
Surviving Client/Server:
Stored Procedures Part 1
by Steve Troxell

Stored procedures are a way of
extracting SQL statements and

logic from an application and
embedding them within the
database. Any application written
in any language which has the
facilities to execute SQL code can
run these stored procedures and
manipulate their results.

This month, we’re going to
explore the pros and cons of stored
procedures in general and how to
handle them in Delphi in particular.
Next month, we’ll go into greater
detail by exploring the various
types of stored procedures, how to
create them with Interbase and
how to manipulate them from
Delphi.

While the concepts of stored
procedures are common across
many back-end servers, the syntax
and functionality varies widely
from vendor to vendor. Stored
procedures have not been a formal
part of the SQL standard, so
vendors have been free to imple-
ment them however they see fit.
You should view the material
presented here as an overview to
stored procedures and consult
your SQL server’s reference
manuals for specific information.

What Is A Stored Procedure?
Whereas a table is a database
object containing data, a stored
procedure is a database object
containing SQL code which usually
manipulates the data in one or
more tables. It is really a server-
based SQL query, but may also
include flow control logic or data
computations. In this way, some
portions of the system logic are
separated from the Delphi applica-
tion and placed in the back-end
database. It’s not out of the
question that all SQL logic in a sys-
tem could be located in stored
procedures and the only SQL state-
ments remaining in the application

would simply be calls to invoke
those stored procedures.

You generally pass information
between the application and the
stored procedure through parame-
ters in the procedure (not unlike a
parameterized TQuery). Some back-
end servers, like Sybase, can
produce “implied results sets”,
meaning their stored procedures
can produce multi-row result sets
indistinguishable from a result set
produced by a regular SQL query.
Delphi provides the TStoredProc
component to help you manage
your stored procedures. This com-
ponent has most of the functional-
ity you’ll find in TQuery, which is not
surprising since stored proce-
dures are just server-based SQL
queries. In addition to TStoredProc,
you can also call stored proce-
dures through a TQuery with regular
SQL commands.

To illustrate how the use of
stored procedures affects the
Delphi code you’ll write, we’ll take
a simple database task and solve it
with SQL embedded within the
application and with a stored
procedure.

The task is this: You have a table
called Customers from which you
can look up a particular customer
by the CustomerNo field. Also in this
table is a CreditLimit field showing
the maximum amount of credit
which has been authorized for the
customer. In addition, you have an
Extensions table with a one-to-
many relationship to Customers
(linked through CustomerNo). This
table contains one row for every
credit extension (loan) given to the
customer. The BalanceDue column
shows how much of the loan
remains to be paid (completely
paid loans have a BalanceDue of
zero). If we take the credit limit
found in the Customers table and
subtract out all the outstanding
balances found in the Extensions

table, we get the amount of
available credit for the customer.

Listing 1 shows one way to
approach this problem using SQL
code embedded in the Delphi appli-
cation. Query1 and Query2 are TQuery
components on the form. The SQL
statements we’re executing each
return a result set containing one
value, so we use Open to execute
them. After that, it’s a simple calcu-
lation using the values returned to
determine the available credit. All
currency amounts in this example
are assumed to be whole dollar
amounts, so we use integer types.

Listing 2 shows the definition of
an Interbase stored procedure to
do this same task. The stored
procedure accepts an input pa-
rameter, CustNo, defining the
customer we are interested in. It
also returns two output parame-
ters, CreditLimit and CreditAvail,
returning the information we need.
We use a local variable, CreditUsed,
to temporarily hold the amount of
credit used.

Finally, Listing 3 shows the
Delphi code that we use to call this
stored procedure (this would
replace the code shown in Listing
1). StoredProc1 is a TStoredProc
component on the form.

OK, so the Delphi code is more
concise, but all we’ve done is shift
the load from one area to another.
Also, you could argue that it takes
more effort to develop the stored
procedure version. So why go to
the trouble of splitting the SQL
code out into a stored procedure?

