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Preface

Fortran has been the premier language for scientific computing since its introduction in
1957. Fortran originally was designed to allow programmers to evaluate formu-
las—FORmula TRANslation—easily on large computers. Fortran compilers are now
available on all sizes of machines, from small desktop computers to huge multi-proces-
SOTS.

The Fortran 2003 Handbook is a definitive and comprehensive guide to Fortran 2003.
Fortran 2003, the latest standard version of Fortran, has many modern features that
will assist the programmer in writing efficient, portable, and maintainable programs
that are useful for everything from “hard science” to text processing.

The Fortran 2003 Handbook is an informal description of Fortran 2003, developed to
provide not only a readable explanation of features, but also some rationale for the in-
clusion of features and their use. In addition, “models” give the reader better insight as
to why the language is the way it is.

Target Audience

This handbook is intended for anyone who wants a comprehensive survey of Fortran
2003, including those familiar with programming language concepts but unfamiliar
with Fortran. Experienced Fortran 95 programmers will be able to use this volume to
assimilate quickly those features in Fortran 2003 that are not in Fortran 95 (Fortran
2003 contains all of the features of Fortran 95).

Although the handbook is written for use in conjunction with the standard, it is
also designed as a practical stand-alone description of Fortran 2003. The syntax rules
have been recast into more readable form. On the other hand, in places where the stan-
dard is not completely clear, a reasonable interpretation is often given, together with
ways to implement and program that will avoid potential problems. Of course, if infor-
mation is being sought to understand a fine point of compiler implementation, settle a
bet, resolve a court case, or determine the answer to a Fortran trivia question, the stan-
dard itself should be considered the final authority.

Organization

Chapters 1-16 correspond to Sections 1-16 in the standard. (The standard is the com-
plete official description of the language, but it is written in a legally airtight, formal
style without tutorial material and can be difficult to understand in places.) The hand-
book and the standard can be read in parallel for insights into the Fortran language.
This makes it feasible to use this handbook to “decipher” the standard, and this is an
ideal use of this book.



xii Preface

Specific information can be found in the following places:

® A brief list of references can be found at the end of Chapter 1.

® Each chapter begins with a summary of the main terms and concepts described in
the chapter.

® Each of the standard intrinsic procedures is described in detail in Appendix A; a
general discussion of the intrinsic functions is in Chapter 13.

® The IEEE module procedures are described in detail in Appendix B and Chapter
14.

® Appendix C contains a listing of the new, obsolescent, and deleted features.

® The index is unusually comprehensive.

Style of the Programming Examples

In order to illustrate many features of the language and as many uses of these features
as possible, no single particular style has been used when writing the examples. In
many cases, the style illustrated is not necessarily one that the authors recommend.

Jeanne Adams

It is with deep regret that we acknowledge the passing in 2007 April of Jeanne Ad-
ams—our coauthor and longtime colleague and friend. Among her many contributions
to computing and Fortran standardization, she is best known for her chairmanship of
the committee that developed Fortran 90.

Walter S. Brainerd
Richard A. Hendrickson
Richard E. Maine
Jeanne T. Martin

Brian T. Smith

USA, 2008 May



1 Introduction

For a programming language, Fortran has been around a long time. It was one of the
first widely used “high-level” languages, as well as the first programming language to
be standardized. Although Fortran has been enhanced many times, the enhancements
almost always have been upward compatible; old programs continue to work with new
compilers. It is still the premier language for scientific and engineering computing ap-
plications.

The purpose of this handbook is to describe the latest version of this language,
Fortran 2003. This chapter sets the stage by providing relevant background and de-
scribing the notation used to specify the syntax of Fortran 2003.

1.1 History

1.1.1 Initial Development of Fortran

In 1954 a project was begun under the leadership of John Backus at IBM to develop an
“automatic programming” system that would convert programs written in a mathe-
matical notation to machine instructions for the IBM 704 computer. Many were skepti-
cal that the project would be successful because, at the time, computer memories were
so small and expensive and execution time so valuable that it was believed necessary
for the compiled program to be almost as good as that produced by an assembly lan-
guage programmer.

This project produced the first Fortran compiler, which was delivered to a custom-
er in 1957. It was a great success by any reasonable criterion. The efficiency of the code
generated by the compiler surprised even some of its authors. A more important
achievement, but one that took longer to realize, was that programmers could express
their computations in a much more natural way. This increased productivity and per-
mitted the programmer to write a program that could be maintained and enhanced
much more easily than an assembly language program.

About one year after the introduction of the first Fortran compiler, IBM introduced
Fortran II. One of the most important changes in Fortran II was the addition of subrou-
tines that could be compiled independently. Thus, Fortran changed substantially even
during its first year; it has been changing continually ever since.

1.1.2 Standardization

By the early 1960s, many computer vendors had implemented a Fortran compiler. They
all included special features not found in the original IBM compiler. These features
usually were included to meet needs and requests of the users and thus provide an in-
ducement for the customer to buy computer systems from the vendor providing the
best features. Because the language was very young, a special added feature could be

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_1, © Springer-Verlag London Limited 2009



2 Chapter 1

tested to see if it was a good long-term addition to the language. Unfortunately, the
profusion of dialects of Fortran prevented programs written for one computer from be-
ing transported to a different computer system.

1.1.2.1 Fortran 66

At about this time, the American Standards Association (ASA), which became the
American National Standards Institute (ANSI) and is now the National Committee for
Information Technology Standards (NCITS), began a project of standardizing many as-
pects of data processing. Someone had the daring idea of standardizing programming
languages. A committee, which became X3]3, then J3, and was renamed INCITS/PL22.3
in 2007, was formed to develop a standard for Fortran. This standard was adopted in
1966 [3]; after the adoption of Fortran 77, it became known as Fortran 66 to distinguish
the two versions.

1.1.2.2 Fortran77

The language continued to develop after 1966, along with general knowledge in the ar-
eas of programming, language design, and computer design. Work on a revision of
Fortran 66 was completed in 1977 (hence the name Fortran 77) and officially published
in 1978 [4]. The most significant features introduced in this version were the character
data type, the IF-THEN-ELSE construct, and many new input/output facilities, such as
direct access files and the OPEN statement. Except for the character data type, most of
these features had been implemented in many compilers or preprocessors. During this
revision, Hollerith data was removed because the character data type is a far superior
facility. Although this idea of removing features did not seem very controversial when
Fortran 77 was introduced, it proved to be controversial later—so much so that no
Fortran 77 features were removed in Fortran 90.

Fortran 77, developed by X3J3, was an ANSI standard—an American National
Standard. At about this time the International Standards Organization (ISO) began to
mature in the computing language area and adopted Fortran 77 as an international
standard; the ISO standard was identical to the ANSI standard, and in fact consisted of
one page that referenced the ANSI standard.

1.1.2.3 Fortran 90

As soon as the technical development of Fortran 77 was completed, X3J3 and its ISO
counterpart Working Group 5 (SC22/WG5) teamed up for the next revision, which was
called Fortran 90. Fortran 90 was an ISO standard first [11], which the US adopted,
word for word, as an ANSI standard. Although X3]J3 did the technical work on
Fortran 90, and produced the standard document, the torch had been passed as to the
“owner” of the Fortran standard; that “owner”, for Fortran 90 and for the foreseeable
future, is ISO.

Fortran 90 was a major advance over Fortran 77. It included: a greatly liberalized
source form, a complete set of iteration and selection control structures, enhanced nu-
meric facilities (e.g., the environmental intrinsic functions), a comprehensive data-par-
allel array language, data structures (including dynamic structures), user-defined types
and operators, procedure extensions (e.g., recursion, internal procedures, explicit pro-
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cedure interfaces, user-defined generic procedures), module encapsulation (with pow-
erful data hiding features), kind type parameters (e.g., to regularize the different
“kinds” of reals, provide the corresponding kinds of complex, accommodate different
kinds of character, and to resolve overloads in a simple way), dynamic objects (e.g., al-
locatable arrays and pointers), and some I/O extensions (e.g., NAMELIST and non-ad-
vancing I/O). The concept of “obsolescent” features was introduced, and a handful of
Fortran 77 features were so identified. But removal of significant numbers of archaic
features was controversial and so no features were actually removed. A standard-con-
forming Fortran 77 program is a standard-conforming Fortran 90 program with the
same interpretation.

1.1.2.4 Fortran 95

Fortran 95 [10], specified by WG5 and produced by X3]3, represented a minor revision
to Fortran 90. Most of the changes corrected and clarified what was in Fortran 90.
However, a few significant features, such as pure functions and the FORALL construct
and statement, were added because they were considered important contributions
from High Performance Fortran [17]. A few (quite insignificant) features designated as
obsolescent in Fortran 90 were removed from Fortran 95. These features are:

1. Real and double precision DO variables

2. Branching to an END IF from outside the block

3. PAUSE statement

4. ASSIGN statement, assigned GO TO statement, and related features
5. nH edit descriptor

1.1.2.5 Fortran 2003

Fortran 2003 [7], while not the major advance that Fortran 90 represented, still added
considerably more features than did Fortran 95, which was a minor revision of Fortran
90. The most important features introduced in Fortran 2003 are:

e interoperability with the C programming language [15], permitting easy portable
access to the low-level facilities of C from Fortran programs and the portable use of
Fortran libraries by programs written in C

e support for exceptions and IEEE arithmetic [13] in so far as it does not conflict with
existing Fortran arithmetic rules

* support for object-oriented programming, including inheritance (type extension),
polymorphism (dynamic typing), and type-bound procedures

* data-type enhancements, such as parameterized derived types, allocatable compo-
nents, and finalizers
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* input/output enhancements, such as user-defined derived-type input/output, asyn-

chronous input/output, stream input/output, and the FLUSH statement to empty
buffers

support for international usage, including the ISO 10646 character set [16] and
choice of a comma or period for the decimal symbol in numeric formatted in-
put/output

other features, such as procedure pointers, the PROTECTED and VOLATILE at-
tributes, the IMPORT statement, access to environment variables and command-
line arguments, better error handling, and better rounding control

1.2 The Fortran 2003 Language Standard

The Fortran 2003 standard [7] describes the syntax and semantics of the Fortran pro-
gramming language but only certain, not all, aspects of the Fortran processing system.
When specifications are not covered by the standard, the interpretation is processor de-
pendent; that is, the processor defines the interpretation, but the interpretation for any
two processors need not be the same. Programs that rely on processor-dependent inter-
pretations typically are not portable.

A

The specifications that are included in the standard are:
the syntax of Fortran statements and forms for Fortran programs

the semantics (meaning) of Fortran statements and the semantics of Fortran pro-
grams

interoperability requirements between Fortran and C programs
requirements for IEEE floating-point support

specifications for input data

appearance of output data

The specifications that are not defined in the standard are:

the way in which a Fortran compiler is written

operating system facilities defining the computing system

methods used to transfer data to and from peripheral storage devices and the na-
ture of the peripheral devices

behavior of extensions implemented by vendors
the size and complexity of a Fortran program and its data

the hardware or firmware used to run the program
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7. the way values are represented and the way numeric values are computed
8. the physical representation of data
9. the characteristics of disks and other storage media

1.2.1 Program Conformance to the Standard

A program conforms to the standard if the statements are all syntactically correct, exe-
cution of the program causes no violations of the standard (e.g., referencing an element
outside the bounds of an array), and the input data is all in the correct form. A pro-
gram that uses a vendor extension is not standard conforming and may not be porta-
ble. In particular, a program that uses intrinsic procedures or modules provided by the
vendor is not standard conforming.

1.2.2 Processor Conformance to the Standard

In the Fortran 2003 standard, the term “processor” means the combination of a Fortran
compiler and the computing system that executes the code. A processor conforms to
the standard if it correctly processes any standard-conforming program, provided the
Fortran program is not too large or complex for the computer system in question. Ex-
cept for certain restrictions in format specifications, the processor must be able to flag
any nonstandard syntax (described by the syntax rules and constraints) used in the
program. This includes the capability to flag any extensions available in the vendor
software (including deleted features) and used in the program. Note that the compiler
is not required to scan a character string used as a format. The standard also requires
that the processor detect, with appropriate explanation, the following:

1. obsolescent features (see C)
intrinsic type kind values not supported
characters not permitted by the processor

illegal source form

AR

violations of the scope rules for names, labels, operators, and assignment symbols

The standard does not require the processor to detect nonstandard intrinsic mod-
ules, but most processors probably will detect their use.

Rules for the form of the output are less stringent than for other features of the lan-
guage in the sense that the processor may have some options about the format of the
output and the programmer may not have complete control over which of these op-
tions is used.

A processor may include extensions not in the standard; if it processes standard-
conforming programs according to the standard, it is considered to be a standard-con-
forming processor.
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1.2.3 Portability

One of the main purposes of a standard is to describe how to write portable programs.
However, there are some things that are standard conforming, but not portable. An ex-
ample is a program that computes a very large number. Certain computing systems
will not accommodate a number this large. Thus, such a number could be a part of a
standard-conforming program, but may not run on all systems and thus may not be
portable. Another example is a program that uses a deeper nesting of control con-
structs than is allowed by a particular compiler.

1.24 A Permissive Standard

The primary purpose of the Fortran standard is to describe a language with the prop-
erty that, if a programmer uses the language, the difficulties of porting programs from
one computer system to another will be minimized. But to handle the somewhat con-
tradictory goal of permitting experimentation and development of the language, the
standard is permissive; that is, a processor can conform to the standard even if it allows
features that are not described in the standard. This has its good and bad aspects.

On the positive side, it allows implementors to experiment with features not in the
standard; if they are successful and prove useful, they can become candidates for stan-
dardization during the next revision. Thus, a vendor of a compiler may choose to add
some features not found in the standard and still conform to the standard by correctly
processing all of the features that are described in the standard.

On the negative side, the burden is on the programmer to know about and avoid
these extra features when the program is to be ported to a different computer system.
The programmer is given some help with this problem in that a Fortran processor is re-
quired to recognize and warn the programmer about syntactic constructs in a program
that do not conform to the standard. A good Fortran programmer’s manual also will
point out nonstandard features with some technique, such as shading on the page. But
there is no real substitute for knowledge of the standard language itself. This hand-
book provides this knowledge.

1.3 Notation Used in this Book

When a word or words are in bold font, this indicates that the term is being defined.
Fortran keywords, such as CALL and IF, are capitalized when discussed in text.
Examples in a monospaced font should be compilable when incorporated into a

complete program unit.

Braces { } are used in Appendices A and B to indicate optional intrinsic procedure
arguments.

In this book, a simplified form (compared to that used in the standard) is used to
describe the syntax of Fortran 2003 programs. The forms consist of program text in the
same font used to display program examples (such as END DO) and syntactic terms that
must be replaced with correct Fortran source for those terms, which are printed using
a sans serif font (such as input-item-list). Optional items are enclosed in brackets; items
enclosed in brackets followed by ellipses (...) may occur any number (including zero)
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of times. The ampersand (&) is used to continue a line, just as it is used to continue a
line in a Fortran 2003 program. Use of one of the syntactic forms always produces a
syntactically correct part of a Fortran 2003 program. These syntactic forms indicate
how to construct most of the correct Fortran 2003 statements, but in some cases are in-
complete in that they do not describe all of the possible forms. For example, specifiers
in some input/output statements are listed in order, but may be written in any order.
The following syntax form occurs in 9. It describes one form that can be used to
construct a direct access formatted WRITE statement. The general syntax for the
WRITE statement is quite complex and gives no hint as to which options are allowed
for direct access formatting. On the other hand, this rule is overly restrictive in that it
indicates a particular order for the options, which is not required by the standard.
Nevertheless, using this form always will produce a correct WRITE statement.

WRITE ([UNIT=]scalar-integer-expression&
, [FMT=]format&
, REC=scalar-integer-expression&
[ , I0STAT=scalar-default-integer-variable]&
[, ERR=label]&
) [output-item-list]

Another property of the syntactic forms is that the terms used are informal. They
are not necessarily defined precisely anywhere in the book and are not always the
same as those in the standard; they are often longer and more descriptive. If you need
to know the precise syntax allowed, refer to Fortran 2003 standard [7].

A general restriction on all syntax rules is that, for forms with lists of keywords,
any particular keyword may appear at most once. For example, there may be at most
one IOSTAT in a WRITE statement.

In the text near many syntax rules is a reference, such as (Rnnn). This indicates that
the syntax rule is related to syntax rule nnn of the Fortran 2003 standard.

The syntax rules use abbreviations for some common forms. These are listed in
Table 1-1.

Table 1-1 Syntax form abbreviations

char character

dtio derived-type input/output
expr expression

id identifier

io input/output

spec specification

An occurrence of abc-list is shorthand for a list of one or more things of form abc,
separated by comma; that is
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abc[, abc]....

The standard categorizes some restrictions as constraints. The difference between
constraints and the other restrictions is that the compiler must be able to detect viola-
tions of the constraints during compilation. In this book, there is no distinction be-
tween restrictions that the compiler must detect and those it need not detect and also
between compile-time and run-time restrictions.

1.4 Approximations to Real and Complex Values

Most real (and hence complex) values cannot be represented exactly in a computer. For
example, when

X =1.23

is executed, the value stored for X might not be exactly 1.23, but the nearest approxi-
mation that can be represented in the computer, which usually will be a binary repre-
sentation.

Whenever real and complex values and operations are discussed in this book, it is
to be understood that the values will be approximate when represented in the comput-
er. For examples, when this book indicates that the symbol “+” represents addition, it
really means that it represents an approximation to the sum of two values.
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2 Fortran Concepts and Terms

* A Program is an organized collection of program units. There must be exactly one
main program, and in addition there may be modules, external subprograms, and
block data units. Elements described by means other than Fortran may be included.

* A Module provides a means of packaging related data and procedures, and hiding
information not needed outside the module. There are several intrinsic modules.

The Data Environment consists of the data objects upon which operations will be
performed to create desired results or values. These objects may have declared and
dynamic types; they may have type parameters, and they may possess attributes
such as dimensionality. They need not exist for the whole execution of the program.
Allocatable objects and pointer targets may be created when needed and released
when no longer needed.

e Program Execution begins with the first executable construct in the main program
and continues with successive constructs unless there is a change in the flow of con-
trol. When a procedure is invoked, its execution begins with its first executable con-
struct. On normal return, execution continues where it left off. Execution may occur
simultaneously with input/output processes.

The Definition Status of a variable indicates whether or not the variable has a
value; the value may change during execution. Most variables are initially unde-
fined and become defined when they acquire a value. The status also may become
undefined during execution. Pointers have both an association status and a defini-
tion status. Allocatable objects have both an allocation status and a definition status.

Scope and Association determine where and by what names various entities are
known and accessible in a program. These concepts form the information backbone
of the language.

This chapter introduces the basic concepts and fundamental terms needed to un-
derstand Fortran. Some terms are defined implicitly by the syntax rules. Others, such as
“associated” or “present” are ordinary English words, but they have a specific Fortran
meaning.

One of the major concepts involves the organization of a program. A program con-
sists of program units; program units consist of Fortran statements. Some statements
are executable; some are not. In general, the nonexecutable statements define the data
environment, and the executable statements specify the actions taken. This chapter pre-
sents the high-level syntax rules for a Fortran program. It also describes the order in
which constructs and statements may appear in a program and concludes with an ex-
ample of a short, but complete, Fortran program.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_2, © Springer-Verlag London Limited 2009
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While there is some discussion of language features here to help explain various
terms and concepts, Chapters 3-16 contain the complete description of all language
features.

2.1 Program Organization

A collection of program units constitutes an executable program. A Fortran program
must have one main program and may have any number of the other program units.
Program units may serve as hosts for smaller scoping units. Information may be hid-
den within part of a program or communicated to other parts of a program by various
means. The programmer may control the parts of a program in which information is
accessible.

With the introduction of C interoperability in Fortran 2003, it is possible to include,
with much greater ease and portability, external procedures and other entities defined
by a means other than Fortran. A processor has one or more companion processors. A
companion processor is a processor-dependent mechanism by which global data and
procedures may be referenced or defined. It may be the Fortran processor itself, or it
may be another Fortran processor. If a procedure is defined by means of a companion
processor that is not the Fortran processor itself, the standard refers to the C function
that defines the procedure. Although the procedure need not be defined by means of
the C programming language, the interoperability mechanisms are designed to mesh
well with C.

211 Program Units

A Fortran program unit is one of the following:

main program
module

external subprogram
block data

A Fortran program may consist of only a main program, although usually there are
also modules and/or external subprograms which may be subroutine or function sub-
programs. These program units contain constructs and statements that define the data
environment and the steps necessary to perform calculations. Each program unit has
an END statement to terminate the program unit. Each has a special initial statement as
well, but the initial statement for a main program is optional. For example, a program
might contain a main program, a module, and a subroutine:

program task
call calc (2)

end program task
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moduTle 1info
end module info

subroutine calc(x)
use 1info

end subroutine calc

An ideal Fortran program would consist of a main program and several modules;
that is, there would be no external subprograms. This is the best model for packaging
and encapsulation (2.2.5). Subroutine and function subprograms are a fundamental
part of the language. They may be module, internal, or external subprograms.

The interface of a procedure supplies information about the name and type (if a
function) of the procedure, as well as information about its arguments. A program is
more robust if the interfaces of procedures are known when the procedures are in-
voked. This is inherently the case for internal procedures, module procedures, and all
of the intrinsic procedures. In addition, the interfaces of procedures defined in other
languages must be described to the Fortran system as C function interfaces (15.6).

The main program could be defined in a language other than Fortran, but it is usu-
ally the language of the main program that determines the program’s primary nature.
For example, a Fortran main program with some elements specified in another lan-
guage is still a Fortran program; whereas, if the main program is specified in C but
there is access to Fortran elements, the program is generally considered to be a C pro-
gram. Interlanguage communication is described in 15.

Because all except the most trivial of programs will make use of subroutines and
functions in some form, it might be expected that subroutines and functions would be
described earlier, but that is not the case. Chapter 12 describes them in detail. Chapter
11 describes all program units—the main program, modules, external subprograms,
and block data program units.

Internal procedures and module procedures gain access to information in their
hosts by host association. A USE statement specifying a module can appear in a main
program, a subprogram, a module, an interface body, or a block data subprogram to
gain access to the module’s public information. This method of access is called use as-
sociation. Association is described in 16.

Figure 2-1 illustrates the organization of a sample Fortran program. The lines with
thin arrows represent internal and external subprogram references with the arrow
pointing to the subprogram. The thick solid arrows represent access by use association
with the arrow pointing to the position of a USE statement.

2.1.1.1 Main Program

The main program is required; if there are other program units, the main program acts
as a controller; that is, it takes charge of the program and controls the order in which
procedures are executed.
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Program

Main program Module

Internal procedure

Internal procedure Subroutine Function

Subroutine Internal Internal
procedure procedure

Internal procedure

Function Subroutine
Internal procedure

Function

Figure 2-1 Example of program packaging. The thick arrows represent use
association; the thin arrows represent procedure references.

21.1.2 Module

A module contains definitions that can be made accessible to other program units by
use association. These definitions include data definitions, type definitions, definitions
of procedures known as module procedures, and specifications of procedure interfaces.
A module procedure may be invoked by another module procedure in the module or
by other program units that access the module. Fortran 2003 introduced intrinsic mod-
ules; there were no intrinsic modules in earlier standards. These are the
ISO_FORTRAN_ENYV module (13.6.1) that provides public entities relating to the envi-
ronment such as input/output units and storage sizes, the ISO_C_BINDING module
(15.3) that provides access to named constants representing kind values that are com-
patible with C types, and three IEEE modules (14.3) that provide support for excep-
tions and IEEE arithmetic.
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2.1.1.3 External Subprogram

An external subprogram (a function or a subroutine) may be used to perform a task or
calculation on entities available to the external subprogram. These entities may be the
arguments to the subprogram that are provided in the reference, entities defined in the
subprogram, or entities accessible from modules or common blocks. A CALL statement
is used to invoke a subroutine. A function is invoked when its value is needed in an
expression. The computational process that is specified by a function or subroutine
subprogram is called a procedure. An external subprogram provides one way to define a
procedure. It may be invoked from other program units of the Fortran program. Unless
it is a pure procedure, a subroutine or function may change the program state by
changing the values of data objects accessible to the procedure.

2.1.1.4 Block Data Program Unit

A block data program unit (11.5) contains data definitions only and is used to specify
initial values for a restricted set of data objects.

2.1.1.5 Compilation

Prior to the introduction of modules into Fortran, program units could be compiled in-
dependently with no need for information from any other program unit. Any informa-
tion needed in more than one program unit had to be replicated wherever it was
needed. The compiled program unit could be used in a number of applications without
the necessity of recompiling; this is called independent compilation.

If a program unit contains a USE statement, the referenced module must be avail-
able in some form when that program unit is compiled.

There are many ways to implement modules; however, most implementations re-
quire compilation of modules prior to compilation of any program units that use the
modules. The compilation often produces a file containing encoded or summarized in-
formation about the module, which is accessed when a program using the module is
compiled.

The situation regarding the availability of include files is somewhat similar, but be-
cause include files are simply inserted as text in a program, they are not usually pre-
processed in any way.

2.1.2 Procedures

A procedure specifies a task or a calculation, usually one that can be separated out from
the main flow or one that is needed in different parts of the program. A procedure may
take the form of a subroutine or a function. Every procedure has an interface that must
be unique in some way, A set of generic procedures may be identified by the same name
or symbol, but made unique by their arguments. A procedure may be defined by means
other than the Fortran language.

2.1.2.1 Internal Procedures

Main programs, module subprograms, and external subprograms may contain internal
subprograms, which may be either subroutines or functions. The procedures they de-
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fine are called internal procedures. Internal subprograms must not themselves contain
internal subprograms, however. The main program, external subprogram, or module
subprogram that contains an internal subprogram is referred to as the internal subpro-
gram’s host. Entities known in a host are available to an internal procedure by host as-
sociation. Internal procedures may be invoked within their host or within other
internal procedures in the same host. Internal procedures are described in 12.

There is also an obsolescent feature, the statement function (12.4.4), which specifies
a function by a single statement.

2.1.2.2 Procedure Interfaces

An interface provides the procedure name, the number of arguments, their types, at-
tributes, names, and the type and attributes of a function result. This information is re-
quired in some cases, such as for a dummy argument, which assumes the shape of its
actual argument (12.5.1.2). The information also allows the processor to check the va-
lidity of an invocation.

If a procedure interface is not inherently available, it may be specified in an interface
block. All program units, except block data, may contain procedure interface blocks. A
procedure interface block contains one or more interface bodies that are used to de-
scribe the interfaces of procedures that would otherwise be unknown. Interface blocks
are used for external procedures, dummy procedures, procedure pointers, abstract pro-
cedures, or type-bound procedures. An interface block with a generic specification
may be used to describe generic procedures or user-defined operators, assignment, or
input/output. Procedure interfaces are described in 12.

2.1.2.3 Generic Procedures

Fortran has the concept of a generic procedure, that is, one that can accept arguments
that have different types in different invocations. If the procedure is a function, in most
cases the type of the result is the same as that of the arguments. An example is the in-
trinsic SIN (the sine function), which can accept a real, double precision, or complex ar-
gument. A user-defined procedure also can be generic. A user defines several specific
procedures, and either collects their interfaces in an interface block with a generic
specification or lists them in a GENERIC statement in the type definition. The identifier
that appears in the generic specification or the GENERIC statement may be used to
reference the specific procedure whose arguments match those of the reference.

2.1.2.4 Procedures Defined by Other Languages

Chapter 15 describes how procedures defined by means of the C programming lan-
guage can be accessed from Fortran and how procedures defined in Fortran can be ac-
cessed from C programs. Other languages may be accommodated by these same
mechanisms. The mechanisms are not limited to C, but are described in terms of C
protocols. Some of the additions to Fortran 2003 to facilitate this process are useful in
themselves to strictly Fortran programs, such as the VALUE attribute for dummy argu-
ments (5.9.2), enumerations (4.6), and stream input/output (9.1.5.3).
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2.2 Data Environment

Before a calculation can be performed, its data environment must be established. The
data environment consists of data objects that possess properties, attributes, and val-
ues. The steps in a computational process generally specify operations that are per-
formed on operands (or objects) to create desired results or values. Operands may be
constants, variables, constructors, function references, or more complicated expressions
made up of these items; each operand has a data type (which may be dynamic); it may
have type parameters; and, if it is defined, it has a value. A data object has attributes in
addition to type. Chapter 4 discusses data type in detail; Chapter 5 discusses how pro-
gram entities and their attributes are declared; and Chapters 6 and 7 describe how data
objects may be used.

2.21 Data Type

The Fortran language provides five intrinsic data types—real, integer, complex, logical,
and character—and allows users to define additional types. Sometimes it is natural to
organize data in combinations consisting of several components of different types. Be-
cause the data describe one object, it is convenient to have a means to refer to this ag-
gregation of data by a single name. In Fortran, an aggregation of such data values is
called a structure. To use a structure, a programmer must first define the type of the
structure. Once the new type is defined, any number of structures (or objects) of that
type may be declared.

Some applications require related objects, such as a basic line plus a line of a cer-
tain style (dotted or dashed), or of a certain color, or both style and color. A base type
may be defined and then extended by adding different components. When a type is
defined, it is not necessary to specify that it may be extended. Generic procedures may
be defined (such as DRAW or ADD_TO_FIGURE) that accept as an actual argument an
object of the base type or any extension of it. Such an argument that may be of any of
these types is polymorphic.

2.2.2 Type Parameters

Both intrinsic and user-defined types may have parameters. For the intrinsic types, a
kind type parameter specifies a particular representation. In addition, the character type
has a length parameter.

Each of the intrinsic types may have more than one representation (specified by a
KIND parameter). The Fortran standard requires at least two different representations
for each of the real and complex types that correspond to “single precision” and “dou-
ble precision”, and permits more.

A type parameter for a user-defined type is also either a kind type parameter or a
length type parameter. Type parameters for user-defined types are specified in the type
definition.

Portable mechanisms for specifying precision are provided so that numerical algo-
rithms that depend on a minimum numeric precision can be programmed to produce
reliable results regardless of the processor’s characteristics. Fortran permits more than
one representation for the integer, logical, and character types as well. Alternative rep-
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resentations for the integer type permit different ranges of integers. Alternative repre-
sentations for the logical type might include a “packed logical” type to conserve
memory space and an “unpacked logical” type to increase speed of access. The large
number of characters required for ideographic languages, such as those used in Asia
with thousands of different graphical symbols, cannot be represented as concisely as
alphabetic characters and require “more precision”. For international usage Fortran
2003 encourages support of the ISO 10646 character set (1.5).

A kind type parameter value must be known at compile time and may be used to
resolve generic procedure references. A length type parameter value need not be
known at compile time; it may be used for character lengths, array dimensions, or other
sizes. If it is a deferred type parameter, indicated by a colon (:), it may change during
execution. If it is an assumed type parameter, indicated by an asterisk (¥), it assumes its
value from another entity, such as an actual argument.

Examples of type declarations with parameters are:

complex (kind = HIGH) x
integer (kind = SHORT) days_of_week
character (kind = IS0_10646, len = 500) HAIKU

type MY_ARRAY (pick_kind, rows, cols) | Type definition
integer, kind :: pick_kind
integer, len :: rows, cols
real (pick_kind) :: VALUES (rows, cols)

end type MY_ARRAY
type (MY_ARRAY) AA(HIGH, i, j)

where HIGH, SHORT, and ISO_10646 are named integer constants given appropriate
values by the programmer. The length parameter for the character string HAIKU has
the value 500. AA is of type MY_ARRAY; its single component, VALUES, is a real array
of kind HIGH and dimension (i, j), where i and j are specification expressions.

2.2.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a structure
has components, it is technically a scalar. A set of scalar objects, all of the same type,
may be arranged in patterns involving columns, rows, planes, and higher-dimensioned
configurations to form arrays. It is possible to have arrays of structures. An array may
have up to seven dimensions. The number of dimensions is called the rank of the array.
It is declared when the array is declared and cannot change. The size of the array is the
total number of elements and is equal to the product of the extents in each dimension.
The shape of an array is the list of its extents. Two arrays that have the same shape are
said to be conformable. A scalar is conformable with any array. Examples of array dec-
larations are:

real :: coordinates (100, 100)
integer :: distances (50)
type(line) :: mondrian(10)
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An array is an object and may appear in an expression or be returned as a function re-
sult. Intrinsic operations involving arrays of the same shape are performed element-by-
element to produce an array result of the same shape. There is no implied order in
which the element-by-element operations are performed.

A portion of an array, such as an element or section, may be referenced as a data
object. An array element is a single element of the array and is scalar. An array section
is a subset of the elements of the array and is itself an array.

2.2.4 Dynamic Data

Data objects may be dynamic in size, shape, type, or length type parameters, but not
rank or kind type parameters. The dynamic data objects are:

polymorphic objects
pointers

allocatable objects
automatic objects

The type of a polymorphic object (5.2) may change during program execution.
Objects that may have both a dynamic type as well as a dynamic size and shape are data
pointers, allocatable variables, and dummy arguments. Automatic objects appear in
subprograms and come into existence when the subprogram is invoked.

Dynamic type was introduced in Fortran 2003. An entity that is not polymorphic
has both a declared and a dynamic type, but they are the same. The dynamic type of a
polymorphic object that is not allocated (6.7.1) or associated (7.5.5.1) is its declared
type. The CLASS keyword is used to declare polymorphic entities. An object declared
with CLASS (*) is an unlimited polymorphic object with no declared type.

Procedures and data objects in Fortran may be declared to have the POINTER at-
tribute. A procedure pointer must be a procedure entity. A data pointer must be associ-
ated with a target before it can be used in any calculation. This is accomplished by
allocation (6.7.1.2) of the space for the target or by assignment of the pointer to an ex-
isting target (7.5.5.1). A pointer assignment statement is provided to associate a pointer
with a target (declared or allocated). It makes use of the symbol pair => rather than the
single character =; otherwise, it is executed in the same way that an ordinary assign-
ment statement is executed, except that instead of assigning a value it associates a
pointer with a target. For example,

real, target :: VECTOR(100)
real, pointer :: 0ODDS(:)

ODDS => VECTOR(1:100:2)

The pointer assignment statement associates ODDS with the odd elements of VECTOR.
The assignment statement

obDS=1.5
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defines each odd element of VECTOR with the value 1.5. Later in the execution se-
quence, the pointer ODDS could become associated with a different target by pointer
assignment or allocation, as long as the target is a one-dimensional, default real array.
Chapter 7 describes the pointer assignment statement.

If a pointer object is declared to be an array, its size and shape may change dynam-
ically, but its rank is fixed by the declaration. If a pointer target is polymorphic, the
pointer must be of a type that is compatible with the target, or both the pointer and tar-
get must be declared unlimited polymorphic. An example of pointer array declaration
and allocation is:

real, pointer :: Tengths (:)
allocate (lengths (200))

A variable may be declared to have the ALLOCATABLE attribute. Space must be
allocated for the variable before it can be used in any calculation. The variable may be
deallocated and reallocated with a different type, length type parameters, and shape as
the program executes. As with a pointer, the rank is fixed by the declaration. An allo-
catable variable cannot be made to point to an existing named object; the object always
must be created by an ALLOCATE statement. An example of allocatable array declara-
tion and allocation is:

real, allocatable :: Tengths (:)
allocate (lengths (200))

The similarities of these examples reflect the similarity of some of the uses of allocat-
able arrays and pointers, but there are differences. Pointers may be used to create dy-
namic data structures, such as linked lists and trees. The target of a pointer can be
changed by reallocation or pointer assignment; the new target must be of the same
rank but may have different extents in each dimension. The attributes of an allocatable
variable can be changed only by deallocating and reallocating the variable. There is a
MOVE_ALLOC intrinsic function that can be used if the values of the elements of an
allocatable array are to be preserved when its size is changed. Use of allocatable vari-
ables generally leads to more efficient execution than use of the more flexible pointers.

Only pointers and allocatable objects may be allocated or deallocated. It is possible
to inquire whether an object is currently allocated. Chapter 5 describes the declaration
of pointers and allocatable objects; Chapter 6 covers the ALLOCATE and DEALLO-
CATE statements; Chapter 13 and Appendix A describe the ASSOCIATED intrinsic in-
quiry function for pointers and the ALLOCATED intrinsic inquiry function for
allocatable variables. Chapter 15 describes dynamic interoperable objects.

Automatic data objects, either arrays or character strings (or both), may be de-
clared in a subprogram. These local data objects are created on entry to the subpro-
gram and disappear when the execution of the subprogram completes. These are
useful in subprograms for temporary arrays and characters strings whose sizes are dif-
ferent for each reference to the subprogram. An example of a subprogram unit with an
automatic array TEMP is:
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subroutine SWAP_ARRAYS (A, B)

real, dimension (:) :: A, B

real, dimension (size (A)) :: TEMP
TEMP = A

A=B

B = TEMP

end subroutine SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of the ac-
tual arguments. TEMP is an automatic array that is created the same size as A on entry
to subroutine SWAP_ARRAYS. SIZE is an intrinsic function.

2.2.5 Packaging and Encapsulation

The packaging of a fair-sized program is an important design consideration when a
new Fortran application is planned. The most important benefit of packaging is infor-
mation hiding. Entities can be kept inaccessible except where they are actually needed.
This provides some protection against inadvertent misuse or corruption, thereby im-
proving program reliability. Packaging can make the logical structure of a program
more apparent by hiding complex details at lower levels. Programs are therefore easier
to comprehend and less costly to maintain. The Fortran features that provide these
benefits are

* user-defined types
* internal procedures
e modules

The accessibility of a user-defined type in a module may be public, private, or
protected. In addition, even if the type is public, it may have private components. A
type definition has a type-bound procedure part in which the procedures bound to that
type are specified.

Internal procedures may appear in main programs, module subprograms, and ex-
ternal subprograms; they are known only within their host. The name of an internal
procedure must not be passed as an argument. The Fortran standard further restricts
internal procedures in that an internal procedure must not itself be the host of another
internal procedure. However, statement functions may appear within an internal pro-
cedure.

Modules provide the most comprehensive opportunities to apply packaging con-
cepts including several levels of organization and hiding (5.8). The entities specified in
a module (types, data objects, procedures, interfaces, etc.) may be made available to
other scoping units; may be made available, but protected from corruption outside the
module; or may be kept private to the module. Thus modules provide flexible encapsu-
lation facilities for entities in an object-oriented application. The procedures, men-
tioned in a type definition (4.4.2) and referred to as type-bound procedures (4.4.11),
generally appear as module procedures in the module that contains the type definition.
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In addition to the usual capabilities of procedures, these type-bound procedures may
specify

¢ defined operators

¢ defined assignment
e defined input/output
 finalization

Finalization is accomplished by a final procedure that is invoked automatically just be-
fore an object of the type is destroyed by deallocation, the execution of a RETURN or
END statement, or some other means.

Of course, more than one type definition may appear in a module, so if there is a
need for communication among separate but related objects, the module provides the
appropriate means for permitting and controlling access to information.

2.3 Program Execution

During program execution, constructs and statements are executed in a prescribed or-
der. Variables become defined with values and may be redefined later in the execution
sequence. Procedures are invoked, perhaps recursively. Space may be allocated and lat-
er deallocated. The targets of pointers may change. The types of polymorphic variables
may change.

2.3.1 Execution Sequence

Program execution begins with the first executable construct in the main program. An
executable construct is an instruction to perform one or more of the computational ac-
tions that determine the behavior of the program or control the flow of the execution of
the program. These actions include performing arithmetic, comparing values, branch-
ing to another construct or statement in the program, invoking a procedure, or reading
from or writing to a file or device. Examples of executable statements are:

read (5, *) z, vy

X = (4.0 * z) + base

if (x > y) go to 100

call calculate (x)
100 y=y +1

When a procedure is invoked, its execution begins with the first executable con-
struct after the entry point in the procedure. On normal return from a procedure invo-
cation, execution continues where it left off in the invoking procedure.

Unless a control statement or construct that alters the flow of execution is encoun-
tered, program statements are executed in the order in which they appear in a program
unit until a STOP, RETURN, or END statement is executed. Branch statements specify
a change in the execution sequence and consist of the various forms of GO TO state-
ments, a procedure reference with alternative return specifiers, EXIT and CYCLE state-
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ments in DO constructs, and input/output statements with branch label specifiers, such
as ERR, END, and EOR specifiers. The control constructs (IF, CASE, DO, and SELECT
TYPE) can cause internal branching implicitly within the structure of the construct. The
SELECT TYPE construct chooses a block of code based on the dynamic type of its poly-
morphic selector. Chapter 8 discusses in detail control flow within a program.

Another feature of Fortran 2003 is asynchronous input/output. It allows computa-
tion to occur in parallel with an input/output process if the processor supports parallel
processing. A WAIT statement may be used to synchronize the processes. This and oth-
er new input/output features are described in 9.

Normal termination of execution occurs if the END statement of a main program
or a STOP statement is executed. Normal termination of execution also may occur in a
procedure defined by means other than Fortran. If a Fortran program includes proce-
dures executed by a companion processor, the normal termination process will include
the effect of executing the C exit function.

2.3.2 Definition and Undefinition

Unless initialized, variables have no value initially; uninitialized variables are consid-
ered to be undefined. Variables may be initialized in type declaration statements, type
declarations, DATA statements, or by means other than Fortran; initialized variables are
considered to be defined. Some variables initialized by default initialization, such as
that specified in a type definition, are initialized when the variables come into existence,
whereas other variables such as those initialized in a DATA statement are initialized
when execution begins.

A variable may acquire a value or change its current value, typically by the execu-
tion of an assignment statement or an input statement. Thus it may assume different
values at different times, and under some circumstances it may become undefined.
This is part of the dynamic behavior of program execution. Defined and undefined are
the Fortran terms that are used to specify the definition status of a variable. The events
that cause variables to become defined and undefined are described in 16.

A variable is considered to be defined only if all parts of it are defined. For exam-
ple, all the elements of an array, all the components of a structure, or all characters of a
character string must be defined; otherwise, the array, structure, or string is undefined.
Fortran permits zero-sized arrays and zero-length strings; these are always considered
to be defined.

Pointers have both a definition status and an association status. When execution
begins, the association status of all pointers is undefined, except for data or default ini-
tialized pointers given the disassociated status. During execution a pointer may be-
come disassociated, or it may become associated with a target. At some point the
association status may revert to undefined. Even when the association status of a point-
er is defined, the pointer is not considered to be defined unless the target with which it
is associated is defined. Pointer targets become defined in the same way that any other
variable becomes defined, typically by the execution of an assignment or input state-
ment.

Allocatable variables have a definition status and an allocation status. The allocation
status is never undefined.
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2.3.3 Scope

The scope of a program entity is the part of the program in which that entity is known,
is available, and can be used. A scoping unit is

1. a program unit or subprogram, excluding any scoping units in it
2. a derived-type definition
3. an interface body, excluding any scoping units in it

Some entities have scopes that are something other than a scoping unit. For exam-
ple, the scope of a name, such as a variable name, can be any of the following:

1. an executable program

2. a scoping unit

3. a construct

4. a statement or part of a statement

The scope of a label is a scoping unit. The scope of an input/output unit is a pro-
gram.

2.3.4 Association

Association is the concept that is used to describe how different entities in the same
scoping unit or different scoping units can share values and other properties. Argu-
ment association allows values to be shared between a procedure and the program that
calls it. Use association and host association allow entities described in one part of a
program to be used in another part of the program. Use association makes entities de-
fined in modules accessible, and host association makes entities in the containing envi-
ronment available to a contained procedure. The IMPORT statement (12.5.2),
introduced in Fortran 2003, makes entities in a host scoping unit available in an inter-
face body by host association.

Additional forms of association are inheritance association (between the entities in
an extended type and its parent), linkage association (between corresponding Fortran
and C entities), and construct association (relevant to the ASSOCIATE and SELECT
TYPE constructs). The complete description of association may be found in 16.

An old form of association, storage association, which allows two or more vari-
ables to share storage, can be set up by the use of EQUIVALENCE, COMMON, or
ENTRY statements. It is best avoided.

24 Terms

Frequently used Fortran terms are defined in this section. Definitions of less frequently
used terms may be found by referencing the index of this handbook or Annex A of the
Fortran 2003 standard.
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Entity

Name

Named entity

Data object

Constant

Variable

Local variable

This is the general term used to refer to any Fortran “thing”,
for example, a program unit, a procedure, a common block, a
variable, an expression value, a constant, a statement label, a
construct, an operator, an interface, a type, an input/output
unit, a namelist group, etc.

A name is used to identify many different entities of a program
such as a program unit, a named variable, a named constant, a
common block, a construct, a formal argument of a subpro-
gram (dummy argument), or a user-defined type (derived
type). The rules for constructing names are given in 3.

A named entity is referenced by a name without any qualifica-
tion such as an appended subscript list or substring range.

A data object is a constant, a variable, or a subobject of a con-
stant. It may be a scalar or an array. It may be of intrinsic or
derived type.

A constant is a data object whose value cannot be changed. A
named entity with the PARAMETER attribute is called a
named constant. A constant without a name is called a literal
constant. A constant may be a scalar or an array.

A variable is a data object whose value can be defined and re-
defined. A variable may be a scalar or an array.

A variable that is in a main program, module, or subprogram
and is not associated by being: a dummy argument, in COM-
MON, a BIND(C) variable, or accessed via host or USE associa-
tion. A subobject of a local variable is also a local variable.

Subobject of a constant A subobject of a constant is a portion of a constant. The portion

Data entity

Expression

Function reference

referenced may depend on the value of a variable, in which
case it is neither a constant nor a variable.

A data entity is a data object or the result of the evaluation of
an expression. A data entity has a type, possibly type parame-
ters, and a rank (a scalar has rank zero). It may have a value.

An expression may be a simple data reference or it may specify
a computation and thus be made up of operands, operators, and
parentheses. The type, type parameters, value, and rank of an
expression result are determined by the rules in 7.

A function reference invokes a function. It is made up of the
name of a function followed by a parenthesized list of
arguments, which may be empty. The type, type parameters,
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Data type

Type parameter

Derived type

Ultimate component
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and rank of the result are determined by the interface of the
function and the reference.

A data type provides a means for categorizing data. Each in-
trinsic and user-defined data type has—a name, a set of values,
a set of operators, and a means to represent values of the type
in a program. For each data type there is a type specifier that is
used to declare objects of the type.

There are two categories of type parameters for types: kind and
length. For intrinsic types a kind type parameter indicates the
range for the integer type, the decimal precision and exponent
range for the real type and parts of the complex type, and the
machine representation method for the character and logical
types. The length type parameter indicates a length for the
intrinsic character type. For a derived type, the type parameters
are defined in its type definition.

A derived type (or user-defined type) is a type that is not in-
trinsic; it requires a type definition to name the type and speci-
fy its parameters and components. The components may be of
intrinsic or user-defined types. An object of derived type is
called a structure. For each derived type, a structure construc-
tor is available to specify values. Operations on objects of de-
rived type must be defined by a function. Assignment for
derived-type objects is defined intrinsically, but may be rede-
fined by a subroutine. Finalizers may be specified for derived-
type objects. Data entities of derived type may be used as pro-
cedure arguments and function results, and may appear in in-
put/output lists and other places. Derived types may be
extended by inheritance.

