCL is
Object Pascal and is nearly invisible. Take the following code snippet, for instance:

int screenW = GetSystemMetrics(SM_CXSCREEN);
int screenH = GetSystemMetrics(SM_CYSCREEN) ;
int h = MainForm->Height;
int w = MainForm->Width;
MainForm->Top = (screenH / 2) - (h / 2);
MainForm->Left = (screenW / 2) - (w / 2);
TPoint cPt;
GetCursorPos(cPt);
h -= 150;
w -= 150;
MainForm->Height = h;
MainForm->Width = w;
for (int i=0;i<150;i+=6) {
MainForm->Height = h + 1i;
MainForm->Width = w + 1i;
SetCursorpPos (
MainForm->Left + MainForm->Width,
MainForm->Top + MainForm->Height);

}

SetCursorPos(cPt.x, cPt.y);

Now, in this code, which is Object Pascal and which is C++? As far as you are concerned, it’s
all C++. VCL and C++ work together seamlessly to give you rapid application development
using C++. VCL gives you RAD through components, and the rest of your code can be
written in C++.

| 154

Day 5

VCL for C++ Programmers

NoTE

— much easier to set the properties using the Object Inspector than it is to

This section is for current C++ programmers moving to C++Builder, but will also be of
interest to new C++ programmers. Although the following is not terribly advanced, it is
aimed at C++ programmers, so if you get lost, muddle your way through and meet us on the
other side.

There are a couple things C++ programmers might find odd when moving to C++Builder.
First, don’t forget that VCL is Object Pascal and not C++. Don’t try to make it C++. The
system works very well as long as you understand that and work within those parameters. All
the code you write will be C++, but remember that VCL itself is not C++. With that in mind,
let me give you a couple things to consider when using VCL.

All VCL Objects Must Be Allocated Dynamically

When you drop components on a form, C++Builder automatically writes code that
dynamically creates the components, so you don’t have to think about it. However, you may
need to create and use VCL classes at runtime. For instance, let’s say you needed to display
a File Open dialog box and you didn’t have a TFileopen component on your form. No
problem—you can just create the object on-the-fly. The code would look something like this:
TOpenDialog* dlg = new TOpenDialog(this);

dlg->Title = "Open a New File";

dlg->Execute();

Note that the object must be created using the new operator. If you attempt to use local
allocation, you will get a compiler error that says vcL classes must be constructed using
operator new.

Most VCL components can be created at runtime as well as at design
time. It’s easier to create the components at design time because it is

set the properties through code. Still, there are times when you need to
create components at runtime, and C++Builder allows you to do that.

Object Pascal Does Not Support Overloaded Functions;
Hence, VCL Classes Have No Overloaded Constructors

In fact, VCL constructors typically do very little. Take the VCL version of the Trect class,
for instance. In order to construct and set up a Trect object in VCL, you would use code like
this:

C++ Class Frameworks and the Visual Component Model 155 |

TRect rect;

rect->left = 20;

rect->top = 20;

rect->right = 220;

rect->bottom = 220;

OWL also has a Trect class. In OWL you can create a TRect object and supply the top, left,

bottom, and right members through the constructor:
TRect rect(20, 20, 220, 220);

Obviously, specifying the rectangle’s parameters in the constructor saves you some typing.
In addition, the OWL version of TrRect has several constructors to create TRect instances in
differentways. MFC’s crect class has basically the same type of constructorsas OWL’s TRect.
What this means is that in some cases you have to give up the flexibility that C++ allows you
when constructing VCL classes. It's a minor sacrifice in most cases.

VCL Does Not Have Default Parameters for Functions

To illustrate, let’s examine the Windows API function messageBox (). This function takes
four parameters: the window handle of the window that is displaying the message box, the
message box text, the message box title, and a F1ags parameter that controls which buttons
and icons are displayed on the message box. In MFC or OWL, you can call a message box
by just specifying the message box text:

MessageBox ("This is a message.");

This is possible because the OWL and MFC versions of messageBox() have default
parameters for the message box title and style flags. You can specify the additional parameters,
but if you don’t, the default values will be used. This is convenient for throwing up message
boxes with a minimum of fuss. Here is the VCL equivalent to the previous line:

Application->MessageBox("This is a message", "Message", MB_OK);

Because VCL does not have default parameters, you have to specify all the parameters. It’s
not convenient, but not the end of the world, either. Note that in all three cases (MFC, OWL,
and VCL), the framework takes care of supplying the window handle parameter.

VCL Classes Do Not Support Multiple Inheritance

This means that you cannot create a new component derived from two existing components.
I don’t see thisasaserious restriction because multiple inheritance is not widely used. Regular
C++ classes that you write for use in your C++Builder applications may use multiple
inheritance.

| 156

Day 5

VCL Explored

The Visual Component Library is a well-designed framework. As with most good frame-
works, VCL makes maximum use of inheritance. The bulk of the VCL framework is made
up of classes that represent components. Other VCL classes are not related to components.
These classes perform housekeeping chores, act as helper classes, and provide some utility
services.

The VCL class hierarchy dealing with components is fairly complex. Fortunately, you don’t
have to know every detail of VCL to begin programming in C++Builder. At the top of the
VCL chain you will find Tobject. Figure 5.5 shows some of the main base classes and classes
derived from them.

Figure 5.5. TObject
The VCL class
hierarchy.
y TPersistent
Nonvisual TComponent Visual
components components
TTimer,etc.
I TGraphicControl I I TWinControl I
[TspeedButtonetc. | | TPaneletc. I

Tobject IS the granddaddy of all component classes in VCL. Below Tobject you see
TPersistent. This class deals with acomponent’s ability to save itself to files and to memory
as well as taking care of other messy details we don’t need to know about. I'm thankful (and
you should be, too) that we don’t need to know much about Tpersistent to program most
applications in C++Builder.

The Tcomponent class serves as a more direct base class for components. This class provides
all the functionality that a basic component requires. Nonvisual components are derived
from Tcomponent itself. Visual components are derived from Tcontro1, which, as you can see
from Figure 5.5, is derived from Tcomponent. Tcontro1 provides additional functionality that
visual components require. The individual components, then, are derived from either
TGraphicControl OF TWinControl.

C++ Class Frameworks and the Visual Component Model 157 |

When you drop a component on a form, C++Builder creates code that inherits a class from
the VCL class that represents that component. A pointer to the object is created so that you
can access the objects in your code. C++Builder uses the name property in the class name and
for the pointer variable’s name. When we created the sample application earlier, we placed
a memo component on the form. At that point C++Builder derived a class from Tmemo and
created an instance of that class. Similarly, when we created a button on the form, C++Builder
derived a class from TButton and created an instance of that class. Before any of that took
place, C++Builder had already derived a class from TForm and, of course, created an instance
of that class to represent the form.

Some understanding of the VCL classes is obviously required to begin working with VVCL.
Although I cannot review each and every class in VCL, I can hit the high points. Let’s take
a look at some of the classes that you will use most frequently.

Form and Application Classes

Form and application classes represent forms and the Application object in VCL. These
classesare all derived from Tcomponent and indeed are components themselves. They are listed
separately to distinguish them from the controls you drop on a form.

TApplication

The TApplication classencapsulates the basic operations of a Windows program. TApplication
takes care of things like managing the application’s icon, providing context-sensitive help,
and doing basic message handling. Every C++Builder application has a pointer to the
TApplication Object called Application. You will use the TApplication class primarily to
execute message boxes, manage context-sensitive help, and set hint text for buttons and status
bars. Tapplication isabit of an oddity in VCL in that some of its properties (1con, HelpFile,
and Title) can be set via the Application page of the Project Options dialog box.

TForm

The Trorm class encapsulates forms in VCL. Forms are used for main windows, dialog boxes,
secondary windows, and just about any other window type you can imagine. TForm is a
workhorse class in VCL. It has nearly 60 properties, 45 methods, and about 20 events it can
respond to. I am going to discuss forms in detail tomorrow, so I won’t go into a lot of detail
right here.

Component Classes

This group encompasses a wide range of classes. This group could be further broken down
into separate categories, which I’'ve done in the following sections.

| 158

Day 5

Standard Component Classes

The standard components are those components that encapsulate the most common
Windows controls. The standard component classes include TButton, TEdit, TListBox,
TMemo, TMainMenu, TPopupMenu, TCheckBox, TRadioButton, TRadioGroup, TGroupBox, and
TPanel.

Most of these classes encapsulate a Windows control, so | won’t discuss all of them right now.
The Tmainmenu class encapsulates an application’s main menu. At design time, double-
clicking the mainmenu component’sicon brings up the Menu Editor. Tmainmenu has properties
that control whether the menu item is grayed out, whether it is checked, the help context ID,
the item’s hint text, and others. Each menu item has a single event, onc1ick, S0 that you can
attach a function to a menu item being selected. I'll discuss menus and the Menu Editor in
more detail on Day 7, “Working with the Form Designer and the Menu Designer.”

Another of the standard components of interest is TPane1.

’EW TER‘ Apanel represents arectangular region on a form, usually with its own components,

that can be treated as a single unit.

For instance, if you wanted to build a speedbar for an application, you would start with a
panel and then place speed buttons on the panel. If you move the panel, the speed buttons
move with it. Panels can be used for a wide variety of tasks in C++Builder. You could use a
panel to build a status bar, for example. Panels have properties that control what type of edge
the panel should have; whether the panel is raised, sunken, or flat; and the width of the border.
Combinations of these properties can be used to create a variety of 3D panels.

C++Builder has another group of components that I'll throw in with the standard controls.
These controls can be found under the Additional tab on the Component Palette. The classes
representing these components include TBitBtn, TSpeedButton, TMaskEdit, TStringGrid,
TDrawGrid, TImage, TShape, TBevel, and TScrollBox. The TBitBtn class represents a button
that has an image on it. TspeedButton is also a button with an image, but this component is
designed to be used as a speed button on a control bar. A TspeedButton is not a true button,
but rather a graphical depiction of a button. This allows you to have a large number of speed
buttons and not consume Windows resources for each of the buttons. The Timage compo-
nent allows you to place an image on a form that can then be selected from afile on disk. The
TBevel cOmponent can be used to create boxes and lines that are raised (bumps) or lowered
(dips). Bevels can be used to divide up a form into visual regions and generally to provide an
aesthetically pleasing form.

Windows 95 Custom Control Classes

VCL has component classes that encapsulate many of the Windows 32-bit custom controls.
These classes include TListview, TTreeView, TProgressBar, TTabControl, TPageControl,

C++ Class Frameworks and the Visual Component Model 159 |

TRichEdit, TImagelist, TStatusBar, and a few others. Some of these controls are, by nature,
complicated, and the VCL classes that represent them are fairly complicated as well. Trust
me when | say that VCL does a great deal to ease the burden of working with these common
controls. You’ll have to spend some time with these classes before you fully understand them.

Database Component Classes

VCL has a host of database components, which include both visual and nonvisual classes.
Nonvisual database componentsinclude Tpatasource, TDatabase, TTable, and Tauery. These
classes encapsulate behind-the-scenes database operations.

Visual database component classes are the part of the VCL database operations that users can
see and interact with. For instance, a ToBerid component is used to give users access to a
database table that might be represented asa TTab1e component. In this way, the TpBarid acts
as the interface between the user and the TTab1e. Through the ToBerid, the user can view and
edit the database table on disk.

The TopBNavigator component provides buttons that allow the user to move through a
database table. This class includes buttons for next record, previous record, first record, last
record, cancel edit, accept edit, and undo edit.

Other data-aware component classes hook standard Windows controls to database fields.
These classes include TpBText, TDBEdit, TDBListBox, and TpBImage, among others.

Common Dialog Classes

As you are no doubt aware, Windows has common dialog boxes for things like opening files,
saving files, choosing fonts, and choosing colors. VCL encapsulates these common dialog
boxes in classes representing each type. The classesare Topenbialog, TSaveDialog, TFontDialog,
TColorDialog, TPrintDialog, and TPrinterSetupDialog. VCL also adds the TFindDialog and
TReplaceDialog Classesto thisgroup of components. These componentsare nonvisual in that
they do not have a design-time interface that you can see. The dialog boxes are visible when
displayed at runtime, of course.

System Component Classes

The System tab on the Component Palette contains a mixture of visual and nonvisual
components. The TTimer class is used to represent a Windows system timer. Its single event
is onTimer, Which is called each time the timer fires. The timer interval is set through the
Interval property. TTimer is a nonvisual component.

VCL includes several component classes that allow you to build your own custom File Open
or File Save dialog box. The classes are TFileListBox, TDirectoryListBox, TDriveComboBox,
and TFilterComboBox.

| 160

Day 5

Tucked into this group of classes is the TMediap1ayer class. This class allows you to play media
files like WAV audio, AVI video, and MIDI audio. The media can be played, stopped,
paused, or positioned at a particular point in the file, as well as many other operations. This
class has many properties and events that greatly simplify the complex world of the Windows
Media Control Interface (MCI).

The System group includes OLE and dynamic data exchange (DDE) classes as well.

GDI Classes

The GDI (graphics device interface) classes typically get a lot of work in Windows GUI
applications. These classes encapsulate the use of bitmaps, fonts, device contexts (DCs),
brushes, and pens. It is through these GDI objects that graphics and text are displayed on a
window. The GDI classes are not associated with a specific component, but many compo-
nents have instances of these classes as properties. For example, an edit control has a property
called Font that is an instance of the TFont class.

The term device context is well known by Windows programmers whether they program in
C or with one of the C++ frameworks. In VCL, though, the term is not widely used. This
is because VCL calls DCs canvases and encapsulates the complex world of DCs inthe Tcanvas
class. A canvas provides a surface that you can draw on using methods like mMoveTo(),
LineTo(), and Textout (). Bitmaps can be displayed on the canvas using the praw() or
stretchbraw() methods. The concept of a canvas that you draw on makes more sense than
the archaic term device context, don’t you think?

The Tcanvas class contains instances of the other GDI classes. For example, when you do a
MoveTo()/LineTo() Sequence, a line is drawn with the current pen color. The pen property is
used to determine the current pen color and isan instance of the Tpen class. TPen has properties
that determine what type of line to draw: the line width, the line style (solid, dashed, dotted,
and so on), and the mode with which to draw the line.

The TBrush class represents a brush that is used as the fill pattern for canvas operations like
FillRect(), Polygon(), and Ellipse(). TBrush properties include color, style, and Bitmap.
Thesty1e property allows you to seta hatch pattern for the brush. TheBitmap property allows
you to specify a bitmap that will be used for the fill pattern.

TBitmap encapsulates bitmap operations in VCL. Properties include palette, Height, Width,
and TransparentColor. Methods include LoadFromFile(), LoadFromResourceID(), and
SaveToFile(). TBitmap iS used by other component classes such as Timage, TBitBtn, and
TSpeedButton in addition to Tcanvas.

The TFont class handles font operations. Properties include color, Height, and style (bold,
italic, normal, and so on). The TFont class is used by all component classes that display text.

C++ Class Frameworks and the Visual Component Model 161 |

In addition to the GDI classes listed here, there are others that either work as helper classes
or extend a base class to provide extra functionality. As you work with C++Builder you will
learn more about these classes and how to use them. Figure 5.6 shows the hierarchy of the
VCL classes that encapsulate GDI operations.

Figure 5.6.
VCL GDI class
hierarchy.

Teraphicsobject

Utility Classes

So far | have discussed component classes. VCL also contains utility classes you can use in
your applications. A utility class simplifies some tasks in Windows programming. For
instance, the TIniFi1e class eases the use of writing and reading Windows configuration files
(. 1n1 files). Conventional wisdom has it that the use of . 1n1 files is out and the Registry is
in. To aid in Registry operations, VCL has the TRegistry and TRegkeyInfo classes.

The TRect and TPoint classes (which are really just structures) aid in using various VCL and
Windows functions requiring a point or rectangle parameter.

The Tstrings class is used to manipulate strings, and the TstringList class allows for arrays
of strings. These classes are used by many of the component classes to store strings. For
instance, the Tmemo class usesa TstringList object for its Lines property. TstringList has the
capability to save its list of strings to file or load strings from a file using the LoadFromFile ()
and saveToFile () methods.

And That’s Not All...

By no means did I cover all of the VCL classes here. | did, however, touch on the classes that
you are most likely to use in your applications.

Flip back a few pages and take another look at Listing 5.1 and the OWL example that
performs the equivalent code in Listing 5.2. If you recall, | said that placing a bitmap image
on awindow is even easier in C++Builder. Let me show you what | mean. First, begin a new
application in C++Builder. You should be looking at a blank form. Perform the following
steps:

1. Change the caption property of the form to Bitmap Test Program.

2. Click on the Additional tab on the Component Palette, choose the 1mage compo-
nent, and place the component on the form.

| 162 Day 5

. Locate the A1ign property and change it to aiciient. The picture component fills
the client area of the form.

. Locate the stretch property and change it to true.

. Locate the picture property and double-click the Value column.

. The Picture Editor dialog box is displayed. Click the Load button. The File Open
dialog box is displayed.

. Navigate to the \cBUILDER\IMAGES\SPLASH\256C0LOR directory and choose an image
from those presented (I like HanDSHAKE . BMP). Click OK.

. You are now back to the Image Editor dialog box, and the bitmap you chose is
displayed in the preview window. Click OK. (If you want to choose a different
bitmap, click the Load button again.) The bitmap now fills the client area of the
form.

. Click the Run button. When the application runs you can size the window, and
the bitmap will always fill the client area of the window.

See how easy it is? It would have been even easier if we hadn’t bothered to make the image
fill the client area of the form. Figure 5.7 shows the bitmap test program running.
Figure 5.7.
The bitmap test

program running.

Summary

Today you have learned about frameworks. You first learned about OWL and MFC and the
role they have had in shaping Windows programming today. After that you learned about
VCL and how it differs from the C++ frameworks. We discussed properties, methods, and
events, and you got a little hands-on experience in the process. We finished up today with
an overview of the VCL classes that you are likely to encounter when programming in
C++Builder. | didn’t cover them all, but I gave you a brief look at the most commonly used
classes.

C++ Class Frameworks and the Visual Component Model 163 |

So where is this industry going? The wave of the future appears to be components, but it is
apparent that there will be a need for class libraries like MFC and OWL for quite some time
to come. Some of you who are now using MFC or OWL will abandon them in favor of
programs like C++Builder and Delphi. Others of you will use both your old tool and the new
RAD tools. Still others will stick with what you know best. In any event, it is important to
realize that each of these frameworks is a tool. My advice is simple: Use the most appropriate
tool for the current job.

If you have never used OWL or MFC, you don’t have to worry about what you are missing.
C++Builderand VCL allow you to build robust applications in much less time than you could
with one of the C++ frameworks. This is particularly true when you take into account the
learning curve of VCL compared to that of MFC or OWL. Programming in C++Builder is
much easier to learn, and you can write programs faster, too.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A
Q What is a framework?

A A framework, also called a class library, is a set of classes that simplifies Windows
programming. A good framework implements object-oriented design and object-
oriented programming to apply an object-oriented approach to writing Windows
applications.

Is VCL a C++ framework?

No. VCL is a framework that works with C++ in C++Builder, but it is written in
Object Pascal rather than C++. VCL is written in Object Pascal because it was
initially created for Borland’s Delphi.

Q Am I supposed to know how to program in Pascal and C++ in order to write
Windows programs with C++Builder?

A No. The fact that VCL is Pascal is virtually transparent to you. As far as you are
concerned, you are just programming in C++. Advanced C++ users might notice
some situations where VCL limits their choices, but most users of C++Builder
will not.

> O

| 164

Day 5

Q

A

> O

> O

> O

Quiz

It seems like the component way of doing things is the best approach. Is that
true?

It is true for many applications, but certainly not for all. In some cases a framework
such as OWL or MFC will be better suited to the task. For applications that use a
lot of dialog boxes and windows, and for database applications, VCL is probably a
very good choice. Overall, C++Builder is much easier to learn and easier to use
than the C++ class libraries.

Are properties just class data members?

No. Properties are special creatures. Some properties simply set a data member in
the class. Other properties, when modified, invoke a method that performs special
operations with that property. In these cases, a property does more than just set a
data member.

Do | have to respond to each and every event a component defines?

No. You can respond to as many events as is appropriate for your application, or
not respond to any events at all.

There sure are a lot of VCL classes. | thought programming with C++Builder
was going to be easy.

Programming with C++Builder is much easier than programming Windows in C,
and easier than programming with a C++ framework like OWL or MFC. Windows
programming, no matter how good the programming tool, requires a lot of
experience and knowledge to master. Over time, you will master it if you keep at it.
Can | use C++Builder forms in my OWL and MFC programs?

Yes. Later in the book I'll show you how you can do that.

1. Are all components visible at design time and runtime?

© © N ook wDd

'_\
©

Which is better—OWL, MFC, or VCL?

Can VCL objects be allocated locally (from the stack) as well as dynamically?
Are methods in VCL components equivalent to functions in C++?

Are all VCL classes ultimately derived from Tobject?

Name one nonvisual VCL component.

Do all components share certain common properties?

Name two common properties that all visual components share.

Can two or more components share the same event-handling function?

What is the VCL terminology for a Windows device context? What is the name of
the VCL class that encapsulates device contexts?

C++ Class Frameworks and the Visual Component Model 165 |

Exercises

1. Write a paragraph describing how properties and class data members differ.

2. Create a C++Builder application that displays a bitmap on the main form when a
button is clicked.

3. Create a C++Builder application that displays a message box that displays the text
Hello, Bubba! When the main form is clicked.

4. Create a C++Builder application that displays the text 1've been resized! in red
letters when the application is resized.

5. Extra credit: Modify the program in exercise 4 so that the text disappears again
after 5 seconds.

Week 1

Day

The C++Builder IDE
Explored: Projects and
Forms

by Kent Reisdorph

One of the most difficult aspects of learning how to use a new program is finding
your way around: getting to know the basic menu structure, what all the options
do, and how the program works as a whole. If you are new to programming or
new to C++, this task is complicated by the fact that you have to learn a new pro-
gram (the C++Builder IDE) and learn a new language at the same time. It can
be a bit overwhelming at times. I’ll do my best to make learning the C++Builder
IDE a painless experience. For the most part, you will learn by example, which
ismore interesting (not to mention more effective). So, without further ado, and
referring to Figure 6.1, let’s get on with it.

| 168 Day 6

Figure 6.1. Component Palette Form Designer
The C++Builder IDE
windows. ul-ni:-un-m—a- Qeistass Teok [
Main menu Eﬁﬁ:ﬂﬁ | | Comiocmen | Cw Costmin | in 11 | 1 Bprvimms i 2
[t |orl®falalsilme)s a4~ =] | |
Toolbar —
Object
Inspector
Code Editor —

IO EA8a
TEpiml ”

|

The C++Builder IDE consists of these main parts:

0O The main menu and toolbar
O The Component Palette
The Form Designer

The Code Editor

The Object Inspector

The Project Manager

[

I can’t cover all these in a single chapter, so over the next several chapters | will show you
around the C++Builder IDE and examine each of these features in detail. I'll start today by
discussing projects and how they are used in writing C++Builder applications. After that,
we’ll look at the C++Builder toolbar and the Component Palette. Then I'll move to
discussing forms in greater detail than I have up to this point. Along the way we’ll create some
sample programs to illustrate various aspects of C++Builder. We’ll close the day by looking
at the Object Inspector. This will be a warm-up for tomorrow, when you will learn all about
the C++Builder Form Designer.

For starters, let’s look at the way C++Builder views applications and how it has simplified the
process of creating programs.

The C++Builder IDE Explored: Projects and Forms 169 |

Projects in C++Builder

As you know by now, a lot goes on behind the scenes as you write a C++Builder application.
In fact, more goes on than I have told you about up to this point. It’s not vital that you know
every detail about what happens behind the scenes as you write a C++Builder application, but
it is a good idea to have a general overview.

A project is a collection of files that work together to create a standalone executable

file or DLL.

Files Used in C++Builder Projects

C++Builder manages a project through the use of several support files. To illustrate, let’s
create a simple application to get a look at some of what goes on when C++Builder builds an
executable file for your program. Do the following:

1.
2.

Before you begin, create a fresh directory on your hard drive.

Now choose File | New Application from the main menu. A blank form is dis-
played.

Before you do anything else, choose File | Save Project from the main menu.

First, you will be prompted for the name of the unit file. Be sure to switch to the
empty directory you just created.

5. Next, type in the name myunit for the unit filename and click OK.
6. Now you are prompted for the project name. Type TesT in the File name field and

10.

click OK.

Now choose Project | Build All from the main menu. C++Builder displays the
compile status box and goes to work compiling the program.

After a while, the compile status box reports that it is done compiling, and the OK
button is enabled. Click OK to close the compile status dialog box

Now choose Project | Close All from the main menu. (Yes, this exercise does have a
purpose.)

Now run Windows Explorer and locate the directory where you saved the project.
You should see a number of files.

Wow! All that to create just one little program that does nothing? Yep, it’s true. First, let me
tell you what happens when C++Builder builds an application; then I'll explain what each
of these files is for.

| 170 Day 6

NoOTE Files with extensions that begin with a tilde (~) are backup files.

> C++Builder may create several backup files, depending on the number
of source files in the project and the project options you have set.
Project options are discussed on Day 10, “More on Projects.”

Whenyou first create a project, C++Builder createsaminimum of six files (assuming a typical
C++Builder GUI application):
O The project source file
The main form source file
The main form header file
The main form resource file
The application resource file
The project makefile

O 0o o oo™

The project source file is the file that contains the winmain () function and other C++Builder
startup code. You can view the project source file by choosing View | Project Source from the
main menu. The main form source file and main form header file are files that contain the class
declaration and definition for the main form’s class. C++Builder will create an additional
source file and header for each new form you create. The main form resource file and
application resource file are binary files that describe the main form and the application’sicon.
I'll explain that in more detail a little later, in the section titled “Dialog Boxes in Traditional
Windows Programs.”

Somewhere in this process, C++Builder creates the project makefile. The makefile isa text file
that contains information about the compiler options you have set, the names of the source
files and forms that make up the project, and what library files have to be included.

NoTE There are two types of library files. A static library contains common

- code that an application needs in order to run. An import library is
needed when your application references functions in a DLL, such as
the Windows API functions. The number and exact filenames of the
library files required depend on the features your application uses.
Fortunately, you don’t have to worry about managing the library files
because C++Builder takes care of that detail for you. Library files have
an .L1B extension and are tucked away in your C++Builder \1ib
directory.

The C++Builder IDE Explored: Projects and Forms 171 |

There are a few more odds and ends, but that’s the bulk of what is contained in the makefile.
When you tell C++Builder to compile the project, it hands the makefile to the compiler.
(Technically, the makefile is read by the make utility, but why quibble over details?) The
compiler reads the makefile and begins compiling all the source files that make up the project.

Several things happen during this process. First, the C++ compiler compiles the C++ source
files into binary object files. Then the resource compiler compiles any resources, such as the
program’s icon and form files, into binary resource files. Next, the linker takes over. The
linker takes the binary files the compilers created, adds any library files the project needs, and
binds them all together to produce the final executable file. Along the way it produces more
files that perform some special operations (I'll get to that in a minute). When it’s all over, you
have a standalone program that can be run in the usual ways.

Okay, but what are all those files for? Table 6.1 lists the file extensions C++Builder uses, with
a description of the role that each file type plays.

Table 6.1. Types of files used in C++Builder.

Extension Description

.CPP The C++ source files. There will usually be one for each unit and
one for the main project file, as well as any other source files that
you add to the project.

.DFM The form file. This file is actually a binary resource file (.res) in
disguise. It is a description of the form and all its components. Each
form has its own .orw file.

.DSK The desktop file. This file keeps track of the way the desktop
appeared when you last saved (or closed) the project. All the open
windows’ sizes and positions are saved so that when you reopen the
project it looks the same as it did when you left it.

.EXE The final executable program.

.H C++ header files that contain class declarations. These could be
C++Builder-generated files or your own class headers.

JIL? The four files whose extension begins with . 1L are files created by

the incremental linker. The incremental linker saves you time by
linking only the parts of the program that have changed since the
last build.

continues

| 172

Day 6

Table 6.1. continued

Extension Description

.0BJ The compiled binary object files. These are the files that the com-
piler produces when it compiles your C++ source files.

.MAK The project makefile. This is a text file that contains a description of
which files C++Builder needs to compile and link.

.RES A compiled binary resource file produced by the resource compiler.

.TDW The debugger symbol table. This file is used by the debugger during
debugging sessions.

NoTE C++Builder database applications will use other database-specific file

types as well. Database applications are discussed in detail in later
chapters.

The files that C++Builder produces can be broken down into two categories: files that
C++Builder relieson to build the project and files that it will create when it compiles and links
a project. If you were to move all your source files to another computer, for instance, you
wouldn’t have to move all the files, just the files C++Builder needs to build the application.
Conveniently, the source files happen to be the smallest files in the project. It does not take
a lot of disk space to back up just the project source files.

The minimum set of files consists of the .cpp, .H, .pFu, and .mak files. All other files are files
that C++Builder will re-create when you compile the program. The desktop file (. psk) isone
that you may want to hang on to because it keeps track of the state your project was in when
you last worked on it.

NoTE

>
————

In addition to the source files I've mentioned, some applications use a
resource script file. Resource scripts have an .Rc extension. Resource
scripts are text files that are used to define resources like bitmaps, icons,
or cursors. If you use a resource script, be sure to keep it with the
project if you move the project to another location.

The C++Builder IDE Explored: Projects and Forms 173 |

Figure 6.2 illustrates how C++Builder takes source files and compiles and links them to form
the final executable file.

Source files

Figure 6.2.
The C++Builder MYMAIN.CPP MYUNIT.CPP MYUNIT2.CPP

compile/link process.

C++ compiler

Binary Binary
code files resource files
MYMAIN.OBJ MYUNIT.OBJ MYUNIT2.0BJ MYMAIN.RES
Library files Linker MYUNIT.DFM

MYUNIT2.DFM

MYMAIN.EXE

Tip If you find yourself running low on hard disk space, you can delete
some of the C++Builder files from projects you are not currently
"'ﬁ working on. It is safe to delete the files with the .oBJ, .RES, and . Tow
extensions, as well as any files with extensions beginning with .1L.
Some of these files can grow quite large, and there is no use keeping

them for noncurrent projects.

| 174

Day 6

e
= A

WARNING

Do not delete any files from the C++Builder directories other than the
Examples directory. If in doubt, don’t delete!

Source Code Units

NoTE As soon as you create a new project, you should save it with a meaning-

Earlier | mentioned that most applications of any size have several source files, which Borland
calls units. The use of the term unit in C++Builder is a holdover from Pascal and Delphi.
C++Builder has its roots in the Delphi IDE, and unit is used throughout both VCL and the
C++Builder IDE itself. C++ programmers would typically refer to a file containing a
program’s source as a module. While using the term module would have been more C++
friendly (and less Pascal-like), replacing the word unit with module would have required
major changes to the C++Builder infrastructure, so the term unit was left in. If you are
coming from a C++ programming background, it might seem odd to refer to modules as
units, but you will get used to it soon enough. In the end, there’s no point in getting hung
up over terminology.

-‘ C++Builder uses the term unit to refer to source files.

Each time you create a new form, C++Builder does the following:

O Creates a form file (.poFm)
O Derives a class from TForm or from another form class
O Creates a header (.H file) containing the class declaration
O Creates a unit (.cpp file) for the class definition
O Adds the new form information to the project makefile
Initially C++Builder assigns the default name Form1 to the form, unit1.cpp for the associated

unit, and unit1.n for the header. The second form created for the project would have the
default name Form2, and so on.

- ful name. Likewise, every time you create a new form, you should save
it with a descriptive name. This makes it easier to locate forms and
units when you need to make modifications.

The C++Builder IDE Explored: Projects and Forms 175 |

NoTE When doing a technical book, a nasty situation often arises. | want to

- use meaningful examples to reinforce the presentation of information.
In order to complete those examples, | have to use techniques or
methods that | haven’t talked about yet. But | can’t talk about those
methods until I've given you some good, meaningful examples. But |
can't... well, you see my dilemma. So I'm going to digress a little here
and talk about the main menu, toolbar, and Component Palette. As
you read this section, remember that we’re off on a tangent.

The C++Builder Main Menu and Toolbar

The C++Builder main menu hasaall the choices necessary to make C++Builder work. Because
programming in C++Builder is a highly visual operation, you may not use the main menu
as much as you might in other programming environments. Still, just about anything you
need is available from the main menu if you prefer to work that way. I’'m not going to go over
every item on the main menu here because you will encounter each item as you work through
the next several chapters.

The C++Builder toolbar is a convenient way of accomplishing often-repeated tasks. A button
is easier to locate than a menu item, not to mention that it requires less mouse movement.
The C++Builder toolbar’s default configuration is illustrated in Figure 6.3.

Figure 6.3. Add to Project
The C++Builder Save All

Select Unit ~ Select Form Run

toolbar. Open Project Pause
Open File Step
Over
Save Remove Toggle New Trace
File from Unit/Form Form Into
Project

If you are like me, you often forget to use the toolbar. But I'm telling you: Don’t forget to
learn to use the toolbar. As the old saying goes, “Do as | say, notas | do.” If you take the time
to learn the toolbar, it will save you time and make you more efficient in the long run. One
of the reasons you bought C++Builder was to produce Windows applications quickly, soyou
might as well make the most of it.

| 176

Day 6

The C++Builder toolbar is fully customizable. As you saw back in Figure 6.1, between the
toolbar and the Component Palette is a vertical line that acts as a sizing bar. When you place
the mouse cursor over the sizing bar, you will see the sizing cursor (a double-headed black
arrow). Once you have the sizing cursor, you can drag the sizing bar right or left to make the
toolbar take more or less room on the C++Builder main window.

Customizing the toolbar is remarkably easy. C++Builder allows you to add buttons to the
toolbar, remove buttons, and rearrange buttons however you see fit. To configure the toolbar,
you must use the toolbar speed menu. To display the speed menu, place your mouse cursor
over the toolbar and click the secondary mouse button. The speed menu choices are listed
in Table 6.2.

Table 6.2. Items on the toolbar’s speed menu.

Menu Item Description

Show Hints Controls whether the hints (tool tips) are displayed for the
toolbar buttons.

Hide Hides the toolbar.

Help Invokes C++Builder help with the toolbar page displayed.

Properties Displays the Toolbar Editor dialog box, which allows you to

customize the toolbar.

NoTe If you have hidden the toolbar, you will have to choose View | Toolbar

> from the main menu to display the toolbar again.

To customize the toolbar, choose Properties from the speed menu. When you choose this
menu item, the Toolbar Editor dialog box is displayed. This dialog box contains all the
possible toolbar buttons. To add a button to the toolbar, just locate it in the Toolbar Editor
and drag it to the place you want it to occupy on the toolbar. To remove a button, grab it
and drag it off the toolbar. It’s as simple as that. If you really make a mess of things, just click
the Reset button in the Toolbar Editor dialog box (see Figure 6.4), and the toolbar will revert
to its default settings.

If you want to make room for more buttons, drag the sizing bar to the right to make the
toolbar wider. Now just drag any buttons you want from the Toolbar Editor to the toolbar.
The toolbar has an invisible grid that aids you when dropping new buttons; just get the
buttons close to where you want them and they will snap into place. | happen to like the Cut,

The C++Builder IDE Explored: Projects and Forms 177 |

Copy, and Paste buttons on the toolbar, so | have customized my toolbar to include those
buttons. Figure 6.4 illustrates the process of dragging the Paste button to the toolbar (the
Cut, Copy, and Undo buttons have already been placed).

Figur?_6'4' Eh i feats S Bt o Lot [t B Jok e o
Customizing the (]| e || s | i s | s | o 1 b | o | s | |
toolbar. e T e i s e 21

Feel free to customize the C++Builder IDE any way you like. It’s your development
environment, so make it work for you.

Using the Component Palette

The C++Builder Component Palette is used to select a component or other control (such as
an ActiveX control) in order to place that control on a form. The Component Palette is a
multipage window. Tabs are provided to allow you to navigate between pages. Clicking on
a tab will display the available components or controls on that page.

Placing acomponent on a form is a two-step process. First, go to the Component Palette and
select the button representing the component you want to use. Then click on the form to
place the component on the form. The component appears with its upper-left corner placed
where you clicked with the mouse.

You have already seen the Component Palette’s basic operations, but it has a couple other
features that you haven't seen yet. The following sections explain these features.

Placing Multiple Copies of a Component

So far you have only placed one component at a time on aform. You can easily place multiple
components of the same type without selecting the component from the Component Palette

| 178

Day 6

each time. To place multiple components on the form, press and hold the Shift key when
selecting the component from the Component Palette. After you select the component, you
can release the Shift key. The component’s button on the Component Palette will appear
pressed and will be highlighted with a blue border. Click on the form to place the first
component. Notice that the button stays pressed in the Component Palette. You can click
as many times as you like; a new component will be placed each time you click the form. To
stop placing components, click the selector button on the Component Palette (the arrow
button). The component button pops up to indicate that you are done placing components.

Seeing is believing, so follow these steps:

1. Create a new project.

2. Press and hold the Shift key on the keyboard and click on the Label component
button in the Component Palette.

3. Click three times on the form, moving the cursor each time to indicate where you
want the new component placed.

4. Click the arrow button on the Component Palette to end the process and return to
form design mode.

Tip

~a

NoTE

It’s fastest to place all components of a particular type on your form at
one time using this technique. Components can always be rearranged
and resized at a later time.

When placing multiple copies of a particular component, it’s easy to
forget to click the arrow button when you’re done. If you accidentally
place more components than you intended, you can simply delete any
extras.

Placing and Centering a Component on the Form

C++Builder provides a shortcut method of placing a component on a form. Simply double-
click the component’s button in the Component Palette, and the component will be placed
on the form. The component will be centered on the form both horizontally and vertically.
Components placed with this method can be moved to another location on the form just like
components placed in the usual method.

The C++Builder IDE Explored: Projects and Forms 179 |

NoTe Each time you double-click a button on the Component Palette, a

- component is placed on the center of the form in the component’s
default size. If you repeatedly double-click the component button,
multiple copies of the component will be placed on the form. Each
component will be placed in the center of the form and will be stacked
on top of the previous one. It will appear as if you have a single
component, so you may not realize that you have several components
occupying the same space. If you accidentally place multiple compo-
nents, just click on the extra components and delete them from the
form.

The Component Palette Speed Menu

When you place the mouse cursor over the Component Palette and click the right mouse
button, you will see a speed menu specific to the Component Palette. (See Figure 6.5.)

Figure 6.5. ilemgli

The Component -

Palette speed menu. T
The Show Hints item toggles the tool tips on and off for the component buttons. Unless you
really dislike tool tips, this should be left on. The Hide item on the speed menu hides the
Component Palette. In order to show the Component Palette again, you will have to choose
View | Component Palette from the main menu. The Help item on the speed menu brings
up C++Builder help with the Component Palette page displayed. The Properties item brings
up the Palette page of the Environment Options dialog box, where you can customize the
Component Palette. Here you can add and remove pages of the Component Palette. You can
also add, remove, or rearrange the order of components on the individual pages. I'll discuss
this in more detail on Day 10, when we look at setting the environment options.

Navigating the Component Palette

As mentioned earlier, you can drag the sizing bar, located between the toolbar and the
Component Palette, to make the Component Palette occupy more or less room on the
C++Builder main window. If the Component Palette is sized small enough so that it cannot
display all its tabs, you will see scroll buttons in the upper-right corner of the Component

| 180 Day 6

Palette. Click these scroll buttons to display tabs not currently in view. Likewise, ifa particular
page of the Component Palette contains more buttons than will fit the width of the display
window, scroll buttons will be enabled to allow you to scroll through the available buttons.
Figure 6.6 shows the Component Palette with both types of scroll buttons enabled.

Figure 6.6. rm
The Component s
Palette scroll buttons. |ﬁﬂﬁﬂ§l [(5] A sl oo | & |35 wll=d)

The Component Palette is not terribly complicated, but a basic understanding of its use is
vital for programming with C++Builder. Now that we’ve finished with these little tasks, we
can get back to the main topic again.

Back on Track—A Multiple-Form
Application

Toillustrate how C++Builder uses units, let’s create an application with multiple forms. We'll
create a simple application that displays a second form when you click a button:

1. Create a new project by choosing File | New Application from the main menu.

2. Change the name property to mainForm and the caption property to multiple Forms
Test Program.

3. Save the project. Save the unit as main and the project as multiple.

4. Now place a button on the form. Make the button’s Name property showForm2 and
the caption property show Form 2.

5. Choose File | New Form from the main menu (or click the New Form button on
the speed menu) to create a new form.

At this point the new form has a name of Form1 and is placed exactly over the main form. We
want the new form to be smaller than the main form and more or less centered on the main
form. Continuing on, then....

6. Size and position the new form so that it is about 50 percent the size of the main
form and centered on the main form. Use the title bar to move the new form. Size
the form by dragging the lower-right corner.

The C++Builder IDE Explored: Projects and Forms 181 |

7. Change the new form’s Name property to secondForm and the form’s caption
property to A second Form.

8. Choose File | Save from the main menu (or click the Save File button on the
toolbar) and save the file with the name second.

9. Choose a Label component and drop it on the new form. Change the label’s
Caption property to This is the second form. Change the label’s size and color as
desired. Center the label on the form. Your form should now look roughly similar
to the one in Figure 6.7.

Figure 6.7. e e et e
The form up to this it i
point.

m_l'll'rl e M.

i P

10. Click on the main form. Notice that the second form is covered by the main form.
Double-click the Show Form 2 button. The Code Editor is displayed, and the
cursor is placed just where you need it to begin typing code.

11. Type in code so that the function looks like this (you have to type only one line of
code):
void _ fastcall TMainForm::ShowForm2Click(TObject *Sender)

SecondForm->ShowModal();
}

12. Run the program.

At this point you will get a compiler error that says undefined symbol 'SecondForm'.
Hmmm...secondForm should be a valid symbol because that’s the name of the second form
we created...l wonder...Aha! Remember that we have two source files with a header for each
source file. The problem is that the mainForm unit can’t see the declaration for the secondrForm
variable (which isa pointer to the TsecondForm class). We have to tell it where to find the class
declaration. (Recall Day 2, “Wading In Deeper.” We have to #include the header for

| 182 Day 6
SecondForm in MainForm’s source file.) Switch to the Code Editor and click on the main.cpp
tab to display the unit for the main form. Scroll up to the top of the file. The first few lines
look like this:
[R R
#include <vcl.h>
#pragma hdrstop
#include "Main.h"
[R R
You can see the #include for main.n, but there isn’t one for second.n. That’s because we
haven't yet told C++Builder to add it. Let’s do that now:
1. Choose File | Include Unit Hdr from the main menu. The Include Unit dialog box
is displayed. Figure 6.8 shows the Include Unit dialog box as it looks at this point.
2. You will see a list of available units. In this case, the only unit in the list is second.
Click on second and then click OK to close the dialog box.
Figure 6.8. | I I
;jl’_heI Inkc)lude Unit —— ==
ialog box. |
NoOTE The Include Unit dialog box will show only those units that exist in the
. project and have not yet been included in this unit. Units that have
— already been included do not show in the list of available units.

If you blinked, you missed it, but C++Builder added the #inc1ude for second.h when you
clicked OK. Now the first few lines of the file show this:

#include <vcl.h>
#pragma hdrstop
#include "Main.h"
#include "Second.h"

Now the main unit can see the class declaration for the second unit. Click the Run button to
run the program. This time the compile goes off without a hitch, and the program runs.
When you click the Show Form 2 button on the main form, the second form is displayed.
You can close the second form by clicking the system close box on the form’s title bar.

The C++Builder IDE Explored: Projects and Forms 183 |

As you can see, C++Builder does a good job of managing units for you. You have to be sure
that you use the Include Unit Hdr option so that one unit can see the class declarations of
other units, but for the most part, C++Builder frees you from having to worry about your
source files. Later, when your programming needs are more sophisticated, you’ll have to do
a little more source file management, but at this stage of the game, C++Builder does most of
the work for you.

Now let’s take a moment to look at the different compiling options available to you when
you’re writing programs in C++Builder.

Compiling, Building, and Linking

Each time you click the Run button, C++Builder compiles and links your program. But it
doesn’t necessarily compile every unit in the project. It only compiles any units that have
changed since the last compile. This feature saves you time because you don’t have to wait
for the compiler to compile files that haven’t changed. C++Builder keeps track of which files
have changed and which haven’t, so you don’t need to do anything special to use this
feature—it’s automatic.

Most of the time you want to see in action the results of any changes you have made. In those
cases you click the Run button and the program is compiled, linked, and executed.
Sometimes, however, you don’t want to run the program. For instance, you might want to
compile the program just to see whether there are any errors. C++Builder has three menu
items in addition to Run that allow you to control the compile/link process. If you choose
the Project menu item on the main menu, you will see three menu items called Compile Unit,
Make, and Build All. Let’s take these in order of simplest to most complex (from the
compiler’s perspective).

The Compile Unit option is one | really like. This feature causes C++Builder to compile the
current unit in the Code Editor and report any errors and warnings. This is the fastest way
to check for errors in your code. C++Builder only compiles the file—it does not perform a
link. The purpose of the Compile Unit option is to check your code for syntax errors as
quickly as possible. Because the link phase takes extra time, the Compile Unit option skips
that step.

The Make option compiles any units that have changed since the last compile just as the
Compile Unit options does, but it also links the entire project. Naturally, this takes slightly
longer than the Compile Unit option. Use the Make option when you want to be sure the
program will compile and link but you don’t want to run the program.

| 184 Day 6

Tip

~a

The Build All option takes the longest to perform. This option compiles every unit in the
project regardless of whether it has changed since the last build. After compiling all units,
C++Builder links the entire project. So far we have been letting C++Builder add units to our
projects. Further on down the road you may have to do some hand editing of your source files
to add headers and other needed directives. You may even end up editing the makefile. From
time to time, you know, things can get goofed up (we all make mistakes). Performing a Build
All will bring everything up-to-date so you can better sort out any problems you might be
running into. Sometimesa Build All will resolve compiler and linker errors without requiring
you to do anything further.

The keyboard shortcut for Make is Ctrl+F9.

Tip Any time you get unexpected (out of the ordinary) compiler or linker
errors, first try a Build All. It could just be that something is out of
"'ﬂ sync, and a Build All may cure it. If performing a Build All doesn’t fix
the problem, you’ll have to go to work figuring out where the problem
lies.

Regardless of the method chosen to compile the project, if errors are detected the compile
status dialog box will report There are errors. and will list the number of errors that were
detected as well as any warnings. Figure 6.9 shows the compile status dialog box after errors
are detected.

Figure 6.9.

The compile status e

dialog box showing Dt 3 T "

warnings and errors. - e '
=

After you click OK to dismiss the compile status dialog box, the Code Editor will come to
the top with the first error line highlighted. The message window at the bottom of the Code
Editor is displayed, and the errors and warnings are listed there. After a successful Compile
Unit, Make, or Build All you can immediately run the program via the Run button if you
choose.

The C++Builder IDE Explored: Projects and Forms 185 |

Compiling and Building Other C++
Programs

C++Builder’s strength is in its visual programming environment. That environment is tied
directly to VCL and cannot be separated from it. To get the most out of C++Builder, you
will most likely be writing applications based on VCL. There are times, however, when
you want to write other types of applications. C++Builder is a standard C++ compiler, so you
can compile any type of 32-bit C++ program with C++Builder.

Probably the most obvious type of “other” program you may want to build is a dynamic link
library (DLL). DLLs might seem a bit like black magic, but they are really not very
complicated; they are simply bits of compiled code that you can call from your application.
Once you have the DLL created and your main program’s source file has the needed header,
callingafunction contained ina DLL is no different than calling a function contained in your
main program.

Another type of application you might write with C++Builder is the console application.
Earlier we built several Win32 console applications when you were learning about the C++
language. Console applications are useful in teaching situations and for quick test programs.
They can also be very useful for small utility programs, servers such as \Web servers or mail
servers, and awhole host of other possibilities. Basically, any application that does not require
a graphical interface is a good candidate for a console application. Earlier in the chapter |
talked about the C++Builder C++ compiler, the resource compiler, and the C++Builder
linker. All these programs are Win32 console applications that are executed from within
C++Builder.

You can also compile programs written in either MFC or OWL. This allows you to use a
single compiler for all of your development regardless of what framework you are using.
Althoughyou probably won’t develop full-scale MFC or OWL applications with C++Builder,
there is certainly no reason you could not do so if you chose to. Of course, you would have
to have the OWL or MFC library files and headers in order to build an OWL or MFC
application. Listing 6.1 contains an OWL version of the Hello World program. First, set up
C++Builder to build an OWL application (see the C++Builder documentation on how to
configure C++Builder to build an OWL application). Then enter the program from the
keyboard. Compile and run, and you’ve got an OWL program built with C++Builder.

| 186 Day 6

Listing 6.1. OWLHELLO.CPP.

#include <owl\applicat.h>
#include <owl\framewin.h>
#pragma hdrstop
class TestWindow : public TWindow {
public:
TestWindow() : TWindow(@, 0, 0) {}
protected:
void Paint(TDC&, bool, TRect&);

O©COoONOOOUA~WN =

};

10: void

11: TestWindow::Paint(TDC& dc, bool, TRect&)
12: {

13: TRect rect = GetClientRect();

14: dc.DrawText ("HelloWorld!", -1,

15: rect, DT_CENTER | DT_VCENTER | DT_SINGLELINE);
16: }

17: class TestApp : public TApplication {
18: public:

19: TestApp() : TApplication("") {}

20: void InitMainWindow()

22: TFrameWindow* frame = new TFrameWindow(
23: 0, "OWL Hello World", new TestWindow);
24: SetMainWindow (frame);

25: }

26: };

27: int OwlMain(int, char* [])

28: {

29: return TestApp().Run();

30: }

More About C++Builder Forms

Before | continue with the discussion about the C++Builder IDE, | need to spend some time
explaining forms. You have seen several forms in action as you have worked through this
book, and tomorrow you are going to learn all about the Form Designer. Before we get there,
you need some more background information on forms, so I'll cover that base now.

Main Window Forms

Forms are the main building block of a C++Builder application. Every GUI application has
at least one form that serves as the main window. The main window form might be just a
blank window, it might have controls on it, or it might have a bitmap displayed on it. In a

The C++Builder IDE Explored: Projects and Forms 187 |

typical Windows program, your main window would have a menu. It might also have
decorations such as a toolbar or a status bar. Just about anything goes when you're creating
the main window of your application. Each application is unique, and each has different
requirements.

Dialog Box Forms

Formsare also used where traditional Windows programs use dialog boxes. Infact, to the user
there is no difference between a C++Builder form acting as a dialog box and a true dialog box.
Dialog boxes usually have several traits that distinguish them from ordinary windows:

O Dialog boxes are not usually sizable. They usually perform a specific function, and
sizing of the dialog box is neither useful nor desirable.

0 Dialog boxes almost always have an OK button. Some dialog boxes have a button
labeled Close that accomplishes the same thing. Simple dialog boxes like an About
dialog box typically have only the OK button.

Dialog boxes may also have a Cancel button and a Help button.

O Dialog boxes typically have only the system close button on the title bar. They do
not usually have minimize and maximize buttons.

O Some dialog boxes are tabbed dialog boxes that display several tabs from which the
user can choose. When a tab is clicked on, a different page of the dialog box is
displayed.

O The Tab key can be used to move from one control to the next in most dialog
boxes.

There are certainly exceptions to every rule. Most dialog boxes have the usual characteristics,
but some perform specialty tasks and therefore depart from the norm in one way or another.

Dialog boxes in C++Builder are slightly different than in other programming environments.
First, let’s take a look at how other programming environments handle dialog boxes; then
we’ll look at how they are implemented in C++Builder.

Dialog Boxes in Traditional Windows Programs

Inatraditional Windows program (one written in C or with one of the frameworks), a dialog
box is created with a dialog box editor. In most cases, the dialog box editor is a visual tool that
works somewhat like the C++Builder Form Editor. When the user is done designing the
dialog box, the visual representation of the dialog box is converted into a dialog box definition
in aresource script. (A resource script is a text file that is later compiled into a binary resource
file by the resource compiler.) To illustrate, take a look at the dialog box in Figure 6.10.

| 188

Day 6

Figure 6.10.
A typical About
dialog box.

Figure 6.10 represents a typical About dialog box. It contains the program name, the
copyright information, and the application’s icon. The resource script definition for the
dialog box is shown in Listing 6.2.

Listing 6.2. A dialog box resource definition.

IDD_ABOUT DIALOG 58, 53, 194, 119

STYLE DS_MODALFRAME | WS_POPUP
WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "About TMMPlayer Example Program"

FONT 8, "MS Sans Serif"

{

DEFPUSHBUTTON "OK", IDOK, 72, 96, 50, 14

CTEXT "TMMPlayer Example Program", -1, 48, 22, 128, 8

CTEXT "Copyright © 1996, by Kent Reisdorph", -1, 32, 47, 136, 8
10: CTEXT "March 15, 1996", -1, 24, 59, 146, 8

11: CONTROL "", 99, "button", BS_GROUPBOX |

12: WS_CHILD |} WS_VISIBLE |, WS_GROUP, 12, 4, 176, 70

13: CONTROL 1, 1, "static", SS_ICON |

14: SS_SUNKEN | WS_CHILD ; WS_VISIBLE, 24, 17, 20, 20

15: }

©CoOo~NOO~WN =

The resource script contains information that Windows uses to build the dialog box at
runtime. This information includes the number and type of controls on the dialog box, as
well as their size, position, text, options, and so on. Of course, the resource scriptalso includes
the same type of information for the dialog box itself.

Some Windows programmers don’t use adialog box editor atall, but prefer to write the dialog
box definition from scratch with a text editor. While | can’t fault those programmers for
creating dialog boxes in this manner, | can say that for most programmers to take that
approach would be, er, less than 100 percent efficient. It would take many times longer to
create a dialog box in that manner than with the visual approach.

Usually all of the application’s dialog box definitions are contained in a single resource script
file that has the filename extension .rc. At some point in the program-creation process, the

The C++Builder IDE Explored: Projects and Forms 189 |

resource script is compiled into an .res file (the binary resource file), which then gets linked
to the . exe by the linker. At runtime the dialog box is displayed either modally or modelessly,
depending on the dialog box’s intended purpose. When the dialog box is executed, Windows
loads the dialog box resource from the executable file, builds the dialog box, and displays it.

NoTE A modal dialog box is one that must be dismissed before the user can

- continue using the application. The main window of an application is
disabled while this type of dialog box is open. Most dialog boxes are
modal. The Compile Status dialog box in C++Builder is an example of
a modal dialog box.

A modeless dialog box is one that allows the user to continue to work
with the application while the dialog box is displayed. The Find dialog
box in some word-processing programs is an example of a modeless
dialog box.

Now, with that background information on how dialog boxes are handled in a traditional
Windows program, let’s take a look at how C++Builder handles dialog boxes.

Dialog Boxes in C++Builder

In C++Builder, a dialog box is simply another form. You create a dialog box just like you do
amain window form or any other form. To prevent the dialog box from being sized, you can
change the Borderstyle property to bsbialog Or bssingle. If you use bsbialog, your dialog
box will have only the close box on the title bar, which is traditional for dialog boxes. Other
than that, you don’t have to do anything special to get a form to behave like a dialog box. All
C++Builder forms have tabbing support built in. You can set the tab order by altering the
Taborder property of the individual controls on the dialog box.

A C++Builder dialog box (any C++Builder form, actually) is modal or modeless, depending
on how it is displayed. To execute a modal dialog box, you call the showModa1 () method of
TForm. TO create a modeless dialog box, you call the show() method.

Let’sadd an About box to the multiple-forms project we created earlier. If you don’t have that
project open, choose File | Open from the main menu or click the Open Project button on
the toolbar and locate the file (you should have saved it with the project name multiple).

| 190

Day 6

Tip C++Builder keeps a list of the files and projects you have used most

recently. Chose File | Reopen to view the MRU (most recently used)
list. The MRU list is divided into two parts. The top part shows the

projects you have used most recently, and the bottom part shows the
individual files that you have used most recently. Just click on one of
the items to reopen that project or file.

First we’'ll add a button to the form that will display the About dialog box:

1.

Bring the main form into view. Choose the button component from the Compo-
nent Palette and drop a button on the form.

Arrange the two buttons that are now on the form to balance the look of the form.

Change the name property of the new button to AboutButton and the caption
property to About. . ..

Double-click the AboutButton you just created on the form. The Code Editor is
displayed with the cursor placed in the event-handler function. Add this line of
code at the cursor:

AboutBox->ShowModal() ;

We haven’t actually created the About box yet, but when we do we’ll name it AboutBox SO We
know enough to go ahead and type the code to display the About box.

Now we’ll create the dialog box itself:

1.

Create a new form (click the New Form button on the toolbar). Size the form to
the size of a typical About box (roughly the same size as the form named
SecondForm that we created earlier).

Change the name property to AboutBox and change the caption property to About
This Program.

Locate the Borderstyle property (it’s just above caption) and change it to
bsDialog.

Now add three text labels to the box. Edit the labels so that the About box resem-
bles that in Figure 6.11. (You can type any text you want, of course.) You can leave
the default names C++Builder generates for the text labels’ name properties. We
aren’t actually going to do anything with the name property, so we don’t need a
descriptive name.

The C++Builder IDE Explored: Projects and Forms 191 |

Tip The copyright symbol ((1) has an ASCII value of 169. To create the
copyright symbol, press and hold the Alt key and type the numbers
w 0169 on the numeric keypad (be sure Num Lock is on). When you let

go of the Alt key, the copyright symbol appears. You can insert the
ASCII value of any character this way. You must type all four numbers,
though. For example, the ASCII value of a capital A is 65. To insert an
A, you would have to hold down Alt and type eess on the numeric

keypad.
Figure 6.11.
The About box with HEsti
text labels added. S

o T UMY e B Py

Next we’ll add an icon to the About box:

1. Click on the Additional tab on the Component Palette and choose the 1mage
component. Place the component to the left of the text on the form.

2. Locate the autosize property for the 1mage component and change it to true.

3. Locate the picture property and double-click the Value column. The Picture
Editor dialog box is displayed.

4. Click the Load button. In the File Open dialog box, navigate to the
\CBuilder\Images\Icons directory and choose an icon from the icon files listed.
Click OK. The icon you selected is displayed in the Picture Editor window. Click
OK again to close the Picture Editor. The icon is displayed on the form. Note that
the 1mage component has sized itself to the size of the icon.

5. Position the icon as desired.

At this point we need an OK button on the form. I'll be a little creative and show you a new
component:

1. If you're not already there, click on the Additional tab on the Component Palette.
Select the BitBtn component and place a BitBtn on the form near the bottom and
centered horizontally.

2. Locate the kind property and change it to bkok. Notice that a green check mark has
appeared on the button, and the caption property has changed to ok. That’s all we

| 192 Day 6

have to do with the button. The BitBtn component already includes code to close
the form when the OK button is clicked.

Let’s add one final touch to the About box:
1. Locate the Bevel button (on the Additional tab in the Component Palette) and
click it.