Encapsulated Logic
Since a calculation like this could
easily be needed at many points in
an application, or across multiple
applications in an integrated sys-
tem, we have encapsulated its logic
at a single point in the database
itself. In so doing, we have removed
a business rule from the software

28 The Delphi Magazine Issue 6

and centralized it in the database,
where any application can use it.
By extracting business rules like
this from the software, all applica-
tions can instantly respond to logic
changes without the need to
re-code, re-compile, and redistrib-
ute EXEs or DLLs. We can simply

function TForm1.GetCreditAvail(CustomerNum: LongInt): LongInt;
begin
 Result := 0;
 with Query1 do begin { Typically, the SQL code would be set through the property editor }
 SQL.Clear;
 SQL.Add(’SELECT CreditLimit FROM Customers’);
 SQL.Add(’ WHERE CustomerNo = :CustNo’);
 ParamByName(’CustNo’).AsInteger := CustomerNum;
 Open;
 try
 with Query2 do begin
 SQL.Clear;
 SQL.Add(’SELECT SUM(BalanceDue) FROM Extensions’);
 SQL.Add(’ WHERE CustomerNo = :CustNo’);
 ParamByName(’CustNo’).AsInteger := CustomerNum;
 Open;
 try
 { This check is needed in case there are no credit extensions on file for the customer }

 if Query2.FieldByName(’Sum’).IsNull then
 Result := Query1.FieldByName(’CreditLimit’).AsInteger
 else
 Result := Query1.FieldByName(’CreditLimit’).AsInteger -
 Query2.FieldByName(’Sum’).AsInteger;
 finally
 Close; { Close Query2 }
 end;
 end;
 finally
 Close; { Close Query1 }
 end;
 end;
end;

➤ Listing 1

CREATE PROCEDURE GetCreditInfo(CustNo integer)
RETURNS(CreditLimit integer, CreditAvail integer)
AS
 DECLARE VARIABLE CreditUsed integer;
BEGIN
 SELECT CreditLimit FROM Customers
 WHERE CustomerNo = :CustNo
 INTO :CreditLimit;
 SELECT SUM(BalanceDue) FROM Extensions
 WHERE CustomerNo = :CustNo
 INTO :CreditUsed;
 /* This check is needed in case there are no credit extensions on file for the customer */
 IF (CreditUsed IS NULL) THEN CreditUsed = 0;
 CreditAvail = CreditLimit - CreditUsed;
END

➤ Listing 2

function TForm1.GetCreditAvail(CustomerNum: LongInt): LongInt;
begin
 { Typically, this would be set through the property editor }
 with StoredProc1 do begin
 StoredProcName := ’GetCreditInfo’;
 ParamByName(’CustNo’).AsInteger := CustomerNum;
 ExecProc;
 Result := ParamByName(’CreditAvail’).AsInteger;
 end;
end;

➤ Listing 3

change the logic in the stored
procedure and all affected applica-
tions will automatically respond to
the new logic.

By the same token, encapsulated
business rules simplify the reus-
ability of the software when in-
stalled at more than one customer

site. Let’s say you developed a sys-
tem containing the GetCreditInfo
stored procedure and deployed it
for Customer A and Customer B,
but Customer B wants to include
more factors in determining avail-
able credit than Customer A does.
All you have to do is modify
Customer B’s stored procedure,
none of the application software
needs to be modified.

It is this concept of encapsulated
business rules in the database that
is commonly referred to as ‘two-
tier architecture’. The first tier is
the client application which
interacts with the user. The second
tier is the business rule logic at the
server which interacts with the
client application.

Improved Performance
A second advantage of this stored
procedure is that it executes more
quickly than if the individual SELECT
statements were sent as queries
from the client. To understand why
this is so, we must look at how an
SQL query is processed.

When an SQL statement is re-
ceived from the client, the server
parses the statement and validates
it, checking its syntax and database
object references. It then formu-
lates an execution plan for the
query by deciding which, if any,
indexes it will use to process the
request. Some servers may at-
tempt to reorganize the statement,
compare the execution costs of
various strategies and select the
optimal approach. Finally the
query is compiled and executed.

However, with a stored proce-
dure, all the steps of parsing, vali-
dating, optimizing, and compiling
are performed when the procedure
is created. When a client applica-
tion executes a stored procedure,
the server skips those steps since
they have already been done and
simply executes the pre-compiled
SQL statements. This is the same
reason why using Prepare and
Unprepare with a TQuery improves
performance for repetitive para-
meterized queries (see last
month): Prepare takes care of all
the steps up through compilation.
But, those steps must still be per-
formed at least once at runtime.

February 1996 The Delphi Magazine 29

With a stored procedure, those
steps are all handled in advance
and are not needed at runtime.

Another way in which stored
procedures can improve perform-
ance is by reducing network traffic.
For example, if your application
needed to manipulate several rows
of data to arrive at a decision and
that manipulation could be encap-
sulated within a stored procedure,
then only the decision arrived at
needs to be sent back to the client.
The rows never need to leave the
server in order to arrive at the de-
cision. Thus, network congestion
for this activity is greatly reduced.