The ultimate components of a derived type entity are the low-
est-level components that have storage in the entity. They are a)
any components that are of an intrinsic type, b) any compo-
nents that have the ALLOCATABLE or POINTER attribute (the
entity has storage for the pointer or allocation descriptor, but
the object or target does not, itself, have storage in the entity),
and c) the ultimate components of any derived type compo-
nents that have neither the ALLOCATABLE nor POINTER at-
tribute. The ultimate components are subject to, for example,
storage association rules.

There is a distinction between a component of derived type
and an allocatable or pointer component of the same type. In
the first case, the elements of the derived type component are
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Inheritance

Polymorphism

Scalar

Array

Subobject

Designator

Selector

Declaration

ultimate components; in the other cases only the descriptor or
pointer is an ultimate component

Inheritance is the process of automatically acquiring entities
(parameters, components, or procedure bindings) from a parent.

Polymorphism is the ability to change type during program ex-
ecution. Dummy arguments, pointers, and allocatable objects
may be polymorphic.

A scalar is a single object of any intrinsic or derived type. A
structure is scalar even if it has a component that is an array.
The rank of a scalar is zero.

An array is an object with the dimension attribute. It is a col-
lected set of scalar data, all of the same type and type parame-
ters. The rank of an array is at least one and at most seven. An
array of any rank may be of zero size. An array of size zero or
one is not a scalar. Data entities that are arrays may be used as
expression operands, procedure arguments, and function re-
sults, and may appear in input/output lists, as well as other
places.

A subobject is a portion of a data object. Portions of a data ob-
ject may be referenced and defined (if the object is a variable)
separately from other portions of the object. Array elements
and array section are portions of arrays. Substrings are por-
tions of character strings. Structure components are portions of
structures. Portions of complex objects are the real and imagi-
nary parts. Subobjects are referenced by designators or intrin-
sic functions and are considered to be data objects themselves.

Sometimes it is convenient to reference only part of an object,
such as an element or section of an array, a substring of a char-
acter string, or a component of a structure. This requires the
use of a designator which is the name of the object followed by
zero or more selectors that select a part of the object.

This term is used in several different ways. A selector may des-
ignate part of an object (array element, array section, substring,
or structure component) or the set of values for which a CASE
block is executed, or the dynamic type for which a SELECT
TYPE block is executed, or the object associated with the name
in an ASSOCIATE construct.

A declaration is a nonexecutable statement that specifies the at-
tributes of a program element. For example, it may be used to
specify the type of a variable or function or the shape of an ar-
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Definition

Statement keyword

List keyword

Sequence
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ray. It may indicate that an entity is a data pointer or a proce-
dure pointer. Attributes that were introduced in Fortran 2003
are: ASYNCHRONOUS, which indicates that the value of the
variable may change outside the execution flow due to a
possibly simultaneous input/output process; BIND (C), which is
used to indicate data and functions that interoperate with C;
PROTECTED, which prohibits any change to the value of the
variable or the association status of the pointer outside the
module in which it is declared; VALUE, which, when applied to
a dummy argument, specifies an argument passing mechanism
useful in C interoperability; and VOLATILE, which indicates
that the value of the variable may change by means other than
the normal execution sequence

This term is used in several ways. A data object is said to be
defined when it has a valid or predictable value; otherwise it is
undefined. It may be given a valid value by execution of state-
ments such as assignment or input. Under certain circumstanc-
es described in 16, it may subsequently become undefined.

Procedures and derived types are said to be defined when their
descriptions have been supplied by the programmer and are
available in a program unit.

The association status of a pointer is defined when the pointer is
associated or disassociated; otherwise, it is undefined.

A statement keyword is part of the syntax of a statement. Each
statement, other than an assignment statement, pointer assign-
ment statement, or statement function definition, begins with a
statement keyword. Some statement keywords appear in
internal positions within statements. Examples of these key-
words are THEN, KIND, and INTEGER. Statement keywords
are not reserved; they may be used as names.

A list keyword is a name that is used to identify an item in a
list (rather than its position) such as an argument list, type pa-
rameter list, or structure constructor list. Keywords for the ar-
gument lists of all of the intrinsic procedures are specified by
the standard (A). Keywords for user-supplied external proce-
dures may be specified in a procedure interface block. Key-
words for structure constructors and user-defined type
parameters are specified in the type definition.

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in
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Operator

Construct

Executable construct

Procedure

Procedure interface

Reference

Intrinsic

the sequence is n. A sequence may be empty, in which case it
contains no elements.

An operator indicates a computation involving one or two op-
erands. Fortran defines a number of intrinsic operators; for ex-
ample, +, —, %, /, ** with numeric operands, and .NOT.,
<.AND., .OR. with logical operands. In addition, users may
define operators for use with operands of intrinsic or derived

types.

A construct is a sequence of statements starting with an ASSO-
CIATE, DO, FORALL, IF, SELECT CASE, SELECT TYPE, or
WHERE statement and ending with the corresponding termi-
nal statement.

An executable construct is an action statement (such as a
READ statement) or a construct (such as a DO or CASE con-
struct).

A procedure is defined by a sequence of statements that ex-
presses a computation that may be invoked as a subroutine or
function during program execution. It may be an intrinsic pro-
cedure, an external procedure, an internal procedure, a module
procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than
one procedure.

A procedure interface is a sequence of statements that specifies
the name and characteristics of a procedure, the name and at-
tributes of each dummy argument, and the generic specifier by
which it may be referenced, if any.

A data object reference is the appearance of the object designa-
tor in a statement requiring the value of the object.

A procedure reference is the appearance of the procedure des-
ignator, operator symbol, or assignment symbol in an execut-
able program requiring execution of the procedure.

A module reference is the appearance of the module name in a
USE statement.

Anything that is defined by the Fortran processor is intrinsic.
There are intrinsic data types, procedures, modules, operators,
and assignment. These may be used freely in any scoping unit.
The Fortran programmer may define types, procedures, mod-
ules, operators, and assignment; these entities are not intrinsic.
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Companion processor

Scoping unit

Association

Inheritance association

Linkage association

Construct association
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A companion processor is a processor that provides mecha-
nisms by which global data and procedures may be referenced
or defined —perhaps by means other than Fortran, such as the
C programming language.

A scoping unit is a portion of a program in which a name has a
fixed meaning. A program unit or subprogram generally de-
fines a scoping unit. Type definitions and procedure interface
bodies also constitute scoping units. Scoping units are non-
overlapping, although one scoping unit may contain another in
the sense that it surrounds it. If a scoping unit contains another
scoping unit, the outer scoping unit is referred to as the host
scoping unit of the inner scoping unit.

In general, association permits an entity to be referenced by
different names in a scoping unit or by the same or different
names in different scoping units. There are several kinds of as-
sociation: the major ones are name association, pointer associa-
tion, inheritance association, and storage association. Name
association is argument association, use association, host
association, linkage association, and construct association.

Inheritance association occurs between the inherited entities of
an extended type and the corresponding entities of its parent.

Linkage association occurs between a module variable with the
BIND(C) attribute and the relevant C variable or between a
Fortran common block and the relevant C variable. It has the
scope of the program.

Construct association occurs between the selector in an ASSO-
CIATE or SELECT TYPE construct and the associate name of
the construct. It has the scope of the construct.

2.5 High-Level Syntax Forms

The form of a program (R201) is:

program-unit

[ program-unit ] . . .

The forms for Fortran program units are shown in the first section below. The con-
structs that may appear in a program unit are shown in the subsequent sections. All
program units may have a specification part. The main program and the three forms of
subprogram (module, external, and internal) may have an execution part.

The notation used in this chapter is the same as that used to show the syntax in all
the remaining chapters; it is described in 1.3 along with an assumed syntax rule and
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some frequently used abbreviations for syntax terms. This is not the complete set of
rules; many lower-level rules are missing. Many of these rules may be found in the fol-
lowing chapters. The Fortran 2003 standard [7] contains the complete syntax rules.

2.51 Fortran Program Units
The forms of a program unit (R202) are:

main-program
module
external-subprogram
block-data

The form of a main program (R1101) is:

[ PROGRAM program-name |
[ specification-part ]
[ execution-part |
[ CONTAINS
internal-subprogram
[ internal-subprogram ] ... ]
END [ PROGRAM [ program-name | |

The form of a module (R1104) is:

MODULE module-name
[ specification-part ]
[ CONTAINS
module-subprogram
[ module-subprogram ] ...]
END [ MODULE [ module-name | ]

The form of a module subprogram (R1108) and an external subprogram (R203) is:

subprogram-heading
[ specification-part ]
[ execution-part ]
[ CONTAINS
internal-subprogram
[ internal-subprogram | ...]
subprogram-ending

The form of an internal subprogram (R211) is:

subprogram-heading
[ specification-part ]
[ execution-part ]
subprogram-ending

The forms of a subprogram heading (R1224, R1232) are:



32 Chapter 2

[ prefix ] [ declaration-type-spec ] FUNCTION function-name &
([ dummy-argument-list ] ) [ suffix ]

[ prefix ] SUBROUTINE subroutine-name [ ( [dummy-argument-list ] ) ] [ binding-spec ]
A prefix (R1228) is any combination of the keywords:

RECURSIVE
PURE
ELEMENTAL

A suffix (R1229) is one of the forms:

RESULT ( result-name ) [ binding-spec ]
binding-spec [ RESULT ( result-name ) ]

A binding specification (R509) is:
BIND ( C[ , NAME = scalar-char-initialization-expr | )
The forms of a subprogram ending (R1230, R1234) are:

END [ FUNCTION [ function-name ] ]
END [ SUBROUTINE [ subroutine-name | ]

The form of a block data program unit (R1116) is:

BLOCK DATA [ block-data-name ]
[ specification-part ]
END [ BLOCK DATA [ block-data-name | ]

2.5.2 The Specification Part
The form of the specification part (R204) is:

[ use-statement ] ...

IMPORT [ [ :: ]import-name-list] ] ...
[ implicit-part ]

[ declaration-construct | ...

The forms of a USE statement (R1109) are:

USE[[ , module-nature ] : : ] module-name [ , rename-list |
USE[[ , module-nature ] : : ] module-name , ONLY : [ only-list ]

The form of the implicit part (R206) is:

[ implicit-part-statement ] ...
IMPLICIT implicit-spec-list

The forms of an implicit part statement (R205) are:
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IMPLICIT implicit-spec-list

PARAMETER ( named-constant = initialization-expr &
[ , named-constant = initialization-expr | ... )

entry-statement

format-statement

The forms of an implicit specification (R550) are:

NONE
declaration-type-spec ( letter-spec-list )

The forms of a declaration construct (R207) are:

declaration-type-spec [ [ , attribute-spec ] ... : : ] entity-declaration-list
specification-statement

derived-type-definition

interface-block

enumeration-definition

entry-statement

format-statement

statement-function-statement

The forms of a declaration type specification (R502) are:

INTEGER [ kind-selector ]

REAL [ kind-selector |

DOUBLE PRECISION

COMPLEX [ kind-selector |
CHARACTER [ character-selector |
LOGICAL [ kind-selector ]

TYPE ( derived-type-spec )
CLASS ( derived-type-spec )
CLASS (*)

The form of a kind selector (R404) is:
([ KIND =] kind-value )
The forms of a character selector (R424) are:

(length-value [ , [ KIND =] kind-value ] )

( LEN = length-value [ , KIND = kind-value ] )
( KIND = kind-value [, LEN = length-value ])
* character-length [ , ]

A length value (R402) has one of the forms:

scalar-integer-expression

33
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A kind value (R404) has the from:
scalar-integer-initialization-expr
A character length (R426) has one of the forms:

( length-value )
scalar-integer-literal-constant

A derived-type specification (R455) has the from:
type-name [ ( type-parameter-spec-list ) ]

A type parameter specification (R456) has the from:
| keyword = | length-value

The forms of an attribute specification (R503) are:

ALLOCATABLE
ASYNCHRONOUS

BIND ( C[ , NAME = scalar-char-initialization-expr ] )
DIMENSION ( array-spec )
EXTERNAL

INTENT ( intent-spec )
INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PROTECTED

PUBLIC

SAVE

TARGET

VALUE

VOLATILE

The form of an entity declaration (R504) is:
object-name [ (array-spec ) | [ * character-length | [ initialization ]
The forms of initialization (R506) are:

= initialization-expr
=> function-reference

The forms of specification statements (R212) are:

ALLOCATABLE [ : : ] object-name [ ( deferred-shape-spec-list ) | &

[ , object-name [ ( deferred-shape-spec-list) | ] ...
ASYNCHRONOUS [ [ :: ] variable-name-list |
BIND ( C[ , NAME = scalar-char-initialization-expr | ) [ :: ] bind-entity-list

Chapter 2
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COMMON [ / [ common-block-name ] / ] common-block-object-list
DATA data-statement-object-list / data-value-list / &
[ [, ] data-statement-object-list / data-value-list / ]
DIMENSION [ :: ] array-name ( array-spec ) [ , array-name ( array-spec) ] ...
EQUIVALENCE equivalence-set-list
EXTERNAL [ :: ] external-name-list
INTENT (intent-spec) [ :: ] dummy-argument-name-list
INTRINSIC] :: ] intrinsic-procedure-name-list
NAMELIST / namelist-group-name / namelist-group-object-list
OPTIONAL [ ::] dummy-argument-name-list
POINTER [ :: ] pointer-declaration-list
PARAMETER ( named-constant = initialization-expr &
[ , named-constant = initialization-expr ] ... )
PROCEDURE ( [ procedure-interface ] ) [ [ , procedure-attribute-spec ] ... :: ] &
procedure-declaration-list
PROTECTED [ : : ] entity-name-list
PUBLIC] [ :: ]access-id-list ]
PRIVATE [ [ :: ] access-id-list]
SAVE [ [ :: ] saved-entity-list ]
TARGET [ :: ] object-name [ ( array-spec ) ][ , object-name [ Carray-spec) ] ] ...
VALUE [ :: ] dummy-argument-name-list
VOLATILE [ :: ] variable-name-list

The forms of a procedure interface (R1212) are:

interface-name
declaration-type-spec

The forms of a procedure attribute specification (R1213) are:

BIND ( C[ , NAME = scalar-char-initialization-expr ] )
INTENT (intent-spec )

OPTIONAL

POINTER

PRIVATE

PUBLIC

SAVE

The form of a procedure declaration (R1214) is:
procedure-entity-name [ => function-reference |
The form of a derived-type definition (R429) is:

TYPE [ [ , type-attribute-list | : : | type-name [ ( type-parameter-name-list ) |
[ type-parameter-definition-statement ] ...
[ private-or-sequence-statement |
[ component-definition-statement | ...

[ CONTAINS
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[ PRIVATE ]

procedure-binding-statement

[ procedure-binding-statement | ... ]
END TYPE [ type-name |

The forms of a type attribute (R431) are:

ABSTRACT

BIND (C)

EXTENDS ( parent-type-name )
PRIVATE

PUBLIC

The form of a type parameter definition statement (R435) is:

INTEGER [ kind-selector | , type-parameter-attribute-spec :: &
type-parameter-declaration-list

The forms of a type parameter attribute specification (R437) are:

KIND
LEN

The form of a type parameter declaration (R436) is:
type-param-name [ = scalar-integer-initialization-expr |
The forms of a component definition statement (R439) are:

declaration-type-spec [ [ , component-attribute-spec-list] :: ] &
component-declaration-list

PROCEDURE ( [ procedure-interface | ) , procedure-component-attribute-spec-list : : &
procedure-declaration-list

The forms of a component attribute specification (R441) are:

ALLOCATABLE

DIMENSION ( component-array-spec )
POINTER

PRIVATE

PUBLIC

The form of a component declaration (R442) is:
component-name [ ( component-array-spec ) | [ * character-length ] [ initialization ]

The forms of a procedure component attribute specification (R446) are:

NOPASS

PASS [ ( argument-name ) |
POINTER

PRIVATE

PUBLIC
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The form of an interface block (R1201) is:

[ ABSTRACT | INTERFACE [ generic-spec |
[ subprogram-heading
[ specification-part ]
subprogram-ending ] ...
[ [ MODULE ] PROCEDURE procedure-name-list | ...
END INTERFACE [ generic-spec ]

The forms of a generic specification (R1207) are:

generic-name

OPERATOR ( defined-operator )
ASSIGNMENT (=)
derived-type-io-generic-spec

The form of an enumeration definition (R460) is:

ENUM , BIND (C)

ENUMERATOR [ :: ] enumerator-list

[ ENUMERATOR [ :: ] enumerator-list] ...
END ENUM

2.5.3 The Execution Part
The form of the execution part (R208) is:

execution-part-construct
[ execution-part-construct | ...

The forms of an execution part construct (R209) are:

executable-construct
entry-statement
format-statement

The forms of an executable construct (R213) are:

action-statement
associate-construct
case-construct
do-construct
forall-construct
if-construct
select-type-construct
where-construct

The forms of an action statement (R214) are:

variable = expression
data-pointer-object [ ( bounds-list ) | => data-target
data-pointer-object ( bounds-remap-list ) => data-target
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procedure-pointer-object => procedure-target

ALLOCATE [ declaration-type-spec : : ]| ( allocation-list [ , allocate-option-list ] )

BACKSPACE scalar-integer-expression

BACKSPACE ( position-spec-list )

CALL subroutine-name [ ([ actual-argument-spec-list] ) ]

CLOSE ( close-spec-list )

CONTINUE

CYCLE [ do-construct-name ]

DEALLOCATE ( allocate-object-list [ , deallocate-option-list] )

ENDFILE scalar-integer-expression

ENDFILE ( position-spec-list )

EXIT [ do-construct-name |

FLUSH scalar-integer-expression

FLUSH ( flush-spec-list )

FORALL ( forall-triplet-specification-list [ , scalar-logical-expression]) &
forall-assignment-statement

GO TO label

GO TO ( label-list) [ , ] scalar-integer-expression

IF ( scalar-logical-expression ) action-statement

IF ( scalar-numeric-expression ) label , label , label

INQUIRE (inquire-spec-list )

INQUIRE ( IOLENGTH = scalar-integer-variable ) output-item-list

NULLIFY ( pointer-object-list )

OPEN ( connection-spec-list )

PRINT format [ , output-item-list ]

READ ( io-control-spec-list ) [ input-item-list ]

READ format [ , input-item-list ]

RETURN [ scalar-integer-expression |

REWIND scalar-integer-expression

REWIND ( position-spec-list )

STOP [ scalar-character-constant |

STOP digit [ digit [ digit [ digit [ digit]]] ]

WAIT ( wait-spec-list )

WHERE ( logical-expression ) where-assignment-statement

WRITE (io-control-spec-list ) [ output-item-list ]

The form of the ASSOCIATE construct (R816) is:

[ associate-construct-name : | ASSOCIATE ( association-list )
block
END ASSOCIATE [ associate-construct-name |

The form of the CASE construct (R808) is:

[ case-construct-name : ] SELECT CASE ( case-expression )
[ CASE ( case-value-range-list ) [ case-construct-name |
block ] ...
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[ CASE DEFAULT [ case-construct-name |
block |
END SELECT [ case-construct-name |

The form of the DO construct (R825) is:

[ do-construct-name : | DO [ label ] [ loop-control ]
block
[ label ] END DO [ do-construct-name |

The form of the FORALL construct (R752) is:

[ forall-construct-name : | &
FORALL ( forall-triplet-spec-list [ , scalar-logical-expression ] )
[ forall-body-construct | ...
END FORALL [ forall-construct-name ]

The form of the IF construct (R802) is:

[ if-construct-name : ] IF ( scalar-logical-expression ) THEN
block

[ ELSE IF ( scalar-logical-expression ) THEN [ if-construct-name ]
block ] ...

[ ELSE [ if-construct-name |
block |

END IF [ if-construct-name ]

The form of the SELECT TYPE construct (R821) is:

[ select-construct-name : ] SELECT TYPE ( [ associate-name => ] selector )
[ type-guard [ select-construct-name |
block ] ...
END SELECT [ select-construct-name |

The form of the WHERE construct (R744) is:

[ where-construct-name : | WHERE ( logical-expression )
[ where-body-construct ] ...

[ ELSEWHERE ( logical-expression ) [ where-construct-name |
[ where-body-construct ] ... ] ...

[ ELSEWHERE [ where-construct-name |
[ where-body-construct ] ... |

END WHERE [ where-construct-name |

2.6 Ordering Requirements

Within program units, subprograms, and interface bodies there are ordering require-
ments for statements and constructs. The syntax rules above do not fully describe the
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ordering requirements. Therefore, they are illustrated in Table 2-1. In general, data dec-
larations and specifications must precede executable constructs and statements, al-
though FORMAT, DATA, and ENTRY statements may appear among the executable
statements. Placing DATA statements among executable constructs is now an obsoles-
cent feature. USE statements, if any, must appear first. Internal or module subpro-
grams, if any, must appear last following a CONTAINS statement.

In Table 2-1 a vertical line separates statements and constructs that can be inter-
spersed; a horizontal line separates statements that must not be interspersed.

Table 2-1 Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA statement

USE statements

IMPORT statements>

FORMAT? IMPLICIT NONE
aEIIl\(IiTRY“ PARAMETER statements IMPLICIT statements
statements PARAMETER and Derived-type definitions,
DATA statements® interface blocks,7
type declaration statements,
enumeration statements,
procedure statements,
statement function statements,2’5
and specification statements
DATA statements’ Executable constructs®

CONTAINS statement®

Internal subprograms or module subprograms

END statement

. Placing DATA statements among executable constructs is obsolescent.

. Statement function statements are obsolescent.

. Can appear only in interface bodies.

. Can appear only in modules and external procedures.

. Cannot appear in module specification parts, interface bodies, and block data subprograms.
. Cannot appear in interface bodies.

. Cannot appear in block data subprograms.

. Cannot appear in internal subprograms, interface bodies, and block data subprograms.

01NN B W~

2.7 Example Fortran Program

Hlustrated below is a very simple Fortran program consisting of one program unit, the
main program. Three data objects are declared: H, T, and U. These become the loop in-
dices in a triply-nested loop construct (8.7) containing a logical IF statement (8.4.2) that
conditionally executes an input/output statement (9.4).
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program sum_of_cubes

I This program prints all 3-digit numbers that
I equal the sum of the cubes of their digits.
implicit none

integer :: H, T, U
doH=1, 9
doT=0, 9
dou=20, 9
if (100*H + 10*T + U == H**3 + T**3 + U**3) &
print "(311)", H, T, U
end do
end do
end do

end program sum_of_cubes

This Fortran program is standard conforming and should be compilable and exe-
cutable on any standard Fortran computing system, producing the following output:

153
370
371



3 Language Elements and Source Form

* The Fortran Character Set consists of the uppercase letters and lowercase letters of
the English alphabet, the decimal digits, underscore, and special characters. Lower
case letters are considered the same as the corresponding upper case letters except
in character contexts and input/output records.

Lexical Tokens are constructed from characters in the Fortran character set. They
include statement keywords, names, constants, and operators.

The Processor Character Set consists of the Fortran character set plus additional
characters with or without graphics. (Control characters generally do not have
graphics.) A processor may support other character sets as well, such as Greek or
Japanese. Any of these characters may appear in character strings, comments, or
input/output.

¢ Free Source Form has no position restrictions. Lines may contain up to 132 charac-
ters. Blanks are significant and cannot be used within tokens, particularly names,
keywords, literal constants, and multicharacter operators. A semicolon may be used
to separate statements on the same line. Comments beginning with an exclamation
(') may appear on a separate line or at the end of a line. Lines can be continued by
placing an ampersand at the end of the line to be continued.

Fixed Source Form reserves positions 1 through 5 for labels, position 6 for continua-
tion, positions 7 through 72 for Fortran statements, and positions 73-80 are unused.
Comments are indicated by a C or asterisk in position 1. An exclamation may also
be used in position 1 or to indicate an end of line comment. A semicolon can be used
to separate statements on a line. Blanks are insignificant except in a character con-
text.

An INCLUDE Line specifies the location of text to be included in the source in place
of the INCLUDE line.

It is possible to prepare source so that it conforms to the rules for both free and fixed
source form. Text in this restricted form can be included in either free form or fixed
form source.

A program is made up of language elements consisting of lexical tokens that include
names, keywords, operators, and statement labels. There are rules for forming lexical
tokens from the characters in the Fortran character set. There are also rules (called
source form) for placing these tokens on a line.

A processor must have a character set that includes the Fortran character set, but
may permit other characters in certain contexts. The additional characters may include
control characters (which may have no graphic representation, such as escape or new

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_3, © Springer-Verlag London Limited 2009
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line) or may include characters with specified graphics such as those found in languag-
es, like Greek, Arabic, Chinese, or Japanese. These characters are not required to be
part of the character set for the default character type, but could be part of some op-
tional, nondefault character type, permitted by the standard and supplied by a partic-
ular implementation.

There are two source forms in Fortran. One is oriented towards terminal input of
source code. It is called free source form. The other is oriented towards the Hollerith
punched card common in the 1960s and is restricted to 80 positions. It is called fixed
source form. Fixed source form is an obsolescent feature. There is a convenient way to
place the same text in several places in a program; it makes use of an INCLUDE line.

3.1 The Processor Character Set

The processor character set contains:

e the Fortran character set of Table 3-1.

* as an extension, a processor-dependent set of control characters that have no
graphic representation, such as “new line” or “escape”

* as an extension, a set of characters with graphics (such as lowercase letters, Greek
letters, Japanese ideographs, or characters in the shape of a heart or a diamond)

It is recommended that the programmer consult the implementor’s documentation
describing the processor-dependent features of each particular Fortran implementa-
tion.

3.1.1 The Fortran Character Set

Characters in the Fortran character set are shown in Table 3-1.
Rules and restrictions:

1. Lowercase letters are considered the same as uppercase letters except within a
character constant, a quote or apostrophe edit descriptor, or input/output records,
where uppercase and lowercase letters are different data values in character data.
The following two statements are equivalent:

PRINT *, N
Print *, n

Whether uppercase and lowercase letters are distinguished in the FILE= or NAME=
specifier in an OPEN or an INQUIRE statement is processor dependent.

2. The digits are assumed to be decimal numbers when used to describe a numeric
value, except in binary, octal, and hexadecimal (BOZ) literal constants or input/out-
put records corresponding to B, O, or Z edit descriptors. For example, consider the
following DATA statement:
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Table 3-1 The Fortran character set

Alphanumeric characters

Letters

Digits

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopqrstuvwxyz

0123456789

Underscor

e

Special characters

Graphic

Name of character

Blank

Equals

Plus

Minus

Asterisk

Slash

Backslash

Left parenthesis

Right parenthesis

Left square bracket
Right square bracket
Left curly bracket (brace)
Right curly bracket (brace)
Comma

Decimal point or period

Colon

Graphic
!

%

@

Name of character
Semicolon
Exclamation point
Quotation mark or quote
Percent
Ampersand

Tilde

Less than

Greater than
Question mark
Apostrophe
Grave accent
Circumflex accent
Vertical bar
Currency symbol
Number sign

Commercial at

DATA X, I, J / 4.89, B’1011’, z’BAC91’ /

The digits of the first constant are decimal digits, those of the second constant are
binary digits, and those of the third are hexadecimal digits.

3. The underscore is used to make names more readable. For example, in the identifi-
er NUMBER_OF_CARS, each underscore is used to separate the obvious English
words. It is a significant character in any name. It cannot be used as the first char-
acter of a name; however, it may be the last character. An underscore is also used
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to separate the kind value from the actual value of a literal constant (for example,
123_SHORT is a literal constant with value 123 and of integer type with kind
SHORT).

4. Except for the currency symbol ($), the graphic for each character must be the same
as in Table 3-1; however, any style, font, or printing convention may be used.

5. The special characters, \, {, }, ~, 2, ", *, |, $, #, and @, are used only in a character
context or a comment.

The special characters are used for operators like multiply and add, and as separa-
tors or delimiters in Fortran statements. Separators and delimiters make the form of a
statement unambiguous.

3.1.2 Other Characters

In addition to the Fortran character set, other characters may be included in the proces-
sor character set. These are either control characters with no graphics or additional
characters with graphics. The selection of the other characters and where they may be
used is processor dependent. However, wherever they are permitted, the other charac-
ters are restricted in use to character constants, quote and apostrophe edit descriptors,
comment lines, and input/output records. All characters of the Fortran character set
may be used in character constants, quote and apostrophe edit descriptors, comment
lines, and input/output records.

A processor is required to support the Fortran character set as part of a character
set referred to as the default character set. A processor is allowed to support more
than one character set, each set using a different kind value of the intrinsic character
type (4.3.5); each such character set is a nondefault character set. The choice of charac-
ters in such sets is processor dependent except that each such set must contain a char-
acter that can be used as a blank. This specially designated character is used where
blank padding is required.

The choice of the representable characters beyond the Fortran character set is ex-
pected to be dependent on the particular implementation. It is recommended that the
implementor’s documentation be consulted for specific details.

3.1.3 The Tab Character

The tab character is not in the Fortran character set and is an example of an optional
control character that may be permitted by the processor in the source forms and typi-
cally is used as a blank separator. When it appears as the first character in a fixed
source form line, it often represents at least six blank characters, so that the next char-
acter may begin the body of a statement that must appear in columns 7-72. However,
this is not standard and its use may make it difficult to port the program; therefore, its
use is not recommended.

This recommendation does not help the programmer who has code that uses tab
characters. To use a Fortran file containing tabs with a compiler that accepts only stan-
dard-conforming programs, replace the tab with a blank for free source form and with
six blanks for fixed source form. This conversion is not fool proof; replacing a tab in
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fixed source form may extend the line beyond position 72. In either form, a tab may be
used in character context for output format control; in this case, the modification may
lead to an undesirable layout of data in the output.

3.2 Lexical Tokens

A statement is constructed from low-level syntax. The low-level syntax describes the
basic language elements, called lexical tokens, in a Fortran statement. A lexical token
is the smallest meaningful unit of a Fortran statement and may consist of one or more
characters. Tokens are names, keywords, literal constants (except for complex literal
constants), labels, operator symbols, comma, =, =>, :, i1, ;, %, and delimiters. A complex
literal (4.3.3) consists of several tokens. Examples of operator symbols are + and //.

Delimiters in Fortran are pairs of symbols that enclose parts of a Fortran statement.
The delimiters are slashes (in pairs), left and right parentheses, left and right brackets,
and the symbol pairs (/ and /).

/..
(..)
(...)

[..]

In the statements:

DATA X, Y/ 1.0, -10.2/
CALL PRINT_LIST (LIST, SIZE)
VECTOR = (/ 10, 20, 30, 40 /)

the slashes distinguish the value list from the object list in a DATA statement, the pa-
rentheses are delimiters marking the beginning and end of the argument list in the
CALL statement, and the pairs (/ and /) and [ and ] mark the beginning and end of the
elements of an array constructor.

3.21 Statement Keywords

Statement keywords appear in uppercase letters in the syntax rules. Some statement
keywords also identify the statement, such as in the DO statement:

DO I =1, 10

where DO is a statement keyword identifying the DO statement. Other keywords de-
limit parts of a statement such as ONLY in a USE statement, or WHILE in one of the
forms of a DO construct, as, for example:

DO WHILE( .NOT. FOUND )

Others specify options in the statement such as IN, OUT, or INOUT in the INTENT
statement.

There are two statements in Fortran that have no statement keyword. They are the
assignment statement (7.5.1) and the statement function (12.4.4).
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Some sequences of capital letters in the formal syntax rules are not statement key-
words. For example, EQ in the lexical token .EQ. and EN as an edit descriptor are not
statement keywords.

A dummy argument keyword, a different sort of keyword, is discussed in 12.1.2.

3.2.2 Names

Variables, named constants, program units, common blocks, procedures, arguments,
constructs, derived types (types for structures), namelist groups, structure components,
dummy arguments, and function results are among the elements in a program that
have a name.

Rules and restrictions:

1. A name must begin with a letter and consist of letters, digits, and underscores.
Note that an underscore must not be the first character of a name.

2. Fortran permits up to 63 characters in a name.
Examples of names:

A
CAR_STOCK_NUMBER
A__BUTTERFLY
z_28

TEMP_

3.2.3 Constants

A constant is a syntactic notation for a value. The value may be of any intrinsic type,
that is, a numeric (integer, real, or complex) value, a character value, or a logical value.

A value that does not have a name is a literal constant. Examples of literal con-
stants are:

1.23

400

(0.0, 1.0)
IIABCII
B’0110110’
.TRUE.

No literal constant can be array-valued or of derived type. The forms of literal con-
stants are given in more detail in 4.2.6.

A value that has a name is called a named constant and may be of any type, in-
cluding a derived type. A named constant may also be array-valued. Examples of
named constants are:

X_AXIS
MY_SPOUSE

where these names have been specified in a declaration statement as follows:
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REAL, DIMENSION(2), PARAMETER :: X_AXIS = (/0.0, 1.0/)
TYPE(PERSON), PARAMETER :: MY_SPOUSE = PERSON( 39, ’PAT’ )

Note, however, that the entity on the right of the equal sign is not itself a constant but
an initialization expression (7.4.1). The forms for defining named constants are de-
scribed in more detail in 5.7.1.

3.2.4 Operators

Operators are used with operands in expressions to produce other values. Examples of
language-supplied operators are:

representing multiplication of numeric values

/! representing concatenation of character values

= representing comparison for equality (same as <EQ.)
.OR. representing logical disjunction

.NOT. representing logical negation

The complete set of the intrinsic operators is given in 7.1.1.1.

Users may define operators (12.5.4.2) in addition to the intrinsic operators. User-
defined operators begin with a period (.), followed by a sequence of up to 63 letters,
and end with a period (.), except that the letter sequence must not be the same as any
intrinsic operator or either logical constant. Note that, unlike names, underscores and
digits are not allowed.

3.2.5 Statement Labels

A label may be used to identify a statement. A label consists of one to five decimal dig-
its, one of which must be nonzero. If a Fortran statement has a label, it is uniquely
identified and the label can be used in DO constructs, CALL statements, branching
statements, and input/output statements. In most cases, two statements in the same
program unit must not have the same label (there are exceptions because a program
unit may contain more than one scoping unit, for example, several internal proce-
dures). Leading zeros in a label are not significant so that the labels 020 and 20 are the
same label. This means that there are 99999 different labels and the processor must ac-
cept any of them, but may limit the total number of labels allowed in a program unit.
Any statement may have a label, but a label is used only:

1. to designate to target of a branch
2. to specify a FORMAT statement

3. to indicate the termination of some DO loops
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The cases in which duplicate labels can be used in the same program unit are ex-
plained in 16 as part of the general treatment of the scope of entities. Examples of state-
ments with labels are:

100 CONTINUE
21 X = X + 1.2
101 FORMAT (1X, 2F10.2)

The Fortran syntax does not permit a statement with no content, sometimes re-
ferred to as a blank statement in other programming languages. A label must have a
statement so each of the following lines is nonstandard Fortran:

10
X=0;101;

3.3 Source Form

A Fortran program is a sequence of one or more lines organized as Fortran statements,
comments, and INCLUDE lines; this collection of statements, comments, and lines is
called source text. A Fortran statement consists of one or more complete or partial lines
of source text and is constructed from low-level syntax. A complete or partial line is a
sequence of characters. The following examples illustrate how statements can be
formed from partial or complete lines:

I This example 1is written for one of the source forms, called free
I source form (3.3.1). It uses the & on the continued line to

I indicate continuation. A ! after an & indicates the beginning

I of a comment.

10 FORMAT( 2X, I5 ) I A statement on a complete Tine
13 FORMAT( 2X, & I A statement on two
I5) ! complete Tlines

X = 5; 10 FORMAT( 2X, I5) ! Two statements, each as part of a line
X=5+ & I A statement consisting of a complete

Y; 10 FORMAT( 2X, I5 ) ! Tine and a partial line
X =5+ &

Y; 10 FORMAT( 2X, & I A statement made up of

I5); READ & ! two partial lines

(5, 10) A, B, C

The lines within a program unit (except comment lines) and the order of the lines
are in general significant (Table 2-1), except that the order of the subprograms follow-
ing a CONTAINS statement and before the END statement for the containing program
unit is insignificant.

There are two source forms for writing source text: free source form and fixed
source form, which is the traditional Fortran form. Programmers must use either fixed
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or free source form throughout a program unit, although different program units with-
in the program may use different source forms. Each Fortran processing system must
provide a way to indicate which source form is being used; for example, this might be
indicated with a compiler option, file suffix (e.g., .f or .f03), or compiler directive, or
the processor might assume one of the forms by default. Section 3.3.3 describes a way
to write Fortran statements so that the source text is acceptable to both free and fixed
source forms.

Characters that form the value of a character literal constant or a character string
edit descriptor (quote or apostrophe edit descriptor) are said to be in a character con-
text. Note that the characters in character context do not include the delimiters used to
indicate the beginning and end of the character constant or string. Also, the amper-
sands in free source form, used to indicate that a character string is being continued
and used to indicate the beginning of the character string on the continued line, are
never part of the character string value and thus are not in character context (3.3.1).

The rules that apply to characters in a character context are different from the rules
that apply to characters in other contexts. For example, blanks are always significant in
a character context, but are never significant in other parts of a program written using
fixed source form.

CHAR = CHAR1 // "Mary K. williams"
! The blanks within the character string
I (within the double quotes) are significant.

! The next two statements are equivalent in fixed source form.
DO2I=1,N
DO 2 I =1, N

Comments may contain any graphic character that is in the processor character set.
For fixed source form, comments may contain, in addition, certain control characters as
allowed by the processor—see the implementor’s manual for the specific control char-
acters allowed.

3.3.1 Free Source Form

In free source form, there are no restrictions limiting statements to specific positions on
a Fortran line. The blank character is significant and may be required to separate lexi-
cal tokens.

Rules and restrictions:

1. Blank characters are significant everywhere except that a sequence of blank charac-
ters outside a character context is treated as a single blank character. They may be
used freely between tokens and delimiters to improve the readability of the source
text. For example, the two statements:

SUM=SUM+A (I)
SUM = SUM + A (I)

are the same.
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Each line may contain from 0 to 132 characters, provided that they are of default
character kind. If any character is of a nondefault character kind, the processor
may limit the number of characters to fewer than 132 characters. For example, a
line such as

TEXT = GREEK_’This Tine has 132 characters and contains o’

may use exactly 132 graphic characters, but the implementation may require more
space to represent this source line than 132 Fortran characters. The processor may
thus limit how many graphic characters may be used on a line if any of them are of
nondefault character kind.

The exclamation mark (!), not in character context, is used to indicate the beginning
of a comment that ends with the end of the line. A line may contain nothing but a
comment. Comments, including the !, are ignored and do not alter the interpreta-
tion of Fortran statements in any way. There is no language limit on the number of
comments in a program unit, although the processor may impose such a limit. A
line whose first nonblank character is an exclamation mark is called a comment
line. An example of a Fortran statement with a trailing comment is:

ITER = ITER + 1 ! Begin the next iteration.
An example of a comment line is:
| Begin the next iteration.

A comment may appear before or after a program unit, but the standard does not
indicate which program unit it belongs to if it is between program units.

A line with only blank characters or with no characters is treated as a comment
line.

The ampersand (&) is used as the continuation symbol in free source form. If it is
the last nonblank character after any comments are deleted and it is not in a char-
acter context, the statement is continued on the next line that does not begin with a
comment. If the first nonblank character on the continuing line is an ampersand,
the statement continues after the ampersand; otherwise, the statement continues
with the first position of the line. The ampersand or ampersands used as the con-
tinuation symbols are not considered part of the statement. For example, the fol-
lowing statement takes two lines (one continuation line):

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS ** 2 * &
(DENSITY_1 - DENSITY_2) / (9*COEFF_OF_VISCOSITY)

The leading blanks on the continued line are included in the statement and are al-
lowed in this case because they are between lexical tokens.

No more than 255 continuation lines are allowed in a Fortran statement. No line
may contain an ampersand as the only nonblank character before an exclamation
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mark. Comment lines cannot be continued; that is, the ampersand as the last char-
acter in a comment is part of the comment and does not indicate continuation.

The double-ampersand convention must be used to continue a name, a character
constant, or a lexical token consisting of more than one character split across lines.
The following statement is the same statement as in the previous example:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS * 2 * (DEN&
&SITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

However, splitting names across lines makes the code difficult to read and is not
recommended.

Ampersands may be included in a character constant. Only the last ampersand on
the line is the continuation symbol, as illustrated in the following example:

LAWYERS = "Jones & Clay & &
&Davis"

The value of this constant is "Jones & Clay & Davis". The first two ampersands are
in character context; they are part of the value of the character string.

5. More than one statement may appear on a line. The statement separator is the
semicolon (;), provided it is not in a character context; multiple successive semico-
lons on a line with or without blanks intervening are considered as a single separa-
tor. The end of a line is also a statement separator, and any number of semicolons
at the end of the line have no effect. For example:

I The semicolon is a statement separator.
X=1.0; Y=2.0

I However, the semicolon below at the end of a Tline
I is not treated as a separator and is ignored.
Z = 3.0;

I Also, consecutive semicolons are treated as one
I semicolon, even if blanks intervene.
Z=3.0; ; w=4.0

! Continuation Tines and statement separators may be mixed.
A =&
B; C=D; E &
=D

A semicolon must not be the first nonblank character on a line. Thus, the following
is illegal:

A

I w

&
D

0Ol

but the following is legal:



54 Chapter 3

A =B &
&; C =D

This rule does not seem to make much sense, but that is what the standard says.

6. A label may appear before a statement, provided it is not part of another state-
ment, but it must be separated from the statement by at least one blank. For exam-
ple:

10 FORMAT(10X,2I5) 1 10 is a Tabel.
IF (X == 0.0) 200 Y = SQRT(X) ! Label 200 1is not allowed.

7. Any graphic character in the processor character set may be used in character liter-
al constants (4.3.5.5) and character string edit descriptors (10.2.3). Note that this ex-
cludes control characters; it is recommended that the implementor’s manual be
consulted for the specific details.

3.3.1.1 Blanks as Separators

Blanks in free source form may not appear within tokens, such as names or symbols
consisting of more than one character, except that blanks may be freely used in format
specifications. For instance, blanks may not appear between the characters of multi-
character operators such as ** and .NE. Format specifications are an exception be-
cause blanks may appear within edit descriptors such as BN, SS, or TR in format
specifications. On the other hand, a blank must be used to separate a statement key-
word, name, constant, or label from an adjacent name, constant, or label. For example,
the blanks in the following statements are required.

INTEGER SIZE
PRINT 10,N
DO I=1,N

Adjacent keywords require a blank separator in some cases (for example, CASE
DEFAULT) whereas in other cases two adjacent keywords may be written either with
or without intervening blanks (for example, BLOCK DATA); The following list gives
the situations where blank separators are optional.

BLOCK DATA
DOUBLE PRECISION
ELSE IF

ELSE WHERE

END ASSOCIATE
END BLOCK DATA
END DO

END ENUM

END FILE

END FORALL

END FUNCTION
END IF
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END INTERFACE
END MODULE
END PROGRAM
END SELECT
END SUBROUTINE
END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE
SELECT TYPE

Thus both of the following statements are legal:

END IF
ENDIF

Despite these rules, blank separators between statement keywords make the source
text more readable and clarify the statements. In general, if common rules of English
text are followed, everything will be correct. For example, blank separators in the fol-
lowing statements make them quite readable, even though the blanks between the key-
words DOUBLE and PRECISION and between END and FUNCTION are not required.

RECURSIVE PURE FUNCTION F(X)
DOUBLE PRECISION X
END FUNCTION F

3.3.1.2 Sample Program, Free Source Form

A sample program in free source form is:

| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

| ! Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| F10.5)
I
I

END

3.3.2 Fixed Source Form

Fixed source form is position oriented on a line using the conventions for position that
were used historically for Fortran written on punched cards. Currently, most program-
mers use Fortran systems that permit a less stilted style of source form; this is similar
to or the same as the free source form described in the previous sections. Fixed source
form is now obsolescent.
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Rules and restrictions:

1. Fortran statements or parts of Fortran statements must be written between posi-
tions 7 and 72. Character positions 1 through 6 are reserved for special purposes.

2. Blanks are not significant in fixed source form except in a character context. For ex-
ample, the two statements:

DO 10 I =1, LOOPEND
DO 10 I = 1, LOOPEND

are the same.

A C or * in position 1 identifies a comment. In this case, the entire line is a com-
ment and is called a comment line. A ! in any position except position 6 and not in
character context indicates that a comment follows to the end of the line. Com-
ments are not significant, and there is no language limit on the number of com-
ment lines. However, a processor may impose a limit. A comment line may appear
before or after a program unit, but the standard does not indicate which program
unit it belongs to if it is between program units.

3. A line with only blank characters or with no characters is treated as a comment
line.

4. Multiple statements on a line are separated by one or more semicolons; semicolons
may occur at the end of a line and have no effect. A semicolon must not be the first
nonblank character in positions 7 through 72.

5. Any character (including ! and ;) other than blank or zero in position 6 indicates
that the line is a continuation of the previous line. Such a line is called a continua-
tion line. The text on the continuation line begins in position 7. There must be no
more than 19 continuation lines for one statement in fixed source form. The first
line of a continued statement is called the initial line.

6. Statement labels may appear only in positions 1 through 5. Labels may appear only
on the first line of a continued statement. Thus, positions 1 through 5 of continua-
tion lines must contain blanks.

7. An END statement must not be continued. END also must not be an initial line of
a statement other than an END statement. For example, an assignment statement
for the variable ENDLESS may not be written as

END
+LESS = 3.0

because the initial line of this statement is identical to an END statement.

8. Any character from the processor character set (including graphic and control
characters) may be used in a character literal constant and character edit descrip-
tors, except that the processor is permitted to limit the use of some of the control
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characters in such character contexts. Consult the implementor’s documentation
for such limitations.

3.3.2.1 Sample Program, Fixed Source Form

A sample program in fixed source form is:

| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

|C Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F1l0.1, F10.2, F10.3, F10.4,
| 1 F10.5)

|

END

3.3.3 Rules for Fixed/Free Source Form

For many purposes, such as an included file (3.4), it is desirable to use a form of the
source code that is valid and equivalent for either free source form or fixed source
form. Such a fixed/free source form can be written by obeying the following rules and
restrictions:

1. Limit labels to positions 1 through 5, and statements to positions 7 through 72.
These are the limits required in fixed source form.

2. Treat blanks as significant. Because blanks are ignored in fixed source form, using
the rules of free source form will not impact the requirements of fixed source form.

3. Use the exclamation mark (!) for a comment, but don’t place it in position 6, which
indicates continuation in fixed source form. Do not use the C or * forms for a com-
ment.