2. Move to the form, but rather than clicking on the form, drag a box around the
three text labels. The Beve1 component appears when you stop dragging. If you
didn’t get it quite right, you can resize or reposition the component.

3. Locate the shape property and change it to bsFrame. You now have a 3D frame
around the static text.

Your form should now look something like the one shown in Figure 6.12. Save the unit
(File | Save) and give it the name About.

Figure 6.12.
The finished ﬁ P
About box. :w S

Fegpeghe T 111 b 1k Sbimrrmy

Are we ready to compile and run the program? Not yet. We need to tell the main form to
#include the About unit:

1. Switch to the Code Editor (press F12) and select the main.cpp tab.

2. Choose File | Include Unit Hdr from the main menu.

3. Choose the About unit from the Include Unit dialog box and click OK.
Now you’re ready to run the program. Click the Run button. When the program runs, click
the About button, and the About dialog box is displayed. Note that the dialog box is modal

(you can’t go back to the main window while the dialog box is displayed) and that it cannot
be sized. The About form behaves in every way like a regular Windows dialog box.

NoTE The common dialog box classes (Topenbialog, TSaveDialog,

> TFontDialog, and so on) do not represent dialog boxes created as
C++Builder forms. Windows provides these dialog boxes as a set of
common dialog boxes that all Windows applications can use (the actual

The C++Builder IDE Explored: Projects and Forms 193 |

dialog boxes are contained in a file called compLe32.oLL). The VCL
dialog box classes encapsulate the common dialog boxes to make using
them easier.

C++Builder includes several prebuilt forms that you can choose from to
help you build dialog boxes as quickly as possible. I'll discuss those on
— Day 9, “Creating Applications in C++Builder.”

NoTE

Secondary Windows Versus Dialog Boxes

A secondary window is a form that you display from your main window. So when is a form
a secondary window and when is it a dialog box? When it really comes down to it, there is
no difference between a secondary window and a dialog box in C++Builder. You might have
dialog box—looking windows, and you may have other windows that resemble traditional
windows. In the grand scheme of things, they are all forms and it doesn’t make much sense
to differentiate between the terms dialog box and secondary form. It’s all the same in the end.
In traditional programming environments, you have to specifically create a dialog box or
specifically create a secondary window in an application. C++Builder frees you from that
restriction and allows you to treat both dialog boxes and windows exactly the same.

The Multiple-Document Interface Model

So far we have built only single-document interface (SDI) applications. An SD1 application has
a single main window and typically displays dialog boxes as needed, but does not otherwise
display child windows.

Some programs follow the multiple-document interface (MDI) model. MDI applications
consist of a main window (the MDI parent) and child windows (the MDI children).
Examples of programs that use the MDI model are the Windows System Configuration
Editor (sysepit) and the Windows 3.1 Program Manager. One of the most obvious
characteristics of the MDI model is that the MDI child windows are confined to the parent.
You can drag the child windows within the parent window, but you cannot drag them outside
the parent. MDI applications almost always have a Window pop up on their main menu. The
pop-up menu usually contains items named Cascade and Tile, which allow you to display
the MDI child windows in either a cascaded or tiled arrangement. When an MDI child is

| 194

Day 6

minimized, itsicon is contained within the MDI parent’s frame. When a regular (non-MDI)
child window is minimized, its icon is placed on the Windows desktop.

To create an MDI application in C++Builder, you must set the main form’s Formstyle
property to fsmpirForm. Each of the MDI child windows must have the Formstyle property
set to fsmpichild. Aside from that restriction, there is very little to creating an MDI
application in C++Builder. You simply create the main window form and one or more forms
to be used as child windows, and you're off and running.

Key Properties for Forms

The TForm class has a lot of properties. Some of these properties are obscure and rarely used,;
others are widely used. I'll touch on the most widely used properties here. I won't include
obvious properties like color, Left, Top, Width, and Height unless they have a particular
feature you should be aware of.

Runtime and Design-Time Properties

The properties outlined in this section can be set at design time and also at runtime. Almost
all of these properties can be read at runtime as well.

ActiveControl

The ActiveControl property is used to set the control that will have focus when the form is
activated. For instance, you may want a particular edit control to have focus when a dialog
box form is displayed. At design time the Value column for the ActivecControl property
contains a list of components on the form. You can choose one of the components from this
list to make that component the active control when the form is first displayed.

AutoScroll, HorzScrollBar, and VertScrollBar

Together, the AutoScrol1, HorzScrol1Bar, and vertScrol1Bar properties control the scrollbars
foraform. If Autoscro11 isset to true (the default), scrollbars automatically appear when the
form is too small to display all of its components. The HorzScrol1Bar and vertscrollBar
properties each have several properties of their own that control the scrollbar operations.

BorderStyle

TheBorderstyle property indicates what type of border the form will have. The default value
iS bsSizeable, Which creates a window that can be sized. Nonsizable styles include bsbialog
and bsNone.

The C++Builder IDE Explored: Projects and Forms 195 |

ClientWidth and ClientHeight

You can specify the client area width and height rather than the full form’s width and height
by using the c1ientwidthand clientHeight properties. (The client area of the formis the area
inside the borders and below the title bar and menu bar.) Use these properties when you want
the client area to be a specific size and the rest of the window to adjust as necessary. Setting
the c1ientwidth and clientHeight properties makes automatic changes to the width and
Height properties.

Font

The Font property specifies the font that the form uses. The important thing to understand
here is that the form’s font is inherited by any components placed on the form. This also
means that you can change the font used by all components at one time by changing just the
form’s font. If an individual control’s font had been manually changed, that control’s font
will not be changed when the main form’s font changes.

FormStyle

This property is usually set to fsnormal. If you want a form to always be on top, use the
fsStayonTop Style. MDI forms should use the fsmp1Form style and MDI child forms should
use the fsmp1child style. MDI forms and MDI child windows were discussed previously in
the chapter, in the section “The Multiple-Document Interface Model.”

HelpContext

The Helpcontext property is used to set the help context ID for a form. If context help is
enabled for a form, the Windows Help system will activate when the F1 key is pressed. The
context 1D is used to tell the Help system which page in the help file to display.

Icon

The 1con property sets the icon that is used on the title bar for the form when the form is
displayed at runtime, and also when the form is minimized. In some cases, setting this
property has no effect. For instance, when the Formsty1e iSSet to fsbialog, the 1con property
is ignored.

Position

The Position property determines the size and position of the form when the form isinitially
displayed. The three basic choicesare pobesigned, pobefault,and poScreenCenter. poDesigned
causes the form to be displayed in the exact position it was in when it was designed. pobefault
allows Windows to set the size and position according to the usual Windows Z-ordering

| 196

Day 6

algorithm. (Z-ordering is what Windows uses to decide where it displays a new window on
the screen. If the new window does not have specific placement information, it will be
displayed just below and to the right of the last window displayed on the screen.) The
poScreencenter Option causes the form to be displayed in the center of the screen each time
it is shown.

Visible

The visible property controls whether the form is initially visible. This property is not
particularly useful at design time, but at runtime it can be read to determine whether the form
is currently visible. It can also be used to hide or display the form.

WindowState

The windowstate property can be read to determine the form’s current state (maximized,
minimized, or normal). It can also be used to indicate how the form should initially be
displayed. Choices are wsMinimized, wsMaximized, and wsNormal.

Runtime-Only Properties

Some properties can be accessed only at runtime through code. The following are the most
commonly used runtime properties.

ActiveMDIChild
When read, the Activempichild property returnsa pointer to the currently active MDI child
window. This property is read-only.

Canvas

The form’s canvas represents the drawing surface of the form. The canvas property gives you
access to the form’s canvas. By using the canvas property you can draw bitmaps, lines, shapes,
or text on the form at runtime. Most of the time you will use a Labe1 component to draw text
on aform, an 1mage component to display graphics, and a shape component to draw shapes.
However, there are times when you need to draw on the canvas at runtime and the canvas
property allows you to do that. The canvas property can also be used to save an image of the
form to disk.

ClientRect

The c1ientRect property contains the top, left, right, and bottom coordinates of the client
area of the form. This is useful in a variety of programming situations. For instance, you may
need to know the client area’s width and height in order to place a bitmap on the center of
the form.

The C++Builder IDE Explored: Projects and Forms 197 |

Handle
The Hand1e property returns the window handle (Hwnp) of the form. Use this property when
you need the window handle to pass to a Windows API function.

ModalResult

The modalresult property is used to close a modal window. If you have a dialog box that has
OK and Cancel buttons, you can set moda1result to mrok when the user clicks the OK button,
and to mrcance1 When the user clicks the Cancel button. The calling form can then read
ModalResult to see which button was clicked to close the form. Other possibilities include
eres,mrNo,and mrAbort

Owner

The owner property is a pointer to the owner of the form. The owner of the form is the object
that is responsible for deleting the form when the form is no longer needed. The parent of
a component, on the other hand, is the window (a form or another component) that acts as
the container for the component. In the case of a main form, the application object is both
the owner of the form and the parent of the form. In the case of components, the owner would
be the form, but the parent could be another component, such as a panel.

Parent
The parent property is a pointer to the parent of the form. See the previous section about
owner for an explanation of owner Versus parent.

Form Methods

Forms are components, too. As such, forms have many methods in common with compo-
nents. Common methods include show(), ShowModal(), and Invalidate(), t0 name just a
few. There are some methods, however, that are specific to forms. As before, I'll discuss only
the most commonly used methods.

BringToFront ()
The BringToFront () method causes the form to be brought to the top of all other forms in
the application.

Close() and CloseQuery()

The c1ose () method closes a form after first calling c1oseauery () to be sure that it’s okay to
close the form. The c1oseauery () function, in turn, calls the oncloseauery event handler. If

|198

Day 6

the boo1 variable passed to the oncloseauery handler is set to faise, the form is not closed.
If itis set to true, the form closes normally. You can use the oncloseauery event handler to
prompt the user to save a file that needs saving and to control whether a form can close.

Print()
The print() method prints the contents of the form. Only the client area of the form is

printed, not the caption, title bar, or borders. print () is handy for quick screen dumps of a
form.

ScrollInView()

The scrol11nview() method scrolls the form so that the specified component is visible on
the form.

SetFocus ()

The setFocus() method activates the form and brings it to the top. If the form has
components, the component specified in the Activecontro1 property will receive input focus
(see the ActiveControl property in the section “Runtime and Design-Time Properties”).

Show() and ShowModal()

The show() and showiModal () methods display the form. The show () method displays the form
as modeless, so other forms can be activated while the form is visible. The showmodal ()
method executes the form modally. A modal form must be dismissed before the user can
continue to use the application.

MDI Methods

Several form methods deal specifically with MDI operations. The ArrangeIcons() method
arranges the icons of any minimized MDI children in an MDI parent window. The
cascade () method cascades all non-minimized MDI child windows. The Tile() method
tiles all open MDI child windows. The Next () method activates (brings to the top) the next
MDI child in the child list, and the previous () method activates the previous MDI child in
the child list. The MDI methods apply only to MDI parent windows.

Form Events

Forms can respond to a wide variety of events. Some of the most commonly used are listed
in the following sections.

The C++Builder IDE Explored: Projects and Forms 199 |

OnActivate

The onactivate event occurs when the form is activated. The form might be activated as a
result of its initial creation, when the user switches from one form to another, or when the
user switches from another application.

onClose and OnCloseQuery

When an application is closed, the onc1ose eventissent. onclose calls the onc1osequery event
to see whether it is okay to close the form. If the onc1oseauery event returns faise, the form
is not closed.

OnCreate

The oncreate event occurs when the form is initially created. Only one oncreate event will
occur for any instance of a particular form. Use the oncreate handler to perform any startup
tasks that the form needs in order to operate.

OnDestroy

The onbestroy event is the opposite of oncreate. Use this event to clean up any memory a
form allocates dynamically or to do other cleanup chores.

OnDragDrop

The onbragbrop event occurs when an object is dropped on the form. Respond to this event
if your form supports drag-and-drop.

OnMouseDown, OnMouseMove, and OnMouseUp

Respond to the onmMousebown, OnMouseMove, and onmouseup events to respond to mouse clicks
on a form.

OnPaint

The onPaint event occurs whenever the form needs repainting, which could happen for a
variety of reasons. Respond to this event to do any painting that your application needs to
display at all times. In most cases, individual components will take care of painting
themselves, but in some cases you may need to draw on the form itself.

OnResize

The onResize event is sent every time the form is resized. You may need to respond to this
event to adjust components on the form or to repaint the form.

Day 6

OnShow

The onshow event occurs just before the form becomes visible. You could use this event to
perform any processing that your form needs to do just before it is shown.

The Object Inspector

An integral part of the C++Builder IDE is the Object Inspector. This window works in
conjunction with the Form Designer to aid in the creation of components. I’'m going to
discuss the Form Designer tomorrow, but before I do, I want to talk a little about the Object
Inspector.

The Object Inspector is where you set the design-time properties that affect how the
component acts at runtime. The Object Inspector has three main areas:

0 The Component Selector

O The Properties page

O The Events page

You have been using the Object Inspector quite a bit up to this point, so I'll review what you
already know and show you a few things you don’t know.

The Component Selector

The Component Selector is a drop-down combo box that is located at the top of the Object
Inspector window. The Component Selector allows you to choose a component to view or
modify.

NoOTE Usually the quickest way to select a component is by clicking on the

> component on the form. Choosing the component from the Compo-
nent Selector is convenient if the component you are looking for is
hidden beneath another component or is off the visible area of the
form.

The Component Selector displays the name of the component and the class from which it
is derived. For example, a memo component named memo would appear in the Component
Selector as

Memo: TMemo

The C++Builder IDE Explored: Projects and Forms 201 |

The class name does not show up in the drop-down list of components, but only in the top
portion of the Component Selector. To select a component, click the drop-down button to
reveal the list of components and then click on the one you want to select.

NoTE The Component Selector shows only the components available on the

- current form and the name of the form itself. Other forms and their
components will not be displayed until they’re made the active forms in
the Form Designer.

After you select a component in the Component Selector, the component is selected on the
form as well. The Properties and Events tabs change to display the properties and events for
the selected component. (Remember that a form isacomponent, too.) Figure 6.13 shows the
Object Inspector with the Component Selector list displayed.

Figure 6.13. Iniralel Tiuniel
The Component ot s
Selector list. ear g

The Properties Page

The Properties page of the Object Inspector displays all the design-time properties for the
currently selected control. The Properties page has two columns. The Property column ison
the left side of the Properties page and shows the property name. The Value column is on the
right side of the Properties page and is where you type or select the value for the property.

If the component selected has more properties than will fitin the Object Inspector, a scrollbar
will be provided so you can scroll up or down to locate other properties.

NoTE If you have multiple components selected on the form, the Object
- Inspector shows all the properties that those components have in
common. You can use this feature to modify the properties of several

| 202 Day 6

components at one time. For example, to change the width of several
components at one time, you can select all the buttons and then modify
the width property in the Object Inspector. When you press Enter or
move to another property, all the components you selected will have
their width property modified.

Figure 6.14 shows the Object Inspector when a memo component is selected.

Figure 6.14.
The Object Inspector
showing Memo
component properties.

On Day 5, “C++ Class Frameworks and the Visual Component Model,” | talked about
properties. | discussed how properties can be integer values, enumerations, sets, other objects,
strings, and other types. The Object Inspector deals with each type of property according to
the data type of the property. C++Builder has several built-in property editors to handle data
input for the property. For example, the Top property accepts an integer value. Because an
int is a basic data type, no special handling is required, so the property editor is fairly basic.
The property editor for this type of property allows you to type a value (such as Top, Left,
width, and Height) directly in the Value column for integer properties.

NoTE In most cases, the property editor does parameter checking for any
- properties in which you can enter an integer value. The width property,
— for instance, cannot be a negative number. If you attempt to enter a

negative number for the width of a control, C++Builder will force the
width to the minimum allowed for that control (usually o). If you enter
a string value for a property that expects an integer value, C++Builder
will display an error message. It is the job of the property editor to do
parameter checking.

The C++Builder IDE Explored: Projects and Forms 203 |

In many cases, the property editor for the property contains a list of items from which you
can choose. Properties that have an enumeration or boolean value as their base data type fall
into this category. When you click on the Value column with this type of property editor,
you will see a drop-down button on the right side of the Value column. Clicking this button
will display the list of possible values.

Tip If you double-click the Value column for this type of property, the
property editor will cycle through the possible choices. To quickly
""ﬂ change a boo1 property, for instance, simply double-click its value.

Because the only choices are true and faise double-clicking the value
has the effect of toggling the property’s value.

If you look closely at the Object Inspector, you will see that some properties have a plus sign
preceding the property name. Properties that are sets and properties that are objects both have
the plus sign in front of their names. The plus sign indicates that the property node can be
expanded to show the set or, in the case of properties that are objects, the properties of that
object. To expand a node, double-click on the Property column for that property (on the
property name) or choose Expand from the Object Inspector speed menu. To collapse the
node, double-click on it again or choose Collapse from the Object Inspector speed menu.

Tosee an example of aset, choose a form and then double-click on the BorderIcons property.
The node expands and you see four boolean members of the set. You can turn on or off any
of the four members as needed.

In the case of properties that are objects (instances of a VCL class), you have two choices in
editing the property. First, you can click on the Value column for the property and then click
the button to the right side of the value. This button isindicated by an ellipsis (...) on its face.
Clicking this button will invoke the property editor for that particular control. For example,
click on the Font property and then click the ellipsis button. The Choose Font dialog box is
displayed so that you can select the font. The second way you can edit this type of property
is by expanding the property node. The property’s properties (yes, it’s true) will be displayed,
and you can edit them just like any other property. Again, locate the Font property and
double-click on it. The TFont properties will be displayed. You can now modify the font’s
Height, Color, OF Name properties.

For some properties you can use only the ellipsis button as a means of editing the property.
Earlier you used the 1mage component to selectan icon for themu1tiple program’s About box.
As you found out then, the 1mage component’s Picture property can be changed only by
invoking that property’s property editor. In that case, the property editor is the C++Builder
Image Editor.

| 204 Day 6

Rest assured that each property knows what it needs to do to present you with the correct
property editor. You will see different types of property editors as you are introduced to new
components and new properties.

The Events Page

The Events page lists all the events that the property is designed to handle. Using the Events
page is pretty basic. In order to create an event handler for an event, you simply double-click
in the Value column next to the event you want to handle. When you do, C++Builder creates
an event-handling function for you with all the parameters needed to handle that event. The
Code Editor is displayed, and the cursor is placed in the event handler. All you have to do
is start typing code. The name of the function is generated based on the name property of the
component and the event being handled. If, for instance, you had a button named OK and
were handling the onc1ick event, the function name generated would be okc1ick().

You can let C++Builder generate the name of the event-handling function for you or you can
provide the function name for C++Builder to use. To provide the function name yourself,
type the name in the Value column next to the event and press Enter. The Code Editor is
displayed, and so is the event-handling function, complete with the name you supplied.

Once you have created an event-handling function for acomponent, you can use that event
handler for any component that handles the same event. Sometimes it’s convenient to have
several buttons use the same onc1ick event, for instance. To take it a step further, you might
have a main menu item, a pop-up menu item, and a speedbar button all use the same onc1ick
handler. You will learn to appreciate this kind of code reuse as you gain experience with
C++Builder. Even though you are dealing with three different components, they can still
share a common onc1ick handler. The Value column of the Events page contains a drop-
down button that can be used to display alist of all event handlers compatible with the current
event. All you have to do is choose an event from the list.

An MDI Sample Program

To help solidify today’s discussion of projects and forms, let’s create an MDI application.
This application will allow you to open and save graphics files like bitmaps, icons, and
metafiles. In order to complete our task, we’ll have to have a master plan. Here’s what we need
to do:

1. Create the main window form (an MDI parent), including a menu.

2. Write code for the File | Open and File | Save menu selections.

3. Write code for the Cascade, Tile, and Arrange All items on the Window menu.

The C++Builder IDE Explored: Projects and Forms 205 |

4.
5.
6.

Create the MDI child forms.
Create an About box.
Stand back and admire our work.

There’s no point in dawdling (time is money!), so let’s get right to it.

Step 1: Create the Main Window Form

First we'll create the main window form. The main window for an MDI application must
have the Formstyle property set to fsmupirorm. We will also need to add a menu to the
application, as well as File Open and File Save dialog boxes:

1.
2.
3.
4.
5.

Start C++Builder and choose File | New Application from the main menu.
For the main form, change the name property to MainForm.

Change the caption property to Picture Viewer.

Change the Height to 450 and the width to 575.

Change the Formsty1le t0 fsMDIForm.

Okay, now we've got the main part of the form done. Next we’ll add a menu to the form.
Because I haven’t discussed the Menu Editor yet, we’ll take the easy route to creating a menu.
Todo that, we’ll take advantage of a C++Builder feature that allows us to import a predefined
menu:

1.

. Double-click on the mainmenu component. The Menu Editor is displayed. (We'll

Click on the Standard tab of the Component Palette and click the MainMenu
button.

Drop a mainmenu component on the form. It doesn’t matter where you drop it
because the icon representing the menu is just a placeholder and won’t show on the
form at runtime.

Change the Name property to Mainmenu.

look at the Menu Editor in more detail tomorrow.)

Place your cursor over the Menu Editor and click your right mouse button. The
Insert Template dialog box appears. Choose Insert from template... from the speed
menu. Figure 6.15 shows the Insert Template dialog box with the Menu Editor
behind it.

. Choose MDI Frame Menu and click OK. The menu is displayed in the Menu

Editor.
Click the system close box on the Menu Editor to close it.

| 206 Day 6

Figure 6.15.
The Menu Editor
with the Insert
Template dialog box
open.

Now you should be back to the main form. Notice that you have a menu on the form. You
can click on the top-level items to see the full menu. Don’t click on any menu subitems at
this point—we’ll do that inaminute. Notice that there are a ot of menu items. For now we’ll
just leave the extra items where they are.

Now we need to prepare the File Open and File Save dialog boxes:

1. Click on the Dialogs tab on the Component Palette. Choose an openbialog
component and place it on the form. The openbialog component’s icon can be
placed anywhere on the form.

Change the name property of the open dialog box to openbialog.
Change the Title property to open a Picture for Viewing.
Add a savebialog component.

Change the name property of the component to savebialog and the Tit1e property
10 save a Picture.

ISAE

Your form should now look like the one in Figure 6.16.

Figure 6.16.
The form up to this
point.

The C++Builder IDE Explored: Projects and Forms 207 |

Step 2: Write Code for the File | Open and
File | Save As Menu Items

So far, so good. Now let’s write the code to implement the File | Open and File | Save As
menu items. C++Builder provides a slick way of writing menu handlers with a minimum
amount of fuss. Keep in mind that we haven’t created the MDI child form yet, but we know
enough about it to write the code for the menu handlers. Here goes:

1. On the main form, choose File | Open from the menu. An event handler is created
for that menu item, and the Code Editor is displayed.

2. Type code so that the event handler looks like this:
void _ fastcall TMainForm::Openi1Click(TObject *Sender)

if (OpenDialog->Execute())

{
TChild* child = new TChild(this);
child->SetParent(this);
child->Image->Picture->LoadFromFile (OpenDialog->FileName);
child->ClientWidth = child->Image->Picture->Width;
child->ClientHeight = child->Image->Picture->Height;
child->Caption = OpenDialog->FileName;
child->Show();

}

}

This code first executes the File Open dialog box and gets a filename. If the Cancel
button on the File Open dialog box is clicked, the function returns without doing
anything further. If the OK button on the File Open dialog box is clicked, a new
Tchild object is created (Tchild will be the name of the MDI child class we're
going to create later). The image file is loaded into the 1mage component on the
child form; then the MDI child’s client area is sized to match the size of the image.
Finally, the caption property is set to the filename selected and the child window is

displayed.
NoOTE Remember our earlier discussion about calling de1ete for all objects
> created with new? Notice that | appear to be violating that rule in the

preceding code. In reality I am not, because VCL will take the responsi-
bility of freeing the memory allocated for the MDI child windows.
Notice that the single parameter in the Tchild constructor is this. That
tells VCL that the owner of the MDI child is the MDI form window.
When the MDI form is destroyed (when the application closes), it will
be sure to delete all of its MDI child objects.

| 208 Day 6

3. Press F12 to switch back to the form. Now choose File | Save As from the menu.
The File | Save As event handler is displayed.

4. Type code so that the File | Save As event handler looks like this:

void __ fastcall TMainForm::SaveAs1Click(TObject *Sender)

{
TChild* child = dynamic_cast<TChild*>(ActiveMDIChild);
if (!child) return;
if (SaveDialog->Execute())

child->Image->Picture->SaveToFile(SaveDialog->FileName);
}
}
The code for the File | Save menu item is pretty simple. The first two lines check to see
whether an MDI child window is active. If, so the File Save dialog box is displayed. If the user
clicks OK, the image is saved to disk using the TPicture class’s saveToFile() method.

NoTE In the preceding code you see a special C++ operator called

- dynamic_cast. dynamic_cast iS used to cast a pointer of a base class
to a pointer of a derived class. The Activempichild property returns
a pointer to a TForm Object. What we actually need in this case is a poin-
ter to a Tchild object (our MDI child class, derived from TForm) so that
we can access the 1mage property of the MDI child form.

If dynamic_cast is unable to perform the cast, it returns nuLL. Attempt-
ing to use a nuLL pointer will result in an access violation, but the
debugger will conveniently point out the offending line so you know
exactly where the problem lies. This is much better than the alternative
of attempting to use the old-style cast, where a bad cast could result in
some random memory location being overwritten.

Before we go on, it would be a good idea to save the project. Choose File | Save All from the
main menu. Save unit1 (the default name C++Builder assigns to a new unit) as viewMain and
the project as viewpict.

Step 3: Write Code for the Window Menu

Now we’ll add code to the Window menu. This part is simple:

The C++Builder IDE Explored: Projects and Forms 209 |

1. Switch back to the form by pressing F12. Choose Window | Tile from the form’s
menu.

2. You need to enter only a single line of code for the event handler. The finished
event handler will look like this:
void _ fastcall TMainForm::Tile1Click(TObject *Sender)

Tile();
}

3. Switch back to the form and repeat the process for Window | Cascade. The
finished function looks like this:

void _ fastcall TMainForm::Cascadei1Click(TObject *Sender)
{

Cascade();

}

4. Repeat the steps for the Window | Arrange All menu item. The single line of code
to add for the function body is
ArrangeIcons();

Okay, now we're done with the main form. We can now move on to creating the MDI child
form.

Step 4: Create the MDI Child Form
The MDI child form is surprisingly simple. In fact, we don’t have to write any code at all:
1. Create a new form using the New Form button on the toolbar or by choosing
File | New Form from the main menu.

2. Change the Name property to child. The caption property can be ignored because
we will be setting the dialog box’s caption at runtime.

3. Change the Formstyle property to fsmpichild. This is necessary for the form to be
treated as an MDI child window.

That's it for the form itself. Now let’s put an 1mage component on the form. The image
component will display the graphics file selected by the user.

1. Click on the Additional tab on the Component Palette. Click the Image button
and place an 1mage component anywhere on the form.

2. Change the name property to Image.

| 210 Day 6

3. Change the stretch property to true.

4. Change the A1ign property to aiciient. The 1mage component expands to fill the
client area of the form.

5. Choose File | Save and save the form’s unit as mpichild.

6. Switch to the Code Editor (press F12). Click on the viewmain.cpp tab. Now choose

File | Include Unit Hdr from the main menu, select the mp1child unit, and click
OK. This is so the compiler is happy when we reference the Tchild object.

The form is pretty unimpressive at this point, but it should look similar to Figure 6.17.

Figure 6.17. FL |
The MDI child form ! g

with an Image
component.

Wesstill have to create the About box, but right now you’re probably eager to try the program.
Go ahead and click the Run button. After a while, the program is displayed. You can choose
File | Open and open any graphics file (any file with a .bmp, @ .wmf, Or an . ico extension, that
is). Notice that the MDI child window sizes itself to the graphic it contains. Open several files
and then try the Cascade and Tile options under the Window menu. If you want, you can
save a file with a different name using the File | Save As menu item.

Step 5: Create the About Box

By now you should know enough about C++Builder to create the About box on your own.
Create the About box so that it looks something like Figure 6.18. If you get stuck, you can
jump back a few pages and review the steps you took to create the About box earlier in the
chapter. Feel free to make your About box as personalized as you like.

The C++Builder IDE Explored: Projects and Forms 211 |

Figure 6.18. P I

The _Abqut box for the ot e

application. : “_-'“' i
g e e

After you have the box created, you can take these steps to call the box from the menu:

1. Change the Name property to AboutBox.
2. Save the unit as pvabout.

NoTE C++Builder has full support for long filenames. I use the 8.3 file-
- naming convention in this book for reasons related to electronic
— publishing. For applications you write, you can take advantage of long
filenames.

3. Switch to the viewmain.cpp tab in the Code Editor (press F12). Choose
File | Include Unit Hdr from the main menu and include the pvabout header.

4. Press F12 to switch back to the main form. Choose Help | About from the menu.
You are taken to the Code Editor with the onc1ick handler for the menu item
displayed.

5. Add this line to the event handler:

AboutBox->ShowModal();
That should do it for now. Click the Run button and try out the About item on the Help
menu. Figure 6.19 shows the Picture Viewer program running with several child windows
open.

| 212

Day 6

Figure 6.19.
The Picture Viewer
program running.

At this point the program is functional, but it isn’t polished by any means. Still, for a 30-
minute programming job, it’s not too bad! There are a few problems with the program as it
stands right now. If you try to open a file that is not a graphic, you will find that the program
will throw an exception. We’ll deal with that later. Also, we have a lot of extra menu items
that we need to get rid of. You'll learn how to do that tomorrow as we work more with the
Menu Designer.

There is one problem that | think we should deal with because it’s easy to fix. Did you notice
that a blank MDI child window was displayed when the application started? That’s because
a C++Builder application automatically creates all forms when the application runs. In the
case of an MDI child, that means the window is displayed when the application becomes
visible. We are creating each MDI child as needed, so we don’t need to have C++Builder auto-
create the form for us.

Fortunately, removing the MDI child window form from the auto-create list is easy. Choose
Project | Options from the main menu. The Project Options dialog box is displayed. If
necessary, click on the Forms tab. The list of forms to auto-create is displayed. Click on the
child form and then click the > button. This removes the child form from the Auto-create
listand puts it in the Available forms list. Figure 6.20 shows the Project Options dialog box
after you move the child form to the Available forms list.

The C++Builder IDE Explored: Projects and Forms 213 |

Figure 6.20. .
The Project Options Somis | Cisanier| Lk | Comeiorr Torafionst |
dialog box. R [-
P

LI 73]

=]

]

l

| | Eria

Now run the program again. This time the blank MDI child is not displayed.

If you remove a form from the auto-create list, you must be sure to
)m specifically create the form before using it. If you do not create the
= a form, the pointer to the form is uninitialized, and attempting to use the
WAR,\HNG pointer will result in an access violation or erratic program behavior.
Once you remove a form from the auto-create list, it is your responsi-
bility to make sure the form has been created before using it.
Summary

The C++Builder IDE can be intimidating until you become familiar with it. If you learn it
a little at a time, it’s not nearly so daunting. Today you learned about how projects are used
to create an executable file. You also learned more about forms. You found out how
C++Builder deals with dialog boxes and other child windows. After that you got to create a
program that actually does something interesting. Finally, you ended up with a look at the
C++Builder Object Inspector. Tomorrow we’ll go after the Form Designer and the Menu

Designer.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

| 214

Day 6

Q&A

Q

A

Q

> O

> O

> O

> O

The C++Builder toolbar doesn’t have buttons for the features | use most often.
Can | change the toolbar?

Absolutely. The toolbar is fully customizable. You can add or remove buttons as
you see fit.

I placed multiple Labe1 components on a form and then attempted to select
them all by dragging. Instead | just got another big Labe1 component. What
have | done wrong?

You forgot to turn off the multiple placement option. After placing multiple
components on the form, you need to click the arrow button on the Component
Palette to turn off the multiple placement option.

I have several components on a panel. I'm trying to select the components by
dragging, but | keep moving the panel instead. What must I do to select a
group of components on a panel?

Either use Shift+click to select each component or hold down the Ctrl key and drag
a bounding rectangle around the components.

Can | write, compile, and run a simple C++ program without a project?

No. In order to create an executable file, you need a project. The project makes
sure that all needed library routines are linked to the final executable.

What are library files for?

There is a common set of routines used in C++ programs. The string manipulation
functions | discussed on Day 1, “Getting Your Feet Wet,” are examples of such
routines. If your program calls a C++ function, that function must be included in
the executable file for your program. These functions are contained in a library file
(.L1B). The linker makes a copy of the function found in the library file and places

it in your executable. Any VCL methods your program calls are handled in the
same way.

Why does C++Builder use the term unit to refer to a source file?

C++Builder uses the term unit because C++Builder was created from Borland’s
Delphi. Delphi is based on Pascal, and unit is a Pascal term for a source file.

What do I need to do in order for my application to be an MDI application?

Just be sure that the main form has a Formsty1e of fsMpiForm and that any MDI
child forms have a Formstyle Of fsMDIChild.

The C++Builder IDE Explored: Projects and Forms 215 |

Q What's the difference between a dialog box and a child window in
C++Builder?

A There is no real difference. A dialog box form might have certain traits such as a
dialog box border rather than a sizing border; OK, Cancel, and Help buttons; and
no Minimize or Maximize buttons. But a dialog box is still just a form like any
other. A form might have the appearance of a dialog box or of a child window, but
a form is just a form.

Can | check my program for errors without running the program?

Yes. Just choose Project | Syntax Check from the main menu. C++Builder will
compile any units that have changed since the last compile and will report any
errors encountered.

Can | build OWL or MFC applications with C++Builder?

Yes. Because C++Builder’s strengths lie in its use of VCL, you probably won’t want
to develop complex applications in C++Builder using OWL or MFC, but you
certainly may if you want.

> O

> O

Quiz
1. How do you invoke the Toolbar Editor dialog box?

2. Once you have the Toolbar Editor dialog box, how do you add buttons to the
toolbar?

How do you remove buttons from the toolbar?

What's the easiest way to place multiple components of the same type on a form?
What's the easiest way to place a component in the center of the form?

List the file types needed to build an application in C++Builder.

What VCL method do you use to display a form modelessly?

What VCL method do you use to display a form modally?

How can you attach an event to an event handler that has been previously defined?

10. When using the Object Inspector, how can you enumerate the choices for a
particular property?

© oo N Uk w

| 216 Day 6

Exercises

1. Remove the Pause, Step Over, and Trace Into buttons from the toolbar. Add Cut,
Copy, and Paste buttons to the toolbar.

2. Reset the toolbar to its default settings.

3. Spend some time looking over the components on each page of the Component
Palette. Place any components you are curious about on a form and experiment
with them.

4. Create a new directory on your hard drive. Create a new application in
C++Builder. Add three new forms to the project (they can be blank if you want).
Save the project to the new directory you created and run the program. Close the
program. Now examine the directory where the project was saved. Compare the
files you see there with the file types listed in Table 6.1.

5. Run the Picture Viewer program you created earlier. Open several graphics files.
Drag the MDI child windows around in the parent window. Attempt to move a
child window outside of the parent. What happens?

6. With the Picture Viewer program still running, minimize all windows. Drag the
minimized windows to random locations on the screen and then choose
Window | Arrange All from the menu.

7. Start a new application. Place several components on the form. Click on each
component and observe the properties for each component in the Object Inspector.

8. Create a blank form. Double-click in the Value column next to the color property
to invoke the Color dialog box. Choose a color and click OK.

9. Get some rest. Tomorrow is going to be a big day.

Week 1

Day

Working with the Form
Designer and the Menu
Designer

by Kent Reisdorph

As you know by now, C++Builder is heavily form based, a model that takes
maximum advantage of the visual programming environment. In this chapter
you will explore

O The Form Designer

0O The Menu Designer
To illustrate the use of the Form Designer, we will build an application that
approximates the Windows Notepad program. Along the way you will gain

valuable experience working with the Form Designer. Later in the chapter you'll
explore the Menu Designer in detail.

| 218

Day 7

Working with the Form Designer

The C++Builder Form Designer is a powerful visual programming tool. It allows you to
place, select, move, resize, and align components, and much more. The Form Designer also
allows you to size and position the form itself, add menus, and create specialized dialog
boxes—everything you need to create the user interface to a typical Windows program.

We'll examine each of the features of the Form Designer in the following sections. As you
read, | encourage you to stop and experiment any time you are curious about how something
works. Sometimes a few minutes of playing around can teach you a technique that you can
carry with you for a long time to come.

The Form Designer’s Speed Menu

The Form Designer, like most C++Builder windows, has a speed menu associated with it.
Table 7.1 lists the items on the Form Designer speed menu and provides adescription of each.

Table 7.1. The Form Designer’s speed menu items.

Item

Description

Align To Grid
Bring To Front

Send To Back
Revert to Inherited

Align

Size

Scale

Tab Order
Creation Order
Add to Repository

Aligns selected components to the Form Designer grid.

Brings selected components to the front its components
layer.

Sends selected components behind its component layer.

When you are working with a form you have inherited
from the Object Repository, choosing this menu item will
cause the form to revert back to its original state. (Inherit-
ing forms from the Object Repository is covered on Day 9,
“Creating Applications in C++Builder.”)

Displays the Alignment dialog box.
Displays the Size dialog box.

Displays the Scale dialog box.

Displays the Edit Tab Order dialog box.
Displays the Creation Order dialog box.

Adds this form to the Object Repository. Custom forms
can be saved to be used later. (The Object Repository is
discussed on Day 9.)

Working with the Form Designer and the Menu Designer 219 |

Item Description

View as Text Shows the form description as text in the Code Editor. You
may edit the text version of the form if you like. Choose
View as Form from the Code Editor speed menu to go back
to the form. You can also use Alt+F12 to switch from the
View As Text and View As Form options.

NoTE C++Builder creates a form file (DFM) for every form you create and

> places it in your project’s directory. The form file is a binary resource
file that can’t be read by mere humans. When you choose the View As
Text speed menu item, C++Builder converts the binary resource to
readable form. When you switch back to the View as Form option,
C++Builder recompiles the form file to implement any changes you
have made.

Most of the speed menu options are discussed in the following sections. Others are discussed
in later chapters when we discuss the particular aspect of C++Builder that they pertain to.

Placing Components

The act of placing a component on a form is trivial. You simply select the component you
want from the Component Palette and click on the form to place the component. When you
click on the form, the component’s upper-left corner is placed at the location you clicked.
Notice that when you click a button on the Component Palette, the button appears as
pressed. When you click on the form to place the component, the button on the Component
Palette pops up again to indicate that the action is completed.

Tip As you learned in the last chapter, to place a component on a form
multiple times, press and hold Shift when you first select the
"'ﬁ component’s button on the Component Palette. Each time you click

on the form, a new component will be added. Click the Arrow button
on the Component Palette to stop placing components.

| 220 Day 7
Most components can be sized. You can place acomponent on aform and then size it, or you
can size the component at the same time you place it on the form. To size while placing the
component, click on the form where you want the top-left corner to be placed and then drag
with the mouse until the component is the desired size. When you release the mouse button,
the component will be placed with the size you specified.
NoTE Not all components will allow sizing in this manner. Nonvisual compo-
> nents, for instance, are represented on the form by an icon. Although you
— can click-and-drag to place a nonvisual component, the drag size will be
ignored. Another example is a single-line edit component. The edit
component can be placed by dragging, but only the drag width will be
used. The drag height will be ignored because a single-line edit
component’s height defaults to the height of a single-line edit control.
Tip If you change your mind while placing the control via the dragging
method, you can press the Esc key on the keyboard before you release
w the mouse button to cancel the operation. The component’s button
will still be pressed on the Component Palette, however, so you may
need to click the Arrow button to return to component-selection mode.

Placing componentsissimple enough that we don’t need to spend a lot of time on the subject.
You had some experience with placing components yesterday, so let’s move on to other
things.

The Form Designer Grid

The Form Designer has a built-in grid that aids in designing forms. By default, C++Builder
shows the grid. The grid size is initially set to 8 pixels horizontally and 8 pixels vertically.
When the Form Designer is set to display the grid, a dot is placed at the intersection of each
grid point. Components placed onaform will snap to the nearest grid point. By snap to I mean
that the component’s top-left corner will automatically jump to the nearest grid point. This
is an advantage because you frequently want a group of controls to be aligned either on their
left, right, top, or bottom edges. When the Snap to Grid option is on, you can simply get close
enough to the correct location and the Form Designer will automatically place your
component at the nearest grid point. This saves you time by saving you from tweaking the
individual component’s size or position on the form.

Working with the Form Designer and the Menu Designer 221 |

Thegrid settings can be modified via the Preferences page of the Environment Options dialog
box. (I'll discuss the Environment Options in detail on Day 10, “More on Projects.”) Here
you can change the grid size or turn off the Snap to Grid feature. You can also turn the grid
display on or off. When the grid display is off, the grid is still active (assuming that Snap to
Grid is on), but the dots marking grid points are not drawn on the form.

Selecting Components

After you place a component on a form, you often have to select the component in order to
modify it in some way. You may have to select a component in order to perform one of the
following actions:
O Move the component
Change the component’s properties
Align the component
Size the component
Cut or copy the component
Order the component (bring to front or move to back)
Delete the component

O oo oo

Selecting Individual Components

To select a single component, just click on it. When you select the component, eight black
sizing handles appear around the component to indicate that it is selected. (I'll discuss the
sizing handles in a moment.) Figure 7.1 shows a form with a button component selected.

As soon as you select acomponent, the Object Inspector changes to show the properties and
events for the control selected. To deselect a control, click on the form’s background or
Shift+click on the control. (Shift+click is described in the next section.)

Tip Each component has a default event handler associated with it. When
you double-click a component on a form, the Code Editor displays the
w default event handler for that component, ready for you to type code.

In most cases, the default event handler is the onc1ick handler. Exactly
what happens when the component is double-clicked depends on how
the component is designed. For example, in the case of the 1mage

component, double-clicking will display the Picture Editor dialog box.

| 222

Day 7

Figure 7.1.

. e [jeesd e frmd B Geseoesl [l ek e
A form with a button nmmulmm.uunnulu.u.u.—.l D § 08 | i
component selected. %ﬂ% Fl& = {

}
11'

*f‘fﬂggf}“gﬁﬂg}ri
i L

Group Selection
You canalso select multiple components so that you can act on themasagroup. You can select
multiple components in one of three ways:

O Shift+click with the keyboard and mouse

O Drag with the mouse

O Choose Edit | Select All from the main menu

To select all components on the form, choose Edit | Select All from the main menu. All
components on the form are then selected.

Selecting Components with Shift+Click

To use the Shift+click sequence, first select one control. Then press and hold the Shift key
on the keyboard and click on any other controls you want to include in the selection. Each
control you click is bound by four gray boxes to indicate that it is part of the selection.

You can remove a control from the selection by continuing to hold the Shift key and clicking
on the component again. In other words, the Shift+click sequence toggles a component’s
inclusion in the selection.

Working with the Form Designer and the Menu Designer 223 |

To illustrate, first start with a blank form and then perform the following steps:
1. Place three button components anywhere on the form. They will automatically be
labeled Buttonl, Button2, and Button3.
2. Click Buttonl. The black sizing rectangles are placed around the component.

3. Press and hold the Shift key on the keyboard. Click Button2. It is added to the
selection. Gray boxes now appear at the corners of both Buttonl and Button2.

4. Shift+click on Button3. Now all three buttons are part of the selection.

5. Shift+click again on Button2. Button2 is removed from the selection (the gray
boxes disappear), but Buttonl and Button3 are still in the selection.

6. Shift+click on Buttonl. Now Button3 is the only component in the selection. The
gray boxes are replaced with the black sizing rectangles.

7. Shift+click on Buttonl and Button2. All three buttons are now part of the selection
again.

Figure 7.2 shows the form as it should look at the end of this sequence. Keep in mind that
your buttons could have been placed anywhere on the form.

Figure 7.2. St —
A form with three
buttons selected.

Keep the form handy because you’ll use it again in the next exercise.

NoTE If you click on a component that is part of a group selection, nothing

- will happen. In order to select a single control that is currently part of a
group selection, you need to first click on the form’s background or
press the Esc key to remove the group selection. Then you can click on
the individual control you want to select.

| 224

Day 7

Figure 7.3. L e
Controls being selected
by dragging.

Multiple Selection by Dragging

You can select multiple controls by dragging a bounding rectangle around the controls to be
selected. The bounding rectangle is a dashed (or is it dotted?) gray rectangle that changes size
as you drag. In fact, you don’t have to drag the bounding rectangle completely around the
components. You only have to touch a component with the bounding rectangle in order for
it to be included in the selection.

Be sure that you start by placing the mouse cursor over the background of the form and not
onacomponent. Hold the primary mouse button down and begin dragging. You will see the
bounding rectangle as you drag. Surround or touch the components you want selected and
release the mouse button. Any components that were inside the bounding rectangle (or
touching it) are included in the selection.

When you have a group of controls selected, you can use the Shift+click technique explained
in the previous section to add other controls from the selection or to remove controls from
the selection. For example, you might want to select all controls in one area of your
form except for one. Surround the controls and then deselect the control you want to
exclude from the selection.

Go back to the form with the three buttons you created earlier (if you've already discarded
that form, create a new one and place three buttons on it). Start at the top-left corner and drag
down and to the right to surround the buttons. Let go of the mouse button, and the controls
will be selected. Figure 7.3 shows the form and the bounding rectangle being dragged.

Fa

Tip You can use Shift+drag to select non-adjacent groups of controls. If, for
instance, you had two separate groups of controls in separate areas on

"'ﬁ your form, you could drag around the first set of controls and then

hold the Shift key down and drag around the second set of controls.
Both groups of controls will be selected.

Working with the Form Designer and the Menu Designer 225 |

Norte You don’t have to drag down and to the right. You can drag in any
_— direction to select components.

Selecting Multiple Items: Components Within Components

Frequently you will have components placed within other components. The pane1 compo-
nent is frequently used as a container for other components. Speedbars are built this way, for
example. To select a group of components on a panel, you have to hold down the Ctrl key
on the keyboard while you drag to select the components. (Try it without holding down the
Ctrl key and see what happens!) In case you’re wondering, yes, you can use a combination
of Ctrl+Shift+drag. (I suppose the Borland designers could have figured out some way of
working the Alt key in there, too.)

To illustrate, first start with a blank form. Then do the following:
1. Select a pane1 component from the Component Palette and place it on the form
using the drag method. Drag it so that it occupies most of the form.

2. Now select a Button component and place six buttons on the form. Your form
should look something like Figure 7.4.

3. Drag a bounding rectangle around Buttonl, Button2, and Button3. You will
notice that you moved the panel, which is not what you expected (and not what
you wanted). Move the panel back to where it was.

4. Hold down the Ctrl key and drag a rectangle around Buttonl, Button2, and
Button3. The buttons are selected.

5. Now hold down both the Ctrl and Shift keys and drag the bounding rectangle
around Button5 and Button6. Now all buttons are selected except Button4.

Figure 7.4. I 1|
The form with a
panel and six buttons.

Lk
ElEE

| 226

Day 7

NoTe When you move a control via drag-and-drop, the Left and Top proper-
—

NoOTE It’s easiest to move a component by drag-and-drop. If you need finer

— You can also use various alignment options, which Ill discuss later in

"'ﬂ operation. The component will return to its original position.

Using the Ctrl+drag sequence is the only way to select a group of components that are
contained within another component if you are using the drag method. You can use the
Shift+click method to select components contained within another component just as you
do when selecting components on a form.

Moving Components

Moving componentsisacommon and fairly simple task. To move an individual component,
simply place the mouse cursor over the component and drag. As you drag, a white rectangle
that represents the component moves with the mouse cursor. When you have the white
rectangle where you want it, let go of the mouse button, and the component will be moved
to that location.

- ties of the control are automatically updated.

control, you can modify the Left and Top properties of the component.

the chapter in the section “Aligning Components.”

If you have the Snap to Grid option on, the white dragging rectangle will snap to the nearest
grid point as you drag.

TP If you change your mind while dragging, you can press the Esc key on
the keyboard before you release the mouse button to cancel the drag

Dragging a group of controls works the same way. After you have a group of components
selected, place the mouse cursor over any one of the controls and begin dragging. The white
dragging rectangle will be displayed for each of the controls in the group. This allows you to
visualize where the group will be placed when you release the mouse button.

Working with the Form Designer and the Menu Designer

227 |

NoTE

Tip

Tip

~a

You cannot move a group of components if components in the group
have different parent controls. For instance, let’s say you had selected
both a Button component on the main form and a speedButton 0N a
panel. Since these two components have different parent controls, you
cannot move them as a group.

Once you have a control selected, you can nudge the control by
holding down the Ctrl key while using the arrow keys on the keyboard.
This allows you to move the control one pixel at a time. This technique
works for both groups of controls and individual controls. The Snap to
Grid feature is overridden when you use this technique.

After you have moved a component using this method, the component
is no longer on a grid point—it is offset by some amount. If you now
drag the component, it will maintain its offset from the grid point as
you drag.

If you have moved a control using the Ctrl+arrow method and want to
again align it to the grid, choose Edit | Align to Grid from the main
menu or choose Align to Grid from the local menu. The control’s top-
left corner will snap to the nearest grid point.

A control cannot be dragged outside its parent. If you drag a component off the left or top
edge of the form, you will see that the component is clipped at the edge of the form. If,
however, you drag the component off the right or bottom of the form and drop it, scrollbars
will appear on the form to allow you to scroll to see the rest of the form. Thewidth and Height
properties of the form are not altered. If you drag the component back onto the visible part
of the form, the scrollbars disappear again. This is the default behavior and will occur unless
you change the Autoscro11 property of the formto Faise. Figure 7.5 shows amemo component
that has been dragged partially off the left edge of the form. Notice the scrollbar that appears
at the bottom of the form.

| 228 Day 7
Figure 7.5. i m=a
A form with
AutoScroll in =
action.
1 i =i

Preventing Components from Being Moved
or Sized

Components can be locked into place so that they cannot be moved. Locking components
is useful if you know that a form’s design is final and you don’t want to worry about
accidentally moving controls. To lock a form’s controls, choose Edit | Lock Controls from
the main menu. Locked controls cannot be moved or sized. When controls are locked, their
sizing handles are gray with a black border. To unlock the controls again, choose Edit | Lock
Controls again. The controls can now be moved as before.

Ordering, Cutting, Copying, and Pasting
Components

You will place some components on top of one another in order to achieve a visual effect. For
example, you can create a shadowed box by placing a white box over a black box (both would
be shape components). Obviously, you can’t have the shadow on top of the box, so you have
to have some way of ordering the controls to tell C++Builder which controls go on top and
which go on the bottom. Let’s do a simple exercise that illustrates this. Along the way you
will also see how you can use Copy and Paste with components. First (as always), start with
a blank form. Now do this:

1. Click on the Additional tab on the Component Palette and choose the shape
component. Click on the form to place the shape. A white square appears on the
form.

2. Size the shape as desired (mine ended up being 209 pixels by 129 pixels).
3. Be sure the shape component is selected. Choose Edit | Copy from the main menu.

4. Choose Edit | Paste from the main menu. A copy of the shape is placed below and
to the right of the original shape. Conveniently, this is exactly where we want it.

Working with the Form Designer and the Menu Designer 229 |

NoTe . . .
After a paste operation, the component just pasted will be selected.

5. Double-click the Brush property and change the color property under Brush to
c1Black. The new shape is now black, but it is on top of the original shape. Can’t
have that!

6. Click the secondary mouse button and choose Send to Back from the speed menu
(you could also choose Edit | Send to Back from the main menu). The black shape
is moved behind the white shape. You now have a box with a shadow. (As an
alternative, we could have clicked on the white shape and used Bring to Front to
move it on top of the black shape.)

This exercise illustrates two features of the Form Designer. It shows how you can change the
stacking order of controls, and also that you can use Copy and Paste to copy components.
The original component’s properties are copied exactly and pasted in as part of the pasting
process. Each time you paste a component, it is placed below and to the right of the previous
component pasted.

NoTE If a component that can serve as a container is selected when you

> perform a paste, the component in the Clipboard will be pasted as a
child of the container component. For instance, you might want to
move a button from the main form to a panel. You could select the
button and then choose Edit | Cut from the main menu to remove the
button from the form and place it in the Clipboard. Then you could
select the panel and choose Edit | Paste from the main menu to paste
the button onto the panel.

I don’t need to go into a lot of detail on the cut operation. When you cut a component, the
component disappears from the form and is placed in the Clipboard. Later you can paste the
component onto the form or onto another component, such as a pane1 component.

Sizing Components

With some components, you drop them on a form and accept the default size. Buttons are
agood example. A standard button hasa height of 25 pixels and awidth of 75 pixels. For many
situations, the default button size is exactly what you want. With some components,
however, the default size is rarely exactly what you need. For example, a memo component
nearly always has to be sized to fit the specific form on which you are working.

| 230

Day 7

Figure 7.6. - -]

A memo component —
being sized.

Sizing by Dragging

When you select a control, eight black sizing handles appear around the control. When you
place the mouse cursor over one of the sizing handles, the cursor changes to a black, double-
headed arrow known as the sizing cursor. Once you see the sizing cursor, you can begin
dragging to size the control. How the component is sized depends on which of the sizing
handles you grab.

The sizing handles centered on the component at the top and bottom can be used to size the
component vertically (to make the selected control taller or shorter). Likewise, the right and
left sizing handles can be used to size the component horizontally (to make the selected
control wider or narrower). If you grab one of the sizing handles at the corners of the
component, you can size both horizontally and vertically at the same time. As with moving
a component, a sizing rectangle appears as you drag. When you have the sizing rectangle at
the desired size, let go of the mouse button and the component will be resized. Figure 7.6
illustrates a memo component being sized by dragging; Figure 7.7 shows the form after the
drag operation.

Figure 7.7. bt ____________________MI=6
The form after the =
memo component is
sized.
Norte Sizing applies to visual components only. A nonvisual component

s > appears on the form as an icon that cannot be sized. The sizing handles

Working with the Form Designer and the Menu Designer 231 |

appear on nonvisual components, and the handles can be dragged, but
the results of the dragging operation will be ignored.

Groups of controls cannot be sized by dragging. The sizing handles (black squares) are
replaced by selection indicators (gray squares) when you select more than one component.

Tip To size all the components in a group at one time, modify the width or
Height property in the Object Inspector or use the Size dialog box (the
"'"ﬁ Size dialog is discussed in the section “Sizing Components”). All

components in the selection will take on the new values.

Tip To size a control or group of controls one pixel at a time, hold down
the Shift key and press any of the arrow keys on the keyboard. The up
w and down arrows will size the control vertically, and the right and left

arrows will size the control horizontally. Only the width and Height
properties of the component are affected. The Top and Left properties
are not modified.

Sizing with the Size Dialog Box

Another sizing option is the Size dialog box. You can bring up the Size dialog box by choosing
Edit | Size from the main menu. Figure 7.8 shows the Size dialog box.

Figure 7.8.
The Size dialog box. :';—-g- o i
T e i el T i e el
1™ D s 1™ Pl gl
= =
1 [T | Laus I i I

This dialog box is used when you want to force a group of controls to the same width or
height. For instance, let’ssay you had six edit components on aform, all with different widths.
To make the form appear more balanced, you might want to make all the edit components
the same width. You would first select the components and then invoke the Size dialog box.
From there you could choose Shrink to Smallest in the Width column to make all the

| 232

Day 7

Figure 7.9.

w menu.

components the width of the shortest edit component, or Grow to Largest to make all the
components the width of the longest component in the group. You could also enter an exact
width in the Width box, in which case you would leave the Height set on No Change. When
you click OK, the components will all be the same width.

Tip The Size dialog box can also be invoked from the Form Designer speed

Sizing with the Scale Dialog Box

Another sizing tool is the Scale dialog box, shown in Figure 7.9. This dialog box allows you
to specify a scaling percentage. To make the components twice as large as they currently are,
enter 200 in the Scaling Factor box. To reduce the components’ size by half, enter se in the
Scaling Factor box. The Scale dialog box is convenient for quickly changing the size of all
components on the form. You can bring up the Scale dialog box by choosing Edit | Scale from
the main menu or Scale from the Form Designer speed menu.

The Scale dialog box. R —

NoOTE Remember that you can always move components by modifying their

A control can also be sized and moved by using the various alignment options. Let’s take a
look at those now.

- Left and Top properties, and you can size them by modifying their
width and Height properties.

Aligning Components

Regardless of whether you have the Snap to Grid option turned on, you sometimes need to
align components after placing them. Aligning components could mean aligning several
components along a common edge, centering components on the form, or spacing
components. There are two different ways to go about aligning components:

Working with the Form Designer and the Menu Designer 233 |

O Using the Alignment Palette and Alignment dialog box
O Modifying a component’s Align property

The following sections explain the use of these two methods.

NoTe

You might have noticed the ALignment property for some components.
This property only pertains to the way the text in the component is
aligned (centered, right-justified, or left-justified) and has nothing to
do with aligning components on a form.

The Alignment Palette and the Alignment Dialog Box

Itis often necessary to move or size components relative to the form or relative to one another.
The Alignment Palette contains several buttons that aid in that task. The Alignment dialog
box performs the same operations as the Alignment Palette, but in a different format. To
display the Alignment Palette, choose View | Alignment Palette from the main menu. Figure
7.10 shows the Alignment Palette and a description of each button.

Figure 7.10.
The Alignment
Palette.

Tip

~8

The Align Left Edges button is used to line up components on their left edges. Start with a
blank form and then do the following:

1. Place five button components vertically on the form without regard to where their
left edges fall.

____Center horizontally in window

Align horizontal centers Space equally horizontally

Align left edges — | Align right edges
Align tops — 4 Align bottoms
Align vertical centers Space equally in window

Center vertically in window __|

The Alignment Palette can save you a lot of work. Don’t spend too
much time trying to get controls to line up exactly. Place the compo-
nents on the form and then use the Alignment Palette to line them up.

| 234 Day 7

2. Select the buttons by dragging a bounding rectangle around them (or just touching
them). The selection indicators show that all of the buttons are selected. The form
should now look something like the one in Figure 7.11.

3. Choose View | Alignment Palette from the main menu. The Alignment Palette is
displayed. Move the Alignment Palette if necessary so that it does not obscure the
form.

4. Click the Align Left Edges button on the Alignment Palette. The buttons are all
lined up.

Figure 7.11.
The form with the
buttons randomly
placed.

EEEEE!

See how easy that is? As long as we have the buttons selected, let’s look at another alignment
option. The Space Equally Vertically alignment option can now be used to space the buttons
evenly. The buttons should still be selected, so all you have to do is click the Space Equally
Vertically button on the Alignment Palette, and voila! the buttons are perfectly spaced. The
form should now look like Figure 7.12.

Figure 7.12.
The form with the
buttons aligned and
equally spaced.

EMEE!