For example, suppose a stored
procedure runs several SELECT
statements to gather values from
several different tables into local
variables. It then does some calcu-
lations and comparisons of these
values to arrive at a simple yes/no
decision. In this case, all the opera-
tions are performed at the server
and only the yes/no answer is sent
back to the client. If this task were
done using SQL embedded in the
application, the results of all the
SELECT statements would be sent
back to the client, which would
examine the values and arrive at
the yes/no decision.

Enhanced Data Security
Client/server databases enforce
system security by granting or
revoking data access privileges
(select, insert, update, delete) for
each table to specific users or
groups of users. Normally, if the
application you are developing
allows the user to modify a particu-
lar table, that user must be granted
the appropriate permissions. How-
ever, since client/server systems
are inherently ‘open’ to any ODBC
application, this also allows a par-
ticularly devious user to log into
the database using an external
application to modify the table
directly, outside the control of your
application. So, a knowledgeable,
unscrupulous user could generate
transactions to gain some benefit
for themselves or someone they
know and promptly remove all
trace of accountability for those
transactions, through some
external program.

However, a stored procedure
can read or modify a table inde-
pendent of any permissions the
user might have. While at first
glance this may seem to be a design
flaw in the security of the database,
it’s actually an intentional feature
to permit even tighter control over
data access. A user might only be
granted read access to a particular
table, but be able to execute a
stored procedure to update the
same table. The user can modify
the table only by running the
stored procedure. This allows
users to modify database tables
under the control of an application
written around the stored proce-
dures, but prevents them from
altering the data with independent
third-party software.

In addition, stored procedures,
like all database objects, generally
can only be altered by the user who
owns them, or the system adminis-
trator. So if you include stored
procedures in your database, you
aren’t exposing critical parts of
your application to unauthorized
modification.

Drawbacks
The principal drawback of stored
procedures is reduced flexibility.
Since the SQL code in the proce-
dure is fixed, you lose the power of
dynamically constructing SQL
statements at runtime in response
to user actions (see Dynamic SQL
last month). Also, there is slightly
more development overhead since
the stored procedures are inher-
ently separated from the applica-
tion and a certain amount of
interface scaffolding is necessary.

On the other hand, it wouldn’t be
unusual for a large project to have
a dedicated SQL developer respon-
sible for all the stored procedures
in the system. The Delphi develop-
ers can then concentrate on the
user interface and not concern
themselves with database access
other than the task of interfacing to
the stored procedures.

TStoredProc
Stored procedures are most com-
monly accessed in a Delphi appli-
cation through the TStoredProc
component. Once the TStoredProc

component is bound to a database
through the DatabaseName property,
you simply select the stored proce-
dure from the drop-down list in the
StoredProcName property editor.

With Interbase, Delphi automat-
ically populates the stored proce-
dure’s parameter names, types
(whether they are input or output
parameters) and data types in the
Params property. However, with
some other SQL back-ends, like
Sybase and Microsoft, the Borland
Database Engine is unable to deter-
mine the stored procedure’s
parameter types (input or output),
so you have to assign them manu-
ally through the Params property
editor. If you fail to do this, Delphi
raises the exception ‘No parameter
type for parameter xxx’ when you
try to execute the procedure.

Once these connections are
defined, you use the TStoredProc
component very much the same
way you use the TQuery component.
You assign input values to or read
output values from the proce-
dure’s parameters through the
Params or ParamByName methods. To
execute the procedure, you call the
Open method if the procedure
returns a result set, or the ExecProc
method if it does not. A common
error in working with stored proce-
dures (or TQueries for that matter)
is to confuse these two methods of
execution. If you get the exception
‘Error creating cursor handle’ when
executing a stored procedure, the
procedure most likely does not
return a result set and it should be
executed with ExecProc.

TQuery
TStoredProc isn’t the only mecha-
nism you have to run stored proce-
dures from Delphi. All client/server
databases which support stored
procedures also provide SQL
commands to execute them. Using
SQL syntax, you could always
execute any stored procedure from
a TQuery. For example, to run an
Interbase stored procedure which
deletes a record (does not return a
result set), you would use the
following SQL statement:

EXECUTE PROCEDURE
 DeleteCustomer(:CustomerNo)

30 The Delphi Magazine Issue 6

If we have the TStoredProc com-
ponent why would we need to use
a TQuery to run a stored procedure?
First, as we’ll see next month, there
are certain kinds of stored proce-
dures that simply cannot be
executed with TStoredProc. Second,
TStoredProc is very closely bound
to the Borland Database Engine. As
new releases of back-end servers
appear, the BDE may not be up-to-
date with any changes made in the
stored procedure functionality.
Since TQuery provides direct access
to the stored procedures through
the vendor’s own SQL command
set, you can bypass any shortcom-
ings in TStoredProc’s connectivity.
Third, in the early releases of
Delphi, the BDE and SQL Links
drivers had several bugs in com-
municating with some back-end
servers that could be avoided by
calling the stored procedure
directly through TQuery.