4. To continue statements, use the ampersand in both position 73 of the line to be con-
tinued, and in position 6 of the continuation line. Positions 74 to 80 must remain
blank or have only a comment there. Positions 1 through 5 of the continuation line
must be blank. The first ampersand continues the line after position 72 in free
source form and is ignored in fixed source form. The second ampersand indicates
a continuation line in fixed source form and in free source form indicates that the
text for the continuation of the previous line begins after the ampersand.

3.3.3.1 Sample Program, Use with Either Source Form

A sample program that is acceptable for either source form is:
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12345678901234567890123. ... 73

| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

|! Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| & F10.5)

| ..

|

END

3.4 ThelINCLUDE Line

Source text may be imported from another file and included within a program file dur-
ing processing. An INCLUDE line consists of the keyword INCLUDE followed by a
character literal constant. For example,

INCLUDE ’MY_COMMON_BLOCKS’

The specified text is substituted for the INCLUDE line before compilation and is treat-
ed as if it were part of the original program source text. The location of the included
text is specified by the value of the character constant in some processor-dependent
manner. A frequent convention is that the character literal constant is the name of a file
containing the text to be included. Use of the INCLUDE line provides a convenient
way to include source text that is the same in several program units. For example, the
specification of interface blocks or objects in common blocks may constitute a file that
is referenced in the INCLUDE line.
The form for an INCLUDE line is:

INCLUDE character-literal-constant
Rules and restrictions:

1. The character literal constant used must not have a kind parameter that is a named
constant.

2. The INCLUDE line is a directive to the compiler; it is not a Fortran statement.
3. The INCLUDE line is placed where the included text is to appear in the program.

4. The INCLUDE line must appear on one line with no other text except possibly a
trailing comment. There must be no statement label.

5. INCLUDE lines may be nested. That is, a second INCLUDE line may appear within
the text to be included. The permitted level of nesting is not specified and is pro-
cessor dependent. However, the text inclusion must not be recursive at any level;
for example, included text A must not include text B, which includes text A.
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6. A file intended to be referenced in an INCLUDE line must not begin or end with
an incomplete Fortran statement. This means that the line before the INCLUDE

line must not be continued and that the line after the INCLUDE line must not be a
continuation line.

An example of a program unit with an INCLUDE line follows:

PROGRAM MATH

REAL, DIMENSION (10,5,79) :: X, ZT
I Some arithmetic

INCLUDE ’FOURIER’

I More arithmetic

END

The Fortran source text in the file FOURIER in effect replaces the INCLUDE line.
The INCLUDE line behaves like a compiler directive.



4 Data Types

e A Type has a name, type parameters, a set of values, a set of operations and proce-
dures, and a means to represent constants of the type.

e Type Parameters allow a type to have a family of representations.

e A Type Specifier is used to specify a particular type and type parameter values.

* The Intrinsic Types are integer, real, complex, logical, and character.

¢ Derived Types are defined by a user.

e A Structure is an object of derived type.

¢ A Structure Constructor creates values of derived type.

* An Array Constructor creates array values.

® Operations on objects of derived type are defined by functions supplied by the user.

* Type Extension is a means of defining a new type by building on a previously
defined type. The new type inherits aspects of the previously defined one.

* A Procedure Binding is a relationship between a type and a procedure. It allows a
procedure to be selected based on the type of an object.

* An Enumeration is a set of named integer constants with a declaration form
intended to facilitate interoperation with C.

Data type is a fundamental concept in Fortran, as well as in many other program-
ming languages. Every piece of data in a Fortran program has a data type, which deter-
mines what kinds of values it can take and what can be done with it. This chapter
details what is meant by a type in Fortran. It then describes each of the types defined
by the standard, plus the facilities for user-defined types.

The standard defines intrinsic types corresponding to the broad categories of
computational tasks listed in Table 4-1. Additional types can be built of (or derived
from) the intrinsic types and thus are called derived types. Most derived types are
defined by the programmer using the facilities described in this chapter. A few derived
types are defined in the standard intrinsic modules (14.3, 15.3). The Fortran types are
categorized in Figure 4-1.

The type of a datum determines the operations that can be performed on it. Table
4-2 lists the intrinsically-defined operations. The user can define additional operations
for any type.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_4, © Springer-Verlag London Limited 2009
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Table 4-1 Intrinsic types for computational tasks

Task

Type of data

Calculating typical numeric results
Calculating in the complex domain
Counting

Making decisions

Explaining

Real data
Complex data
Integer data
Logical data

Character data

Fortran data types

Intrinsic types Derived types

Numeric types Nonnumeric types

Integer Real Complex Logical Character

Figure 4-1 Fortran data types

Table 4-2 Intrinsically-defined operations

Type of data Intrinsic operations

Real, complex, integer Addition, subtraction, multiplication, division, exponentiation,
negation, comparison, identity

Logical Negation, conjunction, disjunction, equivalence and nonequivalence
Character Concatenation, comparison
Derived None

4.1 Data Type Selection

The appropriate intrinsic type for a data entity is often obvious. More careful thought is
likely to be required for the selection of suitable kind parameter values, derived types
and classes.
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411 Kinds of Intrinsic Types

Once the type is decided, it may be necessary for the programmer to consider which
“kind” of the type to use. “Kind” is a technical term in Fortran. Each of the intrinsic
types has a kind parameter that selects a processor-dependent representation of ob-
jects of that type and kind. Each compiler supports a particular set of representations
from which the programmer can select. If no kind parameter value is specified, the de-
fault kind is assumed.

Kinds are known to the processor as integer values, but if a program is to be porta-
ble, the actual numbers should not be used because the particular kind values for the
intrinsic types are processor dependent. For portability, appropriate kind values
should be determined using the procedures described in 4.3, 13.3.1.2, and 14.3.3.7 and
assigned to named constants, which are then used in type specifiers, literal constants,
and kind arguments of intrinsic functions. When named constants are used to desig-
nate kinds, only the value of the constant matters—not the names of the constant. If
two different named constants have the same numerical value and are used as kind pa-
rameters, then they will represent the same kind.

The intrinsics for determining kind values all return negative values when appro-
priate kinds are not available for the particular compiler. Negative values are guaran-
teed to cause compilation error diagnostics when used as kind values, thus ensuring
that programs will not accidentally be run with kinds that do not meet specified re-
quirements.

The Fortran kind parameters for each of the intrinsic types serve the following pur-
poses:

1. Real. The real kind parameter primarily selects the precision and range of the rep-
resentation. There may also be multiple representations for the same precision and
range, for example native and IEEE representations. The standard requires that
each compiler support at least two real kinds which must have different precisions.
The default real kind is the lower precision of these. Compilers may support addi-
tional real kinds to provide other precisions or other representations with the same
precisions.

Fortran 77 did not have kind parameters but did provide two kinds for the real
type: REAL and DOUBLE PRECISION. REAL is often referred to as single preci-
sion. It treated double precision real as a separate type. Fortran 90 and later ver-
sions, while remaining compatible, treat double precision as a separate kind of
real. That is, there are two ways to specify double precision real: one is with a
REAL specifier with the kind corresponding to double precision, and the other is
with a DOUBLE PRECISION specifier.

Programs with default REAL and DOUBLE PRECISION declarations are not nu-
merically portable across machine architectures with different word sizes. Each
compiler vendor chooses a representation for the real type that is efficient on the
host machine. For example, a representation that will fit into 32 bits might be cho-
sen on a 32-bit-word machine while a representation that fits into 64 bits might be
chosen for a 64-bit-word machine. If a 64-bit representation is required for the nu-
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merical stability of the algorithm, DOUBLE PRECISION declarations must be used
on the 32-bit machine. When the program is moved to the 64-bit machine, the
DOUBLE PRECISION declarations usually would be changed to REAL declara-
tions because a 128-bit representation is not needed and probably would degrade
the performance of the program. A programmer can use kind parameters in REAL
declarations to specify a required minimum precision of perhaps 12 decimal digits.
When the program is run on the 32-bit machine, it will use the kind corresponding
to double precision. When the same program (without change) is run on the 64-bit
machine, the kind corresponding to single precision will be used.

Complex. The kind parameter for complex selects the same representation as that
for real. Every real kind has a corresponding complex kind and vice versa.

Integer. The integer kind parameter primarily selects the range of integer values
that can be represented. Some representations might provide for a large range at
the cost of large storage size, while others might provide for small storage size at
the cost of correspondingly smaller range. In principle it is also possible for there
to be multiple representations for the same range, perhaps differing in byte order
or in the representation of negative values. Only one integer kind is required in a
standard-conforming processor, but more are permitted. The default integer kind is
represented in the same size as the default real kind.

Character. The character kind parameter selects a character set. The default charac-
ter type usually has an underlying machine representation of a single byte (8 bits).
This is adequate to represent 28 or 256 different characters, which is more than
enough for alphabetic languages. However, ideographic languages, such as Japa-
nese and Chinese, have several thousand graphic symbols that require at least a
two-byte representation (16 bits). To accommodate this spectrum of users, Fortran
makes provision for (although it does not require implementation of) different
kinds of character data. Because these additional kinds of character data are not re-
quired for standard-conforming Fortran processors, many processors intended for
English-speaking Fortran users might not support ideographic languages. Never-
theless, the character kind mechanism allows an implementation to support an al-
phabetic language or an ideographic language or both simultaneously. The
standard makes particular provisions for the ASCII and ISO 10646 character sets, but
support for them is optional.

Logical. Because the logical type has only two values (true and false), it could be
represented in a single bit. Although efficient in terms of storage, single-bit repre-
sentations can be inefficient in computation time. For storage association, the de-
fault logical type is represented in the same size as the default real type, but
alternative representations of logical data are permitted; that is, a nondefault logi-
cal kind might be represented in a byte or in a bit for architectural efficiency or
application requirements.
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41.2 Derived Types

Sometimes it is easier to think about an essential element of a problem as several pieces
of related data. Arrays can be used to collect homogeneous data (all of the same type)
into a single variable. In contrast, a structure is a collection of possibly nonhomoge-
neous data in a single variable. To declare a structure, it is first necessary to define a
type that has components of the desired types. The structure is then declared as an ob-
ject of this user-defined (or derived) type. In the example below, first a type named PA-
TIENT is defined, then two structures JOHN_JONES and SALLY_SMITH are declared.

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER (LEN=300) PROGNOSIS
END TYPE PATIENT

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

Type PATIENT has three components, each of a different intrinsic type (integer, real,
and character). In practice, a type of this nature probably would have even more com-
ponents, such as the patient’s name and address, insurance company, room number in
the hospital, etc. For purposes of illustration, three components are sufficient.
JOHN_JONES and SALLY_SMITH are variables (or structures) of type PATIENT. A
type definition indicates names, types, and attributes for its components; it does not
declare any variables that have these components. Just as with the intrinsic types, a
type declaration is needed to declare variables of this type. There can be any number of
variables of type PATIENT; there can be subprogram arguments and function results of
type PATIENT; there can be arrays of type PATIENT; and operations, such as .appen-
dectomy., can be defined that manipulate objects of type PATIENT. Thus the derived-
type definition can be used as a way to specify a pattern for a particular collection of
related but nonhomogeneous data; but, because the user can define the pattern, a num-
ber of other capabilities are available.

4.1.3 Classes

Sometimes there are multiple derived types that share some components and opera-
tions, but have other components and operations that differ. It is desirable to take ad-
vantage of the commonalities in order to minimize code duplication and maintenance
problems. In that case, a class of related types can be defined in a tree structure. The
shared components and operations are defined for a base type. The other types are de-
fined as extension types of the base type.

For example, consider a program that has multiple linked lists, each with a differ-
ent type of object. Each of these linked lists has a corresponding node type. The basic
linked list operations and the node components needed to support those operations are
the same for all the linked lists. The object type and any operations related to it differ
among the lists. In this case, a base type can be defined for a linked list node with no
object. The types for the nodes are defined as extensions of the base type, each of
which adds different components to the base type.
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4.2 Whatls Meant by “Type” in Fortran?

A data type provides a means to categorize data and thus determine which operations
may be applied to the data. For each type there is:

1. atype name

2. a set of type parameters

3. a set of values

4. a set of operations and procedures
5. a form for constants of the type

421 Type Names

Each of the intrinsic types has a name supplied by the standard. The names of derived
types must be supplied in type definitions. A derived-type name must not be DOU-
BLEPRECISION or the same as any of the intrinsic type names (INTEGER, REAL,
COMPLEX, LOGICAL, or CHARACTER), even if the intrinsic type is never used; this
is a rare exception to Fortran's general rule that the language has no reserved names.

4.2.2 Type Parameters

A type may have multiple representations, which are specified by type parameter val-
ues. Type parameters are classified as either kind or length type parameters. Each type
parameter is itself of type integer and has a type parameter name. The type parameter
names for the intrinsic types are specified by the standard. Any type parameters for
derived types must be defined by the derived-type definition.

Kind type parameter values need to be known at compile time; the compiler is like-
ly to need to generate different machine instructions for different kind type parameter
values. Thus, anywhere a kind parameter value is required, it must be specified by a
scalar integer initialization expression, which is described in 7.4.1. Each of the intrinsic
types has a kind type parameter named KIND, which is a default integer. The set of val-
id values for the intrinsic kind type parameters and the representations specified by
those kind values are defined by the compiler.

Invalid kind type parameter values for intrinsic types are guaranteed to give com-
piler error diagnostics. Examples in this book generally assume that the kind type pa-
rameter values used are valid.

Length type parameter values may, in some cases, be determined or change during
program execution. As the name suggests, they are most commonly used for lengths or
sizes, where a base representation form is repeated. The intrinsic character type has a
length parameter named LEN, which is an integer of a processor-dependent kind.
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4.2.3 Type Specifier

A type specifier is used in several contexts to specify a particular type and type param-
eter values. A type specifier (R401) is either an intrinsic type specifier or a derived-type
specifier. The syntax of type specifiers is detailed in 4.3 and 4.4.4. The following exam-
ples illustrate the use of type specifiers in type declaration statements, an array con-
structor, and an allocate statement.

integer :: i
type(patient) :: jane_doe
names = [character(16):: "Lisa", "pam", "Julie"]

allocate (real_node_type:: node)

A type parameter value (R402) in a type specifier is either a kind value or a length
value. The form of a kind value is:

scalar-integer-initialization-expression
The form of a length value is one of:

scalar-integer-expression
*

An asterisk as a length value specifies that the type parameter is assumed, that is
its value is copied from the corresponding type parameter value of something else. An
assumed type parameter is allowed only in a type guard statement of a SELECT TYPE
construct, in the allocation of a dummy argument, or in the declaration of a dummy ar-
gument, named character constant, or character function result.

A colon as a length value specifies that the type parameter is deferred; the value of
the type parameter may be set and changed during execution. A deferred type param-
eter may be specified only in the declaration of a pointer or allocatable entity or com-
ponent.

4.2.4 Type Values

Each type has a set of valid values, which usually depend on the type parameter val-
ues.

4.2.5 Type Operations and Procedures

An operator has either one or two operands. The definition of an operator depends on
the types, type parameters, and ranks of the operands. For intrinsic types, a set of oper-
ations with corresponding operators is provided by the language as described in 7.

A user may specify new operators and define operations for the new operators.
The form of a new operator is an alphabetic name of the user’s choice delimited by pe-
riods. These new operators are analogous to intrinsic operators such as .GT., .AND.,
and .NEQV. For example, a user might specify and define the operations .PLUS., .RE-
MAINDER., and .REVERSE. In defining the operation, the types of allowable operands
must be specified. It is not possible to override the standard's definition of an intrinsic
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operation, but it is possible to define application of an intrinsic operator symbol to cases
that are not defined by the standard. For example, consider the expression A + B. If both
A and B are of numeric type, the operation is intrinsically defined. However, if either A
or B is of derived type or nonnumeric type, then the plus operation between A and B is
not intrinsically defined, and the user may provide a definition. The user defines an
operation using a function and an interface block as described in 12.5.4.2.

The definition of assignment depends on the types, type parameters, and ranks of
both the variable and the expression that provides the value. The language defines
assignment for several combinations of intrinsic types, as described in 7.5.2. The
language also defines assignment of a derived-type expression to a variable whose type
and type parameter values are the same or can be allocated to be the same. A user may
define assignment for cases not defined by the standard. A user also may override the
standard's definition of assignment for a derived type, but not for intrinsic types. The
user defines assignment using a subroutine and an interface block, as described in
12.5.4.3.

A user may define procedure bindings for derived types. These are discussed in
4.4.11.

4.2.6 Forms for Constants
A literal constant (R306) is one of:

integer-literal-constant
real-literal-constant
complex-literal-constant
logical-literal-constant
character-literal-constant
boz-literal-constant

Two aspects of this definition merit particular note. First is that it excludes the
signed forms of the integer and real literal constants (4.3.1.4, 4.3.2.4); a sign can be used
in most contexts, but it parses as an operator instead of as part of the constant. Second
is that it includes BOZ literal constants (4.3.1.4) even though the allowed contexts for
BOZ literal constants are so restricted that they might better be thought of as addition-
al forms allowed in those contexts rather than as literal constants.

The language specifies the syntactic forms for literal constants of each of the intrin-
sic types. The form of a constant indicates the type, type parameters, and value (Table
4-3). There are no literal constant forms for derived types. However, a comparable role
can be played by a structure constructor whose component values are all initialization
expressions. For example, if the derived type PATIENT is defined as described in 4.1.2,
patient(10.99.7,"Recovering") is such a constructor.

4.3 Intrinsic Types

Each of the intrinsic types is described below. The descriptions include simple exam-
ples to show how objects of these types may be declared. These simple examples do
not give the complete story. The complete forms for declarations are in 5.1.
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Table 4-3 Constant forms

Type and
Syntax parameters Value
1 integer 1
103.1 or 1.031E2 real 103.1
(1.0, 1.0) complex 1+
.TRUE. logical true
"Hello" character(len=5)  Hello

4.3.1 Integer Type

4.3.1.1 Name, Type Parameters, and Type Specifier

The name of the integer type is INTEGER. It has a single kind type parameter named
KIND. Only one kind of integer, referred to as default integer, is required by the stan-
dard, but a processor may provide more. The storage occupied by a default integer is
called a numeric storage unit (13.6.1, 16.2.3.1); a default real or logical must occupy the
same amount of storage as a default integer.

The form of the integer type specifier is:

INTEGER [ ( [ KIND = ] kind-value ) ]

If the kind value is omitted, default integer kind is implied.
Examples of type declaration statements using integer type specifiers are:

INTEGER X

INTEGER (KIND=LONG) COUNT, K, TEMPORARY_COUNT
INTEGER (SHORT) PARTS

INTEGER, DIMENSION (0:9) :: SELECTORS, IX

where LONG and SHORT are named integer constants.
4.3.1.2 Values

The integer type has values that represent a subset of the mathematical integers. The
set of values varies from one processor to another. The intrinsic inquiry function
RANGE provides the decimal exponent range for integers of the kind of its argument.
The intrinsic function KIND can be used to determine the kind of its integer argument.

There is an intrinsic function SELECTED_INT_KIND that returns an integer kind
based on a range requirement. For example:

INTEGER (KIND=SELECTED_INT_KIND(5)) I, 3J

declares I and ] to be integer objects with a representation method that permits at least
five decimal digits; that is, it includes at least all integers between —10° and 103.
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Every integer kind has a single zero value, which is considered neither positive nor
negative. If a processor has separate internal representations for positive and negative
zero integers of a kind, they are considered to have the same value.

4.3.1.3 Operators

There are both binary and unary intrinsic operators for the integer type. Binary opera-
tors have two operands and unary operators have one. The binary arithmetic opera-
tions for the integer type are: +, —, *, /, and **. The unary arithmetic operations are +
and —. The relational operations (all binary) are: <. <=, ==, /=, >=, and >. The result of an
intrinsic arithmetic operation on integer operands is an integer value; the result of an
intrinsic relational operation is a logical entity of default logical kind.

4.3.1.4 Form for Constant Values

An integer constant is a string of decimal digits, optionally followed by an underscore
and a kind parameter.
The form of an integer literal constant (R406) is:

digit-string [ _ kind-parameter |
where the kind parameter is one of:

digit-string
scalar-integer-constant-name

This syntax for a kind parameter in a literal constant is considerably more restric-
tive than that of a kind value used in a type specifier and other places; however, the
kind parameter in a literal constant can be a named constant, which in turn can be de-
fined by an initialization expression, so the same functionality exists. If a kind parame-
ter is specified, the constant is of that kind; otherwise, it is of type default integer.

Examples of integer literal constants are:

42
9999999999999999999999_LONG

where LONG is a named integer constant.

A signed integer constant (R405) is an integer constant preceded by an optional sign,
which is either + or —. Contrary to what might be expected from the terminology, a
signed integer constant is not in general an integer constant. Signed integer constants are
used in only a few places in the language. In most contexts, a sign followed by an integer
constant parses as an operator and an unsigned integer constant rather than as a signed
integer constant. This distinction makes little difference in practice except in one special
case: on machines where the most negative integer is larger in magnitude than the most
positive one, overflow can result from trying to write a literal for the most negative inte-
ger in the obvious way.

Examples of signed integer constants are:
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+64
10000000
-255_SHORT

where SHORT is a named integer constant.

Integer constants are interpreted as decimal values. However, in limited contexts,
there are forms for unsigned binary, octal, or hexadecimal constants, collectively re-
ferred to as BOZ literal constants. These forms may be used only to initialize integer
variables in DATA statements or as actual arguments of the intrinsic functions CMPLX,
DBLE, INT, or REAL.

A binary constant (R412) has one of the forms:

B ’ digit [ digit ] ..~
B " digit [ digit ] .."

where a digit is restricted to 0 or 1.
An octal constant (R413) has one of the forms:

0 ’ digit [ digit ] ...’
o " digit [ digit ] .. "

where a digit is restricted to the values 0 through 7.
A hexadecimal constant (R414) has one of the forms:

z ’ digit [ digit ] ..’
z " digit [ digit ] .. "

where a digit is 0 through 9 or one of the letters A through F (representing the decimal
values 10 through 15). Although these forms use quotes or apostrophes, they are not
character strings; lowercase letters are equivalent to uppercase in the hexadecimal
forms.

Although the standard refers to these forms as integer constants, their interpreta-
tion when used as actual arguments of CMPLX, DBLE, and REAL is as a bit pattern
rather than a numeric integer value. Where these constants are interpreted as numeric
values, the binary, octal, and hexadecimal digits are interpreted according to the bina-
ry, octal, and hexadecimal number systems; the result is represented with the integer
kind having the largest range supported by the compiler. Examples (all of which have
a value equal to the decimal value 10) are:

B"1010"
0’12’
leall

4.3.2 Real Type

4.3.21 Name, Type Parameters, and Type Specifier

The name of the real type is REAL. It has a single kind type parameter named KIND.
A processor must provide at least two kinds for the real type. One of the kinds is for
the default real type and the other is for the double precision real type, which must
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have more precision than the default real type. The default real type must occupy the
same amount of storage as default integer; double precision real type must occupy
twice as much.

The forms of the real type specifier are:

REAL [ ( [ KIND = ] kind-value ) ]
DOUBLE PRECISION

If the kind value is omitted from the form with the REAL keyword, default real kind is
implied. The form with the DOUBLE PRECISION keyword is an alternate form for
specifying a real with the kind for double precision.

Examples of type declaration statements using real type specifiers are:

REAL X, Y

REAL (KIND = HIGH), SAVE :: XY(10, 10)
REAL, POINTER :: A, B, C

DOUBLE PRECISION DD, DXY, N

where HIGH is a named integer constant.

4.3.2.2 Values

The values of the real data type approximate the mathematical real numbers. The set of
values varies from processor to processor.

Intrinsic functions are available to inquire about the representation methods pro-
vided on a processor. The intrinsic function KIND can be used to determine the kind of
its real argument. The intrinsic functions PRECISION and RANGE return the decimal
precision and exponent range of the approximation method used for the kind of the ar-
gument. The intrinsic function SELECTED_REAL_KIND returns a real kind value
based on precision and range requirements. For example:

REAL (SELECTED_REAL_KIND (5)) X

declares X to have at least five decimal digits of precision and no specified minimum
range.

REAL (SELECTED_REAL_KIND (8, 70)) Y

declares Y to have at least eight decimal digits of precision and a range that includes
values between 107 and 107 in magnitude.

Every real kind has a zero value. If a processor has separate internal representa-
tions for positive and negative zeros of a kind, those representations are both treated as
numerically equivalent to zero in the following contexts.

1. As operands of relational operators. For example, the logical expression x>=0.0
evaluates to true if x is zero, regardless of whether it is a positive or negative zero.

2. As actual arguments to intrinsic procedures, except where the intrinsic procedure
explicitly specifies that negative zero is distinguished. The SIGN intrinsic function
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is one that specifies special treatment of negative zero; it provides a means to dis-
tinguish positive from negative zeros for those cases where that is desired.

3. As the expression in an arithmetic if statement. Both positive and negative zero
values result in taking the zero branch.

In other contexts, it is processor dependent whether positive and negative zeros are
treated differently. For example, if x has the value negative zero, it is processor-depen-
dent whether the expression 2.0*x yields a positive or negative zero as a result.

4.3.2.3 Operators

The intrinsic binary arithmetic operators for the real type are: +, —, *, /, and **. The in-
trinsic unary arithmetic operators are: + and —. The relational operators are: <, <=, ==, /=,
>=, and >. The result of an intrinsic arithmetic operation on real operands is a real val-
ue. If one of the operands of an arithmetic operation is an integer, the result is still a
real value. The result of an intrinsic relational operation is a default logical value.

4.3.2.4 Forms for Constants

A real constant is distinguished from an integer constant by containing either a deci-
mal point, an exponent, or both. Forms for a real literal constant (R417) are:

digit-string exponent-letter exponent [ _ kind-parameter ]
whole-part . [ fraction-part ] [ exponent-letter exponent | [ _ kind-parameter |
. fraction-part [ exponent-letter exponent | [ _ kind-parameter ]

where the exponent letter (R419) is E or D, the whole part and fraction part are digit
strings (R409), and an exponent (R420) is a signed digit string (R408). If both a kind pa-
rameter and an exponent letter are present, the exponent letter must be E. If a kind pa-
rameter is specified, the real constant is of that kind; if a D exponent letter is specified,
the constant is of type double precision real; otherwise, the constant is of type default
real. A real constant may have more decimal digits than are significant for reals of its
kind. Examples of real literal constants are:

2.1

0.45_Low

.123

3E4
2.718281828459045D0

where LOW is a named integer constant.

A signed real literal constant (R416) is a real literal constant preceded by an option-
al sign. As with signed integer literal constants, signed real literal constants are used in
only a few places in the language. Examples of signed real literal constants are:

-14.78

+1.6E3
1111111111.1111111
-16.E4_HIGH
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where HIGH is a named integer constant.
4.3.3 Complex Type

4.3.3.1 Name, Type Parameters, and Type Specifier

The name of the complex type is COMPLEX. It has a single kind type parameter
named KIND. The supported kind values for complex type are required to be the same
as those for real. The amount of storage occupied by a complex must be twice the
amount of storage occupied by a real of the same kind.

The form of the complex type specifier is:

COMPLEX [ ( [ KIND = ] kind-value ) ]

If the kind value is omitted, the kind value for default real is implied.
Examples of type declaration statements using complex type specifiers are:

COMPLEX CC, DD
COMPLEX (KIND = QUAD), POINTER :: CTEMP (:)

where QUAD is a named integer constant.

4.3.3.2 Values

The complex type has values that approximate the mathematical complex numbers. A
complex value is represented as a pair of real values; the first is called the real part and
the second is called the imaginary part. Each approximation method used to represent
data entities of type real is available for entities of type complex with the same kind
parameter values. Therefore, there are at least two approximation methods for com-
plex, one of which corresponds to default real and one of which corresponds to double
precision real. There is no double precision complex keyword; a double precision com-
plex can be specified only by using the appropriate kind parameter value in the com-
plex type specifier. The intrinsic functions KIND, PRECISION, and RANGE can be
used with complex arguments and have the same interpretation as when they are ap-
plied to real arguments. Because the kind values and representations for complex cor-
respond to those of real, the SELECTED_REAL_KIND intrinsic function may be used
in a declaration of a complex object. For example:

COMPLEX (SELECTED_REAL_KIND (8, 70)) CX

CX must have at least eight decimal digits of precision and a range that includes values
between 10770 and 1070 in magnitude for the real and imaginary parts.

4.3.3.3 Operators

The intrinsic binary arithmetic operators for the complex type are: +, —, *, /, and **. The
intrinsic unary arithmetic operators are: + and —. The intrinsic relational operators are:
== and /=. The arithmetic operators specify complex arithmetic; the relational operators
compare operands to produce default logical results. The result of an intrinsic arith-
metic operation on complex operands is a complex entity. If one of the operands is an
integer or real entity, the result is still a complex entity.
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4.3.3.4 Form for Constants

A complex constant is written as two constants that are real or integer, separated by a
comma, and enclosed in parentheses. The form for a complex literal constant (R421) is:

( real-part , imaginary-part )

where the real part and imaginary part each may be either a signed integer literal con-
stant (R405) or a signed real literal constant (R416), or a named constant of type real or
integer.

Examples are:

(3.0, -3.0)
(6, -7.6E9)
(3.0_HIGH, 1.6E9_Low)
(x_offset, y_offset)

where HIGH and LOW are named integer constants, and x_offset and y_offset are
named real or integer constants.

The types and kinds of the two parts of a complex literal constant need not be the
same. If both parts are real, the complex constant has the kind of one of the parts; it is
the part with greater precision unless the parts have the same precision, in which case
the choice of part is processor-dependent. If one part is real and the other integer, the
complex constant has the kind of the real part. If both parts are integer, the complex
constant has the kind of default real. In any case, the complex value is formed by con-
verting each part to a real of the same kind as the complex constant.

This form is only for complex constants. It is not a general constructor for complex
values that are not constants. If this form were allowed as such a general constructor,
there are contexts where it would cause syntactic ambiguity. The CMPLX intrinsic func-
tion serves the purpose of a general complex constructor which can be used with vari-
ables.

4.3.4 Logical Type

4.3.41 Name, Type Parameters, and Type Specifier

The name of the logical type is LOGICAL. It has a single kind type parameter named
KIND. Only one kind of logical, referred to as default logical, is required by the stan-
dard. The default logical type must occupy the same amount of storage as default inte-

ger.
The form of the logical type specifier is:

LOGICAL [ ( [ KIND = ] kind-value ) ]

If the kind value is omitted, default logical kind is implied.
Examples of type declaration statements using logical type specifiers are:

LOGICAL IR, XT
LOGICAL (KIND = BIT), SAVE :: XMASK (3000)
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where BIT is a named integer constant.

4.3.4.2 Values

The logical type has two values that represent true and false. A processor is required to
provide one logical kind, but may provide other kinds to allow the packing of logical
values; for example, one value per bit or one per byte. The intrinsic function KIND
may be used to determine the kind of its logical argument. There is no intrinsic func-
tion to select a logical kind analogous to the functions SELECTED_INT_KIND,
SELECTED_ REAL_KIND, and SELECTED_CHAR_KIND; the only way to determine
the logical kinds supported by a compiler are from the compiler documentation or by
experimentation.

4.3.4.3 Operators

The intrinsic binary operators for the logical type are: conjunction (.AND.), inclusive
disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (or exclu-
sive disjunction) (.NEQW.). The intrinsic unary operation is negation (.NOT.).

4.3.4.4 Form for Constants

There are only two logical literal constants. Optionally, they may include a trailing un-
derscore and a kind parameter. The forms for logical literal constants (R428) are:

.TRUE. [ _ kind-parameter |
.FALSE. [ _ kind-parameter |

If a kind parameter is specified, the constant is of that kind; otherwise, it is of type de-
fault logical.

Examples are:

«FALSE.
«TRUE._BIT

4.3.5 Character Type

4.3.5.1 Name, Type Parameters, and Type Specifier

The name of the character type is CHARACTER. It has a single kind type parameter
named KIND and a single length type parameter named LEN (4.2.2). Only one kind of
character, referred to as default character, is required by the standard. The amount of
storage occupied by a default character is referred to as a character storage unit (13.6.1,
16.2.3.1) and is not necessarily (or usually) the same as a numeric storage unit.

The form of a character type specifier is more complicated than that of the specifi-
ers for the other intrinsic types. This is partly because of the multiple type parameters
and partly because of the need to support historical forms as well as newer, more flex-
ible forms. The complete form is:

CHARACTER [ character-selector ]
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where a character selector (R424) has one of the forms:

(length-value [ , [ KIND=] kind-value ] )

( LEN= length-value [ , KIND= kind-value ] )
( KIND=kind-value [ , LEN= length-value ] )
* character-length [ , ]

and a character length (R426) has one of the forms:

( length-value )
integer-literal-constant

Kind value and length value are described in 4.2.3. If the kind value is omitted, the kind
value for default character is implied. If the length is not explicitly specified, a length
of one is implied. If a length value is negative, it specifies a length of zero.

The * character-length form is obsolescent in a type specifier (but the similar form in
a component declaration or entity declaration is not).

Rules and restrictions:

1. The optional comma after * character-length is permitted only in a type declaration
statement that has no double colon separator.

2. The integer literal constant that specifies a character length must not include a kind
parameter.

3. A character length may optionally be specified in an entity declaration of a charac-
ter type declaration statement (5.1) or in a component declaration of a character
component definition statement. If so, the particular entity or component has that
length, overriding the length specified by the type specifier.

4. A length of * may be used only in the following ways:

a. It may be used to declare a dummy argument of a procedure, in which case the
dummy argument assumes the length of the associated actual argument when
the procedure is invoked.

b. It may be used to declare a named constant, in which case the length is that of
the constant value.

c. It may be used in the type-spec of an ALLOCATE statement in which each
allocate-object is a dummy argument of type character with an assumed
character length, in which case the length is that of the associated actual
argument.

d. It may be used to declare the result variable for an external function. Any
scoping unit that invokes the function must declare the function with a length
other than *, or it must access such a declaration by host or use association.
When the function is invoked, the length of the result is the value specified in
the program unit referencing the function. This use is obsolescent.
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Note that an implication of rule 4 is that a length of * must not appear in an IM-
PLICIT statement.

5. A function name may be declared with a length of * only if the function is an ex-
ternal or dummy function; it must not be an internal or module function. The
function must not be pure or recursive. The function result must not be an array or
a pointer.

6. The length of a character-valued statement function or statement function dummy
argument of type character must be an initialization expression.

Examples of type declaration statements using character type specifiers are:

CHARACTER answer

CHARACTER (80) LINE

CHARACTER (KIND=ASCII, LEN=20) GREETING

CHARACTER (LEN=30, KIND=CYRILLIC), DIMENSION(10) :: C1
character (len=*), parameter :: title="Fortran 2003 Handbook”
character (len=:), allocatable :: job_title

where ASCII and CYRILLIC are named integer constants, ASCII possibly having been
defined using the SELECTED_CHAR_KIND intrinsic function.

4.3.5.2 Values

The character type has a set of values composed of character strings. A character string
is a sequence of characters, numbered from left to right 1, 2, ..., n, where n is the length
of (number of characters in) the string. A character string may have length 0. The max-
imum length permitted for character strings is processor-dependent.

A standard-conforming processor must support one character kind and may sup-
port more. The intrinsic function KIND may be used to determine the kind of its char-
acter argument. The intrinsic function SELECTED_CHAR_KIND returns a character
kind value based on the name of a character type. The standard defines names for the
default, ASCII, and ISO_10646 character sets, but requires that only the default be sup-
ported.

Each character kind must contain a character designated as a blank that can be
used as a padding character in character operations and input/output data transfer.
The characters in all processor-supported character kinds are considered to be repre-
sentable characters. The default character kind must include the characters that make
up the Fortran character set (3.1.1).

4.3.5.3 Collating Sequence

Each character kind has a collating sequence, which is used in the definition of com-
parison operators. A collating sequence assigns a unique nonnegative integer to each
character in the character set. The intrinsic functions CHAR and ICHAR provide con-
versions between the characters and these integers.

The standard specifies a partial collating sequence for the default character type so
that some character relational operations will be portable across different processors.
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The standard specifies properties of the collating sequence that are consistent with all
processor character sets in common use. Thus it tells the programmer what properties
can be counted on, while allowing most processors to use their native character sets.
The blank must precede both the alphabetic and numeric characters in the collating se-
quence. The alphabetic characters, whether uppercase or lowercase, must be in the nor-
mal alphabetic sequence. The numeric characters must be in the normal numeric
sequence, 0, 1, ..., 9. Numeric characters and alphabetic characters of each case must
not be interspersed. Other than blank, there are no constraints on the position of the
special characters and the underscore, nor is there any specified relationship between
the uppercase and lowercase alphabetic letters.

If the processor supports ASCII or ISO_10646 character kinds, those kinds are re-
quired to have the collating sequences specified by the corresponding character set
standards. The intrinsic functions ACHAR and IACHAR convert between characters of
any kind and positions in the ASCII collating sequence, provided that a corresponding
ASCII character exists. The intrinsic functions LGT, LGE, LLE, and LLT provide com-
parisons between default character strings based on the ASCII collating sequence,
whereas the relational operators, such as < and >, use the processor’s collating se-
quence, which might not be the ASCII sequence.

4.3.5.4 Operators

The binary operation concatenation (//) is the only intrinsic operation on character op-
erands that has a character value as a result. A number of intrinsic functions are pro-
vided that perform character operations. These are described in 13 and A. The intrinsic
relational operators on objects of type character are <, <=, ==, /=, >=, and >. The relation-
al operations may be used to compare character operands, but, because of possible pro-
cessor-dependent collating sequences, the intrinsic functions LGT, LGE, LLE, and LLT
provide more portable results. The relational operators and relational intrinsic functions
have default logical results.

4.3.5.5 Form for Constants

A character literal constant is written as a sequence of characters, enclosed either by
apostrophes or quotation marks. Forms for character literal constants (R427) are:

[ kind-parameter
[ kind-parameter

] ’ [ representable-character | ... ’
] " [ representable-character | ... "

where a representable character is any character in that character set kind that the pro-
cessor can represent. The use of control characters in character literal constants may be
restricted by the processor. Note that, unlike the other intrinsic types, the kind param-
eter for the character literal constant precedes the constant. If a kind is not specified,
the type of the constant is default character. If the string delimiter character (either an
apostrophe or quotation mark) is required as part of the constant, two consecutive such
characters with no intervening blanks serve to represent a single such character in the
string.
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Examples are:

GREEK_"nB¢"
GERMAN_"gemiit1ichkeit"
IIDON b Tll

"DON’ T’

The last two both have the value DON'T. A zero-length character constant is written as
two consecutive single or double quotes.

4.4 Derived Types

Unlike the intrinsic types that are defined by the language, derived types must be de-
fined by the programmer by means of a derived-type definition. It is intended that
these types have the same utility as the intrinsic types. For example, variables of these
types may be declared, passed as procedure arguments, and returned as function re-
sults.

Like an intrinsic type, a derived type has a name, a set of type parameters, a set of
values, a set of operations, and a means to represent constants of the type. Unlike with
intrinsic types, with derived types there are considerations of accessibility, compo-
nents, default initialization, procedure type bindings, type equivalence, and type ex-
tension.

441 A Simple Example of a Derived-Type Definition

The simplest derived-type definitions specify just a type name and some components.
For example, the following is a definition of type COLOR:

TYPE COLOR
INTEGER :: HUE, SHADE, INTENSITY
CHARACTER(LEN=30) :: NAME

END TYPE COLOR

The type has four components, integer components named HUE, SHADE, and INTEN-
SITY, and a character component of length 30 named NAME. A variable of this type
could be declared with a type declaration statement such as

type(color) :: background

where color is the type specifier. This variable could be assigned a value with an assign-
ment statement such as

background = color(0, 0, 0, "bTack™)

The four components of background can be individually referred to as back-
ground%hue, background%shade, background%intensity, and background%name.
Note that the initial statement of a type definition and the statement used to de-
clare objects of derived type both begin with the keyword TYPE. The initial statement
of a type definition is called a derived-type statement, and the statement used to de-
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clare objects of derived type is called a type declaration statement. The type name in a
derived-type statement is not enclosed in parentheses, whereas the type name in a type
declaration statement is.

442 Derived-Type Definition Overview
The general form of a type definition (R429) is:

TYPE [ [ , type-attribute-list | : : ] type-name [ ( type-parameter-name-list ) |
[ type-parameter-definition-statement | ...
[ private-or-sequence-statement | ...
[ component-definition-statement | ...
[ procedure-binding-part |
END TYPE [ type-name ]

where the first statement in the definition is called the derived-type statement.

A type attribute (R431) is one of:

access-spec
EXTENDS ( parent-type-name )
ABSTRACT
BIND (C)

where an access specification is either PRIVATE or PUBLIC and a private-sequence
statement is PRIVATE or SEQUENCE. Accessibility (PRIVATE and PUBLIC) and SE-
QUENCE are discussed in 4.4.5 and 4.4.10.

The same type attribute must not appear more than once in a given derived-type
statement. The same private or sequence statement must not appear more than once in
a given type definition.

The name of the type is type-name. If the END TYPE statement has a type name, it
must be the same as the one in the derived-type statement.

Type parameters are declared by the type parameter name list and type parameter
definition statements; components are defined by the component definition statements;
and procedure bindings are defined by the procedure binding part. The EXTENDS and
ABSTRACT type attributes relate to type extension and extended types (4.4.12). The
BIND attribute declares a derived type to be interoperable. Interoperable types are sub-
ject to additional restrictions described in 15.

Contrary to some expectations, the order of the component declaration statements
does not imply a storage order, except in the cases of sequence and bind types (4.4.10).

443 Type Parameters

A derived type is said to be parameterized if it has any type parameters. The parame-
ters of a derived type are specified by the type parameter name list in the derived-type
statement. For an extended type (4.4.12), the type parameters are those of the parent
type, followed by those specified by the type parameter name list of the extended type.

Additional information about a type parameter is specified by a type parameter
definition statement (R435), which has the form:
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INTEGER [ ( [ KIND= ] kind-value ) ] , kind-or-len : : type-parameter-declaration-list

where kind-or-len is KIND or LEN, specifying whether the type parameters named in
the list are kind or length parameters. A type parameter declaration (R436) has the
form:

type-parameter-name [ = scalar-integer-initialization-expression ]

Each type parameter name in a type parameter declaration must be one of the type pa-
rameter names specified in the derived-type statement. Each type parameter name in
the derived-type statement must appear in exactly one type parameter declaration in
the type definition.

Each type parameter is of type integer and therefore has a kind type parameter,
which is specified by the kind value in the INTEGER type specifier of the type param-
eter definition statement. If no kind value appears, the type parameter is of type de-
fault integer. Discussion of the type parameter of a type parameter can be confusing;
fortunately, such discussion is not often needed.

If a type parameter declaration has a scalar integer initialization expression, the ex-
pression specifies a default value for the type parameter.

An example of a derived-type definition with some simple type parameter defini-
tion statements is:

type :: some_type(KIND, M, N)
integer, len :: N, M
integer, kind :: KIND

end type some_type

This example has a kind parameter named KIND, which is likely to be a common style,
and also has two length parameters named M and N. A more complicated example is:

type :: matrix(M, N, KIND, K)
integer, kind :: KIND = kind(0.0), K=kind(0)
integer(kK), len :: M, N
real (KIND) :: body(M, N)

end type matrix

In this example, KIND is a kind parameter with a default that is the kind value for de-
fault real. K is a kind parameter with a default that is the kind value for default integer.
M and N are length parameters and have kind K. The REAL statement in this example
is a component declaration statement (4.4.6). To help clarity of exposition, the above
examples use a convention that type parameter names are all upper case; attributes
and function names are all lower case.
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4.4.4 Type Specifier

The form of a derived-type specifier (R455) is a generalization of the forms of the in-
trinsic type specifiers. Its description is more complicated because it is expressed in
general terms which cover having an arbitrary number of type parameters. The form is
similar to that of an actual argument list. The general form is:

type-name [ ( type-parameter-spec-list ) ]
where a type-parameter-spec (R456) is:
[ type-parameter-name = | type-parameter-value

Type parameter values are described in 4.2.3; the following rules and restrictions
apply in addition to those of that section.

Rules and restrictions:
1. The type-name must be an accessible name of a derived type.

2. Each type parameter name must be the name of a type parameter declared in the
type definition.

3. Each type parameter of the derived type may have no more than one correspond-
ing type parameter specification.

4. Each type parameter of the derived type must have a corresponding type parame-
ter specification unless that type parameter has a default value, as specified in its
type parameter definition statement.

5. If a type parameter specification specifies a type parameter name, all subsequent
type parameter specifications in the list must also specify a type parameter name.

6. A type parameter value for a kind type parameter must be a kind value (4.2.3); a
type parameter value for a length type parameter must be a length value (4.2.3).

7. If the type name is the name of an abstract type, the derived-type specifier can ap-
pear only in a CLASS declaration.

The correspondence between type parameters and type parameter specifications is
established as follows: a type parameter specification with a type parameter name cor-
responds to the type parameter with that name. The type parameter specifications
without type parameter names correspond to the type parameters in type parameter
order. The type parameter order of a nonextended type is the order of the type param-
eters in the derived-type statement for the type. The type parameter order of an ex-
tended type is the type parameter order of the parent type, followed by the type
parameters in the derived-type statement for the type in order.

If necessary, each specified type parameter value is converted to the kind of the
corresponding type parameter. A type parameter that is not in a particular type param-
eter specification list takes its default value.
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The following examples of type definition statements use type specifiers for the de-
rived-type matrix defined in 4.4.3.

type (matrix(n=10,m=10)) :: X
type (matrix(10,10,kind(0.0),kind(0)) :: vy
type (matrix(20,10,kind(1.0D0)) :: z

In this example. x%body and y%body are default real with shape [10, 10], while
z%body is double precision with shape [20, 10].

4.4.5 Accessibility

For a derived type declared in the specification part of a module, it is possible to spec-
ify the accessibility of the derived-type name, its component names, and its procedure
bindings. The accessibility is either public or private. If an identifier has public accessi-
bility, then it is available for use outside of the module via USE statements. If an iden-
tifier has private accessibility, then it may be used only inside of the module where it is
defined. This definition of accessibility is inherently related to modules; it would be
meaningless to specify accessibility of something not declared in the specification part
of a module; therefore, that is not allowed.

It is important to understand that accessibility applies to identifiers (most com-
monly names, but also things such as operators, which do not have the form of names).
If, for example, a type name has private accessibility, that means only that the type
name may not be accessed via USE statements. It does not prevent objects of that type
from being used outside of the module, as long as that use does not involve the type
name.

The accessibility of a type name, its component names, and its procedure bindings
are orthogonal; all combinations are allowed and meaningful.

The accessibility of a type name may be specified either by an access specification
in the derived-type statement or by a separate accessibility statement (5.8.1). If the ac-
cessibility of the type name is not individually specified, then that type name has the
default accessibility for the module (5.8.1).

Having a private type name substantially restricts the allowable uses of the type
outside of the module. In particular, objects of the type cannot be declared outside of
the module. However, public objects of the type may be accessed.