NoTE The Space Equally Vertically alignment option will space the compo-
> nents equally between the first component in the column (the top
component) and the last component in the column (the bottom

Working with the Form Designer and the Menu Designer 235 |

component). Be sure to set the first and last components where you want
them before choosing the Space Equally Vertically alignment option.
This is true of the Space Equally Horizontally alignment option as well.

The Center Horizontally in Window and Center Vertically in Window alignment options
doexactly astheir names indicate. These optionsare convenient for centeringasingle control,
such as a button, on the form or for centering a group of controls. As long as you still have
the group of buttons selected, click both the Center Horizontally in Window and Center
Vertically in Window buttons on the Alignment Palette. The buttons will be centered on the
form both vertically and horizontally.

NoTE When you have a group of controls selected and you click one of the
- centering buttons, the controls will be treated as a group. If you were to
choose each control individually and center it both horizontally and
vertically on the form, all the controls would be stacked on top of one
another in the middle of the form. By selecting the group and then
centering, you will get the entire group centered as you intended.

The form should now look like the one in Figure 7.13.

Figure 7.13. giremt ___________________________F=b|
The form with the bt |
buttons centered.
et |
i |
|
. .'H | -
NorTE The two window-centering alignment options can be used to align
> components that are contained within other components, such as

buttons on a panel. The components will be centered horizontally
or vertically on their parent component whether the parent is a panel
or a form.

| 236

Day 7

The Align Tops, Align Bottoms, and Align Right Edges options work just like the Align Left
Edges option we used earlier. There’s not much point in going over all the possibilities that
exist for their use.

Tip The first component selected will be the anchor point when you're

~a

using any of the edge-alignment options. Refer to Figure 7.4. Let’s say
you had selected Button3 first and then used Shift+click to select the
remaining buttons. When you chose Align Left Edges, Button3 would
remain where it is and all other buttons would be lined up with
Button3’s left edge because Button3 is the anchor component.

The Align Horizontally Across Centers and Align Vertically Across Centers options can be
used to center components relative to one another. This is best illustrated with shapes. Start
with a new form (or delete the buttons from the form you have been working on). Now do
the following:

1.

10.

Click on the Additional tab on the Component Palette and choose the shape
component. Click somewhere on the upper left of the form to add the shape.

Change the shape property to stcircle.
Change the width property to 15e.

Double-click the Brush property and change the color property of the Brush
property to c1Black.

Place another shape component on the form.

Change the second shape’s shape property to stcircle as well. Now you have two
circles of different sizes on the screen—a white circle and a black circle.

Click on the black circle. Hold the Shift key and click on the white circle. Both
shapes are selected.
Choose View | Alignment Palette from the main menu, if necessary (it may already

be displayed). Arrange the Alignment Palette so you can see the two shapes on the
form. Observe the shapes as you perform the following two steps.

. Click the Align Vertically Across Centers button on the Alignment Palette. The

vertical centers are aligned.

Click the Align Horizontally Across Centers button on the Alignment Palette. The
horizontal centers are aligned. Congratulations—you made a tire!

Did you see the impact as you performed the last two steps? Notice that because you selected
the black circle first, it did not move (it is the anchor component), but the white circle moved
as you clicked the alignment buttons. You can use these alignment options to center any

Working with the Form Designer and the Menu Designer 237 |

number of controls on one another. These two alignment options have no effect when used
on a single control.

Like the Component Palette, the Alignment Palette has a speed menu associated with it. Place
the mouse cursor over the Alignment Palette and click the secondary mouse button. The
speed menu is displayed. Table 7.2 lists the items on the Alignment Palette’s speed menu and
explains their use.

Table 7.2. The Alignment Palette’s speed menu items.
Menu Item Description

Stay on top Forces the Alignment Palette to always be on top. This is
useful if you are frequently switching back and forth between
the Form Designer and the Code Editor. Because the Align-
ment Palette is a small window, it’s easy to lose it.

Show Hints Turns the hints (tool tips) for the Alignment Palette buttons
on and off.
Hide Hides the Alignment Palette. (You can also use the close box

on the Alignment Palette to hide it.) In order to show the
Alignment Palette again, you have to choose View | Alighment
Palette from the main menu.

Help Brings up C++Builder Help with the Alignment Palette page
displayed.

The Alignment dialog box performs the same actions as the Alignment Palette. To bring up
the Alignment dialog box, choose Edit | Align from the main menu or Align from the Form
Designer’s speed menu. Figure 7.14 shows the Alignment dialog box.

Figure 7.14.
The Alignment
dialog box.

In most cases, the Alignment Palette is easier to use, but you may certainly use the Alignment
dialog box if you prefer.

| 238 Day 7

The Align Property
The a1ign property controls how acomponent is aligned with its parent. The possible values
for the A1ign property and a description of each are listed in Table 7.3.

Table 7.3. Possible values for the Align property.
Value Description

alBottom The component will be aligned at the bottom of the parent window.
A status bar is an example of a component aligned along the bottom
of a main form.

alClient The component will expand to fill the client area of the parent
window. If other components occupy part of the client area, the
component will fill what client area remains. Examples include memo
components, Image components, and RichEdit components.

alleft The component will be aligned along the left edge of the parent
window. A horizontal speedbar is an example of a left-aligned
component.

alNone The component will be placed as designed with no special
relationship to the parent. This is the default for most components.

alRight The component will be aligned along the right edge of the parent.

alTop The component will be aligned along the top of the parent’s

window. A speedbar is an example of this type of alignment.

Anillustration will help explain alignment. Start with a blank form. Then perform these steps:
1. Click on the Standard tab on the Component Palette and choose a pane1 compo-
nent. Place the panel anywhere on the form.

2. Locate the a1ign property in the Object Inspector (it’s at the top of the list). Notice
that it is set on a1none. Change the A1ign property to a1Top. The panel is aligned at
the top of the form, and it expands to fill the width of the form.

3. Try to move the panel back to the middle of the form. The panel will snap back to
the top of the form.

4. Try to make the panel narrower. Notice that the panel retains its width.

5. Change the panel’s height. Note that the panel’s height can be changed (while the
width cannot).

6. Change the A1ign to a1Bottom. Now the panel is glued to the bottom of the form.

7. Change the A1ign to a1right and then aiLeft. Notice how the panel keeps its

original shape. The width is now the same as the height was before. In effect, the
panel is rotated. Again, attempts to vertically move or size the panel fail.

Working with the Form Designer and the Menu Designer 239 |

8. Change the a1ign property to aiciient. The panel expands to fill the entire client
area of the form. The panel cannot be resized in any dimension.

9. Change the a1ign property to alnone. The panel can again be sized and moved.

As you can see, changing Align to anything other than ainone effectively glues the panel to
one edge of the form. In the case of aic1ient, the panel is glued to all four edges of the form.
To illustrate how different components work together, let’s build a prototype of an
application that resembles Windows Notepad.

Aprototype isan application that has the appearance of aworking application but lacks
R full functionality.

NoTE C++Builder is perfect for quick prototyping of an application. You can
- have the main screens and dialog boxes designed and able to be
displayed in much less time than it would take with traditional C++
Windows programming tools like OWL or MFC. That is not, how-
ever, to say that C++Builder is just for prototyping. C++Builder is fully
capable of handling all your 32-bit Windows programming needs.

Step 1: Starting a New Application
1. Choose New Application from the main menu. If you're prompted to save the
current project, click No.
2. Change the name property to Scratchpad.
3. Change the caption t0 scratchPad 1.0.
4. Choose Project | Options from the main menu. Click on the Application tab and

enter scratchPad 1.0 for the application’s title. Click OK to close the Project
Options dialog box.

Step 2: Building a Speedbar

Most Windows applications these days have a speedbar. Building a speedbar requires several
steps itself. First, we'll put a spacer at the top of the window. (You'll see the benefit of the
spacer later, when we add a menu to the application.) Here we go:

1. Choose a Bevel component from the Component Palette and place it on the form
(it’s located on the Additional tab).
2. Change the Height property to 2.

3. Change the a1ign property to a1Top. The bevel is placed along the top of the form’s
client area.

| 240 Day 7
Step 3: Creating the Speedbar Container
Now we can add the panel that will serve as the container for the speedbar buttons:
1. Choose a pane1 component from the Component Palette and place it anywhere on
the form.
2. Change the name property to speedBar.
3. Change the Height property to 32.
4. Change the Bevelouter property to bvNone.
5. Clear the caption property.
6. Change the A1ign property to a1Top. The panel moves to the top, but just under-
neath the bevel we placed there earlier.
NoTE The last step in this sequence illustrates a point about the A1ign
> property. If you make a component’s Align property aiTop, it will move

to the top of the client area or to the bottom edge of the first component
it encounters. This allows you to place several components on the top of
a form and have them adjust automatically as the form is sized.

Step 4: Decorating the Panel
Now all that’s left to do is add a button or two to the panel:

1.

Click on the Additional tab of the Component Palette and choose a speedButton
component.

Place a speed button on the panel (not on the main form). Don’t worry about its
exact placement.

Change the Name property to FileOpenBtn.
Change the Left property to s.

Choose View | Alignment Palette from the main menu. Click the Center Vertically
in Window button.

Locate the ac1yph property and double-click the Value column. The Image Editor is
displayed.

Click the Load button on the Image Editor. The Load picture dialog box is

displayed. Navigate to the \1mages\Buttons subdirectory of C++Builder and choose
the fileopen.bmp file. Click OK.

Working with the Form Designer and the Menu Designer 241 |

8.

Repeat the first seven steps to add a File Save button. Place it to the right of the
File Open button. Name it FilesaveBtn and use the filesave.bmp file for the

glyph.

The form should now look like Figure 7.15.

Figure 7.15. A R - |
The ScratchPad B
form up to this point.

Step 5: Adding a Status Bar

Okay, so far, so good. Windows Notepad doesn’t have a status bar (or a speedbar, for that
matter), but we’ll put one in our application (we’re cooler!):

1.

Click on the Win95 tab on the Component Palette and choose the statusBar
component.

Click anywhere on the form. The status bar is automatically placed at the bottom
of the form. The status bar has a default A1ign value of a1Bottom.

Change the name property to statusBar.

Step 6: Adding the Memo Component
We need some component in which to type text, so we’ll use a memo component (believe
it or not, we’re almost done with our prototype):

1.

Click on the Standard tab on the Component Palette and choose a memo compo-
nent. Place the memo anywhere on the client area of the form.

2. Change the nName property to mMemo.

. Change the wordwrap property to True (if necessary).

Double-click the Value column next to the Lines property. The String List Editor
is displayed. Delete the word memo and click OK.

Change the scrollbar property to ssvertical. (Initially, we only want a vertical
scrollbar on the memo.)

| 242 Day 7

6. Change the name property of the Font property to Fixedsys. (Because this is a
Notepad copycat, we’ll use the system font.)

7. Change the A1ign property to alciient. The memo expands to fill the client area
between the speedbar and the status bar.

Hey, this is starting to look like a real application! Before we go on, let’s do one more thing
s0 you can see the value of the A1ign property. We need to make the main form a little larger.
Grab the lower-right corner of the form with the mouse and drag the form to a larger size.
If you want to be exact, you can change the form’s Height property to 375 and the width
property to 57s.

Tip The client area of our form is completely covered by components. This
makes it impossible to select the form by clicking on it if you want to
"'ﬂ change the form’s properties. To make the form the active component

in the Object Inspector, select any component on the form and then
press the Esc key on the keyboard. You can also choose the form from
the Component Selector combo box on the Object Inspector.

Notice that all the controls automatically resize themselves to retain their relationship with
the parent window—the form, in this case. That is one of the main advantages of the A1ign
property. The form now looks like the one in Figure 7.16.

Figure 7.16. ronraite _______________________________HkO|
The completed B
prototype.

Run, Baby, Run

You can now click the Run button to run the program. You can type text in the client area
of the window, and you can press the speedbar buttons (although they don’t do anything at
this point). Keep in mind that this is a prototype and is mostly for show right now. We’ll add
more to the program by the end of the chapter.

Working with the Form Designer and the Menu Designer 243 |

We better save the project because we're going to use it later in the chapter. Choose File | Save
All from the main menu. Save the main form’s source unit as spmain and the project as
Scratch.

Setting the Tab Order

The tab order refers to the order in which components will receive input focus when
the user presses the Tab key on the keyboard.

C++Builder forms automatically support component navigation using the Tab key. You can
move forward from component to component using Tab and backward using Shift+Tab.

NoTE There are two types of visual components. Windowed components are
- components that accept focus. Windowed components include the edit,
Memo, ListBox, ComboBox, and Button components, as well as many more.

Non-windowed components are components that do not accept
keyboard focus. Components such as Image, SpeedButton, Label, Shape,
and many others are non-windowed components.

The tab order applies only to windowed components. Non-windowed
components are excluded from the tab order.

Thetab order isinitially set based on the order the components were placed on the form when
the form was designed. You can modify the tab order by changing the Taborder property for
each control in the Object Inspector. That method is tedious because you have to go to each
control individually. An easier way is provided via the Edit Tab Order dialog box. (See Fig-
ure 7.17.)

Figure 7.17.
The Edit Tab Order
dialog box.

| 244 Day 7

The Edit Tab Order dialog box displays all windowed components currently on the form.
Non-windowed components are not displayed. To change the tab order, click on the name
of the component you want to move in the tab order and then click the up or down buttons
as needed. You can also drag the component to its new position in the tab order. Once you
get the tab order set the way you want it, click OK and the tab order will be set. You can
confirm the new settings by viewing the Taborder property of each control.

Nore The tab order starts with 0. The first component in the tab order is O,
_— the second is 1, and so on.

May | See a Menu, Please?

Menus are a big part of most Windows applications. Some Windows programs do not have
menus, but the vast majority do. C++Builder makes creating menus easy with the Menu
Designer. The Menu Designer has the following features:

O It can create both main menus and pop-up menus (speed menus).

O It provides immediate access to the Code Editor to handle the onc1ick events for
menu items.

O It can insert menus from templates or from resource files.
0 It can save custom menus as templates.

All of the Menu Designer’s commands are accessed via the Menu Designer speed menu or
by interacting with the Object Inspector. Figure 7.18 shows the Menu Designer’s speed

menu.
Figure 7.18. m_mea
The Menu Designer’s e
speed menu. 5 — -

L= he

vt b TPt

el | M

e i | et

i o Py

pr lepa

e By

Working with the Form Designer and the Menu Designer 245 |

For the most part these menu items are self-explanatory, so I’'m not going to go over each one
right now. Rather, you will learn about each item on the speed menu via the hands-on
approach. To begin, let’s add a main menu to the scratchpad application we created earlier.
After that we’ll add a speed menu.

Creating a Main Menu

The Menu Designer allows you to quickly build any menu. The menu structure for a main
menu consists of a mainMenu component, which is represented by the VCL class TMainmenu.
Each item on the menu is a menuItem coOmponent that is encapsulated in the TMenuItem class.
You don’t need to be too concerned about the intricacies of how these classes work together
because the Menu Designer makes creating menus easy. With that brief overview, let’s add
a main menu to the scratchpad application.

Adding a Main Menu to the Form
The first thing you must do is add a mainmenu component to your form:

NoTE By this time you have had some experience with C++Builder. From this
point on I will abbreviate some of the steps that you need to take to
perform certain actions. For example, from here on I'll say, “Place a
MainMenu component on the form” rather than “Click on the Standard
tab on the Component Palette. Click the mainmenu button and click on
the form to place the component.” Don’t worry; I'll still give plenty of
detail when new operations are introduced.

»
——

1. Open the scratchpad project created earlier in the chapter.

2. Place a mainmenu component on the form and change its Name property to MainMenu.
Notice that a mainmenu component has very few properties and no events. All the
work of a menu is done by the menuttem component.

3. Double-click on the main menu icon. The Menu Designer is displayed.

The Menu Designer looks like a blank form without grid points. The Menu Designer can
be sized in any way you want. The size is just for your convenience and has no bearing on how
the menu operates at runtime. At this point, the Menu Designer is waiting for you to begin
building the menu. Once you have created your first menu, you will find that menu creation
is fairly easy and intuitive.

| 246

Day 7

Creating a Menu by Hand
Although there are easier ways to create a File menu, you will create your first menu by hand.
The Menu Designer always hasa blank menu item that acts as a placeholder for any new menu
items you create. When you first start the Menu Designer, the blank item is selected:

1. Change the name property to FileMenu.

2. Click on the caption property in the Object Inspector, type &File, and press Enter.

NoTE The ampersand (&) is used to create the underlined character for a

- menu item. The underlined character is the accelerator the user can
type, in combination with the Alt key, to navigate a menu using the
keyboard. You can put ampersands anywhere in the menu item’s text.
For instance, the customary text string for the Exit menu item is Eaxit.
All you have to do is provide the ampersands where appropriate and
Windows will take it from there.

At this point, several things happen. First, the File menu shows up in the Menu Designer.
It also shows on the main form behind the Menu Designer. (Remember when we added the
Bevel cOmponent to the scratchPad main form to use as a spacer? Now you can see why. The
bevel provides visual distinction between the menu and the speedbar.) The other thing that
happens is that a new, blank placeholder is added below the File menu you just created, plus
a new, pop-up placeholder is created to the right of the File menu. The Object Inspector is
displaying a blank menuitem component, waiting for you to enter the caption and Name
property values. Figure 7.19 shows the Menu Designer as it appears at this point.

Figure 7.19. [ei—— M
The Menu Designer 2 E—

and Object Inspector el Lol |

after the File menu is i —

created.

:¥£EF;!E{;§E

Working with the Form Designer and the Menu Designer 247 |

Let’s continue with the creation of the menu:

1. Change the name property for the new item to FileNew.

2. Change the caption property to anew and press Enter. Again, a blank item is
created in the Menu Designer.

3. Repeat steps 1 and 2 and create menu items for Open, Save, and Save As. If you
need help knowing where to place the ampersand, refer to Figure 7.20. Don’t
worry that you might not get it exactly right. You can always go back later and fix
any errors.

Tip Make your menus as standard as possible. Be sure that your accelerators
(the underlined character) are the same as in other Windows programs.
w Also, remember that an ellipsis (...) following a menu is a visual cue
that indicates to the user that choosing the menu item will invoke a
dialog box.

At this point, we need a menu separator.
-!.,‘ A separator is the horizontal line on a menu that separates groups of menu items.

Adding a separator is easy with the C++Builder Menu Designer. All you have to do is put in
a hyphen for the caption property. Move to the blank menu item under Save As, type a
hyphen for the caption, and press Enter. A separator is placed in the menu. Continue adding
menu items until your menu looks like the one in Figure 7.20. If you need to modify any of
the menu items, just click on the item you want to modify and then change properties in the
Object Inspector as needed.

Figure 7.20. F_:uil
The Menu Designer =

with the finished
File menu.

£ I7 FfyT
P *

| 248 Day 7

NoOTE The Menu Designer always provides a blank menu item at the bottom

- of each pop-up menu and on the right side of the menu bar. You
cannot delete these blank items, but there’s no need to—they are only
used in the Menu Designer and won’t show on the menu when your
program runs.

Now that the File menu is done, we need to create an Edit menu and a Help menu.

Inserting a Menu from a Template

This time we’ll take the easy approach. First, click on the blank pop-up menu placeholder
to the right of the File menu. Now click your secondary mouse button and choose Insert
From Template from the speed menu. The Insert Template dialog box is displayed, as shown

in Figure 7.21.
Figure 7.21. T
The Insert Template L —
dialog box. e
I T

This dialog box shows a list of templates from which you can choose. You can use the
predefined templates or create your own. In this case, we are only interested in adding an Edit
menu, so choose Edit Menu and click OK. A full Edit menu isimmediately inserted into the
Menu Designer. In fact, it’s a little too full. We’ll deal with that in a moment.

As long as we're here, let’s add the Help menu, too. Click on the placeholder to the right of
the Edit menu. Choose Insert From Template again, and this time insert a Help menu.
(Don’t choose the Expanded Help menu, though.) We'll tidy up both the Edit and Help
menus in the next section. Notice that the main form has been updating to show the new
menu items as they are placed.

NoTe You can insert templates to create pop-up menus as easily as you can
| O when creating main menu items.

Working with the Form Designer and the Menu Designer 249 |

Yes, inserting from a template is really that easy. After using C++Builder for a period of time,
you will no doubt have your own custom templates that you can choose from to build menus
quickly and easily. You still have to update the name properties to meaningful names, but it’s
awhole lot easier than creating the entire menu from scratch.

NoOTE The Insert From Resource choice works essentially the same as Insert

- From Template, except that it expects a resource script file (a resource
script file has the extension .Rc) containing a valid menu definition.
You won't use this option as much as Insert From Template except
when converting existing C or C++ programs to C++Builder.

Deleting Menu Items

The process of creating a Windows application is a living, breathing thing. Rarely will you
get everything exactly right the first time. Users will request new features, the boss will come
up with a few of his own, and some features will even be dropped. Your application’s menus
will often need to be updated as these changes take place. For example, the Edit menu that
we inserted earlier is a tad verbose for our needs. Specifically, there are several items on the
Edit menu that we just don’t need. No problem—uwe’ll just delete them:

1. Click on the Edit menu.
2. Click on the item called Repeat <command>.

3. Press Delete on the keyboard or choose Delete from the Menu Designer speed
menu to delete the item. The item disappears, and the remaining items move up.

4. Delete the Paste Special menu item as well.

There, that was easy! We're not quite done with the Edit menu, but before we go on | want
to mention afeature of the Menu Designer that is really handy. You are probably familiar with
using Shift+click and Ctrl+click when selecting items in other Windows programs. These
techniques can be used in Windows Explorer to select files, for instance. The Menu Designer
supports Shift+click and Ctrl+click with one caveat—these combinations can be used to
select multiple menu items, but they cannot be used to deselect an item. As always, an exercise
will illustrate better than I can explain:

1. The Edit menu should still be displayed. If it’s not, click on Edit to reveal the Edit
menu.
2. Click on the menu item called Goto.

3. Hold down the Shift key and click on the menu item called Object. All items
between those two points are selected.

| 250

Day 7

4. Press Delete on the keyboard to delete all the items at one time.

5. Move to the Help menu and delete the two middle items. Only the Contents and
About items will remain.

Asyou can see, the Shift+click technique can be used to quickly delete unwanted menu items.
Now we have the menus trimmed back to the way we want them to appear in the scratchPad
application.

Inserting Menu Items

Inserting menu items is pretty straightforward. Just click on the menu item above which you
want to insert a new item and press the Insert key on the keyboard (or choose Insert from the
Menu Designer’s speed menu). A blank menu item is inserted, and you can now modify the
Name and caption properties just as you did earlier. Let’s insert an item into the Edit menu:

1. Drop down the Edit menu.

2. Click on the Find menu item.

3. Press the Insert key on the keyboard. A new menu item is provided, and all other
menu items below the new item move down.

4. Change the name property to EditselectAll and change the caption property to
Select &All.

5. Click on the empty placeholder at the bottom of the Edit menu. Add a menu
separator (remember, just enter a hyphen for the caption property).

6. Click on the placeholder again and add a new item. Make the name property
EditWordwrap and the caption property sword wWrap.

Moving Menu Items

You can easily move menu items as needed. You can move them up or down within the pop-
up menu they are already in, or you can move them across pop-ups. There are two ways to
move a menu item. The first is by using Cut and Paste. Cut and Paste work as you would
expect, so there’s no need to go over that. The other way to move a menu item is by dragging
it to anew location and dropping it. Let’s try it out. We really want the Select All menu item
just below the Undo item. No problem—just move it:

1. Click on Edit to display the Edit menu.

2. Click on the Select All item and drag it up until the separator under the Undo item
is highlighted.

3. Let go of the mouse, and the menu item is moved.

Too easy, right? Yep, but that’s what C++Builder is all about!

Working with the Form Designer and the Menu Designer 251 |

Batch Modification of Properties

Sometimes you want to modify several menu items’ properties at one time. For example, we
have a few menu items in the scratchpad application that we are not ready to implement at
this time. We aren’t ready for printing support, for instance, nor are we ready to implement
the help system. We need to gray out (disable) those menu items:

1. Choose Help | Contents in the Menu Designer.

2. Change the Enabled property to Faise. The menu item is grayed out.
3. Click on the File menu.
4. Click on the Print menu item, hold down the Shift key, and click on the Print

Setup menu item. Both items are selected.

5. In the Object Inspector, change the Enabled property to Faise. Both menu items
are disabled.

6. Repeat steps 4 and 5 to disable the Find and Replace items on the Edit menu.

You can modify a group of menu items at one time with this method. Simply select the items
you want to modify and then change the property you want to modify. All menu items
currently selected will have the new property value.

Creating Submenus

There’s nothing special or tricky about creating submenus. A submenu is a menu item that,
when clicked, expands to show more menu choices. A submenu is denoted by a right-
pointing arrow next to the menu item text. You can create a submenu by choosing Create
Submenu from the Menu Designer speed menu or by holding down the Ctrl key and pressing
the right-arrow key. When you create a submenu, a blank menu item is placed to the right
of the submenu. You can add menu items to the submenu just as you did when creating the
main menu. You can create a submenu by inserting a menu template as well.

Adding Shortcuts

You can easily add keyboard shortcuts to your menu items by changing the shortcut property
of the menu item in the Object Inspector. The Edit menu that we inserted earlier already had
keyboard shortcuts built in. For instance, the customary shortcut for Cut is Ctrl+X. If you
look at the Edit menu, you will see Ctrl+X listed next to the Cut item. Click on the Cut menu
item, and you will see that the shortcut property says Ctrl+X. Click on the Value column
nexttothe shortcut property. On the rightside of the Value column you will see adrop-down
button. Click on the button to display the list of available shortcuts. The list you see there
contains just about any keyboard shortcut you would need. To set the keyboard shortcut for
a menu item, simply pick one of the shortcuts from the list.

| 252

Day 7

The standard shortcut for Select All is Ctrl+A, so let’s add that as a shortcut for our Select All
menu item:

1. Choose Edit | Select All from your menu in the Menu Designer.
2. Click on the shortcut property in the Object Inspector.

3. Choose Ctrl+A from the list of available shortcuts. Now the Select All menu item
shows Ctrl+A next to it.

That's all you have to do; C++Builder takes care of it from there. The shortcuts function
without you having to write any code.

Odds and Ends

Let’s tie up a few loose ends to finish off our menu. First, we’ll turn on the Word Wrap menu
item by default. This menu item is going to be used to turn word wrapping on or off. When
word wrapping is on, the Word Wrap menu item will have a check mark next to it. When
word wrapping is off, it will not have a check mark next to it. Click on the Word Wrap menu
item and then change the checked property to True. A check mark shows up to indicate that
the word wrap feature is on.

Another thing we need to do is change the name property on all the menu items we inserted
from a template. They were given default names, and we want to change them to more
meaningful names. Select the Edit | Undo menu item. Change the Name property from undo1
to Editundo. Notice that you append the pop-up menu name, Edit, to the front of the menu
item name and remove the 1 at the end. You can use any naming convention you like, but
be consistent. Repeat the process for the Cut, Copy, Paste, Find, and Replace menu items.
Now move to the Help menu and modify the name property of the Contents item to
HelpContents, and that of the About menu item to HelpAbout.

That about wraps up our menu. Run through the menu to check it over once more. If you
find any errors, make the necessary changes. When you are satisfied that the menu is correct,
click the close box to close the Menu Designer.

NoTE You can access the Code Editor directly from the Menu Designer by

- double-clicking on any menu item. When you double-click a menu
item, the Code Editor will display the onc1ick event for that item, and
you can start typing code. In this case, we are going to go back to the
main form and do our code editing there.

Working with the Form Designer and the Menu Designer 253 |

Writing the Code

Okay, so we have all these menu items but no code to make them work. It's going to be a lot
of work to implement all these menu items, right? Actually, it’s pretty easy. Most of the code
required is already part of the Tmemo class. All we have to do is call the appropriate TMemo
methods in our menu handlers. We'll have to do a few other things, but most of what we will
add is code you have seen before.

Before we write the code, we need to add the usual opendialog and savebialog COMponents
to the form:

1. Place an openbpialog component on the form.

2. Change the name property to openbialog.

3. Place a savepialog component on the form.

4. Change the name property to savebialog.

5. Line up the MainMenu, OpenDialog, and savebialog icons on the form.
That was easy enough. Now let’s get on with writing the code for the menu items. We'll start

with the File Exit menu item (hey, it’s the easiest!). Be sure that the Menu Designer is closed
so you don’t confuse the Menu Designer with the Form Designer.

1. Choose File | Exit from the main menu. The Code Editor comes to the top, and
the FileExitclick() event handler is displayed.

2. The cursor is positioned and ready to go. Type the following at the cursor:

Close();
NoTe In step 2 | had you use the c1ose() function to close the form. This
> works fine here because this is the main form of the application. But if
— you want to terminate the application from anywhere in the program

you should use this:
Application->Terminate();

This will ensure that the application is terminated regardless of which
form is currently open.

That's it. | told you it was the easiest! Let’s do one more; then I’'m going to turn you loose
to finish the rest on your own.

| 254

Day 7

1. Choose Edit | Cut from the main menu. The Code Editor comes to the top, and
the editcutclick() event handler is displayed.

2. Type the following at the cursor:

Memo ->CutToClipboard();

And that’s all there is to that particular menu item! You may not fully realize it, but VCL does
a lot for you behind the scenes. The whole idea of a framework is to take the burden of the
low-level details off the programmer’s back. Life is good.

One of the interesting aspects of a program like C++Builder is that you rarely view your
program as a whole. C++Builder conveniently takes you to the section of code you need to
work on to deal with a particular event, so you usually only see your program in small chunks.
Listing 7.1 contains the header for the scratchpPad program up to this point. The header is
entirely C++Builder generated. The entire spuaIN.cPP program is shown in Listing 7.2.
Follow the examples you've just worked through to write code for each of the remaining
menu items. Copy the code for each of the menu onc1ick handlers from Listing 7.2. (The
comment lines are there to explain to you what the code is doing. You don’t have to include
them when you type the code.)

NoOTE The event handlers appear in the source file in the order in which they

- were created. Don’t be concerned if the order of the event handlers in
your source file does not exactly match Listing 7.2. The order in which
the functions appear makes no difference to the compiler.

Listing 7.1. SPMAIN.H.

#ifndef SPMainH
#define SPMainH

#include <Classes.hpp>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>

#include <ExtCtrls.hpp>
10: #include <Buttons.hpp>
11: #include <ComCtrls.hpp>
12: #include <Menus.hpp>

13: #include <Dialogs.hpp>

©CoO~NOOOD»WN =

15: class TScratchPad : public TForm
16: {

Working with the Form Designer and the Menu Designer 255 |

: _ published: // IDE-managed Components

TPanel *Panelfl;

TBevel *Bevell;

TSpeedButton *SpeedButtont;

TSpeedButton *SpeedButton2;

TStatusBar *StatusBar;

TMainMenu *MainMenu;

TMenuItem *FileMenu;

TMenuItem *FileOpen;

TMenuItem *FileSave;

TMenuItem *FileSaveAs;

TMenuItem *N1;

TMenuItem *FilePrintSetup;

TMenuItem *N2;

TMenuItem *FileExit;

TMenuItem *FilePrint;

TMenuItem *Edit1;

TMenuItem *EditReplace;

TMenuItem *EditFind;

TMenuItem *N4;

TMenuItem *EditPaste;

TMenuItem *EditCopy;

TMenuItem *EditCut;

TMenuItem *N5;

TMenuItem *EditUndo;

TMenuItem *Help1;

TMenuItem *HelpAbout;

TMenuItem *HelpContents;

TMenuItem *EditSelectAll;

TMenuItem *N3;

TMenuItem *EditWordWrap;

TOpenDialog *OpenDialog;

TSaveDialog *SaveDialog;

TMenuItem *FileNew;

TMemo *Memo;

void _ fastcall FileOpenClick(TObject *Sender);
void _ fastcall FileSaveClick(TObject *Sender);
void _ fastcall FileSaveAsClick(TObject *Sender);
void _ fastcall FileExitClick(TObject *Sender);
void _ fastcall EditSelectAllClick(TObject *Sender);
void _ fastcall EditCutClick(TObject *Sender);
void _ fastcall EditCopyClick(TObject *Sender);
void _ fastcall EditPasteClick(TObject *Sender);

void _ fastcall EditWordWrapClick(TObject *Sender);
void _ fastcall FileNewClick(TObject *Sender);

private: // User declarations
public: // User declarations
virtual _ fastcall TScratchPad(TComponent* Owner);

b

R I

extern TScratchPad *ScratchPad;

R R
» #endif

| 256 Day 7

Listing 7.2. SPMAIN.CPP.

L e
2: #include <vcl.h>

3: #pragma hdrstop

4: #include "SPMain.h"

CHE R R R R
6: #pragma resource "*.dfm"

7: TScratchPad *ScratchPad;

L R R
9: _ fastcall TScratchPad::TScratchPad(TComponent* Owner)

10: : TForm(Owner)

11: {

12: }

L e
14: void __ fastcall TScratchPad::FileNewClick(TObject *Sender)
15: {

16: /1

17: // Open a file. First check to see if the current file
18: // needs to be saved.

19: /1
20: if (Memo->Modified) {
21: /1
22: // Display a message box.
23: /1
24: int result = Application->MessageBox(
25: "The current file has changed. Save changes?",
26: "ScratchPad Message", MB_YESNOCANCEL) ;
27: /1
28: // If Yes was clicked then save the current file.
29: /1
30: if (result == IDYES) FileSaveClick(Sender);
31: /1
32: // If No was clicked then do nothing.
33: /!
34: if (result == IDCANCEL) return;
35: }
36: /1
37: // Delete the strings in the memo, if any.
38: /1
39: if (Memo->Lines->Count > @) Memo->Clear();
40: /1
41: // Set the FileName property of the Save Dialog to a

42: // blank string. This lets us know that the file has
43: // not yet been saved.

44: /1

45: SaveDialog->FileName = "";

46: }

L e N R
48: void __ fastcall TScratchPad::FileOpenClick(TObject *Sender)

49: {

50: /1

51: // Open a file. First check to see if the current file needs
52: // to be saved. Same logic as in FileNewClick() above.

53: /1

Working with the Form Designer and the Menu Designer 257 |

if (Memo->Modified) {
int result = Application->MessageBox(
"The current file has changed. Save changes?",
"ScratchPad Message", MB_YESNOCANCEL);
if (result == IDYES) FileSaveClick(0);
if (result == IDCANCEL) return;
}
/1
// Execute the File Open dialog. If OK was pressed then
// open the file using the LoadFromFile() method. First
// clear the FileName property.
/1
OpenDialog->FileName = "";
if (OpenDialog->Execute())

if (Memo->Lines->Count > @) Memo->Clear();
Memo->Lines->LoadFromFile (OpenDialog->FileName);
SaveDialog->FileName = OpenDialog->FileName;

: void _ fastcall TScratchPad::FileSaveClick(TObject *Sender)

{
/1
// If a filename has already been provided then there is
// no need to bring up the File Save dialog. Just save the
// file using SaveToFile().

/1
if (SaveDialog->FileName != "")
{
Memo->Lines->SaveToFile(SaveDialog->FileName);
/1
// Set Modified to false since we've just saved.
/1
Memo ->Modified = false;
b
/1
// If no filename was set then do a SaveAs().
/1
else FileSaveAsClick(Sender);
}
R
: void _ fastcall TScratchPad::FileSaveAsClick(TObject *Sender)
{
/1

// Display the File Save dialog to save the file.

// Set Modified to false since we just saved.

/1

SaveDialog->Title = "Save As";

if (SaveDialog->Execute())

{
Memo->Lines->SaveToFile(SaveDialog->FileName);
Memo ->Modified = false;

}

}

continues

| 258 Day 7

Listing 7.2. continued

L R R R R R LR
110: void _ fastcall TScratchPad::FileExitClick(TObject *Sender)
111: {

112: /1

113: // All done. Close the form.

114: /1

115: Close();

116: }

LR A B e e
118: void _ fastcall TScratchPad::EditUndoClick(TObject *Sender)
119: {

120: /1

121: // TMemo doesn't have an Undo method so we have to send

122: // a Windows WM_UNDO message to the memo component.

123: /1

124: SendMessage (Memo->Handle, WM_UNDO, @, 0);

125: }

L e
127: void __fastcall TScratchPad::EditSelectAllClick(TObject *Sndr)
128: {

129: /1

130: // Just call TMemo::SelectAll().

131: /1

132: Memo ->SelectAll();

133: }

LR N e
135: void __ fastcall TScratchPad::EditCutClick(TObject *Sender)
136: {

137: /1

138: // Call TMemo: :CutToClipboard().

139: /1

140: Memo ->CutToClipboard();

141: }

L e
143: void __ fastcall TScratchPad::EditCopyClick(TObject *Sender)
144: {

145: /1

146: // Call TMemo: :CopyToClipboard().

147: /1

148: Memo ->CopyToClipboard();

149: }

L] R e RN I R
151: void __ fastcall TScratchPad::EditPasteClick(TObject *Sender)
152: {

153: /1

154: // Call TMemo::PasteFromClipboard().

155: /1

156: Memo ->PasteFromClipboard();

157: }

L N e
159: void __ fastcall TScratchPad::EditWordWrapClick(TObject *Sender)
160: {

161: /1

Working with the Form Designer and the Menu Designer 259 |

162: // Toggle the TMemo::WordWrap property. Set the Checked
163: /] property of the menu item to the same value as WordWrap.
164: /1

165: Memo->WordWrap = !Memo->WordWrap;

166: EditWordWrap->Checked = Memo->WordWrap;

167: /1

168: // If WordWrap is on then we only need the vertical scroll
169: // bar. If it's off, then we need both scroll bars.

170: /1

171: if (Memo->WordWrap) Memo->ScrollBars = ssVertical;

172: else Memo->ScrollBars = ssBoth;

173: }

L N R R

And Now, the Moment You’ve All Been Waiting For

After you have created the event handlers for the menu items, you are ready to run the
program. Click the Run button, and the program should compile and run. If you get
compiler errors, carefully compare your source code with the code in Listing 7.2. Make any
changes and click the Run button again. You might have to go through this process a few
times before the program will compile and run. Eventually, though, it will run (I promise!).

When the program runs you will find a program that, although not 100 percent feature-
complete yet, acts a lot like Windows Notepad. Although we have a few things to add before
we're finished, we have a pretty good start—especially when you consider the actual time
involved up to this point. Figure 7.22 shows the scratchPad program running.

Figure 7.22. S B E # B D W

The ScratchPad Pl Mol WREE TRy
program in action.

e i L
=]

153

> M » B PE R®

et g il i Rl

o] iy o e b 1| Rerrta L

| 260

Day 7

Pop-up Menus (Speed Menus)

We're not quite done with our discussion of menus. In C++Builder, you can create pop-up
menus as easily as you can create a main menu. A nice feature of C++Builder is that you can
assign a particular pop-up menu to a component via the popupMenu property of the
component. When the cursor is placed over the component and the secondary mouse button
is clicked, that pop-up will automatically be displayed. Writing event handlers for pop-up
menus is exactly the same as writing event handlers for main menus.

A common feature of text-editing programs is that the Cut, Copy, and Paste operations are
on a speed menu. We'll add that capability to scratchpad. To create the pop-up, we’ll cheat
and copy part of the main menu. Here we go:

1. Choose a popupMenu component from the Component Palette and place it on the
form.

2. Change the name property to MemoPopup.

3. Double-click the popupMenu icon to run the Menu Designer.

4. Click the secondary mouse button to bring up the Menu Designer speed menu.
Choose Select Menu from the speed menu. A dialog box is displayed that shows
the menus available for your application. Choose MainMenu and click OK.

5. Click on the Edit menu. Click on the Cut menu item, hold down the Shift key,
and click on the Paste menu item. Cut, Copy, and Paste are all now highlighted.

6. To copy the selected items to the Clipboard, choose Edit | Copy from the
C++Builder main menu (don’t choose Edit | Copy from the menu you are creating
in the Menu Designer) or press Ctrl+C.

7. Again, choose Select Menu from the Menu Designer speed menu. This time, choose
MemoPopup and click OK. The Menu Designer shows a blank pop-up menu.

8. Choose Edit | Paste from the main menu or type Ctrl+V on the keyboard. The
Cut, Copy, and Paste menu items are inserted into the pop-up.

Okay, just a few more things and we’ll be done. We need to change the name property for the
new menu items:

1. For the Cut menu item, change the Name property to Popupcut.

2. Change the name property for the Copy menu item to PopupCopy.

3. Finally, change the name property for the Paste menu item to PopupPaste.
The final step is to write event handlers for the pop-up menu items. Hmmm....we already have
code written for the main menu’s Cut, Copy, and Paste items. It would be a shame to duplicate

that code (even if it is just a single line in each case). It would be nice if we could just use the
same event handlers that we created earlier. Can we? Sure we can! Just follow these steps:

Working with the Form Designer and the Menu Designer 261 |

1. Click on the Cut menu item.
2. Click on the Events tab in the Object Inspector.

3. Click the drop-down arrow button in the vaiue column next to the onclick event
(the only event in the list). A list of event handlers that you have created up to this
point is displayed.

4. Choose the Editcutciick event handler from the list. Now, when the Cut pop-up
menu item is clicked, the Edit | Cut handler will be called. No code duplication is
required. Cool.

5. Repeat steps 1 through 4 for the Copy and Paste items on the pop-up menu. When
you are done, close the Menu Designer.

6. On the main form, click on the memo component. Change the pPopupMenu property
to memopopup (by choosing it from the list).

You can attach just about any event to any event handler using this method. Now run the
program again to test the new speed menu. Of course it works!

TP You can attach a speed button onc1ick event to an existing event
handler just as easily as you did with the pop-up menu. Click the File
"'ﬂ Open speed button on your form. Locate the onc1ick event in the

Object Inspector and select the Fileopenclick event handler. Repeat
this for the File Save speed button, except choose the Filesaveclick
event handler.

Creating and Saving Menu Templates

C++Builder provides you with several menu templates that you can insert into your main
menus and pop-ups. You can also create and save your own templates for future use in your
programs. First, start the Menu Designer and create the menu.

NoTE When creating menus to use as templates, you first must have a main
> menu or a pop-up menu on a form in order to start the Menu De-
signer. You can use a temporary, blank form if you want. Start with a
blank form, place a mainmenu component on it, and double-click the
menu component’s icon to start the Menu Designer. When you are
done creating menu templates, discard the blank form without saving.

| 262

Day 7

After you have the menu created, choose Save As Template from the Menu Designer’s speed
menu. The Save Template dialog box is displayed. Give the menu a meaningful name and
click the OK button, and the menu is saved as a template. To insert the menu, choose Insert
From Template from the Menu Designer’s speed menu just as you did earlier. Any menus
you have created will show up along with C++Builder’s prebuilt templates.

To remove a template that you have previously created, choose Delete Templates from the
Menu Designer’s speed menu. The Delete Templates dialog box is displayed, and you can
choose the templates you want to delete. When you click the OK button, the selected menu
templates will be deleted. Press Cancel to close the dialog box without deleting any templates.

Summary

Congratulations! You have just covered the bulk of the visual programming features of
C++Builder. Hopefully it was enjoyable for you as well as educational. The Form Designer
is a powerful tool that allows you to do as much of your programming as possible visually.
If you haven't had to place controls on a window in C or C++, you may not fully appreciate
this advantage. Trust me, it’s significant. The Menu Designer is also a powerful tool,
particularly because of the capability to import menus, which makes menu creation easy and
actually fun with C++Builder. The Menu Designer also makes updating existing menus a
snap.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q I'm using the Alignment Palette a lot, and every time I switch from the Code
Editor back to the Form Designer, the Alignment Palette gets lost somewhere.
Is there anything | can do about that?

A Locate the Alignment Palette (it’s there somewhere!) and click your secondary
mouse button to bring up the Alignment Palette’s speed menu. Choose the Stay on
Top item from the speed menu. Now the Alignment Palette will always be on top
where you can find it.

Working with the Form Designer and the Menu Designer 263 |

> O

Quiz
. When do you use Ctrl+drag in selecting components?
. What significance does the first component selected have when you’re aligning a

>

© © N o U

10.

| am trying to select a group of components on a panel by dragging the
selection rectangle around them, but I keep moving the panel. What’s wrong?

You need to hold down the Ctrl key while dragging when you are selecting
components contained on a panel.

I’'ve moved my components around my form several times and now the tab
order is erratic. What can | do to fix that?

Choose Tab Order from the Form Designer’s speed menu. Arrange the tab order
the way you want it. When you click OK, the new tab order will be implemented.

The templates provided are nice, but they’ve got so much stuff on them that |
don’t need. What can | do about that?

Basically, you can do two things. First, you can import a menu and then simply
delete the items you don’t want. Using the click, Shift+click method you can get
rid of unwanted menu items in just a few seconds. Deleting items from a menu
inserted from a template has no adverse effects. The second thing you can do is to
follow the click, Shift+click method and then, when you have the menu just the
way you want it, you can save it as a new template. That way you can keep the
original C++Builder-supplied template and have your customized template as well.

Can | save my own menus as templates?

Yes. First create the menu and then choose Save As Template from the Menu
Designer speed menu. Give the template a name, click OK, and the template is
saved. Now all you have to do to reuse the menu later is insert the menu using the
Insert From Template feature.

group of components?
What is the quickest method of selecting a group of components?

How can you make a group of components all have the width of the widest
component in the group?

What happens when you double-click a component on a form?
What does the a1c1ient option of the A1ign property do?
What does the ellipsis following a menu item mean?

What two ways can you move a menu item?

How do you add keyboard shortcuts to menu items?

How do you initially disable a menu item?

| 264

Day 7

Exercises

1.

Place five edit components on a form and arrange them so that they are stacked
vertically with their left edges aligned.

Turn off the Snap to Grid option (choose Tools | Options from the main menu).
Place five controls of your choice on a form and align their right edges.

Place a ListBox component on a blank form and modify it so that it always
occupies the entire client area of the form.

Add an About box to the scratchpad program. Use the Alignment Palette to
quickly align the text labels.

Add an Undo item and a menu separator to the speed menu for the scratchpad
program.

Start a new application. Place six edit components on a form in random fashion.
Now arrange the tab order so that tabbing proceeds from top to bottom. Run the
program to test the tabbing order.

Add speedbar buttons for Cut, Copy, and Paste to the scratchpad program, as well
as any others you want to add. Assign the menu event handlers for the same
functions to the speed buttons.

Add the Ctrl+S keyboard shortcut to the File | Save menu item in the scratchPad
program.

Open the Picture Viewer project you created on Day 6, “The C++Builder IDE
Explored: Projects and Forms.” Remove all unused menu items.

INn Review

You covered a lot of ground this week! In some ways this was the tougher
week in the book. C++ is not an easy language to learn. But there is no
doubt that you can learn to be a C++ programmer if you stay with it.
Don't forget to take a break now and then. This book is titled Teach
Yourself Borland C++Builder in 14 Days, but that doesn’t mean you have
to read them as consecutive days! Sometimes it’s good to take a few days
off to let it all soak in.

If you are confused by some of the C++ syntax, don’t feel you are alone.
Pointers and references; = versus &; direct and indirect operators...it can
all be pretty confusing at first. Don’t worry, though, because you will
start to get the hang of it before long. Asyou work with C++Builder, little
by little it begins to make sense. What you probably lack at this point is
real-world experience. That iswhere you really learn. Knowledge gained
by experience is the kind that really sticks. My advice is to take an idea

| 266

Week 1

and turn it into a working program. You can’t necessarily do that at this point, but you can
get a good start. The program doesn’t have to be a Word, a Netscape Navigator, or an Excel
program, mind you—just a little something to help you tie in your education with some
experience.

The first part of this week you worked on C++ language keywords and syntax. Things like
loops and if statements are fairly easy to comprehend. Don’t be concerned, though, if you
have to go back and look up the syntax once in awhile. There isa lot to learn, and you aren’t
expected to be able to memorize every keyword and its syntax. Later on you will, but at this
stage of the game it isn’t expected.

Toward the middle of the week you were introduced to structures and then to C++ classes.
Classes are the bulk of what C++ is about. The things we discussed on Days 1, 2, and 3 are
primarily features of the C++ language that come from the C language. Classes, though, are
pure C++. Sometimes it takes a while for you to grasp where classes can be used in your
programs. For a long time you might only deal with the classes that the VCL provides and
not write any classes of your own. Later on you will probably find situations where a class
would fit perfectly with a particular task you have to accomplish. When that time comes, you
will be ready to tackle writing your own class. After you’ve written one or two, you will likely
be off and running.

On Day 5 you got an introduction to class libraries, also known as frameworks. VCL is a
framework. A framework makes your life easier by encapsulating difficult Windows
programming tasks into classes that you can deal with on a more rational level. Believe me,
sometimes the raw Windows APl appears to be anything but rational. VCL takes care of
dealing with those issues for you and provides you with a higher level of programming objects
that you can easily incorporate into your applications. No, VCL is not easy, but it is much
easier than dealing with the API that the VCL works to shield you from. As part of the
discussion on frameworks, you were introduced to the PME (properties, methods, and
events) model. You learned a bit about properties, methods, and events, and how you will
use them to build Windows programs in C++Builder.

At the end of this first week you were able to play around with the IDE a little. You learned
about the IDE: how to customize it to your liking, how the Component Palette works, what
the Object Inspector is for, and how to use the Menu Designer. This part of the week you
got into the fun stuff. It’s okay to use the word fun. I find all kinds of programming a great
deal of fun. That’s why I do it. Hopefully, you find it fun, too.

Finally, you ended the week by learning all about the Form Designer. The Form Designer
iswhere the bulk of your C++Builder applications will be designed—the graphical part of the
application, anyway. Working with the Form Designer can be fun, too. Using the Form
Designer you can create great-looking forms. Remember, a form represents awindow in your
applications. Most applications have a main window and several dialog boxes that are

In Review 267 |

displayed based on user interaction with the program. The Form Designer gives you an
advantage that you can’t appreciate unless you have had to design dialog boxes with more
traditional programming tools. As great as the resource editors that come with Borland C++
or Visual C++ are, they are no match for C++Builder when it comes to building forms. Being
able to place forms and set their properties at design time gives you a big edge when it comes
to beating the competition to market. C++Builder’s visual programming model is both
powerful and easy to use. What could be better?

On Day 7 you got to create a simple but useful program. This program, ScratchPad, got you
started on how to build an application with C++Builder. We are going to use ScratchPad
throughout the book. As you build your programming knowledge, we will add new features
to ScratchPad to solidify the techniques presented. If you are developing an application of
your own, | encourage you to add new features to your program as you learn about them.

I hope this week hasn’t left you too worn out. If it has, then take a short break and jump right
back into the game. If you found this week exhilarating and energizing, just keep on turnin’
those pages! I'm ready if you are!

At a Glance

Are you ready for the fun stuff? This week you are going to learn about
Windows programming in earnest. You are going to start off with a
discussion of components that will go well beyond the introduction you
had during Week 1. You are going to find out about specific components
and how to use them. You will spend some time reading and, hopefully,
alot of time experimenting. Reading this book is notarace. The first one
done does not receive a prize. Better to be the tortoise than the hare when
it comes to learning programming. Take time to experiment!

Thisweek you will learn about creating applications using C++Builder’s
experts. These experts help you get a program up and running in the
minimum amount of time. After that, you will learn about debugging
your programs. Yes, your programs will have bugs. Don’t fight it. Just
learn how to find those nasty critters in your programs and squash them.

| 270

Week 2

Debugging is a vital application-development tool, and you must learn how to debug your
programs. Knowing how to use the debugger will save you hours and hours of time in the
long run.

Toward the end of the week you will learn about database operations. First, you will get an
overview of how C++Builder and VCL deal with database operations. After that you will get
a more in-depth look into database programming. You will end the week by building a
database program. | think you will find that database programming is very easy with
C++Builder. And away we go!

Week 2

Day

VCL Components

by Kent Reisdorph

Asyou know by now, components are much of what gives C++Builder its power.
Components are designed using the properties, methods, and events model.
Using the Form Designer, you can place a component on a form and modify its
design-time properties. In some cases, that’s all you have to do. If needed, you
can also manipulate the component at runtime by changing its properties and
calling its methods. Further, each component is designed to respond to certain
events. | discussed properties, methods, and events on Day 5, “C++ Class
Frameworks and the Visual Component Model,” so I’'m not going to go over
that again here.

Today you will find out more about components. You will learn about often-
used components and, as a result, learn about the VCL classes that represent
those components. Asyou go through this chapter, feel free to experiment. Ifyou
read something that you want to test, by all means do so. Learning by experience
is as valuable as anything you can do, so don’t be afraid to experiment.

| 272

Day 8

Review

EW TER

Let’s review some of what you already know about components. But first, | want to take a
moment to explain the differences between a VCL component and a Windows control.
Windows controls include things such as edit controls, list boxes, combo boxes, static
controls (labels), and buttons, not to mention all the Windows 95 controls. Windows
controls, by nature, do not have properties, methods, and events. Instead, messages are used
to tell the control what to do or to get information from the control. To say that dealing with
controls on this level is tedious and cumbersome would be an understatement.

AVCL component is a class that encapsulates a Windows control (not all VCL components
encapsulate controls, though). A VCL component in effect adds properties, methods, and
events to a Windows control to make working with the control easier. You might say that
VCL takes a fresh approach to working with Windows controls. It could be said that all VCL
components are controls, but not all controls are components. A VCL edit component, for
instance, is a control, but a standard Windows edit control is not a VCL component. VCL
components work with Windows controls to raise the job of dealing with those controls to
a higher level.

Given that discussion, then, | will use the terms control and component interchangeably when
referring to VCL components. (But | will never call a Windows control a component!)

Visual and Nonvisual Components

Some components are visual components; others are nonvisual components.

A visual component, as its name implies, is one that can be seen by the user at design
time.

Visual components include things like edit controls, buttons, list boxes, labels, and so on.
Most components you use in a C++Builder application are visual components. Visual
components, as much as possible, show you at design time what the component will look like
when the program runs.

-‘ A nonvisual component is one that cannot be seen by the user at design time.

Nonvisual components work behind the scenes to perform specific programming tasks.
Examples include system timers, database components, and image lists. Common dialog
boxes like File Open, File Save, choose Font, and so on are considered nonvisual components.
They are nonvisual because they don’t show themselves at design time. At runtime, they
become visible when they are invoked. When you place a nonvisual component on a form,

VCL Components 273 |

C++Builder displays an icon representing the component on the form. This icon is used to
access the component at design time in order to change the component’s properties, but the
icon does not show up when the program runs. Nonvisual components have properties,
methods, and events just like visual components do.

The Name Property

The name property serves a vital role in components. As mentioned earlier, when you place
acomponent on aform, C++Builder goes to work in the background while you ponder your
next move. One thing C++Builder does is create a pointer to the component and assign the
Name property as the variable name. For example, let’s say you place an edit component on
aformand change the name property tomyedit. At that point C++Builder places the following
in the header file for the form:

TEdit* MyEdit;

When the application runs, C++Builder creates an instance of the Tedit class and assigns it
to myEdit. You can use this pointer to access the component at runtime. To set the text for
the edit control, you would use

MyEdit->Text = "Jenna Lynn";

C++Builder also uses the name property when creating event handler names. Let’s say that you
wanted to respond to the onchange event foran edit component. Normally, you double-click
the Value column next to the onchange event to have C++Builder generate an event handler
for the event. C++Builder creates a default function name based on the name property of the
component and the event being handled. In this case, C++Builder would generate a function
called myEditchange().

You can change the Nname property atany time, provided that you change it only via the Object
Inspector. When you change a component’s Name property at design time, C++Builder goes
through all the code that C++Builder had previously generated and changes the name of the
pointer and all event-handling functions.

NoTte C++Builder will change all the code generated by C++Builder to reflect
> the new value of the component’s name property, but it will not modify
any code you wrote. In other words, C++Builder will take care of
modifying the code it wrote, but it is up to you to update and maintain
the code you wrote. Generally speaking, you should change the name
property when you initially place the component on the form and leave
it alone after that.

| 274 Day 8

Continuing with this example, if you change the name property of the edit control from
MyEdit tO FirstName, C++Builder will change the pointer name to FirstName and the
onchange handler name to FirstNamechange (). It’s all done automatically; you don’t have to
do anything but change the name property and trust that C++Builder will do its thing.

Never change the name property at runtime. Never manually change a
\fm component’s name (the name that C++Builder assigned to the
= = & component’s pointer) or event handler names in the Code Editor. If
WARNING you do either of these, C++Builder loses track of components, and the

results are not good, to say the least. You might even lose the ability to
load your form. The only safe way to change the name property of a
component is through the Object Inspector.

C++Builder assigns a default value to the name property for all components placed on a form.
If you place an edit component, for example, C++Builder assignsedit1 to the Name property.
If you place a second edit component on the form, C++Builder assigns edit2 to that
component’s Name property, and so on. You should give your components meaningful names
as soon as possible to avoid confusion and extra work later on.

NoTE You can leave the default names for components that will never be
referenced in code. For example, if you have several label components
that contain static (unchanging) text, you can leave the default names
because you won’t be accessing the components at runtime.

House RuLes: THE Name PROPERTY

O Change the name property of a component from the default name to a meaning-
ful name as soon as possible.

0 Components not referenced at runtime can be left with the C++Builder-
supplied name.

Never change the Nname property of a component in code or at runtime.
O Make your components’ names meaningful but not overly long.

VCL Components 275 |

Important Common Properties

All components have certain properties in common. For instance, all visual components have
Left and Top properties that determine where the component is placed on the form.
Properties such as Left, Top, Height, and width are self-explanatory, so | won’t go over them.
A few of the common properties, however, warrant a closer look.

The Align Property

On Day 7, “Working with the Form Designer and the Menu Designer,” | discussed the A1ign
and Alignment properties, so | won’t go over those again in detail. Refer to Day 7 for complete
information on A1ign. It should be noted here, however, that not all components expose the
Align property at design time. A single-line edit control, for instance, should occupy a
standard height, so the features of the a1ign property do not make sense for that type of
component. As you gain experience with C++Builder, and depending on the type of
applications you write, you will probably rely heavily on the a1ign property.

Color My World

The co1or property sets the background color for the component. (The text color is set
through the Font property.) Although the co1or property is simple to use, there are a few
aspects of component colors that should be pointed out.

The way the color property is handled in the Object Inspector is somewhat unique. If you
click on the Value column, you will see the drop-down arrow button indicating that you can
choose from a list of color values. That is certainly the case, but there’s more to it than that.
If you double-click on the Value column, the Color dialog box is displayed. This dialog box
allows you to choose a color from one of the predefined colors or to create your own colors
by clicking the Define Custom Colors button. Figure 8.1 shows the Color dialog box after
the Define Custom Colors button has been clicked.

NoTte This is the same Color dialog box that will be displayed if you imple-

> ment the colorbialog component in your application.