Triggers
Triggers are a special form of
stored procedure. Whereas stored
procedures are executed on
demand by an explicit call from the
application, triggers are bound to
specific data events on a table and
are executed automatically by the
server when those events occur.
Generally, a trigger can be assigned
to execute whenever a record is
added, changed, or deleted in a
given table. An application cannot
explicitly execute a trigger and can-
not prevent a trigger from being
executed if the proper data event
has occurred. Triggers act some-
what like event-handlers in Delphi.
Just as you can assign a Delphi pro-
cedure to execute when certain ap-
plication events (like OnClick)
occur, you can assign database
triggers to execute when certain
database events occur. Unlike
Delphi event handlers, triggers
have no input or output parame-
ters. As they are controlled purely
through database events, there is
no direct communication between
an application and a trigger.

Triggers can contain essentially
the same SQL statements and logic
which can be used within a stored
procedure. Some example uses of
triggers would be: posting an audit

trail record so that a history is
maintained of all changes to a
table, auto-generating a unique
primary key value for new records,
posting a time stamp of record
modification, or cascading
changes across related tables.

Listing 4 shows a typical trigger
for an Interbase table. This exam-
ple comes directly from Delphi’s
sample employee database, file
EMPLOYEE.GDB. Whenever the
Salary field in the Employee table is
changed, this trigger adds a record
to the Salary_History table.

This code creates a trigger called
Save_Salary_Change which is
executed whenever a record in the
Employee table is updated. Like a
stored procedure, the actual trig-
ger code is defined within the AS
BEGIN END block. Interbase supplies
two ‘virtual’ tables, Old and New, to
hold the record’s contents before
and after the update respectively.
These virtual tables are available
only within triggers. We use them
here to determine if the Salary field
has changed and, if so, to insert a
record into the Salary_History ta-
ble. The INSERT statement uses the
Interbase literal Now to provide the
current date and time and the lit-
eral User to capture the username
of the user making the change.

A common technique in the
client/server world is to use a
trigger tied to the record insert
event to assign an auto-increment-
ing numeric value to the primary
key of the record. In Delphi, at least
with data-aware controls and
TTable, this poses a bit of a prob-
lem. Delphi uses the primary key to
keep track of the records. Since the
primary key for the inserted record
is assigned outside of Delphi’s

purview by the trigger, Delphi
loses track of the record and raises
a ‘Record/Key Deleted’ exception.
To avoid this, rather than use a
trigger to assign the key value, you
may want to use a regular stored
procedure to return the auto-incre-
ment value, have Delphi use this to
obtain the key value, and assign it
to the record’s primary key field in
TTable’s OnNewRecord event handler.

Summary
A client/server system can benefit
from stored procedures by encap-
sulating business rules, improving
performance and enhancing data
security. However, they reduce
your ability to dynamically create
queries at runtime and may compli-
cate the development process.
Since there are many variations
among SQL server vendors, do
make sure you check your own
vendor’s reference manuals.

Next month we’ll continue our
look at stored procedures by roll-
ing up our sleeves and walking
through several Interbase exam-
ples, digging into both the SQL and
Delphi ends of the business. We’ll
also take a look at some Microsoft
SQL Server examples to illustrate
just how different stored proce-
dures can be from server to server.

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems. Steve can be
reached on the internet at
stevet@tpower.com and also on
CompuServe at 74071,2207

CREATE TRIGGER Save_Salary_Change FOR Employee
AFTER UPDATE
AS
BEGIN
 IF (Old.Salary <> New.Salary) THEN
 INSERT INTO Salary_History
 (Emp_No, Change_Date, Updater_ID, Old_Salary, Percent_Change)
 VALUES (
 Old.Emp_No,
 ’Now’,
 User,
 Old.Salary,
 (New.Salary - Old.Salary) * 100 / Old.Salary);
END

➤ Listing 4

February 1996 The Delphi Magazine 31

	What is a Stored Procedure?
	Encapsulated Logic
	Improved Performance
	Enhanced Data Security
	Drawbacks
	TStoredProc
	TQuery
	Triggers
	Summary