The accessibility of a component name is specified by an access specification in the
component definition statement. If a component definition statement has no access
specification, then the accessibility of that component name is the default component
accessibility for the type. The default component accessibility for a type is private if the
type definition has a PRIVATE statement preceding the component definition state-
ments; otherwise, it is public. A default of public can be specified only by omission of
the PRIVATE statement; there is no explicit PUBLIC statement in a derived-type defini-
tion. The accessibility of a component is not influenced by the accessibility of the type
name or by the default accessibility of the module.

The accessibility of a procedure binding (4.4.11) is specified by an access specifica-
tion in the procedure binding statement. If a procedure binding statement has no ac-
cess specification, then the accessibility of that binding is the default binding
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accessibility for the type. The default binding accessibility for a type is private if there
is a PRIVATE statement in the procedure binding part of the type definition; otherwise,
it is public. The accessibility of a binding is not influenced by the accessibility of com-
ponents, the accessibility of the type name, or the default accessibility of the module.
Accessibility is not relevant for final bindings (4.4.11.3) because they do not have iden-
tifiers.

Accessibility cannot be specified for type parameters. Effectively they are always
public.

Example:

type, public :: some_type

private
real, public :: x
integer :: 1i,j

end type some_type

The type name some_type is public, as is the component name x. The component
names i and j are private because of the PRIVATE statement. A scoping unit that uses
this module could have a declaration like

type(some_type) :: z

and could then refer to z%x. The only way to access the i and j components of z would
be by means of some procedure defined in the same module that defines the type.

4.4.6 Data Component Definition

A component definition statement is either a data component definition statement or a
procedure component definition statement. The form of a data component definition
statement (R440) is

declaration-type-spec [ [ , component-attribute-spec-list] :: ] &
component-declaration-list

where a component attribute specification is one of

POINTER

ALLOCATABLE

DIMENSION ( component-array-spec )
access-spec

A component declaration is
component-name [ ( component-array-spec ) | [ * character-length ] [ initialization ]

and a component array specification is one of

explicit-shape-spec-list
deferred-shape-spec-list
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The form of a data component definition statement is similar to that of a type dec-

laration statement (5.1); both forms use several of the same terms, the definitions of
which are not duplicated here. Declaration type specification is defined in 5.1, explicit-
shape specification and deferred-shape specification are defined in 5.4.1, and
initialization is defined in 5.7.2. There are several other attributes that are allowed in a
type declaration statement, but not in a data component definition statement.

Rules and restrictions:

1.

9.

10.
11.

The declaration type specification must not specify the type being defined or a de-
rived type defined later in the same scoping unit unless the POINTER attribute is
specified.

A particular attribute specification may appear at most once in a given component
attribute specification list.

A component must not have both the POINTER and ALLOCATABLE attributes.

If CLASS appears in the declaration type specification (5.1), either the POINTER or
ALLOCATABLE attribute must be specified.

If either the POINTER or ALLOCATABLE attribute is specified in a data compo-
nent definition statement, then each component array specification in that state-
ment must be a deferred-shape specification list.

If neither the POINTER nor ALLOCATABLE attribute is specified in a data compo-
nent definition statement, then each component array specification in that state-
ment must be an explicit-shape specification list.

Each bound in an explicit-shape specification must either be an initialization ex-
pression or be a specification expression that contains neither variables nor refer-
ences to specification functions. Type parameters are not variables; they are
allowed in such specification expressions and are the only way for a component to
have nonconstant explicit bounds.

Each type parameter value in a component definition statement must be either a
colon, an initialization expression, or a specification expression that contains nei-
ther variables nor references to specification functions.

A * character-length is allowed only if the type specified is character.
If initialization appears, the double colon separator must appear.
If initialization appears, the ALLOCATABLE attribute must not appear.

A data component is an array if there is a component array specification in its com-

ponent declaration or in a DIMENSION component attribute specification in its com-
ponent definition statement. If it is specified in both places, the specification in the
component declaration overrides the one in the DIMENSION component attribute
specification. In the example
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type :: some_arrays
real, dimension(2) :: x, y(10,10)
integer, allocatable :: p(:)

end type some_arrays

the x component is a rank 1 array with dimension (2), the y component is a rank 2 ar-
ray with dimension (10,10), and the p component is an allocatable array of rank 1.
An example of a derived type with a pointer component is

type summary

character(len=50) :: title
integer :: no_of_pages
character(len=:), pointer :: text

end type summary

The space for the target of the TEXT component may be allocated (6.7.1.2) during exe-
cution, or the pointer may be assigned (7.5.5) to point to existing space.

447 Procedure Component Definition
The form of a procedure component declaration statement (R445) is

PROCEDURE ( [ interface-spec]) , &
procedure-component-attribute-spec-list : : procedure-component-declaration-list

where a procedure component attribute specification is one of

POINTER

PASS [ ( argument-name ) |
NOPASS

access-spec

and a procedure component declaration is
procedure-component-name [ initialization |

The form and interpretation of an interface specification is defined in 5.11. The
form of a procedure component declaration statement is similar to that of a procedure
declaration statement except for differences in the allowed attributes. The PASS and
NOPASS attributes are unique to derived types and are discussed in 4.4.8.

Rules and restrictions:
1. The POINTER attribute must always be specified.

2. A particular attribute specification may appear at most once in a given procedure
component attribute specification list.
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Example:

module proc_component_example
type t
real :: a
procedure(print_me), pointer, nopass :: proc
end_type t
contains
subroutine print_me (arg, Tun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (lun,*) arg%a
end subroutine print_me
subroutine print_my_square (arg, lun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (Tun,*) arg%a**2
end subroutine print_my_square
end module proc_component_example
program main
use proc_component_example
use iso_fortran_env, only :: output_unit
type(t) :: x
x%a = 2.71828
X%proc => print_me
call x%proc(x, output_unit)
x%¥proc => print_my_square
call x%proc(x, output_unit)
end program main

The proc component of type t is declared to be a procedure pointer to a procedure with
the same interface as print_me. Note that this does not imply that the target procedure
actually is print_me—just that it has the same interface as print_me; one could have al-
ternatively written an abstract interface (12.5.5) to use in defining the procedure com-
ponent, but it is simpler to just give the name of a procedure with the desired interface
if such a procedure is handy.

The main program assigns a value to the x%a component and then invokes both
print_me and print_my_square using the procedure component. In this simple case,
the same thing could have been achieved without procedure pointers at all. In more re-
alistic situations, there could be multiple variables of type t, different variables having
different targets for their procedure pointer component, and the procedure invocations
could be far removed from the pointer assignments.

For a description of the ISO_FORTRAN_ENYV intrinsic module and its output_unit
constant, the details of which are peripheral to this example, see 13.6.1.
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4.4.8 The Passed-Object Dummy Argument

A procedure component or a procedure binding (4.4.11) may optionally be declared to
have a passed-object dummy argument. A passed-object dummy argument is associat-
ed with a special actual argument, which is not explicitly written in the actual argu-
ment list. In effect, the compiler automatically adds the appropriate actual argument to
the argument list.

The appropriate actual argument is inherent in the form of reference to the proce-
dure. A reference to a procedure component or procedure binding always involves the
general form x%p, where x is an object of derived type, and p is the name of a proce-
dure component or binding of the type. The object x is the actual argument associated
with the passed-object dummy argument.

The determination of the passed-object dummy argument depends on the PASS
and NOPASS attributes specified and on the interface of the procedure component or
procedure binding, as described below.

Rules and restrictions:

1. PASS and NOPASS must not both be specified for the same procedure component
or binding.

2. NOPASS must be specified if the procedure component or binding has an implicit
interface.

3. If NOPASS is specified, there is no passed object dummy argument.

4. If PASS (argument-name) is specified, then the dummy argument named argu-
ment-name is the passed-object dummy argument; there must be such a dummy
argument.

5. If PASS is specified without an argument name, or if neither PASS nor NOPASS is
specified, the first dummy argument is the passed-object dummy argument. There
must be at least one dummy argument in these cases.

6. The passed object dummy argument must be a scalar, nonpointer, nonallocatable
dummy data object. Its declared type must be the type in which the component or
binding appears. All of its length type parameters must be assumed. It must be
polymorphic (5.2) if and only if the type is extensible (4.4.12).

The following example illustrates the use of a passed object dummy argument. Ex-
cept for the passed object dummy argument, this example is the same as the procedure
component example above.

module passed_object_example
type t
real :: a
procedure(print_me), pointer, pass(arg) :: proc
end_type t
contains



90 Chapter 4

subroutine print_me (arg, Tun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (lun,*) arg%a
end subroutine print_me
subroutine print_my_square (arg, Tun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (lun,*) arg¥%a**2
end subroutine print_my_square
end module passed_object_example
program main
use passed_object_example
use iso_fortran_env, only :: output_unit
type(t) :: x
x%a = 2.71828
x%¥proc => print_me
call x%proc(output_unit)
x%proc => print_my_square
call x%proc(output_unit)
end program main

Other than the module name, the only difference between this module and the one in
the previous example is that the proc component is given the PASS attribute instead of
NOPASS. The attribute specification could have been omitted from the example because
PASS is the default. The pass(arg) makes it explicit which argument is the passed one,
although again, the specification just emphasizes what would have been the default
(the first argument).

In the main program, x is not included in the actual argument list; instead, it is
passed implicitly. It would be an error to put x in the actual argument list; that would
count as another actual argument rather than a confirmation of the automatically
passed one.

For all of its somewhat intimidating terminology, the effect of a passed object dum-
my argument is just to remove a redundancy in some procedure references. Without
the passed object dummy argument, it is necessary to specify x both in the form
x%proc and as an actual argument. That happens to be a very common type of redun-
dancy for procedure components. The redundancy is more of an issue if the object
name is longer than the short x of this example, or particularly if the object is some ex-
pression rather than a simple name.

Note that if print_me is referenced directly as in

call print_me(x, output_unit)

instead of being referenced via the procedure pointer component, the x actual argu-
ment must be provided explicitly. The passed object property affects only invocation
via the procedure pointer component; it does not change anything about the procedure
or unrelated invocations of it. The same procedure may even have different passed-ob-
ject dummy arguments in different contexts.
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4.4.9 Default Initialization

If a component declaration includes initialization (5.7.2), that component of the type is
said to have default initialization. For a pointer component, the only default initializa-
tion allowed is to a pointer association status of disassociated (nullified), which is spec-
ified by a reference to the intrinsic function NULL. For an allocatable component, user-
specified default initialization is not allowed, but the normal behavior of an allocatable
component is essentially equivalent to default initialization to an unallocated status.
For a nonpointer, nonallocatable data component, the initialization follows the same
rules as intrinsic assignment (7.5.2); the type and type parameters of the initialization
expression must be compatible with intrinsic assignment to the component, and the ex-
pression must either be scalar or have the same shape as the component.

Default initialization for a type applies whenever any object of the type is created.
This may be when program execution begins, when the object is allocated, or when a
procedure is invoked.

Example. A derived type may have a pointer component that is of the type being
defined. This is useful in creating linked lists and trees.

TYPE LINK
REAL VALUE
TYPE(LINK), POINTER :: PREVIOUS => NULL(Q)
TYPE(LINK), POINTER :: NEXT => NULLQ)

END TYPE LINK

TYPE (LINK), POINTER :: A_LINK
ALLOCATE (A_LINK)

When A_LINK is allocated, its PREVIOUS and NEXT pointers are nullified; its
VALUE component is undefined.

If initialization is specified at multiple levels, the highest level specification over-
rides. That is, explicit initialization of a variable overrides any default initialization
specified for the type of the variable; default initialization specified for a component of
a type overrides any default initialization specified for the type of the component.

Example:

TYPE TEMPERATURES
REAL :: LOW = 0.0, HIGH = 100.0
END TYPE TEMPERATURES

TYPE (TEMPERATURES) :: WATER, &
HEAVY_WATER = TEMPERATURES(3.82,101.2)

WATER is not initialized explicitly, so the default initialization specified in the type
definition for TEMPERATURES applies; the LOW component of WATER is initialized
to 0 and the HIGH component is initialized to 100. HEAVY_WATER (water with deute-
rium) is explicitly initialized with a structure constructor (4.4.15) to have a LOW com-
ponent of 3.82 and a HIGH component of 101.42; that explicit initialization overrides
the default initialization.
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4.410 Sequence Types and Type Equivalence

The question of whether two entities are of the same type arises in many contexts, such
as the association of actual and dummy arguments. There are two ways for entities to
be declared to be of the same type. The simplest way is for them to be declared with
reference to the same derived-type definition. If the two objects are in different scoping
units, the only ways to declare them with reference to the same derived-type definition
are by using host association (16.2.1.3) or use association (16.2.1.2). Except in some spe-
cial cases of sequence and bind types, each derived-type definition defines a distinct
type; if two entities are declared with reference to two distinct derived-type defini-
tions, those entities are of different type, even if the derived-type definitions are textu-
ally identical.

Example:

MODULE SHOP
TYPE COMPONENT
CHARACTER(LEN=20) NAME
INTEGER CATALOG_NO
REAL WEIGHT
END TYPE COMPONENT
TYPE(COMPONENT)  PARTS(100)
CONTAINS
SUBROUTINE GET_PART(PART, NAME)
TYPE (COMPONENT) PART
CHARACTER(LEN=*) NAME

DO I=1,100
IF(NAME == PARTS(I)%NAME) THEN
PART = PARTS(I)
RETURN
ENDIF
ENDDO
PRINT *, "Part not available"

PART%NAME = "none"
PART%CATALOG_NO = 0
PARTBWWEIGHT = 0.0

END SUBROUTINE GET_PART

END MODULE SHOP

PROGRAM BUILD_MACHINE
USE SHOP
TYPE(COMPONENT) MOTOR(20)
TOTAL_WEIGHT = 0.0
CALL GET_PART(MOTOR(1), "VALVE")
TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1)%WEIGHT

END PROGRAM BUILD_MACHINE
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Module procedure GET_PART has access to the type COMPONENT because the
type definition appears in its host. Program BUILD_MACHINE has access to the same
type because it uses module SHOP. This allows a variable of the type, such as MO-
TOR(1), to be passed as an actual argument.

The other way to declare entities to be of the same derived type involves sequence
and bind types. A sequence type is a derived type whose type definition has a SE-
QUENCE statement. Details of bind types are in 15.4.4. Bind types share many of the
features of sequence types and might have been more clearly categorized as a special
case of sequence types, but the standard does not categorize them that way; as a result,
there are several places in the standard where material about sequence and bind types
is nearly identical.

Rules and restrictions:

1. A sequence type must not have the EXTENDS, ABSTRACT, or BIND attributes.
2. A sequence type is not extensible.

3. The type definition for a sequence type must not have a procedure binding part.
4

. Each data component of a sequence type must be declared to be of an intrinsic or
sequence type.

Entities declared with reference to two distinct derived-type definitions are of the
same type if both type definitions specify SEQUENCE or both specify BIND; they spec-
ify the same type name; they have no PRIVATE components; and they have type pa-
rameters and components that agree in order, name, and attributes. The example for
program BUILD_MACHINE above is restated to illustrate the differences between the
two ways:

PROGRAM BUILD_MACHINE
TYPE COMPONENT
SEQUENCE
CHARACTER(LEN=20) NAME
INTEGER CATALOG_NO
REAL WEIGHT
END TYPE COMPONENT
TYPE (COMPONENT) PARTS, MOTOR(20)
COMMON /WAREHOUSE/ PARTS(100)
TOTAL_WEIGHT=0.0
CALL GET_PART(MOTOR(1), "VALVE")
TOTAL_WEIGHT = TOTAL_WEIGH + MOTOR(1)%WEIGHT

END PROGRAM BUILD_MACHINE
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SUBROUTINE GET_PART(PART, NAME)
TYPE COMPONENT
SEQUENCE
CHARACTER(LEN=20) NAME
INTEGER CATALOG_NO
REAL WEIGHT
END TYPE COMPONENT
TYPE(COMPONENT) PART, PARTS
CHARACTER(LEN=*) NAME
COMMON /WAREHOUSE/ PARTS(100)
DO I =1, 100
IF (NAME .EQ. PARTS(I)%NAME) THEN
PART = PARTS(I)
RETURN
END IF
END DO
PART%NAME = "none"
PART%CATALOG_NO = 0
PART%WEIGHT = 0.0
PRINT *, "Part not available"
END SUBROUTINE GET_PART

In this example, type COMPONENT in program BUILD_MACHINE and type
COMPONENT in subroutine GET_PART are the same because they are sequence types
with the same name; have no private components; and have type parameters and com-
ponents that agree in order, name, and attributes. This example is less concise, particu-
larly if there are more procedures that need access to the type definition. The necessity
to replicate the type definition also introduces extra chances for errors, which might
not be caught by the compiler.

In addition to their role in type equivalence, sequence types also play a role in stor-
age association; a derived-type object in COMMON or EQUIVALENCE must be of a
sequence type. Additional forms of COMMON and EQUIVALENCE association are al-
lowed if the sequence type meets the extra conditions required to be a numeric se-
quence type or character sequence type, as follows:

1. A numeric or character sequence type must not have type parameters. It must not
have allocatable or pointer components.

2. Each component of a numeric sequence type must be of type default integer, de-
fault real, double precision real, default complex, default logical, or a numeric se-
quence type.

3. Each component of a character sequence type must be of type default character or
a character sequence type.

There is no way to explicitly declare that something is a numeric or character sequence
type; the terms just categorize sequence types that meet the extra conditions.
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Storage sequences for sequence types are described in 16.2.3.1. For numeric and
character sequence types, the allowed storage associations essentially require that the
components of objects of the type be stored in the specified order with no padding. For
other sequence types, although the standard does specify a sequence of storage units
for the components, this specification has no practical effect because it cannot be de-
tected by a standard-conforming program; therefore, the compiler is free in practice to
rearrange the internal storage of such types as long as it is done consistently so that the
rules of type equivalence still work. For nonsequence types, no internal storage order is
even implied by the standard.

4.411 Procedure Type Bindings

A procedure type binding connects a derived type and a procedure. A procedure that
has a binding to a type is often referred to as a type-bound procedure. This term is
somewhat misleading in that being type-bound is not a property of the procedure. A
given procedure may be bound to multiple types and may also be invoked in ways
having no connection with type binding. There is nothing about the type binding in the
code of the procedure. Type bindings are specified in the type binding part of the de-
rived-type definition.
The form of the procedure binding part (R448) of a derived-type definition is

CONTAINS
[ PRIVATE ]
procedure-binding-statement
[ procedure-binding-statement | ...

The optional PRIVATE statement is discussed in 4.4.5. Note that at least one procedure
binding statement is required in a procedure binding part, although the procedure
binding part as a whole is optional. The form of a procedure binding statement (R450)
is one of

specific-binding
generic-binding
final-binding

In the scope of the type definition, the procedure is identified by a binding name. It
may be the binding name of a specific binding or the generic name for a generic bind-
ing. A final binding, or a generic binding whose generic specification is not a name,
has no binding name.

4.411.1 Specific Bindings
A specific binding is either deferred or nondeferred. The form of a nondeferred specific
binding is

PROCEDURE [ [ , NON_OVERRIDABLE ] [, binding-attribute-list] : : ] &
binding-name [ => procedure-name |
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The form of a deferred specific binding is
PROCEDURE ( interface-name ) , DEFERRED [ , binding-attribute-list | : : binding-name
A binding attribute is one of

PASS [ ( argument-name ) ]
NOPASS
access-spec

Although these forms show the NON_OVERRIDABLE and DEFERRED attributes sep-
arately and preceding the other binding attributes above, this ordering is not required.
The PASS and NOPASS attributes are discussed in 4.4.8; access specifications are dis-
cussed in 4.4.5; the NON_OVERRIDABLE and DEFERRED attributes relate to inherit-
ance, which is further discussed in 4.4.12.

Rules and restrictions:

1. The same binding attribute must not be specified more than once in a given bind-
ing attribute list.

2. If the procedure name is omitted from a nondeferred specific binding, it is as
though it were specified to be the same as the binding name.

3. If the procedure name explicitly appears in a nondeferred specific binding, the
double colon separator must appear.

4. The procedure name in a nondeferred specific binding must be the name of an ac-
cessible module procedure or external procedure with an explicit interface.

Other rules about procedure type bindings apply only in the context of type inherit-
ance and are discussed in 4.4.12.

A specific procedure type binding has similarities, in both syntax and function, to
a procedure pointer component. Each involves referencing a procedure and the syntax
of each reference is identical. The difference is in how the particular procedure to be
referenced is determined. For a procedure pointer component with a particular compo-
nent name, every object of the type has a separate pointer; these pointers can, in gener-
al, point to different procedures just like the data components of different objects of the
type can have different values. For a procedure type binding with a particular binding
name, all objects of the same type use the same procedure. Procedure type bindings are
thus more restricted than procedure pointer components. In applications where the re-
striction fits, they are consequently less verbose and less error prone. However, proce-
dure type bindings are so restricted that, unless type inheritance is involved, they are
little more than an alternative syntax for an ordinary call to a procedure using its
name.

Example:

module procedure_binding_example
type t
real :: a
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contains
procedure, pass(arg) :: print_me
procedure, pass(arg) :: print_my_square
end_type t
contains

subroutine print_me (arg, Tun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (lun,*) arg%a
end subroutine print_me
subroutine print_my_square (arg, Tun)
type(t), intent(in) :: arg
integer, intent(in) :: Tun
write (lun,*) arg¥%a**2
end subroutine print_my_square
end module procedure_binding_example
program main
use procedure_binding_example
use iso_fortran_env, only :: output_unit
type(t) :: x
x%a = 2.71828
call x%print_me(output_unit)
call x%print_my_square(output_unit)
end program main

This example directly parallels our prior examples of procedure components and
passed object dummy arguments. It illustrates the similarities and differences. The ac-
tual subroutines in question are identical; only the means of invoking them differ. Type
bindings are defined for both print_me and print_my_square. The bindings are defined
in the type definition and cannot be changed subsequently, so there are two different
binding names for the two different procedures. For this example, the binding names
are the same as the subroutine names. The syntax difference between

call x%print_me(output_unit)
and
call print_me(x, output_unit)

seems like a pretty trivial result to be worth a special feature in the language. The pow-
er of the feature is only evident in conjunction with type extension and inheritance,
and in particular with polymorphism (5.2).

4.4.11.2 Generic Bindings

The form of a generic binding is
GENERIC [ , access-spec ] :: generic-spec => binding-name-list

Generic specifications are defined in 12.5.4.
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Rules and restrictions:

1.
2.

Each binding name must be the name of a specific binding of the type.

If the generic specification is for an operator, an assignment, or derived-type in-
put/output, each binding must have a passed-object dummy argument. The inter-
face of the binding must be as specified in 12.5.4.2, 12.5.4.3, or 9.5.1.4, respectively.

All generic bindings with the same generic specification in the same derived-type
definition must have the same accessibility.

The set of specific bindings for a particular generic specification must satisfy the
requirements of 12.5.4, which allow generic resolution. This set of specific bindings
includes any inherited ones for the same generic specification.

As an example of generic binding, the following could be procedure binding state-

ments in the definition of the matrix type shown in 4.4.3.

procedure :: invert_single

procedure :: invert_double

procedure :: invert_huge_single

procedure :: invert_huge_double

generic :: operator(.invert.) => invert_single, invert_double, &

& invert_huge_single, invert_huge_double

The first four statements define specific bindings using procedures that are not shown
here. The last statement defines a generic binding built from the specific ones.

4.411.3 Final Bindings

The form of a final binding is

FINAL [ :: ] final-subroutine-name-list

Rules and restrictions:

1.

Each final subroutine name must be the name of a module procedure that has ex-
actly one dummy argument, which must be of the type being defined. That dum-
my argument must not be optional, pointer, allocatable, polymorphic, or INTENT
(OUT). Any length type parameters of the dummy argument must be assumed.

Any two final subroutines for a type must differ in the rank or kind type parame-
ters of the dummy argument. The same final subroutine may not be specified
twice.

A final binding is comparable to a destructor in some other languages.
A type is finalizable if it has any final subroutines or if it has any nonpointer, non-

allocatable components of a finalizable type. A data entity is finalizable if it is of a fi-
nalizable type and is not a pointer.
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Finalization is the process of executing the appropriate final subroutines for a data

entity and its components. It applies only to finalizable data entities. Finalization of an
entity consists of three steps in the following order:

1.

The final subroutine for the data entity is called with the data entity as the actual
argument. The final subroutine for the data entity is one that is bound to the dy-
namic type of the data entity and is compatible with being called with the data en-
tity as an actual argument. This implies that the final subroutine's dummy
argument has the same kind type parameter values as the data entity. It also im-
plies that either the dummy argument has the same rank as the data entity or that
the subroutine is elemental. If there are both elemental and nonelemental compati-
ble final subroutines, the nonelemental one is called. If there are no compatible fi-
nal subroutines, nothing is called for this step.

Each finalizable component specified in the type definition is finalized. If the data
entity is an array, then this component finalization is done separately for each ele-
ment of the data entity. The order of the component finalizations is processor-de-
pendent.

If the data entity is of an extended type and the parent type is finalizable, then the
parent component is finalized.

Conceptually, finalization occurs when a finalizable data entity goes out of existence.
Specifically, it occurs for finalizable data entities in the following situations:

1.

When a pointer is deallocated, its target is finalized. When an allocatable entity is
deallocated, it is finalized.

When an entity becomes undefined due to completion of execution of an instance
of a procedure (16.3.3(3)), it is finalized.

A function result or structure constructor referenced in an executable construct is
finalized after execution of the innermost executable construct containing the refer-
ence.

A function result or structure constructor referenced in a specification expression is
finalized before execution of the first executable statement in the scoping unit.

When a procedure is invoked, any nonpointer, nonallocatable actual argument as-
sociated with an INTENT (OUT) dummy is finalized.

When an intrinsic assignment statement is executed, the variable is finalized imme-
diately before it is defined, after the expression is evaluated.

If a target allocated through a pointer becomes unreachable by any pointer, it may
be finalized at any subsequent time, at the processor's option.



100 Chapter 4

If multiple entities are finalized as a consequence of a single event, the order of their fi-
nalization is processor-dependent. A final subroutine must not reference or define an
object that has already been finalized; this restriction effectively prohibits any depen-
dence between finalizations that are triggered by the same event.

As an example of finalization, consider the following type definition and final pro-
cedure.

module Tinked_Tist_module
type linked_1list_node_type
real, allocatable :: data(:)
type(linked_1list_node_type), pointer :: next
contains
final :: finalize_node
end type
contains
recursive subroutine finalize_node (node)
type(linked_1list_node_type) :: node
if (associated(node%next)) deallocate(node%next)
end subroutine

end module

If a node of this type is deallocated, the finalize_node procedure is automatically
invoked as a precursor to the actual deallocation. That procedure deallocates the next
node, if one exists. Deallocation of the next node causes it to be finalized, which results
in a recursive invocation of finalize_node. The procedure must be declared recursive
even though the recursive invocation is a result of finalization instead of an explicit
call. With this final procedure, deallocation of a single node causes recursive dealloca-
tion of the remainder of the list beginning with that node. Note that the allocatable
data component of a node is automatically deallocated when the node is deallocated
(6.7.3.1); the final procedure does not have to do this deallocation explicitly.

4.4.12 Type Extension and Inheritance

Type extension is a means of defining a new type by building on a previously defined
type. The new type starts with the previously defined one and can add type parame-
ters, components, and procedure bindings; the new type can also override procedure
bindings.

Any derived type that is neither a sequence nor a bind type is extensible. A type
definition with the EXTENDS type attribute defines an extended type. The parent type
specified in the EXTENDS attribute must be an extensible type. An extended type is
also extensible and may in turn be a parent of other extended types in a tree-like struc-
ture. An extensible type is an extension of itself and of any type below it in the tree (if
we think of parent types as being lower and the tree branching out upwards).

An extended type inherits all of the type parameters and components from its par-
ent type. It also inherits those specific and generic bindings that are not overridden.
These inherited entities retain all of the attributes that they had in the parent type. The
extended type has the type parameters and components specified in its type definition
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in addition to the inherited ones. The procedure bindings specified in the definition of
the extended type can either be additional bindings or overriding ones.

It is allowed for the number of type parameters, components, and bindings in a
type definition to be zero; although that is not the norm, there are cases where it can be
useful, particularly with type extension.

An extended type additionally has a special implicitly declared component called
the parent component. The parent component is scalar, nonpointer, and nonallocatable,
with the type and type parameters of the parent type. The name of the parent compo-
nent is the parent type name and it has the same accessibility as the parent type name.

The parent component provides a second way to refer to the inherited components.
If an object x has an inherited component named y, that component can be referred to
with the syntax x%y. If the parent type is named p, then the same inherited component
can also be referred to as x%p%y. In isolation, the longer form might seem pointless. Its
main benefit is in the ability to refer to all of the inherited components as the single ob-
ject x%p.

Type extension is most useful as an enabler for polymorphism (5.2). Type extension
can be used without polymorphism, but then it is little more than a syntax conve-
nience, allowing the shorter form of reference to the inherited components.

44121 Type Extension Versus its Alternatives

In order to illustrate the role of type extension, consider a base type and some alterna-
tive ways to define new types based on it, but with additional components. The base
type for this illustration is

type :: base_type
real :: a
integer :: i
end type

It is desired to define two new types: one adding a character component, and the other
adding a logical component.

One way to define the new types is to declare them from scratch, taking no explicit
advantage of the previous declaration of the base type. The appropriate components
are added to each type definition, as in

type :: new_type_from_scratch_c
real :: a
integer :: i
character :: c

end type

type :: new_type_from_scratch_d
real :: a
integer :: i
logical :: d

end type
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Then with variables declared as

type(base_type) :: X
type(new_type_from_scratch_c) :: vy
type(new_type_from_scratch_d) :: z

the components of y are y%a, y%i, and y%c.

This approach has maintenance problems in keeping the three type definitions syn-
chronized if there are future changes to the base type. Also, because the three type def-
initions are independent, there is no simple way to write one procedure that will work
on the common components of x, y, or z. One either has to write three procedures or
copy the common components into a temporary and back.

Another approach is sometimes referred to as type embedding. In this approach
the new types are defined with an embedded component of type base_type as in

type :: new_type_with_embedding_c
type(base_type) :: base
character :: c

end type

type :: new_type_with_embedding_d
type(base_type) :: base
character :: d

end type

Then with variables declared as

type(base_type) :: x
type(new_type_with_embedding_c) :: y
type(new_type_with_embedding_d) :: z

the components of y are y%c and y%base, with subcomponents y%base%a and
y%base%i.

With this approach, the maintenance problems are ameliorated because the com-
mon components are defined only once. Also, a single procedure can operate on x,
y%Dbase, or z%base.

However, the syntax is a bit awkward with the "extra" %base thrown in. As multi-
ple levels of extension are added, the awkwardness gets worse. One is likely to be driv-
en to make temporary pointers or use the ASSOCIATE construct (8.2) solely to simplify
notation.

Using type extension for the same situation is illustrated by

type, extends(base_type) :: new_type_c
character :: c
end type

type, extends(base_type) :: new_type_d
logical :: d
end type
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Then with variables declared as

type(base_type) :: X
type(new_type_c) :: vy
type(new_type_d) :: z

the components of y are y%a, y%i, and y%c, much like with new types defined from
scratch. But y also has the parent component y%base_type, with its subcomponents
y%base_type%a and y%base_type%i. The parent component does not have physically
separate storage; it is just another view of the y%a and y%i components. The
y%base_type%a component is inheritance associated with y%a, and the
y%base_type%i component is inheritance associated with y%i.

As with type embedding, a single procedure can operate on x, y%base_type, or
z%base_type. Thus type inheritance has the maintenance benefits of type embedding
combined with the notational simplicity of new types declared from scratch.

Although this example illustrates maintenance and notational benefits of type in-
heritance, these benefits alone would probably not be sufficient to justify the inclusion
of type inheritance in the language. Type extension is most useful as an enabler for poly-
morphism (5.2).

4.412.2 Overriding Procedure Bindings

If a specific binding in an extended type has the same binding name as a binding from
the parent type, then the binding in the extended type overrides that from the parent
type. This override blocks the inheritance of the binding from the parent.

When overriding bindings are used in conjunction with polymorphism, the com-
piler might not be able to determine at compile time which specific procedure is in-
voked by a particular reference in the code; the same reference might invoke different
procedures for different executions of it. Therefore, the parent binding and the overrid-
ing one must be similar enough that the same invoking code makes sense for both
bindings. The rules and restrictions to ensure that are:

1. Either both or neither must have passed-object dummy arguments, which must
correspond in name and position.

2. They must have the same number of dummy arguments. Dummy arguments that
correspond by position must have the same names and characteristics, except that
the passed-object dummy will differ in type.

3. Either both must be subroutines or both must be functions.
4. Either both or neither must be elemental.

5. If the parent binding is pure, then the overriding binding must be pure. (But the
overriding binding may be pure even when the parent is not.)

6. If the parent binding is public, then the overriding binding must be public. (But the
overriding binding may be public even when the parent is not.)
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An additional restriction is that a parent binding with the NON_OVERRIDABLE at-
tribute may not be overridden; this restriction is, in fact, the only effect of the
NON_OVERRIDABLE attribute.

Generic bindings are never overridden. Instead, a generic binding extends any in-
herited generic binding with the same generic specification.

Final bindings are neither inherited nor overridden. Instead, if an extended type
and its parent both have final bindings, then the subroutines specified by both bind-
ings will be called as described in 4.4.11.3.

4.4.12.3 Abstract Types and Deferred Procedure Bindings

An abstract type is one that has the ABSTRACT attribute. An abstract type can be used
to define a parent for type extension, but the restrictions on derived-type specifiers
make it impossible to create an object whose dynamic type (5.2) is abstract. One could
think of an abstract type as a placeholder in the type extension tree.

Similarly, a deferred procedure binding can be thought of as a placeholder for a
binding that can never be invoked, but may be overridden in a type extension.

Abstract types and deferred procedure bindings are never strictly necessary; one
could alternatively use nonabstract types and nondeferred bindings, but that would re-
quire writing stub procedures to bind to, even though the procedures would never be
invoked. The limitations on abstract types and deferred bindings allow compile-time
verification that a deferred binding will never be invoked, thus obviating the need for
a stub procedure.

Rules and restrictions:
1. An abstract type must be extensible.

2. A deferred binding, whether declared or inherited, is allowed only in an abstract
type. Thus, if an abstract type with a deferred binding is extended, and the extend-
ed type is not also abstract, then the extended type must override the deferred
binding with a nondeferred one.

3. A nondeferred binding may not be overridden with a deferred one.

4.412.4 Example of Inheriting and Overriding Bindings

The following example illustrates several of the features relating to inheritance of pro-
cedure type bindings. The first part of the example is a module that defines an abstract
type for a time history file (a file with time series data). A simple rewind procedure is
probably adequate for many possible formats and is provided. A general seek proce-
dure that uses the rewind and next_frame bindings is also provided. A general
next_frame procedure is not provided because that depends too strongly on the specif-
ic file format details. Therefore, the next_frame procedure is deferred. Next_frame is
specified to have the same interface as the rewind procedure; if a different interface
were appropriate, an abstract interface block could be used to define the necessary in-
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terface. Because there is a deferred binding, the type must be abstract. In order to cre-
ate an object in this class, it is necessary to extend the type and provide a nondeferred
binding in that extension. Other bindings and details are elided from the example.

module th_file_module

private

type, public, abstract :: th_file_type
integer :: Tun =0
logical :: frame_ok = .false.
real :: frame_time

contains
procedure :: rewind
procedure(rewind), deferred :: next_frame
procedure :: seek

end type

contains

subroutine rewind (file)
class(th_file_type) :: file

rewind(fileX%lun)
file%frame_ok = .false.
return

end subroutine rewind

subroutine seek (file, time)
class(th_file_type) :: file
real, intent(in) :: time

call file%rewind
seek_Toop: do

call file%next_frame

if (.not. file%frame_ok) return

if (file%frame_time >= time) exit seek_loop
end do seek_Tloop

return
end subroutine seek

end mo&uie.th_fi1e_modu1e

The next part of the example extends the type to support a simple file format (the
details of which are elided in the example). A nondeferred binding is provided for
next_frame, but the inherited bindings are used for rewind and seek.
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module simple_1_file_module
use th_file_module
type, extends(th_file_type)

contains
procedure ::

next_frame
end type
contains
subroutine next_frame (file)
type(simple_1_fiTle_type)
end subroutine next_frame

end module simple_1_file_module

Chapter 4

11 simple_1_file_type

t: file

The final part of the example extends the type to support a different file format. In
this case, the file has an index to support positioning by a more efficient means that re-
winding and reading sequentially through the file. Therefore, the rewind and seek
bindings are overridden by ones tailored to this particular file format. The extended
type probably also has extra components needed to maintain the index information.

module indexed_1_file_module
use th_file_module
type, extends(th_file_type)

contains

procedure :: rewind
procedure :: next_frame
procedure :: seek
end type
contains

subroutine rewind (file)
type(indexed_1_fiTle_type)

end subroutine rewind
subroutine next_frame (file)
type(indexed_fiTle_type)

end subroutine next_frame

:: indexed_1_fiTle_type

:: file

: file
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subroutine seek (file, time)
type(indexed_file_type) :: file
real, intent(in) :: time

end subroutine next_frame

end moduTe 1 ndexed_1_file_module
See 5.2 for an example of using this module.

4413 Values

The set of values of a derived type consists of all combinations of the possibilities for
component values that are consistent with the components specified in the type defini-
tion.

The component value of a nonpointer, nonallocatable component is the value of the
component. The component value of a pointer component is its pointer association.
The pointer association includes the association status. If the pointer is associated, the
association also includes any array bounds of the pointer and the identification of the
target. The dynamic type and type parameters of a pointer are implicit in the identifica-
tion of its target. The value of the pointer target is not part of the component value. The
component value of an allocatable component is its allocation status, its dynamic type
and type parameters, its bounds, and its value.

4.414 Operators

Any operation on derived-type entities must be defined explicitly by a function with
an OPERATOR interface. Assignment, other than the intrinsic assignment provided for
entities of the same derived type, must be defined by a subroutine with an ASSIGN-
MENT interface. These are described in 12.5.4.3.

A simple example is provided. Suppose it is desirable to determine the number of
words and lines in a section of text. The information is available for each paragraph. A
type named PARAGRAPH is defined as follows:

TYPE PARAGRAPH
INTEGER NO_OF_WORDS, NO_OF_LINES
CHARACTER (LEN = 30) SUBJECT
END TYPE PARAGRAPH

It is now desirable to define an operator for adding the paragraphs. An OPERATOR in-
terface is required for the function that defines the addition operation for objects of
type PARAGRAPH.

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADDP
END INTERFACE

This definition of addition for objects of type PARAGRAPH adds the words and lines,
and concatenates the trimmed subjects inserting “ and ”.
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TYPE (PARAGRAPH) FUNCTION ADDP (P1l, P2)
TYPE (PARAGRAPH), INTENT (IN) :: Pl, P2
ADDP % NO_OF_WORDS = &
P1 % NO_OF_WORDS + P2 % NO_OF_WORDS
ADDP % NO_OF_LINES = &
Pl % NO_OF_LINES + P2 % NO_OF_LINES
ADDP%SUBJECT = trim(pl%subject) // " and " // trim(p2%subject)
END FUNCTION ADDP

If the following variables were declared:
TYPE (PARAGRAPH) BIRDS, BEES

the expression BIRDS + BEES would be defined and could be evaluated in the module
subprograms as well as any program unit accessing the module.

4.4.15 Structure Constructor

A structure constructor is used to construct a value of the type from component values.
When a derived type is defined, a structure constructor for that type is defined auto-
matically. Although there is no special form for derived-type constants, a structure
constructor whose component values are all initialization expressions serves as a
constant.

For a simple example, a value of type COLOR (defined in 4.4.1) may be construct-
ed with the following structure constructor:

COLOR (I, J, K, "MAGENTA™)
The form for a structure constructor (R457) is:
derived-type-spec ( [ component-spec-list ] )
where a component-spec (R458) is
[ component-name = | component-source

and a component source (R459) is one of

expression
data-target
procedure-target

Expression, data-targets, and procedure-targets are described in 7.1.2, 7.5.5.1, and
7.5.5.2, respectively.

Rules and restrictions:

1. The component name may be omitted from a component specification only if the
component name is also omitted from each preceding component specification in
the list. The component sources without explicit component names are assigned to
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the components of the type in component order. The component order of a type is
the component order of the parent type, followed by the order of the component
declarations in the type definition.

2. For each component of the type, a value must be specified, either explicitly in the
constructor or implicitly by default initialization. Specifying the value of the parent
component in an extended type is equivalent to specifying the values of all the in-
herited components; either is allowed.

3. No more than one value may be explicitly specified for a component.

4. The type name and each component name that is explicitly specified in a compo-
nent specification must be accessible in the scoping unit where the structure con-
structor appears.

5. A component source corresponding to a pointer component must be allowable as a
target for such a pointer in a pointer assignment statement (7.5.5). The component
value is the result of such a pointer assignment.

6. A component source corresponding to a nonpointer component must be allowable
as an expression in an intrinsic assignment statement for the component (7.5.2), ex-
cept that the component source for an allocatable component may be unallocated
or may be a reference to the intrinsic function NULL with no arguments. The com-
ponent value is the result of such an intrinsic assignment or, in the exceptional
case, is an unallocated allocatable.

7. A component that has no corresponding component source is defined as specified
by the default initialization for the type.

8. A structure constructor for a type must not appear before the type is defined.

One consequence of rule 2 above is that if a type has private components that do not
have default initialization, it is not possible to write a constructor for the type outside of
the module where the type is defined.

If all of the values in a structure constructor are initialization expressions, the
structure constructor may be used to define a named constant, for example, using types
defined earlier in this chapter:

PARAMETER ( TEAL = COLOR (14, 7, 3, "TEAL") )
PARAMETER ( NO_PART = COMPONENT ("none", 0, 0.0) )

The form of a structure constructor has much in common with the form of a func-
tion reference (12.2.3). If there is an accessible generic function with the same name as
a derived type, any consequent ambiguity is resolved by first applying generic func-
tion resolution as described in 12.8. Only if the generic resolution fails is a form consid-
ered for interpretation as a structure constructor. This essentially allows a user to
override the interpretation of a structure constructor

Following are several examples of structure constructors.
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Example 1. A structure constructor for a type that has a derived type as a component
must provide a value for each of the components. A component may be of derived
type, in which case a structure constructor is required for the component. In the exam-
ple below, type RING has a component of type STONE. This example also illustrates the
use of default initialization and keywords in a constructor; the insurer in this example is
the default Lloyds.

TYPE STONE
REAL CARETS
INTEGER SHAPE

CHARACTER (30) NAME
END TYPE STONE

TYPE RING
REAL EST_VALUE
CHARACTER (30) INSURER = "Lloyds"
TYPE (STONE) JEWEL

END TYPE RING

If OVAL is an integer, a structure constructor for a value of type RING is:
RING (5000.00, jewel = STONE (2.5, OVAL, "emerald") )

Example 2. If a type is specified with an array component, the value that corresponds
to the array component in the expression list of the structure constructor must conform
with the specified shape. For example, type ORCHARD has an array component:

TYPE ORCHARD

INTEGER AGE, NO_OF_TREES
CHARACTER (LEN = 20) VARIETIES (10)
END TYPE

Given the declaration:
CHARACTER (LEN = 20) CATALOG (16, 12)
a structure constructor for a value of type ORCHARD is:
ORCHARD (5, ROWS * NO_PER_ROW, CATALOG (LEMON, 1:10) )

Example 3. If a component of the type is a pointer, the corresponding structure con-
structor expression must evaluate to an entity that would be an allowable target for
such a pointer in a pointer assignment statement (7.5.5). If the variable SYNOPSIS is
declared:

CHARACTER(4000), TARGET :: SYNOPSIS
a value of the type SUMMARY (defined in 4.4.6) may be constructed:

SUMMARY ("war and Peace", 1025, SYNOPSIS)
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Example 4. For an extended type, the component order includes the components of the
parent type, but does not include the parent component. This implies that the keyword
form must be used if the parent type is to be specified. Using the type definitions in
4.4.12.1, a constructor for new_type_c can be written in positional form using the com-
ponents of the parent type, as:

new_type_c(1.2, 7, 'z")

But if bt is an object of type base_type, using it in a constructor for new_type_c re-
quires the keyword form as in:

new_type_c(base_type=bt, c="'z2")

Example 5. The following constructor uses the type matrix defined in 4.4.3 and illus-
trates a constructor with type parameters.

matrix(2, 2)(reshape([7.0, 0.0, 0.0, 7.0], [2, 2D

The type parameters kind and k keep their default values in this example. The RE-
SHAPE intrinsic is used to construct the needed rank-2 array.

Example 6. A constructor for a type with allocatable components such as:

type item

integer :: code

character(:), allocatable :: description
end type

can have the allocatable components allocated or not, as in:
item(0, nul110)

item(1l, 'Firewire 400 cable, 1 meter A-B')

4.5 Array Constructors

An array constructor is a mechanism that is used to construct a rank-one array from a
sequence of values. Syntactically, it is a sequence of scalar values, arrays, and implied-
do specifications enclosed in either square brackets or in parentheses and slashes. For
example:

REAL VECTOR_X(3), VECTOR_Y(2), RESULT(100)

RESULT (1:8) = [ 1.3, 5.6, VECTOR_X, 2.35, VECTOR_Y ]

The value of the first eight elements of RESULT is constructed from the values of
VECTOR_X and VECTOR_Y and three real constants in the specified order. If an array
appears in the value list, the values of its elements are taken in array element order. If
it is necessary to construct an array of rank greater than one, the RESHAPE intrinsic
function may be applied to an array constructor.
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The form for an array constructor (R465) is one of:

[ [ type-spec :: ][ ac-value-list ] ]
(/ [ type-spec : : ][ ac-value-list ] /)

The outermost square brackets [ ] in the first syntax form are literal square brackets
rather than indications of optionality.

An ac-value is one of

expression
ac-implied-do

where the expression can be either a scalar or an array.

The form for an ac-implied-do (R470) is:

( ac-value-list , ac-do-variable = scalar-integer-expression , &
scalar-integer-expression [ , scalar-integer-expression | )

Rules and restrictions:

1.
2.

The type specifier and the ac-value list may not both be omitted.

If the type specification is omitted, each ac-value expression in the array construc-
tor must have the same type and type parameters, including length parameters; the
type and type parameters of the constructor are those of the expressions.

If the type specification is included, each ac-value expression must be of a type and
type parameters compatible with intrinsic assignment to the specified type. The
constructor has the specified type and type parameters.

An ac-do-variable must be a scalar integer named variable. This variable has the
scope of this ac-implied-do.

If an ac-implied-do is contained within another ac-implied-do, they must not have
the same ac-do-variable.

If an ac-value is an array expression, the values of the elements of the expression in

array element order (6.6.6) become the values of the array constructor.

If an ac-value is an implied-do specification, it is expanded to form a sequence of

values under control of the ac-do-variable as in the DO construct (8.7.2.1).