If you choose a color from the Color dialog box, you will see that the value of the color
property changes to a hexadecimal string. This string represents the red, green, and blue
(RGB) values that make up the color. If you know the exact RGB value of a color (not likely!),
you can type it in.

| 276 Day 8
Figure 8.1. -
The Color dialog box. e T
ErrrreEEm
ErffEErEE
EMEAEEEER
EEEEEEER
EEEEET
e T
. . BI__ Q-u-l"_!_
| oo [T mm [T
[= | oot | o | ot T e s i

Most of the time you will probably choose a color from the list of color values provided. When
you click the drop-down button to display the list of possible values, you will see what
essentially amounts to two groups of values. The first group of colors begins with c181ack and
ends with ciwhite. These are the C++Builder predefined colors; this list represents the most
commonly used colors. To choose one of the listed colors, simply click on the color in the
list. If you can’t find a color in the list that suits your needs, you can invoke the Color dialog
box, as discussed.

The second group of colors in the list begins with ciscro11Bar. This group of colors
represents the Windows system colors. If you use colors from this list, your application will
automatically adjust its colors when the user changes color schemes in Windows. If you want
your application to follow the color scheme the user has chosen for his or her system, you
should choose colors from this list rather than from the first list.

Use of color should be carefully considered. Proper use of color provides an aesthetically
pleasing environment for the user. Abuse of color makes for an obnoxious application that
isannoying to use. Color is like amagnet to new programmers. Itiscommon to want to throw
lots of colors on a form because it’s fun and easy, but don’t get caught up in the fun at the
expense of your users.

House RuLes: CoLoRrs
O

Use color for accent and emphasis.
O Don’t use loud colors that are hard on the eyes.

O Use the system colors in your application where appropriate. If the user changes
color schemes, your application will follow suit.

0O Be consistent in your use of colors across your forms.

VCL Components 277 |

cursors

The cursor property controls the cursor that is displayed when the user moves the mouse
cursor over the component. Windows automatically changes cursors for some components.
For example, Windows changes the cursor to an I-beam when the cursor is moved over an
Edit, a Memo, OF @ RichEdit component, to name just a few. To let Windows manage the
cursor, leave the cursor property set to crbefault. If you have specialized windows
(components), you can specify one of the other cursors. When the mouse is moved over that
component, Windows will change the cursor to the one you have specified.

Frequently you will need to change cursors at runtime. A long process, for instance, should
be indicated to the user by displaying the hourglass cursor. When you reset the cursor you
need to be sure to set the cursor back to whatever it was originally. The following code snippet
illustrates:

TCursor oldCursor = Cursor;

Cursor = TCursor(crHourGlass);

// do some stuff which takes a long time
Cursor = oldCursor;

This ensures that the cursor that was originally set for the application is properly restored.

Another cursor property, bragcursor, is used to set the cursor that is used when the mouse
cursor is being dragged from the component and the target can accept the drag. As with
colors, you should be prudent in your use of cursors. Use custom cursors when needed, but
don’t overdo it.

Enabled

Components can be enabled or disabled through the Enabled property. When a component
isdisabled, it cannot accept focus (clicking on it has no effect), and usually it gives some visual
cue to indicate that it is disabled. In the case of buttons, for instance, the button text is grayed
out as is any bitmap on the button. Enabied is a boolean property—set it to true to enable
the component, or set it to false to disable the component. Enabling and disabling windows
(remember that windowed components are windows, too) is a feature of Windows itself.

NoTe
- Some components show their disabled state at design time, but most do
— not. The BitBtn cOmponent is one that does show its disabled state at
design time.

The Enabled property applies mostly to windowed components, but can apply to non-
windowed componentsas well. The speedButton component isan example of anon-windowed
component that can be disabled.

| 278 Day 8
NoTE Modifying the enabled property for a panel component has additional
- implications. Panels are often used as containers for other controls.
—

Therefore, they become the parents of the controls that are placed
within them. If you disable a panel, the components on the panel will
not show as disabled, but will not function because their parent (the
panel) is disabled.

Although components can be disabled at design time, enabling and disabling components
is something that is usually done at runtime. Menu items, for instance, should be enabled or
disabled according to whether they apply at a given time. The same is true of buttons. There
are a variety of reasons why you might want to disable other types of controls as well.

To disable acomponent at runtime, just assign false to its Enabled property, and to enable
acomponent assign true to Enabled. The following code snippet enables or disables a menu
item based on some condition:

if (saveEnabled) FileSave->Enabled = true;

else FileSave->Enabled = false;

This process is often referred to as command enabling and is an important part of a
professional-looking Windows program.

The Font Property

The Font property is a major property and therefore needs to be included here, but there is
not a lot that needs to be said about it. The Font property is an instance of the TFont class,
and as such has its own properties. You can set the Font properties by double-clicking on the
font name in the Object Inspector (which will expand the Font node and show the Font
properties) or by invoking the Font dialog box. (The Font dialog box is discussed in more
detail later in the chapter in the section “The Font Dialog Box.”) Figure 8.2 shows the Object
Inspector with the Font property node expanded to reveal the TFont properties.

The color property sets the color of the font, and the name property allows you to choose the
typeface for the font.

TheHeight and size properties of TFont deserve special mention. TheHeight property is used
to specify the height of the font in pixels, whereas the size property is used to specify the
height of the font in points. When you change one of these properties, the other will change
automatically. The Height is often specified as a negative number. Refer to the online help
for TFont for an explanation of why this is the case.

VCL Components 279 |

Figure 8.2.
The Object Inspector
showing the Font

property.

The pitch property is not particularly useful. I'll explain it in justa moment, but first a quick
tutorial on fonts. A font can be either proportionally spaced or fixed space. Most fonts are
proportionally spaced. This means that each letter takes only as much space as needed. For
example, an uppercase M takes up much more space than a lowercase i. Take a look at the
letters in this book, and you will see what | mean. Examples of proportional fonts include
Times New Roman, Arial, and Bookman. With a fixed-space font (typically called a fixed-
pitch font), on the other hand, all characters take exactly the same amount of space. This is
convenient for windows such as code editors (the C++Builder Code Editor, for instance) or
any other window where a fixed-pitch font is desired. Courier New is probably the most
commonly used fixed-pitch font, although Fixedsys is the Windows fixed-pitch font of
choice.

In theory, the Pitch property can be used to force a proportionally spaced font to fixed space
and vice versa. The problem is that Windows might perform font substitutions in order to
carry out the conversion. In other words, you really don’t know what you might get. It is far
better to pick exactly the font you require than to rely on the pitch property.

Finally, the style property of TFont can be used to toggle bold, italic, underline, or
strikethrough. These styles are not mutually exclusive, so you can mix styles in any way you

choose.
TP Although you can use the Object Inspector to change font properties,
the Font dialog box has the added benefit of showing you a sample of
"*ﬁ what the font looks like as you choose different font options. To simply

change the font’s style property or size property, use the Object
Inspector. But if you are looking for just the right font, the Font dialog
box is a better choice.

| 280

Day 8

Give Me a Hint

The Hint property is used to set hint text for a component. The hint text has two parts. The
first part is sometimes called the short hint. This is the hint text that is displayed when the user
places the cursor over the component and pauses. The pop-up window that displays the hint
text is called a tool tip.

The second part of the hint text is sometimes called the long hint. The long hint is the optional
hint text that will show in the status bar when the user moves the mouse cursor over the
component. The short and long hint texts are separated by a pipe (!). For example, to specify
both the short hint text and the long hint text for a File Open speed button, you would enter
the following for the Hint property:

File Open;Open a file for editing

In order for short hints to show, you must have the App1ication 0bject’s showHint property
set to true (the default) as well as the component’s showHint property. Displaying the long
hint in the status bar requires a little more work, so I'll save that discussion for tomorrow.

NoTE You can specify the short hint text, the long hint text, or both. You can

- use the pipe to tell C++Builder which hint text you are supplying. If
you do not use the pipe, both the short hint and the long hint will use
the same text.

ParentColor, ParentCt13D, ParentFont, and
ParentShowHint

The ParentColor, ParentCt13D, ParentFont, and ParentShowHint properties all work the
same way, so I'll discuss them at the same time. When these properties are set to true, the
component takes its color, Ct13D, Font, OF ShowHint Settings from its parent. For example,
for most components the parentFont property is set to true by default. This means the
component will inherit the font that its parent is currently using. To illustrate, do this
exercise:

1. Create a blank form. Set the Font property’s size property to 16.

2. Place a Labe1 component on the form. Notice that the label automatically uses a
16-point type size.

3. Place a Button component on the form. It also uses a 16-point type size.

VCL Components 281 |

You can set this property to fa1se, but by the time the component is placed, it is already too
late and you will have to change the font manually to the font you want for the component.

The Tag Property

The Tag property is nothing more than a 4-byte variable set aside for your use. You can use

the Tag property to store any data that your component might need. The data stored might
be a pointer to another class, an index value, or any number of other possibilities. Using the
Tag property would probably be considered an advanced programming technique.

Other Common Properties

Table 8.1 lists other common properties that are frequently used. These properties don’t
require as much explanation, so | just listed them here for your reference. Not all components
have each of the properties listed.

Table 8.1. Additional component properties.

Property Description

Borderstyle Can be bsSingle Or bsNone. Use bsNone When you want the compo-
nent to blend in with the background.

Caption Sets the component’s caption. Many components do not have
captions, so for those components the caption property is not
exposed.

Ct13D Indicates whether the control should be drawn with a 3D border. If
Borderstyle i Set to bsNone, this property has no effect.

Height Sets the component’s height.

HelpContext The HelpContext property is used to associate an index number in a
help file with a particular component.

Left Sets the x coordinate of the component.

PopupMenu Specifies the pop-up menu that will be displayed when the user clicks
the secondary mouse button.

Taborder For windowed components. Sets this component’s position in the tab
order.

TabStop For windowed components. Indicates that this component can be

tabbed into. Setting this property to false removes the component
from the tab order.

continues

| 282

Day 8

Table 8.1. continued

Property Description

Top Sets the y coordinate of the component.

Visible When read, indicates whether the component is currently visible.
When written to, visible either hides or shows the component.

width Sets the width of the component.

Primary Methods of Components

There are more than 20 methods that most components have in common. Windowed
components have more than 40 common methods from which you can choose. Interestingly,
not many of these are widely used. Much of the functionality of components is accomplished
via properties. For example, to hide a component, you can call the Hide () method, or you
can set the visible property to faise. In addition, components typically have methods
specific to their purpose, and it will likely be those methods that you use most when dealing
with a particular component.

There are a few methods worthy of note, however, which are listed in Table 8.2. Note that
some of these methods are not available to all controls. These are not the most often-used
methods common to every component, but rather the most commonly used methods of
components in general. Also, this list concentrates on components representing controls
(components placed on forms) rather than components as forms. Methods particular to
forms were discussed on Day 6, “The C++Builder IDE Explored: Projects and Forms.”

Table 8.2. Common methods of components.

Method Description
Broadcast Used to send a message to all windowed child components.
ClientToScreen Converts client window coordinates into screen coordinates.

ContainsControl Returns true if the specified component is a child of the compo-
nent or form.

HandleAllocated Returns true if the Hand1e property for the component has been
created. Simply reading the Hand1e property automatically creates
a handle if it hasn’t already been created, SO Hand1leAllocated ()
can be used to check for the existence of the handle without
creating it.

Hide Hides the component. The component is still available to be
shown again later.

VCL Components 283 |

Method Description

Invalidate Requests that the component be redrawn. The component will be
redrawn at Windows's earliest convenience.

Perform Allows a component to send a message to itself directly rather
than going through the Windows messaging system.

Refresh Requests that a component be redrawn immediately and erases
the component prior to repainting.

Repaint Requests that a component be redrawn immediately. The
component’s background is not erased prior to repainting.

SetBounds Allows you to set the Top, Left, width, and Height properties all
at one time. This saves time over having to set them individually.

SetFocus Sets the focus to a component and makes it the active compo-
nent. Applies only to windowed components.

Update Forces an immediate repaint of the control. Typically, you should

use Refresh Of Repaint t0 repaint components.

Now let’s take look at some of the events to which a component is most likely to respond.

Common Events

As with properties and methods, there are some events that will be responded to most often.
Components cover awide variety of possible Windows controls, so each component will have
individual needs. Events specific to forms are not covered here because | covered that
information on Day 6. The most commonly used events are listed in Table 8.3.

Table 8.3. Commonly handled component events.

Event Description

OnChange This event is triggered when a control changes in one way or another.
Exact implementation depends on the component.

onClick Sent when the component is clicked with either mouse button.

OnDb1Click This event occurs when the user double-clicks the component.

OnEnter This event occurs when a windowed component receives focus (is
activated).

OnExit This event occurs when a windowed component loses focus as the

result of the user switching to a different control. It does not occur,

continues

| 284

Day 8

Table 8.3. continued

Event

Description

OnKeyDown

OnKeyPress

OnKeyUp

OnMouseDown

OnMouseMove

OnMouseUp

OnPaint

however, when the user switches forms or switches to another
application.

This event is triggered when the user presses a key while the control
has focus. Keys include all alphanumeric keys as well as keys such as
the arrow keys, Home, End, Ctrl, and so on.

This event is also triggered when the user presses a key, but only when
alphanumeric keys or the Tab, backspace, Enter, or Esc keys are
pressed.

This event occurs whenever a key is released.

This event is triggered when the mouse button is pressed while over
the component. The parameters passed to the event handler give you
information on which mouse button was clicked, special keys that
were pressed (Alt, Shift, Ctrl), and the X,y coordinate of the mouse
pointer when the event occurred.

This event occurs any time the mouse is moved over the control.
This event is triggered when the mouse button is released while over a

control. The mouse button must first have been clicked while on the
control.

This event is sent any time a component needs repainting. You can
respond to this event to do any custom painting a component
requires.

DEeaLING WITH Mouse EVENTS

OnMouseDown
OnClick
OnMouseUp

Mouse events have a couple peculiarities that you should be aware of. If you are
responding just to a mouse click on a component, you will want to keep it simple
and only respond to the onclick event. If you must use onMousebown and
onMouseUp, You should be aware that the onc1ick event will be sent as well as the
onMouseDown and onMouseUp events. For example, a single click will result in these
events occurring (and in this order):

VCL Components 285 |

Similarly, when the user double-clicks with the mouse, it could result in the
application getting more events than you might think. When a component is
double-clicked, the following events occur:

OnMouseDown

OnClick

OnDb1Click

OnMouseUp

The point | am trying to make is that you need to take care when responding to
both double-click and single-click events for a component. Be aware that you will
get four events for a double-click event.

Multiple events will occur when a key is pressed, too. A keypress in an edit control,
for instance, will result in onkeyDown, OnKeyPress, OnChange, and onkeyUp events
occurring.

You can obtain a program called EventTst from http://www.mcp.com/sams/
codecenter.html . This program illustrates the fact that multiple events occur on
mouse clicks and keypresses. Run this program and you will see how multiple
events can be triggered based on certain user actions.

In just a moment we're going to look at some of the VCL components in more detail. First,
however, | want to introduce you to a class that is used by certain VCL components.

TStrings

The Tstrings class is a VCL class that manages lists of strings. Several VCL components use
instances of Tstrings to manage their data (usually text). For example, on Day 7 you used
Tstrings When you built the scratchpad application. “Hmmm...1 don’t recall using a
Tstrings class,” you say. Well, you did, but you just weren’t aware of it. Remember when we
saved and loaded files? You used something like this:

Memo->Lines->SaveToFile(SaveDialog->FileName);

The Lines property of Tvemo is an instance of the Tstrings class. The saveToFile() method
of Tstrings takes the strings and saves them to a file on disk. You can do the same thing to
load a list box from a file on disk or save the contents of a list box to disk. In the case of the

| 286 Day 8

TListBox class, the property that holds the list box items is called 1tems. For example, do this
exercise:

1. Create a new application and place a ListBox component on the form. Size the list
box as desired.

2. Change the name property of the list box to ListBox.

3. Double-click on the background of the form (not on the list box). The Code
Editor displays the Formcreate () function.

4. Type the following code in the Formcreate () function:

char winDir[256], fileName[256];
GetWindowsDirectory(winDir, sizeof(winDir));
sprintf(fileName, "%s\\win.ini", winDir);
ListBox->Items->LoadFromFile(fileName);

5. Click the Run button to compile and run the program.

When the program runs, the list box will contain the contents of your win. 1n1 file. Using this
method, it’s easy to load a list box from any ASCII text data file. The comboBox component
also has an 1tems property, and it works in exactly the same way.

You can add, delete, insert, and move items in a list box, combo box, or memo by calling the
Add (), Append(), Delete(), Insert(), and move () methods of the Tstrings class.

NoOTE How Add () performs depends on the value of the sorted property. If

- the sorted property is set to true, Add () will insert the string where it
needs to be in the list of items. If sorted is false, the new string will be
added at the end of the list.

You can clear acomponent of its contents by calling the c1ear () method. You can access an
individual string by using the strings property of Tstrings and the array subscript operator.
For example, to retrieve the first string in a list of strings, you would use

Edit->Text = ListBox->Items->Strings[0];

EachstringinaTstrings array contains the string itself and 4 bytes of extrastorage. Thisextra
storage can be accessed through the objects property. You can use the extra storage any way
you like. Let’s say, for example, that you were creating an owner-drawn list box that displayed
bitmaps. You could store the string in the usual way, plus store a pointer to the TBitmap object
in the objects array.

VCL Components 287 |

Tip There may be a time when you need to manage a list of strings unre-
lated to a component. The TstringList class is provided for exactly
‘-ﬂ that purpose. This class works just like Tstrings but can be used

outside components.

NoTe In reality Tstrings is what is called an abstract base class. An abstract
> base class is never used directly, but only serves as a base class from

which to derive other classes. Technically, the Lines property of the
Memo component is an instance of the Tmemostrings class and not an
instance of the Tstrings class as | said in this section. | didn’t mean to
lead you astray, but | thought it was best to make this distinction after
the discussion on Tstrings rather than confuse you with this informa-
tion during that discussion.

Standard Windows Control Components

Back in the Jurassic age, there was something called Windows 3.0. Windows 3.0 gave us
things like edit controls (single line and multiline), list boxes, combo boxes, buttons, check
boxes, radio buttons, and static controls. These controls must have been pretty well designed
because they are very prevalent in Windows programs today—even considering all the new
Win32 controls.

I’'m not going to go over every Windows control and its corresponding VCL component.
There are a few things, though, that you should know regarding the standard components.

Edit Controls

C++Builder comes with four edit-control components. The Edit, Memo, and MaskEdit
components are based on the standard Windows edit control. The Richedit component is
based on the Win32 rich edit control, which is not one of the standard Windows controls.
Still, 1 will discuss Richedit here because it has many things in common with the other edit
controls.

| 288 Day 8
The Edit component encapsulates the basic single-line edit control. This component has no
Align OF Alignment property. It has no Alignment property because the text in a single-line
edit control can only be left-justified. The edit component has no A1ign property because
it cannot (or more accurately, should not) be expanded to fill the client area of a window.
Tip If you need text in an edit component to be right-justified or centered,
use a memo component but make its height the height of a standard edit
"'ﬂ component. Then set the A1ignment property as needed.
Norte Keep your forms standard whenever possible. Although you can make
> an edit component as tall as you like, it will confuse users if you make
— its height greater than a standard Windows edit control (it might
appear to the user to be a multiline edit).

The maskEdit component isan edit component with an input filter, or mask, attached. The
maskedit does not represent a Windows control per se, but rather is just a VCL extension of
a standard edit control. A mask is used to force input to a specific range of numbers or
characters. In addition, the mask can contain special characters that are placed in the edit
control by default. For example, a date is commonly formatted as follows:

10/25/97

An edit mask for a date can already have the slashes in place so that the user only has to enter
the numbers. The edit mask would specify that only numbers can be entered to avoid the
possibility of the user entering a nonnumeric character.

The Editmask property controls the mask used. When you press the ellipsis (...) button in
the Value column for the editmask property, the Input Mask Editor is displayed. This dialog
box allows you to choose one of the predefined masks or to create your own. You can choose
prebuilt masks from several countries. Figure 8.3 shows the Input Mask Editor displaying the
United Kingdom set of predefined input masks.

For more information on building your own masks, see the C++Builder online help.

The memo component encapsulates a multiline edit control. The Lines property is the most
significant property in a memo component. As mentioned earlier in the discussion on
TStrings, the Lines property allows you to save the contents of the memo component to disk

VCL Components 289 |

or load the memo with text from a file, as well as other things. The scro11Bars property is
unique to the memo component. This property allows you to specify whether your component
has a horizontal scrollbar, a vertical scrollbar, or both. You used the scro11Bars property on
Day 7 when you wrote the scratchpad application. The memo component is a very versatile
component that you will probably find yourself using frequently.

Figure 8.3.
The Input Mask
Editor.

The richedit component is the biggest and the best of all the edit components. It is based
on the Win32 rich edit control. The richedit component allows you to change fonts; use
indentation; set text to bold, italic, or underlined; and much more. Basically, the RichEdit
component is a mini word processor in one neat package. rRichedit has surprisingly few
design-time properties compared to the memo component. Key runtime properties include
SelAttributes and Paragraph. The RichEdit component is fairly complex, but still easy to
use considering its complexities. See the C++Builder online help for full details on the
RichEdit component.

Table 8.4 lists the properties specific to components based on edit controls.

Table 8.4. Properties for edit controls.

Item Applies To Description
Properties
AutoSelect Edit, MaskEdit When set to true, text in the edit control

will automatically be selected when the
user tabs to the control. Default: true

AutoSize Edit, MaskEdit When set to true, the edit control will
automatically resize itself when the font
of the edit control changes. Otherwise,
the edit control does not change size
when the font changes. Default: true

continues

| 290

Day 8

Table 8.4. continued

ltem

Applies To

Description

CharCase

HideScrollBars

HideSelection

Lines

MaxLength

OEMConvert

PasswordChar

Properties

Edit, MaskEdit

RichEdit

Edit, Memo, RichEdit

Memo, RichEdit

All

Edit, Memo

Edit, MaskEdit

Determines whether the edit control
displays uppercase (ecUppercase),
lowercase (ecLowercase), Or mixed text
(ecNorma1). Default: ecNormal

When set to true, the scrollbars will be
shown when needed but hidden other-
wise. When set to false, the scrollbars are
shown as determined by the value of the
ScrollBars property.

When set to true, any text selected will
not show as selected when the user tabs to
another control. Default; false

The text contained in the component.
Lines Is an instance of the Tstrings class.

Specifies the maximum number of
characters that the component will hold.
When set to o, the amount of text that
can be input is unlimited (limited only by
system considerations). When set to any
nonzero value, limits the number of
characters to that value. Default: o

Set to true when the text input will
consist of filenames. Default: false

When this property is set to a value other
than ASCII #e, any text entered will be
echoed with the character provided. The
actual text in the edit control is unaf-
fected. Most password edits use the
asterisk (*) as the password character.
Default: #o

VCL Components 291 |

Item Applies To Description
Properties
PlainText RichEdit When set to true, RTF (rich text format)

files will be shown as plain text without
character and paragraph formatting.
When set to false, RTF files are displayed
with full formatting. Default: faise

ReadOnly All When set to true, the component will
display its text, but new text cannot be
entered. The user can, however, highlight
text and copy it to the Clipboard.
Default: faise

ScrollBars Memo, RichEdit Determines which scrollbars to display.
Choices are ssNone, ssBoth, ssHorizontal,
and ssvertical. Default: ssNone

Text Edit, MaskEdit Contains the text in the component.

WantReturns Memo, RichEdit When set to true, the component keeps
the return character, and a new line is
inserted in the edit control when the user
presses Enter. When set to false, return
characters go to the form and are not
placed in the edit control. If you have a
form with a default button and
WantReturns Set to false, pressing Enter
will cause the form to close. Default: true

WantTabs Memo, RichEdit When set to true, a tab character is
placed in the edit control when the user
presses the Tab key. When set to failse,
tab characters go to the form, which
would allow tabbing out of the edit
control. Default: faise

WordWrap Memo, RichEdit When set to true, text entered will wrap
to a new line when the right edge of the
edit control is reached. When set to false,
the edit control automatically scrolls as
new text is entered. Default; true

continues

| 292 Day 8

Table 8.4. continued

Item Applies To Description

Runtime Properties

Modified All Indicates whether the contents of the edit
control have changed since the last time
the Modified property was set. After
saving the contents of a Memo OF RichEdit
component to a file, you should set
Modified O false.

Sellength All Contains the length of the text currently
selected in the edit control.
SelStart All Contains the starting point of the selected

text in the edit control. The first character
in the edit control is o.

SelText All Contains the currently selected text in an
edit control.

Edit controls have many common methods; they are too numerous to list here. The
CutToClipboard(), CopyToClipboard(), PasteFromClipboard(), and clear () methods deal
with Clipboard operationsand text manipulation. The Getse1TextBuff () and GetTextBuff ()
methods retrieve the selected text in the component and the entire text in the component,
respectively. See the C++Builder online help topics TEdit, TMaskEdit, TMemo, and TRichEdit
for a complete list of methods pertaining to each type of edit component.

The edit component events that you are most likely to be interested in are dependent on the
type of edit control you are using. In general, though, the onEnter, onExit, OnChange,
onkeyDown (OF OnkeyPress), and onkeyup events will be the most widely used.

The ListBox and ComboBox Components

The ListBox and comboBox components are also widely used. The ListBox component
represents a standard Windows list box, which simply presents a list of choices that the user
can choose from. If the list box contains more items than can be shown at one time, scrollbars
appear to allow access to the rest of the items in the list box.

l T ‘ Some list boxes are owner-drawn list boxes. In an owner-drawn list box, the
SR programmer takes the responsibility for drawing the items in the list box.

VCL Components 293 |

You can use owner-drawn list boxes if needed. Owner-drawn list boxes are fairly common,
although you may not realize it. On Day 6 | talked about customizing the C++Builder
speedbar. As part of that discussion, we looked at the C++Builder Speedbar Editor dialog box,
which was shown in Figure 6.2. Go back and take another look at that figure. The Speedbar
Editor dialog box contains two list boxes. The list box on the left is a regular list box. It lists
the possible button groups you can choose from. The list box on the right isan owner-drawn
list box. It shows the actual button as it will appear on the speedbar, as well as a textual
description of what function the button performs.

Combo boxes are specialized list boxes. Actually, a combo box is a combination of a list box
and an edit control. The user can choose from the list or type in a value in the edit portion.
When the user chooses an item from the list, that item is placed in the edit control. There
are three different types of combo boxes. Table 8.5 lists the types of combo boxes and gives
a description of each.

Table 8.5. Types of combo boxes.
Item Description

Simple The simple style of the combo box is nothing more than an edit
control placed on top of a list box. The user can choose from the
list or type text in the edit portion.

Drop-down Similar to the simple style, except the list box portion is not
initially displayed. A drop-down button is provided so that the
user can view the list and choose an item. The user can also type
text in the edit portion.

Drop-down list This is the most restrictive type of combo box. As with the drop-
down style, the list is not initially exposed. The user can click the
drop-down button to expose the list and choose an item from
the list, but cannot enter text in the edit portion. Use this style
when you want the user to select only from a predetermined set
of choices.

You cangetaprogram called comboBox Test fromnttp: / /www.mcp.com/sams/codecenter. html
that illustrates the different types of combo boxes. Figure 8.4 shows the test program running.
Run the program and try out the combo boxes to get a feel for how each works.

Table 8.6 lists the properties common to list boxes and combo boxes.

| 294

Day 8

Figure 8.4.
The ComboBox Test
program.

Table 8.6. Properties for list boxes and combo boxes.

Property

Applies To Description

Columns

ExtendedSelection

IntegralHeight

ItemHeight

Items

MaxLength

MultiSelect

Sorted

ListBox

ListBox

ListBox

Both

Both

ComboBox

ListBox

Both

Properties

Contains the number of columns in the list box.
You can make a list box have multiple columns by
making this property greater than 1. Default: o

Determines whether extended selection is allowed.
Extended selection allows the user to select items
using Shift+click and Ctrl+click. Has no effect if
MultiSelect IS Set to false. Default: true

When true, the list box height will be resized to
be sure that no partial lines are displayed. When
false, the list box may show partial lines.
Default: faise

For use with owner-drawn list boxes and combo
boxes. Sets the height of the items in the control.
Default: 13

A Tstrings instance that contains the list of
items in the list box. (See the section on Tstrings
earlier in this chapter for a description of
available properties and methods.)

The maximum number of characters the user can
type in the edit portion of the combo box. Same
as maxLength in edit controls. Default: e (no limit)
When true, the list box allows multiple items to
be selected. Default: faise

When set to true, the list box items are sorted in
ascending order. When set to false, the items are
not sorted at all. Default: false

VCL Components 295 |

Property Applies To Description

Properties

Style ComboBox The style of the combo box. Choices are
csSimple, csDropDown, csDropDownList,
1bOwnderDrawFixed, and csownerDrawVariable.
(See Table 8.5 for a description of the three basic
styles.) Default: csbropbown

ListBox Style choices for list boxes are 1bstandard,
1bOwnderDrawFixed, and csownerDrawVariable.
Default: 1bstandard

TabWidth ListBox List boxes can use tabs. This property sets the tab
width, in pixels. Default: o

Text ComboBox Contains the text in the edit portion of the
combo box.

Runtime Properties

ItemIndex ListBox Contains the index of the currently selected item,
with o being the first item in the list. Returns -1
if no item is selected. When written to, selects
the specified index.

SelCount ListBox Contains the number of items selected in a
multiple-selection list box.

Selected ListBox Returns true if the specified item is selected or
false if it is not.

SellLength ComboBox Contains the length of the text currently selected
in the edit control part of the combo box.

SelStart ComboBox Contains the starting point of the selected text in
the edit control. The first character in the edit
control is o.

SelText ComboBox Contains the currently selected text in the edit
control.

TopIndex ListBox Returns the list box item that is at the top of the

list box. Can be used to set the top item to a
certain list box item.

| 296

Day 8

NoTE Clicking on the edit portion of a combo box or the drop-down button

As with the edit components we looked at earlier, there are very few ListBox and comboBox
methods. The c1ear () method will clear the control of all data. The 1temAtPos () methods
will return the list box item at the specified x and y coordinates. The selectA11() method
will select the text in the edit control portion of a combo box.

Easily the most-used event when dealing with combo boxes and list boxes is the onc1ick
event. Use this event to determine when a selection has been made in the list box.

> does not result in an onc1ick event being sent. Only when the list box
portion of a combo box is clicked will the onc1ick event occur.

The onchange event can be used to detect changes to the edit portion of a combo box just as
it is used with edit controls. The onbropbown event is used to detect when the drop-down
button on acombo box has been clicked. The onmeasureItemand onbrawItemeventsare used
with owner-drawn list boxes and owner-drawn combo boxes.

Button, Button, Who’s Got the Button?

VCL contains several types of buttons that you can use in your applications. Although not
all of them could be considered to be based on the standard Windows button control, I will
still address all the button types here. Before we look at the specific button components,
though, let’s cover some of the basics.

NoTE When setting the caption property of a button, use the ampersand (s)

- just as you would when setting the caption property of menu items.
The character after the ampersand will be underlined and will be the
accelerator for the button.

Button Basics
The button components only have about three properties of note.

The ModalResult Property
The ModalResult property is used to provide built-in form closing for forms displayed with
ShowModal (). By default, Moda1Result is set to mrNone (Which is #defined as). Use this value

VCL Components 297 |

for buttons that are used as regular buttons on the form and that do not close the form. If you
use any nonzero value for moda1Rresult, pressing the button will close the form and return the
ModalResult value. For example, if you place a button on a form and set the modalRresult
property to mrok, pressing the button will close the form, and the return value from
ShowModal () Will be mrok (1). Given that, then, you can do something like the following:

int result = MyForm->ShowModal();
if (result == mrOK) DoSomething();
if (result == mrCancel) return;

Table 8.7 lists the modalRresult constants that VCL defines.

Table 8.7. VCL ModalResult constants.

Constant Value
mrNone 0
mrok 1
mrCancel 2
mrAbort 3
mrRetry 4
mrIgnore 5
mrYes 6
mrNo 7
mrAll 8
NoOTE You don’t have to use one of the predefined moda1Resu1t constants for
- your buttons. You can use any value you like. Let’s say, for example,

you had a custom dialog box that could be closed by using a variety of
buttons. You could assign a different moda1result value to each button
(100, 150, and 200, for example), and you would then know which
button closed the dialog box. Any nonzero number is valid, up to the
maximum value of an int.

You can get a program called ButtnTst from http: //www.mcp.com/sams/codecenter.html; it
demonstrates the use of Modalresult. The program allows you to execute a form containing
several buttons. When you click a button, the moda1resu1t will be reported back on the main
form.

| 298 Day 8
The pefault Property
The pefault property is another key property of buttons. Windows has a standard
mechanism for dealing with dialog boxes. One of the features of this mechanism is as follows:
If a control other than a button has keyboard focus and the user presses the Enter key on the
keyboard, the dialog box will behave as if the user had clicked the default button. The default
button is the button that has the Bs_perpusHBuTTON Style set (usually the OK button). This
feature has been the bane of programmers and the curse of data-entry personnel for years. The
Default property is used to set a button as the default button for a form. The default value
for this property is false. To make a button the default button, set its befault property to
true. If you don’t specifically set any button’s pefau1t property to true, the form will not
close when the user presses the Enter key.
NoTE When the user closes the form by pressing the Enter key, the onc1ick
- handler of the default button (if one exists) will be called before the
— form closes.
The cancel Property
The cancel property works with the Esc key in much the same way as the pefau1t property
works with the Enter key. When the user presses the Esc key to close a form, the return value
from showModa1 () will be the moda1Rresu1t value of the button whose cance1 property is set
to true. If no button has its cance1 property set to true, mrcancel will be returned if the user
uses the Esc key to close the form (mrcancel is equal to 2; see Table 8.7).
NoOTE Closing a form by clicking the system close box or by pressing Alt+F4
- will result in mrcancel being returned from showmoda1 () as you would
— expect. Pressing the Esc key, however, will result in a return value of
the modalResult property being set to whatever button has the cancel
property set to true. The onc1ick handler for the cance1 button will be
called before the form closes. No onc1ick handler is called if the user
uses the system close box or Alt+F4 to close the form. Be sure to
anticipate the different ways users might use (or abuse) your forms.
NorTe You may have more than one button with a befau1t property set to
_— true. Likewise, you may have more than one button with the cancel

VCL Components 299 |

property set to true. However, when the user presses Enter on the
keyboard, the first button in the tab order that has its pefau1t property
set to true will be invoked. Similarly, when the user presses the Esc key
to close the form, the return value from showmoda1 () will be the
ModalResult Value of the first button in the tab order that has its cancel
property set to true.

The Enabled Property

Earlier | discussed the Enabied property when I discussed components in general. This
property is used a lot with buttons to enable or disable the button depending on the current
state of the program or of a particular form. When a button is disabled (its Enabled property
isset to false), its text is grayed out, and the button does not function. In the case of buttons
with bitmaps on them (BitBtn and speedButton), the bitmap will also be grayed out
automatically.

Button components have only one method of interest: the c1ick () method, which simulates
amouse click. Whenyou call c1ick () forabutton, the onc1ick event of the button isexecuted
justasif the user had clicked the button. As for events, typically only the onc1ick eventis used.

Now let’s take a look at the different button components C++Builder provides.

The Button Component

The standard Button component is sort of like actor Danny DeVito—he ain’t pretty, but he
sure gets a lot of work. There really isn’'t anything to add concerning the standard Button
component. It has a default Height property value of 25 pixels and a default width property
value of 75. Typically you will place a button onaform and respond to itsonc1ick event, and
that’s about it.

The BitBtn Component

The BitBtn cOmponent is a perfect example of how a component can be extended to provide
additional functionality. In this case the standard Button component is extended to allow a
bitmap to be displayed on the face of the button.

The BitBtn cOmponent has several properties over what the Button component provides. All
these properties work together to manage the bitmap on the button and the layout between
the bitmap and the button’s text. They are explained in the following sections.

| 300 Day 8

The Glyph Property
The c1yph property represents the bitmap on the button. The value of the c1yph property is
a picture, or glyph.

-!,\‘ A glyph is a picture that is typically in the form of a Windows bitmap file (BMP).

The glyph itself consists of one or more bitmaps that represent the four possible states a
button can be in: up, down, disabled, and stay down. If you are creating your own buttons,
you can probably get by with supplying just one glyph, which the 8itstn component will then
modify to represent the other three possible states. The bitmap will move down and to the
left when the button is clicked and will be grayed out when disabled. The glyph in the stay-
down state will be the same as in the up state, although the button face will change to give
a pressed look.

If you provide more than one glyph, the glyphs must all be the same height and width and
must be contained in a bitmap strip. The bitmaps that ship with C++Builder provide two
glyphs. Figure 8.5 shows the bitmap for the print button that comes with C++Builder
(prINT.BMP) in both its actual size and zoomed in to show detail. Note that the two glyphs
each occupy the same width in the bitmap.

Figure 8.5.
The PRINT.BMP
bitmap.
He [EL
[: o=
sl | &
e
Tip The pixel in the lower-left corner of the bitmap is the color that will be
used for the transparent color. Any pixels in the bitmap having that
w color will be transparent when the glyph is displayed on the button.

You must keep this in mind when designing your bitmaps. If you are
not using transparency, you will need the pixel in the lower-left corner
to be a color not present anywhere else on the bitmap.

VCL Components 301 |

To set the glyph for a BitBtn, double-click the Value column in the Object Inspector next
to the G1yph property. The Image Editor will be displayed, and you can choose the bitmap
that will be used for the glyph.

NoTE The standard button glyphs that come with C++Builder are 15x15

- pixels in size. This size fits well with the standard button height of 25
pixels. Your glyphs can be any size you like, but the Bitstn component
makes no effort to size the button according to the size of the bitmap.
If you use larger glyphs, you will have to size the button accordingly.

The kind Property

The kind property is a nice feature of the Bitstn component that allows you to choose from
several predefined kinds of buttons. The default value for the kind property is bkCustom,
which means that you will supply the glyph and set any other properties for the button.
Choosing any of the other predefined kinds will result in these five things happening:

O The G1yph property is automatically set for the kind of button chosen.

O The cancel or befault properties are modified according to the kind of button
chosen.

O The caption property is modified for the type of button chosen.
O The ModalResult property is set according to the kind of button chosen.
O The button on the form is updated to reflect all these settings.

For instance, if you set the value of kind to bkok, the button will become an OK button. The
glyph is set to a green check mark, the cance1 property is set to false, the befault property
is set to true, the Modalresult property is set to mrok, the caption property is set to ok, and
the results show up on the form. You can always override any of the properties modified by
changing the kind property, but it is not usually necessary to do so. Figure 8.6 shows the
Button Test program from http://www.mcp.com/sams/codecenter.html, With the BitBtn
Test form displayed. The form contains each of the predefined button types available plus
one custom button.

The Layout Property

The Layout property determines where the button is placed relative to the text. The default
iSb1GlyphLeft. YOU can also choose to place the glyph on the face of the button to the right
of the text, above the text, or below the text.

| 302 Day 8
Figure 8.6. g et ______________________RHD]
The predefined Chick O A Biion

BitBtn types.

e | Eew| Aw]| e |
Bom| _swm| _ @] _to]|

Lo | o e | |

== Do |

The margin Property

The margin property specifies the margin between the glyph and the edge of the button
(which edge this property affects is determined by the value of the Layout property). The
default is -1, which centers the glyph and the text in the button. Enter any positive value to
set an absolute margin (in pixels).

The NumGlyphs Property

The numG1yphs property specifies the number of glyphs you have in your bitmap strip for a
particular button. You can supply from one to four glyphs, as mentioned. The glyphs must
appear in the bitmap strip in this order: Up, Disabled, Down, Stay Down.

The spacing Property
The spacing property controls the distance, in pixels, between the glyph and the button’s
text. The default value is 4 pixels.

The speedButton Component

The speedButton component was designed to be used on speedbars. It is different from the
Button and BitBtn components in that it is not a windowed component. This means that a
speed button cannot receive input focus and cannot be tabbed to. On the other hand, the
SpeedButton component has several things in common with the Bitstn component. The way
in which the a1yph property is handled by the speedButton component is exactly the same
as with the BitBtn component, so I’'m not going to go over that ground again. There are a
couple major differences, though, so let’s go over those.

By default, speed buttons are square and are 25x25 pixels. Your speed buttons may be any
size you like and can contain text, although typically speed buttons do not contain text. There
are some properties specific to speed buttons that you should be aware of, which I've broken
down in the following sections.

VCL Components 303 |

The GroupIndex Property

Speed buttons can be grouped to make them behave like radio buttons (radio buttons are
discussed later in the chapter in the section “Radio Buttons and Check Boxes”). When one
button in the group is pressed, it stays down, and the button that was previously pressed pops
up again. To group speed buttons, simply assign the same value to the Groupindex property
for all buttons in a group. (The default value of o indicates that the button is not part of any
group.) To illustrate, do the following exercise:

1. Create a blank form and place five speed buttons on the form. (I won’t bother with
adding glyphs to the buttons in this simple exercise, but you certainly may if you
want.)

2. Select all the buttons and change the value of the Groupindex property to 1. The
GroupIndex for all buttons will be changed to 1.

3. Optional: Change the pown property of one of the buttons to true.
4. Click the Run button to compile and run the program.

When you run the program, click on several of the buttons. You will notice that only one
button can be in the down state at one time. As you can see when you assign a nonzero value
to GroupIndex, the speed buttons change their behavior. A speed button with a GroupIndex
of @ pops back up when you click it, whereas a speed button that is part of a group stays down
when clicked.

The AllowAllup Property

By default, one button in the group must be down at all times. You can change that behavior
by setting the A110wA11Up property to true. Doing this for one button automatically changes
the A110wA11Up property for all other buttons in the group to true as well. Now you can have
any one button in the group selected or no buttons at all.

Tip Sometimes you want a speed button to act as a toggle button. A toggle
button is used to turn an option on or off and is not part of a button
w group. To make an individual speed button a toggle button, assign a

nonzero value to its GroupIndex property and set its A11owAl1up property
to true. Be sure to set the GroupIndex property to a value not used by any
other components on the form. When the user clicks the button, it stays
down. When the button is clicked again, it pops back up.

| 304

Day 8

The pown Property

The pown property, when read, returns true if the button is currently down and faise if it
is not. When written to, the bown property can be used to toggle a button as pressed or not
pressed. Writing to the bown property has no effect unless the speed button is part of a group.

Radio Buttons and Check Boxes

Radio buttons and check boxes are specialized buttons but are, in the end, still buttons. I'm
not going to spend a lot of time discussing these two buttons because implementing them
is pretty straightforward. Both the RadioButton and checkBox components have a property
called checked that can be used to set the check state and can be read to retrieve the current
check state.

The radio button is usually used in a group of buttons. A radio button typically signifies a
group of options, only one of which can be selected at one time (like a group of speed buttons,
which you just learned about). Although you can use a radio button by itself, it is not
recommended because it is confusing to your users. When tempted to use a radio button by
itself, use a check box instead—that’s what a check box is for, after all.

Any buttons placed on a form will automatically be considered part of the same group. If you
have more than one group of radio buttons, and those groups need to operate independently
of one another, you need to use a RadioGroup component. This component allows you to
quickly set up a group of radio buttons with a 3D frame around the buttons and a caption
as well. To illustrate this concept, do the following exercise:

1. Create a blank form or use the form you created in the previous exercise. Place a
RadioGroup cOmponent on the form.

2. Locate the 1tems property and double-click the Value column.

3. The String list editor is displayed. Type the following lines in the String list editor:

Redtailed Hawk
Peregrine Falcon
Gyrfalcon
Northern Goshawk

4. Click OK to close the String list editor. The group box is populated with radio
buttons containing the text you typed.

5. Change the caption property of the radio group box to Apprentice Falconers Can
Legally Possess:.

6. Click Run to compile and run the program.

When you click one of the radio buttons, the previously selected button pops up as expected.
Using the rRadioGroup component, you can put more than one group of radio buttons on a

VCL Components 305 |

form. Like the ListBox and comboBox components discussed earlier, the RadioGroup compo-
nent has an 1temindex property that you can read at runtime to determine which itemin the
group is selected. Oh, by the way—the answer to the quiz is Redtailed Hawk (American
Kestrel would also have been an acceptable answer, but it was not presented in the list).

NoTE You can also use a GroupBox component to hold radio buttons. The

- GroupBox component is less convenient to use than the radioGroup
component, but it has more flexibility. You can place any type of
control in a group box. Once placed in the group box, the controls and
the group box itself can be moved as a unit at design time.

The checkBox component is used to allow users to turn an option on or off or to indicate to
auser thatan option is currently on or off. A check box can have up to three states, depending
on its style: on, off, or grayed. If the check box’s A11owGrayed property is false, it can only
be checked or unchecked. When the A11owGrayed property is true, the check box can be any
one of the three states. The grayed, or indeterminate, state is handled programmatically. In
other words, it’s up to you to decide what the grayed state means for your application. If the
AllowGrayed property is faise (the default), you can use the checked property to determine
whether the check box is checked or unchecked. If the A11owGrayed property is true, you must
use the state property to determine (or set) the check box state. state will return either
cbChecked, cbUnchecked, OI cbGrayed.

Tip To make a check box read-only but not grayed, place it on a panel and
q.,ﬂ change the panel’s Enabled property to faise.

The Label Component

The Label component is used to display text on a form. Sometimes the label text is
determined at design time and never changed. In other cases, the label is dynamic and is
changed at runtime as the program dictates. Use the label’s caption property to set the label
text at runtime. The Labe1 component has no specialized methods or events beyond what is
available with other components. Table 8.8 lists the properties specific to the Label
component.

| 306

Day 8

Table 8.8. Properties for the Label component.

Property

Description

AutoSize

FocusControl

ShowAccelChar

Transparent

WordWrap

When set to true, the label will size itself according to the text
contained in the caption property. When set to faise, text will
be clipped at the right edge of the label.

A label is a non-windowed component, so it cannot receive input
focus and it cannot be tabbed to. Sometimes, however, a label
serves as the text for a control such as an edit control. In those
cases you could assign an accelerator key to the label (using the
ampersand) and then change the Focuscontrol property to the
name of the control you want to receive focus when the label’s
accelerator key is pressed.

Set this property to true if you want an actual ampersand to
show up in the label rather than the ampersand serving as the
accelerator key.

When this property is set to true, the color property is ignored
and anything beneath the label shows through. This is useful for
placing labels on bitmap backgrounds, for instance.

When set to true, text in the label will wrap around to a new line
when it reaches the right edge of the label.

The ScrollBar Component

The scro11Bar cOmponent represents a standalone scrollbar. 1t’s standalone in the sense that
it is not connected to an edit control, a list box, a form, or anything else. I have not found
that the scrollbar isa control I use very frequently. Certain types of applications use scrollbars
heavily, of course, but for day-in, day-out applications its use is fairly uncommon. The
scrollbar’s performance is set by setting the min, max, LargeChange, and Smallchange
properties. Thescrollbar’s position can be set or obtained viathe position property. Thekind
property allows you to specify a horizontal or vertical scrollbar.

The panel Component

The pane1 component is sort of aworkhorse in C++Builder. There isalmost no limit to what
you can use panels for. Panels can be used to hold speedbar buttons, to display text labels such
as a title for a form, display graphics, and to hold regular buttons as well. One of the
advantages to a panel is that components placed on the panel become children of the panel.

VCL Components 307 |

As such, they go with the panel wherever the panel goes. This can be a great aid at runtime
and at design time.

Much of the power of the pane1 component lies in its ALign property. For instance, let’s say
you want a title to be displayed on the top of a form. Let’s further assume that you want it
centered no matter how the user sizes the window. By setting the A1ign property to a1top and
the Alignment property to tacenter, your title will always be centered. It's a simple as that.

A panel can have many different appearances. The panel’s appearance can be altered
by changing the Bevelinner, Bevelouter, BorderStyle, and Borderwidth properties (see

Figure 8.7).
Figure 8.7.
The panel styles RS i i
example showing el | o
different styles. [T e e
o b e e
m:: | JEYFRY P RS YT S—

The pane1 component is so versatile that it will take you a while to discover all its possible uses.

And That’s Not All...

Unfortunately, there isn’t sufficient space here to go over all the components C++Builder
provides. You saw the 1mage component on Day 6, when you created the Picture Viewer
program. You also got a brief glimpse at the Beve1 component on Day 6 when you built an
About dialog box, and the shape component on Day 7 as part of an exercise on aligning
components. These represent justasampling of the components that are waiting for you. You
need to test drive each one of them to determine its usefulness for you.

There is one other group of components that | need to discuss before we move on: the pialog
group.

The Common Dialog Boxes

Windows providesaset of common dialog boxes that any Windows program can use, including

O File Open
O File Save

| 308

Day 8

Font

Color

Print

Printer Setup
Find

Replace

o oo oo d

The common dialog boxes are found on the Dialogs tab of the Component Palette. These
components are nonvisual because they do not have a visual design-time interface. The
following sections discuss each of these dialog boxes with one exception—I’ll leave the
discussion of the Print and Printer Setup dialog boxes for later, when I discuss printing.

The Execute Method

Onething that all the common dialog boxes have incommon isthe Execute () method, which
is used to create and display the dialog box. The dialog box is displayed modally except for
the Find and Replace dialog boxes, which are displayed modelessly. Execute () returns true
if the user clicked the OK button, double-clicked a file name, or pressed Enter on the
keyboard. Execute () returns faise if the user clicked the Cancel button, pressed the Esc key,
or closed the dialog box with the system close box. A common dialog box is often
implemented like this:

if (OpenDialog->Execute()) {

// user pressed OK so use the filename
Memo->Lines->LoadFromFile (OpenDialog->FileName);

}

return;

This code displays the File Open dialog box and gets a filename from the user. If the user
clicked the OK button, the code inside the if block is executed and the file is loaded in to
a memo component. If OK was not pressed, the code inside the if block is ignored and no
action takes place.

NoTE The code used in the previous snippet is another example of C++

- shortcut syntax. The first line:

if (OpenDialog->Execute()) {

is equivalent to this:

if (OpenDialog->Execute() == true) {
Use either method, but the first is preferred.

VCL Components 309 |

The File Open and File Save Dialog Boxes

The File Open and File Save dialog boxes have several properties in common. File Open is
used when you want to allow the user to open a file in your application (see Figure 8.8). It
isencapsulated in the openbialog component. You use the File Save dialog box when getting
a filename from the user in order to save a file. It is also used as the Save As dialog box. The
File Save dialog box is encapsulated by the savebialog component.

Figure 8.8. _EEI
A typical File Open “”' ET i SF.LEJ 2l E sl
dialog box. e D e

vy i

s o

[T (e I == I

(LR T i [P = fre= I

The File dialog boxes are fairly easy to use in their most basic form. They do have a few
features, however, that need to be explained in order for you to get the full benefit of using
them. The following sections examine the properties that are specific to the File dialog boxes.

NoTeE The openbialog and savebialog components merely retrieve a filename
- from the user. It is up to the programmer to write code that actually

— does something with the filename.

The bDefaultExt Property

Use the pefaultExt property to set the default extension that the dialog box will use. The
default extension is the extension that will automatically be appended to the filename if the
user does not supply an extension.

The FileName Property

The Filename property is the most obvious of the File dialog box properties; it holds the text
of the file that the user chooses. Set this property before calling the dialog box if you want
afilename to show in the edit portion of the File dialog box when itis initially displayed. After
the user clicks OK to close the dialog box, this property will contain the full path and filename
of the file chosen.

| 310

Day 8

Figure 8.9. - |

The Filter Editor = 4
dialog box. e

&

[=] coms | o |

The Files Property

Files, aread-only property, isa Tstrings instance that contains the list of files selected when
multiple file selection is enabled.

The Filter Property

The Filter property contains a list of the file types from which the user can choose. The file
types are displayed in the File of type: combo box in the file dialog box. You can set Filter
to reflect types of files specific to your application. For instance, asimple text-editing program
could have the filter set to show files of type TxT, N1, and Log, to name just a few. The filter
can easily be set at design time through the Filter Editor dialog box. To invoke the Filter
Editor, double-click the Value column next to the Filter property in the Object Inspector.
Figure 8.9 shows the Filter Editor for a File Open dialog box, as described previously.

The Filter Name column contains a textual description of the file type. The Filter column
is the actual file mask that will be used to display files of that type.

Although you can enter the filter string directly in the Value column of the Object Inspector,
it is easiest to use the Filter Editor. If you are only using a single filter, you can type it directly
into the Value column for the Fi1ter property. Separate the description and filter with a pipe.
For instance, to have a single filter for all file types, you would enter the following:

All Files (*.*)!*.*

The FilterIndex Property

The FilterIndex property is used to set the filter that will be used when the dialog box is
initially displayed. The index is not zero based as you might expect, however. The first filter
in the list is 1, the second is 2, and so on. For example, refer to Figure 8.9. If you wanted the
All Files filter to be the one initially displayed, you would set the FilterIndex property to 4.

VCL Components 311 |

The InitialDir Property

The 1nitialpir property is used to specify the directory that will be used as the initial
directory when the File dialog box is displayed. If no value is supplied for the 1nitiaibir
property, the current directory will be used (as determined by Windows).

Tip A top-notch Windows program keeps track of the last directory the
user used both when opening files and when saving them. Usually this
"ﬂ information is stored in the Registry. Before displaying a File Open or

File Save dialog box, set the 1nitialpir to the previous directory the
user used. After the user selects a file, update the registry to reflect the
new directory if necessary.

The options Property

The options property controls the way the File dialog box is used. The list of options is too
long to list here, but common items include whether you allow new files or directories to be
created, whether the Help button is shown on the dialog box, whether long filenames are
allowed, whether multiple file selection is allowed, and others. See the C++Builder online
help for the openbialog and savebialog components for complete information.

The Title Property

The Tit1e property is used to set or read the title of the File dialog box. If no title is specified,
the common dialog box defaults of Open for the openbialog component and Save for the
SaveDialog component will be used.

Tip A Save As dialog box is nothing more than a savepialog component
1 with the Title property set to save As.

The File dialog boxes have no events associated with them.

Tip You can implement a File Open dialog box (or any of the common
dialog boxes) at runtime without ever placing an openbialog cOmponent

| 312 Day 8

on your form. To accomplish this, create an instance of the
TopenDialog class and then call its Execute () method:
TOpenDialog openDlg = new TOpenDialog(this);
if (openDlg->Execute()) {
// do something here
}
delete openDlg;
If necessary, you can set any of the opendialog cOmponent’s properties
before calling Execute().

The Color Dialog Box

The Color dialog box allows the user to choose a color. When the OK button is clicked, the
color property will contain the color information. (Refer to Figure 8.1, which shows the
Color dialog box.) The Color dialog box, like the file dialog boxes, has no events to respond to.

The Font Dialog Box

The Font dialog box allows the user to choose a font from the list of fonts available on his
or her system. Through the pevice property, you can choose whether you want screen fonts,
printer fonts, or both types of fonts to be displayed. You can limit the maximum and
minimum font sizes that the user can select by modifying the maxFontsize and MinFontSize
properties. As with the File dialog boxes, the options property contains a wide variety of
options you can use to control how the Font dialog box functions.

If the user clicks OK, the Font property will contain all the information you need to
implement the new font. Figure 8.10 shows the Font dialog box in the default configuration.

Figure 8.10.
The Font dialog box.

VCL Components 313 |

The Font dialog box has asingle event, onapp1y, that will occur when the user clicks the Apply
button on the Find dialog box. The Apply button will not be present on the Font dialog box
unless you have first created a valid (not empty) event handler for the onapp1y event.

The Find and Replace Dialog Boxes

The Find and Replace dialog boxes provide users the capability to enter text to search for and
text to replace the found text with, and a variety of search and replace options. The Find dialog
box is encapsulated in the VCL component Findbialog, and the Replace dialog box is
represented by the Replacepialog component. The Replace dialog box, which contains
everything found on the Find dialog box, plus the extra replace features, is shown in Fig-

ure 8.11.
Figure 8.11. e
; e TN |
The Replace dialog box. e Y|
o I--l—-lﬁ
i e |

Major properties of the Findpialog and Replacebialog components include FindText (the
text to find), rRep1aceText (the text with which to replace the found text), and options.
Obviously, the Findbialog does not have a ReplaceText property. The options property
contains a wide variety of information about the various options that the user had set at the
time the Find Next, Replace, or Replace All button was clicked.

The execute () method for the Findpialog and ReplaceDialog componentsisa little different
than it is with the other common pialog components. First, the Find and Replace dialog
boxes are modeless dialog boxes. As soon as the dialog is displayed, the execute () method
returns. Because the dialog is modeless, the return value from execute () is meaningless (it’s
always true). Instead, the Find and Replace dialog boxes use the onFind and onReplace events
along with the options property to determine what is happening with the dialog box. The
onFind event occurs when the Find Next button is clicked. The Replacebialog hasan onFind
event, but it also has an onrep1ace event that is fired when the Replace or Replace All button
is clicked. Use these events to determine when the user has requested a find or replace action.
Your programs should read the options property to determine how the user intended the find
or replace operation to be carried out.

| 314

Day 8

Summary

Today you have had alook into some of the basic components that C++Builder provides. You
have learned about components in general, and you have learned about some of the specifics
of the components that are based on Windows controls. It is important to understand the
basic controls available in Windows and the C++Builder components that represent those
controls. Today ends with an examination of the Windows common dialog boxes.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q

> O

If I change the name property of a component using the Object Inspector,
C++Builder will automatically change all references to that component in my
code, right?

Yes and no. C++Builder will change all references to that component name in
C++Builder-generated code, but it will not change any user-written code.

The openbialog component is obviously a visible component. Why is it called a
nonvisual component?

Because it is not visible at design time. It is visible only at runtime when you
invoke it with the Execute () method.

Why is it important to change the name property only with the Object Inspector?

As you work with the Form Designer, C++Builder writes code based on the Name
property. If you later change the name property either by directly editing the source
files or at runtime, all references to that form or component will be incorrect and
will likely lead to your program refusing to compile or crashing at runtime.

I seem to be using properties more than methods when dealing with my
components in code. Is that wrong?

Not at all. In fact, that’s the way VCL components are designed. A well-written
component makes maximum use of properties. For this reason you may not use a
component’s methods very often. Use methods when necessary, but otherwise use
properties to manipulate your components at runtime.

VCL Components 315 |

Q I'm responding to both the onbbic1ick and the onciick events for a compo-

Quiz

nent. Every time | double-click on a component, both the onc1ick and the
onbblclick event handlers are called. Why?

Because when you double-click on a component, Windows will generate both
single- and double-click messages. You can’t prevent it, so you will have to write
code to account for that fact.

I want to use the features of the Tstrings class to keep a list of strings my
program needs in order to operate. The compiler won’t let me use a Tstrings
object. What do | do?

Use a TstringList object instead. The TstringList class is provided for this
purpose.

I need a single-line edit control to be right-justified, but there is No A1ignment
property for the edit component. Can I right-align text in a single-line edit?

No. What you can do, though, is use a memo component and make it appear to be a
regular edit component. Be sure to set the memo component’s wantReturn property
to false, its Height to the height of a standard edit component (21 pixels), and its
Alignment property to taRightJustify. The component will give all appearances of
being a single-line edit control that is right-justified.

| have a form that has several buttons on it. When the user closes the form
using the Esc key, I get one return value from showModa1(), and when the user
closes the form with the system close box | get a different return value from
ShowModal(). Why?

You have a button on the forum whose cancel property is set to true. When the
user presses the Esc key, the moda1resu1t value of that button is used as the return
value from showModal (). When the user closes the form with the system close box,
you will always get a return value of mrcancel. You need to be prepared to take into
account both ways a form can be closed.

1. Can you change the name property of a component at runtime?

ok~

What property is used to enable and disable controls?

How can you tell at runtime that a button is disabled?

What is the difference between the long hint and the short hint?

Name three of the four methods that can be used to force a control to repaint itself.

| 316

Day 8

© 00N

10.

How many types of combo boxes are there?
How is the modalResult property used for button components?
Which component is often used as a container for other components?

What is the return value from the execute () method for an openbialog component
if the user clicks OK to close the dialog box?

How do you make the savepialog component into a Save As dialog box?

Exercises

1.

Create a program that contains two edit components. When the user types infor-
mation in the first control, make it appear in the second edit control as it is
entered.

Create a program with a list box. Write code to load the list box from a text file
prior to the application being visible.

Add an edit component to the program in exercise 2. When the user selects an item
in the list box, have the item’s text appear in the edit control.

Add a button to the program in exercises 2 and 3. Write code so that when the
button is clicked, any text in the edit control is added as a new item in the list box.
Create a program that has a RadioGroup With four items in the group. Add a label
component whose text changes depending on which radio button is clicked.

Create a program that has a title on the form that is centered at the top of the form
regardless of how the program’s window is sized.

Modify the program in exercise 6 so that the font of the title can be changed to any
font available on the system by clicking a button.

Reopen the Picture Viewer program created on Day 5. Modify the openbialog and
SaveDialog components so that their Fiiter properties allow for selection of
Bitmap (*.bmp), Metafile (».wmf), Icon (+.1ico), and All Files (*.*).

Week

Day

Creating Applications
In C++Builder

by Kent Reisdorph

C++Builder provides a variety of tools that aid in creating forms, dialog boxes,
and applications. Today you will learn about

|

[S

The Object Repository

The Dialog Wizard

The Application Wizard

Adding functions and data members to your code
Using resources in your C++Builder applications

| 318 Day 9

For starters, I'll spend some time discussing the Object Repository, which is where
C++Builder stores any prebuilt forms or applications for you to reuse. Following that
discussion, you will meet the Wizards, which guide you step-by-step through the creation
process. You provide the details, and C++Builder builds the form or application based on the
information you provided. The Wizards are a powerful tool for rapid application develop-
ment. Finally, we’ll close the day talking about how you can use resources in your C++Builder
applications. So let’s get to it.

Working with the Object Repository

The Object Repository dialog box is the means by which you can select predefined objects
to use in your applications.

NoTE The Object Repository is a text file that contains the information that
the Object Repository dialog box displays. For the sake of simplicity, |
will refer to the Object Repository dialog box and the repository file
collectively as simply the Object Repository.

The Object Repository allows you to do the following:
0O Choose a predefined application, form, or dialog box to implement in your
application
O Add your own forms, dialog boxes, and applications to the Object Repository

O Add other objects to your application such as ASCII text files and additional source
code units

Manage data modules
O Create new components
O Invoke Wizards to help you build a dialog box or an application

Object Repository Pages and Options

The Object Repository is displayed automatically whenever you choose File | New from the
main menu. Figure 9.1 shows the Object Repository window as it initially appears if you
choose File | New with no project open.

Creating Applications in C++Builder 319 |

Figure 9.1. :EM—H
The Object Repository o i s |
window. i H:—:';_' _EI:-?L Pt _E_
rxDEBEas
. [] e | ise
NoTE Strange as it may seem, the Object Repository dialog box is titled New
- Item, and the Object Repository configuration dialog box is titled
— Object Repository. To say that this is confusing is a bit of an under-
statement.

The Object Repository has several pages, each of which contains different objects that you
can incorporate into your applications. As you can see from Figure 9.1, the New tab is what
is initially selected when the Object Repository is displayed. Table 9.1 lists the Repository
pages and a description of the items you will find on each page.

Table 9.1. The Object Repository pages.

Page/Tab Description

New Allows you to create a new application, console app, form, or source
code unit for use in your application. Also allows you to create
advanced objects such as DLLs, components, and data modules.

Forms Allows you to create standard forms from prebuilt forms such as an
About box, a database form, or Quick Reports.

Dialogs Presents choices of several different basic dialog box types from

Data Modules
Projects

which you can choose. Also contains the Dialog Wizard.
Allows you to choose from data modules in your application.

Displays full projects that you can choose from to initially set up an
application. Also contains the Application Wizard.

| 320

Day 9

NorTEe If you invoke the Object Repository when you already have a project

> open, you will see an additional tab in the Object Repository. The tab
will have the name of your project on it. Clicking on this tab will
display a page that contains all the objects currently in the project. This
allows you to quickly reuse a form or other object by simply selecting it
from the Object Repository.

Across the bottom of each page you see three radio buttons. These buttons, labeled Copy,
Inherit, and Use, determine how the selected object is implemented.

NOTE Depending on the object selected, some (or all) of the radio buttons

- may be disabled. For example, all three radio buttons are always grayed
out when the New page is displayed. This is because Copy is the only
option available for objects on this page, so C++Builder grays out all
choices and applies the Copy option automatically.

Copy

When you choose the Copy radio button, C++Builder creates a copy of the object selected
and places it in your application. At that point you are free to modify the object in any way
you choose. The original object in the Repository is not altered when you make changes to
the new object in your application.

Toillustrate, let’s say you had an often-used form (a form in the traditional sense, not in the
C++Builder sense) printed on paper—a work schedule, for instance. Let’s say that you
wanted to fill in that form with scheduling information. You wouldn’t modify the original
form because it would then be unusable for future reuse. Instead, you would put the original
form in the copy machine, make a copy, and then return the original to some location for
safekeeping. You would then fill out the copy of the form as needed. Making a copy of an
object in the Repository works in exactly the same way. You are free to modify the copy in
any way you choose while the original remains safely tucked away. Making a copy is the safest
method of object usage.

Creating Applications in C++Builder 321 |

Inherit

The Inherit method of usage is similar to Copy, but with one important distinction: The new
object is still tied to the base object. If you modify the base object, the newly created object
will be updated to reflect the changes made to the base object. The inverse is not true,
however. You can modify the new object without it having any effect on the base object.

To illustrate this type of object usage, consider the following scenario: Frequently, informa-
tion managers will create a spreadsheet in a spreadsheet program and use the contents of that
spreadsheet in a word processing program in order to present a report. They will usually opt
to link the data to the spreadsheet when pasting from the Clipboard or importing the
spreadsheet into the word processor. That way, when changes are made to the spreadsheet,
the word processing document is automatically updated to reflect the new data. In the same
way, changes made to a base form will automatically be reflected in all forms inherited from
the base form. Use the Inherit option when you want to have several forms based on a
common form that might change at some point. Any changes in the base form will be
reflected in all inherited forms.

Use

The Use option is not common. When you use an object, you are opening that object directly
for editing. Use this option when you have saved an object in the Repository and you want
to make permanent changes to that object. In the section “Inherit” | said that changes made
to a base form would be reflected in all inherited forms. If you wanted to make changes to
a base form, you would open it in the Object Repository with the Use option.

Now What?

Exactly what takes place when you select an object from the Object Repository depends on
several factors. The factors include the type of object selected, whether a project is currently
open, and the usage type you have selected (Copy, Inherit, or Use). If you have an application
open and you choose to create a new application from the Object Repository, you will be
prompted to save the current project (if necessary) before the new project is displayed.

Tip Choosing File | New Application from the main menu is a shortcut for
starting a new application. It is equivalent to choosing New from the
"'ﬂ main menu and then choosing the Application object from the Object

Repository. Similarly, the New Form, New Data Module, and New
Unit items on the main menu are shortcuts for their equivalents in the
Object Repository.

| 322

Day 9

Creating a new form from the Object Repository is treated differently based on whether a
project is open at the time. If a project is open, the new form is added to the application as
aform/unit pair. If no project is open, a new form and unit are created as a standalone form.
Use this option when creating a new base form to add to the Object Repository.

If you choose to create a new unit or text file, the new file is simply created in the Code Editor
(and, in the case of a new unit, added to the current project). You might create a new text
file for several reasons. For example, let’s say you wanted to implement a configuration file
(an .1n1 file) in your application. You could create a new text file in the Object Repository
in order to initially create the configuration file. You create a new unit any time you want to
start a new source file for your application that is not associated with a form.

Choosing a new DLL or console application results in a new project being created with the
project set up fora DLL or console application target. Creating a new Automation, Component,
or Thread object will result in a dialog box being presented that asks for more information
about the object you are creating.

The Object Repository Views

The actual Object Repository window is a Win32 list view control similar to the right side
of Windows Explorer (where the files are listed). As such, it has several views that you can
choose from: Large Icons, Small Icons, List, and Details. By default, the view is set to Large
Icons. To change the Object Repository view, right-click on the Object Repository and
choose the view you want from the Object Repository speed menu. Figure 9.2 shows the
Object Repository with the Dialogs page selected and the view set to Details.

Figure 9.2. pemtem M

b | P I-I-llrllhnuu.lillqlm|h-h;|

The Object Repository
in Details view. E_..,_..._, ey pe———
w

2 oo o e

Lo ot el L. Ly, il s g i
P AL iy Crmr imges pmend v ey s

| pu FIES A AT A R

[t iy (0 e afmyg iy i

lal | =l

rr-;- - r

ITIr—lqu.l

The Object Repository speed menu also shows several sorting options. You can sort by object
name, description, date, or author.

Creating Applications in C++Builder 323 |

Tip When the Object Repository is in the Details view, you can click on a

~a

Creating New Objects from the Object Repository

Certainly the most basic use of the Object Repository is creating a new object using an object
from the Repository. To illustrate, let’s create a simple application with a main form, an
About dialog box, and a second form. Follow these steps:

1.

10.

11

column header (Name, Description, Date, or Author) to instantly sort
by that category.

Be sure no other application is open. Choose File | New from the main menu. The
Object Repository is displayed.

Click on the Application icon and click OK to create a new application. A new
application is created, and a blank form is displayed.

Place two buttons on the form. Change the caption property of one of the buttons
to About. .. and the caption property of the other button to pisplay Form2.
Change the name properties if desired.

Choose File | New from the main menu. The Object Repository is again displayed.
Click on the Forms tab in the Object Repository.

Choose the about box object. Be sure that the Copy radio button is selected, and
click OK to create a new About Box form. The About box is displayed. Change
any properties as needed.

Modify the About box as desired. (Enter your own information, change the icon,
change the size and position, and so on.)

Select File | New from the main menu again. The Object Repository is displayed
for the third time.

Click on the Forms tab and choose the pua1 list box object. Click OK to close the
Object Repository. A dual list box form is displayed. (I had you choose this one
just so you could see it.)

Write event handlers for the two buttons that display the About box and the
second form as required.

Compile, run, and test the program.

| 324

Day 9

No, this program doesn’t do anything, but it does illustrate how you can use the Object
Repository to quickly prototype an application. As time goes on, you will add your own
custom objects to the Object Repository and then you can really be effective! Let’s look at
that next.

Adding Objects to the Object Repository

The Object Repository wouldn’t be nearly so effective a tool if you couldn’t add your own
objects to it. But you can add your own objects and you should. Adding often-used objects
to the Object Repository makes you a more efficient and, therefore, a more valuable
programmer. There is no point in reinventing the wheel over and over again. Once you have
an application, a form, or another object created, save it to the Repository so that you can
reuse it whenever you want. Of course, you don’t want to save every form you ever created
in the Object Repository—ijust the ones you will reuse most often.

You can set out to create an object with the express purpose of adding it to the Repository,
or you can add an object to the Repository during the normal course of application
development. (The term object is pretty broad, so I'll have to use a specific example in order
for this to make sense.) Let’s say that you create an About box form while creating an
application. Suddenly it dawns on you that you'd like to save this About box to use in all your
programs. After all, it has your company name, logo, and all the copyright information laid
out just the way you like it, so it'd be a shame to have to re-create the same About box for
every application you write. No problem—just add it to the Repository. To add a form to
the Object Repository, first save the form (if you don’t save the form, you will be prompted
to save it before continuing). Next, right-click the mouse anywhere on the form and choose
Add To Repository from the Form Designer speed menu. When you do, the Add To
Repository dialog box is displayed, as shown in Figure 9.3.

Figure 9.3. e Ealmmites_________0O]
The Add To
Repository dialog box. it -
I-at - fitn
- 2l e

Creating Applications in C++Builder 325 |

The Forms list box on the left side of this dialog box lists the current forms as well as any other
objects in the application (such as data modules). First, select the form that you want to add
to the Object Repository.

Norte The active form in the Form Designer will already be selected in the
4 Forms list box in the Add To Repository dialog box.

Now enter the object’s title. This is the title that will appear below the icon in the Object
Repository. The Description field is used to give further information about the object. This
description is displayed when the Object Repository view is set to display all object details
(refer back to Figure 9.2). The Author field is where you type your name as the author of the
object. You can enter your personal name, acompany name, or any other identifying name.

Norte The prebuilt objects in the Object Repository that come with
| 4 C++Builder have “Borland” as the author name.

The Page field is used to select the Object Repository page where the new object will be
placed. You can choose from one of the existing pages or simply type in the name of a new
page in the Page field. Ifa page with the name you type does not exist, C++Builder will create
anew page with that name. Near the bottom of the dialog box is a button labeled Browse that
you can use to select the icon used to represent the object.

TP You can choose icons from the cBuilder\Images\Icons directory or the
CBuilder\0Objrepos directory. The icons in the cbuilder\0objrepos
"'"ﬂ directory are the icons used by C++Builder for the items it places in the
Object Repository.

Once you've filled in all the fields and selected an icon, you can click OK to add the object
to the Repository. The object is added to the Object Repository on the page you specified.
You can now reuse that object any time you want. As you can see, adding an object to the
Obiject Repository is nearly as easy as using an object.

| 326 Day 9
‘\k When you add an object to the Object Repository, C++Builder makes
\’,*‘ an entry in the Object Repository file that describes the object. This
=L information includes the pathname where the form and source file for
WARNING the object are located. If you move or delete an object’s form or source
file, you will not be able to use the object from the Object Repository.

Adding Projects to the Object Repository

Adding projects to the Object Repository is not much different from adding individual
forms. To add a project to the Object Repository, choose Project | Add To Repository from
the main menu. The Add To Repository dialog box is displayed just like it is when you’re
adding objects to the Repository, except the Forms list box is not displayed. Fill in any
required information (Title, Description, Author, and so on) and click OK, and the project
is added to the Repository.

After you are familiar with C++Builder, you should create an application shell that has the
features you use most often in your applications. Each time you start a new standard
application, make a copy of the shell from the Object Repository. Thisway you can have your
menus, speedbar, About box, and other standard dialog boxes all set up and ready to go in
a matter of seconds. Once the new application has been created, it can then be modified as
with any project. You can add new forms, delete any unwanted forms, and so on.

Object Repository Housekeeping

You can manage the pages and objects in the Object Repository by using the Object
Repository configuration dialog box.

To view the Object Repository configuration dialog box, choose Options | Repository from
the main menu or, if you have the Object Repository open, choose Properties from the Object
Repository speed menu. The configuration dialog box is displayed, as shown in Figure 9.4.

This dialog box allows you to delete objects and pages from the Object Repository, move
objects from one page to another, change the order of pages in the Object Repository, and
more. The list of pages in the Object Repository is displayed in the list box labeled Pages on
the left side of the dialog box. When you select one of the pages in the Pages list, the list box
on the right (labeled Objects) displays the objects contained on that page.

Creating Applications in C++Builder 327 |

Figure 9.4.

The Object Repository
configuration dialog
box.

NoOTE The Pages list box has two important items of note. First, notice that

- the New page, which is always the first page displayed when the Object
Repository is invoked, is not listed here. The New page is fixed and
cannot be altered. Also notice that there is an item labeled [Object
Repository]. This item is actually a list of all items on all pages of the
Repository.

Managing Objects

Before you can edit, delete, or move an object, you must first select it. To select an object,
click on the object in the Objects list box. After you have selected an object, you can edit it
by clicking on the Edit Object button. Editing an object allows you to change the object’s
name, description, and author, as well as the page on which the object is displayed.

Tip To quickly edit an object, double-click on the object in the Objects

w list box.

You can delete an object by selecting it and then clicking the Delete Object button. You are
prompted for confirmation before the object is removed from the page and from the
Repository.

NoTE When an object is deleted from the Object Repository, it is removed

f he obj i fil I h i
> rom the object repository file and no longer shows up on any page in

| 328 Day 9

the Object Repository. However, the actual form file and source file
that describe the object are not deleted from your hard drive.

Objects can be moved from one page to another by simply dragging the object from
the Objects list box to the Pages list box. Drop the object on the page on which you want the
object to be located, and the object is moved.

Managing Pages

The previous section deals with editing, deleting, and moving individual objects. You may
also add, delete, or remove Object Repository pages through the Object Repository
configuration dialog box. Before you can delete a page, you must first delete all the objects
on the page. Once a page is empty, you can remove the page by clicking on the page name
in the Pages list box and then clicking the Delete Page button. After checking to be sure the
page is empty, C++Builder deletes the page from the Object Repository.

You can add a new page by clicking the Add Page button. A dialog box pops up, asking for
the name of the new page. Just supply a new page name, and when you click OK the new page
appears in the Pages list box. Renaming a page works essentially the same way. When you
select a page and click the Rename Page button, a dialog box appears, prompting you for the
new page name.

The order in which the pages appear in the Object Repository can be changed. To change
a page’s position in the page order, click on the page to highlight it and then click the up or
down arrow button underneath the Pages list box to move the page up or down in the list.
You can also drag a page to its new location if you want.

Setting Default Forms and Projects
The Object Repository configuration dialog box allows you to set three default objects:

O The default form that will be used when you choose File | New Form from the
main menu

O The default form that will be used as the main form when you choose File | New
Application from the main menu

O The default project that will be used when you choose File | New Project from the
main menu

You will notice that, depending on the object you have selected, one or two check boxes
appear beneath the Objects list box. If you have selected a form, the New Form and Main
Form check boxes appear. If you have selected a project, the New Project check box appears.
Making a form or project the default is easy. Let’s say you create a main form that you want

Creating Applications in C++Builder 329 |

to be the default main form when a new application is created. Select the form from the
Obijects list box and click the Main Form check box at the bottom of the screen. When you
click OK, that form will now be the default. Similarly, if you have a project that you want
to be the default project, first locate it in the Object Repository configuration dialog box, click
on it, and then check the New Project check box. From that point on, when you choose
File | New Application from the main menu, the project you set as the default will appear.

Building Forms and Applications
with the Wizards

C++Builder has two built-in wizards designed to guide you through the application-creation
process. The Dialog Wizard aids you in creating dialog boxes, and the Application Wizard
helps you create the basic layout of an application.

NoOTE C++Builder has a couple other dialog boxes that it calls wizards.

- Choosing a new component from the Object Repository, for instance,
results in a dialog box that asks you for information regarding the new
component. Because that'’s the extent of the “wizard,” | hesitate to
group that type of Wizard with the Dialog Wizard and the Application
Wizard.

Now let’s see what the individual wizards do.

The Dialog Wizard

Truthfully, there isn’t very much for a dialog box wizard to do because dialog boxes of any
real value will have to be customized with the Form Designer. The Dialog Wizard is started
from the Object Repository. First, choose File | New from the main menu to display the
Object Repository. Next, switch to the Dialogs page and then double-click the Dialog
Wizard icon. The Dialog Wizard is displayed, as shown in Figure 9.5.

Figure 9.5.
The Dialog Wizard. 2] sk

=t e g b

™ bhnpgm mirg Ful el

e | [

| 330

Day 9

Figure 9.6.

You can choose to create a single-page dialog box or a tabbed (multipage) dialog box. The
icon on the left side of the dialog box shows you what the dialog box will look like at each
step. If you choose to create a single-page dialog box, when you click the Next button you
will see the next page of the Dialog Wizard (see Figure 9.6).

The second page of the T———
Dialog Wizard. s doiaq

Figure 9.7.

The Dialog Wizard E =
creating a tabbed |)___{

This page allows you to choose whether you want buttons on the dialog box and, if so,
whether you want them on the right side or the bottom of the dialog box. As you can see from
Figure 9.6 (see the Finish button?), this is the last page of the Dialog Wizard when you’re
creating asingle-page dialog box. After choosing the button layout you want, click the Finish
button to have C++Builder create the dialog box for you.

The new dialog box is displayed on the Form Designer, complete with the features you chose
through the wizard. It also has its Borderstyle property set to bsbialog, Which is customary
for forms used as dialog boxes. Once the Dialog Wizard has created the basic dialog box, you
can go to work with the Form Designer to add functionality to the dialog box.

If you choose to create a tabbed dialog box, the second page of the dialog box looks like the
one in Figure 9.7.

dialog box.

This page has a multiline edit control where you can enter the names of the individual tabs
you want to see on the dialog box. Enter the text for each tab on a separate line, as illustrated
in Figure 9.7. When you click the Next button, you will see the last page of the Dialog Wizard
as you saw in Figure 9.6. Choose the location of the buttons, if any, and click the Finish
button to have C++Builder create the tabbed dialog box.

NoTE The Dialog Wizard is most useful when you’re creating tabbed dialog

> boxes. When you’re creating single-page dialog boxes, it is easier to

Creating Applications in C++Builder 331 |

choose one of the predefined dialog boxes from the Object Repository
than to go through the Dialog Wizard.

Creating Applications with the Application Wizard

The Application Wizard is a useful tool that can help you quickly set up the shell of an
application. To create a new application using the Application Wizard, choose File | New

from the main menu. When the Object Repository is displayed, click on the Projects tab and
then double-click on the Application Wizard icon.

NoTE The New Application item on the main menu creates a new application
> based on the current default project setting. It does not start the

— Application Wizard as you might expect.

Let’s walk through the Application Wizard one page at a time.

Page One: Selecting the Menus
When you start the Application Wizard, the first page is displayed, as shown in Figure 9.8.

Figure 9.8.

Page one of the P s Bt . e
Application Wizard. T i e o i, B
F [Aesu
LEERT T PR = e | SR TN
I e
mﬁi—:ﬁll::lm
P B s

e S ey T S

] mee | O

This page allows you to select the items you want on your application’s main menu. You can
choose to add a File menu, an Edit menu, a Window menu, and a Help menu. Place a check
in the box for each menu item you want to appear on your menu bar.

| 332 Day 9

Tip The Window menu is usually reserved for MDI applications. You
probably won’t put a Window menu on your SDI application’s menu
‘-ﬁ bar unless you have a specialty app that requires it.

NoTE The menus added by the Application Wizard are a reasonable represen-

- tation of the menu items that are most commonly used in Windows
applications. Remember that the Application Wizard is intended to
give you a head start in creating your application. It is up to you to take
the basic structure and modify it to make a working application.

After you have chosen the menus you want for your application, click the Next button to
move on to the next page.

Page Two: Setting the File Dialog Filters
If you chose to add a File menu to your application, the next page displayed will look like the
one in Figure 9.9.

Figure 9.9.

Setting filters for the T b o=l
File dialog boxes. e [|
-||I.-—\:.l-.|‘l-|-'—l "l i |
N
.
e |
e R o |

This page allows you to set the filters that your application’s File Open and File Save dialog
boxes will use. (Figure 9.9 shows the dialog box after the filters have been added.) Click the
Add button to add a new filter. A dialog box is displayed, asking for the description and the
filter. Enter the filters exactly as you do when setting the Filter property for the common
file dialog box components. Enter the textual description and then the actual file mask (* . bmp,
for instance). The Edit, Delete, Up, and Down buttons can be used as necessary to change,
delete, or move the filter in the list.

Creating Applications in C++Builder 333 |

NoTE Pages two and three will be displayed only if you had previously
> selected menus on page one of the Application Wizard. More specifi-
cally, page two will be displayed only if you selected a File menu on
page one.

Page Three: Setting Up the Speedbar

Page three of the Application Wizard aids you in setting up a speedbar for your application.
This is possibly the most useful feature of the Application Wizard (not that the other features
aren’t useful). You can quickly lay out your speedbar using this page. Figure 9.10 shows the
third page of the Application Wizard after a speedbar has been created.

Figure 9.10.
Setting up the
speedbar.

The list box on the left side of the page, labeled Menus, shows the four menus for which you
can add buttons. When you choose one of the menus, the available buttons for that menu
are displayed in the list box to the right of the Menus list box (labeled Available commands).
Toadd aspeedbar button, click the button in the Available Commands list box and then click
the Insert button. The button will be added to the sample speedbar at the top of the page.
The Space button can be used to add a separator to the speedbar. Adding separators visually
distinguishes groups of buttons. Continue to add buttons and spaces as needed until the
speedbar is complete. If you decide to remove a button, just click it in the sample speedbar
and then click the Remove button.

NoTE If you elected not to add a particular menu to your application, no
- buttons will be shown for that menu group. For instance, if you did

not add a Window menu, the Available Commands list box will be

empty when you click on the Window item in the Menus list box.

| 334

Day 9

Figure 9.11.
The final Application j et e e e
Wizard settings. [—

""ﬂ created a menu. To work around this, tell the Application Wizard that

The Application Wizard even takes care of setting the short hint text for the speed buttons.
Do you remember creating a speedbar by hand on Day 7, “Working with the Form Designer
and the Menu Designer”? Compare that process with the process of creating the speedbar
through the Application Wizard. It should be apparent that using the Application Wizard
is by far the easiest way to create a speedbar.

Tip Some specialty applications have a speedbar but do not have a menu.
To create a speedbar with the Application Wizard, you must first have

you want a menu and then build the speedbar. After the application has
been generated, you can delete the mainmenu component from the
application to remove the menu.

Page Four: Setting the Final Options

The fourth and last page of the Application Wizard allows you to set the program name, the
path where the project should be stored on disk, and a few final options. Figure 9.11 shows
the last page of the Application Wizard.

LU LR L B |
oy

I Conim M apcdc s

v o

i preie

ipmd | P | e |

The first field on this page is where you specify the name of the application. This is not the
name as itappears on the Project Options dialog box, but rather the filename that C++Builder
will use to save the project. You will still need to set the application name in the Project
Optionsdialog box. The second field is used to specify the directory where the project should
be saved. If you don’t know the exact path, click the Browse button to the right of this field
and choose the path from the Select Directory dialog box.

Creating Applications in C++Builder 335 |

TP You can use the Select Directory dialog box to create a directory as well
as to select a directory. Click the Browse button to display the Select
"'ﬂ Directory dialog box. Enter the path for the directory you want to

create and then click OK or press Enter. C++Builder will prompt you
to create the new directory if the directory you entered does not exist.

The bottom half of this page gives you three additional options. If you are creating an MDI
application, click in the check box marked Create MDI Application. (MDI applications were
discussed on Day 6, “The C++Builder IDE Explored: Projects and Forms.”) The remaining
two check boxes allow you to implement a status bar and hint text for your components.

When you are sure you have made all the choices for your new application, click the Next
button. C++Builder creates the application based on the options you specified. C++Builder
writes as much code as possible for the application. This doesn’t amount to a lot of code, but
some of the basic code is already written for you. For example, if you chose a File menu, the
Fileopenclick () handler has been written and looks like this:

void _ fastcall TMainForm::FileOpen(TObject *Sender)

if (OpenDialog->Execute())

{
//-- Add code to open OpenDialog.FileName - -

}
}
The code to execute the File Open dialog box is in place; you only have to write the code that
actually deals with the returned filename.

Tip After you create an Application Wizard project, you can choose
Project | Save To Repository to save the project for later use. This will
"'ﬂ save you the trouble of going through the Application Wizard to create

your basic application. You might want to add an About box before
saving the project to the Repository.

Using the wizards is fast and easy. You will still need to write the program, of course, but
C++Builder gives you a head start by saving you from the tedium of creating the basic
application elements. As RAD-friendly as C++Builder is overall, the wizards simplify things
even more. The C++Builder wizards are sort of like RAD on RAD!

| 336

Day 9

Adding Functions and Data Members
to Code

Asyou know by now, C++Builder isagreat tool for quickly creating the user interface portion
of a Windows application. It creates event handlers for you so that you can begin entering
code to drive your application. It won’t be long, however, before you find the need to start
adding more complicated code to your applications. That means adding your own data
members and functions to the code that C++Builder generates. For example, a simple
application might contain two dozen event handlers of various types. C++Builder creates all
these event handlers for you; you simply fill in the blanks with working code. In order to make
the application a viable, working application, however, you might have to write another two
dozen functions of your own.

Adding your own functions and data members to C++Builder-generated code is not a
difficult task, but you need to know the rules or you can get into trouble.

How C++Builder Manages Class Declarations

As you know, when you create a new form in the Form Designer, C++Builder creates three
files for you: the form file, the source code unit, and the unit’s header. When C++Builder
creates the class declaration in the header, it essentially creates two sections. The first section
is the part of the class declaration that C++Builder manages. The second section is the part
that you manage. On Day 7 you created the scratchpad program. If you did the exercises at
the end of that chapter, you also created an About box for the program and added a few more
buttons. Listing 9.1 contains the main form’s header as it appears after adding these
enhancements.

Listing 9.1. sPMain.h.

1: class TScratchPad : public TForm
2: {

3: _ published: // IDE-managed Components
4: TPanel *Panelt;

5: TBevel *Bevelfl;

6: TSpeedButton *FileOpenBtn;

7 TSpeedButton *FileSaveBtn;
8: TStatusBar *StatusBar;

9: TMainMenu *MainMenu;

10: TMenuItem *FileMenu;

11: TMenuItem *FileOpen;

12: TMenuItem *FileSave;

13: TMenuItem *FileSaveAs;

14: TMenuItem *N1;

15: TMenuItem *FilePrintSetup;

16: TMenuItem *N2;

Creating Applications in C++Builder

337 |

17: TMenuItem *FileExit;

18: TMenuItem *FilePrint;

19: TMenuItem *Edit1;

20: TMenuItem *EditReplace;

21: TMenuItem *EditFind;

22: TMenuItem *N4;

23: TMenuItem *EditPaste;

24: TMenuItem *EditCopy;

25: TMenuItem *EditCut;

26: TMenuItem *N5;

27: TMenuItem *EditUndo;

28: TMenuItem *Help1;

29: TMenuItem *HelpAbout;

30: TMenuItem *HelpContents;

31: TMenuItem *EditSelectAll;

32: TMenuItem *N3;

33: TMenuItem *EditWordWrap;

34: TOpenDialog *OpenDialog;

35: TSaveDialog *SaveDialog;

36: TMenuItem *FileNew;

37: TMemo *Memo;

38: TPopupMenu *MemoPopup;

39: TMenuItem *PopupCut;

40: TMenuItem *PopupCopy;

41: TMenuItem *PopupPaste;

42: TSpeedButton *EditCutBtn;

43: TSpeedButton *SpeedButton2;

44: TSpeedButton *SpeedButton3;

45: TSpeedButton *SpeedButton4;

46: void _ fastcall FileOpenClick(TObject *Sender);
47: void _ fastcall FileSaveClick(TObject *Sender);
48: void _ fastcall FileSaveAsClick(TObject *Sender);
49: void _ fastcall FileExitClick(TObject *Sender);
50: void _ fastcall EditSelectAllClick(TObject *Sender);
51: void _ fastcall EditCutClick(TObject *Sender);
52: void _ fastcall EditCopyClick(TObject *Sender);
53: void _ fastcall EditPasteClick(TObject *Sender);
54: void _ fastcall EditWordWrapClick(TObject *Sender);
55: void _ fastcall FileNewClick(TObject *Sender);
56: void _ fastcall EditUndoClick(TObject *Sender);
57: void _ fastcall HelpAboutClick(TObject *Sender);
58: void _ fastcall FormCreate(TObject *Sender);

59: private: // User declarations

60: public: // User declarations

61: virtual _ fastcall TScratchPad(TComponent* Owner);
62: };

Look at line 3 in the code. Notice the published keyword and the comment that says
IDE-managed Components. The section between the published keyword and the private
keyword (on line 59 in this case) should be considered off-limits. As they say, don’t go there.

Leave the published section to C++Builder to manage.

| 338

Day 9

WARNING might be beyond repair (unusual but possible). Get in the habit of

NoOTE If you're an astute student, you may be scratching your head right now.

i % I IaCI Ig a Iy coae JEtwee“ tIIB publishec I:EyWCId anc tI Ep ivate
R

keyword can cause problems with your program. In some cases, you

- ~ might just get compiler or linker errors. In other cases, your program

-—

avoiding the pub1ished section like the plague.

In the first four chapters we covered the basics of the C++ language.
You learned about private, protected, and public class access, but not
a word about the pub1lished keyword. The reason is simple: published
is not a C++ keyword. The published keyword is a Borland extension
to C++ and doesn’t exist in ANSI standard C++. This keyword was
added to allow the C++ language to take advantage of the power of
components.

Notice that lines 59 and 60 in Listing 9.1 have comments that say user declarations. YOU
can safely place any of your own class data members or class member function declarations
in either the private or the public section of the class declaration.

A Word About Status Bars and Hints

In a moment we're going to add support for hint text displayed in the status bar of the
scratchPad program. Before we do, though, you need a brief primer on how hint text is
handled.

When the Application Object’s showHint property isset to true (the default), and the mouse
cursor is placed over acomponent that also has its showHint property set to true, a hint event
is triggered. The Application object has an event called onHint that occurs whenever a hint
event is triggered. The Application’s Hint property will contain the hint text for the control
that generated the hint event. An application can use the onHint event to display the hint on
a status bar.

The problem is that you can’t directly access the onHint event of the Application oObject.
What you can do, however, is reassign the value of onHint to point to one of your own
functions. Then, when the hint event occurs, the event gets rerouted to your own onHint
handler. To do that, you have to write your own event handler for the onHint event. Let’s do
that next.

Creating Applications in C++Builder 339 |

Adding a Function to Your Code

In order to illustrate adding a function to an application, let’s implement hint text for the
ScratchPad program you wrote earlier. First, reopen the scratchpad program. If you skipped
your homework assignment for Day 7, get scratchpad from http://www.mcp.com/sams/
codecenter.html

First, we need to prepare the way. We need to assign hint text to each of the speed buttons
and prepare the status bar to receive the hints. Do the following:

1. Be sure the scratchpad main form is visible. Click the File Open speed button on
the main form’s speedbar.

2. Locate the Hint property in the Object Inspector and type the following for the
hint text:
New|Create a New File

3. Change the showHint property to true.

4. Repeat steps 2 and 3 for all buttons on the speedbar, adding appropriate hint text
for each type of button.

5. Click on the status bar component along the bottom of the main form. Change the
SimplePanel property to true. This will allow the full status bar to display a text
string through the simp1eText property.

Okay, now we have everything ready to go, so it’s time we did what you came here for. We're
going to create our own onHint handler and, not surprisingly, we’re going to name the
function onHint (). Let’s take this one step at a time. First, we’ll add the function declaration
to the class declaration. Here goes:

1. Switch to the Code Editor and click on the spmain.cpp tab.

2. Right-click on the Code Editor window and choose Swap Cpp/Hdr Files from the
speed menu. The spMain.h tab appears next to the spmain.cpp tab and becomes the
active code window.

3. Scroll down through the class declaration for the Tscratchpad class until you locate
the private section. Add this line of code after the private keyword:

void _ fastcall OnHint(TObject* Sender);
To give you perspective, the last few lines of the class declaration should now look

like this:

void _ fastcall FormCreate(TObject *Sender);
private: // User declarations

void _ fastcall OnHint(TObject* Sender);
public: // User declarations

virtual __ fastcall TScratchPad(TComponent* Owner);

};

| 340 Day 9

Sofar, sogood. Now you've added the function declaration for your new function. Two more
steps and we’ll be done. First we need to add the actual function to the source unit. After that,
we need to assign our new function to the Application Object’s onHint event.

1. Click on the spmain.cpp tab and scroll to the bottom of the file.

2. Enter the following code:
void _ fastcall TScratchPad::0OnHint(TObject* Sender)

{
StatusBar->SimpleText = Application->Hint;
}
3. Go to the Object Inspector. Select the main form, scratchpad, from the Object
Selector.

4. Switch to the Events page in the Object Inspector and double-click in the Value
column next to the oncreate event. The Code Editor is displayed and is ready for
you to type code.

5. Enter this code at the cursor:
Application->0OnHint = &0nHint;

The complete Formcreate () function should now look like this:

void __ fastcall TScratchPad::FormCreate(TObject *Sender)

{
Application->0OnHint = &O0OnHint;

}
6. Compile and run the program. The long hint text you entered will show in the
status bar, and the short hint text will be displayed in the tool tip over the button.

Step 2 sets the hint text (from the Hint property of the Application Object) to the simpleText
property of the statusBar class. Step 5 takes the function we created in step 2 and assigns its
address to the onHint event of the Application class. Each time an onHint event occurs, your
onHint () function is called and the hint text is displayed in the status bar.

Adding a Class Data Member

Adding a class data member to a C++Builder-generated class works in exactly the same way.
All you have to do is be sure that you add the data member to the private Or public section
of the class declaration as you did earlier when adding a class member function.

Deleting C++Builder-Generated Code

There may be a time when you’ll need to delete code that C++Builder generated in your
application. For instance, you might have a button on a form that, because of design changes,
is no longer needed. To delete the button, of course, all you have to do is click it and press
the Delete button on the keyboard. No more button. C++Builder deletes the button, but the

Creating Applications in C++Builder 341 |

onclick handler associated with that button is still in the code. C++Builder knows that the
button associated with that onciick handler is gone, but it still doesn’t delete the event
handler because it is possible that other components are using the same event handler. It’s
up to you to delete the event handler if you want it removed from your code.

The actual deletion of the event handler is an easy task:

O Delete the function definition from the source unit.
0 Delete the function declaration from the header.

NorTe This is the exception to the rule that you should never modify the
_— > published section of your form’s class declaration.

Before you delete the event handler, you need to make sure that no other components are
using that handler. Unfortunately, there is no simple way of determining whether another
component is using a particular event handler. You need to be aware of how the components
in your application interact.

NoTE Some might say that if you are unsure about an event handler being

- used by other components, just leave it in the code. That’s a bad
solution, in my opinion. You need to take responsibility for knowing
what is in your code and getting rid of any unused functions. Although
unused code doesn’t hurt anything, it leads to a larger .exe file. In
some cases, unused code can lead to performance degradation. Be
diligent in paring your programs of unused or inefficient code.

Using Resource Files

Every Windows program uses resources.

- ' Resources are the elements of a program that support the program but are not
executable code.

A typical Windows program’s resources include

O Accelerators
O Bitmaps
O Cursors

| 342

Day 9

Dialog boxes

Icons

Menus

Data tables

String tables

Version information

O User-defined specialty resources (sound files and AVI files, for example)

o oo oo d

Resources are generally contained in a resource script file (a text file with an . rc extension),
which iscompiled by a resource compiler and then bound to the application’s . exe file during
the link phase.

Resources are usually thought of as being bound to the executable file. Some resources, such
as bitmaps, string tables, and wave files, can be placed in external files (. bmp, . txt, and .wav),
or they can be bound to the .exe and contained within the application file. You can opt to
do it either way. Placing resources in the .exe file has two main advantages:

O The resources can be accessed more quickly because it takes less time to locate a
resource in the executable file than it does to load it from a disk file.

O The program file and resources can be contained in a single unit (the .exe file)
without the need for a lot of supporting files.

The downside to thisapproach isthat your . exe will be slightly larger. The program file won’t
be any larger than the combined external resource files plus the executable, but the extra size
could result in slightly longer load times for the program.

Your exact needs will determine whether you decide to keep your resources in external files
or have your resources bound to the . exe. The important thing to remember is that you can
do it either way (or even both ways in the same program).

A traditional Windows program will almost always contain at least one dialog box and an
icon. A C++Builder application, however, is a little different. First, there are no true dia-
log boxes in a C++Builder application, so there are no dialog box resources per se
(C++Builder forms are stored as resources, but they are rcoaTa resources and not dialog box
resources). A C++Builder application does have atraditional icon resource, though. C++Builder
takes care of creating the resource file for the icon for you when you create the application.
Similarly, when you choose bitmaps for speed buttons, 1mage components, or BitBtn
components, C++Builder includes the bitmap file you chose as part of the form’s resource.
Theformandall its resources are then bound to the program file when the application is built.
It’s all more or less handled for you automatically.

There are times, however, when you will want to implement resources aside from the normal
C++Builder processes. For instance, if you want to do animation, you will have to have aseries

Creating Applications in C++Builder 343 |

of bitmaps that can be loaded as resources for the fastest possible execution speed. In thiskind
of situation, you are going to need to know how to bind the resources to your C++Builder
program file.

The act of binding the resource file to the executable is trivial, actually. 1t's much more
difficult to actually create the resources. Creating basic resources such as bitmaps, icons, and
cursors is not difficult with a good resource editor, but creating professional-quality 3D
bitmaps and icons is an art. How many times have you seen a pretty decent program with
really awful bitmap buttons? I've seen plenty. (Oops, looks like I'm getting off track here.)
You can create bitmaps, icons, and cursors with the C++Builder Image Editor. If you are
going to create string resources, user data resources, wave file resources, or other specialty
resources, you will probably need a third-party resource editor.

NoTe If you have Borland C++, you can use the Resource Workshop from
- that package to edit specialty resources. After creating the resources,
you will have an .rc file that you can either add to your C++Builder
project directly or compile into a .res file using the Borland Resource
Compiler (Breca2.exe). The Borland Resource Compiler comes with
both Borland C++ and C++Builder. Technically, you could create the
.rc file with any text editor and compile it with the Resource Com-
piler, but in reality it is much easier to use a resource editor.

You can add either a . res file or an . rc file to your project via the Project Manager. To add
aresource file to a project using the Project Manager, you first choose View | Project Manger
from the main menu. When the Project Manager dialog box is displayed, click the Add To
Project button. When the File Open dialog box appears, select the resource file you want to
add to the project and click OK. The resource file shows up in the Project Manager with the
rest of the application’s files. I'll discuss the Project Manager in more detail tomorrow.

Listings 9.2 and 9.3 contain the header and main form unit for a program called Jumping
Jack. This program shows a simple animation with sound effects. The main form contains
just two buttons, an 1mage component, and a Labe1 component. The Jumping Jack program
illustrates several aspects of using resources in a C++Builder application. (The program can
be found at http: / /www.mcp.com/sams/codecenter.html.) Specifically, it shows how to load
abitmap stored as a resource, how to load and display a string resource, and how to play wave
audio contained as a resource. Listing 9.4 is a partial listing of the resource file that is used
by the Jumping Jack program. Examine the listings, and then we’ll discuss what the program
does.

| 344 Day 9

Listing 9.2. JJMain.h.

[mmmmm e s
#ifndef JJdMainH
#define JJMainH

#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>

#include <vcl\ExtCtrls.hpp>

©CoONOOOUA~WN =

11: class TMainForm : public TForm

12: {

13: _ published: // IDE-managed Components

14: TButton *Start;

15: TButton *Stop;

16: TImage *Image;

17: TLabel *Label;

18: void _ fastcall FormCreate(TObject *Sender);

20: void _ fastcall StartClick(TObject *Sender);

21: void _ fastcall StopClick(TObject *Sender);

22: private: // User declarations

23: bool done;

24: void DrawImage (String& name);

25: public: // User declarations

26: virtual _ fastcall TMainForm(TComponent* Owner);

31: #endif

Listing 9.3. JJMain.cpp.

LI B R e
2: #include <vcl\vcl.h>

3: //

4: // have to add this include for the PlaySound() function

5: //

6: #include <vcl\mmsystem.hpp>

7: #pragma hdrstop

8:

9: #include "JJMain.h"

L R e R
11: #pragma resource "*.dfm"

12: //

13: // defines for the string resources

14: //

15: #define IDS_UP 101
16: #define IDS_DOWN 102

18: TMainForm *MainForm;

Creating Applications in C++Builder 345 |

: void _ fastcall TMainForm::StartClick(TObject *Sender)

__fastcall TMainForm::TMainForm(TComponent* Owner)

: TForm(Owner),
done(false)

: void _ fastcall TMainForm::FormCreate(TObject *Sender)

{
/1
// load and display the first bitmap
/1
Image->Picture->Bitmap->
LoadFromResourceName ((int)HInstance, "ID_BITMAP1");

{
/1
// When the Start button is clicked the animation
// loop starts. The bitmap resources are named
// ID_BITMAP1 through ID_BITMAP5 so we'll start with
// a string called "ID BITMAP" and append the last
// digit when needed.

/1

String s = "ID_BITMAP";

/1

// a buffer for the string resources
/1

char buff[10];

/1

// a flag to let us know when we're done
/1

done = false;

/1

/] start the loop and keep looping until the 'Stop
// button is pressed
/1
while (!done) {
/1
// loop through the five bitmaps starting with
// 1 and ending with 5
/1
for (int i=1;i<6;i++) {
/!
// append the value of 'i' to the end of the string
// to build a string containing the resource name

/!
String resName = s + String(i);
/!
// call a class member function to display the bitmap
/!
DrawImage (resName);
}
/1

// load the "Up" string resource using the WinAPI

continues

| 346 Day 9

Listing 9.3. continued

75: // function LoadString(), display the string,

76: // and tell Windows to repaint the Label

77: /1

78: LoadString(HInstance, IDS_UP, buff, sizeof(buff));
79: Label->Caption = buff;

80: Label->Refresh();

81: /1

82: // play the 'up' sound using the WinAPI function
83: // PlaySound(), play it asynchronously

84: /1!

85: PlaySound("ID_WAVEUP",

86: HInstance, SND_ASYNC | SND_RESOURCE);

87: /1

88: // pause for a moment at the top of the jump

89: /!

90: Sleep(200);

91: /1

92: // repeat all of the above except in reverse

93: /!

94: for (int i=5;i>0;i--) {

95: String resName = s + String(i);

96: DrawImage (resName);

97: }

98: PlaySound("ID_WAVEDOWN",

99: HInstance, SND_ASYNC | SND_RESOURCE) ;

100: LoadString(HInstance, IDS_DOWN, buff, sizeof(buff));
101: Label->Caption = buff;

102: Label->Refresh();

103: Sleep(200);

104: }

105: }

L R e
107: void __ fastcall TMainForm::StopClick(TObject *Sender)
108: {

109: /1

110: // Stop button pressed, so tell the loop to stop executing
111: /1

112: done = true;

113: }

LR R R R R
115: //

116: // a class member function to display the bitmap

17: //

118: void

119: TMainForm::DrawImage (String& name)

120: {

121: /1

122: // load the bitmap from a resource

123: // using the name passed to us

124: /1

125: Image->Picture->Bitmap->

126: LoadFromResourceName ((int)HInstance, name);

127: /1

128: // must pump the message loop so that Windows gets
129: // a chance to display the bitmap

Creating Applications in C++Builder 347 |

130: /1

131: Application->ProcessMessages();

132: /1

133: // take a short nap so the animation doesn't go too fast
134: /1

135: Sleep(20);

136: }

Listing 9.4. JJRes.rc.

1: #define IDS_UP 101
2: #define IDS_DOWN 102
3:

4: STRINGTABLE

5:

6: IDS_UP, "Up"

7: IDS_DOWN, "Down"

8: }

9:

10: ID_WAVEUP WAVE "up.wav"
11: ID_WAVEDOWN WAVE "down.wav"

13: ID_BITMAP1 BITMAP LOADONCALL MOVEABLE DISCARDABLE IMPURE

{
15: '42 4D 76 02 00 00 00 00 00 00 76 00 00 00 28 00'
16: '00 00 20 00 00 00 20 00 00 00 @1 00 04 00 00 00'
17: /)
18: // remainder of bitmap resources follow

Notice lines 23 and 24 in the header for the main f(_)rm class in Listing 9.2._ Lin(_e 23

declares a boo1 data member that is used to determine when to stop the animation.

The class member function declared on line 24 is used to display the bitmap in the image
component.

In Listing 9.3 you will notice that two Windows API functions are used to load the string and
wave file resources. On line 78, the Loadstring () function loads a string resource into a text
buffer based on the numerical identifier of the string (see Listing 9.4 to see how the string
resources are created). The string is then assigned to the caption property of the label
component on the form. On line 83, the p1aysound() function is used to play a wave file
contained as a resource. The snp_async flag used with the Piaysound() function tells
Windows to play the sound and immediately return control to the program. This allows the
animation to continue while the sound is being played. The sno_resource flag tells Windows
that the sound is contained as a resource and not as a file on disk. Both the Loadstring() and
PlaySound() functions use the Hinstance global variable to tell Windows to look in the
executable file for the resources.

| 348

Day 9

NoTE As you can see from Listing 9.4, you can create some resources easily

Figure 9.12.

Lines 1 through 8 of Listing 9.4 illustrate how a string table looks in a resource script file.
Creating string tables is very easy with any text editor. On lines 10 and 11, a wavEe resource
is created for each of the two wave files, which were previously recorded and reside in the
project’s directory. When the resource compiler sees the wave declaration, it reads the
individual sound files and compiles them into the binary resource file.

> with a text editor. If you have bitmaps or wave audio stored as external
files, you can include them in an . rc file as illustrated in Listing 9.4
and have them compiled into the binary resource file using the resource
compiler. Later, the binary resource file can be bound to your
application’s executable file.

Listing 9.4 is a partial listing. Bitmaps are contained in the resource file as numerical data.
The resource descriptions for bitmaps can get very long. The rest of the bitmap resource
descriptions for the Jumping Jack bitmaps require about 200 lines of resource code, so |
decided not to list them all. Figure 9.12 shows Jumping Jack in mid-stride.

Jumping Jack in =
action. 1

[]

Creating additional resources for your programs is not rocket science, but it is not exactly
trivial, either. It takes some time to realize how it all fits together. You may never need to add
additional resources to your applications. If you do, though, it’s good to have an idea where
to begin. If this section left you a little dazed and confused, don’t worry. Over time, it all starts
to make sense.

NoTE Bitmaps, icons, and cursors found in other programs are usually

> copyrighted material. Do not use resources from any copyrighted
program without permission. Further, assume that all programs are
copyrighted unless they are specifically said to be freeware. You are free
to use the bitmaps, icons, and cursors that are provided with

Creating Applications in C++Builder 349 |

C++Builder (in the \cBuilder\Images directory) in your applications
without permission from Borland.

Summary

The Object Repository is a great tool for reusing previously created forms, dialog boxes,
projects, and other objects. The capability to add your own objects to the Repository isa huge
advantage when you're doing RAD. The Dialog Wizard and Application Wizard take itastep
further and guide you through the creation process. The Application Wizard, in particular,
is a very useful tool. In the middle of the chapter you learned how to add data members and
functions to the classes that C++Builder generates. The last part of the chapter touches on
the different types of resources that you might need to incorporate into your applications and
how to add them to your C++Builder projects.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A
Q When would I use the Use option of the Object Repository?

A When you have an object stored in the Object Repository that you want to update
or make other changes to.

Q Is there a limit to the number of objects that can be stored in the Object
Repository?

A Technically, you can store as many objects as you like. Remember, though, that the
purpose of the Object Repository is to help you quickly locate and reuse your
forms, dialog boxes, and other objects. If you put too many seldom-used objects in
the Object Repository, you will start to lose efficiency because it takes longer to
find the specific object you are looking for. It also takes longer for the Object
Repository to load and display all those objects.

| 350

Day 9

Q

A

I’'ve got a bunch of old objects in the Object Repository that I don’t use any-
more. How can | get rid of them?

Choose Options | Repository from the main menu. The Object Repository
configuration dialog box is displayed. To remove an object, first select the object in
the Obijects list box, and then click the Delete Object button. The object will be
removed from the Object Repository.

I had an object stored in the Object Repository. Now when | try to use that
object | get a message box that says unable to find both a form and a source
file. What'’s the problem?

You have either moved or deleted the source and/or form file for the object. The
Object Repository keeps track of the directory where the object is stored. If you
move or delete the object, the Object Repository is unable to find the object and
reports an error.

Can | add objects to the New page of the Object Repository?

No. The New page of the Object Repository is fixed. It cannot be deleted or
modified. You'll have to place your objects on another page.

I added a function to my main form class. Now I can’t compile. What’s the
problem?

You probably added the function declaration to the published section of the class
declaration accidentally. Be sure that the declaration for your class is in either the
public Or the private section of the class declaration.

I have a resource editor that allows me to decompile resources contained in
other programs. This lets me “borrow” bitmaps and other resources from
other programs. Is this okay?

The short answer is “No.” You should assume all resources in other programs to be
copyrighted material that cannot be freely copied. Consult a lawyer for a qualified
opinion.

I have a lot of bitmaps and sound files that go with my application. Can I put
all those resources in a file other than the program’s executable file?

Yes. You can have resources stored in a dynamic link library (DLL).

When do you use the Inherit option when selecting an object in the Object
Repository?

What is the procedure for saving a project to the Object Repository?

What happens to inherited forms when you change the base form?

Where in the form’s class declaration do you place user function declarations?

Creating Applications in C++Builder 351 |

Where do you place the function definition (the function itself) when you add
your own functions to C++Builder code?

6. How can you determine who wrote a particular object in the Object Repository?

Exercises
1.

10.

11.

. What are the two ways you can add a resource file to your project?
10.

. Where do you add and delete pages in the Object Repository?

Is it easier to create a basic application from scratch or by using the Application
Wizard?

Can you create a resource script file containing a string table with a text editor?

Create a new form. Add several components of your choosing to the form. Save the
form to the Forms page of the Object Repository with the name BaseForm.

Start a new application. Choose File | New to view the Object Repository. Switch
to the Forms page. Click the Inherit radio button. Choose the BaseForm object you
created in exercise 1 and add it to the application. (Be sure you used the Inherit
option.) Save the project and close it.

. Open the BaseForm object you created in exercise 1. Delete all components on the

form and save the form.

Reopen the project you created in exercise 2. Display the new form you created in
that exercise. Note that the components are all gone. (Remember, you inherited
this object, so all changes made to the base form were also made to the inherited
form.)

Choose Options | Repository from the main menu. Delete the BaseForm created
earlier.

Create a project using the Application Wizard. Use all menu options and make the
application an MDI application. Create a speedbar for the application.

Add a multipage dialog box to the application you created in exercise 6. Use the
Dialog Wizard.

Use the Object Repository to add an About box to the program you created in
exercise 6.

. Create a string table resource with a text editor and compile it with the resource

compiler (Bree32.Exe). Extra Credit: Write a program to load the strings and
display them on a form.

Using a text editor, open the JJres. rc file from http://www.mcp.com/sams/
codecenter.html and examine its contents.

Write “I will not borrow bitmaps from other programs.” 100 times on the black-
board.

Week 2

Day 10

More on Projects

by Kent Reisdorph

On Day 6, “The C++Builder IDE Explored: Projects and Forms,” you were
introduced to C++Builder projects and found out a little about how projects
work. Today you will find out about projects in more detail.

You will also learn more about the C++Builder Code Editor. The Code Editor
has features that make working with code easier; you'll find out all about those
features today.

Everyone Needs a Project

Projects are a fact of life with C++Builder. You cannot create a program without
a project. The project makes sure that everything works together to create a
working application. In this section I will talk about

0 The Project Manager

| 354

Day 10

O The Project Explorer
O The Project Options dialog box
O Maintaining and using projects

So, without further ado, let’s get to it.

Using the Project Manager

Atsome point, every project needs some management. It could be that you need to add a new
source unit to the project, or maybe you need to remove a source unit. You might need to add
other types of files to the project, such as a binary resource file or an import library fora DLL.
It is through the Project Manager that you add and remove units and other project files.

The Project Manager Window

The Project Manager window shows you the current files in your project. To view the Project
Manager, choose View | Project Manager from the main menu. Figure 10.1 shows the
Project Manager window for the scratchpad program created on Day 6.

The Project Manager window tells you at a glance the state of each file in the project. Files
that are up-to-date are displayed in a regular font; files that have been modified but have not
yet been saved are shown in a bold font. This serves to remind you which of your files have
changed since you last saved the project.

You will notice in Figure 10.1 that the Project Manager file list has three columns. The first
column shows the name of the source unit that represents that file. For example, the source
unit for the main form of the scratchpad program is called spmain. cpp.

The second column shows the name of the form that is associated with that file. The form
name is taken from the name property for the form. In some cases, there is no form associated
with a source unit. Each project has a project source file associated with it that contains the
VCL startup code for the application. Because there is no form associated with the project
source file, the Form column for that file will always be blank. Looking at Figure 10.1, you
can see that the project source file for the scratchpad program is named scratch. cpp and that
the Form column is blank.

The last column in the File list of the Project Manager window contains the path where the
file is located. This column is always blank for files that reside in the project’s own directory.

More on Projects 355 |

The only time this column contains a directory path is when you add a file from a location
other than the project’s working directory. This column tells you at a glance where each file
in your project is located.

Figure 10.1. _
The Project Manager *"LEJQEE-J
window. D et
L5 b IS A b b s J s b
Tip The columns in the Project Manager window can be resized. To
change a column’s width, place your mouse cursor on the dividing line
"'"Iﬂ between two columns on the column header. When you see the mouse

cursor change to the drag cursor, you can drag right to make the
column wider or drag left to make the column narrower.

The status bar of the Project Manager window shows you the project’s working directory and
the total count of the project’s units and forms.

NoOTE The status bar text is generous in its count of units contained in the

- project. The status bar text considers every file in the project a unit
whether or not it is actually a source code unit. For example, adding a
text file to the project will increment the unit count in the status bar
even though the text file does not constitute a code unit.

The Project Manager Speedbar

The Project Manager speedbar can be used to navigate the project. Figure 10.2 shows the
Project Manager speedbar buttons.

| 356

Day 10

Figure 10.2. T ——

The Project Manager
speedbar. Remove Unit |

Add Unit

-el=) CIC) £ @ Update
I

Project Options

View Unit | View Form

Add Unit
Use the Add Unit button to add files to the project. When you click this button, the Add To
Project dialog box is displayed. The Add To Project dialog box has file filters for the following
types of files:
O C++ source files (.cpp)
C source files (.c)
Pascal source files (.pas)
Library files (.1ib)
Binary object files (.obj)
Resource script files (.rc)
Binary resource files (. res)

O oo oo

If you add files of any of these types, C++Builder will know what to do with them. For
example, if you add a C source file (. c), C++Builder will compile it as C rather than C++ (the
differences are subtle, and most of you don’t care about the differences, but to some
programmers it matters). If you add a Pascal file (. pas), the Pascal compiler will compile the
source file before passing it to the linker. If you add a binary object file (.obj), C++Builder
passes it to the linker at link time.

NoTE You cannot add a unit to a project if a form with the same name

NoTe

- already exists in the project. For example, if you have a form called
mainForm and try to add a unit from another project that also has a
form named mainForm, you will get an error message from C++Builder
even if the filenames are different.

Adding files to your project of types other than those listed in this
section is not advised. C++Builder will try to compile any unknown file

_— types, and an error message will result.