If every expression in an array constructor is an initialization expression, the array

constructor is an initialization expression as in the example above. Such an array con-
structor may be used to give a value to a named constant, for example:

REAL X(3), BIGGER_X(4)
PARAMETER (X = [ (I, I =2, 6, 2) 1)
PARAMETER (BIGGER_X = [ 0.0, X ] )

Following are several examples of array constructors.
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Example 1. To create a value for an array of rank greater than one, the RESHAPE in-
trinsic function must be used. With this function, a one-dimensional array may be re-
shaped into any allowable array shape.

Y = RESHAPE (SOURCE = [ 2.0, [ 4.5, 4.0 ], z 1], SHAPE = [ 3, 2 1)

If Z has the value [1.2 3.5 1.1], Y is a 3 x 2 array with the elements:

2.0 1.2
4.5 3.5
4.0 1.1

Example 2. It may be necessary to construct an array value of derived type.

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE (PERSON) CAR_POOL (3)

CAR_POOL = [ PERSON (35, "SCHMITT"), &
PERSON (57, "LOPEZ"), PERSON (26, "YUNG") ]

Example 3. A type specifier in an array constructor can be used to coerce all elements
to the same type and type parameters, as in:

[real:: 42, 1.234, 57]
[character(16):: 'Tom', 'Dick', 'Harry']

It also provides a simple way to write a zero-sized constructor as in:
[integer:: ]

Without the type specifier, this form would be invalid because there would be no spec-
ification of the type of the array.

4.6 Enumerations

An enumeration is a set of named integer constants, each of which is called an enumer-
ator. Enumerations are designed primarily to facilitate C interoperability. Although an
enumeration can be used independently of C, it then provides little utility that could
not be achieved using other syntax. The main functionality of enumerations is in their
automatic selection of the appropriate integer kinds to be compatible with correspond-
ing C enumes.
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The form of an enumeration is

ENUM, BIND(C)
enumerator-definition-statement

[ enumerator-definition-statement | ...
END ENUM

The BIND(C) is mandatory. The form of an enumerator definition statement is
ENUMERATOR [ : : ] enumerator-list

where the form of an enumerator is
named-constant [ = scalar-integer-initialization-expression ]

If any enumerator in a list includes the optional initialization expression, then the dou-
ble colon in that enumerator definition statement is required.

The enumeration declares all of its enumerators to be integer named constants with
values as described below. The kind of the named constants is automatically selected
so that they are interoperable with a C enumeration type that specified the same values
in the same order. Note that an enumeration does not define a distinct type; it just fa-
cilitates the selection of an appropriate integer kind. The effect of an enumeration is
identical to that of a corresponding set of integer parameter declarations.

The value of an enumerator is determined as follows:

1. If the enumerator definition has an initialization expression, that expression gives
the value.

2. If the enumerator definition does not have an initialization expression, the value is
1 greater than the value of the previous enumerator, or is 0 if it is the first enumer-

ator.
Example:
enum, bind(c)
enumerator :: red=4, blue=9
enumerator yellow
end enum

In this example, the named constant red will have the value 4, blue will be 9, and yel-
low will be 10. Note that the effect is the same whether the enumerators of an enumer-
ation are declared all in a single statement or in multiple ones.

Although the main functionality of an enumeration is to automatically select the
appropriate integer kind, the syntax provides no way to directly find what kind was
selected. The only way to find that is to use the KIND intrinsic on one of the resulting
named constants. For example, the following is a way to declare an integer variable of
the kind selected by the above enumeration.

integer(kind(red)) :: x
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* Declarations are used to specify the attributes and relationships of the entities in a
program.

e The declared Type of a variable, function, or named constant is specified explicitly
by a type declaration or implicitly by the first letter of the entity’s name. An
IMPLICIT statement associates a type with specific letters or disables implicit typ-
ing.

A Polymorphic entity is one whose dynamic type can change during program exe-
cution. For a polymorphic entity, the dynamic type may be different from the
declared type. A nonpolymorphic entity also has a dynamic type, but it is always
the same as the declared type.

The DIMENSION attribute specifies an array. The array may have explicit shape
(with all bounds specified), deferred shape (if it also has the ALLOCATABLE or
POINTER attribute), or assumed shape/size (if it is a dummy argument).

e The ALLOCATABLE or POINTER attribute specifies an entity that may be dynam-
ically allocated during program execution. Alternatively, a pointer variable may be
associated with an existing target. The TARGET attribute specifies that a variable
may be the target of a pointer.

e Initialization of a variable may be specified in a type declaration or in a DATA
statement. Pointers may be initially disassociated.

e The EXTERNAL or INTRINSIC attribute specifies the nature of a procedure.

e The INTENT, VALUE, or OPTIONAL attribute specifies properties of a dummy
argument.

* The PARAMETER attribute specifies a named constant.

* The PUBLIC, PRIVATE, or PROTECTED attribute allows a programmer to control
the accessibility and use of entities specified in modules.

¢ The BIND(C) attribute facilitates interoperation with C data and functions.

* The ASYNCHRONOUS or VOLATILE attribute specifies that a variable's value
might be referenced or redefined outside of the normal flow of program execution.

Declarations are used to specify the type and other attributes of program entities. The
attributes that an entity possesses determine how the entity may be used in a program.
Every variable and function has a type, which is the most important of the attributes;
type is discussed in 4. However, type is only one of a number of attributes that an en-
tity may possess. Attributes may be specified in type declaration or procedure declara-

J.C. Adams et al., The Fortran 2003 Handbook,
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tion statements (entity-oriented form), in separate attribute declaration statements
(attribute-oriented form), or in a mix of these forms. Attributes of a procedure may be
specified in an interface body, which is discussed in 12.5.2. Some entities, such as sub-
routines and namelist groups, do not have a type but may possess other attributes.

In addition, there are relationships among objects that can be specified by EQUIV-
ALENCE, COMMON, and NAMELIST statements. A NAMELIST statement specifies a
name for a list of objects that may be referenced in an input/output statement. The
EQUIVALENCE statement indicates that some variables share storage. The COMMON
statement specifies a name for a block of storage and the names of objects in the block;
this block can then be shared among different program units. COMMON and EQUIV-
ALENCE are provided primarily for compatibility with older versions of the language;
they are seldom needed in new programs, where modules can provide replacement
functionality in a more structured way.

In general, Fortran keywords are used to declare the attributes for an entity. The
following list summarizes these keywords:

Type INTEGER
REAL (and DOUBLE PRECISION)
COMPLEX
LOGICAL
CHARACTER
TYPE (user-defined name)

Array properties DIMENSION

Allocatable property ALLOCATABLE

Pointer properties POINTER
TARGET

Value definition properties DATA
PARAMETER
SAVE
ASYNCHRONOUS
VOLATILE

Module entity properties PUBLIC
PRIVATE
PROTECTED
BIND

Dummy argument properties INTENT
OPTIONAL
VALUE

Procedure properties EXTERNAL
INTRINSIC
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In earlier versions of the language, it was necessary to use a different statement for
each attribute given to a variable or a collection of variables, for example:

INTEGER A, B, C
SAVE A, B, C

In later versions, for objects that have a type, the other attributes may be included in
the type declaration statement. For example:

INTEGER, SAVE :: A, B, C

Collecting the attributes into a single statement is sometimes more convenient for read-
ers of programs. It eliminates searching through many declaration statements to locate
all the attributes of a particular object. Emphasis can be placed on an object and its at-
tributes (entity-oriented declaration) or on an attribute and the objects that possess the
attribute (attribute-oriented declaration), whichever is preferred by a programmer.

It is also allowed to use a mixed form, specifying some attributes for an entity to-
gether and some separately. The terms “entity-oriented” and “attribute-oriented” are
used here for expository purposes, but are not actually distinctions made by the stan-
dard. The attributes of an entity are collected from those specified for it by all forms of
specification. Unfortunately, there is no way within the language for the programmer
to specify enforcement of an entity-oriented form.

The same attribute must not be specified explicitly for an entity more than once, re-
gardless of the form of specification.

The following are examples of entity-oriented and attribute-oriented forms:

* entity-oriented declarations
REAL, DIMENSION(20), SAVE :: X
or
REAL, SAVE :: X(20)
e attribute-oriented declarations

REAL X
DIMENSION X(20)
SAVE X

or

REAL X (20)
SAVE X

Although most attributes are determined statically at compilation time, some at-
tributes can be specified to vary during program execution. A variable that has such a
varying attribute is called dynamic. The attributes that can be dynamic are the type,
length type parameters, and array bounds. There are four categories of dynamic vari-
ables: automatic, allocatable, pointer, and polymorphic. An automatic variable is one
whose dynamic attributes are automatically determined on entry to a procedure, but
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which is not a dummy argument or function result. The exception for dummy argu-
ments and function results is largely historical in that they predate dynamic allocation
and can be implemented without it, so the standard does not refer to them as dynamic.
Length type parameters and array bounds are the attributes that can be automatic. Al-
locatable, pointer, and polymorphic variables can have their dynamic attributes speci-
fied by executable statements and can be dummy arguments, function results, or other
variables.

5.1 Type Declaration Statements

A type declaration statement begins with a type specifier, optionally lists other at-
tributes, then ends with a list of entities that possess these attributes. In addition, a
type declaration statement may include an initial value for a variable or association sta-
tus for a pointer. The form of a type declaration statement (R501) is:

declaration-type-spec [ [ , attribute-spec ] ... :: ] entity-declaration-list

where a declaration type specification (R502) is one of:

intrinsic-type-spec

TYPE ( derived-type-spec )
CLASS ( derived-type-spec )
CLASS ( * )

and where an attribute specification (R503) is one of:

ALLOCATABLE
ASYNCHRONOUS

BIND( C[ , NAME= scalar-character-initialization-expression ] )
DIMENSION ( array-spec )
EXTERNAL

INTENT ( intent-spec )
INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PROTECTED

PUBLIC

SAVE

TARGET

VALUE

VOLATILE

where an entity declaration (R504) has one of the forms:

object-name [ ( array-spec ) ]| [ * character-length | [ initialization ]
function-name [ * character-length |
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Rules and restrictions:

1. Each expression used as a length type parameter value in a declaration type speci-
fication must be a specification expression. The same restriction applies to an ex-
pression used as a character length in an entity declaration, which is just an
alternate syntax for the same thing.

2. If an expression used as a length type parameter value in a declaration type speci-
fication is not an initialization expression, the declaration type specification must
be in the scoping unit of a subprogram or interface body. The same restriction ap-
plies to an expression used as a character length in an entity declaration.

3. A derived type specified with the CLASS keyword in a declaration type specifica-
tion must be an extensible type (4.4.12).

4. A derived type specified with the TYPE keyword in a declaration type specification
must not be an abstract type (4.4.12.3).

5. A type declaration statement with the TYPE keyword must not specify a derived
type that is defined later in the same scoping unit.

6. The same attribute specification must not appear more than once in a given type
declaration statement.

7. An entity must not be given the same attribute explicitly more than once in a scop-
ing unit.

8. The character length option may appear only if the type specified is CHARACTER.

9. If initialization appears in any entity declaration of the statement, the double colon
separator before the entity declaration list must be used.

10. A function name must be the name of an external function, an intrinsic function, a
function dummy procedure, a procedure pointer, or a statement function.

There are other rules and restrictions that pertain to particular attributes; these are
covered in the sections describing those attributes. Some attributes are incompatible
with others; a table of these incompatibilities is in 5.12.

Item 5 above is a bit inconsistent in that it does not apply to type declaration state-
ments with the CLASS keyword and is more stringent than similar restrictions on com-
ponent declarations.

The form of entity declaration that has a function name applies only to declarations
outside of the function or interface body. Within a function or an interface body for it,
the function result variable is a data object, which can be declared using the form with
an object name. Elsewhere, the only cases where a function can be declared with a type
declaration statement are where it has an implicit interface or is intrinsic.

If an expression used as a length type parameter value in a declaration type speci-
fication is not an initialization expression, the expression is evaluated and establishes
the value of the length type parameter on each entry to the procedure in which it ap-
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pears. The value is not affected by any changes to the values of variables in the expres-
sion during execution of the procedure. A data object declared using such an
expression is an automatic variable unless it is a dummy argument or function result.
This also applies to an expression used as a character length in an entity declaration.
These issues do not apply to a specification that is an initialization expression; this is
because the value of an initialization expression does not depend on anything that can
change during execution.
Some example type declaration statements are:

REAL A(10)

LOGICAL, DIMENSION(CS5, 5) :: MASK_1, MASK_2

COMPLEX :: CUBE_ROOT = (-0.5, 0.867)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(4)
INTEGER(SHORT) K I Range of -9999 to 9999
REAL, ALLOCATABLE :: Al(:, ), A2(:, :, )

TYPE (PERSON) CHAIRMAN

TYPE(NODE), POINTER :: HEAD_OF_CHAIN => NULL ( )
REAL, INTENT(IN) :: ARGL

REAL, INTRINSIC :: SIN

5.2 Polymorphism

A polymorphic entity is one whose type can change during program execution. The
term refers to having many (poly) forms (morph). The CLASS keyword is used to de-
clare polymorphic entities.

With polymorphism comes a distinction between the declared and dynamic type of
an entity. The declared type of an entity is the type that it is declared to have, either ex-
plicitly or implicitly. The dynamic type is the type that it has at a particular time dur-
ing program execution. In general, when the type of an entity is used without
qualification in the standard or this book, it refers to the dynamic type.

A nonpolymorphic entity also has both a declared type and a dynamic type, but
they are always the same. The dynamic type of a polymorphic object that is not allocat-
ed or associated is the same as its declared type. The dynamic type of an allocated or
associated polymorphic object is the type that it was allocated with or the dynamic
type of the entity that it is associated with.

An object declared with CLASS(*) is an unlimited polymorphic object; it has no de-
clared type. It is not considered to have the same declared type as any other entity,
even another unlimited polymorphic entity.

The concept of type compatibility is used in several contexts; it is defined as fol-
lows. A nonpolymorphic entity is type compatible with entities of the same declared
type. A polymorphic entity that has a declared type is type compatible with entities
whose declared type is the same type or any extension of it. An unlimited polymorphic
entity is type compatible with all entities. An entity is type compatible with a type if it
is type compatible with entities declared to have that type.

Note that type compatibility is not symmetric. Two entities are type incompatible if
neither is type compatible with the other.
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Rules and restrictions:

1. An entity declared with the CLASS keyword must be a dummy argument, a point-
er, or an allocatable variable.

2. An allocatable object may be allocated only with a type with which it is type com-
patible.

3. A pointer or dummy argument may be associated only with a target or actual ar-
gument with which it is type compatible.

The following simple example of polymorphism uses the example modules from
4.4.12.4 and assumes that they have additional type bindings for open and close proce-
dures.

program read_file
use simple_1_file_module
use indexed_1_file_module
class(th_file_type), allocatable :: th_file
character :: file_name*128, file_type*16
real :: start_time

read(*,*) file_name, file_type, start_time
select case(file_type)
case ('simple_1")
allocate(simple_1_file_type:: th_file)
case ('indexed_1')
allocate(indexed_1_file_type:: th_file)
case default
write (*,*) 'Unrecognized file type:
stop
end select

, file_type

call th_file%open(file_name)

call th_file%seek(start_time)

do while (th_file%frame_ok)
write (*,*) th_file%frame_time
call th_file%next_frame

end do

call th_file%close

end program read_file

Based on the value that is read for the string file_type, the program allocates the
polymorphic variable th_file to be one of the two possible types. The corresponding
type-bound versions of the open, seek, next_frame, and close procedures are invoked
depending on the dynamic type given to th_file by the ALLOCATE statement.
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5.3 Implicit Typing

Implicit typing is a method of inferring a type and type parameter values based on the
first letter of the name of an entity. Implicit typing applies to each named variable,
named constant, or nonintrinsic specific function whose type is not otherwise speci-
fied.

In each scoping unit, there is a mapping of each of the letters A, B, ..., Z to a partic-
ular type and type parameter values or to no type. The mapping does not distinguish
between upper and lower case. The type and type parameters of an implicitly typed
entity are those of the mapping for the first letter of the entity name. If an entity would
be implicitly typed, but the applicable mapping is to no type, then the program is in-
valid.

If a scoping unit has no IMPLICIT statements, then its default mapping applies.
The default mapping for an internal or module procedure is the mapping from its host.
For other scoping units, the default mapping is as shown in Figure 5-1. That is, each
applicable entity whose name begins with any of the letters I, ], K, L, M, or N is of type
default integer and all others are of type default real. Note that although interface bod-
ies have a host scoping unit, their default mapping does not come from the host.

Real Integer Real

A A A
r N 7 \ 7 N\

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 5-1 Default implicit mapping for a program unit

IMPLICIT statements can be used to specify a mapping different from the default.
The IMPLICIT statement (R549) has two forms:

IMPLICIT implicit-spec-list
IMPLICIT NONE

where an implicit specification (R550) is:
declaration-type-spec ( letter-spec-list )
and a letter specification (R551) is:
letter [ - letter |

An IMPLICIT NONE statement specifies that the mappings for all letters are to no
type, with the consequence that implicit typing cannot be used in that scoping
unit—type declaration statements must be used for all appropriate entities. The other
form of IMPLICIT statement specifies mappings from the specified letters to the type
and type parameter values specified by the declaration type specifiers; the letter—letter
form indicates a range of letters from the first to the last. If the mapping for a letter is
not specified by any IMPLICIT statements in a scoping unit, then the mapping for that
letter remains the same as in the default mapping for the scoping unit.
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Rules and restrictions:

1. If IMPLICIT NONE appears, it must precede any PARAMETER statements and
there must be no other IMPLICIT statements in the scoping unit.

2. If the letter—letter form appears in a letter specification, the second letter must not
precede the first alphabetically.

3. The same letter must not appear as a single letter or be included in a range of let-
ters more than once in all of the IMPLICIT statements in a scoping unit.

For example, the statement
IMPLICIT COMPLEX (A-C, Z)

indicates that all implicitly typed entities whose names begin with the letters A, B, C,
or Z are of type default complex. If this is the only IMPLICIT statement, implicitly
typed entities whose names begin with I-N are of type default integer; implicitly typed
entities whose names begin with D-H and O-Y are of type default real.

The statement

IMPLICIT NONE

indicates that there is no implicit typing in the scoping unit and that each named vari-
able, named constant, and nonintrinsic specific function used in the scoping unit and
not accessed by use or host association must be declared explicitly in a type declaration
statement.

It is generally recommended to use IMPLICIT NONE in new code. This facilitates
compiler detection of some common coding errors. With IMPLICIT NONE, inadvertent
misspellings are usually detected during compilation. Without IMPLICIT NONE, such
misspellings are often interpreted as implicitly declared variables, with the conse-
quence that the program compiles, but does not work as intended. An IMPLICIT state-
ment may specify a user-defined type. However, it is usually recommended to avoid
this; the error-proneness of implicit typing is exacerbated when applied to derived
types. This is because a derived-type name has local scope; the same name can mean
something completely different in a different scope. The following example shows one
resulting oddity.

program main
implicit type(t) (a-z)
type t
end type t
call sub
contains

subroutine sub
integer :: t

end subroutine sub
end program main
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The IMPLICIT statement in this example causes all implicitly typed entities to have type
t. The INTEGER statement in the subroutine blocks host association of the type name t.
Thus nothing can be explicitly declared to be of type t in the subroutine. But the implicit
mapping to type t still holds. Thus variables in the subroutine can get type t implicitly,
but not explicitly. Fortunately, this odd state of affairs seems unlikely to arise in real
code.

The complexity that implicit typing causes in determining the scope of an unde-
clared variable in a nested scope is explained in 16.2.1.3.

Some examples of IMPLICIT statements are:

IMPLICIT INTEGER (A-G), LOGICAL (KIND = BIT) (M)
IMPLICIT CHARACTER *10 (P, Q)

IMPLICIT TYPE (COLOR) (X-2)

IMPLICIT REAL (QUAD) (H-J, U-W, R)

5.4 Array Properties

An object with the dimension attribute is an array. An array specification specifies an
array’s rank and information about the bounds. The rank must be known at compile
time. The bounds may be dynamic in one of several ways.

5.4.1 Array Specifications
There are four forms that an array specification (R510) may take:

explicit-shape-spec-list
assumed-shape-spec-list
deferred-shape-spec-list
assumed-size-spec

The specified rank is the number of comma-separated items in the array specifica-
tion, which is one more than the number of commas. The maximum rank of an array
is7.

5.4.1.1 Explicit-Shape Arrays

An explicit-shape array is one whose bounds are entirely determined from its array
specification, which is an explicit-shape specification list. Each dimension has an ex-
plicit-shape specification (R514), which has the form:

[ lower-bound : ] upper-bound

where the lower bound, if present, and the upper bound are specification expressions
(7.4.2).

Rules and restrictions:

1. If the lower bound is omitted, the default value is 1.
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2. If any of the bound expressions is not an initialization expression, then the array
specification must be in the scoping unit of a subprogram or interface body. The
expression is evaluated and establishes the bound on each entry to the procedure.
The bound is not affected by any changes to the values of variables in the expres-
sion during execution of the procedure. An array declared using such an expres-
sion is an automatic variable unless it is a dummy argument or function result.

The subscript range of the array in a given dimension is the set of integer values
between and including the lower and upper bounds, provided the upper bound is not
less than the lower bound. If the upper bound is less than the lower bound, the range
is empty, the extent in that dimension is 0, and the size of the array is 0.

Examples of explicit-shape arrays:

REAL Q (-10:10, -10:10, 2)
or in a subroutine

SUBROUTINE EX1 (z, I, 3J)
REAL, DIMENSION (2:I + 1, J) :: Z

5.4.1.2 Assumed-Shape Arrays

An assumed-shape array is a dummy argument that takes the shape of the actual argu-
ment passed to it. Each dimension has an assumed-shape specification (R514), which
has the form:

[ lower-bound ] :
Rules and restrictions:
1. An assumed-shape array must be a dummy argument.

2. If the lower bound is omitted, the default value is 1. Note that the lower bound is
not assumed from the actual argument; only the shape (extents) is assumed.

3. If the lower bound is specified, it must be a specification expression and it is eval-
uated on entry to the procedure. The bound is not affected by any changes to the
values of variables in the expression during execution of the procedure.

4. The upper bound is the extent of the corresponding dimension of the associated ar-
ray plus the lower bound minus 1.

5. An assumed-shape array cannot have the POINTER or ALLOCATABLE attribute,
but this is more a matter of definition than a restriction. Pointer or allocatable dum-
my arrays are deferred shape, which has a similar syntax as described below.
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Examples of assumed-shape arrays:

SUBROUTINE EX2 (A, B, X)
REAL, DIMENSION (2:, :) :: X
REAL, INTENT(IN) :: A(:), B(0:)

Suppose EX2 is called by the statement
CALL EX2 ( U, V, W (4:9, 2:6))

For the duration of the execution of subroutine EX2, the dummy argument X is an ar-
ray with bounds (2:7, 1:5). The lower bound of the first dimension is 2 because X is de-
clared to have a lower bound of 2. The upper bound is 7 because the dummy argument
takes its shape from the actual argument W.

5.4.1.3 Deferred-Shape Arrays

A deferred-shape array is one whose bounds may change at times other than entry to
a procedure. Each dimension has a deferred-shape specification (R515), which has the
form:

Rules and restrictions:

1. The array must have either the ALLOCATABLE or POINTER attribute. This is the
only form of array specification allowed for allocatables or pointers.

2. The size, bounds, and shape of a disassociated array pointer or unallocated allocat-
able array are undefined.

A deferred-shape array may or may not be a dummy argument. If a deferred-shape
array is a dummy argument, then on entry to the procedure the definition status and
values of the dummy argument's bounds are those of the actual argument; this applies
to both the lower and upper bounds and is thus different from assumed-shape arrays,
which do not assume the lower bounds. Another important difference between as-
sumed-shape and deferred-shape dummy arguments is that a deferred-shape dummy
argument can change bounds during execution of the procedure it is in; such changes
propagate back to the actual argument on termination of the procedure. The bounds of
an assumed-shape dummy argument cannot change during execution of the proce-
dure. Details of argument association for deferred-shape dummy arrays are discussed
in 12.6.5 and 12.6.7.

The bounds of an allocatable array are determined when it is allocated. Allocation
of allocatable variables is discussed in 6.7.1.1. The bounds of a pointer array are deter-
mined when it is associated with a target, through allocation or other means, as dis-
cussed in 6.7.1.2, 7.5.5.1, and 12.6.5.

Examples of deferred-shape arrays:

REAL, POINTER :: D (:,:), P (:) ! pointer arrays
REAL, ALLOCATABLE :: E (:) I allocatable array
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5.4.1.4 Assumed-Size Arrays

An assumed-size array is a dummy argument array whose size is assumed from that of
the associated actual argument. Only the size is assumed —the rank and bounds (ex-
cept for the upper bound and extent in the last dimension) are determined from its as-
sumed-size array specification (R516) which has the form:

[ explicit-shape-spec-list , ] [ lower-bound : ] *

The form and interpretation of the array specification for an assumed-size dummy ar-
ray is identical to that of an explicit-shape array except for the replacement of the last
upper bound by an asterisk.

Rules and restrictions:
1. An assumed-size array must be a dummy argument.
2. If any lower bound is omitted, the default value is 1.

3. Each bound expression must be a specification expression and it is evaluated on
entry to the procedure. The bound is not affected by any changes to the values of
variables in the expression during execution of the procedure.

4. If an assumed-size array has the INTENT (OUT) attribute, the array must not be of
a type that has default initialization.

5. The name of an assumed-size array must not be used as a whole-array reference
except as an actual argument in a procedure reference for which the array's shape
is not required.

6. The upper bound and extent of the last dimension of an assumed-size array are not
defined.

7. In an array section (6.6.4) of an assumed-size array, the second subscript (upper
limit) must not be omitted from a subscript triplet in the last dimension.

Conceptually, the requirements on assumed-size arrays derive from the presump-
tion that the compiler will not necessarily “know” the actual array size. The array has
a size, as defined below, but this serves only as a definition of the limits that the pro-
grammer is required to adhere to. An assumed-size array cannot be used in a context
where the compiler would need knowledge of the size. For example, a statement such
as

write (*,*) x

requires that the compiler know the size of x in order to write out the appropriate
number of values; therefore, this statement is disallowed if x is an assumed-size array.

Similarly, because the extent and upper bound of the last dimension of an as-
sumed-size array are not defined, an array slice such as x(3,:) is disallowed. However,
a slice such as x(:;,3) is allowed.
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The size of an assumed-size array is defined as follows:

1. If the actual argument associated with the assumed-size dummy argument is an ar-
ray of any type other than default character, the size is that of the actual array.

2. If the actual argument associated with the assumed-size dummy array is an array
element of any type other than default character with a subscript order value
(6.6.6) of v in an array of size x, the size of the dummy argument is x — v + 1.

3. If the actual argument is a default character array, default character array element,
or a default character array element substring (6.4), and if it begins at character
storage unit t of an array with c character storage units, the size of the dummy ar-
ray is

MAX (INT ((c -t +1)/e), 0)
where e is the length of an element in the dummy character array.

This complicated-sounding definition can be stated simply in informal terms: the
assumed-size array is big enough to fill to the end of the array in the actual argument;
the filling is done by characters if the type is default character, and by elements other-
wise.

Some implementations track the actual size of assumed-size arrays in order to fa-
cilitate debugging, but the standard is written so as not to require this.

Examples of assumed-size arrays:

SUBROUTINE EX3 (N, S, Y)
REAL, DIMENSION (N, *) :: S
REAL Y (10, 5, *)

5.4.1.5 Limitations on Whole Arrays

There are some limitations on appearances in a program of whole arrays declared with
each of the four forms of array specification. Table 5-1 gives a partial summary of the
allowable appearances.

Table 5-1  Partial summary of allowable appearances of whole arrays declared
in each of the four ways

An array declared with

Explicit Assumed Deferred Assumed
May appear as a shape shape shape size
Primary in an expression Yes Yes Yes No
Vector subscript Yes Yes Yes No

Dummy argument Yes Yes Yes Yes
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Table 5-1 (Continued) Partial summary of allowable appearances of whole arrays declared
in each of the four ways

Actual argument Yes Yes Yes Yes
Equivalence object Yes No No No
Common object Yes No Yes No
Namelist object Yes Yes Yes No
Saved object Yes No Yes No
Data initialized object Yes No No No
I/O list item Yes Yes Yes No
Format Yes Yes Yes No
Internal file Yes Yes Yes No
Allocate object No No Yes No
et NN Y N
Target object in pointer Yes Yes Yes No

assignment statement

5.4.2 The DIMENSION Attribute

An array specification can appear in several contexts. It can be in a DIMENSION at-
tribute specification or a DIMENSION statement. Alternatively, it can be in an entity
declaration in a type declaration statement or in parentheses following the variable
name in an ALLOCATABLE, POINTER, TARGET, or COMMON statement. As with
other attributes, the dimension attribute must not be specified more than once for a
given array. However, an array specification may appear in an entity declaration in a
type declaration statement that also has a DIMENSION attribute specification. In this
case, the array specification in the DIMENSION attribute specification does not apply
to that particular name; the array specification in the entity declaration applies instead.
The form of a DIMENSION statement (R526) is:

DIMENSION [ :: ] array-name ( array-spec ) &
[ , array-name ( array-spec ) | ...

Examples of specifying the DIMENSION attribute are:
* entity-oriented

INTEGER, DIMENSION (10), TARGET, SAVE :: INDICES
INTEGER, ALLOCATABLE, TARGET :: LG (:, :, :)
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e attribute-oriented

INTEGER INDICES, LG (:, :, )
DIMENSION INDICES (10)
TARGET INDICES, LG
ALLOCATABLE LG

SAVE INDICES

e with the array specification in other statements

INTEGER INDICES, LG
TARGET INDICES (10), LG
ALLOCATABLE LG (:, :, :)
SAVE INDICES

e with the array specification in a COMMON statement

COMMON / UNIVERSAL / TIME (80), SPACE (20, 20, 20, 20)

5.5 The ALLOCATABLE Attribute

The ALLOCATABLE attribute signifies a variable whose space is allocated by execut-
able statements, in particular ALLOCATE or assignment statements. The details of al-
location and deallocation of allocatable variables are discussed in 6.7.

In some cases, either an automatic or allocatable variable could be used; the follow-
ing differences between automatic and allocatable variables are relevant to making the
choice. The syntax for using an automatic variable is simpler in that it involves only the
declaration, while an allocatable variable requires the declaration plus a separate exe-
cutable statement to do the allocation. The benefit of the allocatable alternative is in-
creased flexibility. The allocation of an allocatable variable is not restricted to being at
the beginning of the procedure; it may thus use values that are computed during exe-
cution of the procedure. It may even be allocated and deallocated multiple times dur-
ing execution of the procedure, or the allocation from one execution of the procedure
may be saved for subsequent executions. Also, ALLOCATE statements allow for user-
specified error handling for problems such as insufficient resources to successfully al-
locate the requested space.

In previous standards the ALLOCATABLE attribute was restricted to arrays. It is
now also allowed for scalars. Polymorphism and dynamic length type parameters (par-
ticularly for character type) are two examples of situations where allocatable scalar
variables can have dynamic attributes. It is also allowed for a scalar with no dynamic
attributes to be allocatable; although less common, this can conceivably be useful in
managing memory use if the scalar is of a derived type with large array components.

The ALLOCATABLE attribute can be specified in a type declaration statement or in
an ALLOCATABLE statement. The form of an ALLOCATABLE statement (R520) is:

ALLOCATABLE [ :: ] object-name [ ( deferred-shape-spec-list ) ] &
[ , object-name [ ( deferred-shape-spec-list ) ] ] ...



Declarations 131

An allocatable array must be deferred shape. Note that there is no similar restric-
tion on length type parameters; a declaration can specify a fixed length for an allocat-
able scalar string, but cannot specify a fixed size for an allocatable array of characters.

Examples of specifying the ALLOCATABLE attribute are:

* entity-oriented

REAL, ALLOCATABLE :: A (:, :)
LOGICAL, ALLOCATABLE, DIMENSION (:) :: MASK1
CHARACTER(LEN=:), ALLOCATABLE :: STRING, STRINGS(:)

e attribute-oriented

REAL A (:, )
LOGICAL MASK1
DIMENSION MASK1 (:)
ALLOCATABLE A, MASK1

5.6 Pointer Properties

An entity with the POINTER attribute is referred to as a pointer. A pointer is either a
data pointer or a procedure pointer. A data pointer may be either a scalar or an array.

A pointer can be thought of as a dynamic alias. It does not stand on its own, but is
an additional name for some other data object or procedure. That other data object or
procedure is called the target of the pointer. At different times, a pointer may point to
different targets or possibly to no target.

The standard's technical terminology refers to a pointer as being associated with a
target; this means the same thing as the phrase “pointing to a target”, which is widely
used in less formal contexts. When a pointer has no target, the pointer is disassociated.

It is also possible for the association status of a pointer to be undefined, which is
quite different from being disassociated. When a pointer is disassociated, it is "known"
to have no target. When the association status is undefined, it is not “known,” possibly
even to the compiler. There is no way to inquire whether a pointer's association status
is undefined or not; it is not a testable state. It is illegal to use the ASSOCIATED intrin-
sic on a pointer with undefined association status; doing so might cause the program
to abort or return a misleading value. The ASSOCIATED intrinsic can distinguish asso-
ciated from disassociated, but cannot be used to detect undefined association status.
Undefined status is the standard's way of describing situations where it is the pro-
grammer's responsibility to avoid using the pointer.

When a pointer is associated with a target, you can use the pointer like another
name for the target. There is no special syntax needed to indicate that you are referring
to the target instead of the pointer; the notion of a dynamic alias may be a more helpful
mental model than direct analogy to pointers in some other languages. In many ways,
a pointer is like a dummy argument. When a pointer is not associated with a target,
you are not allowed to reference or define the pointer.

A pointer can be initialized (5.7.2) to be disassociated; otherwise, its initial associa-
tion status is undefined.
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A pointer can become associated with an existing target in several different ways,
including pointer assignment statements, intrinsic assignment statements for derived
types, argument association, and the MOVE_ALLOC intrinsic procedure. All of these
ways share the general nature of pointing at existing data or procedures. Alternatively,
a data pointer can be associated with a newly allocated target using the ALLOCATE
statement.

In all cases, it is important to understand that a pointer and its target are distinct
entities; their association is temporary. A pointer does not uniquely “own” its target.
There may be multiple pointers associated with the same target. If any one of those as-
sociations is severed, that does not cause the target to stop existing; the other pointers
would still be associated with the target. This is often a source of confusion when the
ALLOCATE statement is used to allocate a new target. In that case, the newly allocated
target does not have its own name, but it still has its own existence. The effect of the
ALLOCATE statement is to create an anonymous target and then to associate the
pointer with that target. Even though the pointer is specified in the ALLOCATE state-
ment that creates such an anonymous target, the association between that pointer and
that target has no special standing. Other pointers may subsequently become associat-
ed with that target; that pointer may subsequently become associated with other tar-
gets.

Another way of thinking about a pointer is as a descriptor with space to contain in-
formation about the type, type parameters, rank, extents, and location of a target. Thus,
a pointer to a scalar object of type real would be quite different from a pointer to an ar-
ray of user-defined type. In fact, each of these pointers is considered to occupy a differ-
ent amount of storage. When an object with the POINTER attribute is declared to be in
a common block, it is likely to be the descriptor that occupies the storage. This is why
every declaration of a common block that contains a pointer must specify the same se-
quence of storage units.

5.6.1 The POINTER Attribute

The POINTER attribute can be specified in a type declaration statement or in a POINT-
ER statement. The POINTER attribute for a procedure pointer can alternatively be
specified in a procedure declaration statement (5.11).

The form of a POINTER statement (R540) is:

POINTER [ :: ] pointer-declaration-list

where a pointer declaration (R541) is one of

object-name [ ( deferred-shape-spec-list ) |
procedure-pointer-name

Rules and restrictions:
1. A pointer array must be deferred shape.

2. A procedure pointer must have the EXTERNAL attribute explicitly declared.
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3. A pointer must not be referenced or defined unless it is associated with a target
that may be referenced or defined.

Examples of specifying the POINTER attribute are:

* entity-oriented

TYPE (NODE), POINTER :: CURRENT
REAL, POINTER :: X (:, ), Y ()
PROCEDURE (), POINTER :: HANDLER

e attribute-oriented

TYPE (NODE) CURRENT

REAL X (:, ), Y ()

PROCEDURE () :: HANDLER
POINTER CURRENT, X, Y, HANDLER

5.6.2 The TARGET Attribute

An object with the TARGET attribute may become the target of a pointer during execu-
tion of a program. The main purpose of the TARGET attribute is to provide aid to a
compiler in the production of efficient code. If an object does not have the TARGET at-
tribute, no part of it can be accessed via a pointer. If an object has the TARGET at-
tribute, then so do all of its subobjects.

The TARGET attribute can be specified in a type declaration statement or in a TAR-
GET statement.

The form of the TARGET statement (R546) is:

TARGET [ :: ] object-name [ ( array-spec ) ] &
[ , object-name [ ( array-spec ) ] ] ...

Examples of specifying the TARGET attribute are:
* entity-oriented

TYPE (NODE), TARGET :: HEAD_OF_LIST
REAL, TARGET, DIMENSION (100, 100) :: v, w (100)

e attribute-oriented

TYPE (NODE) HEAD_OF_LIST
REAL V, W (100)

DIMENSION V (100, 100)
TARGET HEAD_OF_LIST, V, W

5.7 Value Definition Properties

Several properties relate to the definition of data values. These include specification of
initial values and of the circumstances in which variable values can change.
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Named constant definition is specified in a type declaration statement or a PA-
RAMETER statement. It applies to the particular entities specified and can be used
with any type. Named constants are defined only once and cannot be redefined.

Default initialization is covered in 4.4.9. It applies only to derived types and is
specified in the derived-type definition. It applies to all objects of the type; it occurs
whenever such an object comes into existence.

Explicit initialization is specified in a type declaration statement or a DATA state-
ment. It applies to the particular entities specified and can be used with any type. Ex-
plicit initialization occurs exactly once for each explicitly initialized entity.

The SAVE attribute specifies that a variable's value will be saved between invoca-
tions of a procedure. The ASYNCHRONOUS and VOLATILE attributes specify that a
variable's value might be referenced or redefined outside of the normal flow of pro-
gram execution.

5.7.1 The PARAMETER Attribute

The PARAMETER attribute indicates a named constant. A named constant is defined
exactly once; it cannot be redefined. The value of a named constant is known at com-
pile time, which allows it to be used in several contexts where a variable is not al-
lowed. A named constant may be of any type.

A named constant is sometimes informally referred to as a parameter, after the
name of the attribute. However, the English word “parameter” has meanings that
could apply broadly to many things in a Fortran program. Technical uses of the term in
other programming languages often refer to something different, such as what are
called procedure arguments in Fortran. Therefore, it is important to clarify exactly
what is meant when someone uses the term informally in reference to Fortran.

The PARAMETER attribute can be specified in a type declaration statement or in a
PARAMETER statement. The form of a PARAMETER statement (R538) is:

PARAMETER ( named-constant=initialization-expression &
[ , named-constant=initialization-expression | ... )

Rules and restrictions:

1. The PARAMETER attribute must not be specified for a dummy argument, func-
tion, or objects in a common block.

2. A named constant must have a corresponding initialization expression, specified
either in a type declaration statement or a PARAMETER statement.

3. The value of the initialization expression is converted, using the rules of intrinsic
assignment, to the type, type parameters, and shape of the named constant. The
value must be compatible with such a conversion.

4. A named constant defined by a PARAMETER statement may appear in a subse-
quent type declaration statement only if that declaration confirms the implicit type.

5. A named array constant must have its array properties established previously or in
the same statement as its initialization.
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6. A named constant must not be referenced prior to its definition.

Examples of named constant declarations:
* entity-oriented

INTEGER, PARAMETER: : STATES=50
INTEGER, PARAMETER: :M=MOD(28,3),&
NUMBER_OF_SENATORS=2*STATES
character(1l), parameter :: digits(0:9) = &
[lOl’ lll’ l2|’ l3l, l4l’ ISI’ l6l, l7l’ l8l’ '9!]
e attribute-oriented

INTEGER STATES, M, NUMBER_OF_SENATORS

PARAMETER (STATES=50)

PARAMETER (M=MOD(28,3), NUMBER_OF_SENATORS=2*STATES)

character*1l :: digits

dimension digits(0:9)

parameter (digits=['0O', '1', '2', '3', '4', '5' '6', '7', '8', '9'])

5.7.2 Explicit Initialization

Explicit initialization specifies that a nonpointer variable has an initial value or that a
pointer is initially disassociated. The initialization is done exactly once. In most imple-
mentations, the initialization happens when the program is loaded; this is probably the
simplest way to think of it. An alternative implementation is to perform the initializa-
tion on first entry to a scoping unit where the variable appears. If it is necessary to
reinitialize a variable on every entry, this can be accomplished with assignment state-
ments at the beginning of the executable code for the procedure.

Explicit initialization can be specified in a type declaration statement by including
initialization in an entity declaration. Initialization has one of the forms:

= initialization-expression
=> null-initialization

where null initialization is a reference to the intrinsic function NULL with no argu-
ments. In almost all cases, null initialization will have the form NULL(), but it is possi-
ble for the intrinsic to be referenced by a different name via a USE statement with
renaming.

Explicit initialization of a variable in a type declaration statement overrides any de-
fault initialization that would otherwise apply to the variable based on its type.

The same form for initialization is used for explicit initialization in a type declara-
tion statement, parameter definition in a type declaration statement, and default initial-
ization in a component definition statement in a derived-type definition. The following
rules and restrictions apply to all these uses:

1. The form with an initialization expression is allowed only for nonpointers.

2. The form with null initialization is allowed only for pointers.
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3. The value of the initialization expression is converted, using the rules of intrinsic
assignment, to the type, type parameters, and shape of the entity being initialized.
The value must be compatible with such a conversion.

The PARAMETER attribute may be used with initialization, but in this case the object
is a named constant instead of an explicitly initialized variable; named constants are
covered separately.

Explicit initialization also can be specified in a DATA statement. The form of a
DATA statement is complicated enough, and the issues involved are different enough,
that it is covered in a separate section.

The following rules apply to explicit initialization, whether specified in a type dec-
laration statement or a DATA statement.

1. An object, or the same part of an object, must not be explicitly initialized more than
once in a program.

2. None of the following may be explicitly initialized:
a. a dummy argument
b. an object made accessible by use or host association
c. a function result
d. an automatic object
e. an allocatable object

f. an object in a named common block, unless the initialization is in a block data
program unit

g. an object in a blank common block

3. If a variable is explicitly initialized, in whole or in part, that variable implicitly has
the SAVE attribute unless it is in common. The implicit SAVE attribute may be con-
firmed by explicit declaration.

The following are examples of explicit initialization in type definition statements:

CHARACTER(LEN=10) : : NAME="John Doe"
INTEGER,DIMENSION(0:9) : :METERS=0

TYPE (LINK), POINTER :: START => NULL( )
TYPE(PERSON) : :ME=PERSON(21,"John Smith"),&
YOU=PERSON(35,"Fred Brown")

REAL : : SKEW(100,100)=RESHAPE ([((1.0,K=1,3-1),&
(0.0,K=3,100),3=1,100)],[100,1001)

In these examples, the character variable NAME is initialized with the value JOHN
DOE with padding on the right because the length of the constant is less than the
length of the variable. All ten elements of the integer array METERS are initialized to 0.
The pointer START is initially nullified. ME and YOU are structures declared using the



Declarations 137

user-defined type PERSON defined in 4.5. The two-dimensional array SKEW is initial-
ized so that the lower triangle is 0 and the strict upper triangle is 1.

5.7.3 The DATA Statement

The DATA statement is the attribute-oriented statement for specifying explicit initial-
ization. Unlike most of the attribute-oriented specification statements, the DATA state-
ment provides some extra functionality that is not available in the entity-oriented form
of declaration. In particular, the DATA statement allows explicit initialization of parts
of an object; explicit initialization in a type declaration statement is always for the en-
tire named object. Also, the repeat factor in the DATA statement allows some initializa-
tions to be written in substantially more compact form than that needed for the same
initialization in a type declaration statement.

The full description of the DATA statement form requires several special-case
rules, making it fairly complicated. The repeat factor is the root of most of the special-
case issues in that, for example, 2*3 gets interpreted as 2 repetitions of the value 3 in-
stead of a single expression with the value 6. The form of a DATA statement (R524) is:

DATA data-statement-object-list / data-value-list / &
[ [ , ] data-statement-object-list / data-value-list / ] ...

where a data statement object (R526) is one of:

variable
data-implied-do

and a data value (R530) is:
| repeat-factor * | data-constant

where a repeat factor (R531) is a scalar integer constant or a scalar integer constant su-
bobject, and a data constant (R532) is one of:

scalar-constant
scalar-constant-subobject
signed-integer-literal-constant
signed-real-literal-constant
null-initialization
structure-constructor

Two aspects of the use of scalar-constant in this form are worth special comment.
First, this is one of the very few contexts where a constant is allowed to be a BOZ liter-
al constant (4.3.1.4). The general definition of constant includes that form, but its use is
prohibited in almost all contexts. Second, the separate itemization of the signed integer
and real literal constants above is needed because those forms are not included in the
syntax term constant; in most contexts, this oddity of definition is invisible because a
sign before a numeric literal constant is allowed in an expression. Expressions are not
allowed here, so the signed cases are itemized separately.

The form of a data-implied do (R527) is:
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( data-implied-do-object-list , named-scalar-integer-variable = &
scalar-integer-expression , scalar-integer-expression &
[ , scalar-integer-expression | )

where a data-implied-do object (R528) is one of:

array-element
scalar-structure-component
data-implied-do

Rules and restrictions:

1.
2.

10.

11.

A data constant of null-initialization is allowed only for pointers.
Data constants other than null-initialization are allowed only for nonpointers.

A data constant, other than a BOZ literal constant, corresponding to a nonpointer
object must be one that could be assigned to the object using an intrinsic assign-
ment statement.

A BOZ literal constant used as a data constant in a DATA statement must corre-
spond to an integer variable. The BOZ literal constant is treated as if it were an in-
teger constant of the kind with the largest range supported by the processor.

An nonpointer object of derived type with default initialization must not be initial-
ized in a DATA statement. This is because of the complications relating to the pos-
sibility of partial initialization; initialization of such an object is allowed in a type
declaration statement, where partial initialization cannot happen.

A variable that appears in a DATA statement may appear in a subsequent type dec-
laration statement only if that declaration confirms the implicit declaration. An ar-
ray name, array section, or array element appearing in a DATA statement must
have had its array properties established previously.

An array element or structure component that is a data-implied-do object must be
a variable.

A DATA statement repeat factor must be positive or zero.

A structure constructor used as a data constant must be an initialization expres-
sion.

For a variable used as a data statement object in a DATA statement, each subscript,
section subscript, substring starting point, or substring ending point must be an
initialization expression.

For an array element or array structure component used as a data implied do ob-
ject, each subscript, section subscript, substring starting point, or substring ending
point must be an expression whose primaries are constants, subobjects of con-
stants, or implied-do variables; each operation must be intrinsic.
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12. A scalar integer expression in an implied-do must contain as operands only con-
stants, subobjects of constants, or DO variables; each operation in it must be an in-
trinsic operation.

The data statement object list is expanded to form a sequence of scalar variables.
An array or array section is equivalent to the sequence of its array elements in array el-
ement order. A data-implied-do is expanded to form a sequence of array elements, un-
der the control of the implied-do variable, as in the DO construct. A zero-sized array or
an implied-do with an iteration count of zero contributes no variables to the expanded
list, but a scalar character variable declared to have zero length does contribute a vari-
able to the list.

The data value list is expanded to form a sequence of scalar constant values. A
DATA statement repeat factor indicates the number of times the data constant after it is
to be included in the sequence. If the repeat factor is zero, the following data constant
is not included in the sequence.

Scalar variables and data constants of the expanded sequence are placed in one-to-
one correspondence. Each data constant specifies the initial value or status for the cor-
responding variable. The lengths of the two expanded sequences must be the same.
Each value is converted to the type and type parameters of the corresponding object; it
is the initial value for the object.

The following are examples of explicit initialization with DATA statements:

CHARACTER (LEN = 10) NAME

INTEGER METERS

DIMENSION METERS (0:9)

TYPE (LINK) START

POINTER START

DATA START / NULL(C ) /

DATA NAME / "JOHN DOE" /, METERS / 10%0 /

TYPE (PERSON) ME, YOU

DATA ME / PERSON (21, "JOHN SMITH") /

DATA YOU % AGE, YOU % NAME / 35, "FRED BROWN" /

REAL SKEW (100, 100)
DATA ((SKEW (K, 3), K =1, 3-1), 3 = 1, 100) / 4950 * 1.0 /
DATA ((SKEw (K,J), K=3,100), 31=1,100) / 5050*%0.0 /

The effect of these examples is identical to that of the previous examples of explicit
initialization in type definition statements. The following is an example of a nonzero-
sized array of zero-length characters:

character(len=0) :: empty_strings(3)
data empty_strings/ 3*""/

5.7.4 The SAVE Attribute

The SAVE attribute applies to local variables of a subprogram, module variables, and
common blocks. An entity with the SAVE attribute is often referred to as being saved.
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A local variable (2.4) with the SAVE attribute retains its value and its definition, as-
sociation, and allocation status after the subprogram in which it is declared completes
execution. When the subprogram is next invoked, that variable will have the same val-
ue and status. A local variable without the SAVE attribute becomes undefined when
the subprogram completes; if it is a pointer, its association status becomes undefined; if
it is allocatable, it is deallocated.

For a local variable in a recursive subprogram, the SAVE attribute has the addition-
al effect of causing all instances of the procedure to share the same variable. A local
variable without the SAVE attribute has a separate instance for each instance of the
procedure.

A module variable with the SAVE attribute likewise retains its value and status in
a situation where a module variable without the SAVE attribute does not. Modules are
not directly executed, so the situation in question is not the completion of execution of
the module. Instead, the situation is the completion of execution of all subprograms
that use the module. Note that a local variable in a module procedure is not a module
variable; the rules for local variables apply to it.

The SAVE attribute for a common block follows rules like those for a module vari-
able with two distinctions. First, having an instance of a common block accessible in a
subprogram plays the same role as using a module. Second, a common block is given
the SAVE attribute as a whole; the SAVE attribute may not be given to an individual
variable in the common block.

The SAVE attribute is most commonly implemented by allocation of static storage
such that the variables in question remain in memory throughout program execution.
However, such an implementation is not required by the standard. There have in the
past been implementations where the saved data was stored on disk and subsequently
reloaded. The difference between these implementation choices cannot be distin-
guished by a standard-conforming program.

Some implementations allocate most variables statically, with the result that they
act as though they were saved (except for variables that are allocatable or are local to a
recursive subprogram). However, code that assumes such behavior is nonstandard and
nonportable, particularly with newer compilers. For portability, the SAVE attribute
should always be specified where its behavior is needed, even if it appears to make no
difference on some implementations.

If a variable is explicitly initialized, in whole or in part, that variable implicitly has
the SAVE attribute unless it is in common. The implicit SAVE attribute may be con-
firmed by explicit declaration. This implied SAVE attribute is triggered only by explicit
initialization —not by default initialization. If a variable or common block has the BIND
attribute, it implicitly has the SAVE attribute, which may be confirmed by explicit dec-
laration.

The SAVE attribute can be specified in a type declaration statement or in a SAVE
statement. The SAVE statement is the only form for specifying the SAVE attribute for a
common block. It has the form (R524):

SAVE [ [ :: ]| saved-entity-list |
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where a saved entity (R544) is one of:

object-name
procedure-pointer-name
/ common-block-name /

Rules and restrictions:

1. A SAVE statement without a saved entity list is treated as though it specified all
items that could be saved in the scoping unit. No other explicit SAVE statements or
attributes may appear in the scoping unit.

2. The SAVE attribute is allowed in a main program, but it has no effect.

3. Specifying a common block in a main program has the same effect as saving that
common block. Using a module in a main program has the same effect as saving
every allowable variable of the module.

4. The following data objects must not be saved:
a. function result
b. a dummy argument
c. an automatic data object

d. an object in a common block

5. If a common block is saved in one scoping unit of a program, it must be saved in
every scoping unit of the program in which it is defined (other than the main pro-
gram).

The following are examples of SAVE specifications:
* entity-oriented
CHARACTER(LEN=12), SAVE :: NAME
* attribute-oriented

CHARACTER(LEN=12) NAME
SAVE NAME

* saving objects and common blocks
SAVE A, B, /BLOCKA/, C, /BLOCKB/

5.7.5 The ASYNCHRONOUS Attribute

The ASYNCHRONOUS attribute specifies that a variable might be involved in asyn-
chronous input/output (9.4.3, 9.5.1.3). This information facilitates compiler optimiza-
tions. If a variable is involved in asynchronous input/output, its value can be changed
or referenced by an input/output process executing at the same time as the normal
flow of control. Some classic optimizations cannot be safely applied to such variables.
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The number of variables involved in asynchronous input/output is typically small. By
identifying those variables, we allow the compiler more freedom in applying optimiza-
tions to other variables.

A variable that is accessible in multiple scoping units may have the ASYNCHRO-
NOUS attribute in some scoping units, while not necessarily having it in others. This is
because the attribute is not fundamental to the variable in isolation, but is about the re-
lationship of the variable to currently executing code (the input/output). It is possible
for there to be a some scoping units that can be in execution during the asynchronous
input/output, and other scoping units that cannot be. The ASYNCHRONOUS attribute
is one of the few attributes that can vary among scoping units for the same variable.

If an object has the ASYNCHRONOUS attribute, then so do all of its subobjects.

The ASYNCHRONOUS attribute can be specified in a type declaration statement
or in an ASYNCHRONOUS statement. The form of an ASYNCHRONOUS statement
(R521) is:

ASYNCHRONOUS [ [ : : ] variable-name-list ]
Rules and restrictions:

1. A variable must have the ASYNCHRONOUS attribute in a scoping unit if both of
the following conditions hold.

a. The variable appears in any executable statement or specification expression in
the scoping unit. This condition could be informally described as the variable
being used in the scoping unit, where mere declaration of the variable does not
count as usage.

b. Any statement in the scoping unit is executed while the variable is involved in
asynchronous input/output.

2. Using a variable in an asynchronous input/output statement in a scoping unit im-
plicitly confers the ASYNCHRONOUS attribute. This is a case which is evident to
the compiler without the help of explicit declaration, but such a confirming explicit
declaration is allowed.

Examples of specifying the ASYNCHRONOUS attribute are:
* entity-oriented
REAL, ASYNCHRONOUS :: BUFFER(2048)
* attribute-oriented
ASYNCHRONOUS :: INPUT_BUFFER, OUTPUT_BUFFER
5.7.6 The VOLATILE Attribute

The VOLATILE attribute specifies that a variable might be used or modified by means
not specified in the program. It is similar to the ASYNCHRONOUS attribute in that it
identifies variables that might be involved in processes not immediately evident. How-
ever, the VOLATILE attribute is not directly related to any other Fortran language fea-
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ture; it facilitates interaction with unspecified processes outside the scope of the
Fortran language.

If a pointer is volatile, then the possible modifications include the pointer associa-
tion status and array bounds in addition to the value of its target.

If an object has the VOLATILE attribute, then so do all of its subobjects.

The VOLATILE attribute can be specified in a type declaration statement or in a
VOLATILE statement. The form of a VOLATILE statement (R548) is:

VOLATILE [ [ :: ] variable-name-list ]
Examples of specifying the VOLATILE attribute are:
* entity-oriented
REAL, VOLATILE :: SHARED_MEMORY_REGION(2048)
* attribute-oriented
VOLATILE :: SEMAPHORE

A typical application for the VOLATILE attribute is to identify a variable whose
memory is shared by a separate program or by a memory-mapped hardware device.
Establishing such shared memory areas is outside the scope of standard Fortran, but
the VOLATILE attribute provides a standard syntax for accommodating their exist-
ence.

If a variable is volatile, the processor is expected to fetch the value from memory
every time that the variable is referenced, even if a value was previously fetched and
there is no evident way for the value to have changed in the interim. A simple example
is:

subroutine wait_for_value(i)

integer, intent(out), volatile :: i
i=0
do
if (i /= 0) return
end do

end subroutine wait_for_value

Without the VOLATILE attribute, this subroutine would clearly never return and the
compiler would be justified in assuming as much. With the attribute, there is the possi-
bility that some independent process might cause the variable i to become nonzero.

Similarly, the processor is expected to store the value in memory every time that
the variable is defined, even if there is no evident reference to the value or if the same
value was previously stored. Independent processes might be monitoring or modifying
the same memory location.
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5.8 Module Entity Properties

Several attributes pertain specifically to entities in modules. The PUBLIC and PRIVATE
attributes control the accessibility of an identifier in a module. The PROTECTED at-
tribute controls how a module object may be used. The BIND attribute specifies in-
teroperability with C. The BIND attribute for common blocks is not specific to
modules, but it is covered here because it shares syntax with the BIND attribute for
variables, which is specific to modules.

5.8.1 PUBLIC and PRIVATE Accessibility

The PUBLIC and PRIVATE attributes are collectively referred to as accessibility at-
tributes. They control whether or not identifiers are accessible via use association. They
apply to identifiers known in the scoping unit of a module. An identifier with the PUB-
LIC attribute is available outside the module by use association. An identifier with the
PRIVATE attribute in a module cannot be accessed from that module by use associa-
tion, but can still be accessed within the module. The identifiers are most commonly
names, but can also include generic specifications, which do not have the same form as
names.

Accessibility applies only to a particular identifier rather than to the entity identi-
fied. There are several ways that an entity can be known via multiple identifiers. De-
claring an identifier of an entity to be PRIVATE does not inherently preclude access to
the same entity via some other identifier.

The accessibility attribute of an identifier can be specified in one of several ways. It
can be specified in a type declaration statement or a procedure declaration statement
(5.11). The accessibility of a derived-type name can be specified in the derived-type
statement (4.4.2). Accessibility of derived types involves several additional issues cov-
ered in 4.4.5. The PUBLIC and PRIVATE statements, collectively referred to as accessi-
bility statements, can specify the accessibility of some entities that cannot be specified
in any other way because they do not have a type or do not have a name; these are sub-
routines, generic specifiers, and namelist groups. Additionally, the accessibility state-
ments can be used to specify the default accessibility for identifiers in a module. Forms
for accessibility statements (R518) are:

PUBLIC [ [ :: ] access-id-list ]
PRIVATE [ [ :: ] access-id-list ]

where an access-id (R519) is one of:

use-name
generic-spec

A generic specification (R1207) is one of:

generic-name

OPERATOR ( defined-operator
ASSIGNMENT ( = )
dtio-generic-specification
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Generic specifications are explained in 12.5.4. Examples of accessibility statements

that might be used with generic specifications are:

PUBLIC HYPERBOLIC_COS, HYPERBOLIC_SIN ! generic names
PRIVATE HY_COS_RAT, HY_SIN_RAT ! specific names
PRIVATE HY_COS_INF_PREC I specific name
PUBLIC :: OPERATOR(.MYOP.), OPERATOR(+), ASSIGNMENT(=)
PUBLIC :: read(formatted), write(formatted)

Rules and restrictions:

1.

Accessibility attributes may be specified only in the specification part of a module
(the part above the CONTAINS).

A use name may be the name of a variable, procedure, derived type, named con-
stant, or namelist group.

Only one accessibility statement without an access-id list is permitted in the scop-
ing unit of a module.

A module may specify an accessibility attribute for an identifier that is accessed
from some other module via use association. This is an exception to the general
prohibition against respecifying attributes of identifiers accessed via use associa-
tion (11.3.8). To understand this exception, consider accessibility not so much as a
property of any entity, but more as controlling whether a particular module ex-
ports that entity. An entity might be accessible via some modules that use it, but
not via others; this does not change anything about the entity itself, which had to
have been PUBLIC in the module where it was declared in order for the situation
to arise.

If the accessibility of a particular module entity is not explicitly specified, the mod-

ule's default accessibility applies to that entity. The module's default accessibility is
specified by the accessibility statement without an access-id list; if there is no such
statement, the default accessibility is PUBLIC.

The following are examples of accessibility specifications:
entity-oriented

REAL, PUBLIC :: GLOBAL_X
type, private :: Tocal_data
logical :: flag
real, dimension (100) :: density
end type local_data

attribute-oriented

REAL GLOBAL_X
PUBLIC GLOBAL_X
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TYPE LOCAL_DATA
LOGICAL FLAG
REAL DENSITY (100)
END TYPE LOCAL_DATA
PRIVATE LOCAL_DATA

¢ changing the default accessibility

MODULE M
PRIVATE
REAL R, K, TEMP (100) ! R, K, TEMP are private.
REAL, PUBLIC :: A(100), B(100) ! A, B are public.

END MODULE M
® accessibility via different names

module t
private
interface sqrt
module procedure sqrt_for_my_type
end interface sqrt
interface assignment(=)
module procedure assignment_for_my_type
end interface assignment(=)
public :: sqrt, assignment(=)
contains

end module t

In this example, the names of the specific procedures sqrt_for_my_type and
assignment_for_my_type are private. However, the procedures can be accessed outside
of the module by the generic name sqrt or by assignment.

5.8.2 The PROTECTED Attribute

The PROTECTED attribute limits the ways in which a module variable may be modi-
fied. If a module variable has the PROTECTED attribute, that variable is not definable
outside of that module. One could think of PROTECTED as allowing read access, but
not writing. For a pointer, it is the pointer association that must not be modified.

Although the PROTECTED attribute has a surface similarity to the PRIVATE at-
tribute, there are some fundamental differences. The obvious difference is that PRO-
TECTED distinguishes between reading and modification. In some ways a more
fundamental difference is that the PRIVATE attribute applies only to an identifier,
while the PROTECTED attribute applies to the underlying entity. That is, if an entity
has the PROTECTED attribute, modification of that entity outside of the module is dis-
allowed regardless of how it is done.

A related difference is that, as with most attributes, the PROTECTED attribute for
an entity may be specified only in the module where it is declared; you cannot access
an entity from one module via use association in a second module and then give it the
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PROTECTED attribute in the second module. The PRIVATE attribute is an exception to
this general rule, but the PROTECTED attribute is not. This is because the PROTECT-
ED attribute is considered an attribute of the underlying entity.

The PROTECTED attribute can be specified in a type declaration statement or in a
PROTECTED statement. The form of a PROTECTED statement (R542) is:

PROTECTED [ :: ] entity-name-list
Rules and restrictions:

1. The PROTECTED attribute may be specified only in the specification part of a
module.

2. The PROTECTED attribute is allowed only for a procedure pointer or a variable.
3. The PROTECTED attribute is not allowed for entities in a common block.

The following are examples of PROTECTED specifications:

* entity-oriented
REAL ,PUBLIC,PROTECTED: :GLOBAL_X
e attribute-oriented

REAL GLOBAL_X

PUBLIC GLOBAL_X

PROTECTED GLOBAL_X

PROCEDURE(), POINTER :: proc_ptr
PROTECTED :: proc_ptr

The following example illustrates the limitations established by the PROTECTED
attribute.

module m
integer, protected :: i
integer, pointer, protected :: ip
contains
subroutine set_i (value)
integer, intent(in) :: value
i = value
return
end subroutine set_i
subroutine set_arg (arg, value)

integer, intent(out) :: arg
integer, intent(in) :: value
arg = value

return

end subroutine set_arg
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subroutine point_ip (target)

integer, target :: target
ip => target
return

end subroutine set_arg
end module m

program main
use m
integer, target :: ip_target
i=1 I-- Invalid
call set_i(2)
call set_arg(i, 3) l-- Invalid
ip => ip_target I-- Invalid
call point_ip(ip_target)
ip = 4

end program main

The i=1 statement is invalid because it defines i outside of the module. The call to
set_i shows a valid way to define i. The call to set_arg is invalid because the actual ar-
gument i is not definable, even though the assignment statement in set_arg is in the
module. Similarly, the ip=>ip_target statement is invalid pointer assignment. The call to
point_ip shows a valid way to achieve that effect. The ip=4 is allowed because the PRO-
TECTED attribute for a pointer restricts modification of the pointer association, not its
value.

The PROTECTED attribute has several useful applications, although they are not
illustrated by this simple example. It can be used to enforce validation and consistency
of assigned values, to protect against accidental changes, and for such things as count-
ing modifications.

5.8.3 The BIND Attribute

The BIND attribute pertains to interoperability with the C language. The BIND at-
tribute applies to variables, common blocks, types, procedures, and procedure interfac-
es. The syntax described in this section applies only to variables and common blocks.
The syntax for the BIND attribute for derived types is described in 4.4.2; the syntax for
the BIND attribute for procedures and interfaces is described in 5.11, 12.1.1, 12.2.1 and
12.4.5. Chapter 15 covers what the BIND attribute means and how to use it.

The BIND attribute for a variable is restricted to module variables. There is no such
restriction for the BIND attribute for common blocks, but the same statement can be
used to specify the BIND attribute for variables and common blocks, so we describe the
cases together.

The BIND attribute for a variable can be specified in a type declaration statement
or in a BIND statement. The BIND statement is the only form for specifying the SAVE
attribute for a common block. It has the form:

BIND ( C[, NAME= scalar-character-initialization-expression ] ) [ : : ] bind-entity-list
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where a bind entity (R523) is one of

variable-name
/ common-block-name /

1. The scalar character initialization expression in the NAME specifier of a BIND at-
tribute specification must be of default kind.

2. All leading and trailing blanks in the value of the expression in the NAME specifi-
er are ignored. After discarding them, the result must either have zero length or be
valid as an identifier for the C processor.

3. If an entity is given the BIND attribute by a type declaration statement, the entity
must be an interoperable variable. A variable named in a BIND statement must be
interoperable.

4. The BIND attribute for a variable may be specified only in the specification part of
a module.

5. If a common block has the BIND attribute, each variable in the COMMON block
must be interoperable.

6. If a common block has the bind attribute in one scoping unit, it must have the bind
attribute in every scoping unit where it is declared. The binding label (15.2) must
be the same in all the scoping units.

7. 1f a variable or common block has the BIND attribute, it implicitly has the SAVE at-
tribute. The implicit SAVE attribute may be confirmed by explicit declaration.

8. If a BIND attribute specification in a type declaration statement or BIND statement
has a NAME specifier, the entity declaration list or bind entity list must have exact-
ly one item. This is related to the restriction against multiple entities being associ-
ated with the same C variable with external linkage (15.2).

The following are examples of BIND specifications:
* entity-oriented

REAL, BIND(C) :: X
INTEGER, BIND(C, NAME='MixedCase') :: mono_case

e attribute-oriented

BIND(C) :: X, /com/

5.9 Dummy Argument Properties

The INTENT, VALUE, and OPTIONAL attributes specify properties particular to dum-
my arguments.
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5.9.1 The INTENT Attribute

The INTENT attribute specifies the intended use of a dummy argument. If specified, it
can help detect errors, provide information for readers of the program, and give the
compiler information that can be used to make the code more efficient.

Some dummy arguments only provide input data for a subprogram; some are only
for output from the subprogram; others may be used for both input and output. IN-
TENT has three explicit forms: IN, OUT, and INOUT which correspond respectively to
the above three situations. A fourth case, where INTENT is not explicitly specified, is a
bit more complicated.

If the intent of an argument is IN, the argument must not be modified during the
execution of the subprogram. For a pointer dummy argument, it is the argument's
pointer association that must not be modified; for a nonpointer dummy argument, it is
the argument's value. These restrictions on INTENT (IN) arguments apply broadly,
having implications both at compile time and at run time. The run-time implication is
that the modification is prohibited even if it happens in some other lower-level proce-
dure; this is not in general detectable at compile time. The compile-time implication is
that an INTENT (IN) dummy argument must not appear in the subprogram in a con-
text that would cause the argument to be modified; this applies regardless of whether
or not the statement that it appears in would actually get executed for any particular
invocation. For nonpointers, the forbidden contexts are called variable definition con-
texts and are described in 16.3.1. For pointers, the forbidden contexts are:

1. A pointer object in a nullify statement.

2. The left-hand side of a pointer assignment statement.

3. An allocate object in an allocate or deallocate statement.
4

. An actual argument corresponding to an INTENT (OUT) or INTENT (INOUT)
pointer dummy argument.

If the intent of an argument is OUT, the argument becomes undefined on invoca-
tion of the procedure. If the argument is a pointer, its association status becomes unde-
fined. If the argument is a nonpointer and is of a type that has default initialization, the
default initialization is applied. The actual argument associated with an INTENT
(OUT) dummy must be definable.

For an INTENT (OUT) dummy, any previous value of the actual argument is irrel-
evant. If there is any situation in which you want to leave the previous value of the ac-
tual argument unchanged or reference that value in any way, then INTENT (OUT) is
the wrong choice. Even if no executable statement in the subroutine refers to the dum-
my argument, the actual argument does not retain its previous value; the actual argu-
ment will become undefined except for components that get default initialization.
Being undefined means that any program that references the value is nonstandard. Ac-
tual implementations might realistically leave the value unchanged, change it to ran-
dom garbage, or detect an error.

If the intent is INOUT, the argument may be used to communicate information to
the subprogram and return information. As with INTENT (OUT), the corresponding



Declarations 151

actual argument is required to be definable. The difference between INTENT (OUT)
and INTENT (INOUT) is that an INTENT (INOUT) dummy acquires its starting defini-
tion status and value from that of the actual argument; it does not become undefined
or have default initialization applied.

An unspecified intent is similar to INTENT (INOUT), with just one subtle distinc-
tion. For INTENT (INOUT), the actual argument is required to be definable. For un-
specified intent, the actual argument is required to be definable if execution of the
procedure causes definition or undefinition of the dummy. This is a run-time require-
ment that applies independently to each invocation of the procedure. There can be
some invocations that trigger the requirement and other invocations of the same proce-
dure that do not. The following illustrates a trivial case of this:

program illustrate_unspecified
real :: x

call maybe_set(.false., 4.567)
call maybe_set(.true., x)
end program

subroutine maybe_set (set, x)
logical, intent(in) :: set
real :: X

if (set) x = 1.23
print *, X
end subroutine

This is valid because the first call to the subroutine does not cause definition or un-
definition of the dummy x. The second call does cause such definition, but the actual
argument for that call is definable, so it is ok. Using unspecified intent makes it diffi-
cult for the compiler to diagnose some kinds of problems; it is usually recommended to
specify intent explicitly in new code and to regard unspecified intent as primarily a
compatibility feature for old codes.

The INTENT attribute can be specified in a type declaration statement or in a IN-
TENT statement. The form of a INTENT statement (R536) is:

INTENT ( intent-spec ) [ :: ] dummy-argument-name-list
where an intent specification is IN, OUT, or INOUT.
Rules and restrictions:
1. The INTENT attribute may be specified only for a dummy argument.

2. An intent must not be specified for a procedure unless it is a procedure pointer.
This is because the concepts of definition and modification do not apply to proce-
dures other than procedure pointers.

The following are examples of INTENT specifications:
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* entity-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

SUBROUTINE SUB (X, Y)
INTEGER, INTENT (INOUT) :: X, Y

e attribute-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON) FROM, TO
INTENT (IN) FROM
INTENT (OUT) TO

SUBROUTINE SUB (X, Y)
INTEGER X, Y
INTENT (INOUT) X, Y

5.9.2 The VALUE Attribute

The VALUE attribute specifies a form of argument association for a dummy argument.
The dummy argument is not associated with the actual argument itself, but rather with
an anonymous temporary variable. The initial value of this temporary variable is taken
from the value of the actual argument. The dummy argument's value may be modified
during execution of the procedure (unless the dummy also has the INTENT (IN) at-
tribute), but such modifications affect only the temporary variable—not the actual ar-
gument.

Although C interoperability was a major motivation for the VALUE attribute, it has
utility independent of C in situations where there is a need to modify the dummy ar-
gument's value without having such modifications change the actual argument's value,
or even where it would not be allowed to change the actual argument's value. Without
the VALUE attribute, such situations would require that the programmer explicitly
copy the dummy argument to a temporary variable. The VALUE attribute makes such
a copy automatic and transparent.

The VALUE attribute can be specified in a type declaration statement or in a VAL-
UE statement. The form of a VALUE statement (R547) is:

VALUE [ :: ] dummy-argument-name-list
Rules and restrictions:

1. The VALUE attribute may be specified only for a dummy data argument.
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2. For a variable with the VALUE attribute, any length type parameter values must ei-
ther be specified by initialization expressions or be omitted (in which case they
would take their default values).

The following are examples of VALUE specifications:
* entity-oriented

subroutine sub(x)
real, value :: x

e attribute-oriented

subroutine sub(x)
real :: X
value :: x

5.9.3 The OPTIONAL Attribute

The OPTIONAL attribute for a dummy argument specifies that a procedure reference
may omit the corresponding actual argument. The PRESENT intrinsic function can be
used to test whether the actual argument was or was not present in a particular invoca-
tion of the procedure.

The syntax for referencing a procedure with omitted optional arguments is pre-
sented in 12.6.2.

The OPTIONAL attribute can be specified in a type declaration statement or in an
OPTIONAL statement. The form of an OPTIONAL statement (R537) is:

OPTIONAL [ :: ] dummy-argument-name-list
Rules and restrictions:
1. The OPTIONAL attribute may be specified only for dummy arguments.
The following are examples of OPTIONAL specifications:
* entity-oriented

INTEGER, INTENT (IN), OPTIONAL :: SIZEX
LOGICAL, INTENT (IN), OPTIONAL :: FAST

e attribute-oriented
OPTIONAL SIZEX, FAST

Argument optionality is useful in several situations. An argument might be irrele-
vant to some invocations of a procedure. A procedure might have several output argu-
ments, some of which are not needed from a particular invocation. Although there is
no direct mechanism for specifying a default value for an omitted argument, the effect
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of a default value can be achieved by using a local variable in the procedure, as in the
following example.

subroutine do_something(...other arguments..., tolerance)
real, optional, intent(in) :: tolerance
real :: tolerance_Tlocal

if (present(tolerance)) then
tolerance_local = tolerance
else
tolerance_local = 0.001
end if

Such default values allow a procedure to accommodate common simple situations with
simple references to the procedure, while still allowing detailed specification when
needed.

The presence of an optional argument can also be used like a logical input variable
to select an option in the code. This is most natural when applied to an argument that
has data needed for one option, but irrelevant to the other as illustrated in the follow-
ing example:

subroutine minimize(tolerance)
real, optional, intent(in) :: tolerance
if (present(tolerance)) then
call full_method(tolerance)
else
call simple_method
end if

If an optional argument is not present for a particular invocation of a procedure,
that argument is subject to the restrictions detailed in 12.6.2.

5.10 Procedure Properties

The EXTERNAL and INTRINSIC attributes are particular to procedures. Procedures
can have other attributes; for example, a function can have a dimension.

5.10.1 The EXTERNAL Attribute

The EXTERNAL attribute specifies that an entity is an external procedure, dummy pro-
cedure, procedure pointer, or block data subprogram.

The terminology is historical and unfortunately misleading in that entities other
than external procedures also have the EXTERNAL attribute. For example, just because
a dummy procedure has the external attribute, that does not imply that it is an external
procedure or that the corresponding actual argument has to be one; the actual argu-
ment could be an intrinsic or module procedure as well.
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The simplest use for declaration of the EXTERNAL attribute is to distinguish an
EXTERNAL procedure from any possible intrinsic procedure of the same name. This is
the use where the terminology for the attribute makes most sense. If you attempt to
reference a procedure without declaring the EXTERNAL attribute, but there is an in-
trinsic procedure of the same name, the reference will be to the intrinsic procedure in-
stead. This can happen even for vendor-defined intrinsic procedures—not just the
standard ones. It can also happen if new versions of the standard add new intrinsic
procedures. Thus, referencing an external procedure without declaring the attribute is
a potential portability problem.

Declaring the EXTERNAL attribute for an external procedure or dummy procedure
allows it to be used in contexts where it would not otherwise be evident that it was a
procedure instead of a data object. Declaring the EXTERNAL attribute for a procedure
pointer is always required.

Declaring the EXTERNAL attribute for a block data subprogram does not directly
affect the interpretation of a Fortran program, but can be useful as a hint to the system
that the block data subprogram should be included as part of the program. There is no
other mechanism within the language to specify this because block data subprograms
are never referenced. However, the process of building a program is outside the scope
of the standard, so a processor is not required to make use of such a hint. In building a
program that makes use of block data, it is prudent to verify that one understands how
to ensure that the particular processor includes the block data in the program.

The EXTERNAL attribute can be declared by several means. It can be declared by
a procedure declaration statement; that option can be used in all cases except for block
data, which is not a procedure. It can be declared by an EXTERNAL attribute in a type
declaration statement; that option can be used only with functions because subroutines
and block data subprograms do not have types. The form does not define an explicit
interface (12.5.1) and so cannot be used in situations where an explicit interface is re-
quired (12.5.1.2). The EXTERNAL statement (R1210) provides an attribute-oriented
form for declaring the attribute. It can be used for subroutines and block data program
units as well as functions. It also does not provide an explicit interface. It has the form:

EXTERNAL [ :: ] external-name-list
Rules and restrictions:

1. If a dummy argument has the EXTERNAL attribute, it is a dummy procedure (and
possibly also a procedure pointer).

2. If a pointer has the EXTERNAL attribute, it is a procedure pointer (and possibly
also a dummy procedure).

3. If a procedure that is neither a dummy argument nor a pointer has the EXTERNAL
attribute, it is an external procedure or a block data subprogram.

4. If an external procedure or dummy procedure is used as an actual argument or as
a target in a procedure pointer assignment, then it must be explicitly declared to
have the EXTERNAL attribute.
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In some cases, explicit declaration is needed to establish the interpretation of the
code, but the requirements mandate explicit declaration even in some cases where
there is no ambiguity. For example, the main program

program one
external :: s
call t(s)

end

would have a different meaning without the EXTERNAL statement; s would be an im-
plicitly declared real variable instead of a procedure. But in the program

program two
external :: s
call s
call t(s)

end

the first call statement makes it unambiguous that s must be a subroutine; nonetheless,
the declaration is still required.

The rules for resolving procedure references, including the effects of the EXTER-
NAL attribute, are in 12.8.

The following are examples of EXTERNAL specifications using type declaration
statements and EXTERNAL statements:

* entity-oriented

SUBROUTINE SUB (FOCUS)
INTEGER, EXTERNAL :: FOCUS
LOGICAL, EXTERNAL :: SIN

e attribute-oriented

SUBROUTINE SUB (FOCUS)
INTEGER FOCUS
LOGICAL SIN
EXTERNAL FOCUS, SIN

FOCUS is declared to be a dummy procedure. SIN is declared to be an external proce-
dure. Both are functions. The intrinsic function SIN is no longer available by that name
in subroutine SUB.

5.10.2 The INTRINSIC Attribute

The INTRINSIC attribute specifies that a name is the name of an intrinsic function. It
may be either a standard intrinsic or a vendor-defined intrinsic. Of course, a program
that uses a vendor-defined intrinsic might not be portable to other vendor's compilers.

Specifying the INTRINSIC attribute is required in order to use an intrinsic proce-
dure as an actual argument. Other specifications of the attribute are largely for docu-
mentation or for confirmation that a particular intrinsic exists.
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The INTRINSIC attribute can be declared in a type declaration statement; that op-
tion can be used only with functions because subroutines do not have types.

The INTRINSIC statement (R1216) provides an attribute-oriented form for specify-
ing the attribute. It can be used for both subroutines and functions. Its form is:

INTRINSIC [ :: ] intrinsic-procedure-name-list
Rules and restrictions:
1. Each intrinsic procedure name must be the name of an intrinsic procedure.

2. If an intrinsic procedure is used as an actual argument, it must be specified to have
the INTRINSIC attribute. This is allowed only for the specific intrinsic names listed
in 13.4.

3. Specifying a type for a generic intrinsic function is allowed, but has no effect. It
does not remove the generic properties of the function name. The function can still
be referenced generically with any other types for which it is defined.

4. Specifying a type for a specific intrinsic function that has a name different from the
generic name is allowed as long as it confirms the type that the specific function
has anyway; it is never required.

The rules for resolving procedure references, including the effects of the INTRIN-
SIC attribute, are in 12.8.
The following are examples of INTRINSIC specifications:

* entity-oriented
REAL, INTRINSIC :: SIN, COS
e attribute-oriented

REAL SIN, COS
INTRINSIC SIN, COS

5.11 The Procedure Declaration Statement

The procedure declaration statement is an entity-oriented form for declaring proce-
dures. It can be used for procedure pointers, dummy procedures, and external proce-
dures. It is particularly convenient for declaring multiple procedures that have the
same abstract interface because it avoids the need to replicate the interface body.

The form of a procedure declaration statement (R1211) is:

PROCEDURE ( [ interface-spec | ) [ [ , procedure-attribute-spec ] ... :: ] &
procedure-declaration-list
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where an interface specification is one of:

interface-name
declaration-type-spec

a procedure attribute specification (R1213) is one of:

BIND ( C[ , NAME = scalar-character-initialization-expression | )
INTENT (intent-spec )

OPTIONAL

POINTER

PRIVATE

PUBLIC

SAVE

and a procedure declaration (R1214) has the form:
procedure-entity-name [ initialization ]

The interface of the declared procedures is specified by the interface specification.
There are three possibilities

1. If the interface specification is omitted, the procedures are declared to have implic-
it interfaces; the statement does not specify whether they are subroutines or func-
tions.

2. If the interface specification is a declaration type specification, the procedures are
declared to be functions with implicit interfaces and with the specified type and
type parameters.

3. If the interface specification is an interface name, the procedures are declared to
have the specified explicit interface. The interface name must either be the name of
an abstract interface or of a procedure that has an explicit interface. If it is the
name of a procedure, the abstract interface of that procedure is used.

Except for the BIND attribute, the meanings of and restrictions on the procedure
attribute specifications are the same as those for attribute specifications in a type decla-
ration statement or attribute specification statement. The meaning of the BIND at-
tribute for procedures is discussed in 15.6.1.

Rules and restrictions:

1. A procedure name used as an interface name must not be declared in a subsequent
procedure declaration statement. This restriction avoids the circularity of declaring
a procedure x to have the same interface as y, while also declaring y to have the
same interface as x.

2. An intrinsic procedure name used as an interface name must be one of the specific
names not marked with an asterisk in 13.4.
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3. An elemental explicit interface may be specified only for external procedures; pro-
cedure pointers and dummy procedures must not be elemental.

4. If a procedure entity has initialization or the INTENT or SAVE attribute, it must be
a pointer.

5. The scalar character initialization expression in the NAME specifier of a BIND at-
tribute specification must be of default kind.

6. All leading and trailing blanks in the value of the expression in the NAME specifi-
er are ignored. After discarding them, the result must either have zero length or be
valid as an identifier for the C processor.

7. 1f the BIND attribute is specified, the procedure must have an interoperable explic-
it interface.

8. If there is a BIND attribute with a NAME specifier, the procedure declaration list
must consist of a single external procedure name.

The following example illustrates procedure declaration statements.

subroutine sub(arg)
abstract interface
function real_func (x)
real, intent(in) :: x
real :: real_func
end function real_func
end interface

procedure(real_func) :: arg
procedure(arg), pointer : p, q
procedure(real) :: ext, sqrt

The dummy procedure arg is declared to have abstract interface real_func. The
procedure pointers p and q are declared to have the same abstract interface as arg. The
external procedures ext and sqrt are declared to be implicit interface functions return-
ing reals. The intrinsic function sqrt is no longer available by that name in this scope.

5.12 Attribute Compatibility

No single entity can possess all of the attributes because some attributes are incompat-
ible with others. For example, OPTIONAL is an attribute that can be applied only to
dummy arguments, and dummy arguments must not have the SAVE attribute. Table
5-2 shows which attributes may be used together to specify an entity.

Many of the incompatibilities indicated in the table are for attributes that apply
only to limited categories of entities. For example, the INTENT, OPTIONAL, and VAL-
UE attributes apply only to dummy arguments, while the PRIVATE, PROTECTED, and
PUBLIC attributes apply only to module entities. A dummy argument cannot be a
module entity, so those two sets of attributes are incompatible.
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Table 5-2  Attribute compatibility
init alloc async bind dim extern intent intrin opt param
init X ok ok ok ok X X X ok
allocatable X ok X ok ok ok X ok X
asynchronous ok ok ok ok X ok X ok X
bind ok X ok ok ok X X X X
dimension ok ok ok ok ok ok X ok ok
external ok ok X ok ok ok X ok X
intent X ok ok X ok ok X ok X
intrinsic X X X X X X X X X
optional X ok ok X ok ok ok X X
parameter ok X X X ok X X X X
pointer ok X ok X ok ok ok X ok X
private ok ok ok ok ok ok X ok X ok
protected ok ok ok ok ok ok X X X X
public ok ok ok ok ok ok X ok X ok
save ok ok ok ok ok ok X X X X
target ok ok ok ok ok X ok X ok X
value X X ok X ok X ok X ok X
volatile ok ok ok ok ok ok ok X ok X
ptr  priv  prot public save target value volat
init ok ok ok ok ok ok X ok
allocatable X ok ok ok ok ok X ok
asynchronous ok ok ok ok ok ok ok ok
bind X ok ok ok ok ok X ok
dimension ok ok ok ok ok ok ok ok
external ok ok ok ok ok X X ok
intent ok X X X X ok ok ok
intrinsic X ok X ok X X X X
optional ok X X X X ok ok ok
parameter X ok X ok X X X X
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Table 5-2 Attribute compatibility

init alloc async bind dim extern intent intrin opt param

pointer ok ok ok ok X X ok
private ok ok X ok ok X ok
protected ok ok ok ok ok X ok
public ok X ok ok ok X ok
save ok ok ok ok ok X ok
target X ok ok ok ok ok ok
value X X X X X ok X
volatile ok ok ok ok ok ok X

The table shows attributes as incompatible only if there is no circumstance where
they can be used together. In some cases where attributes are shown as compatible,
there are limitations on the compatibility. This is particularly so for the EXTERNAL
and INTENT attributes because those two attributes have multiple possible meanings.

The EXTERNAL attribute can apply to an external procedure, a dummy procedure,
a procedure pointer, or block data. The initialization, PROTECTED, SAVE, and VOLA-
TILE attributes are compatible with a procedure pointer, but not with the other possi-
ble meanings of the EXTERNAL attribute. An additional subtlety of the EXTERNAL
attribute relates to the fact that there are several ways to specify it; two of those ways
are with an interface body or a procedure declaration statement, neither of which use
the EXTERNAL keyword. The ALLOCATABLE and DIMENSION attributes are com-
patible with the EXTERNAL attribute, but not with the EXTERNAL keyword because
they require explicit interfaces.

The INTENT attribute has the forms INTENT (IN), INTENT (OUT), and INTENT
(INOUT). The VALUE attribute is compatible with INTENT (IN), but not with the oth-
er two forms. Conversely, the VOLATILE attribute is compatible with INTENT (OUT)
and INTENT (INOUT), but not with INTENT (IN).

5.13 The NAMELIST Statement

A NAMELIST statement establishes the name for a collection of objects that can then
be referenced by the group name in input/output statements (9.4.2). The form of the
NAMELIST statement (R552) is:

NAMELIST / namelist-group-name / variable-name-list &
[ [, ]/ namelist-group-name / variable-name-list ] ...

Rules and restrictions:

1. A variable in the variable name list must not be an assumed-size array.
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2. If a namelist group name has the PUBLIC attribute, no item in the namelist group
object list may have the PRIVATE attribute.

3. The order in which the variables are specified in the NAMELIST statement deter-
mines the order in which the values appear on output. Multiple specifications of
the same variable are allowed, in which case its value will appear multiple times.

4. A namelist group name may occur in more than one NAMELIST statement in a
scoping unit. The variable list following each successive appearance of the same
namelist group name in a scoping unit is treated as a continuation of the list for
that namelist group name.

5. A variable may be a member of more than one namelist group.

6. A variable that is not accessed by use or host association must have its type, type
parameters, and shape specified previously in the same scoping unit, or must be
determined by implicit typing rules. If a variable is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement must confirm
this implicit type and type parameters.

Examples of NAMELIST statements are:

NAMELIST / N_LIST / A, B, C
NAMELIST / S_LIST / A, V, W, X, Y, Z

5.14 Storage Association

In general, the physical storage and storage order for data objects are not specified.
However, the COMMON, EQUIVALENCE, and SEQUENCE statements and the BIND
attribute provide sufficient control over the order and layout of storage units to permit
data to share storage units.

Prior to Fortran 90, storage association was a fundamental feature for sharing data
and managing storage. Almost all large programs, as well as many small ones, made
extensive use of storage association.

In modern Fortran, modules and dynamic allocation provide tools for sharing data
and managing storage. These tools are often more effective and have fewer subtleties
and complications than storage association. However there remain situations where
storage association is still a useful concept.

The concept of storage association involves storage units and storage sequence.
These concepts are used to explain how the COMMON and EQUIVALENCE mecha-
nisms work. This description does not imply that any particular memory allocation
scheme is required by a Fortran system, but the system must function as though stor-
age were actually managed according to these descriptions.

Storage association is based on sequences of storage units. These concepts are dis-
cussed in 16.2.3.
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5.14.1 The EQUIVALENCE Statement

To indicate that two or more variables are to share storage, they may be placed in an
equivalence set in an EQUIVALENCE statement. If the objects in an equivalence set
have different types or type parameters, no conversion or mathematical relationship is
implied. If a scalar and an array are equivalenced, the scalar does not have array prop-
erties and the array does not have the properties of a scalar. The form of the EQUIVA-
LENCE statement (R554) is:

EQUIVALENCE equivalence-set-list
where an equivalence set (R555) is:

( equivalence-object , equivalence-object-list )
and an equivalence object (R556) is one of:

variable-name
array-element
substring

Rules and restrictions:
1. An equivalence object must not be a designator with a base object (6.2) that is:

a dummy argument

a pointer

an allocatable variable

a nonsequence structure

a structure with an allocatable ultimate component
a structure with a pointer at any level

an automatic object

a function name, result name, or entry name

a variable with the BIND attribute

a variable in a common block with the BIND attribute
a named constant

accessed by use association

2. An equivalence object must not be a designator with more than one part reference.
3. Any subscript or substring range must be an integer initialization expression.

4. If an equivalence object is of type default integer, default real, double precision re-
al, default complex, default logical, or numeric sequence type, all of the objects in
the set must be of one of these types.

5. If an equivalence object is of default character or character sequence type, all of the
objects in the set must be of these types. The lengths do not need to be the same.
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6. If an equivalence object is of sequence type other than numeric or character se-
quence type, all of the objects in the set must be of the same type with the same
type parameter values.

7. If an equivalence object is of intrinsic type other than default integer, default real,
double precision real, default complex, default logical, or default character, all of
the objects in the set must be of the same type with the same kind type parameter
value.

8. If an equivalence object has the PROTECTED attribute, all of the objects in the set
must have the PROTECTED attribute.

9. An EQUIVALENCE statement must not specify that the same storage unit is to oc-
cur more than once in a storage sequence or that consecutive storage units are to be
nonconsecutive. For example, the following is illegal because it would indicate that
storage for X(2) and X(3) is shared.

EQUIVALENCE (A, X (2)), (A, X (3))
10. An equivalence object must not have the TARGET attribute.
11. A substring must not be zero length.

An EQUIVALENCE statement specifies that the storage sequences of the data ob-
jects in an equivalence set have storage sequences (16.2.3.1) with the same initial point.
This causes storage association of the objects in the set and may cause storage associa-
tion of other data objects.

Note that the effect of equivalencing a zero-sized array with two nonzero-sized ob-
jects is to equivalence the two nonzero-sized objects. For example,

INTEGER A(5), B(0), X
EQUIVALENCE (B, A(2)), (B, X)

causes X and A(2) to share the same storage unit.

The restriction in item 1 against nonsequence structures seems anomalous in that it
disallows structures with the BIND attribute. As discussed in 4.4.10, sequence and
BIND types share many of the same properties. Most contexts that allow sequence
types also allow BIND types. This is one of the rare exceptions. This exception is par-
ticularly anomalous because BIND types are allowed in COMMON. COMMON and
EQUIVALENCE are closely related in that both establish sequence association. It is
possible to use COMMON in a roundabout way to get the effect of equivalencing
BIND types.

As an example of equivalence:

CHARACTER (LEN 4) :: A, B
CHARACTER (LEN 3) :: C (D
EQUIVALENCE (A, C (1)), (B, C (2))
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causes the alignment illustrated below:

AQ:1) | AQ2) | AG3) | A@:4)

B(1:1) B(2:2) B(3:3) B(4:4)

c()(1:1) | c()@2:2)| c()3:3) | CR)(1:1) | C@)2:2) | C2)(3:3)

As a result, the fourth character of A, the first character of B, and the first character of
C(2) all share the same character storage unit.

REAL, DIMENSION (6) :: X, Y
EQUIVALENCE (X (5), Y(3))

causes the alignment illustrated below:

X(1) X(2) X@3) X4 X(5) X(6)

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

The statements

character :: string*8
character :: array(8)
equivalence (string,array)

illustrate equivalencing a character string and a character array.
For rules on the interaction of equivalence and default initialization, see 16.2.3.2.

5.14.2 The COMMON Statement

The COMMON statement establishes blocks of storage called common blocks and
specifies objects that are contained in the blocks. Two or more program units may
share this space and thus share the values of variables stored in the space. Thus, the
COMMON statement provides a global data facility based on storage association. A
common block may be named, in which case it is called a named common block, or
may be unnamed, in which case it is called blank common.