More on Projects 357 |

Tip You can add more than one source file at a time. To add multiple files,
select the files to add in the Add To Project dialog box. When you click
"'"i OK, all of the files selected will be added to the project.

Remove Unit

Use this option to remove files from the project. Files removed from the project are not
deleted from your hard drive, but are just removed from the project compile/link process.

Be careful when removing units from your projects. You need to take
Im care not to remove units that are referenced by other units in the
- = & project. If you remove units that are required by your project, a
WARNING compiler or linker error will result. Before removing a unit, be sure that

it is not used anywhere in your project.

The Project Manager window itself does not allow multiple selection. If you want to delete
several units, you will have to delete them one at a time.

View Unit

When you click the View Unit speed button, the source code for the currently selected unit
is displayed in the Code Editor. If no unitis selected or if no source unit exists for the selected
unit, this button is disabled. For example, a binary resource file (. res) does not have a source
file. If you click on a binary resource file in the Project Manager window, the View Unit
button will be disabled.

View Form

The View Form button displays the form associated with the currently selected unit. The
formis displayed in the Form Designer. Aswith the View Unit button, the View Form button
will be disabled if no form exists for the selected unit.

| 358 Day 10

TP The Project Manager provides shortcuts for viewing a unit’s source file
or form. To view a unit’s source file, double-click on the unit’s
"'ﬁ filename (in the File column). To view a form, double-click on the

form name in the Form column. Double-clicking on units that do not
have a source file has no effect.

Project Options

The Project Options speedbar button displays the Project Options dialog box for the project.
Project options are discussed later in the chapter, in the section titled “Understanding Project
Options.”

Update

The Update button updates the project after the project source file has been modified.
Normally, this button is disabled. If you manually change the project source file, the Update
button is enabled and all files in the Project Manager file list will be grayed out. Clicking the
Update button will ensure that all files in the project are reconciled. This button is also
enabled after you change the project options.

Norte Saving the project will also resynchronize the project, and you won’t
_— need to click the Update speed button.

The Project Manager Speed Menu

The Project Manager has a speed menu to aid you in project management. Many of the items
on the speed menu are also available via the speedbar. Figure 10.3 shows the Project Manager
speed menu. Table 10.1 lists the speed menu items along with a description of what each item
does.

Figure 10.3. e b
The Project Manager Bl
el
speed menu. et -
L] (8]
e et Liwim
i e ErEey
e [t

More on Projects 359 |

Table 10.1. The Project Manager speed menu items.

Item Description

Save Project Saves the project and all source files in the project.

Add Project To Repository Saves the project to the Object Repository.

New Unit Creates a blank source code unit and displays the new
unit in the Code Editor.

New Form Creates a blank form and displays the new form in
the Form Designer.

Add File Same as the Add Unit speed button.

Remove File Same as the Remove Unit speed button.

View Unit Displays the currently selected unit’s source code in
the Code Editor.

View Form Displays the currently selected unit’s form in the
Form Designer.

View Project Source Displays the project source file in the Code Editor.

Options Displays the Project Options dialog box.

Update Same as the Update speed button.

Several of the speed menu items are also accessible from the main menu, from the Project
Manager speedbar, or via keyboard shortcuts.

Exploring Your Projects

The Project Explorer is a nifty little item that gives you a unique look at your project. Figure
10.4 shows the Project Explorer while exploring the scratchpad program.

Figure 10.4. q

The Project Explorer. ey

| 360

Day 10

The Project Explorer shows all of your project’s source units, forms, and componentsin atree
view. Nodes can be contracted or expanded to reveal more details. Each component is listed
under its parent. For example, notice the speedar node in Figure 10.4. In this project, the
SpeedBar NOde is a panel component that contains several speed buttons. The speed buttons
are displayed underneath the panel to show that the panel is the parent of the speed buttons.

The Project Explorer is a hierarchical window. At the top of the Project Explorer you
have the project file; under the project file you have the project’s source units. Immediately
under the project source file is the form file for that unit. Under the form file you have all the
components that are direct children of the form. If a component on the form has children,
they are listed under their parent, and so on. Figure 10.5 shows how the Project Explorer
would look if the component and unit names were replaced with descriptive text.

Figure 10.5.
The Project Explorer
hierarchy.

Whenyou click on an item in the Project Explorer, the status bar at the bottom of the Project
Explorer window shows information about the item selected. If the item is a source file or
form file, the status bar displays the full path and filename of the file. If the item is a
component, the status bar displays the class name of the component. For example, if you click
a speed button component, the Project Explorer status bar will display TspeedButton.

Project Explorer Commands

You can do more than just view your objects in the Project Explorer. The Project Explorer
has aspeed menu that allows you to delete, rename, edit, or selectan item. Notall speed menu
items are available at all times, however. If you have selected a unit’s source file, for example,
the Rename speed menu item is disabled because you cannot rename a source file from the
Project Explorer. Let’s look at the Project Explorer commands individually.

Select

The Select menu item selects the current object and displays the object in the Object
Inspector. The effect is the same as if you had selected the object in the Form Designer. If
you place the Object Inspector and Project Explorer side by side, you can quickly go through
all the objects in your project and view their properties. This command is available only if
you have selected a form or a control.

More on Projects 361 |

Figure 10.6. e
The Project Explorer e
speed menu. o=
Feal
(]
-
s
.
Thidii
NoOTE Just highlighting (selecting) the control in the Project Explorer tree is
> not the same as selecting it using the Select command. If you want the
— component to be displayed in the Object Inspector, you must first
select the component in the Project Explorer tree and then choose
Select from the speed menu.
Edit

The Edit speed menu item allows you to edit the object selected. If the object is a source file,
choosing the Edit menu item will result in the Code Editor being displayed with the selected
file loaded. If the object selected in the Project Explorer window is a form, the Form Designer
comes to the top with the selected form displayed. If the object selected is a component on
a form, the Form Designer is displayed, and the object is selected in the Form Designer as
if you had clicked it with the mouse. In the case of forms and components, the Object
Inspector changes to show the object selected.

Rename

The Rename menu item allows you to change the name property of a form or a control from
the Project Explorer. To change the name of a component, for example, first select the
component in the Project Explorer window and then choose Rename from the speed menu.
You can then type a new name for the component. As when changing the name property in
the Object Inspector, the change is immediately reflected throughout your program’s source
code.

| 362 Day 10

Tip The Project Explorer window is a Windows tree view, and as such
has the same characteristics as most tree views. Specifically, you can
"'ﬂ change the text of a particular item in the Project Explorer by clicking

once on the item to select it and clicking again to begin editing. This is
called in-place editing. By using this method you don’t have to use the
Rename item on the speed menu at all. If you attempt to change the
name of an item that cannot be changed via the Project Explorer (a
source file, for example), the results of the in-place edit will be ignored.

Delete

The Delete item on the Project Explorer speed menu does exactly as its name indicates. Ifyou
select an object in the Project Explorer and choose Delete, that object will be removed from
the project.

Be careful when deleting objects from the Project Explorer window.
\fm The Project Explorer does not have an Undo or Undelete option, so if
~ = A you delete an object via the Project Explorer by accident, you will have
WARNING to close the project without saving it and then reopen the project.

The Project Explorer is one of those features that is easy to overlook. Spend some time with
the Project Explorer and I’'m sure you’ll find it a useful feature in application development.

Understanding Project Options

Project options are another of those things that are easy to ignore. For one thing, the defaults
are usually good enough when you are just starting out. After all, who has time to worry about
all those compiler/linker options when you are just struggling to learn a new programming
environment? At some point, though, you will start to become more interested in what all
those options do, and it’s good to have some reference when the time comes.

In this section we’ll look at the Project Options dialog box. You can invoke this dialog box
by choosing Options | Project from the main menu, pressing Alt+F6 on the keyboard, or
choosing Options from the Project Manager speed menu. The Project Options dialog box
is a tabbed dialog box with several pages:

More on Projects

363 |

Forms

C++
Pascal

o oo oo d

Linker
Directories/Conditionals

Application

We’'ll take a look at each page of the dialog box so that you can understand exactly what each
page does. I'll start you out easy by discussing the Forms and Application pages. After that
we’ll move on to the more complicated stuff.

NoTE

_—

At the bottom of each page of the Project Options dialog box is a check
box labeled Default. If you want the current settings to become the
default settings for all new projects created, check the Default box.
When you click OK, the current settings will become the new default
settings.

The Forms Page

The Forms page of the Project Options dialog box is where you control how your application
handles its forms. You saw this dialog box on Day 5, “C++ Class Frameworks and the Visual
Component Model,” when you created the Picture Viewer program. Figure 10.7 shows the
Forms page of the Project Options dialog box for (what else?) the scratchpad program.

Figure 10.7.
The Forms page of
the Project Options
dialog box.

[P | st | £o1 | Pome | bk | Frmvimmers Torstirrsss |

i b |t

ramrt e
P gy

I~ Dk [T] s | s |

|i|;|_=._|.'_

| 364

Day 10

NoTE The first form in the Auto-create forms list box is always the main

At the top of the Forms page is the Main form combo box. This is where you tell C++Builder
which form to display when the application starts. By default, the first form you create will
be the main form. If you change your project in such a way that a different form becomes the
main form, you will need to change this setting so that the new form becomes the
application’s main form.

In the middle of the dialog box, you see two list boxes. The list box on the left is labeled Auto-
create forms; the one on the right is labeled Available forms. Before | talk about how to use
these two list boxes, let’s take a moment to talk about auto-creation of forms.

Each time you create a form, C++Builder places that form in the auto-create list for the
application. Auto-creation means that C++Builder will construct the form during the
application startup process. Forms that are auto-created will display more quickly than forms
that are not auto-created. The disadvantage to auto-creation of forms is that your application
will use more memory than it would if your forms were not auto-created. Another
disadvantage, although probably insignificant, is that your application will take slightly
longer to load if you are auto-creating a lot of forms.

- form. If you change the main form, the new form selected will move to
the top of the Auto-create forms list box. Another way to set the main
form is to drag-and-drop any one of the forms in the Auto-create forms
list box to the top of the list.

The nice thing about auto-creation is that displaying an auto-created form is easy. All you
have to do is call that form’s show() Or showModal () function:

AboutBox ->ShowModal();

If you do not have your forms auto-created by C++Builder, you will have to take the
responsibility of creating the form before you use it:

TAboutBox* aboutBox = new TAboutBox(this);

aboutBox->ShowModal() ;

delete aboutBox;

This example does not use the C++Builder-generated pointer to the About box. It creates a
local pointer, displays the form, and then deletes the pointer as soon as the form is no longer
needed. As is often the case in C++ programming, there are several ways to perform this
particular task. Because C++Builder always creates a pointer to the form object, I could have
written the previous code like this:

More on Projects 365 |

if (!AboutBox->Handle) {
AboutBox = new TAboutBox(this);
AboutBox->SetParent(this);

}
aboutBox->ShowModal();

This code checks to see if the form has already been created. If it has not, the object is created
and then the showModa1 () method is called. This code also calls setparent () to set the parent
of the form to the calling form (the main form, in most cases). It’s up to you to decide which
method you use, but I prefer the former.

NoOTE Each time you create a form in the Form Designer, C++Builder creates
- a pointer to the form. If you allow C++Builder to auto-create a form,
— you don’t have to worry about the pointer being valid. If you choose

not to have a form auto-created, the pointer to the form will be nuLL
until you explicitly create the form and initialize the pointer. If you
forget and use the pointer before it is initialized, Windows will generate
an access-violation error.

Okay, so back to the Project Options dialog box. The Auto-create forms list box contains a
list of the forms that will be auto-created. If you do not want a form to be auto-created, drag
the form from the Auto-create forms list box to the Available forms list box. You can move
forms from one list box to the other using drag-and-drop, too. To move several forms at one
time, simply select the forms you want to move (both list boxes support multiple selection)
and drag-and-drop them all at once. It’s as easy as that.

NoTe You can use the buttons between the two list boxes to move forms from

_— one list box to the other, but it’s usually easier to use drag-and-drop.

The Application Page
The Application page of the Project Options dialog box is very simple. (See Figure 10.8.)

The Title field on this page is used to set the title of the application. The title is the text that
will appear on the Windows taskbar when your application is minimized.

| 366 Day 10

Figure 10.8. lmctte= O]

The Application page. Fre '-P':I_:u | Pecet] Lt | DpprsmsesToraticrsi |
s Fomeer a1

s | e |
B r‘ﬁ [FE=5N |

r G [T] o | oW

NoOTE The application’s title and the caption of the main form are two

- separate items. If you want your program’s name to show up when you
minimize your program, you will have to be sure that you set the title
for the application in the Project Options dialog box. If you do not
provide an application title, the name of the project file will be used by
default.

The Help file field of the Application page is used to set the help file that your application
will use. This is the help file that the program will load when you press F1 while your
application is running. You can use the Browse button to locate the help file if you can’t
remember the name or location of the help file. If you do not supply a help file, pressing F1
in your application will have no effect.

The Icon option allows you to choose an icon for your application. This is the icon that will
be displayed in the Windows taskbar when your application runs and when it is minimized.
Inaddition, thisicon will be displayed on your main form’s title bar unless you have explicitly
set an icon for the main form. To choose an icon, click the Load Icon button and locate the
icon file (.1ico) using the Application Icon dialog box.

The C++ Page

The C++ page of the Project Options dialog box is where you set the options that the compiler
uses to build your project. (See Figure 10.9.)

More on Projects 367 |

Figure 10.9. P | dcaleamies e | Pt Lt | Dot s |
The C++ page of the ST,
Project Options dialog Weavea | A |
box.

e e Piaimpdac i paien

T R T by

 Sowd T L pacommbed i)

1 e e g Lo e ol s |

Daicwia g

g b b I Herr il o b

[—— P Smibrw

I pbismis gl = ciisins 17 e p—

L g fdmg] g []

s [|

At the top of this page is a section called Speed Settings that contains two buttons. The Full
Debug button sets the default compiler options for a typical debug session. These are the
settings you will be most likely to use while debugging your application. The Release button
sets the compiler options for a typical release build. Use the Release settings after you have
debugged your application and are ready to ship the final product. Be sure that you do a Build
All of your project after changing compiler settings.

NoTE The Full Debug and Release buttons set the compiler settings to the
- suggested settings for debugging or final release, respectively. You can
— always change individual options after choosing one of these speed
buttons.

The remainder of the C++ page is broken down into four sections. Let’s examine each section
so that you can better understand the different compiler options.

Code Optimization

The compiler can be configured to perform optimizations on your code. When optimizations
are turned off (the None radio button is selected) in the Code optimization section of the C++
page, the compiler makes no attempts to optimize code in any way.

If you choose the Speed option, the compiler will generate the fastest code possible without
regard to code size. When optimizations are set to Speed with scheduling, the compiler will
optimize to take advantage of Pentium Pipeline Instructions. In most cases you should leave
this option on the default setting chosen when you press either the Full Debug or Release
speed buttons.

| 368 Day 10
NoTE The results of changing optimization settings can vary widely. Each
> application is different. Sometimes optimizing for size has a big impact
— on the final executable file size; other times the difference is negligible.
The same is true of optimizing for speed.
Debugging

The Debugging section of the C++ page of the Project Options dialog box controls how the
compiler generates code for debugging sessions. This section has four options, which are
explained in the following sections. (I'll discuss debugging operations in detail tomorrow.)

Debug Information

When the Debug information option is enabled, C++Builder will generate debug informa-
tion for the project. The debug information is stored in a separate file in the project’s
directory. The filename of the file containing the debug information has a . Tps extension.
For example, if you had a program with a project name myapp, C++Builder would generate
asymbol file called myapp. tds. This file is read by the debugger during debug sessions. If you
do not generate debug information, you will not be able to stop on breakpoints and inspect
variables during debugging. Put another way, you can’t debug your program unless you tell
C++Builder to generate debug information.

Line Number Information

The Line number information option tells C++Builder to generate line number information
for the project. Line number information is used by the debugger to allow you to step through
your code line by line. This option is automatically enabled when you have the Debug
Information option turned on (even though the check box doesn’t show it). You can,
however, turn debug information off and then turn line number information on. This will
allow you to set breakpoints and step through your code, but you won’t be able to inspect
any variables. The benefit is that your .tds file will be smaller. In reality, it is unlikely that
you will opt to turn debug information off and line numbering on.

Automatic Register Variables

When the Automatic Register Variables option is on, the compiler will make use of register
variables as it sees fit. The use of register variables allows for much faster code. Reg-
ister variables can, however, be a bit of a pain while debugging. The compiler might optimize
your variables during debugging, making the variable unavailable for inspection. When a
variable has been optimized, the watch window will display the message variable 'x' has
been optimized and is not available When you attempt to inspect the variable.

More on Projects 369 |

Tip To avoid the problem with register variables, you can do one of two
things. The first is to turn off the Automatic Register Variables option
& while debugging your application. Turn it back on again when you are

done debugging and before your product ships.

The other thing you can do is to declare a local variable with the
volatile keyword:

volatile int x;

This will prevent the compiler from optimizing the variable, thereby
making it available for inspection.

If you turn off the Automatic Register Variables option, you can still force the compiler to
treat a particular variable as a register variable by declaring it with the register keyword.
Here’s an example:

register int x = 20;

Disable Inline Expansions

The Disable Inline Expansions option controls how inline functions are handled by the
compiler. By default, inline functions are expanded inline (placed in the code where
necessary) as you would expect. If you turn on thisoption, thereby disabling inline expansion,
inline functions will be treated as regular functions rather than as inline functions. Use of this
option is rare, but you may need to use it on occasion when debugging certain inline
functions.

NoTe If you change any of the options on the C++ page, you should do a
- Build All immediately following. This will ensure that all modules are
built using the same compiler settings.

Pre-compiled Headers

Note the Pre-compiled Headers section on the C++ page of the Project Options dialog box.
A pre-compiled header is essentially an image of the symbol table for a project stored on disk.
The first time you build your program, C++Builder creates the pre-compiled header. On
subsequent makes, C++Builder can load the pre-compiled header from disk, which is much
faster than compiling the headers for each build. In addition, you can opt to cache the pre-
compiled header in memory. This increases compile speed even more because the pre-
compiled header can be held in memory rather than being loaded from disk when needed.

| 370

Day 10

"'ﬂ not have enough system RAM, caching pre-compiled headers can

You can set the Pre-compiled Headers option to None, Use pre-compiled headers, or Cache
pre-compiled headers depending on your needs and the hardware available on your system.
Generally speaking, you will use pre-compiled headers in one way or another. Turning off
pre-compiled headers almost always results in much slower build times.

Tip The option to cache pre-compiled headers will dramatically speed up
compile and build times if you have enough system RAM. If you do

actually slow down your builds. Do your own tests to determine
whether caching of pre-compiled headers is faster or slower on your
system. In general, though, 1 would recommend turning caching off if
you have less than 32MB of system RAM.

Compiling

The Compiling group of options on the C++ page is used to control how the C++ compiler
performs certain options. For the most part, you should leave these options set at the defaults
until you get more familiar with C++Builder and C++in general. These settings are explained
in the following sections.

Merge Duplicate Strings
When the Merge Duplicate Strings option is on, it tells the compiler to merge duplicate
strings into one memory location. This saves overall program size but can lead to problems
if one of the strings is modified.

Stack Frames

Leave the Stack frames option on when debugging. When you are done debugging, you can
turn off this option to have the compiler generate smaller and faster code, but compile times
will be slightly longer with the Stack frames option off. Most of the time the speed and size
savings are not significant enough to warrant turning off this option. As always, do your own
test to be sure.

Show Warnings

When the Show warnings option is on, any compiler warnings are displayed in the Code
Editor message window. I always leave this option on. Compiler warnings should not be
ignored for the long term. Most of the time compiler warnings can, and should, be resolved.

More on Projects 371 |

NoTe
Compiler and linker errors are always displayed in the message window.

Show General Msgs

When the Show general msgs option is on, various status messages are displayed in the
message window of the Code Editor. For example, compiling the scratchPad program with
general messages turned on results in the following text being output to the message window:
[C++] Compiling: Scratch.cpp

[C++] Compiling: SPMain.cpp

[C++] Loaded cached pre-compiled headers.

[C++] Compiling: SPAbout.cpp
[Linker] Incremental Linking: D:\Projects\Scratch\Scratch.exe

Turn on this option if you want to see the status messages in the message window.

The Pascal Page

The Pascal page of the Project Options dialog box is used to set the Pascal compiler options.
The Pascal compiler is used if you add Pascal units (.pas) to your C++Builder projects. The
Pascal compiler settings are numerous and beyond the scope of this discussion, so I'm not
going to go over each one. See the C++Builder online help for details about the settings on
this page.

The Linker Page

The Linker page of the Project Options dialog box is where you set options that specify how
you want the linker to function. Until you get very familiar with C++Builder, you can leave
this page alone and accept the default settings. Figure 10.10 shows the Linker page of the
Project Options dialog box. The sections of this page are explained in the following sections.

Figure 10.10. E | —

g . Yo | gpicniem | it | P Eypmme T oyvirre |
Pro_ject Linker s [
options. i [

Trmmr | |17 [gpplivaiion
M : FTERs]
L] T iy
£Jm|u| Fay chach s |.-\.|.'|.l|-n.l\.
¥ rpeied
Lk T
F iy i i T b e B s
I Vi s oL I Lre g e 0L
F S
I Dsian o] cwsd | am |

| 372

Day 10

NoOTE There is actually a third disadvantage to using the incremental linker: It

Application Target

The Application target section specifies whether the project targetisan EXE ora DLL. Ifyou
create your projects using the Object Repository, this option is set for you and you don’t have
to worry about it.

Application Type

The Application type section allows you to set the application type. The available choices are
Windows GUI and Console Application. As with the Application target option, if you create
a new project using the Object Repository this option will already be set for you.

Map File
The Map file settings control whether a map file is generated and how much detail is included

in the map file. (A map file is an advanced debugging tool and is something you will not likely
use.)

Linking

The Linking section has three linker options. The Use incremental linker option tells
C++Builder whether it should use the incremental linker. The incremental linker saves a lot
of time when you are developing your applications. For example, let’s say you have a project
with 20 units. If you change one line of a unit, that unit will have to be recompiled and
relinked. When incremental linking is on, only the object file that has changed is relinked.
When incremental linking is off, the linker must relink every binary file in the project,
regardless of whether it has changed since the last link. Linking takes a fair amount of time,
so the incremental linker is a big advantage when working on a project of any significance.

The disadvantage of incremental linking is twofold. First, the initial link takes longer when
incremental linking is enabled. Second, the incremental linker sets up several files in order
to doits thing. These files can get very large (several megabytes) and use up a lot of disk space.
If disk space is a problem, you might want to turn off incremental linking. Otherwise, it’s
probably just as well to leave incremental linking on.

- results in slightly larger executable sizes. Before you ship your final
product you should do a Build All with the Use incremental linker
option turned off.

More on Projects 373 |

The Show warnings option tells C++Builder to display any linker warnings in the Code
Editor message window.

The Link debug version of VCL option allows you to link to the version of VCL that is built
with debug information. This will allow you to step into the VCL source code while
debugging your application.

NoTE Stepping into VCL code is not generally a fruitful endeavor. This is

- particularly true if you are not an experienced programmer. Any
problems you are experiencing in your application are almost certainly
in your code and not in the VCL code. There are times when stepping
into the VCL source code is useful, but it has been my experience that
those times are infrequent. Remember, also, that VCL is written in
Object Pascal, so if the VCL source looks like a foreign language, it is.

Stack Sizes
The Stack sizes section allows you to set the minimum and maximum stack sizes for the
project. It is not usually necessary to change these settings.

The Directories/Conditionals Page

The Directories/Conditionals page of the Project Options dialog box is where you set the
directories that your project uses to find things like library files and headers. You can also set
the directory where you want the compiler to put the output files. (See Figure 10.11.) The
fields on this page are described in the following sections.

Figure 10.11. Pt Dyaca _—
. : x :
The Directories/ I e L e e |
Conditionals page. packpen [T e S e 3
iy P TR = :'
[
Famwlid an
ot e | I IEEE I e e |
I~ Delk [] s | aa |

| 374

Day 10

Include Path

The Include Path setting is the path where C++Builder will look for the headers it needs to
build your application (the .nand .npp files). By default this field is set to point to the various
C++Builder directories where the system headers are found. You should leave this field set
to the default directories unless you have a third-party library that resides in a separate
directory. If you need to add directories to the Include Path field, you can add them to the
end of the existing directories. Separate each directory with asemicolon and be sure to include
the full path.

Library Path

The Library Path field contains the paths where the C++Builder library files (.1ib) can be
found. As with the Include Path field, you can add directories by separating each with a
semicolon.

Do not remove the list of default directories in either the Include Path

‘fm or Library Path fields. If you need to modify these fields, add directo-
= = & ries to the end of the directories listed, but do not delete any of the

WARNING default directories. If you remove the default directories, your applica-

tion will not compile.

Conditional Defines

The Conditional defines field is used to specify any #defines that you want to add at the
project level. For example, to add support for the Trace and warn diagnostic macros you
would add this text to the Conditional Defines field:

__TRACE;__ WARN

Note that each #define is separated by a semicolon.

Pascal Unit Aliases
The Pascal Unit Aliases field associates a Pascal unit name with a specific C++ header file. The
aliases are separated by a semicolon.

More on Projects 375 |

The C++Builder Code Editor

There is no question that C++Builder is highly visual in nature. That’s one of the great things
about programming with it. Still, any program of any significance will have a great deal of
code that must be written by hand. After you get the user interface part of your application
written with C++Builder’s impressive visual tools, you'll likely spend a long stretch with the
C++Builder Code Editor. The Code Editor has some features you'll learn to appreciate once
you discover them.

In this section you will learn about

O Basic editor operations

O Specialized editor features

O The Code Editor speed menu
O Changing the editor options

NoOTE The C++Builder Code Editor allows you to choose from four
keyboard-mapping configurations: Default, IDE Classic, BRIEF, and
Epsilon. The rest of this chapter assumes Default keyboard mapping.
If you are already familiar with one of the other keyboard-mapping
configurations, you can ignore any references to specific keystrokes.

Basic Editor Operations

I’m going to assume that you know enough to be able to enter and delete text; highlight text
with the mouse; cut, copy, and paste; and so on. | won’t spend any time going over things

at that level.
NoTE If you have a lot of time in the pilot’s seat writing code, you may be a
- heavy keyboard user. If that is the case, you will likely use the keyboard
—

shortcuts for simple things like cutting, copying, and pasting. If you are
not as experienced with the keyboard (or you just prefer using the
mouse), you may want to customize your C++Builder speedbar to add
speed buttons for operations like cutting, copying, and pasting.
Whichever method you choose, you will probably get lots of practice—
if you are anything like me, you will do a lot of cut, copy, and paste
while writing your programs.

| 376

Day 10

NoOTE The gutter can be annoying at times. If you accidentally click on the
- gutter when trying to select text or place the cursor, you will find that a
— breakpoint is set on that line. Click the gutter again to clear the
breakpoint.

When it comes right down to it, the C++Builder Code Editor is a typical code editor. It
features syntax highlighting, which makes it easy to identify keywords, strings, numeric
constants, and comments at a glance. We’ll look at setting the editor preferences a little
later on.

The Code Editor isa tabbed window. You can open as many editor windows as you like; each
will be represented by a tab along the top of the editor window. The tab will display the name
of the file. Toswitch toasource file, simply click on the tab corresponding to the file you want
to view. If more tabs exist than can be displayed at one time, scroll buttons will appear so that
you can scroll among the tabs.

The status bar at the bottom of the Code Editor gives status information (obviously). The
current line number and the cursor position on the line are reported in the left panel of
the status bar. If the file has changed since it was last saved, the status bar will say modified
in the center panel of the status bar. The right panel of the status bar shows the current mode,
either Insert or Overwrite. If the file has been set to read-only, this panel will say Read on1y.

Theeditor window hasa left margin that is called the gutter. The gutter is used to display icons
at different stages of the development process. For example, when you set a debugger
breakpoint (discussed tomorrow), a red stop-sign icon is placed in the gutter. When you set
abookmark (discussed in justabit), an icon representing the bookmark is placed in the gutter.

Opening and Saving Files

There’s nothing too mysterious about opening and saving files in the Code Editor. It should
be pointed out, though, that there is a difference between opening a project and opening a
source file. When you choose File | Open Project from the main menu, you are prompted
for the name of a project file (.mak) to open. When you choose File | Open from the main
menu, you can open any text file. (You can also open a form file, but that’s a different
discussion.) Both the Open and Open Project menu items have corresponding speedbar
buttons.

More on Projects 377 |

NoTE If you open a source file (.cpp) that is the source code unit for a form,
> C++Builder will open the source file in the Code Editor and will also
open the form in the Form Designer.

You can open multiple files at one time. To open multiple files, choose the files you want to
open in the Open dialog box and click OK. Each file selected will be loaded, and a tab for
each file will be placed at the top of the editor window.

Tip You can also use drag-and-drop to open files. For instance, you can
choose a file (or a group of files) in Explorer, drag it onto the Code
"ﬁ Editor, and drop it. The file will be opened in the Code Editor.

Tosave afile, choose File | Save or File | Save As from the main menu or type Ctrl+S on the
keyboard. If the file has not been previously saved, the Save As dialog box will appear, and
you can enter a filename at that time.

Highlighting Text
Although text highlighting is basic text editor stuff, | thought it wouldn’t hurt to remind you
of a couple basic highlighting techniques you can use in the C++Builder Code Editor.

To highlight a short block of text, you can use the mouse to drag across any text you want
to highlight. After you’ve selected the text, you can cut, copy, or paste as needed. To highlight
longer blocks of code, you can use the click+Shift+click method. First, click at the beginning
of the block you want to highlight. Next, hold the Shift key on the keyboard, and then click
again at the end of the block. All text between the starting point and the ending point is
highlighted.

Another useful feature is the capability to quickly select an individual word. To select a
keyword, function name, or variable, just double-click on the word. Now you can perform
any editing operations you want with the highlighted word.

| 378

Day 10

TP To select a single line of code with the mouse, click at the beginning of
the line and drag straight down to the beginning of the next line. To

"ﬁ highlight a single line of code with the keyboard, first press the Home

key to move to the beginning of the line and then use Shift+down-
arrow key to highlight the line.

There are dozens of keyboard combinations that can be used to highlight text and do other
editing chores. For a complete list of all the keyboard shortcuts available, consult the
C++Builder online help.

TP As you program you often add, delete, or move blocks of text. Some-
times you will need to indent an entire block of code. At other times

"'ﬂ you will need to un-indent (outdent?) an entire block of code. To

indent a block of code, highlight the lines that you want to indent and
then press Ctrl+Shift+l on the keyboard. The entire block will be
indented. To un-indent a block of code, press Ctrl+Shift+U on the
keyboard.

Undo

The Code Editor has a virtually limitless number of undo levels (32,767 by default).
Normally, you can only undo commands up to the last time you saved a file. By changing
the editor options, you will be able to undo past commands even after saving the file. I'll talk
about editor options and preferences later in the chapter, in the section titled “Changing the
Editor Options.”

In general, it pays to remember this simple maxim: “Undo is your friend.”

Find and Replace

Find and Replace are used fairly heavily in programming. Find might be used to find a specific
piece of code or a specific variable in your code. Replace might be used to change a variable’s
name or to change the name of a function. The possibilities are endless.

The C++Builder Find and Replace dialog boxes implement more or less standard find-and-
replace operations. To bring up the Find dialog box, choose Search | Find from the main

More on Projects 379 |

menu or press Ctrl+F. To invoke the Replace dialog box, choose Search | Replace from the
menu or press Ctrl+R. Figure 10.12 shows the C++Builder Replace dialog box. With acouple
of obvious exceptions, the Find dialog box contains the same options.

Figure 10.12. S ——

1 e i st = =
T_he Replace Text U= |
dialog box. bl T

" L e P Torsa)

] T R st

T 3k s

= ot i

i B

b Ll

1 abarind e L

o | et | e |

For the most part, the options on the Find and Replace dialog boxes do exactly what they
indicate. If you choose the Case sensitive option, you need to type in the search text exactly
as it appears in the source file.

The Whole words only option requires a word of explanation. C++ code is, obviously, not
plain text. Take the following line, for instance:

Memo->Caption = GetCaption();

In this case neither Memo, caption, NOr Getcaption could be considered a whole word because
they are surrounded by special C++ syntax characters. If you search for the word memo and have
the Whole words only option on, the Find operation will ignore syntax characters and will
still find memo in this line.

The Regular expressions option requires explanation as well. When this option is on, you can
use special wildcard characters when doing searches. For a complete description of the
wildcard characters, see the C++Builder online help under the topic Regular Expressions.

When replacing text, it is safest to leave on the Prompt on replace option. When you do a
Replace All operation with this option on, the editor highlights each found word and prompts
you whether to replace it. It is easy to miscalculate the results of a Replace All operation, so
always use Replace with care. Even then, it still pays to remember that maxim: “Undo is your
friend.”

The rest of the Find and Replace options are self-explanatory and therefore don’t need
additional mention.

| 380 Day 10
NoTE C++Builder comes with a utility that allows you to search for text
> across source files. The utility is called grep (for Global Regular

Expression Print) and can be found in the cBuilder\Bin directory. This
command-line program is a powerful search utility. Unfortunately
C++Builder does not integrate grep into the IDE as Borland C++ does.
Still, you can run grep from the command line or search various online
sources for a host of third-party Windows-based grep tools.

Getting Help

One of the most useful features of the Code Editor isits integration with the C++Builder help
system. Just place the editor cursor over a C++ keyword, a VCL property or method, or any
other C++Builder-specific textand press F1. If a help topic for the text under the cursor exists
in the C++Builder help files, WinHelp will run with the appropriate page showing. I1f no help
topic exists for the selected text, an error message will be displayed. This feature is extremely
useful when you can’t remember how to use a particular aspect of C++Builder, C++, or VCL.
Help, as they say, is just a keystroke away.

Specialized Editor Features

The C++Builder Code Editor has a few features that are extremely useful when you are
writing a lot of code. They are explained in the following sections.

Using Bookmarks

You can set bookmarks in your code to temporarily mark your place in a source file. For
example, you often have to temporarily leave a block of code you are working on to review
previously written code or to copy code from another location. By dropping a bookmark at
that point in your code before running off to do your other work, you can return to that
section of code with asimple keystroke. You can have up to 10 bookmarks set atany one time.

Tosetabookmark at a particular location, press Ctrl+Shift and the number of the bookmark
to set. For example, to set bookmark O (the first bookmark), place the editor cursor at the
location you want to mark and then press Ctrl+Shift+0. When you set a bookmark, an icon
is placed in the Code Editor gutter to indicate that a bookmark exists on that line. The icon
shows the number of the bookmark. Figure 10.13 shows the Code Editor with a bookmark
dropped on a line.

More on Projects 381 |

Figure 10.13.
The Code Editor with
a bookmark set.
A1] dEEE. Clies 1Deh TR =B
l. LEEEA |4
[Th s ebad e

To return to the bookmark, press Ctrl plus the number of the bookmark to which you want
to return. Using the same example, you would type Ctrl+0 to go back to the bookmark. To
clear abookmark, place the editor cursor anywhere on the line containing the bookmark and
again press Ctrl+Shift+0.

NoTE Bookmarks can be set for each file you have open in the Code Editor.

- For instance, you can have bookmark 0 set in one source file and
another bookmark 0 set in another source file. This means that
bookmarks cannot be found across source files. If you set bookmark 0
in unit1.cpp, you cannot press Ctrl+0 from unit2.cpp and expect to be
taken to the bookmark in unit1.cpp.

To illustrate the use of bookmarks, do the following:

1. Open any source file in the Code Editor.

2. Scroll almost to the bottom of the file and click on a line of code.

3. Press Ctrl+Shift+0 to set a bookmark. The bookmark icon shows in the Code
Editor gutter.

4. Press Ctrl+Home to move to the top of the source file.

5. Now press Ctrl+0 to jump back to the bookmark. The Code Editor changes to

show the line of code where the bookmark was set, and the cursor is placed exactly
where it was when you set the bookmark.

6. Type Ctrl+Shift+0 again to clear the bookmark. The bookmark is cleared, and the
bookmark icon disappears from the Code Editor gutter.

Bookmarks are temporary. When you close the source file and reopen it, the bookmark is not
preserved.

| 382

Day 10

Incremental Search
You can use the incremental search option to quickly find ashort series of characters. To start
an incremental search, choose Search | Incremental Search from the main menu or press
Ctrl+E on the keyboard. To understand how the incremental search works, it is easiest to do
an exercise. Do the following:

1.

Create a new text file from the Object Repository. (It doesn’t matter whether you
currently have a project open.)

. Type the following text:

Learning to write Windows
programs a bit at a time
is not so bad. Isn't it
time you got back to work?

Move the cursor back to the top of the file (Ctrl+Home).

Press Ctrl+E to start the incremental search. You will be searching for the word
back. Note that the Code Editor status bar says searching for:.

Type a b on the keyboard. The letter b in the word bit is highlighted. Hmmm...
that’s not what you are looking for.

Now type an a on the keyboard. The next occurrence of ba is found, this time in
the word bad. That’s still not what you are looking for.

Type a c on the keyboard. The letters bac in the word back are highlighted. Now
type a k. The Code Editor status bar now says searching for: back and the word
back is highlighted. Congratulations, you found what you were looking for!

Press Esc (or Enter) on the keyboard to stop the incremental search. Close the text
file without saving it.

That’s all there is to it. The incremental search is handy when you’re searching for short
amounts of text.

Tip If you make a mistake when typing in the characters while doing an

~a

incremental search, you can use the Backspace key to remove the last
character typed from the search string.

Finding Matching Braces

As you have seen, C++ code can often get pretty convoluted when you start nesting if
statements, if-else pairs, and so on. To tell the truth, it’s easy to get lost. The Code Editor
has a feature to help you find a brace that matches the brace the cursor is currently on. To

More on Projects 383 |

find a matching brace, place the cursor before a brace (it doesn’t matter if it’s the opening or
closing brace). Now press Ctrl+[on the keyboard. The cursor jumps to the brace that matches
the brace you started on. Press Ctrl+[again, and the cursor jumps back to where you started.
Getting lost in the maze of braces in a long series of if statements is still a possibility, but at
least now you know how to find your way out again.

The Code Editor Speed Menu

Like most of the different windows you encounter in C++Builder, the Code Editor has its
own speed menu. The Code Editor speed menu can essentially be broken down into two
parts: editor items and debugger items. | will leave the debugger items of the speed menu for

tomorrow when I discuss debugging, but I'll go over the editor items on the speed menu now.
Table 10.2 contains a list of the speed menu items that pertain to the editor, along with a

description of each.

Table 10.2. The Code Editor speed menu items.

ltem

Description

Swap Cpp/Hdr Files

Close Page

Open File At Cursor

New Edit Window

If the header file corresponding to the current source
file is not opened in the Code Editor, choosing this
menu item opens the header file, creates a new tab for
it, and changes focus to that window. Choosing this
option when both the .cpp and .n files are open
switches focus back and forth between the two files.

Closes the active page in the edit window. If the file on
the page has been modified since it was last saved, you
will be prompted to save the file.

Opens the file under the cursor. This option has an
effect only when the text under the cursor represents a
source code file. For example, if you had a header
included with #include "myclass.h", you could place
the cursor over the filename and choose this menu item
to open the file. The file will be placed in a new editor
window, and focus will be set to the window.

Opens a new copy of the Code Editor. This is conve-
nient if you want to compare two source files side-by-
side.

continues

| 384

Day 10

Table 10.2. continued

ltem

Description

Topic Search

View As Form

Read Only

Message View

Properties

Displays the help topic for the item under the cursor (if
it can be found). Same as pressing F1 on the keyboard.

If the active source unit in the Code Editor has a
corresponding form, choosing this option will switch
from the Code Editor to the Form Designer where the
form will be displayed. (Same as pressing F12.)

Toggles the currently active file between read-only and
read/write mode. When set to read-only, the file
cannot be modified, although text can be selected and
copied to the Clipboard. The status bar displays Read
Only to indicate that the file is read only. When the
file is closed and reopened, it is again in read/write
mode.

Displays or hides the C++Builder message window.
The message window automatically appears when there
are compiler or linker errors or warnings, but can be
specifically shown or hidden with this command.

Displays the Environment Options dialog box so that
the editor options can be set.

Depending on the current state of the Code Editor and the particular type of file open, some
of the items in Table 10.2 may be disabled at any given time.

Changing the Editor Options

The editor options occupy three pages of the Environment Options dialog box. To view this
dialog box, choose Options | Environment from the main menu.

Tip

You can also choose Properties from the Code Editor speed menu to
"ﬂ view the editor options. The difference with this method is that only
the three pages pertaining to the editor options will be displayed in the
Environment Options dialog box.

The three pages of the Environment Options that are specific to the Code Editor are the
Editor, Display, and Colors pages. We’'ll examine these pages next.

More on Projects 385 |

The Editor Page
The Editor page of the Environment Options dialog box allows you to control how the editor
works for you. As you can see from Figure 10.14, there are a lot of options available on this

Page.
Figure 10.14. = =
The Editor page of the [|
. . [| Ty p— |
Environment Options P
dialog box. [P i
I sl dens T P%IT el et £
I gl I Pormitay ke
M Ldrais (SRt
7 B e wsreic [
I e S nke P by o e
ﬁl—--ril E Erwow vl el ey s
(- | st [T =)
ok v |- -
ks bt Tt BT =l
[] cem | ox |

At the top of the page is a combo box labeled Editor SpeedSetting. You can choose Default
keymapping, IDE Classic, BRIEF emulation, or Epsilon emulation from the combo box. If
you change the setting in this combo box, the Editor Options will change to reflect the
defaults for the type you chose.

NoTE If you are new to programming or if you have been using other Borland

> compilers using the Default keymapping, you don’t have to worry
about what you are missing. For those of you who are accustomed to
years of using a particular type of editor, you will be glad to know that
you can still use the keyboard shortcuts and editor options you know
and love by simply changing the Editor SpeedSetting on this page and
on the Display page.

Toward the bottom of the screen you will see the Block indent and Tab stops fields. You can
use these two fields to change the amount by which code is indented when you block indent
orwhenyou tab to the next tab stop. Block indenting is discussed in the section “Highlighting
Text.”

| 386

Day 10

Norte Real programmers use tab stops of either two or three characters. (I use
_— two-character tabs.)

Figure 10.15. T |
The Display page.

The Undo limit of 32,767 is probably sufficient for most needs (I hope!), so | doubt you’ll
feel the need to modify that setting. The Syntax extensions field allows you to select the types
of files for which syntax highlighting will be applied. For example, you probably don’t want
syntax highlighting applied to regular text files (. txt) that you open in the Code Editor, so
that file type is not listed by default.

In the middle of the Editor page, you will find a whole gaggle of editor options from which
to choose. Because there are so many options available, and because it is difficult to determine
exactly which of the available options are the most important, I'll refer you to the C++Builder
online help. Simply press F1 while on this page or click the Help button and you will have
explanations of each of the editor options you see on this page. As with some of the other
options you looked at today, you can probably feel comfortable in accepting the C++Builder
defaults. (Except for the tab stops and block indent!)

The Display Page

The Display page of the Environment Options dialog box has additional options from which
you can choose. These options pertain to the actual display of the text in the Code Editor
window. (See Figure 10.15.)

Vot | Dl etens |
Limadonr el i sl .

T S g e L feepm migw s
B Caas ke = I Soors m il iowr

P i mpbs g

e

A e e o

Lol E L]

[o | ocws | ue |

In the Display and file options section, you will find the BRIEF cursor shapes option. Turn
on this option if you want the horizontal cursor in the editor window rather than the vertical
cursor. Check the Create backup file option if you want C++Builder to create a backup file
every time you save your file or your project. Backup file extensions begin with atilde (~). For
instance, the backup file for a source file called MmyApp.cpp would by myApp . ~cp.

More on Projects 387 |

NoTe | usually get fed up with all those backup files cluttering up my project
_— directories and turn off file backups. Suit yourself.

The Zoom to full screen option controls how the Code Editor acts when maximized. If this
option is on, the Code Editor will fill the entire screen when maximized. When this option
is off (the default), the top of the Code Editor window will stop at the bottom of the
C++Builder main window when maximized. In other words, the C++Builder main window
will always be visible when the Code Editor is maximized if this option is off.

You can also choose whether your editor windows have a visible right margin. The right
margin is not binding—you can still type text beyond it—but it gives you a visual cue that
your lines might be getting too long.

You can also change the Code Editor font and point size. A combo box is provided for you
to choose these options. Only fixed-space screen fonts are listed; proportional and printer
fontsare not. Choose the typeface and point size that best suit your needs. A preview window
is provided so that you can see how the font you have chosen will look.

The Colors Page

The Colors page of the Environment Options dialog box allows you to fully customize the
Code Editor’s window and syntax highlighting options. (See Figure 10.16.)

Figure 10.16. I |
The Colors page in the | i {51
. . =TT =l
Environment Options ol Y ey
dialog box. el | | | B
SR | | (e
- AN
e [[P
li]: E 1‘;:;!‘:;.-:I:-:I-:"':.:!-.ﬁl. RELICE "ﬂ
[] cme | i |

At the top of the page is the Color SpeedSetting combo box. This combo box gives you four
predefined color schemes from which to choose. You can choose one of these color schemes
or use one of them as a base for creating your own color scheme.

| 388

Day 10

The Colors page is very easy to use. At the bottom of the page is a text window that contains
sample code. If you click on one of the key elements of the code, that element will be selected
inthe Elementslist box, and its current settings will be displayed on the Color grid. To change
the foreground, background, and text attributes for that element, simply choose the settings
you like. For example, keywords are displayed in bold text with a black foreground and a
white background (assuming the Default color scheme). To change the keywords to green,
bold text, click on the void keyword in the sample code window and then change the
foreground color to green. The text colors in the sample window change to reflect the new
color you have chosen. Continue changing colors as desired until you have the example
window just the way you want it. When you click OK, the Code Editor will change to the
new colors you have chosen.

Summary

Today was one of those days when you learned a lot about the kinds of things that often get
overlooked. I hope you picked up some tips that you can use as you work with C++Builder
projects and the C++Builder Code Editor. You also got an explanation of what some of the
project and editor options are for. Even if it didn’t make much sense to you now, this chapter
is something you can refer to at a later date.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q When | use the Project Manager window, the units in my project seem to
alternate between bold and normal text. Why is that?

A Any units that have changed and that have not yet been saved show up in bold text
in the Project Manager window. Units that are up-to-date (that do not need to be
saved) are shown in normal text.

Q Whenever | try to change the name of my project source code unit in the
Project Explorer, it reverts back to its original filename. Why is that?

A You cannot change the filenames of source code units through the Project Ex-
plorer. You can only change those objects in the Project Explorer that have a Name
property. In other words, you can only change the names of forms and compo-
nents. To change a source code filename, choose File | Save As from the Code
Editor main menu.

More on Projects 389 |

Q When I start my application, my main form isn’t displayed, but instead one of
my dialog boxes is displayed. What gives?

A You have accidentally set the main form for the application to be the dialog form.
Go to the Project Options dialog box, click on the Forms tab, and select your main
form from the Main Form combo box on the top of the page. Run your program
again, and the main form will be displayed as you would expect.

Q All those project compiler and linker options confuse me. Do | need to know
about each of those options to write programs with C++Builder?

A No. The default project options work well for almost all C++Builder applications.
At some point you may get further into the mysteries of the compiler and linker,
and at that time you can learn more about the project options. Until then, don’t
worry about them.

Q When my application is minimized, the icon and caption do not match what |
set up in my application’s main form. Why not?

A Setting the icon and caption of the main form does not affect the way your
application is displayed when minimized. To set the caption and icon for the
application, go to the Project Options dialog box, choose the Application page, and
supply the application name and icon.

Q Can I open several source files at one time in the Code Editor?

A Yes. You can either choose File | Open and select multiple files to open, or you can
select a group of files in Windows Explorer and drop them on the Code Editor.

Can | find and replace a variable name across all my source files?

No. You will have to open each source file and execute the Replace dialog box in
each source file. You can, however, use the F3 key to repeat the last find or replace
command. Remember not to change any C++Builder-generated variable names.

Q I find that 32,767 undo levels is not enough for my needs. What do you
suggest?

A Don’t quit your day job.

> O

1. How can you quickly switch between a unit’s form and source code when working
with C++Builder?

2. If you remove a file from your project via the Project Manager, is the file removed
from your hard drive?

3. How do you set the main form for an application?
4. What does it mean if you do not have C++Builder auto-create forms?

| 390

Day 10

10.

What'’s the minimum amount of memory your computer should have before you
turn on the option to cache pre-compiled headers?

What is the significance of generating debug information for your application?

If you do not specify an Output Directory in the Project Options, where will
C++Builder create your .exe file?

What is the keyboard shortcut for saving a file in the Code Editor?

How do you set a bookmark in an editor window? How many bookmarks are
available?

How do you set a file to read-only in the Code Editor?

Exercises

1.

Create a new application. Display the Project Manager. Click the Add Unit button
to add a new unit to the project. Navigate to the
\CBuilder\Examples\Apps\Contacts directory and choose the file called
contacts.cpp. Click OK to add the file to the project.

Remove the contacts.cpp unit from the project in Exercise 1.

. Open the scratchpad project. Change the main form to the AboutBox form. Close

the Project Options dialog box and run the program. The About box will be
displayed when the program starts. Close the About box to end the program and
change the main form back to the scratchrad form.

. Open the richedit application that is supplied with C++Builder. Go to the Project

Options dialog box and confirm that the Optimization setting on the C++ page is
set to Optimize for Speed. Do a Build All to build the program. Check the size of
the produced .exe. Go back to the Project Options dialog box and change the
optimization to Optimize for Size. Again do a Build All. Check the final .exe size
again to compare the difference. How much smaller or larger was the .exe when
the compiler optimized for size?

Open any source file in the Code Editor. Set four bookmarks at random locations
in the source file. Jump from bookmark to bookmark and observe the effects in the
Code Editor. When you are finished, clear all the bookmarks.

Open the scratchpad project (or any other project) and switch to the Code Editor.
View the project’s main form source file. Choose Search | Find from the main
menu. Type click in the Text To Find box and click OK to find the first occur-
rence of the word Click.

Press F3 several times to repeat the search until the entire file has been searched.

More on Projects 391 |

8. Continuing with the same project, press Ctrl+Home to go to the top of the file.
Press Ctrl+R to display the Replace Text dialog box. Type ciick in the Text To
Find box and Test in the Replace With box. Turn off the Prompt On Replace
option and then click the Replace All button. Scroll through the file to view the
results. Important: Select Edit | Undo to undo the Replace operation. Close the
project without saving (just to be safe).

9. Open a file in the Code Editor. Choose Properties from the Code Editor speed
menu. Change the syntax highlighting for strings, integers, and floats to dark gray.
Click OK to view the results in the Code Editor.

10. Change the colors back to the default color scheme.

Week 2

Day

Using the Debugger

by Kent Reisdorph

A major feature of the C++Builder IDE is the integrated debugger. The
debugger allows you to easily set breakpoints, watch variables, inspect objects,
and much more. The IDE debugger allows you to see what is going on in your
program while the program runs. Using the debugger you can quickly find out
what is happening (or not happening) with your program as it runs. A good
debugger is vital to efficient program development.

Debugging is one of those things that is easy to overlook. Don’t tell anyone, but
when | first started Windows programming (not with C++Builder, of course)
I ignored the debugger for along time because | had my hands full just learning
how to do Windows programming. When | found out how valuable a good
debugger is, | felt a little silly for cheating myself out of the use of that tool for
so long. Oh well, live and learn. You have the luxury of learning from my
mistakes. Today you will learn about what the debugger can do for you.

| 394 Day 11

The IDE debugger provides several features and tools to help you in your debugging chores.
Specifically, the following features are discussed here:
O Debugger menu items
Using breakpoints
Inspecting variables with the Watch List
Inspecting objects with the Debug Inspector
Other debugging tools
Stepping through code
Debugging techniques

O oo o g

Why Use the Debugger?

The quick answer is that the debugger helps you track down bugs in your program. But the
debugging process is not just for finding and fixing bugs—it is a development tool as well.
As important as debugging is, many programmers don’t take the time to learn how to use all
the features of the IDE debugger. As a result, they cost themselves time and money, not to
mention the frustration of a bug that can’t easily be tracked down.

You begin a debugging session by starting up the program under the debugger. You
automatically run your program using the debugger when you click the Run button on the
speedbar. You can also choose Run | Run from the main menu or press F9 on the keyboard.

The Debugging Menu Items

Before we get into the details of the debugger, let’s go over the menu items that pertain to
the debugger. Some of these menu items are on the main menu under Run, and others are
on the Code Editor speed menu. Most of these items are discussed in detail as you work
through the chapter, so I'll just touch on them here so that you are at least familiar with them.
Table 11.1 lists the Code Editor speed menu items that are specific to the debugger and their
descriptions.

Table 11.1. The Code Editor speed menu’s debugging items.

Item Shortcut Description

Toggle Breakpoint F5 Toggles a breakpoint on or off for the current
line in the Code Editor.

Run to Cursor none Starts the program (if necessary) and runs it

until the line in the editor window contain-
ing the cursor is reached.

Using the Debugger 395 |

Item Shortcut Description

Inspect Alt+F5 Opens the Debug Inspect window for the
object under the cursor.

Go To Address none Allows you to specify a specific address in the
program at which program execution will
resume.

Evaluate/Modify none Allows you to view and/or modify a variable
at runtime.

Add Watch at Cursor Ctrl+F5 Adds the variable under the cursor to the
Watch List.

The Run item on the main menu has several selections that pertain to running programs
under the debugger. The Run menu items allow you to start a program under the debugger,
to terminate a program running under the debugger, and to specify command-line
parameters for your program, to name just a few. Some of the items found here are duplicated
on the Code Editor speed menu. Table 11.2 shows the Run menu items that control
debugging operations.

Table 11.2. The Run menu’s debugging items.
Item Shortcut Description

Run F9 Compiles the program (if needed) and
then runs the program under the
control of the IDE debugger. Same as
the Run speedbar button.

Parameters none Allows you to enter command-line
parameters for your program.
Step Over F8 Executes the source code line at the

execution point and pauses at the next
source code line.

Trace Into F7 Traces into the function at the
execution point.

Trace to Next Source Line Shift+F7 Causes the execution point to move to
the next line in the program’s source
code.

Run to Cursor F4 Runs the program and pauses when

program execution reaches the current
line in the source code.

continues

| 396 Day 11

Table 11.2. continued
Item Shortcut Description

Show Execution Point none Displays the program execution point
in the Code Editor. Scrolls the source
code window if necessary. Only works
when program execution is paused.

Program Pause none Pauses program execution as soon as
the execution point enters the
program’s source code.

Program Reset Ctrl+F2 Closes down the program and returns
to the C++Builder IDE.

Inspect none Displays the Inspect dialog box so that
you can enter the name of an object to
inspect.

Evaluate/Modify Ctrl+F7 Displays the Evaluate/Modify dialog
box.

Add Watch Ctrl+F5 Displays the Watch Properties dialog
box.

Add Breakpoint none Displays the Edit Breakpoint dialog

box to allow you to add a breakpoint.

You will use these menu items a lot when you are debugging your programs. You should also
become familiar with the various keyboard shortcuts for the debugging operations.

Now let’s take a look at breakpoints and how you use them in your program.

Breakpoints

When you run your program from the C++Builder IDE it runs at full speed, stopping only
where you have set breakpoints.

A breakpoint is a marker that tells the debugger to pause program execution when
. that point in the program is reached.

Setting and Clearing Breakpoints

To set a breakpoint, click in the editor window’s gutter to the left of the line on which you
want to pause program execution. A stop sign icon appears in the gutter, and the entire line

Using the Debugger 397 |

is highlighted in red. To clear the breakpoint, click on the stop sign icon and the breakpoint
is removed. You can also press F5 or choose Toggle Breakpoint from the Code Editor speed
menu to toggle a breakpoint on or off.

NoOTE A breakpoint can only be set on a line that generates actual code.

- Breakpoints are not valid if set on blank lines, comment lines, or
declaration lines. You are not prevented from setting a breakpoint on
these types of lines, but the debugger will warn you about the fact that
you have set a breakpoint on a line that contains no code. The follow-
ing lines will produce an invalid breakpoint warning:

// this is a comment followed by a blank line

int x; // a declaration
Breakpoints can be set on return statements or on the closing brace of
a function.

Ifyou setabreakpoint onan invalid line, the debugger will warn you that the breakpoint may
not be valid, but it won’t do that until you attempt to run the program. Figure 11.1 shows
the warning message that is displayed when the debugger detects an invalid breakpoint.

Figure 11.1.
A warning message for A e i
an invalid breakpoint. w | w |[CEE

If you click the Yes button in the warning dialog box, the program will run and any invalid
breakpointswill be ignored. If you click No, you will be taken back to the Code Editor, where
you can clear the invalid breakpoint. Any invalid breakpoints will be highlighted in green,
and the stop sign icon in the gutter will be grayed out.

When the program is run under the debugger, it behaves as it normally would—until a
breakpoint is hit, that is. When a breakpoint is hit, the IDE is brought to the top, and the
breakpoint line is highlighted in the source code. If you are using the default colors, the line
where the program has stopped is highlighted in red because red indicates a line containing
a breakpoint.

-5‘ The execution point indicates the line that will be executed next in your source code.

| 398 Day 11

As you step through the program, the execution point is highlighted in blue and the editor
window gutter displays a black arrow glyph. Understand that the line highlighted in blue has
not yet been executed but will be executed when program execution resumes.

Once you have stopped at a breakpoint, you can view variables, view the call stack, browse
symbols, or step through your code. After you have inspected any variables and objects, you
can resume normal program execution by clicking the Run button. Your application will
again run normally until the next breakpoint is encountered.

NoTE It's common to detect coding errors in your program after you have

- stopped at a breakpoint. If you change your source code in the middle
of a debugging session and then choose Run to resume program
execution, the IDE will prompt you with a message box asking whether
you want to rebuild the source code. If you choose Yes, the current
process will be terminated, the source code will be recompiled, and the
program will be restarted.

The problem with this approach is that your program does not get a
chance to close normally, and any resources currently in use might not
be freed properly, which could result in memory leaks. While Windows
95 and Windows NT handle resource leaks better than 16-bit Win-
dows, it is still advisable to terminate the program normally and then
recompile.

The Breakpoint List Window

The C++Builder IDE keeps track of the breakpoints you have set in the Breakpoint list
window. To view the breakpoint list, choose View | Breakpoints from the main menu. The
Breakpoint list window will be displayed, as shown in Figure 11.2.

Figure 11.2.
The Breakpoint list E"' - u" o n
window. o i

The Breakpoint list window has four columns. The first column, Filename, shows the
filename of the source code unit in which the breakpoint is set. The second column, labeled
Line, shows the line number on which the breakpoint is set. The Condition column shows

Using the Debugger 399 |

any conditions that have been set for the breakpoint, and the Pass column shows the pass

count conditio
conditions are

n that has been set for the breakpoint. (Breakpoint conditions and pass count
discussed later, in the section “Conditional Breakpoints.”) You can size the

columns by dragging the dividing line between two columns in the column header.