A common block may contain a mixture of storage units and may contain unspeci-
fied storage units; however, if a common block contains a mixture of storage units, ev-
ery declaration of the common block in the program must contain the same sequence
of storage units. The form of the COMMON statement (R557) is:

COMMON [ / [ common-block-name | / | common-block-object-list &
[ [, ]/ [ common-block-name | / common-block-object-list | ...
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where a common block object (R558) is one of:

variable-name [ ( explicit-shape-spec-list ) |
procedure-pointer-name

Rules and restrictions:
1. A common block object must not be:

a dummy argument

an allocatable variable

a structure with an allocatable ultimate component
an automatic object

a function name, result name, or entry name

a variable with the BIND attribute

accessed by use association

2. If a common block object is of derived type, the type must either be a sequence
type or a type with the BIND attribute. In either case, the type must have no de-
fault initialization.

3. The object list following a common block name declares objects in the common
block of that name. The object list following two slashes with no common block
name between them or an object list with no preceding slashes declares objects in
blank common.

4. A common block name or an indication of blank common may appear more than
once in one or more COMMON statements in the same scoping unit. The object list
following each successive block name or blank common indication is treated as a
continuation of the previous object list.

5. An object may appear in only one common block within a scoping unit.

6. The DIMENSION attribute for an array can be declared by an explicit-shape speci-
fication list in a COMMON statement. Alternatively, the DIMENSION attribute for
a variable in common may be specified by other statements as described in 5.4.2.
Pointer arrays are allowed in common, but because they must have a deferred
shape, their DIMENSION attribute must be specified by other statements. (The rea-
son for this restriction is not clear; it might be accidental.) Because automatic ob-
jects are not allowed in common, each bound in the explicit-shape specification list
must be an initialization expression.

7. A nonpointer object of type default integer, default real, double precision real, de-
fault complex, default logical, or numeric sequence type must become associated
only with nonpointer objects of these types.

8. A nonpointer object of type default character or character sequence must become
associated only with nonpointer objects of these types.
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9. A nonpointer object of a type and kind not listed in the previous two rules must
become associated only with nonpointer objects of the same type and type param-
eter values.

10. A pointer must become storage associated only with pointers of the same type,
type parameters, and rank.

11. An object with the TARGET attribute must become storage associated only with
objects that have the TARGET attribute and the same type and type parameters.

For each common block, a common block storage sequence is formed. It consists of
the sequence of storage units of all the variables listed for the common block in the or-
der of their appearance in the common block list. The storage sequence may be extend-
ed on the end to include the storage units of any variable equivalenced to a variable in
the common block. Similar extension at the beginning is not allowed. Data objects that
are storage associated with a variable in a common block are considered to be in that
common block.

The following examples illustrate the distinction between extension at the end and the
beginning.

COMMON A(5)
REAL B(5)
EQUIVALENCE (A(2), B(1))

is legal and results in the following alignment:

A1) AQ2) A(3) A4) A(5)

B(D) B(2) B@3) B(4) B()

On the other hand, the following is not legal:
EQUIVALENCE (A(1), B(2))

because it would place B(1) ahead of A(1) as in the following alignment:

Al AQ2) AQ3) A(4) A(5)

B(1) B(2) B(3) B(4) B(5)

and a common block must not be extended from the beginning of the block.
Equivalence association must not cause two different common blocks to become as-
sociated.
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The size of a common block is the size of its storage sequence including any exten-
sions of the sequence resulting from equivalence association.

Zero-sized common blocks are permitted. Frequently a program is written with ar-
ray extents and character lengths specified by named constants. When there is a need
for a different-sized data configuration, the values of the named constants can be
changed and the program recompiled. Allowing extents and lengths to be specified to
have the value zero, and thus possibly specifying zero-length common blocks, permits
the maximum generality.

Within a program, all named common blocks with the same name must have the
same size. If that size is zero, the common blocks with that name are associated with
one another. If that size is nonzero, the storage sequences of the common blocks with
that name all have the same first storage unit. Note that the storage sequence
association does not depend on the variable names.

Corresponding rules apply to blank common blocks except that they may be of dif-
ferent sizes. Thus, it is possible for a zero-sized blank common block in one scoping
unit to be associated with the first storage unit of a nonzero-sized blank common block
in another scoping unit.

A blank common block has the same properties as a named common block except
for the following:

1. Variables with explicit initialization are allowed in named common in a block data
program unit. Variables with explicit initialization are never allowed in blank com-
mon.

2. Blank common is, in effect, always saved, even though it cannot be specified in a
SAVE statement and the standard does not use that terminology. A named com-
mon block is not saved unless it is mentioned in a SAVE statement.

3. Named common blocks of the same name must be the same size in all scoping
units of a program. Blank common blocks may be of different sizes.

The following is an example of common block usage:

SUBROUTINE FIRST

INTEGER, PARAMETER :: SHORT = 2
REAL B(2)
COMPLEX C
LOGICAL FLAG
TYPE COORDINATES
SEQUENCE
REAL X, Y
LOGICAL Z_0O
END TYPE COORDINATES
TYPE (COORDINATES) P
COMMON / REUSE / B, C, FLAG, P
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REAL MY_VALUES (100)

CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: w (:, :)

REAL, TARGET, DIMENSION (100, 100) :: EITHER, OR
INTEGER (SHORT) :: M (2000)

COMMON / MIXED / W, EITHER, OR, M

SUBROUTINE SECOND

INTEGER, PARAMETER :: SHORT = 2
INTEGER I(8)
COMMON / REUSE / I

REAL MY_VALUES (100)

CHARACTER (LEN = 20) EXPLANATION

COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: V (:)

REAL, TARGET, DIMENSION (10000) :: ONE, ANOTHER
INTEGER (SHORT) :: M (2000)
COMMON / MIXED / V, ONE, ANOTHER, M | TLLEGAL

Common block REUSE has a storage sequence of 8 numeric storage units. It is be-
ing used to conserve storage. The storage referenced in subroutine FIRST is associated
with the storage referenced in subroutine SECOND as shown below:

B(1) B(2) C FLAG X Y Z 0

I(1) 12) 13) 1(4) 1(5) 1(6) 1(7) 1(8)

There is no guarantee that the storage is actually retained and reused because, in
the absence of a SAVE attribute for REUSE, some processors may release the storage
when either of the subroutines completes execution.

Common block SHARE contains both numeric and character storage units and is
being used to share data between subroutines FIRST and SECOND.

The declaration of common block MIXED in subroutine SECOND is illegal because
it does not have the same sequence of storage units as the declaration of MIXED in
subroutine FIRST. The array pointer in FIRST has two dimensions; the array pointer in
SECOND has only one. Pointers must match in type, kind and rank in order to have
the same storage units.
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e A Data Object may be a variable, a constant, or a subobject of a constant. It may be
a scalar or an array. A subobject of a data object is also a data object.

* The value and properties of a Variable may change during program execution.

¢ A Constant has a specified value and cannot be changed. It may be a literal constant
or a named constant.

® A Scalar has a rank of zero. A scalar object that is defined has a single value from
the set of values permitted for its type.

* A Structure is an object of derived type. Although it consists of parts specified by
the components of the type definition, a defined scalar structure has a single value
made up of its component values.

* An Array is a set of scalar elements of the same type and type parameters. The rank
is the number of dimensions and may be between one and seven.

e A Designator is used to identify a data object. It may identify a whole object or a
part of an object, such as a substring, structure component, array element, or array
section.

* A Substring is a contiguous portion of a character string that has a starting point
and an ending point within the string.

¢ A Structure Component is part of an object of derived type.

* An Array Element is one of the scalar elements that make up an array. The element
is selected by a subscript list.

* An Array Section is a selected set of elements of an array. The elements are selected
by a section subscript list that consists of subscripts, triplet subscripts, or vector sub-
scripts. The subscript list must contain one or more triplet or vector subscripts.

* The ALLOCATE Statement may be used to create space for allocatable variables
and pointer targets.

* The NULLIFY Statement or the NULL Intrinsic Function may be used to disassoci-
ate a pointer from any target.

* The DEALLOCATE Statement releases the space allocated for an allocatable vari-
able or a pointer target and nullifies the pointer.

Chapter 5 explains how data objects and their attributes are specified. Chapter 6 goes
further and explains how these objects can be used. A designator is used to identify a
data object. The appearance of the designator where its value is required is a reference

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_6, © Springer-Verlag London Limited 2009
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to the object. When an object is referenced, it must be defined; that is, it must have a
value. The reference makes use of the value. For example:

A=1.0
B A+ 4.0

In the first statement, the constant value 1.0 is assigned to the variable A. It does not
matter whether A was previously defined with a value or not; it now has a value and
can be referenced in an executable statement. In the second statement, A is referenced;
its value is obtained and added to the value 4.0 to obtain a value that is then assigned
to the variable B. The appearances of A in the first statement and B in the second state-
ment are not references because their values are not required. The appearance of A in
the second statement is a reference.

A data object may be a constant or a variable. If it is a constant, either a literal or a
named constant, its value cannot change. If it is a variable, it may take on different val-
ues as program execution proceeds. Variables and constants may be scalar objects
(with a single value) or arrays (with a number of values, all of the same type).

Objects may have type parameters. The value of a type parameter of an object of in-
trinsic or user-defined type is returned by a type parameter inquiry.

Variables generally have storage space set aside for them by the compiler. If, how-
ever, the variable is a pointer or an allocatable object, the compiler does not set aside
any space for its value. The programmer must allocate space or, in the case of a pointer,
the programmer might assign existing space.

Variables are dynamic if their size, parameters, or location, may change. The
declared rank of an array variable may not change, but the extents of its dimensions may.
Automatic variables are discussed in 2.2.4; they are created on entry to a procedure
and their size and location are determined at that time. The dynamic properties of
allocatable and pointer objects may change with each allocation or pointer assignment.

Sometimes it is desirable to reallocate an array to a different size while retaining
some of its values. An intrinsic function, MOVE_ALLOC, and assignment (7.5) aid in
resizing allocatable arrays.

If a variable or constant is a portion of another object, it is called a subobject. A
subobject that may be identified by a designator is one of:

a substring

a structure component
an array element

an array section

The real and imaginary parts of a complex object are also subobjects; they may be
accessed by intrinsic functions. Each subobject has a parent and is a portion of that par-
ent. Each of the subobjects in the list above is described in this chapter; first, substrings
and structure components, and then array subobjects (array elements and array sec-
tions) along with the use of subscripts, subscript triplets, and vector subscripts. A
number of additional aspects of arrays are covered: array terminology, use of whole ar-
rays, and array element order.
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Finally, this chapter explains how pointers and allocatable objects can be allocated
and deallocated. It describes the ALLOCATE and DEALLOCATE statements and how
pointers can be disassociated from any target object by using the NULLIFY statement
or pointer assignment with the intrinsic function NULL (13.3.3.1).

6.1 Constants and Variables

A constant has a value that cannot change. A reference to a constant is always
permitted, but a constant cannot be redefined.
A constant (R305) has one of the forms:

literal-constant
named-constant

As explained in 4, each of the intrinsic types has a form that specifies the type, type
parameters, and value of a literal constant of the type. For user-defined types, there is
a structure constructor to specify values of the type. Array constructors are used to
form array values of any intrinsic or user-defined type.

Variables may be of any type, but there are contexts in which a variable must be of
a certain type. In most of these cases, terms such as logical-variable, character-variable,
or default-character-variable, provide precise limitations.

A subobject with a constant parent is not a variable and might not be a constant. It
is classified as a subobject of a constant.

6.2 Designators

A data object may have a designator such as A or B(I). A designator (R603) is one of
the following:

object-name
array-element
array-section
structure-component
substring

A single object of any type is a scalar. A set of scalar objects, all of the same type
and type parameters, may be arranged in a pattern involving columns, rows, planes,
and higher-dimensioned configurations to form arrays. An array has a rank between
one and seven. A scalar has rank zero. An array element is one of the elements of an
array and is a scalar. An array section is a selected subset of the elements and is itself
an array. A structure component is one of the components of an object of derived type;
it may be a scalar or an array. A substring is a contiguous portion of a character string;
it is a scalar.

The form of a designator (R612) is:

part [ % part ]... [ ( substring-range ) |
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where a part (R613) has the form
part-name [ ( section-subscript-list ) ]
and a substring range (R611) is:
[ starting-position ] : [ ending-position ]

The starting and ending positions must be scalar integer expressions.
A section subscript (R619) is one of:

subscript
subscript-triplet
vector-subscript

The simplest form of a section subscript list is a subscript list.
Rules and restrictions:

1. If the designator ends with a substring range, the rightmost part name must be of
type character.

2. If a substring range appears and the rightmost part name has the dimension at-
tribute, a section subscript list must be present in the rightmost part.

3. In a part containing a section subscript list, the number of section subscripts must
equal the rank of the part name.

If an object designator contains more than one part, the base object is the data ob-
ject specified by the leftmost part.

There are rules for determining whether a particular object designator identifies a
character string, character substring, structure component, scalar, array, array element,
or array section. This is important in the case of array sections and character substrings
because they have a similar syntax; however, in general, these classifications are perhaps
of more interest to compiler writers than to users of the language, but knowing how an
object designator is classified makes it clearer which rules and restrictions apply to the
object and easier to understand some of the explanations for the formation of expres-
sions.

To determine the classification of a valid designator, two aspects must be consid-
ered: the syntax of the designator and the type and attributes of the part names, partic-
ularly the rightmost part name.

1. A designator with one part may specify a scalar or array of any type, a substring,
an array element, or an array section.

2. A designator specifies a substring if a substring range appears and no part has a rank
greater than zero.

3. A designator specifies an array element if no part other than the rightmost has a rank
greater than zero and a subscript list appears in the rightmost part.
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4. A designator specifies an array section if any part other than the rightmost has a
rank greater than zero or the rightmost part contains a section subscript list with at
least one subscript triplet or vector subscript.

5. A designator specifies a structure component if there is more than one part and none
of the previous situations is true. The component may be a scalar or a whole array.

For example, given the declarations:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following designators are classified as indicated by the comments on each line.

DISTRICT(1:6)
STATIONS

I substring
! array of character strings
STATIONS(1) ! array element (character string)
STATIONS(1:4) ! array section of character strings
STATIONS(1) (15:16) ! substring of an array element
STATIONS(:) (15:16) I array section (of substrings)

I

I

I

CHIEF%AGE structure component (integer scalar)
FIREMEN(I) % AGE structure component (integer scalar)
FIREMEN%AGE array section (of integers)

A subobject may have a constant parent, for example:

CHARACTER(*), PARAMETER :: MY_DISTRICT = "DISTRICT A7"
CHARACTER (2) DISTRICT_NUMBER
DISTRICT_NUMBER = MY_DISTRICT (10:11)

DISTRICT_NUMBER has the value A7, a character string of length 2.

6.3 Type Parameter Inquiry

An object of either intrinsic or user-defined type may have type parameters. The intrin-
sic types have the type parameters kind and length (4.4.3); user-defined types may
have user-named parameters (4.4.3); for example, SIZE or NUM. A type parameter in-
quiry returns the value of a type parameter of a data object. It has the form

designator % type-parameter-name

Although a type parameter inquiry has a syntax similar to a structure component
reference, it does not have the same semantics. It is not a variable and thus can never
be defined in an assignment statement; it may appear only as a primary in an expres-
sion or as an actual argument. It is scalar even if the designator is an array. The
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designator need not be defined. The intrinsic functions KIND and LEN also may be
used to inquire about some type parameters.

Rules and restrictions:

1. The name of the type parameter being queried must be that of a type parameter of
the type of the specified designator.

2. A deferred type parameter of a pointer that is not associated or an allocatable ob-
ject that is not allocated must not be queried.

Given the declarations:

INTEGER, PARAMETER :: DOUBLE = KIND (0.0DO)
REAL (DOUBLE) :: X, TEMP (20)
CHARACTER (10) :: TITLE

TYPE PROPERTIES (NUM)
INTEGER, LEN :: NUM
REAL :: ACREAGE (NUM)

END TYPE

TYPE (PROPERTIES(:)), ALLOCATABLE :: LIST
and the executable statement:
ALLOCATE (TYPE (PROPERTIES (NUM = 1000)) :: LIST (100) )

the following are examples of type parameter inquiries:

X % KIND ! Same value as KIND (X)

TITLE % LEN ! Same value as LEN (TITLE)

TEMP(10) % KIND ! same value as KIND (TEMP)

LIST % NUM 1 1000 because LIST has been allocated with NuUM = 1000

6.4 Substrings

A character string consists of zero or more characters. Even though it is made up of in-
dividual characters, a character string is a scalar. This is a significant difference be-
tween Fortran and other languages, such as C, where a “character string” is an array of
single characters. As with any data type, it is possible to declare an array of character
strings, with all elements of the same length.

A substring is a contiguous portion of a parent string that has a starting point and
an ending point within the parent string.

A parent string (R610) is one of:

scalar-variable-name
array-element
scalar-structure-component
scalar-constant
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Rules and restrictions:

1. The parent string of a substring must be of type character. The substring is of type
character.

2. A substring is the contiguous sequence of characters within the string beginning
with the character at the starting position and ending at the ending position. If the
starting position is omitted, the default is 1; if the ending position is omitted, the
default is the length of the character string.

3. The length of a character string or substring may be 0, but not negative. Zero-
length strings result when the starting position is greater than the ending position.
The formula for calculating the length of a string is:

MAX ( ending-position — starting-position + 1, 0 )

4. The first character of a parent string is at position 1 and the last character is at po-
sition n where n is the length of the string. The starting position of a substring
must be greater than or equal to 1 and the ending position must be less than or
equal to the length 1, unless the length of the substring is 0. If the parent string is
of length 0, the substring must be of length 0.

In the following example,

CHARACTER (14) NAME
NAME = "John Q. Public"
NAME(1:4) = "Jane"
PRINT *, NAME (9:14)

NAME is a scalar character variable, a string of 14 characters, that is assigned the value
"John Q. Public" by the first assignment statement. NAME(1:4) is a substring of four
characters that is reassigned the value "Jane" by the second assignment statement, leav-
ing the remainder of the string NAME unchanged; the string NAME then becomes
"Jane Q. Public". The PRINT statement prints the characters in positions 9 through 14,
in this case, the surname, "Public".

Given the definition and declarations:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following are all substrings:

STATIONS (1) (1:5) ! array element parent string
CHIEF%NAME (4:9) I structure component parent string
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DISTRICT(7:14) ! scalar variable parent string
’0123456789° (N:N+1) ! character constant parent string

The last example is a substring where the parent is a constant and the starting and end-
ing positions are variable. This substring is an expression that is neither a constant nor
a variable, but is a primary; it is called a subobject of a constant (6.1).

Whenever an array is constructed of character strings and any part of it (other than
the whole object) is selected, an array section subscript must appear before the sub-
string range specification, if any. Otherwise, the substring range specification will be
treated as an array section specification because the two have the same form. STA-
TIONS (1:5) is an array section designator that specifies the entire character strings of
the first five elements of STATIONS. The designator STATIONS (:) (1:5) is permitted. It
specifies an array with elements that are substrings. Even though all elements of the ar-
ray are selected, this designator is an array section. STATIONS (1:5) (1:5) is also permit-
ted. It specifies an array section with elements that are substrings. Array sections are
described in 6.6.4.

If a character string is declared with a deferred length parameter, it is a variable
length string. The value of the deferred length parameter is determined by successful
execution of an ALLOCATE statement (6.7.1), intrinsic assignment statement (7.5.2),
pointer assignment statement (7.5.5.1), or by argument association (12.6)

6.5 Structure Components

A structure is an object of derived type. It is an aggregate of zero or more components
of intrinsic or derived types. The types, type parameters, and attributes of the compo-
nents are specified in the type definition; they may be scalars or arrays. Each structure
usually has at least one component; however, the base type of an extensible derived
type often has no components (see 4.4.12 for extensible types). There may be arrays of
structures. In the example given above, CHIEF is a structure; FIREMEN is an array of
structures of type PERSON.

A component of a structure may be specified by placing the name of the compo-
nent after the name of the parent structure, separated by a percent sign (%). For exam-
ple, CHIEF % NAME specifies the character string component of the variable CHIEF of
type PERSON.

Rules and restrictions:

1. In a structure component designator, the leftmost part name must be the name of a
data object, and each part name except the leftmost must be the name of a compo-
nent of the derived-type definition of the type of the preceding part name.

2. The type, as well as the type parameters if any, of an object of derived type are
those of the rightmost part name.

3. If the rightmost part name is of abstract type (4.4.12.3), the data object must be
polymorphic (5.2).
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4. A structure may have nested array components, but a designator must not contain
more than one part with nonzero rank. (See the example at the end of this section.)

5. In a structure component designator, a part name to the right of a part with non-
zero rank must not have the ALLOCATABLE or POINTER attribute.

A structure component is a pointer or allocatable object only if the rightmost part
name has the POINTER or ALLOCATABLE attribute. It is possible to declare an array
of structures that have a pointer or allocatable array as a component, but it is not pos-
sible to treat such an object as an array. This ensures that structure component arrays
have a regular structure in memory, simplifying implementation.

The rank of a part reference consisting of just a part name is the rank of the part
name. The rank of a part reference of the form

part-name ( section-subscript-list )

is the number of subscript triplets and vector subscripts in the list. The rank is less than
the rank of the part name if any of the section subscripts are subscripts other than sub-
script triplets or vector subscripts. The shape of an object of derived type is the shape
of the part with nonzero rank, if any; otherwise, the object is a scalar and has rank
Zero.

Given the type definition and structure declarations:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) CHIEF, FIREMEN(50)
examples of designators are:

CHIEF % AGE I scalar component of scalar parent

FIREMEN(J) % NAME I component of array element parent

FIREMEN(1:N) % AGE ! array section of integers

FIREMEN % NAME I array section of character strings

FIREMEN (1:N) % NAME I array section of character strings

FIREMEN % NAME (39:40) I array section of character strings,
|

each two characters Tong

If a derived-type definition contains a component that is of derived type, then a desig-
nator can contain more than two part references. Given the type definitions and decla-
rations:

TYPE REPAIR_BILL
REAL PARTS
REAL LABOR

END TYPE REPAIR_BILL
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TYPE VEHICLE
CHARACTER (LEN = 40) OWNER
INTEGER MILEAGE
TYPE(REPAIR_BILL) COST

END TYPE VEHICLE

TYPE (VEHICLE) BLACK_FORD, RED_FERRARI
examples of designators are:

BLACK_FORD % COST % PARTS
RED_FERRARI % COST
RED_FERRARI % OWNER

Given the following type definition and declaration, the designators X % A(1) and
X(1) % A may appear, but the designator X % A must not.

Type T
Real, Dimension(100) :: A
End Type T

Type(T) :: X(9)

6.6 Arrays

An array is a collection of scalar elements of any intrinsic or derived type. All of the el-
ements of an array have the same type and type parameters. An object that is specified
to have the DIMENSION attribute is an array. The value returned by a function may be
an array. The appearance of an array designator has no implications for the order in
which the individual elements are processed unless array element ordering is specifi-
cally required, such as for input/output statements.

6.6.1 Array Terminology

An array consists of elements that extend in one or more dimensions to represent col-
umns, rows, planes, etc. There may be up to seven dimensions in an array declaration.
The number of dimensions in an array is called the rank of the array. The number of el-
ements in a dimension is called the extent of the array in that dimension. Limits on the
size of extents are not specified in the Fortran standard.

The shape of an array is determined from the rank and the extents; to be precise,
the shape is a vector where each element of the vector is the extent in the correspond-
ing dimension. The size of an array is the product of the extents; that is, it is the total
number of elements in the array. Note that an array of size one is not a scalar.

For example, given the declaration

REAL X (0:9, 2)



Using Data 181

the rank of X is 2; X has two dimensions. The extent of the first dimension is 10; the ex-
tent of the second dimension is 2. The shape of X is 10 by 2, that is, a vector of two val-
ues, [10 2]. The size is 20, the product of the extents.

An object is given the DIMENSION attribute in a type declaration statement or in
one of several other declaration statements. The following are some ways of declaring
that A has rank 3 and shape [10 15 3]:

DIMENSION A(10, 15, 3)

REAL, DIMENSION(10, 15, 3) :: A
REAL A(C10, 15, 3)

COMMON A(10, 15, 3)

TARGET A(10, 15, 3)

Arrays have a lower and upper bound along each dimension. For arrays of nonzero
size, the lower bound is the smallest subscript value along a dimension; the upper
bound is the largest subscript value along that dimension. The default lower bound is
1 if the lower bound is omitted in the declaration. Array bounds may be positive, zero,
or negative. In the example:

REAL z(-3:10, 12)

the first dimension of Z ranges from -3 to 10, that is, -3, -2, -1, 0, 1, 2, ..., 9, 10. The
lower bound is -3; the upper bound is 10. In the second dimension, the lower bound
is 1; the upper bound is 12. The bounds for array expressions and zero-sized arrays are
described in 7.2.4.

6.6.2 Whole Arrays

The name of an array object or array component without a section subscript list speci-
fies all the elements of the array except when the name appears in an equivalence set
(5.14.1). The name may be that of a variable or a constant. Designators for a single ele-
ment of an array or a section of an array are permitted. In general, most attributes for
the whole array also apply to an element or section of an array. An element or section of
an array never has the ALLOCATABLE or POINTER attribute. An element never has
the DIMENSION attribute, but a section does.

6.6.3 Array Elements

An array element is one of the scalar elements that make up an array. A subscript list
is used to indicate which element is selected. If A is declared to be a one-dimensional
array:

REAL, DIMENSION (10) :: A

then A(1) selects the first element, A(2) to the second, and so on. The number in the pa-
rentheses is the subscript that indicates which scalar element is selected. If B is de-
clared to be a seven-dimensional array:

REAL B (5, 5, 5, 5, 4, 7, 5)
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then B (2, 3, 5, 1, 3, 7, 2) selects one scalar element of B, by specifying a subscript in
each dimension. The set of numbers that specify the position along each dimension in
turn (in this case, 2, 3, 5, 1, 3, 7, 2) is called a subscript list.

Rules and restrictions:

1. In an array element designator, a subscript must be present for each dimension of
the array.

2. For a structure component designator to be classified as an array element designa-
tor, every part must have zero rank and the last part must have a subscript.

6.6.4 Array Sections

Sometimes only a portion of an array is needed for a calculation. It is possible to desig-
nate a selected portion of an array as an array; this portion is called an array section. A
parent array is the array from which the portion that forms the array section is select-
ed.

The designator for an array section is the array variable name followed by a section
subscript list that consists of subscripts, triplet subscripts, or vector subscripts. At least
one subscript must be a triplet or vector subscript; otherwise, the designator indicates
an array element, not an array. The following example uses a section subscript to spec-
ify an array section:

REAL A (10)
A (2:5) = 1.0

The parent array A has 10 elements. The array section consists of the elements A(2),
A(3), A(4), and A(5) of the parent array. The section A(2:5) is an array itself and the val-
ue 1.0 is assigned to all four of its elements.

A section subscript (R619) can be any of:

subscript
subscript-triplet
vector-subscript

where a subscript triplet (R620) is:
[ subscript | : [ subscript ] [ : stride ]

Subscripts and strides must be scalar integer expressions and a vector subscript (R622)
must be an integer array expression of rank one. The rank of a section is the number of
subscript triplets or vector subscripts that appear in the designator.

Rules and restrictions:

1. For a designator to be classified as an array section designator, exactly one part
must have nonzero rank. Either the final or only part must have a section subscript
list and nonzero rank or another part must have nonzero rank.
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2. A section subscript must be present for each dimension of an array. If any section
subscript is simply a subscript, the section will have a lesser rank than its parent.

3. In an array section of an assumed-size array, the second subscript must not be
omitted from a subscript triplet in the last dimension.

6.6.4.1 Subscripts

A subscript, other than one in a subscript triplet, must be within the bounds for that di-
mension. A subscript may appear in an array section designator. Whenever this occurs,
it decreases the rank of the section by one.

6.6.4.2 Subscript Triplets

If the first subscript in a subscript triplet is omitted, the lower bound for the array in
that dimension is used. If the second subscript is omitted, the upper bound is used.
The stride is the increment between successive subscripts in the sequence and must be
nonzero. If it is omitted, it is assumed to be one. If the subscripts and stride are omitted
and only the colon (:) appears, the extent for the dimension is used. For an assumed-
size array, the second subscript in the last dimension must not be omitted.

When the stride is positive, an increasing sequence of integer values is specified
from the first subscript in increments of the stride, up to the last value that is not great-
er than the second subscript. The sequence is empty if the first subscript is greater than
the second. If any subscript sequence is empty, the array section is a zero-sized array,
because the size of the array is the product of its extents. For example, given the array
declared A(5, 4, 3) and the section A(3:5, 2, 1:2), the array section is of rank 2 with
shape [3 2] and size 6. The elements are:

AG 2, 1)AGB 2, 2)
A4, 2,1) A4, 2, 2)
AB, 2, 1) AB5, 2, 2)

The stride must not be 0.

When the stride is negative, a decreasing sequence of integer values is specified
from the first subscript, in increments of the stride, down to the last value that is not
less than the second subscript. The sequence is empty if the second subscript is greater
than the first, and the array section is a zero-sized array. For example, given the array
declared B(10) and the section B(9:4:-2), the array section is of rank 1 with shape [3]
and size 3. The elements are:

B(9)
B(7)
B(5)

However, the array sections B(9:4) and B(4:9:—1) are zero-sized arrays.

A subscript in a subscript triplet is not required to be within the bounds for the di-
mension as long as all subscript values selected by the triplet are within the bounds.
For example, the section B(3:11:7) is permitted. It has rank 1 with shape [2] and size 2.
The elements are:
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B(3)
B(10)

B(99:98) is a zero-sized array.
6.6.4.3 Vector Subscripts

While subscript triplets specify values in increasing or decreasing order with a speci-
fied stride to form a regular pattern, vector subscripts specify values in arbitrary order.
The values must be within the bounds for the dimension. A vector subscript is a rank-
one array of integer values used as a section subscript to select elements from a parent
array. For example:

INTEGER K(3)
REAL A(30)

The last assignment statement assigns the value 1.0 to A(4), A(7), and A(8) but not nec-
essarily in that order. The section A(K) is a rank-one array with shape [3] and size 3.

If K were assigned [4 7 4] instead, the element A(4) would be accessed in two ways:
as A(K(1)) and as A(K(3)). Such an array section is called a many-one array section. A
many-one section must not appear on the left of the equal sign in an assignment state-
ment or as an input item in a READ statement. The reason is that the result will de-
pend on the order of evaluation of the subscripts, which is not specified by the
language. The results would not be predictable and the program containing such a
statement would not be portable.

Array sections with vector subscripts must not appear:

1. as internal files
2. as pointer targets
3. as actual arguments for dummy arguments that become defined
If IV is declared:
INTEGER, DIMENSION(3) :: Iv=[4,5,4]

then the section B(8:9, 5:4, IV) is a zero-sized array of rank 3 and the section B(8:9, 5,
IV) is a 2 by 3 array consisting of the six elements:

B(8, 5, 4) B(8, 5, 5) B(8, 5, 4)
B(9, 5, 4) B(9, 5,5) B(9, 5, 4)

6.6.5 Examples of Array Elements and Array Sections

The following designators are classified as indicated by the comments on each line.
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ARRAY_A(1,2)
ARRAY_A(1:N:2,M)
ARRAY_B(:,:,:)(2:3)

SCALAR_A % SCALAR_B
SCALAR_A % ARRAY_C
SCALAR_A%ARRAY_C(L)

SCALAR_A%ARRAY_C(1:L)

SCALAR_C%ARRAY_D%SCALAR_D
ARRAY_E(1:N:2)%ARRAY_F (I, J)%STRING(K) (:)

I array
I array
I array
I array
I array

185

array element

rank-one array section

array section whose elements
are substrings of length 2

scalar structure component

structure component
element
section
section
section

If a part of a designator other than the last part has nonzero rank or the last part
has nonzero rank and also contains a section subscript list, the designator identifies an
array section. There may be at most one part with rank greater than zero. This is a
somewhat arbitrary restriction imposed for the sake of simplicity.

In the last example above, each component of the type definition is an array and
the object ARRAY_E(1:N:2) is an array. The designator is valid; each part except the
first is scalar. The substring range is not needed because it specifies the entire string;
however, it serves as a reminder that the last component is of type character.

The following examples demonstrate the allowable combinations of scalar and ar-
ray parents with scalar and array components.

TYPE REPAIR_BILL

REAL PARTS(20)
REAL LABOR

END TYPE REPAIR_BILL

TYPE(REPAIR_BILL) FIRST
TYPE(REPAIR_BILL) FOR_2003(6)

Scalar parent

ONOUVIDWNR

FIRST%LABOR
FIRST%PARTS (I)
FIRST%PARTS
FIRST%PARTS(I:J)
FOR_2003 (K)%LABOR
FOR_2003 (K)%PARTS (I)
FOR_2003 (K)%PARTS

FOR_2003 (K)%PARTS(I:3)

Array parent

9

10.
11.
12.
13.
14.

FOR_2003%LABOR
FOR_2003%PARTS (1)
FOR_2003%PARTS
FOR_2003%PARTS(I:J)
FOR_2003 (K:L)%LABOR

FOR_2003 (K:L)%PARTS(I)

structure component
array element
structure component
array section
structure component
array element
structure component
array section

array section
array section
TLLEGAL
ILLEGAL
array section
array section

(scalar)
(array)
(scalar)

(array)
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15. FOR_2003(K:L)%PARTS ! TLLEGAL
16. FOR_2003(K:L)%PARTS(I:J) ! TLLEGAL

Examples 11, 12, 15, and 16 are illegal because only one component may be of rank
greater than zero. Examples 3 and 7 are compact (contiguous) array objects and are
classified as whole arrays. Examples 9, 10, 13, and 14 are noncontiguous array objects
and are classified as array sections.

6.6.6 Array Element Order

The elements of an array form a sequence whose ordering is called array element or-
der. This is the sequence that occurs when the subscripts along the first dimension vary
most rapidly, and the subscripts along the last dimension vary most slowly. Thus, for
an array declared as:

REAL A(3, 2)

the elements in array element order are: A(1,1), A2, 1), AG, 1), A(1,2), A2 2),
A3, 2).

The position of an array element in this sequence is its subscript order value. Ele-
ment A(1, 1) has a subscript order value of 1. Element A(1, 2) has a subscript order val-
ue of 4. Table 6-1 shows how to compute the subscript order value for any element in
arrays of rank 1 through 7.

Table 6-1 Computation of subscript order value

Rank Subscript bounds Subscript list Subscript order value

1 j1ik, sy 1+(s;—jp)
2 J1ikyjp ks 5158, 1+(s1—.jl)

+ (5, —Jp) xd,
3 J1ikysdyikysjsy ks 8,80, 85 1+(s;—j;)

T (sy—j,y) xd,
+(s3—j3) xdyxd,

7 Jiikps onjgiky S5 o0 87 1+ (sy—jp)
T (sy—7p) x dy
T (s3—j3) xdy xd,
+

T(s7—j7) xdg xdsx...xd,

1. d; =max (k; — j; + 1, 0) is the size of the ith dimension.
2. If the size of the array is nonzero, ji <s; < ki foralli =1,2,..7.
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This ordering determines the effects of the input and output of arrays; it is needed
for features that depend on storage association such as EQUIVALENCE; and it deter-
mines the result of certain intrinsic functions such as MAXLOC. When arrays are used
as operands in expressions, the indicated operation is performed on corresponding el-
ements, but no order is implied for these elemental operations; they may be executed
in any order or simultaneously.

The subscript order of the elements of an array section is that of the array object
that the section represents. That is, given the array A(10) and the section A(2:9:2) con-
sisting of the elements A(2), A(4), A(6), and A(8), the subscript order value of A(2) in
the array section A(2:9:2) is 1; the subscript order value of A(4) in the section is 2 and
A(8) is 4.

Given the section A(9:4:-2), consisting of the elements A(9), A(7), and A(5), the
subscript order values of A(9), A(7), and A(5) are 1, 2, and 3, respectively.

6.7 Pointers and Allocatable Variables

There are several categories of dynamic data objects. Automatic objects are discussed
in 2.2.4. In addition, there are two data attributes that can be used to specify dynamic
data objects: ALLOCATABLE and POINTER. Arrays and scalars of any type may have
the ALLOCATABLE or POINTER attribute. Chapter 5 describes how such objects are
declared. This section describes how space is created for these objects, how it may be
released, and how pointers can be disassociated from any target.

The ALLOCATE statement is not the only means by which allocation may occur. In
Fortran 2003, because of changes to assignment, the ALLOCATE statement is no longer
needed in some cases. Assignment to an allocatable variable causes allocation if the
variable is unallocated or if the expression being assigned is an array of different shape
or any of the corresponding length type parameters of the expression and the variable
differ. This provides a shortcut for the Fortran programmer. See the examples at the
ends of 6.7.1 and 6.7.1.1.

The association status of a pointer is either defined or undefined; initially (unless
the pointer is initialized), it is undefined. An undefined pointer may be used in very
limited ways (16.2.2.1). The association status of any pointer becomes defined by nulli-
fication, allocation, or pointer assignment. If the status is defined, the pointer is either
associated with a target or disassociated from any target. A disassociated pointer has a
defined status and can be used as an argument to the ASSOCIATED intrinsic function,
but a pointer with undefined status must not.

When a pointer designator appears in an expression, the pointer must have both a
defined association status and its target must be defined with a value. Figure 6-1 shows
the various states that a pointer may assume.

At the top left, an uninitialized pointer P is declared; it has an undefined association
status. Its association status becomes defined if it is nullified (lower left) or if space is
allocated for it (upper right). Its target may be undefined (upper right) or defined when
a value is assigned to it (lower right).

Section 7.5.5.1 describes how pointers can be associated with existing space and
how dynamic objects can acquire values.
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Defined association status,
Undefined association status undefined target

Undefined

Associated

POINTER P(:) ALLOCATE (P(3))

Defined association status,
defined target

Defined association status,

disassociated
1
Associated .

NULLIFY (P)

ALLOCATE (P, SOURCE = [25,50,100])

Figure 6-1 States of a pointer

6.7.1 ALLOCATE Statement

The ALLOCATE statement creates space for variables with the ALLOCATABLE or
POINTER attribute. If the variable is a pointer, it becomes associated with the newly

created space.
The form of the ALLOCATE statement (R623) is:

ALLOCATE ( [ type-specifier :: ] allocation-list [ , allocate-option-list ] )

Type specifiers are described in 4. They may specify intrinsic or derived types.
An allocation (R628) is:

allocate-object [ ( allocate-shape-specification-list ) |

An allocate object (R629) is one of:

variable-name
structure-component
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and an allocate shape specification (R630) is:

[ allocate-lower-bound : ] allocate-upper-bound

An allocate-option (R624) is one of:

STAT = scalar-integer-variable
ERRMSG = scalar-default-character-variable
SOURCE = source-expr

Rules and restrictions:

1.

10.

11.

The allocate lower bound and allocate upper bound must be scalar integer expres-
sions.

Each allocate object must be a data pointer or an allocatable variable.

An allocate-shape-specification-list may appear if and only if the allocate object is
an array. The number of allocate shape specifications must agree with the declared
rank of the array.

If an allocate object in a statement has a deferred type parameter, a type specifier
or a SOURCE option must appear in the statement.

If a type specifier appears, it must specify a type that is compatible with each allo-
cate object (5.2).

Either a type specifier or a SOURCE option must appear if any allocate object in a
statement is unlimited polymorphic or is of abstract type (4.4.12.3).

A type parameter value in a type specifier must be an asterisk if and only if each
allocate object is a dummy argument for which the corresponding type parameter
is assumed.

If a type specifier appears, the kind type parameter values of each allocate object
must be the same as the corresponding kind type parameters in the type specifier;
length type parameter values may differ.

If the SOURCE option appears, type-specifier must not appear, and the allocation
list must contain only one allocate object, which must be type compatible (5.2) with
source-expr.

The rank of source-expr must be either zero or the same as that of the single allo-
cate object. Corresponding kind type parameters must have the same values.

Neither the STAT variable, source-expr, nor the ERRMSG variable may be allocated
in the ALLOCATE statement in which they appear; nor may they depend on the
value, bounds, length type parameters, allocation status, or association status of
any allocate object in the same statement.
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12. An allocate object or a bound or type parameter must not depend on the value of
the STAT variable, the value of the ERRMSG variable, or on the value, bounds,
length type parameters, allocation status, or association status of any allocate ob-
ject in the same ALLOCATE statement.

If a type-specifier or a source-expr appears, it determines the dynamic type and type
parameters of the allocate object(s). If neither appears, allocation of a polymorphic ob-
ject creates an object with a dynamic type and type parameters that are the same as its
declared type.

If source-expr appears, it must be conformable with the allocate object. If the allo-
cation is successful, the value of the allocate object becomes that of source-expr.

If a STAT variable appears, it is set to zero if the allocation is successful and is set
to a processor dependent positive value if there is an error condition. Each allocate ob-
ject that was successfully allocated will have an allocation status of allocated or a
pointer association status of associated; each allocate object that was not successfully
allocated will retain its previous allocation status or pointer association status. If there
is no STAT variable, the program terminates when an error condition occurs.

An error condition occurs if:

1. there is insufficient memory for the requested allocations or some other anomaly is
detected by the processor,

2. an allocate object in an ALLOCATE statement has an allocation status of allocated,

3. the value specified for a type parameter in a type specification differs from a corre-
sponding nondeferred value specified in the declaration of any of the allocate ob-
jects, or

4. the value of a type parameter in source-expr is different from the value of a nonde-
ferred length type parameter of the allocate object.

If the ERRMSG option appears and an error condition occurs during execution of
an ALLOCATE statement, the processor will assign an explanatory message to the
errmsg character variable. Otherwise, the processor will not change the value of the
errmsg variable.

An example of an allocate statement is:

ALLOCATE (pressure (i), mat (-1 : total, 0:50), STAT = alloc_err)

When an ALLOCATE statement is executed for an array, the values of the lower
and upper bound expressions determine the shape of the array. If an entity in one of
these expressions is subsequently redefined, the shape of the allocated array is not
changed. If the lower bound is omitted, the default is 1. If the upper bound is less than
the lower bound, the extent in that dimension is 0 and the array has zero size, in which
case no memory is allocated for the array.

An allocate object may be of type character. If it has a character length of zero, no
memory is allocated.
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An example of an ALLOCATE statement in which the value and dynamic type are
determined by reference to another object is:

CLASS (*), ALLOCATABLE :: ANY
CLASS (*), POINTER :: PICK

PICK => .
ALLOCATE (ANY, SOURCE = PICK) ! Allocate ANY with the value and
! dynamic type of PICK
An example of an (unnecessary) ALLOCATE statement with a type specifier is:

TYPE BOOK
CHARACTER (LEN = : ), ALLOCATABLE :: TITLE
END TYPE BOOK

TYPE (BOOK) :: BOOKLIST (100)
CHARACTER (LEN = 1000) :: HOLDER

DO I =1, 100

READ *, HOLDER I Get title
J = LEN_TRIM (HOLDER) I Get Tength of title
IF (J <= 1) EXIT
ALLOCATE (CHARACTER (LEN = J) :: BOOKLIST(I) % TITLE)
BOOKLIST(I) % TITLE = HOLDER(1:1)

END DO

The ALLOCATE statement can be omitted because allocation is accomplished as a
part of the assignment in the statement following the ALLOCATE statement.

6.7.1.1 Allocation of Allocatable Variables

An allocatable variable has an allocation status of allocated or unallocated at any time
during the execution of a program. Unlike pointers, there is no undefined allocation
status. At the beginning of execution of a program, an allocatable variable has a status
of unallocated. Its status changes to allocated if it appears in a successfully executed
ALLOCATE statement, if it is allocated during assignment (7.5.2), or if it is given that
status by the allocation transfer intrinsic MOVE_ALLOC (13.3.3.1). An allocatable vari-
able with this status may be referenced, defined, or deallocated. The intrinsic function
ALLOCATED (13.3.1.4) returns true for such a variable.

The status of an allocatable variable becomes unallocated if it is successfully deal-
located (6.7.3.1) or if it is given that status by the allocation transfer intrinsic. An allo-
catable variable with this status must not be referenced, defined, or supplied as an
actual argument corresponding to a nonallocatable dummy argument, except to certain
intrinsic inquiry functions. The intrinsic function ALLOCATED returns false for such a
variable.

When the allocation status of an allocatable variable changes, the allocation status
of any associated allocatable variable changes accordingly. Allocation of an allocatable
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variable establishes values for the deferred type parameters of all associated allocatable
variables.

An example of using the intrinsic function ALLOCATED to query the allocation
status of an allocatable variable is:

REAL, ALLOCATABLE :: X(:,:,:)
IF(.NOT. ALLOCATED(X)) ALLOCATE (X(-6:2,10,3))

The array X cannot be referenced until it has been allocated and assigned a value; it can
be used as an argument to the ASSOCIATED intrinsic, as that is not a reference (2.4). X
must be declared with a deferred-shape array specification and the ALLOCATABLE at-
tribute.

An unsaved allocatable object that is a local variable of a procedure has a status of
unallocated at the beginning of each invocation of the procedure. The status may
change during execution of the procedure. An unsaved allocatable object that is a local
variable of a module has an initial status of unallocated. The status may change during
execution of the program. When an object of derived type is created by an ALLOCATE
statement without a SOURCE option, any allocatable ultimate components have an al-
location status of unallocated.

In the following example, allocation occurs when an array constructor is assigned
to the allocatable array GAMEBOARD. In the first ALLOCATE statement, the value
and dynamic type and properties of STORE are determined by reference to GAME-
BOARD. In the second ALLOCATE statement, they are determined by reference to
CELLS.

TYPE POSITION

INTEGER :: COLOR, PIECE

LOGICAL :: FILLED = .FALSE.
END TYPE POSITION
TYPE (POSITION), ALLOCATABLE :: GAMEBOARD (:,:)
CLASS (*), ALLOCATABLE :: TEMP_STORE (:,:)
REAL, POINTER :: CELLS (:,:)

READ *, SIZE
GAMEBOARD = RESHAPE ( &
[ ( ( [ POSITION (COLOR = I, PIECE = J), &
I =1, SIzZE), J =1, S1ZE) 1 , &
SHAPE = [SIZE, SIZE] )

ALLOCATE (TEMP_STORE, SOURCE = GAMEBOARD)

CELLS => . .
IF (.NOT.ALLOCATED(TEMP_STORE)) ALLOCATE (TEMP_STORE, SOURCE = CELLS)
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6.7.1.2 Allocation of Pointers

When an object with the POINTER attribute is allocated, space is created, and the
pointer is associated with that space, which becomes the pointer target. Such an allo-
cated pointer target implicitly has the target attribute which allows additional pointers
to point to that target or part of that target. Additional pointers may become associated
with the same target by pointer assignment (7.5.5.1). A pointer target may be a variable
with the ALLOCATABLE attribute if the variable also has the TARGET attribute.