NoTe

»
———

The Pass column does not show the number of times the breakpoint
has been hit; it only shows the pass condition that you have set for the
breakpoint.

The Breakpoint list window actually has two speed menus. Table 11.3 lists the speed menu
items you will see if you click the right mouse button while over the Filename column. I will

refer to this as

the window’s primary speed menu.

Table 11.3. The primary Breakpoint list speed menu.

Item Description

Enable Enables or disables the breakpoint. When a breakpoint is disabled,
its glyph is grayed out in the Breakpoint list window. In the source
window the breakpoint glyph is also grayed, and the breakpoint line
is highlighted in green to indicate that the breakpoint is disabled.

Delete Removes the breakpoint.

View Source Scrolls the source file in the Code Editor to display the source line

Edit Source

Properties

containing the breakpoint. (The breakpoint list retains focus.)

Places the edit cursor on the line in the source file where the
breakpoint is set and switches focus to the Code Editor.

Displays the Edit breakpoint dialog box.

Tip

~8

To quickly edit the source code line on which a breakpoint is set,
double-click on the breakpoint in the Filename column of the
Breakpoint list window. This is the same as choosing Edit Source from
the Breakpoint list speed menu.

The secondary
cursor is over

speed menu can be displayed by clicking the right mouse button while the
any part of the Breakpoint list window except in the Filename column.

This speed menu has items called Add, Delete All, Disable All, and Enable All. These items
are self-explanatory, so | won’t bother to comment on them.

| 400 Day 11
NoOTE In my opinion, the Add speed menu item is not very useful. It is much
- easier to set a breakpoint in the Code Editor than it is to add a
— breakpoint via the Add command in the Breakpoint list window.
Breakpoints can be enabled or disabled any time you like. You might disable a breakpoint
if youwant to run the program normally for awhile; you can then enable the breakpoint again
later without having to re-create it. Breakpoints that are disabled are ignored by the debugger.
If you want to modify a breakpoint, you can choose Properties from the primary Breakpoint
list speed menu. When you do, the Edit breakpoint dialog box is displayed. (See Figure 11.3.)
Figure 11.3.
The Edit breakpoint S
dialog box. e
(3T]
T N |

The primary reason to modify a breakpoint is to add conditions to the breakpoint.
(Conditional breakpoints are discussed in the section “Conditional Breakpoints.”) The New
button in the Edit breakpoint dialog box works in a curious way. If you click the New button,
a breakpoint will be set on the line containing the cursor in the Code Editor. This is not a
particularly useful feature, so you can happily ignore the New button in the Edit breakpoint
dialog box.

To remove a breakpoint, you can select the breakpoint in the breakpoint list and then press
the Delete key on the keyboard. To delete all breakpoints, right-click the mouse to bring up
the secondary speed menu and then choose Delete All from the speed menu.

Now let’s take a look at the two breakpoint types.

Simple Breakpoints

Breakpoints can be either simple or conditional. A simple breakpoint will cause program
execution to be suspended whenever the breakpoint is hit. When you initially set a
breakpoint, it is, by default, a simple breakpoint. Simple breakpoints don’t really require
additional explanation. When the breakpoint is encountered, program execution pauses at
the breakpoint, and the debugger awaits your bidding. There’s no need to belabor the point.

Using the Debugger 401 |

Conditional Breakpoints

In the case of a conditional breakpoint, program execution is paused only when predefined
conditions are met. To create a conditional breakpoint, first set the breakpoint in the Code
Editor. Then choose View | Breakpoints from the main menu to display the Breakpoint list
dialog box. Right-click on the breakpoint for which you want to set conditions and choose
Properties from the speed menu. When the Edit breakpoint dialog box is displayed, set the
conditions for the breakpoint.

Conditional breakpoints come in two flavors. The first type is a conditional expression
breakpoint. Enter the conditional expression in the Condition field of the Edit breakpoint
dialog box (refer to Figure 11.3). When the program runs, the conditional expression is
evaluated each time the breakpoint is encountered. When the conditional expression
evaluates to true, program execution is halted. If the condition does not evaluate to true, the
breakpoint is ignored. For example, look back at the last breakpoint in the Breakpoint list
window shown in Figure 11.2. This breakpoint has a conditional expression of x > 1e. If at
some point in the execution of the program x is greater than 1e, the program will stop at the
breakpoint. If x is never greater than 1e, program execution will not stop at the breakpoint.

The other type of conditional breakpoint is the pass count breakpoint. With a pass count
breakpoint, program execution is paused only after the breakpoint is encountered the
specified number of times. To specify a pass count breakpoint, edit the breakpointand specify
a value for the Pass count field in the Edit breakpoint dialog box. Figure 11.2 shows a
breakpoint that has the pass count set to 3. Program execution will stop at this breakpoint
the third time the breakpoint is encountered.

NoTe The pass count is 1 based and not 0 based. As indicated in the previous
> example, a pass count of 3 means that the breakpoint will be valid the

— third time the breakpoint is encountered by the program.

Use pass count breakpoints when you need your program to execute through a breakpoint
a certain number of times before you break to inspect variables, step through code, or
something similar.

NoTE Conditional breakpoints will slow down the normal execution of the

- program because the conditions need to be evaluated each time a
conditional breakpoint is encountered. If your program is acting sluggish
during debugging, check your breakpoints in the breakpoint list and see
whether you have conditional breakpoints that you have forgotten about.

| 402

Day 11

Tip The fact that conditional breakpoints slow down program execution
can work in your favor at times. If you have a process that you want to

"'ﬁ view in slow motion, set one or more conditional breakpoints in that

section of code. Set the conditions so that they will never be met and
your program will be slowed down but not stopped.

The Run to Cursor Command

There is another debugging command that deserves mention here. The Run to Cursor
command (found under the Run menu on the main menu and on the Code Editor speed
menu) will run the program until the source line containing the editing cursor is reached. At
that point the program stops as if a breakpoint were placed on that line.

Run to Cursor acts like a temporary breakpoint. You can use this command rather than
setting a breakpoint on a line that you want to immediately inspect. Just place the cursor on
the line you want to break on and choose Run to Cursor (or press F4). The debugger behaves
exactly as if you had placed a breakpoint on that line. The benefit is that you don’t have to
clear the breakpoint after you are done debugging that section of code.

Watching Variables

So what do you do once you've stopped at a breakpoint? Usually you will stop at a breakpoint
to inspect the value of one or more variables. You might want to ensure that a particular
variable has the value you think it should have, or you may not have any idea what a variable’s
value is and simply want to find out. The Watch List allows you to do that.

The function of the Watch List is pretty basic: It allows you to inspect the values of variables.
This simple but essential feature often gets overlooked because a lot of programmers don’t
take the time to learn to use the debugger fully. You can add as many variables to the Watch
List as you like. Figure 11.4 shows the Watch List during a debugging session.

Figure 11.4. I —
The Watch List ki _
In action. r:.h" E R

fou: sz

Using the Debugger 403 |

The variable name is displayed in the Watch List followed by its value. How the variable value
is displayed is determined by the data type of the variable and the current display settings for

that watch item.

The Watch List Speed Menu

As with every other C++Builder window discussed up to this point, the Watch List has its
own speed menu. (You'd be disappointed if it didn’t, right?) Table 11.4 lists the Watch List
speed menu items and their descriptions.

Table 11.4. The Watch List speed menu.

Item Description

Edit Watch Allows you to edit the watch item with the Watch Properties
dialog box.

Add Watch Adds a new item to the Watch List.

Enable Watch Enables the watch item.

Disable Watch Disables the watch item.

Delete Watch Removes the watch item from the Watch List.

Enable All Watches
Disable All Watches
Delete All Watches

Enables all items in the Watch List.
Disables all items in the Watch List.
Deletes all items in the Watch List.

The Edit Watch and Add Watch speed menu items both invoke the Watch Properties dialog
box, so let’s look at that next.

Using the Watch Properties Dialog Box

You use the Watch Properties dialog box when you add a watch and when you edit a watch.
Figure 11.5 shows the Watch Properties dialog box as it looks when you're editing a variable

called puff.

Figure 11.5.
The Watch Properties
dialog box.

[T pr =]
Bumsiemes [T e [P rpbed
—- - e .

Ll ye— 1" ey Py 1" Sy

i ™ P o

[=] cmet | s |

| 404

Day 11

NoOTE If you just add the array name to the Watch List, all elements in the

Figure 11.6.

The Expression field at the top of the Watch Properties dialog box is where you can enter a
variable name to edit or to add to the Watch List. If you are adding a watch by selecting it
from the Code Editor window, thisfield will already be filled in (see the section titled “Adding
Variables to the Watch List™). This field is a combo box that can be used to select previously
used watch items.

You use the Repeat count field when you are inspecting arrays. For example, let’s say you have
an array of 20 integers. To inspect the first 10 ints in the array, you would enter the first
element of the array in the Expression field (array[e], for example) and then enter 10 in the
Repeat count field. The first 10 elements of the array would then be displayed in the Watch
List.

> array will be displayed. Use the Repeat count field when you want to
view only a specific number of array elements.

You use the Digits field only when inspecting floating-point numbers. Enter the number of
significant digits you want to see when your floating-point number is displayed in the Watch
List. The displayed digits are rounded, not truncated. Another field in this dialog box, the
Enabled field, determines whether the watch item is currently enabled.

The remainder of the Watch Properties dialog box is comprised of the various display options
from which you can choose. Each data type has a default display type, and that type will be
used if you choose the Default viewing option. The Default viewing option is the default.
(Sorry, there’s just no other way to say it!) Select one of the other viewing options to view the
data in other ways. Figure 11.6 shows the Watch List window with two variables added and
with various viewing options applied. The buff variable isa character array, and the i variable
is an integer.

The Watch List with TS AUTH . K. M T3, T, . O B

TiE i Al 3 B T PSR

various viewing R B
options. n

To modify a watch item, click on the item in the Watch List and choose Edit Watch from
the Watch List speed menu. The Watch Properties dialog box is displayed, and you can edit
the watch item as needed.

Using the Debugger 405 |

Tip The fastest way to edit a watch item is to double-click on its name in

‘ﬁ the Watch List.

Enabling and Disabling Watch Items

As with breakpoints, individual items in the Watch List can be enabled or disabled. When
a watch item is disabled, it is grayed and its value shows <disabled>.

To disable a watch item, click on the item’s name in the Watch List and choose Disable
Watch from the Watch List speed menu. To enable the watch item again, choose Enable
Watch from the speed menu.

NoTE You may want to disable watch items that you don’t currently want to

- watch but that you will need again later. Having a number of enabled
items in the Watch List can slow down program execution during the
debugging process because all the variables in the Watch List must be
updated each time a line of code executes. It doesn’t take many items in
the Watch List to slow things down, so don’t forget to delete or disable
any unused items in the Watch List.

Adding Variables to the Watch List

You can add variables to the Watch List in one of several ways. The quickest is to click on
the variable name in the editor window and then select Add Watch at Cursor from the Code
Editor speed menu or press Ctrl+F5. The Watch Properties dialog box will be displayed,
where you can either select watch options for the watch item or click OK (or press Enter) to
accept the defaults. The watch item will be added to the Watch List.

To add a variable to the watch without first locating it in the source file, choose Run | Add
Watch from the main menu. When the Watch Properties dialog box comes up, enter the
name of the variable you want to add to the Watch List and click OK.

NoTE Although you can add a class instance variable to the Watch List, the
> displayed value will not likely be useful. In the case of pointers to

— objects, this is useful for determining if the pointer is valid, but often

| 406 Day 11

you want to view the details of the class. For viewing all the data
members of a class, you should use the Debug Inspector, which I'll
discuss in a minute.

Using the Watch List

When a breakpoint is hit, the Watch List will display the current value of any variables that
have been added to the Watch List. If the Watch List is not currently open, you can choose
View | Watches from the main menu to display it.

Under certain circumstances, a message will be displayed next to the variable rather than the
variable’svalue. If, forinstance, avariable is out of scope or not found, the Watch List displays
Undefined symbol 'x' next to the variable name. If the program is not running or if the
program isnot stopped at a breakpoint, the Watch List will display [process not accessible]
for all watch items. A disabled watch item will have <disabled> next to it. Other messages
may be displayed depending on the current state of the application or the current state of a
particular variable.

As | said yesterday, you may on occasion see variable has been optimized and is not
available in the Watch List. This is one of the minor disadvantages to having an optimizing
compiler. If you need to inspect variables that are subject to optimization, either declare the
variable with the vo1atile keyword or turn off the Register Variables option on the Compiler
page of the Project Options dialog box. After debugging, remove the vo1atile modifier from

the variable.
Tip The Watch List can be used as a quickie decimal/hexadecimal con-
verter. To convert a hex number to decimal, choose Run | Add Watch
"'ﬁ from the main menu. Type the hexadecimal number in the Expression

field and click OK. Both the hexadecimal number and the decimal
equivalent will be displayed in the Watch List. To convert a decimal
number to hex, perform the same procedure, except click the Hexadeci-
mal radio button to change the display type to hexadecimal. Because
the Expression field will accept a mathematical expression, you can also
use the Watch List as a hex calculator. You can even mix hexadecimal
and decimal values in the same expression.

Using the Debugger 407 |

The Watch List is a simple but vital tool when you’re debugging applications. To illustrate
the use of the Watch List, perform this exercise:

1.

4. Save the project. Name the unit pbgmain and the project bebugTst.

10.
11

12.

Create a new application and place a button on the form. Change the button’s name
property to watchstn and its caption to watch Test. Change the Name property of
the form to pebugmain and the caption property to whatever you like.

Double-click the button to display its onc1ick handler in the Code Editor. Enter
the following code at the cursor:

String s;

int x = Width;

s = String(x);

int y = Height;

X *=y;

s = String(x);

X /= y;

s = String(x);

Width = x;

Height = vy;

Choose Options | Project from the main menu and click on the C++ page. Change
the Optimization option to None. (See the note in the section titled “Stepping

Through Your Code” for an explanation of this step.)

Set a breakpoint on the second line in the code you entered in step 2. Run the
program.

Click the Watch Test button. The debugger will stop at the breakpoint.

Add watches for the variables s, x, and y. (Initially the variables x and y will display
the message variable 'x' has been optimized, but don’t worry about that.)
Arrange the Watch List and Code Editor so that you can see both.

Switch focus to the Code Editor and press F8 to execute the next line of code. That

line is executed, and the execution point moves to the next line. The variable x now
shows a value (probably 43s).

Continue to step through the program by pressing F8. Watch the results of the
variables in the Watch List.

When the execution point gets to the last line in the function, click the Run button
on the speedbar to continue running the program.

Click the Watch Test button as many times as you want to get a feel for how the
Watch List works. Experiment with different watch settings each time through.

| 408 Day 11

NoTE The code in this example gets the values for the width and Height

> properties of the form, performs some calculations, and then sets width
and Height back to where they were when you started. In the end
nothing changes, but there is a good reason for assigning values to the
width and Height properties at the end of the function.

If you don’t actually do something with the variables x and y, you
wouldn’t be able to inspect them because the compiler will optimize
them and they won’t be available to watch. Essentially, the compiler
can look ahead, see that the variables are never used, and just more or
less discard them. Putting the variables to use at the end of the function
avoids having them optimized away by the compiler.

I've brought this up several times now, but | want to make sure you
have a basic understanding of how an optimizing compiler works.
When you start debugging your applications, this knowledge will help
avoid some frustration when you start getting those variable 'x' has
been optimized and is not available messages in the Watch List.

The Debug Inspector

Simply stated, the Debug Inspector allows you to view data objects such as classes and
components (components are really just classes, anyway). You can also inspect simple data
types such as integers, character arrays, and so on, but those are best viewed with the Watch
List. The Debug Inspector is most useful in examining classes and structures.

NorTe You can use the Debug Inspector only when program execution is

> paused under the debugger.

To inspect an object, click on the object’s name in a source file and choose Inspect from the
Code Editor speed menu (or press Alt+F5). You could also choose Run | Inspect from the
main menu.

Using the Debugger 409 |

NoTe When you use Inspect from the speed menu or use Alt+F5, the Debug
> Inspector automatically displays the object under the cursor. If you
choose Run | Inspect from the main menu, you will first get a dialog
box that asks you to input the object to inspect. Enter a variable name
and click OK. The Debug Inspector will be shown with the requested
object displayed.

The Debug Inspector window comes up with details of the object displayed. If the object is
a simple data type, the Debug Inspector window shows the current value (in both decimal
and hex for numeric data types), and the status line at the bottom displays the data type. For
example, if you inspect an integer variable, the value will be shown and the status bar will say
int. At the top of the Debug Inspector is a combo box that initially contains a description
of the object being inspected.

If you are inspecting a class, the Debug Inspector will look something like Figure 11.7.

Figure 11.7. m
The Debug Inspector bl staim S
inspecting a form e = o
class Chinklil |
’ T bl | mmani "
L T ey | mmaTE
Formg T Pondeioons P]
Py [Pown Ty |2 Py it
LE 3 | | o
=E‘H—Iﬂr :ih— e
Py PP Py -
Formn [Foem e
i, (i s |0 i it
Foasa. [MToater, (H P e
P TP Flisbdods _|:|r--|ﬂ—-u-.-
s At
e T— %

In order to better understand the Debug Inspector, do the following:

1. Load the pebugTst program you created earlier (if it’s not already loaded).
2. Set a breakpoint somewhere in the watchstnciick() function.

3. Run the program and click the Watch button. The debugger stops at the
breakpoint you have set.

| 410 Day 11

4. From the main menu, choose Run | Inspect. The Inspect dialog box is displayed.
5. Type this in the Expression field and click OK.
6. The Debug Inspector is displayed.

NoTE You can only inspect this from within a class member function. If you
- happen to set a breakpoint in a regular function and then attempt to
— inspect this, you will get an error stating that this is an invalid
symbol.

As you can see, when you're inspecting classes the Debug Inspector window contains three
pages. The Data page shows all the data members for the class. The list of data members is
hierarchical. The first items listed are the data items that belong to the immediate class. The
next group of items listed is the data members of that class’s immediate ancestor class—in
this case, TForm. If you scroll down through the Debug Inspector list, you will see that
following the TForm data members are the data members for the Tscro11ingwinControl class
(TForm’s immediate ancestor) and on and on.

By using the arrow keys to move up and down through the list of data members, you can tell
at a glance what each data member’s type is (look at the status bar). To further inspect a data
member, double-click on the value column on the line showing the data member. A second
Debug Inspector window is opened with the selected data member displayed. You can have
multiple Debug Inspector windows open simultaneously.

Norte The Debug Inspector has a lot of information to load, so scrolling

> down through the list of items can be slow on some systems.

The Methods page of the Debug Inspector displays the class’s methods. As with the data
members discussed earlier, the list of methods is hierarchical. The first methods are those in
the immediate class, followed by the methods in the ancestor classes. In some cases the
Methods tab is not displayed (when inspecting simple data types, for instance).

The Properties page of the Debug Inspector shows the properties for the class being
inspected. Inspecting properties through the Debug Inspector is very slow if you
are inspecting a VCL inherited class. Most of the time you can accomplish the same thing
by inspecting the data member associated with a particular property on the Data page instead.
Inspecting the data member is much faster than inspecting properties.

Using the Debugger 411 |

NoOTE The Methods page and the Properties page of the Debug Inspector are
- only available when you’re inspecting a class. WWhen you're inspecting
simple data types, only the Data page will be displayed.

The Debug Inspector speed menu has several items that allow you to work with the Debug
Inspector and the individual variables. For example, instead of opening a new Debug
Inspector window for each object, you can choose Descend from the speed menu to replace
the current object in the Debug Inspector window with the object under the cursor. This
method has an added advantage: The IDE will keep a history list of the objects you inspect.
Togo back toan object you have previously inspected, just choose the object from the combo
box at the top of the Debug Inspector window. Choosing one of the objects in the history
list will again show that object in the Debug Inspector window.

The Change item on the Debug Inspector speed menu will allow you to change the value of
avariable. Change data members with care. Changing the wrong data member or specifying
avalue that is invalid for that data member could lead to your program crashing. The Inspect
item on the speed menu allows you to open a second Debug Inspector window with the item
under the cursor displayed. The New Expression speed menu item allows you to enter a new
expression to inspect in the Debug Inspector.

The Show Inherited item on the Debug Inspector speed menu isa toggle that determines how
much information the Debug Inspector should display. When the Show Inherited option is
on, the Debug Inspector shows all data members, methods, and properties of the class being
inspected as well as the data members, methods, and properties of all ancestor classes. When
the Show Inherited option is off, only the data members, methods, and properties of the class
itself are shown. Turning off this option can greatly speed up the Debug Inspector since it
does not have as much information to display.

Tip If you have a class data member and you don’t remember that data
member’s type, you can click on it when stopped at a breakpoint and
"'ﬂ press Alt+F5 to display the Debug Inspector. The status bar at the

bottom of the Debug Inspector window will tell you the data type of
the variable. This also works for Windows and system #defineS such as
HINSTANCE, HWND, DWORD, and so on.

| 412

Day 11

Other Debugging Tools

Figure 11.8. T T - |
The Evaluate/Modify 1 5
dialog box. r -
o
s s
. —-— =
ar T
])

Tip The Evaluate/Modify dialog box can be used as a quickie calculator.
You can enter hex or decimal numbers (or a combination) in a math-
"'ﬂ ematical formula and have the result evaluated. For instance, if you
type

C++Builder has some additional debugging tools to aid you in tracking down bugs. Some of
these tools are, by nature, advanced debugging tools. Although the advanced debugging tools
are not as commonly used as the other tools, they can be very powerful in the hands of an
experienced programmer.

Evaluate/Modify

The Evaluate/Modify dialog box allows you to inspect the current value of a variable and to
modify the value of a variable if you want. Using this dialog box, you can test for different
outcomes by modifying a particular variable. Thisallows you to play a what-if game with your
program as it runs. Figure 11.8 shows the Evaluate/Modify dialog box inspecting an integer
variable called x.

The Evaluate/Modify dialog box works similarly to the Watch List or the Debug Inspector.
If you click on a variable in the source code and choose Evaluate/Modify from the Code
Editor speed menu, the variable will be evaluated. If you want to enter a value that is not
currently showing in the source code, you can choose Run | Evaluate/Modify from the main
menu and then type a variable name to evaluate.

The Evaluate field is used to enter the variable name or expression you want to evaluate.
When you click the Evaluate button (or press Enter), the expression will be evaluated and the
result displayed in the Result field.

0x400 - 256

Using the Debugger 413 |

in the Evaluate field and press Enter, the result, 76s, will be displayed
in the Result field.

You can also enter logical expressions in the Evaluate field and have the
result shown in the Results field. For instance, if you entered

20 * 20 == 400

the Result field would show true. The only problem with this scenario
is that the program must be stopped at a breakpoint for the Evaluate/
Modify dialog box to function.

If you want to change the value of a variable, enter a new value for the variable in the New
Value field and click the Modify button. The variable’s value will be changed to the new value
entered. When you click the Run button to restart the program (or continue stepping), the
new value will be used.

NoOTE The Evaluate/Modify dialog box does not update automatically when
- you step through your code as do the Watch List and Debug Inspector.
If your code modifies the variable in the Evaluate/Modify dialog box,
you must click the Evaluate button again to see the results. A typical
interaction with this dialog box would be to evaluate a variable or
expression and then immediately close the Evaluate/Modify dialog box.

View Call Stack

While your program is running, you can view the call stack to inspect any functions your
program called. From the main menu, choose View | Call Stack to display the Call stack
window. This window displays a list of the functions that were called by your program and
the order in which they were called. The most recently called function will be at the top of
the window. The functions listed will be a combination of functions in your program, VCL
methods, and functions contained in Windows DLLs. Figure 11.9 shows the call stack as it
appears after you run the bebugTst program you created earlier in the chapter.

| 414 Day 11

Figure 11.9.
(0t i ik B P L R T B e]
The Ca” StaCk L n - Chomamtic [P bk = Fom st
[re— -
window. BRTIED ; L ABYWITE RRRAR FOUTL T LA

Tl T PN DUEREY P TR B

2l

In this case the first function on the list is TMainForm: :watchBtnclick (). Following that you
see calls to some VCL functions and a couple calls to functions (unnamed) in the Windows
KERNEL32.DLL. Remember that the functions are listed in reverse order—the function
executed last shows up first in the call stack list.

Double-clicking onafunction name in the Call stack window will take you to the source code
line for that function if the function is in your program. In case of functions in Windows
DLLs, the Call stack window will contain just an address and the name of the DLL. Double-
clicking on a listed function that is contained in a DLL will display the CPU View window
(the CPU View is discussed in the next section).

NoOTE If you have linked to the debug version of VCL, double-clicking on a

- VCL method in the Call stack window will display the VCL source
code for that method. If you have not linked to the debug version of
VCL, double-clicking on a VCL method in the Call stack window will
display the CPU View.

Viewing the call stack is most useful after a Windows Access Violation error. By viewing the
call stack, you can see where your program was just before the error occurred. Knowing where
your program was just before it crashed is often the first step in determining what went wrong.

Tip If the call stack list contains seemingly nonsensical information, it
could be that the call stack was corrupted. A corrupted call stack is
w usually an indicator of a stack problem. This is not as likely to occur in

a 32-bit program as it is in a 16-bit program, but it can still happen.

Using the Debugger 415 |

CPU View

The CPU View allows you to view your program at the assembly level. Obviously this is an
advanced debugging feature. Using this view you can step into or over instructions one
assembly instruction ata time. You can also run the program to a certain assembly instruction
just as you can run the program to a certain source line with the regular debugger. The CPU
View window has five panes: the disassembly pane, the register pane, the flags pane, the raw
stack pane, and the dump pane. Each pane has a speed menu associated with it. The speed
menus provide all the functions necessary to utilize that pane. The CPU View requires a
knowledge of assembly language to be used effectively. To display the CPU View, choose
View | CPU from the main menu.

The Go to Address Command

The Go to Address command is also an advanced debugging tool. When your program
crashes, Windows displays an error message showing the address of the violation. You can use
the Go to Address command to attempt to find out where in your program the crash
occurred. When you get an Access Violation error from Windows, you will see a dialog box
similar to the one in Figure 11.10.

Figure 11.10.
A Windows message o — = i
box reporting an S |

access violation.

When you see this error message, write down the address at which the violation occurred and
then choose Search | Go to Address from the main menu to display the Go to Address dialog
box. Enter the address you just wrote down in the Address field of the Go to Address dialog
box. When you click OK, the debugger will attempt to find the source code line where the
error occurred. If the error occurred in your code, the cursor will be placed on the line that
generated the error. If the error occurred somewhere outside of your code, you will get a
message box saying that the address could not be found. As | said, this is an advanced
debugging tool and is something you might never use.

| 416

Day 11

Stepping Through Your Code

NoOTE The compiler optimization option is set to Optimize for Speed by

Stepping through code is one of the most basic debugging operations, yet it still needs to be
mentioned here. Sometimes we fail to see the forest for the trees. (Just like sometimes authors
of programming books fail to include the obvious!) Reviewing the basics from time to time
may reveal something you were not previously aware of.

When you stop at a breakpoint, you can do many things to determine what is going on with
your code. You can set up variables to watch in the Watch List, inspect objects with the Debug
Inspector, or view the call stack. You can also step through your code to watch what happens
to your variables and objects as each line of code is executed. As you continue to step through
your code, you will see that the line in your source code that will be executed next is
highlighted in blue. If you have the Watch Listand Debug Inspector windows open, they will
be updated as each line of code is executed. Any changes to variables or objects will be
immediately seen in the watch or inspector window.

- default. (Optimization options were discussed yesterday.) When the
compiler optimizes code, it “rearranges” your source code using
mysterious means about which mere mortals can only speculate. (Your
source code is not rearranged per se, but the resulting assembly code
may not exactly match the source code as it appears in your source file.)
The end result is that you end up with a program that runs faster—and
that is, of course, a good thing.

This benefit does come at a cost, however. Earlier | discussed the fact
that variables can be optimized by the compiler making them unavail-
able for inspection, and this is one of the disadvantages of using
optimizations.

Another interesting side effect of using optimizations is that your code
gets rearranged as | mentioned. The net result of this rearranging is that
when you step through your code, the execution point may not proceed
sequentially from line to line as you might expect. Rather, the execu-
tion point appears to jump around in your source and may even land
on asingle line of code multiple times.

This is all perfectly normal, but it can be disconcerting when you are
just learning to use the debugger. If you prefer to see the execution
point proceed sequentially through your code, turn off optimizations
while debugging. Turn optimizations back on again for your final

Using the Debugger 417 |

builds. Remember that when you change optimization settings, you
need to do a Build All for all modules to be rebuilt using the new
settings.

The IDE debugger has two primary stepping commands that you can use to aid in your
debugging operations: Step Over and Trace Into. Step Over means to execute the next line
in the source code and pause on the line immediately following. Step Over is sort of a
misnomer. The name would seem to indicate that you can step over asource line and the line
would not be executed. That is not the case, however. Step Over means that the current line
will be executed and any functions that that source line calls will be run at full speed. For
instance, let’s say you have set a breakpoint at a line that calls another function in your
program. When you tell the debugger to step over the function, the debugger executes the
function and stops on the next line. (Contrast this with how Trace Into works, which you'll
learn about in a minute, and it will make more sense.) To use Step Over to step through your
program, you can either press F8 or choose Run | Step Over from the main menu.

NoOTE As you step through various source code units in your program, the
Code Editor automatically loads and displays the needed source units if
they are not already open.

The Trace Into command allows you to trace into any functions that are encountered as you
step through your code. Rather than executing the function and returning to the next line
as Step Over does, Trace Into will place the execution point on the first source code line in
the function being called. You can then step through that function line by line using Step
Over or Trace Into as necessary. The keyboard shortcut for Trace Into is F7.

After you have inspected variables and done whatever debugging you need to do, you can
again run the program at full speed by clicking the Run button. The program will then
function as normal until the next breakpoint is encountered.

TP If you have enabled the Link Debug Version of VCL Linker option,
when you encounter a VCL method Trace Into will take you into the
"'"ﬂ VCL source code for that method. Once in the VCL source, you can

inspect whatever variables you need to see. If you turn on this option,
you must do a Build All for it to take effect. As I said earlier, stepping
into the VCL source is of doubtful benefit to most programmers.

| 418

Day 11

NoOTE When you are stepping through a function, the execution point will

Another, less frequently used, debugging command is Trace To Next Source Line (Shift+F7
on the keyboard). You will not likely use this command a lot, particularly not until you get
more familiar with debugging and Windows programming in general. Some Windows API
functions use what is termed a callback function. This means that the Windows function calls
one of your functions to perform some action. If the execution point is on a Windows API
function that uses a callback function, using Trace To Next Source Line will jump the
execution point to the first line in the callback function. The effect is similar to that of
Trace Into, but the specific situation where Trace To Next Source Line is used is altogether
different. If that doesn’t make any sense to you, don’t worry about it. It’s not important for
what you need to learn today.

- eventually get to the closing brace. If the function you are stepping
through returns control to Windows when it finishes, pressing F8 when
on the closing brace will exit the function and will return control to the
program being debugged. There is no obvious indication that the
program is no longer paused because the IDE still has focus. This
behavior can be confusing the first few times you encounter it unless
you are aware of what has happened. To switch back to your program,
just activate it like you would any other program (click on its glyph on
the Windows taskbar or use Alt+Tab).

As | said, stepping through your code is a basic debugging technique, but it is one that you
will use constantly while debugging. Of all the keyboard shortcuts available to you in
C++Builder, F7 and F8 should definitely be in your arsenal.

Debugging Techniques

I have touched on a few debugging techniques as we looked at the various aspects of the IDE
debugger up to this point in the chapter. | will mention a few more techniques to make your
debugging tasks easier.

The Diagnostic Macros: TRACE and WARN

Sometimes it is helpful to track your program’s execution. For instance, it would be nice to
have a log file that could be used to log events, such as when your program executes certain
functions. Or maybe you would like to send the value of a variable to a log file so that you
could inspect its value without stopping program execution at a breakpoint. The diagnostic

Using the Debugger 419 |

macros, TRACE and warN, allow you to do exactly that. These macros are convenient debugging
tools that many programmers overlook because of sparse documentation and general lack of
discussion on the subject.

When you use TRACE Or WARN in your programs, the messages produced by these macros go
to a log file called outbbg1. txt. C++Builder automatically creates this text file and displays
itina Code Editor window whenever a TRACE Or wARN statement is encountered. You can then
browse the log file to see what has happened in your program.

NoTE The outpbg1.txt file has a couple interesting characteristics. For

- one, the file is not considered part of the project. When you do a Save
All, the outbbg1. txt file is not saved as the rest of the files in the project
are. Along those same lines, when you close the outbbg1 . txt file, you
are not prompted to save the file. If you want the file saved, you must
specifically do a Save or Save All prior to closing it.

This might seem a little odd, but it makes sense when you think about
it. The log file is almost always used as a temporary debugging tool.
Rarely do you need to save the contents of the log file, so by not
prompting you to save the file, C++Builder saves you the aggravation of
having to deal with another message box.

The TRACE macro simply outputs a line of text to the log file in the Code Editor. For example,
you might have the following code in your Formcreate () function:

void _ fastcall TMainForm::FormCreate(TObject *Sender)

TRACE ("Entering FormCreate()");

// intialization code

TRACE ("Leaving FormCreate()");
}
When this code is executed, two lines will be written to the outdbg1 . txt file. You can view
the messages in the log file at any time—either during program execution or after the program
terminates—simply by clicking on the outpbg1.txt tab in the Code Editor.

NoTe The diagnostic macros make use of C++ streams (remember when we
> used those way back on Day 1, “Getting Your Feet Wet™?). This makes

it possible to create log messages like the following:

TRACE("Varible x = " << x);

This makes it extremely easy to log a wide variety of diagnostic messages.

| 420

Day 11

NoTE If no outbbg1 . txt file appears in the Code Editor, when a TRACE OF WARN

The warn macro is similar to TRACE except that it allows you to introduce conditions—the
message will be output only if the condition is met. The following example sends a message
to the message window only if the variable x is greater than 2ee:

WARN(x > 200, "x = " << x << ": Possible range error");

The warn macro can reduce clutter in your log file by displaying messages only when
necessary.

The diagnostic messages written to the log file include the source code module name, the line
number in the source code, and the specified text. For example, let’s say you had the following
in a source code unit named myApp. cpp:

int x = 100;

TRACE ("x = " << X);
WARN (x == 100, "x is now 100");

The text written to the outdbg1 . txt file would look like this:

Trace MyApp.cpp 18: [Def] x = 100

Warning MyApp.cpp 19: [Def] x is now 100

Asyou can see, the type of message (trace or warning), the source unit name, the line number,
and text are all displayed. You can ignore the [pef] entry in the log message because it has
no meaning in C++Builder (consider it a holdover from Borland C++).

- statement is executed, the outbbg1 . txt edit window will be created and
the text displayed. If an outbbg1. txt file is already displayed in the
Code Editor, any new diagnostic messages are appended to the end of
the existing file.

To use the diagnostic macros you must first enable them by defining __TRAce and __wARN.
You can put the #defines at the top of one of your source files, but it would probably be
better to add them at the project level. To add the #defines at the project level, choose
Options | Project from the main menu. When the Project Options dialog box comes up,
click on the Conditionals/Defines page and enter the following in the Conditional Defines
field:

__TRACE;__ WARN

Note that both defines are proceeded by a double underscore and that they are separated with
a semicolon.

Using the Debugger 421 |

The diagnostic macros are declared in a file called checks.h, so you need to add the line
#include <checks.h>

to your source code as well. If you neglect to include checks . h, you will get a compiler error
on any lines that contain TRACE OF WARN.

Tracking Down GPFs

All Windows programmers have encountered general protection faults and general protec-
tion exceptions while developing their applications. For simplicity, | will refer to both
universally as GPFs.

NoOTE The term GPF is a holdover from 16-bit Windows. Its use is still
prevalent in the 32-bit Windows programming world even though
32-bit Windows actually generates access violation errors rather than
general protection faults.

GPFs can be difficult to track down for beginning and experienced Windows programmers
alike. Often, as programmers gain experience in writing Windows programs, they develop
a sixth sense of sorts regarding locating the cause of GPFs. The following sections describe
some things to look for when trying to track down the elusive GPF. These are not the only
situations that cause a program to crash, but they are some of the most common.

Uninitialized Pointers

An uninitialized pointer is a pointer that has been declared but has not been set to point to
anything meaningful in your program. An uninitialized pointer will contain random data.
Inthe best case it points to some harmless spot in memory. In the worst cases the uninitialized
pointer points to a random memory location somewhere in your program. This can lead to
erratic program behavior because the pointer might point to adifferent memory location each
time the program is run. Always set pointers to nuLL both before they are used for the first
time and after the object pointed tois deleted. If you try to accessanuLL pointer, your program
will GPF, but the offending line in the source code will be highlighted by the debugger, and
you can immediately identify the problem pointer.

| 422

Day 11

Deleting Previously Deleted Pointers

Deleting a pointer that has already been deleted will result in a GPF. The advice given for
working with uninitialized pointers applies here as well: Set any deleted pointers to nuLL or
o. In C++ it is perfectly safe to delete a NuLL pointer. By setting your deleted pointers to NuLL,
you ensure that no ill effects will occur if you accidentally delete the pointer a second time.

Array Overwrites

Overwriting the end of an array can cause a GPF. In some cases the overwritten memory may
not be critical, and the problem might not show up right away, but some time later the
program crashes. When that happens you will likely be looking for a bug at the point where
the program crashed when the actual problem occurred in a completely different part of the
program. In other cases, the memory tromped on is critical, and the program GPFs
immediately. In extreme cases you may even crash Windows. Check all arrays to be sure you
are not overwriting the end of the array.

GPF on Program Termination

When a program GPFs on normal shutdown, it is usually an indication that the stack size
isset too small. Although thisis not likely in a 32-bit program, it could happen under extreme
circumstances. A GPF on program termination can also be caused by deleting an already
deleted pointer, as I've discussed.

Debug Quick Tips

In addition to the many tips offered on the preceding pages, you might want to implement
some of these:

O For quick inspection of a variable without using breakpoints, change the form’s
caption property to display the variable in question. Because placing a Label
component on a form is so easy, you could use a label, too. Change the text in the
label to show the value of a variable or any other information you might want to
display.

O To slow down your program temporarily (possibly to view program effects in slow
motion), enable a conditional breakpoint or a data watch breakpoint. These
breakpoints slow down program execution while they check the condition of the
breakpoint.

O Use the Evaluate/Modify dialog box to temporarily change the value of a variable at
runtime. This will allow you to view the effects that different values have on your
program without recompiling your code each time.

Using the Debugger 423 |

O Ordinarily you cannot use Trace Into with inline functions. To be able to trace
into inline functions, you can turn on the Disable Inline Expansions option. Turn
off the option again before your final build.

O To inspect the class that the debugger is currently stopped in, choose Run | Inspect
from the main menu and enter this in the Expression field.

O Use MessageBeep (-1) as an audible indicator that a certain point in your program
has been reached. This Windows API function beeps the PC speaker when called
with a parameter of -1.

O You can stop an errant debuggee by choosing Run | Program Reset from the main
menu or by pressing Ctrl+F2.

O Use temporary variables to break down long equations or chained function calls so
that you can examine the results in more manageable pieces.

O Use the messageBox () function to display program tracing information.

Summary

Debugging is a never-ending task. Debugging means more than just tracking down a bug in
your program. Savvy programmers learn to use the debugger from the outset of a new project.
The debugger is a development tool as well as a bug-finding tool. After today, you should at
least have a basic understanding of how to use the debugger. You will still have to spend a lot
of time actually using the debugger before you are proficient at it, but you’ve now got a place
to start.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

Q&A

Q My program used to run at regular speed when | ran it from the IDE. Now it’s
as slow as molasses in January. Why is that?

A More than likely you've got either a large number of breakpoints that you have
disabled and forgotten about, or one or more conditional breakpoints in your code.
Go to the breakpoint list and delete any breakpoints you are not currently using.
Also, be sure you do not have a lot of variables listed in the Watch List.

| 424

Day 11

Q

A

> O

I have a variable that | want to view in both decimal and hexadecimal format.
Can | do that with the Watch List?

Yes. First add the variable to the Watch List. When the Watch Properties dialog
box comes up, choose the Decimal viewing option. Now add the variable again,
but this time choose the Hexadecimal viewing option. Both items will be listed in
the Watch List, one in decimal format and the other in hex format.

I’m trying to add the width property of a component on my form to the Watch
List. | get some strange error like, “Pointer to structure required on left side of
something or another.” What am | doing wrong?

You can’t inspect a property of a component using the Watch List. You can,
however, inspect the component using the Debug Inspector and locate the Fwidth
data member rather than the width property. (The Fwidth data member holds the
value of the width property.)

I want to stop at a breakpoint only when a variable reaches a certain value and
after the breakpoint has been hit a certain number of times. Can | do that?

Sure. Enter a conditional expression in the Condition field of the Edit Breakpoint
dialog box and a value in the Pass Count field. When the condition is met for the
number of times indicated by the pass count, the program will pause at the
breakpoint.

I’m stepping through my code, and | get to a function in my program that |
want to debug. When | press F8, the execution point jumps right over the
function instead of going into it. What do | do to get into that function?

When the execution point is on the line where the function is called, press F7
(Trace Into) instead of F8. Now you can step through the function a line at a time.

When | step through my code, the execution point jumps all over the place
rather than proceeding through my code a line at a time. What causes that?

In a word: optimization. If you want to be able to debug your program one source
code line at a time, sequentially, turn off all optimizations and then do a Build All
to rebuild the project.

I step through a function line by line. Sometimes when | get to the closing
brace of the function I press F8 one more time and nothing happens. Why?
Because when that particular function returns, your program has nothing more to
do, so it goes back into its idle state. Essentially, there is no more code to step
through at that point, so the debugger returns control to the program being
debugged.

How do I use the CPU View when debugging?

Just choose View | CPU from the main menu to display the CPU View. Knowing
what to do with the CPU View, however, is another matter entirely!

Using the Debugger 425 |

Quiz

1. How do you set a breakpoint on a particular line of code?

2. What is an invalid breakpoint?

3. How do you set a conditional breakpoint?

4. How can you change the properties of an item in the Watch List?

5. What's the quickest way to add a variable to the Watch List?

6. What tool do you use to view the data members and methods of a class?

7. How do you trace into a function call when stepping with the debugger?

8. How can you change the value of a variable at runtime?

9. What is the difference between the TRAcE and warRn macros?

10. How do you view the output from the TRACE and warRN macros?
Exercises

1. Load the scratchpad program that you created a few days ago. Place breakpoints in
the Fileopenclick() and Filesaveclick() functions. Run the program. When
program execution pauses, inspect the openbialog and savebialog classes, respec-
tively.

2. Continuing with exercise 1, step through the program when you stop at a
breakpoint and examine the program’s operation as you step through the functions.

3. Load the pebugTst program you created earlier in this chapter. Place a breakpoint
in the watchBtnclick () function. Add the s and x variables to the Watch List. Add
each variable to the Watch List four times. Edit each of the watches and change the
display options. Run the program and step through the function to see the effects
in the Watch List.

4. Add a conditional breakpoint to the function in exercise 3. Place it on the line
immediately after the line that reads int x = width. Make the condition x == o
and run the program. What happens?

5. Continuing with exercise 4, edit the breakpoint and change the condition to
x > 400. Run the program. Change the window’s size and click the Watch Test
button. Repeat this process several times, changing the window’s size each time.
What happens?

6. Load any program and switch to the Code Editor. Place the cursor on any line of

code and choose the Run to Cursor item from the Code Editor speed menu.
Experiment with the program until the breakpoint is hit.

| 426 Day 11

7. Again load the pebugTst program you created earlier. Place a breakpoint in the
watchBtnclick() function and run the program. When the breakpoint is hit, use
the Debug Inspector to inspect the watchstn.

8. Write a program that does some simple things when buttons are pressed (it doesn’t
matter what exactly). Place calls to Trace in each function in the program. Run the
program and try each button. Close the program. View the outbbg1 . txt file in the
Code Editor to see the results of the TRAcE macro.

9. Add several war calls to the program created in exercise 8. Run the program and
again view the outbbg1.txt file.

Week 2

Day 12

C++Builder Database
Architecture

by Ken Henderson

Today’s work consists of exploring the C++Builder database component hierar-
chy. I'll discuss in detail the classes that make up the C++Builder database
architecture and point out the key properties, methods, and events of each one. By
the end of the day, you’ll be thoroughly familiar with how the various classes fit
together in the grand scheme of things and how they’re used to build applications.

Specifically, you'll learn

O How the C++Builder database architecture is constructed

Which components are essential to building database applications
The purpose of the Tsession component

TDatabase's key elements

How to use the Tpatasource component

o 0o o d

| 428

Day 12

O The properties, events, and key methods of the TTable, Tauery, and TStoredProc

components

O How to use the TBatchmove component to copy rows and create tables

Some Terms You’ll Need to Know

Throughout this chapter, I'll refer to various elements of the C++Builder database architec-
ture by name when describing them or how they inter-operate with other elements. So, before
we begin, | need to define some terms so that you’ll understand what I’'m saying as we go.
Some of these are C++Builder terms; some are database terms. These may or may not be terms
with which you're already familiar. Table 12.1 summarizes today’s key terms.

Table 12.1. Common C++Builder database access terms.

Term Description

Table A collection of rows (or entities) in a database. For example, you
might construct an 1nvoIce table to store invoice entities or rows.

Row A record or an entity in a table. For example, a cusTomer table
would contain rows of customer data. Each row would contain
information for a different customer.

Column A field or an attribute that’s contained in the rows of a table.

Borland Database
Engine

IDAPI

For example, your 1nvoIce table might contain a
CustomerNumber column. The customerNumber column would be
present in every row in the table.

The set of DLLs and support files that allows C++Builder (and
other Borland products) to access databases. The Borland
Database Engine (BDE) saves much of the work normally
associated with building full-featured database applications by
providing a high-level database API that is consistent across all
the DBMS platforms it supports. This developer-friendly
interface is provided in C++Builder’s database controls so that
you rarely have to work directly with the BDE itself.

Borland’s Independent Database Application Programming
Interface. It’s the interface whereby applications (including
C++Builder apps) talk to the BDE. Because nearly all necessary
IDAPI calls are made for you by C++Builder’s database compo-
nents, you'll rarely write code that directly references IDAPI.
Instead, you'll interact with the methods, properties, and events
of C++Builder’s database components, which, in turn, make the
necessary IDAPI calls.

C++Builder Database Architecture 429 |

Term

Description

BDE Driver

BDE Alias

SQL Links drivers

ODBC drivers

Data access control

A DLL (or set of DLLs) that allows the BDE to communicate
with a particular DBMS platform. The client/server version of
C++Builder includes drivers to connect with Sybase, Microsoft,
Oracle, InterBase, Informix, DB2, Paradox, dBase, and any 32-
bit ODBC data source. C++Builder programs don’t communi-
cate directly with BDE drivers. Instead, they utilize BDE aliases,
which are themselves based on BDE drivers.

A collection of configuration parameters that tells the BDE how
to connect to a given database. Aliases are based on BDE
database drivers. You create aliases using either the BDE
Configuration program or C++Builder’s Database Explorer.
Aliases are usually database specific. For example, you might
create one alias to reference the Microsoft Access Northwind
database and another to reference its Orders database. Both
drivers would be based on the Access ODBC driver because
they both reference Access databases. However, each would
differ in that it would connect to a different Access database.
This is what distinguishes BDE aliases from BDE drivers—a
driver references a particular DBMS platform; an alias refer-
ences a single database on a given DBMS platform.

High-performance database access drivers that the BDE can use
to connect with client/server DBMSs. The client/server version
of C++Builder ships with SQL Links drivers for the Sybase,
Microsoft, Oracle, InterBase, Informix, and DB2 platforms.
Because these drivers are included with C++Builder, you don’t
need to use alternative methods such as ODBC to access these
DBMS platforms, although you still can if you want to.

Database access drivers based on Microsoft’s Open Database
Connectivity specification. C++Builder can use 32-bit ODBC
drivers to connect with database back ends. You set up and
manage ODBC data sources (which are similar to BDE aliases)
via the ODBC Administrator applet in the Windows Control
Panel.

A nonvisual (invisible at runtime) component that provides
database access to your application. Data access controls are
located on the Data Access page of the C++Builder Component
Palette. TDatabase, TTable, and Tbatasource are all data access
controls.

continues

| 430

Day 12

Table 12.1. continued

Term Description

TDataset The C++Builder class that provides access to database tables and
table-like query result sets. Because the TTable, Tquery, and
TStoredProc components indirectly descend from the Tpataset
class, you'll often see me refer to them collectively as Tpatasets.

TTable The C++Builder component that provides access to database
tables. You use TTable’s TableName property to reference the
actual table that you want to access in your database.

TQuery The C++Builder component that allows you to construct,
execute, and process your own SQL queries.

TStoredProc The C++Builder component that allows you to run compiled

Data-aware control

TDatasource

TField

SQL procedures that reside on a database server (also known as
stored procedures).

A visual (visible at runtime) component that uses the data access
provided by your app’s data access controls to allow the user to
see and modify data in a database. Data-aware controls reside
on the Data Controls page in C++Builder’'s Component Palette.
For the most part, you can think of them as “data smart”
versions of the controls on the Palette’s Standard page. TpBGrid,
TDBNavigator, and TDBEdit are examples of data-aware controls.

The C++Builder component that facilitates linking Tpatasets
with data-aware controls. Data-aware components reference
TDatasource COMponents that, in turn, reference Tpataset
controls.

The C++Builder class that provides access to fields in a database
table. C++Builder creates TFie1d descendants such as
TStringField and TIntegerField When you use the Fields
Editor to add field components to a form. TFie1d components
that have been added to a form are owned by the form, not by
their associated Tdataset.

An Overview of the Architecture

C++Builder applications communicate with local and remote databases using the Borland
Database Engine. In the case of local formats such as Paradox and dBase tables, the BDE
makes use of its own, built-in, local DBMS drivers. In the case of remote formats like Oracle

C++Builder Database Architecture 431 |

and Sybase, the BDE communicates with back-end database servers using SQL Links and/
or ODBC drivers. Often these drivers make calls to native driver libraries supplied by the
DBMS vendor. Figure 12.1 illustrates this relationship.

Flgure_ 12_'1' Your application
C++Builder imple-
ments a simple, yet 0
flexible, database- y
access architecture. BDE alias
A
A/
BDE driver
A A
\ A
Native DBMS driver ODBC driver

Within your applications, data-aware controls reference Tpatasource components. Usually,
a given form makes use of only a handful of Tpatasource controls, although it may include
numerous data-aware components. These components reference one or more Tbatasource
controls that, in turn, reference one or more Tpatasets. It’s not unusual for a form to include
just one Tpataset and one Tpatasource. Figure 12.2 illustrates how these elements relate to
one another.

The flexibility inherent in this multilevel architecture makes it quite easy to develop database
applications that are not only robust, but also scalable. Thanks to the separation of the back-
end BDE drivers from your front-end application components, it’s at least theoretically
possible to change an application’s database back end without even recompiling the app. The
architecture’s modularity allows individual pieces of it to be replaced without having to
reengineer it or rebuild applications based on it.

Now that I've given you a broad overview of the architecture, let me make a few general
statements that may help reinforce the concepts I've just discussed. You may be saying, “This
architecture stuff sounds nifty, but how do I use it? How does it apply to me? What does all
this really mean?” If this sounds like you, hopefully the following tips will help crystallize the
discussion thus far.

| 432 Day 12

Figure 12.2.
Database access from

. TDatabase
the perspective of a
C++Builder app.
TStoredProc
TDatasource
TDBGrid TDBEdit TDBListBox

O You do not need to use the Tpatabase component to access databases. The
Tbatabase cOomponent provides some additional features and controls that you may
or may not need, but it’s not required to build C++Builder database applications.

O You will probably not access the Tsession component unless you're developing
multithreaded database applications. A multithreaded application opens multiple
execution “pipelines” simultaneously. This means that several operations can occur
at the same time. Normal database applications are not multithreaded, so, as a rule,
you won’t need to concern yourself with the Tsession component. C++Builder
automatically creates a Tsession (stored in a global variable named session) for
database apps when they start up. This means that for single-threaded apps, you
can just reference the session variable when you need access to Tsession’s proper-
ties or methods.

C++Builder Database Architecture 433 |

O You do not need the Tauery Or TStoredProc COMponents unless you're writing your
own SQL or accessing server-based stored procedures. You can open database tables
in any of the local or remote formats supported by C++Builder using just the
TTable COMponent.

O You'll normally use the TTab1le component to send/receive data from databases. As
mentioned, TTable is the centerpiece of C++Builder’s database access. You use it to
reference database tables and to exchange data with data-aware controls.

O The components on the Data Controls page are visual, data-aware controls—they
allow data to be displayed and allow users to change the data visually. They’re “data
smart” versions of the controls you often see in Windows applications. You'll use
these components to build the user interface of database applications. They interact
with data access controls such as TTab1e to provide users with database access.

O Tpataset descendants (for example, TTable, TQuery, and TstoredProc) retrieve data
from databases, but they cannot supply this data directly to data-aware components
(such as TpbBedit); they need Tbatasource to function as the conduit between them
and your application’s data-aware controls. This means that data-aware compo-
nents such as Tpeedit do not refer directly to the Tpataset that provides their data
access. Instead, they reference a Tbatasource that, in turn, references a Tpataset.

O So, to build a simple data-aware form you need three things: a TTable, a
Tbatasource, and whatever data-aware controls the form requires (TpbBEdit,
TDBMemo, and $o on).

A Tour of the C++Builder Database
Components

Now that you've received a basic overview of the C++Builder database architecture, let’s cover
the components individually. I'll go through C++Builder’s database components one by one
and discuss the key elements of each. I'll build on the general discussion of the database
architecture by giving you a thorough tour of the C++Builder database components that
encompass it.

I've intentionally omitted components that act only as support classes. Ifa class is not actually
a component—that is, if it’s merely an ancestor of a component—I don’t include it. This
includes the Tpataset and TpBDataset classes, for example. They're class ancestors of the
TTable, TQuery, and TStoredProc cOmponents. My emphasis here is on components that you
can manipulate using C++Builder’s visual tools. Although the ancestor class hierarchy is
important, most of the properties, events, and methods you’'ll need to be aware of are
provided in C++Builder’s components by design.

| 434

Day 12

Each component narrative consists of three sections:
O A description of the component, its module, and class ancestor, as well as tables
listing its key properties, methods, and events
O A key elements section
O A tasks section
The key properties, methods, and events tables are by no means exhaustive—see the
C++Builder documentation, or, better yet, the VCL source code, for complete lists of these.

Theideaisto give youathorough baptism into the C++Builder database architecture without
venturing into every nook and cranny of the VCL.

TSession

Module: bs Class ancestor: Tcomponent

Because C++Builder automatically creates a Tsession component for you each time your
application runs, you won’t normally need to create one yourself. This built-in Tsession can
be referenced using C++Builder’s global session variable.

Asarule, youwon’t need more than one Tsession per application. The only exception to this
is when you're building multithreaded database applications. When doing that, you may
need to use Tsession cCOMponents to open extra connections into your server in order to keep
database access in one thread from interfering with that in another. You can drop as many
TSession components as you need onto a form or data module and then utilize them in your
Database and Tbataset components. In a multithreaded database application, you typically
set up one Tsession per thread. Note that C++Builder defines another global variable,
sessions, for tracking multiple session components in a single application. sessions is of
type TsessionList and contains an entry for each session component in the application.

Table 12.2 lists the key properties, Table 12.3 lists the key methods, and Table 12.4 lists the
key events for Tsession.

Table 12.2. Tsession key properties.

Property Description

DatabaseCount Returns a count of the number of active Tpatabases.

Databases Returns the array of active Tbatabases.

Handle Provides access to the BDE handle—used for direct BDE calls.

KeepConnections Determines whether inactive connects are retained.

C++Builder Database Architecture

435 |

Property Description

NetFileDir Specifies the location of PpoxusRs. NET.

PrivateDir Specifies the location of temporary files.

SessionName Specifies the session name to publish to other components.

Table 12.3. Tsession key methods.

Method Function

AddPassword Adds a password to the current session (for Paradox connec-
tions).

CloseDatabase Explicitly closes a Toatabase component.

DropConnections Drops all inactive Tpatabase connections.

FindDatabase Locates a Tpatabase by name.

GetAliasNames Returns the available BDE aliases.

GetAliasParams Returns the parameters for a given alias.

GetDatabaseNames Lists all available aliases, including local ones.

GetDriverNames Lists the available BDE drivers.

GetDriverParams Returns the parameters for a given driver.

GetPassword Prompts for a password; returns true if successful.

GetTableNames Lists all tables in a given database.

GetStoredProcNames Lists all stored procedures in a given database.

OpenDatabase Explicitly opens a Tpatabase.

RemoveAllPasswords Removes all Paradox-related passwords.

RemovePassword Removes a given Paradox-related password.

Table 12.4. Tsession key events.

Event

Catalyst

OnPassword

OnStartup

Occurs when the BDE needs a Paradox table password.
Occurs when the session becomes active.

| 436

Day 12

Key Elements

Tsession is the central control facility for an application’s database connections. Use the
DatabaseCount property to determine the number of active Tpatabases; Use the patabases
property to access them by index.

Similar to the patabase component’s batabaseName property, the session component’s
SessionName property enables you to specify a name to publish to other components. In a
multithreaded application, you would set this property to a name of your choice and then
set the sessionName property of an associated patabase and Tpataset component (a Table,
Query, OF StoredProc) t0 match. By setting sessionName Of @ Database and, say, a Query
component to match the one used in a Tsession, you specify which database connection the
query IS to use. By extension, if you then interact with auery from within a process thread,
you've effectively specified which database connection the thread is to utilize. On some
servers, this is a must because database access in one thread interferes with that of another.

The keepConnections property determines whether inactive database connections are
retained for temporary Tbatabase components. Use bropConnections to drop all inactive
database connections. Keep in mind that if all the current connections to a database server
are inactive and you drop them, you’ll have to log back into the server the next time you need
to access it. There is, however, a way to set KeepConnections t0 false and still avoid being
prompted for a username and password each time the BDE reconnects to your back end.
(This is covered in the discussion of the patabase component later today.)

The location of the BDE network control directory is stored in the NetFileDir property.
Note that this is used for Paradox tables only. The directory path in which temporary files
are located is stored in the pPrivateDir property.

Tasks

Use the Tsessioncomponentwhen you need to get at the internals of the BDE. You can access
information such as alias lists, alias parameters, and driver settings. You can also make direct
BDE API calls using Tsession’s Handle property.

You can use the predefined session instance variable to call Tsession methods. The following
three code excerpts are examples of Tsession method calls.

This method call replaces the contents of ListBox1.Items With the list of currently defined
BDE aliases:

Session->GetAliasNames(ListBox1->Items);

This method call replaces the contents of ListBox1.Items with the list of all BDE and
application-specific aliases:

Session->GetDatabaseNames (ListBox1->Items);

C++Builder Database Architecture 437 |

This tells your application to drop inactive temporary database connections:
Session->KeepConnections=false;

Note that this affects only temporary database connections—those constructed by the BDE
itself, not those you've explicitly created. Databases that have their own Tpatabase compo-
nent use that component’s keepConnections property instead.

The main advantage of dropping inactive database connections is the conservation of
network bandwidth. On local area networks (LANSs), this may be barely perceptible.
However, over wide area networks or dial-up connections, the difference this makes can be
huge. Note that releasing unused database connections also frees up connections on the server
and local PC resources, although this rarely justifies having to log back in to the server
repeatedly.

As mentioned previously, you can set up the onLogin event of a Tbatabase component such
that the user isnot actually required to log in to the server each time the Tpatabase reconnects,
so dropping inactive connections is perhaps not as bad as it sounds. (See the “Tasks” section
for the Tdatabase component for instructions on how to do this.)

TDatabase
Module: B Class ancestor: Tcomponent

Although the explicit use of a Tpatabase component is not required for database access, it does
provide access to certain aspects of database connections that you cannot otherwise reference.
Typically, you have only one Tpatabase per application. C++Builder instantiates a temporary
Tbatabase component internally if you do not include one yourself.

Table 12.5 lists the key properties, Table 12.6 lists the key methods, and Table 12.7 lists the
key events for Tpatabase.

Table 12.5. Tpatabase key properties.

Property Description

AliasName Refers to the BDE alias used.

Connected Reflects whether the Tpatabase is open.
DatabaseName Defines an application-specific database alias.
DriverName Specifies a driver type to use.

KeepConnection Toggles retention of inactive database connections.
LoginPrompt Toggles whether the user is prompted to log in.

| 438 Day 12

Table 12.6. Tpatabase key methods.
Method Function
Open Explicitly opens a database connection.
Close Explicitly close a database connection.

Table 12.7. Tpatabase key events.
Event Catalyst

OnLogin Occurs when a SQL TDatabase IS opened and LoginPrompt iS true.

Key Elements

You use the patabaseName property to define an application-specific, or local, BDE alias.
Once you've specified a name here (it can be the same as the component’s name property, if
you like), you'll see it “published” in the drop-down patabaseName property list of Tpataset
components like TTable and Tauery. You can then select it from those lists to link the
associated Tpataset component with your Tdatabase.

AliasName Specifies the BDE alias you want this Tpatabase to use. It refers to an alias you've
already defined using the BDE Configuration utility and uses it to get default settings. Note
that this property and the privername property are mutually exclusive. Setting one automatically
clears the other.

If you elect not to set AliasName, Use the brivername property to identify a BDE driver that
you want to use instead. This can include the STANDARD driver for local tables (dBASE
and Paradox), or the INTERBASE, SYBASE, ORACLE, or MSSQL drivers for SQL
database servers. As mentioned previously, the privername property and the Aliasname
property are mutually exclusive.

Toggling the connected property opens and closes the database connection. You can set it to
true in the C++Builder Object Inspector to open a database connection while you're
designing. If you open a Tpataset that refers to your Tpatabase, the TbDatabase will
automatically be opened. If you close a Tpatabase that has associated Tpatasets, you'll close
them as well.

Tip Note that if you define an application-specific alias, the form or data
module that contains the associated Tbatabase must be currently loaded
"ﬂ in order for you to open Tpatasets that reference it.

C++Builder Database Architecture 439 |

To avoid logging in each time the database is opened, set the keepConnection property
o true.

If the LoginPrompt property is set to true, the user will be prompted for login information
when connecting to the database server. You can override this using the onLogin event
(detailed in the following section, “Tasks”).

Set the TransIsolation property to specify the transaction isolation level (TIL) to establish on
the database server. The TIL you select affects both your ability to see transactions originated
by other users and their ability to see transactions you initiate.

Tasks
Your application must include a batabase component to do any of the following:

O Establish a permanent database connection

O Establish local, application-specific database aliases

O Change server login parameters

O Manipulate server-based transaction-control mechanisms

Establishing Database Connections

C++Builder applications connect to SQL servers using the SQL Links drivers for the Borland
Database Engine. These drivers provide access to the InterBase, Sybase, Oracle, and
Microsoft DBMSs.

Typically, you'll use the Database Explorer or the BDE Configuration utility to construct
database aliases through which your application will connect to these back-end servers. A
BDE alias is no more than a named parameter list—a set of connection information that the
BDE uses to connect you to your database. Once you've set up an alias, it appears in the
DatabaseName property list of Tbataset components such as TTable and Tauery. YOU can
override the defaults provided by a BDE alias by editing Tpatabase’s Params property. The
settings you make in params override the parameters that are embedded in the alias definition.

Retaining Database Connections

You set the keepConnection property of a Tpatabase component to true to cause database
connections to be retained even when no Tpatasets are open. This is necessary if you want
to avoid having to log in the next time a connection is needed.

| 440 Day 12
NoTe Don’t confuse Tpatabase’s KeepConnections property with Tsession’s
> property of the same name. Tsession’s property affects only temporary

TDatabase COMpoONenNts, not those you create. Setting Tsession’s
KeepConnections property will have no effect on whether your explicit
TDatabase connections are retained.

Changing Server Login Parameters

You can use Tbatabase’s OnLogin event handler to keep the default password dialog box from
displaying when a connection is initiated. onLogin gets passed two parameters: a Tbatabase
component that points to the database the user is trying to log on to, and a Tstrings object
for storing the required login parameters. Here’s the header definition for a typical onLogin
event method handler:

void _ fastcall TForm1::DatabaseiLogin(TDatabase *Database, TStrings
*LoginParams)

From inside the onLogin method handler, you can use Tstrings’s indexed values property
to access individual parameters, like so:

LoginParams->Values["SERVER NAME"] = "VH1";

LoginParams->Values["USER NAME"] = "dave";

LoginParams->Values["PASSWORD"] = "ureally";

To prevent the default login dialog box from displaying, you’ll have to at least set the pAssworD
parameter. You can gather the parameters you need from a dialog box of your own, retrieve
them from another patabase component, or hard-code them—it doesn’t matter. If they leave
your onLogin method handler with values, C++Builder will attempt to use them to establish
a connection.

Application-Controlled Transaction Processing

A transaction is a unit of database work—a set of data modifications that you want to treat
as a single unit. It may consist of a single data-modification command; it may consist of
thousands. When you group a series of data changes together as a single transaction, you
ensure that either all the changes occur or none of them do. If a transaction consists of 1,000
changes and the 999th one fails, they all fail, and the database behaves as though none of them
ever occurred. Normally, C++Builder handles transaction-related issues for you automati-
cally by starting and committing transactions when your application attempts to make
changes to a database. If this level of control isn’t sufficient, you can guide transaction
processing yourself using the TransIsolation property and the startTransaction, Commit,
and Rollback methods.

C++Builder Database Architecture 441 |

The TransIsolation property controls the transaction isolation level (TIL) on the database
server. The TIL on the server controls the accessibility of concurrent transactions to changes
made by one another.

TransIsolationhasthree possiblevalues: tiDirtyRead, tiReadCommitted,and tiRepeatableRead
(default is tireadCommited). These TransIsolation values have the following effects:

O tibirtyRead—Uncommitted changes by other transactions are visible.
O tiReadCommitted—Only committed changes by other transactions are visible.

O tiRepeatableRead—Changes by other transactions to previously read data are not
visible, which means that every time a transaction reads a given record, it always
gets the exact same record.

The startTransaction method marks the beginning of a group of database changes that you
want to be treated as a unit. They will either all be applied to the database or none of them
will be.

commit makes permanent the database changes that have occurred since the transaction was
started. Think of it as a database save command.

Rollback discards the database changes that have been made since the transaction began.
Think of it as a database undo command.

NoTE You can also control transaction processing on your server using
- Passthrough SQL. To do this, you issue SQL commands that change

— the transaction processing on your server. Be aware that doing this with
SQLPASSTHRUMODE Set t0 SHARED AUTOCOMMIT OF SHARED NOAUTOCOMMIT
could cause your new TIL setting to affect other transactions initiated
by your application.

TTable
Module: pBTables Class ancestor: TpBpataset

TTable is a direct descendant of the TpBpataset class and an indirect descendant of the
Tpataset class. You access database tables using the TTable component. When you open a
TTable, you establish a connection between your application and the table. You add, change,
and delete rows in database tables using the TTable component.

Table 12.8 lists the key properties, Table 12.9 the key methods, and Table 12.10 the key
events of TTable.

| 442 Day 12

Table 12.8. TTable key properties.

Property Description

Active Toggles whether the Tpataset is open.

AutoCalcFields Determines how calculated fields are calculated.

Bof Reflects whether the Tpataset is at its beginning.

CachedUpdates Toggles whether updates are cached.

Database Identifies the Tpatabase in use by the Tpataset.

DatabaseName Names the alias used to connect to the database.

Eof Reflects whether the Tpataset is at its end.

Exclusive Toggles whether other users can access the Tpataset.

FieldCount Returns the number of fields in the Tpataset.

FieldDefs Lists important information about fields in the Tpataset.

Fields (Indexed) returns a specific field from the Tpataset.

Filter Specifies an expression to filter records by.

Filtered Toggles whether the filtering specified by Filter or
OnFilterRecord IS active.

FilterOptions Controls the behavior of filters.

IndexDefs Lists important information about the Tpataset’s indexes.

IndexFieldCount Returns the number of fields in the current index key.

IndexFieldNames Specifies a set of fields as an index key.

IndexName Specifies the name of the index to use.

IndexFields (Indexed) returns a specific index field from the Tpataset.

KeyExclusive Reverses the effect of the range and search functions.

KeyFieldCount Specifies the number of key fields to use in a search.

MasterFields Specifies the master fields in a master/detail relationship.

MasterSource Specifies the master patasource of a master/detail relationship.

Modified Reflects whether the current record has been changed since the
last Post OF Cancel.

ReadOnly Determines whether the Tpataset can be changed.

RecordCount Returns the number of rows in the Tpataset.

SessionName Specifies the Tsession cOmponent to use to connect to the

database.

C++Builder Database Architecture

443 |

Property Description

State Returns the state of the Tpataset (for example, dsedit or
dsBrowse).

TableName Specifies the physical name of the associated table.

TableType Specifies the type of (local) table.

UpdateMode Determines the type of SQL used to perform data changes.

UpdateObject Specifies the updatesaL component to use in conjunction with

cached updates.

Table 12.9. TTable key methods.

Method Function

AddIndex Creates a new index.

Append Appends a blank row to the Tpataset and puts it in edit mode.
AppendRecord Appends a row to the Tpataset using specified values.
ApplyRange Activates the range established by the set/EditRange methods.
ApplyUpdates Saves cached updates to the database.

BatchMove Copies a batch of rows between Tbatasets.

Cancel Discards pending modifications to the current row.
cancelRange Cancels the effects of the set/EditRange methods.
CancelUpdates Discards pending cached updates.

ClearFields Sets the current row’s fields to their default values.
Close Closes the Tpataset.

CreateTable Creates a new table.

Delete Deletes the current record.

DeleteIndex Deletes a secondary index.

DeleteTable Deletes the associated physical database table.

Edit Puts the Tpataset in edit mode.

EditKey Allows search key values to be modified.
EditRangeEnd Allows editing of the upper key limit of a range.
EditRangestart Allows editing of the lower key limit of a range.
EmptyTable Deletes all the rows in the Tpataset.

EnableControls Enables associated data-aware controls.

continues

| 444 Day 12

Table 12.9. continued

Method Function

FetchAll Reads all pending rows from the database.

FieldByName Returns a TField using its database field name.
FindFirst Finds a record using the filter conditions you specify.
FindNext Finds the next record that meets the filter criteria.
FindKey Performs an exact search on the Tpataset.

FindNearest Performs an inexact search on the Tpataset.
GetFieldNames Returns a list of the fields in the Tpataset.
GetIndexNames Returns a list of the Tbataset’s indexes.

GotoKey Performs an exact setkey-based search on the Tpataset.
GotoNearest Performs an inexact setkey-based search on the Tpataset.
Insert Inserts a blank row and allows it to be edited.
InsertRecord Inserts a row using supplied column values.

Locate Finds a record in a Tpataset.

LockTable Locks a local table.

Lookup Finds a record in a Tpataset and returns values from it.
MoveBy Moves the Tbataset cursor by a given number of rows.
Open Opens the Tpataset.

Post Saves pending modifications to the current row.
RenameTable Renames a local table.

RevertRecord Discards cached updates to the current row.

SetKey Puts the Tpataset in a key-based search mode.
SetRange Puts the database in a range-based search mode.
SetRangeEnd Sets the upper limit of a range.

SetRangeStart Sets the lower limit of a range.

UnlockTable Unlocks a local table.

Table 12.10. TTable key events.

Event Catalyst
AfterCancel Occurs following a cancel.
AfterClose Occurs following the close of the Tpataset.

C++Builder Database Architecture

445 |

Event Catalyst

AfterDelete Occurs following a pelete.

AfterEdit Occurs following an edit.

AfterInsert Occurs foIIowing an Insert O Append.

AfterOpen Ocecurs after a Tpataset is opened

AfterPost Occurs following a post.

BeforeCancel Occurs prior to a cancel.

BeforeClose Occurs before the close of the Tpataset.
BeforeDelete Occurs prior to a belete.

BeforeEdit Occurs prior to an edit.

Beforelnsert Occurs prior 1o an Insert OF Append.

BeforeOpen Occurs before a Tpataset is opened.

BeforePost Occurs prior to a Post.

OnCalcFields Occurs when calculated fields need values.
OnDeleteError Occurs when there is a problem deleting a record.
OnEditError Occurs when there is a problem editing a record.
onFilterRecord Occurs when filtering is active and the Tpataset needs a row.
OnNewRecord Occurs when a new record is added to the Tpataset.
OnPostError Occurs when there is a problem posting a record.
OnUpdateError Occurs when there is a problem while applying cached updates.
onUpdateRecord Occurs for each row saved by a call to Applyupdates.

Key Elements

You use the batabaseName property to specify the database you want to access. It points either
to alocal application-specific alias or to one that you've defined using the Database Explorer
or the BDE Configuration utility.

The Tablename property points to the physical database table. On some platforms it may also
include the name of the table’s home database and/or that of the table’s owner or schema.

Set the 1ndexName OF IndexFields property to make use of a secondary index with the table.
To establish a master/detail relationship with another table, set the mastersource property
to reference a Tpataset that shares a common key with this one. Once masterSource is set,
specify the key fields in the master batasource using the vasterFields property. These keys
must correspond with those of the current index, as specified by IndexName OF IndexFields.

| 446

Day 12

Note that you can double-click MasterFields to invoke C++Builder’s Field Link Designer,
which enables you to establish master/detail relationships visually.

Setting the Active property to true is identical to calling the Tpataset’s open method—it
opens the Tpataset. Likewise, setting Active t0 false i the same as calling the Tpataset’s
Close method—it closes the Tpataset.

You can check the current status of a Tpataset with the state property. It will have one of
the following values:

O dsInactive—The TDataset is closed.

O dsBrowse—The TDataset is in Browse mode. The Tpataset can be navigated, but
changes can’t be made to the data until state is switched to dsEdit.

O dsedit—The Tbataset IS in Eudit mode and allows changes to the data.
dsInsert—The TDataset IS iN Insert Mode.

O dsSetkey—The Tpataset IS in setkey mode because setkey has just been called.
When values are assigned to columns while in this mode, they are interpreted as
search values. A subsequent cotokey Will search for a record using these values.

O dsCalcFields—The oncalcFields event handler is being called.

Tasks

The First method moves the current record pointer (also known as the cursor) to the top
of the Tpataset, and the Last method moves to the bottom. The prior and Next methods
move to the previous and next rows, respectively. Use the movesy method to move a number
of rows forward or backward from the current row.

The setkey, FindKey, GotoKey, FindNearest, and GotoNearest methods can be used to search
the Tpataset for a given set of field values.

You use the Bof property to determine whether the Tpataset cursor is at its beginning. You
use the Eof property to determine whether the cursor has reached the Tpataset’s end. These
two properties can be useful in looping through the rows in a Toataset. For example, here’s
a simple routine that loops through a table’s rows, displaying a field from each as it goes:

Tablel->First();

while (!(Tablel->Eof)) {
ShowMessage ("Category is: "+Tablel->FieldByName("Category")->Value);
Tablel->Next();

}

C++Builder Database Architecture 447 |

Be careful that you don’t make bad assumptions about the Bof and Eof

)m properties. You can’t assume that sof will be true just because you're on
‘f'f IS the first row of a table. Nor can you assume that eof will be true when
WARNING you're on the last row of a table. Typically, an additional prior Or Next

is required to set Bof Or Eof to true. For example, the sequence First,
Next, Prior WON't reset Bof to true, but First, Next, Prior, Prior Will.
Note that Bof is true immediately after opening a table or calling the
First method, and eof is true immediately after calling the Last
method.

The Append and 1nsert methods are used to add blank rows to a Tbataset. Append adds a
record to the end of the Tpataset, whereas 1nsert adds it at the current cursor position.
Appendand Insert both putthe Toataset indsedit mode. The AppendRecord and InsertRecord
methods are used to add non-blank rows to a Tpataset using a supplied set of field values.

The pe1lete method deletes the row at the current cursor position. The edit method allows
modification of rowsin the Tpataset, placing the Toataset indsedit mode. The Post method
saves these changes to the database, whereas cance1 discards them. This is also true of the
Append and Insert Methods—you can Post Or cancel them as well.

Local Filters

The Filter, Filtered, and FilterOptions properties facilitate setting up local filters on the
Tpataset. Local filteringenables you tofilter a Toataset from within the application. Thiscan
be advantageous with Tpatasets that have a small number of rows; the entirety of the
Tpataset Will typically be cached by the BDE anyway, so filtering it locally saves interaction
with the database server or network.

Filter enables you to specify afilter expression for restricting the rows that are visible in the
Tpataset. The syntax supported in the expression is similar to that of a SQL wHerE clause.
Fields can be compared to each other and to static values. The operators shown here can be
used to build your filter expressions:

Operator Use

< Less than

> Greater than

>= Greater than or equal to
<= Less than or equal to

= Equal to

<> Not equal to

continues

| 448 Day 12
Operator Use
0 Encloses individual elements of a compound expression
[Encloses field names with spaces

AND, OR, NoT Joins individual elements of compound expressions

You can also filter records using the onFilterRecord event. onFilterevent l00Kks like this:

void _ fastcall TFormi::TableiFilterRecord(TDataset *TDataset,
Boolean &Accept)

{
Accept=(dlr==vhlead);

}

TheonFilterrecord event handler sets the value of the Accept parameter to indicate whether
a row meets the filter criteria. Note that the Tpataset to which the filter corresponds is also
passed in as a parameter. In the previous example, only those properties with gas heat are
visible when the filter is active. Note the use of the va1ue variant property to set the Accept
parameter.

You can also use the FindFirst, FindNext, FindPrior, and FindLast methods to search an
unfiltered Tpataset using a filter expression. Findrirst locates the first row matching the
filter expression; FindNext locates the next one that does. FindPrior locates the previous row
matching the filter expression, and FindLast locates the last one that does.

FilterOptions IS a et variable that can include two possible elements:

Element Meaning

focaseInsensitive The filter ignores the case of the Tpataset’s data
foNoPartialCompare Partial field matches aren’t allowed

You can set them using C++Builder’s Object Inspector.

Ranges
_rhESetRangeStart,SetRangeEnd,EditRangeStart,EditRangeEnd,ApplyRange,ancisetRange
methods also allow you to limit the set of rows visible to your application. Unlike
C++Builder’s more flexible local filters, the rows within the set must correspond to a
consecutive set of keys within an index when you're dealing with local tables. For SQL tables,
the fields can be any listed in the 1ndexFieldNames property. The cance1lrange method makes
all rows again visible to your application.

Locate/Lookup

The Locate and Lookup methods allow you to search for rows in a table. They’re much more
flexible than the Findkey/setkey family of functions because they do not require the use of an
index and can therefore be used with query and storedProc components in addition to Table
components. You choose the data you want, and the BDE finds the best way to access it.

C++Builder Database Architecture 449 |

Locate

The Locate method takes three parameters: a string that identifies the field(s) you want to
search, a variant that lists the values to search for, and a TLocateOptions Set variable that
specifies options for the search. Here’s the syntax for the Locate function:
System::Boolean __ fastcall Locate(const System::AnsiString KeyFields,

const System::Variant &KeyValues, TlocateOptions Options);

You separate multiple field names with semicolons in Locate’S keyFields parameter and pass
theirvaluesasavariantarray in itskeyvalues parameter. Locate’s Options parameter is of type
TLocateOptions and enables you to specify options that control the search. The parameter is
a set variable and can have two possible values, 1ocaseInsensitive and lopartialkey. The
firstoption, 1ocaselInsensitive, tells Locate to performasearch that is not case sensitive. The
second one, 1oPartialkey, allows for partial key searches. You can pass either one or both of
these by assigning them to a set variable like so:

TLocateOptions SearchOpts

SearchOpts << loPartialKey;

Tablel->Locate("NAME","Cri",SearchOpts);

Locate Uses the fastest available means of satisfying your search criteria. If an index exists that
can satisfy the search request, Locate uses it. If an index does not exist that can service the
search, a BDE filter is constructed. Either way, the fastest possible path to your data is taken.

Locate returns true if it's able to locate the data you request, and false if it isn’t.

Lookup

Similarly to the Locate function, the Lookup function takes three parameters: a string
parameter specifying a semicolon-delimited list of columns to search for, a variant or variant
array specifying the column values to search for, and a string parameter listing the names of
columns to return in the function’s result. Here’s the syntax for the Lookup function:

System::Boolean __ fastcall Lookup(const System::AnsiString KeyFields,
const System::Variant &KeyValues,const System::AnsiString ResultFields);

Inaddition to performing a Tpataset Search, Lookup returns values from the operation as well.
If amatching row cannot be found, Lookup returns a null variant. Ifa matching row is found,
Lookup first processes any lookup fields you've defined for its associated Tpataset, and then
returns the values of the fields you've specified in ResultColumns. If ResultColumns lists
multiple fields, the result is a variant array; otherwise, it’s just a simple variant.

Cached Updates

C++Builder’s cached updates mechanism enables you to delay applying updates to your
database back end. You can decide when to apply updates, and then apply them all at once.
Normally, updates are applied as soon as you make them. For client/server applications, this

| 450

Day 12

results in increased network utilization because your app must negotiate with the back end
every time you make even the slightest change. By using cached updates, you take control of
when and how often this negotiation takes place. Updates are cached locally until you apply
them, so using cached updates can have a dramatic impact on performance, especially when
you’re communicating over extremely slow wide area network (WAN) connections.

A side benefit of using cached updates is the ability to update read-only Tpatasets. Because
you can control the SQL that’s generated to update a Tpataset, you can set up code to modify
result sets that would otherwise be read-only.

Four methods relate to cached updates: ApplyUpdates, CancelUpdates, CommitUpdates, and
RevertRecord. I’'ve summarized what each one does in the following:

Method Function

ApplyUpdates Saves cached updates to the database.

CancelUpdates Discards cached updates.

CommitUpdate Notifies the cache that updates have been applied.

RevertRecord Returns a row to the state it was in prior to cached updates to it.

There are also a couple of properties that relate directly to cached updates:

Property Description

CachedUpdates Toggles cached updates for a Tpataset.
UpdateRecordTypes Controls the visible rows in a cached update set.

The following is the process for making use of cached updates in an application:

1. Set the cachedupdates property of the Tpataset whose updates you want to cache
o true.

2. Set the updateRecordTypes property to control which rows should be visible in the
cached set. updateRecordTypes iS a Set property that can have the following values:
rtModified, rtInserted, rtDeleted, and rtUnmodified. Each of these control the
type of rows that are visible in a Tpataset whose updates are being cached.

3. Set up an onupdateerror event handler to handle any errors during a call to
ApplyUpdates.

4. Make changes to the Tpataset’s data.

5. Call the app1yupdates method to save your changes, or cancelupdates to discard
them.

C++Builder Database Architecture 451 |

A good application of cached updates is in data-entry forms. There are three basic types of
database forms: decision-support forms, transaction-processing forms, and data-entry forms.
Because users of data-entry forms will typically add several rows in succession, it makes sense
to cache these additions locally and then save them in one pass. This will reduce table locking
on your database and speed up the application.

Updating read-only Tpatasets is covered in the discussion of the updatesaL component later
today.

Oon...Error

The onEditError, OnDeleteError, and onPostError events allow you to react to errors that
occur while modifying the datainatpataset. These eventsall send the same three parameters
to handlers you define for them: the Tpataset in which the error occurred, the exception class
raised by the error, and a var parameter that lets you specify what action to take once the
handler finishes. Here’s a sample of the method handler that C++Builder generates for the
on...Error events:

void _ fastcall TForm1::TableiDeleteError(TDataset *TDataset,

EDatabaseError *E, TDataAction &Action)

{
}

You can set Action to one of three values: daFail, daAbort, OF daRetry.

TQuery
Module: DBTables Class ancestor: TpBDataSet

Like TTable, Tauery is a direct descendant of the pBpataset class and an indirect descendant
of the Tpataset class. You use Tauery to send explicit SQL statements to the database engine.
This SQL either operates on local tables or is passed directly to your database server. You
execute a query that returns a result set using Tauery’s open method or by setting its Active
property to true. Provided that the query adheres to C++Builder’s restrictions on “live”
queries, you can then treat the result set as if it were a table, which is similar to the way a SQL
viewworks on many database servers. You can update, add to, and delete the rows in this live
result set, just as you can when using a TTable component.

Table 12.11 lists the key properties, Table 12.12 lists the key methods, and Table 12.13 lists
the key events for the Tauery component.

| 452 Day 12

Table 12.11. Tauery key properties.

Property Description

Active Toggles whether the Tpataset is open.

AutoCalcFields Determines how calculated fields are calculated.

Bof Reflects whether the Tpataset is at its beginning.

CachedUpdates Toggles whether updates are cached.

Constrained Controls allowable updates to live result sets.

Database Identifies the Tpatabase in use by the Tpataset.

DatabaseName Names the alias used to connect to the database.

DataSource Specifies a Tpatasource from which to retrieve query parameters.

DBHandle Returns the low-level BDE connection handle.

Eof Reflects whether the Tpataset is at its end.

FieldCount Returns the number of fields in the Tpataset.

FieldDefs Lists important information about fields in the Tpataset.

Fields (Indexed) returns a specific field from the Tpataset.

Filter Specifies an expression to filter records by.

Filtered Toggles whether the filtering specified by Filter Or onFilterRecord
is active.

Filteroptions Controls the behavior of filters.

Handle Returns the low-level BDE cursor handle.

Modified Reflects whether the current record has been changed in a live
result set.

ParamCount Reflects the number of parameters for the SQL query.

Params Specifies the parameters to use with the SQL query.

Prepared Reflects whether the query has been prepared.

RecordCount Returns the number of rows in the Tpataset.

RequestLive Specifies whether you want the query result to be updatable.

SessionName Specifies the Tsession cOmponent to use to connect to the database.

saL Specifies the SQL statements to execute on the server.

State Returns the state of the Tpataset (such as dsedit Or dsBrowse).

StmtHandle Returns the low-level BDE handle for the last query result.

UniDirectional Specifies that the cursor moves in only one direction.

C++Builder Database Architecture 453 |

Property Description
UpdateMode Determines the type of SQL used to perform data changes.
UpdateObject Specifies the updatesaL component to use in conjunction with

cached updates.

Table 12.12. Tauery key methods.

Method Function

Append Appends a blank row to the Tpataset.

AppendRecord Appends a row to the Tpataset using specified values.
ApplyUpdates Saves cached updates to the database.

Cancel Discards pending modifications to the current row.
cancelUpdates Discards cached updates that are pending.

ClearFields Sets the current row’s fields to their default values.
Close Closes the Tpataset.

Delete Deletes the current record.

Edit Puts the Tpataset in edit mode.

ExecSQL Executes the SQL without returning a cursor.

FetchAll Reads all pending rows from a database server connection.
FieldByName Returns a Trield using its database field name.

FindKey Performs an exact search on the Tbataset.
GetFieldNames Returns a list of the fields in the Tpataset.

Insert Inserts a blank row and allows it to be edited.
InsertRecord Inserts a row using supplied column values.

Locate Finds a record in a Tpataset.

Lookup Finds a record in a Tbataset and returns values from it.
MoveBy Moves the Tbataset cursor by a given number of rows.
Open Opens the Tpataset.

ParamByName Returns a query parameter using its name.

Post Saves pending modifications to the current row.
RevertRecord Discards changes to the current record when using cached updates.

| 454 Day 12

Table 12.13. Tauery key methods.

Event Catalyst

AfterCancel Occurs following a cancel.

AfterClose Occurs following the close of the Tpataset.
AfterDelete Occurs following a pelete.

AfterEdit Occurs following an edit.

AfterInsert Occurs foIIowing an Insert OF Append.
AfterOpen Ocecurs after a Tpataset is opened.
AfterPost Occurs following a Post.

BeforeCancel Occurs prior to a cancel.

BeforeClose Occurs before the close of the Tpataset.
BeforeDelete Occurs prior to a belete.

BeforeEdit Occurs prior to an edit.

Beforelnsert Occurs prior 10 an Insert Or Append.
BeforeOpen Occurs before a Tpataset is opened.
BeforePost Occurs prior to a Post.

OnCalcFields Occurs when calculated fields need values.
onbeleteError Occurs when there is a problem deleting a record.

OnEditError Occurs when there is a problem editing a record.
onFilterRecord Occurs when filtering is active and the Tpataset needs a row.
OnNewRecord Occurs when a new record is added to the Tpataset.
OnPostError Occurs when there is a problem posting a record.

onupdateError Occurs when there is a problem while applying cached updates.
onUpdateRecord Occurs for each row saved by a call to Applyupdates.

Key Elements

SQL statements that do not return a result set can also be executed. This includes calls to the
SQL INSERT, UPDATE, and DELETE commands, for example. Use the ExecsaL method for these
types of queries.

The patabaseNname property specifies the database you want to query. The SQL property
specifies the single SQL statement that you want to use in the query. When you query local
tables, use Local SQL. When querying server tables, you can use any SQL syntax that your

C++Builder Database Architecture 455 |

database server supports, unless you intend for the result set to be updatable. If you want an
updatable result set, you must use Local SQL syntax so that the database engine can
determine which database tables to actually update.

The SQL statement can be a static SQL statement or one that includes parameters that are
dynamically replaced with real values. A query that uses replaceable parameters (known as a
dynamic SQL query) uses a colon to delineate those parameters, like so:

SELECT * FROM ORDERS

WHERE CustomerNumber=:CustNo

In this example, custno is the name of the replaceable parameter. You supply these named
parameters using TQuery’s Params property.

Tip When editing Tauery’s SQL property, you can edit your SQL using
C++Builder’s full-blown Code Editor. You do this by clicking the Code
"ﬂ Editor button from within the SQL property editor. You'll find

C++Builder’s Code Editor to be much more versatile than the Tmemo
component that’s used to edit the property by default.

The constrained property enables you to control what updates may be made to a live result
set. If you set constrained to true, updates that would cause a row to be excluded from the
result set are not permitted. That is, if you set up a auery component to return only those
customers whose last names begin with A, an attempt to change the LastName column ina row
to start with B will fail. This works much the same as the witH cHeck option on SQL vIEws.

Tasks

To establish a live, or updatable, result set, two things must happen. First, you must set
TQuery’s RequestLive property to true. Second, the SQL you use to define the query must
conform to certain rules. These rules are different, depending on whether you are querying
local tables. For local tables, the SQL must

O Use Local SQL syntax only.
Involve only one table.

Not have an orper By clause.
Not contain aggregate functions.
Not contain calculated fields.

Use a wHERE clause involving comparisons of column names to scalar constants
only. Operators supported include L1kg, >, <, >=, and <=. Individual elements of the
clause may be joined by anps and ors as well.

[S

| 456 Day 12
For server tables, the SQL must
O Use Local SQL syntax only
O Involve only one table
O Not contain aggregate functions
NoTE The TLiveauery component that you can obtain at http://
- www.mcp . com/sams/codecenter. html provides an alternative method
—

of acquiring updatable result sets from database servers. Basically, it
creates and opens a temporary view on your server that you may then
update as though it were a table. The updates you can make to this
“live” result set are limited only by the restrictions your server places
on updatable views.

The First method moves to the top of the Tpataset, and the Last method moves to the
bottom. The prior and Next methods move to the previous and next rows, respectively. You
use the moveBy method to move a number of rows forward or backward from the current row.

Use the Bof property to determine whether the Tpataset cursor is at its beginning. Use the
Eof property to determine whether the cursor has reached the Tpataset’s end. These two
properties can be useful in looping through the rows in a Tpataset.

i
= >

WARNING

Be careful that you don’t make bad assumptions about the Bof and Eof
properties. You can’t assume that Bof will be true just because you're
on the first row of a query result set, nor can you assume that eof will
be true when you're on the last row of a result set. Typically, an
additional prior OF Next iS required to set Bof Or Eof t0 true. FOr
example, the sequence First, Next, Prior WON't reset Bof t0 true, but
First, Next, Prior, Prior Will. Note that Bof is true immediately after
you open a query or call the First method, and eof is true immedi-
ately after you call the Last method.

The Append and 1nsert methods are used to add blank rows to a Tpataset. Append adds a
record to the end of the Tpataset, Whereas nsert adds it at the current cursor position. Along
these same lines, the AppendRecord and InsertRecord methods are used to add non-blank
rows to a Tpataset using a supplied set of field values.

C++Builder Database Architecture 457 |

The pe1lete method deletes the row at the current cursor position. The edit method allows
you to modify rows in the Tpataset, placing the Tpataset in dsedit mode. The post method
saves these changes to the database, whereas cance1 discards them.

See the previous discussion on the Table component for information on other Tpataset-
based properties, methods, and events.

TStoredProc
Module: DBTables Class ancestor: TpBDataSet

Like TTable and Tauery, TStoredProc is a direct descendant of the pBpataset class and an
indirect descendant of the Tpataset class. This means that, in addition to the methods,
properties, and events defined by the class itself, TstoredProc inherits several class elements
from the pepataset class. This establishes a lot of common ground between the three
TDataset-based components, TTable, TQuery, and TstoredProc.

You use the TstoredProc component to execute stored procedures from within your
C++Builder applications. A stored procedure is a compiled set of SQL statements executed
asasingle program. Tstoredproc enables you to interact with the result sets returned by these
stored procedures.

Table 12.14 lists the key properties, Table 12.15 lists the key methods, and Table 12.16 lists
the key events for the TstoredProc cOmponent.

Table 12.14. TstoredProc key properties.

Property Description

Active Toggles whether the Tpataset is open.

AutoCalcFields Determines how calculated fields are calculated.

Bof Reflects whether the Tpataset is at its beginning.
CachedUpdates Toggles whether updates are cached.

Database Identifies the Tpatabase in use by the Tpataset.
DatabaseName Names the alias used to connect to the database.

Eof Reflects whether the Tpataset is at its end.

FieldCount Returns the number of fields in the Tpataset.

FieldDefs Lists important information about fields in the Tpataset.
Fields Returns a specific field from the Tpataset. (Requires an index

parameter to be passed in.)

continues

| 458 Day 12

Table 12.14. continued

Property Description

Filter Specifies an expression by which to filter records.

Filtered Toggles whether the filtering specified by Filter Or onFilterRecord
is active.

Filteroptions Controls the behavior of filters.

Modified Reflects whether the current record has been changed in updatable
result sets.

Overload Specifies the overload procedure to use on the Oracle platform.

ParamBindMode Determines how params will be bound to proc parameters.

ParamCount Reflects the number of parameters for the SQL query.

Params Specifies the parameters to use with the SQL query.

Prepared Reflects whether the query has been prepared.

RecordCount Returns the number of rows in the result set.

SessionName Specifies the Tsession cOmponent to use to connect to the database.

State Returns the state of the Tpataset (such as dsedit Or dsBrowse).

StmtHandle Returns the low-level BDE handle for the last result set.

storedProcName Specifies the name of the procedure to execute.

UpdateObject Specifies the updatesaL component to use in conjunction with

cached updates.

Table 12.15. 1storedProc key methods.

Method Function

Append Appends a blank row to the Tpataset.

AppendRecord Appends a row to the Tpataset using specified values.
ApplyUpdates Saves cached updates to the database.

Cancel Discards pending modifications to the current row.
cancelUpdates Discards cached updates that are pending.

Close Closes the Tpataset.

Delete Deletes the current record.

Edit Puts the Tpataset in edit mode.

ExecProc Executes the stored procedure.

C++Builder Database Architecture

459 |

Method Function

FetchAll Reads all pending rows from a database server connection.
FieldByName Returns a Trield using its database field name.

FindKey Performs an exact search on the Tbataset.

GetFieldNames Returns a list of the fields in the Tpataset.

GetResults Returns Sybase stored procedure output parameters.
Insert Inserts a blank row and allows it to be edited.
InsertRecord Inserts a row using supplied column values.

Locate Finds a record in the result set.

Lookup Finds a record in the result set and returns values from it.
MoveBy Moves the Tbataset cursor by a given number of rows.
Open Opens a stored procedure that returns a result set.
ParamByName Returns a query parameter using the parameter’s name.
Post Saves pending modifications to the current row.

Table 12.16. TstoredProc key events.

Event Catalyst

AfterCancel Occurs following a cancel.

AfterClose Occurs following the close of the Tpataset.
AfterDelete Occurs following a pelete.

AfterEdit Occurs following an edit.

AfterInsert Occurs foIIowing an Insert O Append.
AfterOpen Ocecurs after a Tpataset is opened.
AfterPost Occurs following a post.

BeforeCancel Occurs prior to a cancel.

BeforeClose Occurs before the close of the Tpataset.
BeforeDelete Occurs prior to a belete.

BeforeEdit Occurs prior to an edit.

Beforelnsert Occurs prior 10 an Insert OF Append.
BeforeOpen Occurs before a Tpataset is opened.
BeforePost Occurs prior to a Post.

continues

| 460

Day 12

Table 12.16. continued

NoTE

Event Catalyst

OnCalcFields Occurs when calculated fields need values.
onbeleteError Occurs when there is a problem deleting a record.

OnEditError Occurs when there is a problem editing a record.
onFilterRecord Occurs when filtering is active and the Tpataset needs a row.
OnNewRecord Occurs when a new record is added to the Tpataset.
OnPostError Occurs when there is a problem posting a record.

onupdateError Occurs when there is a problem while applying cached updates.
onUpdateRecord Occurs for each row saved by a call to Applyupdates.

Key Elements

Use the patabaseName property to specify the database you want to access. It points to either
a local, application-specific alias or one that you've defined using the Database Explorer or
BDE Configuration utility.

The storedProcName property points to the stored procedure on the server that you want to
execute.

The Params property enables you to specify parameters for the stored procedure. You can edit
this information at design time using the C++Builder Object Inspector. If the information
is available from the server, the Object Inspector will list the parameters that the stored
procedure expects.

You can set these parameters at runtime by assigning values to the params property. For
example, you could use the following code to assign the parameter named customerNumber
for the stored procedure associated with the Tstoredproc:

StoredProc1->ParamByName ("CustomerNumber") ->AsString = "123";

Note that stored procedure return values are accessed using the params property, aswell. That
is, if you've defined an output parameter named Balance in the Params property, you can
reference its return value using paramByName ("Balance") ->AsFloat following the execution
of the procedure.

If you intend to return output parameters from a Sybase stored
procedure that also returns a result set, you'll need to call TstoredProc’s

— GetResults method in order to retrieve them. Normally, the

C++Builder Database Architecture 461 |

storedProc component handles this automatically, but Sybase SQL
Server does not return stored procedure output values until all results
are read, so you'll need to call getResults yourself.

Tasks

If astored procedure returns only one row, or no rows, execute it with the execproc method.
If it returns multiple rows, use the open method instead.

Note that you'll need to prepare a stored procedure before executing it. At runtime, you do
this using the prepare method. At design time, you do so by editing the params property.

The First method moves to the top of the result set; Last moves to the bottom. The Next
and prior methods move to the previous and next rows, respectively. You use the moveBy
method to move a number of rows forward or backward from the current row.

The Append and 1nsert methods are used to add blank rows to the result set of a Tstoredproc
component. AppendRecord and InsertRecord add non-blank rows to the result set, using a
supplied set of field values.

The pe1lete method deletes the row at the current cursor position. The edit method allows
modification of the row at the current cursor position, placing the result set in dsedit mode.
The post method saves these changes to the database, whereas cance1 discards them.

Cached Updates

As mentioned previously, you can only update stored procedure result sets by using cached
updates and a TupdatesaL component. Basically, you set up the 1nsertsaL, beletesaL, and
ModifysaL properties of a TupdatesaL component to handle the Tpataset modifications for
you. When you then call the App1yupdates method of your TstoredProc, the relevant SQL
is executed. Because you can control the SQL that’s generated to update a Tpataset, you can
set up code to modify result sets that would otherwise be read-only.

You do this using an updatesaL component that defines SQL statements for handling,
inserting, modifying, and deleting rows. These SQL statements can be complex SQL queries
that update multiple tables or even other stored procedure calls, so you should be able to
update a stored procedure’s underlying tables. You reference updatesaL objects using
TStoredProc’s UpdateObject Property.

TstoredProc has two methods that relate directly to cached updates: Applyupdates and
cancelUpdates. ApplyUpdates saves changes you've made to the database. In the case of the
StoredProc component, this means that the relevant INSERT, UPDATE, Or DELETE SQL

| 462

Day 12

statements are executed in the linked updatesaL component. Note that you can set up the
onUpdateError event to handle errors that occur during a call to App1lyupdates.

There are also a couple properties that relate directly to the use of cached updates with stored
procedures: cachedupdates and UpdateRecordTypes. CachedUpdates toggles cached update
support for the storedProc component. Unless cachedupdates is enabled and you've linked
and set up an updatesaL component properly, you won't be able to update stored procedure
resultsets. updateRecordTypes determines which types of updates remainvisibleinaTpataset
with cachedupdates set to true.

Updating read-only Tpatasets is discussed further in the section on the updatesaL compo-
nent later today.

TBatchMove

Module: pBTables Class ancestor: Tcomponent

The TBatchMove component enables you to work with sets of records in operations between
two tables. These sets can range from a few records to all the records in a Tpataset. When
working with TBatchmove, you specify both a source and a destination table. You can append,
update, and delete rows in the target table. You can even replace the target table completely
if you want to. The actual operation carried out when you call the component’s Execute
method depends on the setting of the mode property.

Table 12.17 lists the key properties and Table 12.18 lists the key methods of the TBatchmove
component. This component has no key events.

Table 12.17. TBatchMove key properties.

Property Description
Destination Specifies the destination of the batch move operation.
Mapping Specifies column-to-column mappings between source and pest. If

your source and destination tables are not identical, you'll need to
provide field mappings so that the BDE can figure out where to put
your data. If you neglect to do this with tables that aren’t identical,
the batch move will fail.

Mode Specifies the type of move (such as batAppendupdate OF batCopy).

Source Specifies the source of the batch move operation.

C++Builder Database Architecture 463 |

Table 12.18. TBatchMove key methods.
Method Function
Execute Initiates the batch move operation.

Key Elements

You set the source property to the Tpataset from which you want to copy. You set the
Destination property to the target Tpataset. You set mode to one of the following values,
depending on what you want to do:

O batAppend—Appends rows to a preexisting target Tpataset.

O batupdate—Updates rows in a preexisting target Tpataset with their counterparts
in the source table. The mode requires an index in order to locate the rows to
update.

O batAppendUpdate—Appends new rows to a preexisting target Tpataset and updates
existing rows. This mode requires an index in order to locate the rows to update.

O batcopy—Copies rows in the source Tpataset to the target Tpataset. It creates the
target table when executed, so an existing target table will be overwritten. Be aware
that, because existing tables are deleted and replaced, any dependent objects such as
indexes and triggers are deleted as well. Note that these secondary objects are not re-
created.

O batbelete—Deletes records from the target table that match the source table. This
mode requires an index in order to locate the rows to delete.

Tasks
When wode is set appropriately, call the execute method to perform the copy. If there are
problems, TBatchmove Will behave differently based on the settings of various properties:

O If AbortonProblem has been set to true, the copy will abort the moment any errors
occur.

O If Abortonkeyviol i Set to true, the operation will abort when any key violation
error occurs.

O If the problemTableName property has been set, any rows causing errors will be
placed in it. Obviously, if AbortonProbiem is also set to true, this table will contain
no more than one record.

| 464

Day 12

O If the keyviolTableName property has been specified, any rows causing key violation
errors will be placed in it.

O If the changedTableName property has been specified, TBatchmove will move updated
or changed rows to it from the target table rather than discard them.

TDataSource

Module: pBTables Class ancestor: Tcomponent

The Tpatasource component is the link between data-aware controls and the Tpataset
components (TTable, TQuery, and TstoredpProc). It's what allows data-aware components to
interact with physical database objects.

Data-aware controls reference a common Tpatasource through their batasource properties.
It, in turn, references the Tpataset that supplies them with data. The Tpataset supplies data
to the Tpatasource, which is then passed to the data-aware controls. When data is modified
in a data-aware control, the change is passed to the Tpatasource, which then passes it to the
TDataset.

By abstracting the data control level from the Tpataset level, C++Builder allows the
interaction between the Tpataset and data-aware controls to be more easily coordinated. It
enables you, for example, to change the Tpataset for a number of components without
changing them individually. That is, if you want to change the Tpataset to which a form’s
data-aware controls refer, you don’t have to change the controls themselves. Instead, you
change the Tpataset property of the Tpatasource to which they refer. This three-tiered
approach allows the access of a group of controls to a given Tpataset to be more easily
controlled.

Table 12.19 lists the key properties, Table 12.20 lists the key methods, and Table 12.21 lists
the key events for Tpatasource.

Table 12.19. TpataSource key properties.

Property Description

Autoedit Determines whether modifying the contents of a data-aware control
automatically starts edit mode.

Dataset References the Tpataset that provides data to this TpataSource.
Enabled Specifies whether the display of associated data controls is updated.
State Returns the state of the linked Tpataset component.

C++Builder Database Architecture 465 |

Table 12.20. TpataSource key methods.
Method Function
Edit Switches the associated Tpataset into Edit mode.

Table 12.21. TpataSource key events.
Event Catalyst
OnDataChange Occurs when data is changed or the record pointer moves.
onstatechange Occurs when the state property changes.
OnUpdateData Occurs when Post Or updateRecord is called.

Key Elements

The Tpataset property identifies the TTable, Tauery, OF TStoredProc that supplies the
component with data. The Autoedit property determines whether modifying the contents
of a data-aware control will automatically switch the Tpataset into edit mode, allowing
changes to be made to the underlying data.

Tasks

You can monitor changes to a Tpataset and its associated data-aware controls by assigning
an event handler to the onbatachange event.

The onstatechange event occurs when the state of the Tpataset changes. For example, if you
switch the Tpataset’s State from dsBrowse t0 dsedit by calling the edit routine, this event
will be triggered. Because onstatechange can occur for nil Tpatasets, be sure to check for a
nil Tpataset before attempting to reference it.

If you want to change the data in the current row before it is posted, set up an onupdatebata
event. It’s triggered when Post Or UpdateRecord is called.

TUpdateSQL
Module: pBTables Class ancestor: TbataSetUpdateObject

The TupdatesaL component enables you to control the way that Tpatasets are updated.
Because you have complete control over the update process, you can even update read-only
TDatasetS. YOu do this via TupdatesQL’s InsertsaL, DeletesaL, and modifysaL properties,
which allow you to specify the SQL to execute for row insertions, deletions, and updates.

| 466 Day 12

Table 12.22 lists the key properties and Table 12.23 lists the key methods of the TupdatesaL
component. There are no key events for the TupdatesaL component.

Table 12.22. TupdatesaL key properties.
Property Description
DeletesaL Specifies the SQL to execute when a row is deleted.
InsertsaL Specifies the SQL to execute when a row is added.
ModifysaL Specifies the SQL to execute when a row is updated.

Table 12.23. TupdatesaL key methods.
Method Function

Apply Replaces parameters in and calls the SQL you specify (beletesaL,
InsertSaL, Or ModifysaL). Calls both setparams and ExecsaL.

ExecSQL Executes DeleteSaL, InsertSaL, OF ModifySaL, as specified.

setParams Replaces the parameters in peletesaL, InsertSQL, OF ModifySaL, as
specified.

Key Elements

The 1nsertsaL, ModifysaL, and peletesaL properties provide the means of controlling
updates to TpatasetS. These TpatasetS can be TTables, Tauery result sets, or TStoredpProc
result sets. The SQL you specify can be a simple SQL INSERT, UPDATE, OF DELETE Statement.
It can be a complex SQL query and can even consist of a call to a stored procedure. This
flexibility gives you the control you need to update almost any type of result set.

Tasks
To make use of a TupdatesaL component, follow these steps:

1. Drop a TupdatesaL component on a form and set its 1nsertsaL, DeletesaL, and

ModifysaL statements to update the database object(s) referenced by your Tpataset.
2. Set the Tpataset’s UpdateObject property to point to your TupdatesaL component.
3. Set the Tpataset’s CachedUpdates property to true.

4. Call the applyupdates command from within your application when you want to
invoke the SQL specified in the TupdatesaL component.

C++Builder Database Architecture 467 |

Updates that you make via the pe1letesaL and modifysaL statements will, of course, need to
be qualified by a SQL wHere clause. Both of these properties support a special extension to
SQL that enables you to refer to a field’s original value by prefixing its name with o1d_. This
is similar to InterBase’s o1d. context variable. For example, the modifysaL Statement you set
up for the custouer table might look like this:

UPDATE CUSTOMER SET Name=:Name

WHERE CustomerNo=:01d_CustomerNo

Though this query doesn’t actually change customerno, it’s a good idea to get into the habit
of using the o1d_ prefix anyway, because some updates aren’t possible without it.

Tip When editing the SQL associated with the TupdatesaL component, you
can edit your SQL using C++Builder’s full-blown Code Editor. You do
"ﬂ this by clicking the Code Editor button from within the 1nsertsaL,

DeletesaL, and ModifysaL property editors. You'll find C++Builder’s
Code Editor to be much more powerful than the Tmemo component
that’s used to edit the three properties by default.

Use your Tbataset’s OnUpdateRecord event when you want to perform additional processing
before sending rows to TupdatesaL. Once you've completed this additional processing, you
can call TupdatesaL’s Apply method to replace the parameters embedded in your SQL and
execute the SQL against your database. Here’s a sample onupdateRecord handler:

void _ fastcall TForm1::TableiUpdateError(TDataset *TDataset, EDatabaseError *E,
TUpdateKind,TUpdateAction &UpdateAction)

{
#define DEFAULTRATE 5.00
if (UpdateKind == ukInsert)
StoredProc1->FieldByName("Rate") ->Value=DEFAULTRATE;
UpdateSQL1->Apply (UpdateKind);
UpdateAction=uaApplied;
}

Notice that the routine setsthe updateAction parameter to tell the cached updates App1yupdates
routine that no further action is necessary.

TField
Module: pBTables Class ancestor: Tcomponent

The TField component is used to access the columns in a Tpataset’s rows. Everything that
C++Builder enables you to configure at the field level is done with the TFie1d component.

| 468 Day 12

You can toggle a database field's visibility in a grid, determine what its valid values are, and
control whether it can be changed—all using the TFie1d component.

Table 12.24 lists the key properties, Table 12.25 lists the key methods, and Table 12.26 lists
the key events for TField.

Table 12.24. TField key properties.

Property Description

Calculated Reflects whether a field is a calculated field.

TDataset Returns the Tpataset to which this TFie1d belongs.

EditMask Specifies an input mask that limits text typed into the control.

FieldName Specifies the associated database field name.

Lookup Reflects whether a field is a lookup field.

value Returns the TFie1d’s underlying data value as a variant.

Visible Determines whether the Trield is visible (by default) in pearid
controls.

Table 12.25. TField key methods.

Method Function

Assign Copies the value in one field to another.
Assignvalue Assigns a literal value to a TField.

Clear Empties a TField.

GetData Returns the data from a field in raw format.
SetData Assigns raw data to a field.

Table 12.26. TField key events.
Event Catalyst
OnChange Occurs when any modification is made to a TField.
Onvalidate Occurs when a field’s value is changed.

C++Builder Database Architecture 469 |

Key Elements

If you do not specifically create a set of TFie1ds using the Fields Editor in C++Builder, field
objects are automatically created for you each time a Tpataset is opened. This list of TFie1ds
that’s created reflects the columns as they appear in the Tpataset.

By creating your own list of TFie1ds using the Fields Editor, you ensure that your application
is indeed accessing the Tpataset columns it intends to access. Without such a list, changing
the underlying table automatically changes the columns your application works with. Using
TField components makes your application immune to column reordering and causes an
exception to be raised if a column’s name or data type changes. The only time you shouldn’t
make use of TFie1d components is when you’re building a generic table browser. On all other
occasions, you'll want to be sure to establish TFie1d components to service your Tpatasets.

When you establish your own Trie1d list, referencing a field that’s been renamed or removed
from the underlying table raises an exception. This is preferable to allowing the application
to possibly work with the wrong data.

A Trield component itself is never actually created in C++Builder applications—it’s an
abstract class and, therefore, parts of it must be overridden before it can be instantiated. You
must create a descendant of Trie1d and fill in some of its abstract gaps in order to create a
TField instance. In OOP parlance, you do this via inheritance. The TFie1d class type can also
be used to typecast and manipulate its descendants. The technical term for this OOP concept
is polymorphism. TFie1d’s descendant classes are detailed in Table 12.27.

Table 12.27. TField descendants.
TField Descendant Type of Data Stored

TStringField Fixed-length text data up to 255 characters.

TIntegerField Whole numbers from -2,147,483,648 to 2,147,483,647.

TSmallintField Whole numbers from -32,768 to 32,767.

TWordField Whole numbers from 0 to 65,535.

TFloatField Real numbers from 5.0%10-% to 1.7*10%%,

TCurrencyField Currency values accurate to 15 to 16 digits; represented as a
binary value with a range of + 5.0%10%2* to 1.7*10%,

TBCDField Binary Coded Decimal values with accuracy to 18 digits.

TBooleanField Boolean values.

continues

| 470

Day 12

Table 12.28. continued

NoTE Note that TFie1d’s visible property only controls whether a column

TField Descendant Type of Data Stored

TDateTimeField Date and time values.

TDateField Date values.

TTimeField Time values.

TBlobField Variable-length field with no size limit.
TBytesField Variable-length field with no size limit.
TVarBytesField Variable-length field up to 65,535 characters.
TMemoField Variable-length text field with no size limit.
TGraphicField Variable-length graphics field with no size limit.

You never specifically drop a TFie1d descendant on a form. As mentioned, these are created
for you, either via the Fields Editor or automatically when a Tpataset is opened.

Tasks

TFields support a number of column-based settings that you can use to customize your
applications. You specify these settings using the Fields Editor of a Tpataset. You access the
Fields Editor by right-clicking a Tpataset component and selecting Fields Editor from the
pop-up menu.

For example, to prevent modifications to a field, right-click its Toataset, select Fields Editor,
and then set the field’s Readonly property to true in the Object Inspector. To make a field
invisible in a bBerid, Set its visible property to faise. If you want to control the types of
charactersallowed in the field, specify amask in its editmask property. To change the database
field to which the TFie1d is linked, change its Fieldname property to the field you want to
reference.

> appears in a bBerid component if no columns have been defined using
the grid’s columns property.

C++Builder Database Architecture 471 |

Tip You can drag Trields from the Fields Editor directly onto a form. This
will create a data-aware control and a corresponding label on the form.
"ﬂ You can configure which data-aware component is dropped onto the

form using the Tcontrolc1ass property in the Database Explorer.

TFields also support implicit data conversions. That is, you don’t have to know what type
of dataaTFie1d actually storesto convert it to another data type. Thisis facilitated by TFie1d’s
value property. value is a variant type that is implicitly converted when it is assigned or
receives avalue. For example, you can assign a string to a boolean field using its vaiue variant,
like so:

TBooleanField MyBoolean;

MQéoolean->Value:"T";

You can also assign a numeric field to a string control using its vaiue property:
TCurrencyField MyMoney;

é&it1->Text=MyMoney->Value;

TField's amazing ability to implicitly convert between different data types makes it
chameleon-like in its capacity to adapt to varying data requirements. This simplifies your
applications and makes for less work when an application’s underlying data structure
changes.

Summary

Asyou can see, the C++Builder database class hierarchy isrich, yet easy to use. Great attention
has been given to making the hierarchy not only extensive, but also coherent. The VCL
database classes strike a good balance between functionality and ease of use.

Workshop

The Workshop contains quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you have learned.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”

| 472

Day 12

Q&A

O>» O>» O

Quiz

What property of the Tauery component determines whether a result set is
updatable?

The RequestLive property.

What property of the Tpatabase component is used to set up an application-
based alias?

The patabaseName property.

At a minimum, what components on the Data Access page must be in a
C++Builder app that needs to include data-aware user interface controls?

The TTable and Tbatasource coOmponents.

1. What's the purpose of the Tsession component?

> e

What are the advantages of using a Tpatabase component in your applications?
What conditions must be true in order for a Tauery result set to be updatable?
What component is used to copy rows from one Tpataset to another?

Exercises

1.

Construct a sample form using a TTable, a TbataSource, and data-aware compo-
nents from the Data Controls page of the Component Palette.

Modify the form you constructed in exercise 1 to include a Tpatabase component.

Create a new table by copying rows from an existing one using the TBatchMove
component.

Set up a Tauery component to return rows from the B1oL1rEe table in the bBbEmos
sample database.

. Configure this Tauery so that its result set is updatable.

Week 2

Day 13

Building Internet
Applications

by Ken Henderson

Today you'll explore building Internet applications with C++Builder. Because
C++Builder ships with a suite of Internet-related OCX controls, it’s ideally
suited for building applications that access the Internet. In this chapter you'll
learn the purpose of the Internet controls and use them to build your very own
Web browser. Specifically, today’s lesson will consist of

O An introduction to building Internet applications with C++Builder

O A tour of the Internet page of the C++Builder Component Palette

O A tutorial session that takes you through the process of building your
own Web browser using C++Builder

| 474

Day 13

The Basics

Because C++Builder’s underlying language is C++, and C++ is such a popular programming
language, you can do almost anything you'd like in C++Builder, including build Internet
applications. The specifications have been published and the necessary interfaces established
tobuild Internet applications from scratch using C++Builder, if that’s your pleasure. Like any
other natively compiled C++ environment, you could include the appropriate header files
and code whole Internet applications in C++ if you really wanted to.

But that would remove the biggest and best reason for using a tool like C++Builder in the first
place—its expediency. You use RAD (rapid application development) tools like C++Builder
because they're fast. At the same time, you don’t want something that’s just thrown
together—you want a tool that generates efficient executables efficiently.

C++Builder really shines in its capability to construct natively compiled executables through
dragging and dropping co