It is not an error to allocate a pointer that is already associated with a target. In this
case, a new pointer target is created as required by the attributes of the pointer and
any array bounds, type, and type parameters specified by the ALLOCATE statement.
The previous association of the pointer is lost. If there was no other way to access the
previous target, it becomes inaccessible. This is sometimes referred to as a “memory
leak”.

The ASSOCIATED intrinsic function may be used to query the association status of
a pointer only if the association status of the pointer is defined. There is no means to
determine whether a pointer with defined association status was associated by an
ALLOCATE statement; the ALLOCATED intrinsic function cannot have a pointer
argument. The ASSOCIATED function also may be used to inquire whether a pointer is
associated with a particular target or whether two pointers are associated with the
same target.

At the beginning of execution of a function with a pointer result, the association
status of the result pointer is undefined. Before such a function returns, it must associ-
ate a target with this pointer or cause the association status of the pointer to become
disassociated.

Pointers can be used in many ways; an important usage is the creation of linked
lists. For example:

TYPE NODE

INTEGER :: VALUE

TYPE (NODE), POINTER :: NEXT => NULL( )
END TYPE NODE

TYPE(NODE), POINTER :: LIST

ALLOCATE (LIST)
LIST % VALUE = 17
ALLOCATE (LIST % NEXT)

The first two executable statements create a node pointed to by LIST and put the value
17 in the VALUE component of the node. The next statement creates a second node
pointed to by the NEXT component of the first node. The NEXT component of the sec-
ond node is disassociated because of default initialization specified for the derived
type NODE. Its VALUE component is undefined.
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6.7.2 NULLIFY Statement

The NULLIFY statement causes a pointer to be disassociated from any target. Unless
initialized, pointers have an initial association status that is undefined. One way to
give a pointer a defined association status of disassociated (pointing to no target) is to
execute a NULLIFY statement for the pointer. Another way is to execute a pointer as-
signment statement to the intrinsic function NULL. The intrinsic function NULL can be
used to initialize a pointer as well.

The form of the NULLIFY statement (R633) is:

NULLIFY ( pointer-object-list )
where a pointer object (R634) is one of:

variable-name
structure-component
procedure-pointer-name

Rules and restrictions:
1. Each pointer object must have the POINTER attribute.

2. A pointer object must not depend on the value, bounds, or association status of an-
other pointer object in the same NULLIFY statement.

3. When a NULLIFY statement is applied to a polymorphic pointer (5.2), its dynamic
type becomes the declared type.

6.7.3 DEALLOCATE Statement

The DEALLOCATE statement releases the space allocated for an allocatable variable or
a pointer target and nullifies the pointer. After a pointer or an allocatable variable has
been deallocated, it cannot be referenced or defined until it is allocated or assigned
again.

The form of the DEALLOCATE statement (R635) is:

DEALLOCATE ( allocate-object-list [ , deallocate-option-list ] )

where an allocate object is (R629) one of:

variable-name
structure-component

and a deallocate-option (R636) is one of:

STAT = scalar-integer-variable
ERRMSG = scalar-default-character-variable

Rules and restrictions:

1. Each allocate object must be a data pointer or an allocatable variable.
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2. Neither the STAT variable nor the ERRMSG variable may be deallocated in the
same DEALLOCATE statement; nor may they depend on the value, bounds, alloca-
tion status, or association status of any allocate object in the same DEALLOCATE
statement.

3. An allocate object must not depend on the value, bounds, allocation status, or asso-
ciation status of another allocate-object in the same DEALLOCATE statement; it
also must not depend on the value of the STAT variable or the ERRMSG variable in
that statement.

The STAT variable is set to zero if the deallocation is successful and is set to a pro-
cessor-dependent positive value if there is an error condition. If an error occurs, each
allocate object that was successfully deallocated will have an allocation status of unal-
located or a pointer association status of disassociated. Each allocate object that was
not successfully deallocated will retain its previous allocation status or pointer associa-
tion status. The status of the allocate objects can be individually checked with the AL-
LOCATED or ASSOCIATED intrinsic functions. If there is no STAT variable, the
program terminates when an error condition occurs. An error condition occurs if an
allocate object has a status of unallocated.

If the ERRMSG option appears and an error condition occurs during the execution of
a DEALLOCATE statement, the processor will assign an explanatory message to the
errmsg character variable; otherwise, the processor will not change the value of the
errmsg variable.

An example of a DEALLOCATE statement is:

DEALLOCATE (PRESSURE, MAT, ERRMSG = MSG, STAT = DERR)
An example of the allocation and deallocation of an allocatable array is:

REAL, ALLOCATABLE :: X(:,:)

ALLOCATE (X(10,2), STAT=IERR)
IF (IERR > 0) CALL HANDLER
X = 0.0

DEALLOCATE (X)

ALLOCATE (X(-10:10,5), STAT=JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the ALLOCAT-
ABLE attribute. Space is allocated for it and it is given bounds, extents, shape, and size
and then initialized to have zero values in all elements. Later X is deallocated, and still
later, it is again allocated with different bounds, extents, shape, and size, but its rank
remains as declared.
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6.7.3.1 Deallocation of Allocatable Variables

An allocatable variable may have the TARGET attribute. If such a variable is deallocat-
ed, the association status of any pointer associated with the variable will become unde-
fined. Such a variable can be deallocated only by the appearance of its name in a
DEALLOCATE statement. It must not be deallocated by the appearance of the pointer
name in a DEALLOCATE statement.

When a RETURN or END statement is executed in a procedure, an allocatable vari-
able that is a named local variable of the procedure retains its allocation and definition
status if it has the SAVE attribute or is a function result variable or a subobject thereof;
otherwise, it is deallocated.

In the example

SUBROUTINE TASK
REAL, ALLOCATABLE :: WORK
REAL, ALLOCATABLE, SAVE :: VALUES

END SUBROUTINE TASK

on return from subroutine TASK, the allocation status of VALUES is preserved because
VALUES has the SAVE attribute. WORK does not have the SAVE attribute, so it will be
deallocated. On the next invocation of TASK, WORK will have an allocation status of
unallocated.

If an allocatable variable declared in a module is allocated and, on the execution of a
RETURN or END statement, no active scoping unit has access to the module, the
allocation status of the variable is processor dependent. The allocation status can be
tested and the variable can be reallocated.

When a variable of derived type is deallocated, any allocated allocatable subobject
is deallocated.

A function may have a result that is allocatable or is a structure with a subobject
that is allocatable. If such a function appears in a specification expression that is exe-
cuted, the result or any allocated subobject of the result is deallocated before execution
of the executable constructs in the scoping unit. If such a function appears in an execut-
able construct that is executed, the result or any allocated subobject of the result is
deallocated after execution of the innermost executable construct containing the func-
tion reference.

When a procedure is invoked, any allocated allocatable object that is an actual ar-
gument associated with an INTENT (OUT) allocatable dummy argument is deallocat-
ed; any allocated allocatable subobject of the actual argument is also deallocated.

Deallocation may occur when intrinsic assignment takes place (7.5.2).

If an allocatable component is a subobject of a finalizable object (4.4.11.3), that ob-
ject is finalized before the component is automatically deallocated.

The effect of automatic deallocation is the same as that of a DEALLOCATE state-
ment without a deallocate-option-list.
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6.7.3.2 Deallocation of Pointers

A pointer may be deallocated only if it has a defined association status. Deallocating a
pointer that is disassociated causes an error condition in the DEALLOCATE statement.
A pointer associated with an allocatable variable must not be deallocated. (Of course,
the variable itself may be deallocated which would cause the association status of any
associated pointers to become undefined.)

It is possible (by pointer assignment) to associate a pointer with a portion of an ob-
ject such as an array section, an array element, or a substring. A pointer associated
with only a portion of an object must not be deallocated. If more than one pointer is as-
sociated with an object, deallocating one of the pointers causes the association status of
the others to become undefined. There are other events that cause the association status
of a pointer to become undefined (16.2.2.1.3). When its status is undefined, a pointer
can no longer be referenced, defined, deallocated, or be an argument to the
ASSOCIATED intrinsic function. It may be allocated, nullified, or pointer assigned to a
new target.

An example of the allocation of a pointer is:

REAL, POINTER :: X (:, :)

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR .GT. 0) CALL HANDLER
X = 0.0

ALLOCATE (X(-10:10, 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the POINTER at-
tribute. Space is allocated for it and it is given bounds, extents, shape, and size and
then initialized to have zero values in all elements. Later X is allocated with different
bounds, extents, shape, and size. This example is quite similar to the previous example
for allocatable arrays, except that, in the case of pointers, it is not necessary that X be
deallocated before it is reallocated.
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* An Expression (made up of primaries, operators, and parentheses) usually pro-
duces a value as a result of evaluation. An expression has a type, type parameters,
and shape. Primaries and results may be scalars or arrays. If a primary is a pointer,
the value of the target is used in most cases. If the result is a pointer, it might not
have a value or any other particular attribute.

An Initialization Expression is an expression that can be evaluated at compile time.
It is used whenever a value is needed at compile time, such as for kind type param-
eters, named constants, or to initialize variables.

A Specification Expression is a scalar expression of type integer that can be evalu-
ated on entry to a subprogram. Specification expressions may be used to specify
array bounds and character lengths.

e Assignment is a process that gives a variable a value which is the result of evaluat-
ing an expression. Assignment is provided for all types. Assignment can cause
changes in the variable’s dynamic type, length type parameters, and bounds.

Defined Assignment is provided by a user-supplied subroutine with an assign-
ment interface.

Pointer Assignment associates a pointer with a target, disassociates the pointer, or
makes its association status undefined. A target is either a variable, a procedure, or
a function that returns a pointer.

Masked Array Assignment assigns values to array elements selected by a mask.
This is accomplished with a WHERE statement or construct.

Indexed Array Assignment assigns values to array elements selected by index val-
ues and an optional mask. This is accomplished with a FORALL statement or con-
struct.

In Fortran, calculations are specified by writing expressions. Expressions look much
like algebraic formulas in mathematics, particularly if the expressions involve calcula-
tions on numerical values. In fact, the attempt to give the programmer a programming
language that reflects, as much as possible, ordinary mathematical notation is what in-
spired the name Fortran (Formula translation).

An expression represents a computation that results in a value or a pointer. This
chapter describes how expressions are formed, how they are interpreted, and how they
are evaluated. Almost anywhere a value is needed, the value can be provided by a gen-
eral expression rather than just a simple variable or constant. The result of an
expression also has a type, type parameters, and shape. Context sometimes limits the al-
lowable expressions; for example, subscripts must be scalar integer expressions.

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_7, © Springer-Verlag London Limited 2009
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The result value is a scalar or an array. A complex value or a structure value is a
scalar, even though it may consist of more than one part (for example, a complex value
consists of two parts).

Expressions are described in terms of the following three sets of rules:

® The rules for forming expressions (syntax) (7.1)
¢ The rules for interpreting expressions (semantics) (7.2)
e The rules for evaluating expressions (optimization of the computation) (7.3)

The syntax rules indicate which forms of expressions are valid. The semantics indi-
cate how each expression is to be interpreted. Once an expression has been given an in-
terpretation, a compiler may evaluate another completely different expression,
provided the expression evaluated is mathematically equivalent to the original.

One of the major uses of expressions is in assignment statements where the value
of an expression is assigned to a variable. Assignment may be

¢ intrinsic assignment

¢ defined assignment

¢ masked array assignment

¢ indexed parallel array assignment
® pointer assignment

Intrinsic assignment evaluates an expression and uses the result to define a variable.
Defined assignment evaluates an expression and invokes a user-provided subroutine.
For masked array assignment, multiple scalar values are involved and the mask deter-
mines which computations and assignments are performed. For indexed parallel array
assignment, a set of parallel assignments is specified by an index set and an optional
masked scalar expression. For pointer assignment, a pointer, the object on the left side,
is associated with (points to) the target indicated by the right side. The forms of assign-
ment are described in detail in this chapter.

7.1 Formation of Expressions

An expression is formed from primaries, operators, and parentheses. The simplest
form of an expression is a constant or a variable. Some examples are:

3.1416 A real constant

X A scalar variable
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Slightly more complicated expressions consist of a designator, an array constructor,
a structure constructor, a function reference, a type parameter inquiry, or a type param-
eter name. Examples are:

[ X, Y, X] An array constructor
Y (2:10:2) A variable that is a section of array Y

Either a variable that is a component of a structure M or

M % N I
a type parameter inquiry

FX (Y + Z) A function reference

These simple objects may be combined with operators to form more complicated
expressions. Examples are:

A+B An expression using intrinsic +

A+B .X. C An expression using intrinsic + and defined operator .X.

Finally, any expression enclosed in parentheses is an expression; this recursion al-
lows the formation of arbitrarily complicated expressions.

7.1.1 Operators and Operations

There are two classes of operations within an expression: intrinsic operations and
nonintrinsic operations. The latter class is often called defined operations or user-
defined operations. A nonintrinsic operation can be defined as a new operator, such as
.MatrixDivide., or as an extension of an existing intrinsic operator, such as .NOT. or
+. Extending an existing operator is often called overloading.

7.1.1.1 Operators

An intrinsic operator is built into the Fortran language. Table 7-1 lists the intrinsic op-
erators and their allowed operand types. A defined operator (12.5.4.2) is defined by
the programmer using a function subprogram. There are two sorts of defined opera-
tors: extensions of intrinsic operators and new operators.

An operator is either unary or binary; a unary operator requires one operand and a
binary operator requires two operands.

Note that the operators + and — are both unary and binary. The only intrinsic unary
operators are +, —, and .NOT. The operator .NOT. is the only intrinsic operator that is
a unary operator but not a binary operator.

There is a precedence ordering among the operators. This precedence is used to de-
termine the interpretation of expressions containing more than one operator. The pre-
cedences of all operators are described in more detail in 7.2.1.



202 Chapter 7

Table 7-1 Intrinsic operators and the allowed types of their operands

Operator  Intrinsic

category operator Operand types

Arithmetic  *%, %, /, +, -, Of any numeric type and any kind type parameters
unary + unary —

Character  // Both of type character of any length with the same
kind type parameter

Relational  .EQ., .NE., Either both of any numeric type and any kind type

==, [= parameters, or both of type character of any length

and with the same kind type parameter

Relational  .GT., .GE., .LT., .LE., Both of any numeric type except complex and any
> >= < <= kind type parameter, or both of type character of any
length and with the same kind type parameter

Logical .NOT., .AND., .OR.,  Of type logical with any kind type parameters
.EQV., .NEQV.

Note: The relational operator symbols ==, /=, >, >=, <, and <= are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., and .LE., respectively.

7.1.1.2 Operations

The term operation refers both to the syntax forms of an operator and its operands and
also to the action performed.

An operation is unary or binary, depending on whether its operator is unary or bi-
nary.

A unary operation has one operand as in:

operator Xy

Examples are:
-C

+ J
.NOT. L

A binary operation has two operands as in:
Xy operator X5
Examples are

A+ B
2 * C

An operation is intrinsic or defined. Intrinsic operations are those defined by the
language. For an operation to be intrinsic, an intrinsic operator symbol must be used
and the operands must be of the intrinsic types specified in Table 7-1.



Expressions and Assignment 203

A defined operation is any nonintrinsic operation that is interpreted and evaluat-
ed by a function subprogram. The defined operation uses a defined operator, either an
extension of an intrinsic operator or a new operator. Defined operations are described in
12.5.4.2. The forms of a defined operation are:

intrinsic-unary-operator x,
nonintrinsic-unary-operator X,

X4 intrinsic-binary-operator x,

X4 nonintrinsic-binary-operator x,

where x; and x, are operands. Intrinsic operations cannot be redefined. Therefore, when
either an intrinsic unary or binary operator symbol is used in a defined operation, the
operand types must not be the same as the types of the operands specified in Table 7-1
for the particular intrinsic operator symbol. Examples of each of the forms are:

- Person

.PLUS. A

Matrix_A / Matrix_B
A .HIGHER. B

7.1.2 Rules for Forming Expressions

The set of syntax rules defines an expression in terms of operators and operands which
may themselves be expressions. As a result, the formal set of rules is recursive. The ba-
sic or lowest level of an expression is a primary. The rules for forming expressions are
described from the lowest or most primitive level to the highest or most complex level;
that is, the rules are stated from a primary up to an expression.

Primary. A primary has one of the following forms (R701):

constant

designator

array constructor
structure constructor
function reference
type parameter inquiry
type parameter name
( expression )

Examples of primaries are:

3.2 A real constant
A A designator
[1,7,7] An array constructor

RATIONAL (I, ]) A structure constructor
STRING % LEN A type parameter inquiry
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NROWS A type parameter name
FCN (A) A function reference
(A1B) A parenthesized expression

A designator (6.2, R603) is a very general term and includes named objects, array
elements and sections, structure components, and substrings.

A general expression is built up by combining operators with their operands,
which can be primaries or other forms of expressions. Complicated expressions usually
enclose some of the operations in parentheses either to control operation precedence or
associativity or to make the expression more readable.

The grammar that follows is a simpler, easier to understand, version compared to
the one given by rules R310, R311, R312, and R701 through R723 of the Fortran 2003
standard. The simplification has lost some of the suggested precedence and associativity
information of the standard grammar. The grammar needs to be read in conjunction with
the restrictions and explanations below and also the discussion of operator precedence
(7.2.1).

defined-unary-expr is [ nonintrinsic-unary-op ] primary

power-expr is [ defined-unary-expr ** ] ... defined-unary-expr
mult-expr is power-expr [ mult-like-op power-expr ] ...
add-expr is [ unary-add-like-op | mult-expr [ add-like-op mult-expr ] ...
concat-expr is add-expr [ // add-expr ] ...
comparison-expr is concat-expr relational-op concat-expr
not-expr is [ .NOT. ] comparison-expr
and-expr is not-expr [ .AND. not-expr ] ...
or-expr is and-expr [ .OR. and-expr] ...
equiv-expr is or-expr [ equiv-op or-expr ] ...
expr is equiv-expr [ nonintrinsic-binary-op equiv-expr ] ...
mult-like-op is *

or /

unary-add-like-op is add-like-op

add-like-op is +
or -
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relational-op is
or
or
or
or
or
or
or
or
or
or
or

equiv-op is
or
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.EQV.
.NEQV.

Note that power-expr has a different form which suggests a right-to-left order of
evaluation of exponents. The form of the other operations suggests a left-to-right order

of evaluation.

Each operand must have an appropriate type as described in Table 7-1 (for intrinsic
operators) or specified by the function that defines the operation (for defined opera-

tors).

The syntax rules for expressions have some consequences that may not be obvious.

* A unary plus or minus followed by a constant is not a constant; it is an expression.
As a consequence, parentheses must be used for some common formulas; there is
little other effect on the language. Except for expression syntax, there are few cases
where it matters that 6, for example, is a constant whereas —6 is an expression. The
major one is that on a 2s complement 16-bit machine —32768 is representable as an
integer, but this expression is likely to cause an integer overflow as written.

* Except for some cases involving unary operators, two operators cannot be adjacent.

Thus, for example

X **% -y I Invalid syntax
(A+B) * -2 I Invalid syntax
.not. .not. OK ! Invalid syntax

are illegal. Parentheses can be used to express the intention of the above illegal ex-

pressions
X ** (—Y)
(A+B) * (-2)

.not. (.not. OK)
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On the other hand, the following are legal:
X > =Y
X>-Y .0R. -X>0
A .and. .not. B
C + .MatrixInverse. B
.not. -A ! for an appropriate extension of - or .NOT.

¢ The relational operators (e.g., < or .NE.) cannot occur in a series. That is, expres-
sions such as

A>B>C ! Invalid syntax

are illegal.

7.2 Interpretation of Expressions

Interpretation of an expression determines the meaning of the expression. As with the
rules for forming an expression, the rules for interpreting an expression are described
from the bottom up, from the interpretation of constants, variables, constructors, and
functions to the interpretation of each subexpression to the interpretation of the entire
expression.

For the purpose of evaluation of expressions, it is required that each referenced op-
erand (2.4) be defined, including all of its parts. If the operand is a subobject (part of an
array, structure, or string), only the selected part is required to be defined. If the oper-
and is a pointer, it must be associated with a target that is defined. Note that function
references are not in themselves references. Inquiry functions, such as SIZE, do not
require that their arguments be defined. Whether or not a function requires that its
arguments be defined depends on the particular function.

For the numeric intrinsic operations, the operands must have values for which the
operation is well-defined on the processor being used. For example, on some proces-
sors, the result of any of the numeric operations must be within the exponent range for
the result data type. Most processors support some form of IEEE arithmetic (14) and
can process values that are out of range.

When an expression is interpreted, the meaning of the simplest primaries, such as
constants and variables, is determined. Once these are determined, the operations for
which they are operands are interpreted in precedence order, and a meaning for the
operation is determined by the interpretation rules for each operator. This repeats re-
cursively until the entire expression is interpreted and a meaning is determined.

The interpretation rules for operations are either rules for the intrinsic operations
(intrinsic operators with operands of the intrinsic types specified by Table 7-1) or rules
for the defined operations (provided by function subprograms). Except for integer di-
vision, the intrinsic operations are interpreted in the usual mathematical way, subject
to representation limitations (for example, a finite range of integers, or finite precision
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of real numbers). The defined operations are interpreted by a function program that is
specified in an interface block with a generic specifier of the form OPERATOR (defined-
operator).

The interpretation rules for an intrinsic or a defined operation are independent of
the context in which the expression occurs, except for the NULL intrinsic function.
That is, the type, type parameters, and interpretation of any expression do not depend
on any part of a larger expression in which it occurs. This statement is often misunder-
stood. It does not mean that in all cases the results of individual operations with the
same operands must be the same in all contexts. The reason is that the actual results of
the intrinsic operations for real and complex operands are not specified precisely. For
example, the following code fragment

REAL :: A, B, X
X = A+B
PRINT *, A+B .EQ. X

may print the value false because the result of A + B is required to be only an approx-
imation of the mathematical result of adding A to B, and different numerical approxi-
mations are allowed in different contexts. This allows an implementation the freedom
to optimize the evaluation of expressions. Many processors keep intermediate values of
an expression in registers and these values may have higher precision than values stored
in memory. When a value in a register is compared with a value that is fetched from
memory, the comparison may give surprising results because of the precision differences.
Because of the approximate nature of floating-point computations, programmers should
program defensively if small differences are important.

This section covers the precedence of operators, which determines how the opera-
tions in an expression are grouped; then it covers the data type and type parameters of
an expression, the shape and bounds of an expression, and the meaning of an expres-
sion.

These properties are determined inside-out in the sense that they are determined
first for the primaries. These properties then are determined repeatedly for the opera-
tions in precedence order, resulting eventually in the properties for the expression.

For example, consider the expression A + B * C, where A, B, and C are of numeric
type. First, the data types, type parameter values, and shapes of the three variables A,
B, and C are determined. Because * has a higher precedence than +, the type, type pa-
rameters, and shape of the expression B * C are determined next, and then these prop-
erties for the entire expression are determined from those of A and B * C.

7.21 Precedence of Operators

It is the precedence rules, not the formation rules, that determine how an expression is
interpreted. Table 7-2 summarizes the relative precedence of operators, including the
precedence when operators of equal precedence are adjacent. An entry “N/A” in the
column titled “In context of equal precedence” indicates that the operator cannot ap-
pear in such contexts. Note that these operators are not intrinsic operators unless the
types of the operands are those specified in Table 7-1.
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Table 7-2 Categories of operations and relative precedences

Category In context of
of operator =~ Operator Precedence equal precedence
Defined Defined unary operator Highest N/A
Numeric o . Right-to-left
Numeric *or/ . Left-to-right
Numeric Unary + or — . N/A
Numeric Binary + or — . Left-to-right
Character /I . Left-to-right
Relational .EQ., .NE., .LT,, .LE., .GT., .GE. . N/A

==, |5, <, <=, > >=
Logical .NOT. . N/A
Logical .AND. . Left-to-right
Logical .OR. . Left-to-right
Logical .EQWV. or .NEQV. . Left-to-right
Defined Defined binary operator Lowest Left-to-right

For example, in the expression
A .AND. B .AND. C .OR. D

Table 7-2 indicates that the . AND. operator is of higher precedence than the .OR. op-
erator, and the .AND. operators are combined left-to-right when in contexts of equal
precedence; thus, A and B are combined by the . AND. operator, the result A .AND. B
is combined with C using the . AND. operator, and that result is combined with D us-
ing the .OR. operator. This expression is thus interpreted the same way as the follow-
ing fully parenthesized expression

((A .AND. B) .AND. C) .OR. D

Exponentiation is right associative; all of the other binary operators are left associa-
tive (except for the relational operators, which cannot appear in a series). Thus

A ®% B %% C
is interpreted as

A ¥% (B ¥* C)
while

A*B/C
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is interpreted as
(A*B) /C

Note that all the defined operators have fixed precedences; defined unary opera-
tors have the highest precedence of all operators and are all of equal precedence; de-
fined binary operators have the lowest precedence, are all of equal precedence, and are
combined left-to-right when in contexts of equal precedence. Both kinds of defined op-
erators may be generic.

Recall that new defined unary and new defined binary operators have the form .let-
ter [letter...]. (3.2.4). It is also possible to give additional meanings to the intrinsic oper-
ators (7.2.7.2 or 12.5.4.2); they are called extended intrinsic operators or, sometimes,
overloaded operators. They have the same precedence as the intrinsic operator. An inter-
esting consequence is that if the .NOT. operator is extended, it is a defined operator and
a unary operator. However, it is not a defined unary operator; it is an extended intrinsic
operator. It has the same precedence as the intrinsic . NOT. operator.

As a consequence of the expression formation rules, unary operators in the same
category cannot appear in a context of equal precedence; parentheses must be used.
There is thus no left-to-right or right-to-left rule for any unary operators. Similarly, the
relational operators cannot appear in a context of equal precedence; consequently,
there is no left-to-right or right-to-left rule for the relational operators.

7.2.2 Data Type and Type Parameters of an Expression

Once the interpretation of an expression is complete, the data type and type parame-
ters of the expression are determined recursively from the primaries and operations
that make up the expression.

Expressions have both a declared type and a dynamic type. The declared type of
an expression is determined by the following rules using the declared types of the en-
tities and defined operators. The declared type can be determined at compile-time. The
dynamic type of an expression is also determined by the same rules; however, the dy-
namic types of the entities and operands are used as the expression is evaluated at run-
time. If none of the entities or operators are polymorphic, the declared type will be the
same as the dynamic type. If the expression is a polymorphic primary or a defined op-
eration with a polymorphic result, the declared and dynamic types might be different.

7.2.21 Data Type and Type Parameters of a Primary

The type and type parameters of a literal constant are determined by the form of the
constant (4.2.6) and not from the context. For example, the form of the constant

0.333333333333333333333333333333

indicates that it is of type default real. Neither the large number of digits in the constant,
nor usage in a context where double precision would be appropriate makes the constant
anything but a default real constant. Similarly

(1.3_LONG, 2.9_LONG)
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indicates that it is of type complex and of kind LONG, regardless of where it appears.
The type of a named constant is determined by its declaration.
The type and type parameters of a variable are determined by its declaration and
possibly partly when it is allocated or pointer assigned. For example,

TYPE :: D3(N)

INTEGER, LEN :: N

REAL, DIMENSION(N) :: A, B, C
END TYPE D3
TYPE(D3(N=:)), ALLOCATABLE :: QQ

indicates that QQ is of type D3, but until it is allocated, the length parameter N is not
established.

The type and type parameters of a structure constructor are described in 4.4.15. The
type and type parameters of a structure component are those given by the declaration
of that component.

The type and type parameters of an array constructor are described in 4.5. The type
and type parameters of an array element or array section are those of the array.

The type of a substring is character, the kind type parameter is that of the string,
and the length parameter is the length of the substring.

The type and type parameters of the result of an intrinsic function are described in
A. The type and type parameters of a user-defined function are determined by the
function subprogram; however, see 4.3.5.1 for an obsolescent character exception. If the
function is generic, the type and type parameters are determined from the specific
function referenced and the actual arguments.

A type parameter name (which can be used only within a type definition or a type
parameter inquiry) is a scalar integer with the same kind as the type parameter.

The type and type parameters of an expression in parentheses are the same as
those of the expression.

The type and type parameters of the intrinsic function NULL are context depen-
dent and are described in A. This is an exception to the general rule about context not
determining type.

If a pointer appears as a primary in a defined or intrinsic operation, in parenthesis
as an expression, or as a single primary to the right of the equals sign in an intrinsic as-
signment statement, the reference is to the target. The type and type parameters are
those of the target. If a pointer is not associated with a target, it may appear as the
target in a pointer assignment statement or as a primary only as an actual argument as-
sociated with a dummy argument that is also a pointer. It may also appear as the data
target in a pointer assignment statement (7.5.5), but, in that case, it is not a primary in
an expression.

7.2.2.2 Data Type and Type Parameters of an Operation

The type of the result of an intrinsic operation is determined by the type of the oper-
ands and the intrinsic operation and is specified by Table 7-3.

For nonnumeric intrinsic operations, the type parameters of the result of an opera-
tion are determined as follows.
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Table 7-3 Type of operands, x4 and Xy, and result for intrinsic operations

Intrinsic operator Type of x; Type of X,  Type of result
Unary +, - LR Z LR, Z
Binary + —, %, /, ** I LR Z LR Z
R LR Z R R, Z
V4 LR Z Z,7,Z
1 C C C
.EQ., .NE. I LR Z L LL
— /- R LR Z LLL
Z LR Z L LL
C C L
.GT., .GE., .LT., .LE. I I, R L, L
> >= < <= R LR L L
C C L
.NOT. L L
.AND., .OR., .EQV,, .NEQV. L L L

Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,
character, and logical, respectively. Where more than one type for x, is given,
the type of the result of the operation is given in the same relative position in
the next column. For the intrinsic operations with operands of type character,
the kind type parameters of the operands must be the same.

For the relational operations, it is that of the default logical type.

For the logical operations, it is that of the operands if the operands have the same
kind type parameter; otherwise, it is processor dependent but must be that of one
of the operands.

For the unary .NOT. operation, it is that of the operand.

For the character operation //, the operands must have the same kind type param-
eter and the result has that kind type parameter. The length type parameter value
is the sum of the length type parameters of the operands.

For numeric intrinsic operations, the kind type parameter value of the result is de-

termined as follows:

For unary operations, it is that of the operand.

For binary operations, if one operand is of type integer and the other is of type real
or complex (for example, 1 + 2.0), it is the kind type parameter of the real or com-
plex operand.



212 Chapter 7

e For binary operations, if the operands are of the same type and kind type parame-
ters or one is real and one is complex with the same kind parameters, it is the kind
type parameter of the operands.

¢ For binary operations, if the operands are both of type integer but with different
kind type parameters, it is the kind type parameter of the operand with the larger
decimal exponent range. If the decimal exponent ranges of the two kinds are the
same, it is processor dependent, but must be that of one of the operands.

e For binary operations, if the operands are both of type real or complex but with
different kind type parameters, it is the kind type parameter of the operand with
the larger decimal precision. If the decimal precisions are the same, the kind type
parameter is processor dependent, but must be that of one of the operands.

For numeric intrinsic operations, an easy way to remember the result type and
type parameter rules is to consider that the three numeric types—integer, real, and
complex—are ordered by the increasing generality of numbers: integers are contained
in the set of real numbers and real numbers are contained in the set of complex num-
bers. Within the integer type, the kinds are ordered by increasing decimal exponent
ranges. Within the real and complex types, the kinds for each type are ordered by in-
creasing decimal precision. If there is more than one kind of integer with the same dec-
imal exponent range, the ordering is processor dependent; a similar processor-
dependent ordering is selected for the real and complex types if there is more than one
kind with the same decimal precision. Because the result precision is that of the higher
precision operation, operations between double precision real and single precision
complex produce a result of double precision complex. Most processors do not support
integers or reals that have different kinds but have the same exponent range or precision;
the processor dependent exceptions for kind rarely occur in practice.

The type and type parameter values of a defined operation are determined from
the interface block (or blocks) for the referenced operation and are the type and type
parameters of the name of the function specified by the interface block. Note that the
operator may be generic and therefore the type and type parameters may be deter-
mined by the operands. For example, consider the interface:

INTERFACE OPERATOR (.PLUS.)

TYPE (SET) FUNCTION FCN_SET_PLUS (X, Y)
TYPE (SET), INTENT (IN) :: X, Y
END FUNCTION FCN_SET_PLUS

TYPE (RATIONAL) FUNCTION FCN_RAT_PLUS (X, Y)
TYPE (RATIONAL), INTENT(IN) :: X, Y
END FUNCTION FCN_RAT_PLUS

END INTERFACE
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The operation A .PLUS. B where A and B are of type RATIONAL is an expression of
type RATIONAL with no type parameters. The operation C .PLUS. D where C and D
are of type SET is an expression of type SET with no type parameters.

7.2.3 Shape of an Expression

The shape of an expression is determined by the shape of each operand in the expres-
sion in the same recursive manner as for the type and type parameters for an expres-
sion. That is, the shape of an expression is the shape of the result of the last operation.

However, the shape rules are simplified considerably by the requirement that the
operands of binary intrinsic operations must be in shape conformance. Two operands
are in shape conformance if both are arrays of the same shape, or one or both oper-
ands are scalars. When one operand is an array and the other is a scalar, the operation
behaves as if the scalar operand were broadcast to an array of the result shape and the
operation performed. Broadcasting a scalar to an array means creating an array of
elements all equal to the scalar. This broadcast need not actually occur if the operation
can be performed without it. The operands of a defined operation have no such require-
ment:

¢ they must match the shape of the corresponding dummy arguments of the defining
function, or

e they must be in shape conformance with each other, the dummy arguments of the
defining function must be scalar, and the defining function must be elemental.

For primaries that are constants, variables, constructors, or functions, the shape is
that of the constant, variable, constructor, or function name. Type parameter inquiries
and type parameter names are scalars. If the primary is a reference to the intrinsic
function NULL, the shape of the result is not relevant; the type, type parameters, and
rank are determined by the pointer that becomes associated with the result (A). Recall
that structure constructors are always scalar, and array constructors are always rank-
one arrays of size equal to the number of elements in the constructor. For unary intrin-
sic operations, the shape of the result is that of the operand. For binary intrinsic opera-
tions, the shape is that of the array operand if there is one and is scalar otherwise. For
defined operations, the shape is that of the function name specifying the operation if
the operands match the shapes of the dummy arguments or is the shape of an array
operand if the defining function is elemental.

For example, consider the intrinsic operation A + B where A and B are of type de-
fault integer and default real respectively; assume A is a scalar and B is an array of
shape [3 5]. Then, the result is of type default real with shape [3 5].

As a second example, consider the expression A // B as a defined operation where
A is a scalar of type character with kind type parameter value 1 and of length 25, and
B is an array of type character with kind type parameter value 2, of length 30, and of
shape [10]. This is permitted because there is no intrinsic concatenation between char-
acter operands of different kinds. Suppose further there is the following interface for
the // operator:
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INTERFACE OPERATOR (//)

FUNCTION FCN_CONCAT (X, Y)
CHARACTER (*, KIND=1), INTENT (IN) :: X
CHARACTER (*, KIND=2), INTENT (IN) Y ()
CHARACTER (LEN (X) + LEN (Y), KIND=2) :: FCN_CONCAT (SIZE (Y))
END FUNCTION FCN_CONCAT

END INTERFACE

The type declaration for FCN_CONCAT specifies that the result of the expression A //
B is of type character with kind type parameter 2. In addition, the length of the result
is the sum of the lengths of the operands A and B, that is, of length 55. The shape is
specified to be of rank one and of size equal to the size of the actual argument B corre-
sponding to the dummy argument Y, that is, of shape [10].

7.2.4 Bounds of an Expression

For most contexts, the lower and upper bounds of the dimensions of an array expres-
sion are not needed; only the sizes of each dimension are needed to satisfy array con-
formance requirements for expressions. The bounds of an array expression can be
found by using the LBOUND and UBOUND intrinsic functions.

The bounds of the dimensions of whole arrays and whole array components are
described in 5.4.1. If the array is anything but a whole array or whole array component,
the lower bound in each dimension is one and the upper bound is the number of
elements in that dimension, which might be zero.

Note that the LBOUND and UBOUND functions distinguish between whole arrays,
including whole array structure components, and arrays that either have section
subscripts, are assumed-shape arrays, or are other expressions. It may seem strange to
distinguish between a simple array name and an array name with a section subscript.
For example, it seems obvious that the lower bound of ARRAY(2:4) should be 2 rather
than 1. Problems arise with more complicated forms, ARRAY(2:6:2) has only 3 elements;
it would be odd to say the upper bound is either 3 or 6 if the lower bound were 2.
Similarly, an expression such as ARRAY(2:4) + ARRAY(9:7:~1 ) has no obvious natural
bounds. Rather than try to distinguish between “simple” sections and “complicated”
sections, Fortran treats all sections as if they were complicated and returns 1 for the
lower bound and the actual extent for the upper bound.

As a practical matter, the LBOUND and UBOUND functions are usually applied to
pointer targets or dummy argument arrays that are assumed shape; the bounds for other
arrays are usually obvious from the declarations. With dummy arguments, the compiler
has no information at all about the associated actual argument and whether or not it has
“simple” section subscripts.

7.2.5 Elemental Operations and Functions

For both the unary and binary intrinsic operators, the operation is interpreted element-
by-element; that is, the scalar operation is performed on each element of the operand
or operands. Similarly, if the operation is an elemental function reference, the function
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is invoked for each element of the array arguments. For example, if A and B are arrays
of the same shape, the expression A * B is interpreted by taking each element of A and
the corresponding element of B and multiplying them together using the scalar intrin-
sic operation * to determine the corresponding element of the result. Note that this is
not the same as matrix multiplication. As a second example, the expression SQRT(A) is
interpreted by taking each element of A and invoking the square root function to de-
termine the corresponding element of the result.

Note that there is no order specified for the interpretation of these array opera-
tions. Indeed, a processor is allowed to perform them in any order, including all at
once (possible for vector and parallel processors). A processor also has the option to in-
voke elemental functions on an element-by-element basis or to invoke a version of the
function that accepts array operands and evaluates the results in an optimized way.
The rules for elemental functions (12.7.2) allow either method.

7.2.6 Value of a Primary

The value of a primary that is a constant, designator, array or structure constructor, or
type parameter name or inquiry is the obvious value of the entity.

The value of a primary that is a function reference is the value returned by the
function.

The value of a primary that is an expression in parentheses is that of the expres-
sion.

7.2.7 Value of an Operation

The value of the result of an operation depends on the operator and the values of the
operands.

7.2.7.1 Value of Intrinsic Operations

When the operands of the intrinsic operators satisfy the requirements of Table 7-1, the
operations are intrinsic and are interpreted in the usual mathematical way as described
in Table 7-4, except for integer division. For example, the binary operator * is interpret-
ed as the mathematical operation multiplication and the unary operator — is interpret-
ed as numeric negation. Intrinsic operations reference their operands for their value;
therefore, the operands must be defined and allocated or associated as appropriate.

7.2.7.1.1 Value of Numeric Intrinsic Operations

Except for exponentiation to an integer power, when an operand for a numeric intrin-
sic operation does not have the same type, type parameters, or shape as the result of
the operation, the operand is converted to the type, type parameter, and shape of the
result and the operation is then performed. For exponentiation to an integer power, the
operation may be performed without the conversion of the integer power, say, by de-
veloping binary powers of the first operand and multiplying them together to obtain
an efficient computation of the result.

For integer division, when both operands are of type integer, the result is of type
integer, but the mathematical quotient is, in general, not an integer. In this case, the re-
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Table 7-4 Interpretation of the intrinsic operations

Chapter 7

Use of operator

Interpretation

X1
Xy
Xy

Xy

X1

X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1
X1

Xy

Xy
X
X1

X1

%%

/

*

.EQ.

.NEQV.
+EQV.

)
X
X2
X2
X2
)
)
X
X2
X2
X2
X2
)
X
X2
X2
X2
X2

X3

X, raised to the power x,

x; divided by x,

x; multiplied by x,

X, subtracted from x,

X, negated

X; added to x,

Same as x,

x; concatenated with x,

True if x; less than x,

True if x; less than x,

True if x; less than or equal to x,
True if x; less than or equal to x,
True if x; greater than x,

True if x; greater than x,

True if x; greater than or equal to x,
True if x; greater than or equal to x,
True if x; equal to x,

True if x; equal to x,

True if x; not equal to x,

True if x; not equal to x,

True if x, is false

True if x; and x, are both true

True if x; or x, or both are true
True if either X or x, is true, but not both

True if both X and X, are true or both are false

sult is specified to be the integer value closest to the quotient and between zero and the

quotient inclusively.
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For exponentiation, there are four special cases that need to be described further.

* When both operands are of type integer, the result is of type integer; when x, is
negative, the operation x; ** x, is interpreted as the quotient 1/( x; ** (—x,) ).
Note that it is subject to the rules for integer division and in most cases is zero. For
example, 4 #* (-2) is 0.

* The second case occurs when x, is a negative value of type integer or real and x,
is of type real; this is not permitted.

* The third case occurs when x, is of type real or of type complex. In this case, the
result returned is the principal value of the mathematical power function x}2. If x,
is integer or real, it must not be negative.

* The standard does not specify what zero raised to the zero power is, nor even if it is
a valid operation.

7.2.7.1.2 Value of Nonnumeric Intrinsic Operations

The intrinsic character operation performs the usual concatenation operation. For this
operation, the operands must be of type character with the same kind type parameters.
The length parameter values may be different. The result is of type character with the
kind type parameter of its operands and a length type parameter value equal to the
sum of the lengths of the operands. The result consists of the characters of the first op-
erand in order followed by those of the second operand in order. For example, "For-
tranb’ // 62003’ yields the result Fortranbb2003.

The intrinsic relational operations perform the usual comparison operations for
character and most numeric operands. For these operations, the operands must both be
of numeric type or both be of character type. The kind type parameter values of the op-
erands of the numeric types may be different but must be the same for operands of
type character. However, the lengths of the character operands may be different. Com-
plex operands may be compared only for equality and inequality; the reason is that
complex numbers are not totally ordered. The result in all cases is of type default logi-
cal.

When the operands of an intrinsic relational operation are both numeric, but of dif-
ferent types or type parameters, each operand is converted to the type and type param-
eters of the sum of the two operands. Then, the operands are compared according to
the usual mathematical interpretation of the particular relational operator.

When the operands are both of type character, the shorter one is padded on the
right with blank characters until the operands are of equal length. Then, the operands
are compared one character at a time in order, starting from the leftmost character of
each operand until the corresponding characters differ. The first operand is less than or
greater than the second operand according to whether the characters in the first posi-
tion where they differ are less than or greater than in the collating sequence (4.3.5.3).
The operands are equal if both are of zero length or all corresponding characters are
equal, including the padding characters. Note that the padding character is the Fortran
blank when the operands are of default, ASCII, or ISO_10646 character kind and is a
processor specified character for nondefault character kinds (3.1.2). Also, all compari-
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sons, except equality (.EQ. or ==) and inequality (.NE. or /=), are processor dependent
as they depend on the processor-dependent collating sequence. However, the collating
sequences for the default kind is partially specified (4.3.5.3) and the important sorting
cases work as expected. The collating sequences for ASCII and ISO 10646 characters are
specified by the appropriate standards.

There is no ordering defined for logical values. However, logical values may be
compared for equality and inequality by using the logical equivalence and not equiva-
lence operators .EQV. and .NEQV. That is, L1 .EQV. L2 is true when L1 and L2 are
equal and is false otherwise; L1 .NEQV. L2 is true if L1 and L2 are not equal and is
false otherwise.

For logical operations, the operands must both be of logical type but may have dif-
ferent kind type parameters. When the kind type parameters are the same, the kind pa-
rameter value of the result is that value; if different, the kind parameter value of the
result is processor dependent, but is that of either L1 or L2. The values of the result in
all cases are specified in Table 7-5.

Table 7-5 The values of operations involving logical intrinsic operators

X, X, NOT. x, x; .AND. x, x; .OR. x, x; .EQV. x,  x; NEQV. x,
true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

7.2.7.2 Value of Defined Operations

The interpretation of a defined operation is provided by a function subprogram with
an OPERATOR interface (12.5.4). When there is more than one function with the same
OPERATOR interface, the function giving the interpretation of the operation is the one
whose dummy arguments match the operands in argument order, type, kind type pa-
rameters, and rank (12.8). In the following example, for the operation A .PLUS. B,
where A and B are structures of the derived type RATIONAL, the generic interface
specifies that the function RATIONAL_PLUS provides the interpretation of this opera-
tion.

TYPE( RATIONAL )
INTEGER :: N, D
END TYPE

INTERFACE OPERATOR (.PLUS.)

FUNCTION RATIONAL_PLUS (L, R)

IMPORT RATIONAL

TYPE (RATIONAL), INTENT (IN) :: L, R

TYPE (RATIONAL) :: RATIONAL_PLUS
END FUNCTION RATIONAL_PLUS
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FUNCTION LOGICAL_PLUS (L, R)

LOGICAL, INTENT (IN) :: L, R

LOGICAL :: LOGICAL_PLUS
END FUNCTION LOGICAL_PLUS

END INTERFACE

The result of A .PLUS. B is the same as RATIONAL_PLUS ( A, B).

As with the intrinsic operations, the type, type parameters, and interpretation of a
defined operation are independent of the context of the larger expression in which the
defined operation appears. The interpretation of the same defined operation in differ-
ent contexts is the same; however, the results may be different because the results of
the procedure being invoked may depend on values that are not operands and that are
different for each invocation.

The relational operators ==, /=, >, >=, <, and <= are synonyms for the operators
.EQ., .NE., .GT,, .GE., .LT., and .LE., even when they are defined operators. It is in-
valid, therefore, to have an interface block for both == and .EQ., for example, for
which the order, types, type parameters, and rank of the dummy arguments of two
functions are the same.

Defined operations are either unary or binary. An intrinsic unary operator cannot
be defined as a new binary operator unless it is also an intrinsic binary operator. Note
that this applies only to the .NOT. operator. Similarly, an intrinsic binary operator can-
not be defined as a new unary operator unless it is also an intrinsic unary operator.
However, a nonintrinsic defined operator, .PLUS. say, (that is, one that is not the same
as an intrinsic operator) can be defined as both a unary and binary operator.

7.3 Evaluation of Expressions

The form of the expression, the precedence rules, and the meaning of the operations es-
tablish the interpretation. Once the interpretation is established, the compiler is free to
evaluate the expression in any way that provides the same interpretation with one ex-
ception: parentheses specify an order of evaluation that cannot be modified. This ap-
plies to both intrinsic operations and defined operations. For defined operations, it is
more difficult to determine whether an alternative evaluation scheme provides the
same interpretation.

Another way to state this is to say that, except for the presence of parentheses, the
compiler may evaluate any expression that is equivalent to the one written.

7.3.1 Equivalent Expressions

Two expressions are equivalent if they have the same value for all possible values of
the operands in the expressions. For example, because addition is commutative and as-
sociative, the expressions A + B + C and C + A + B are equivalent.

This freedom for the compiler to use alternative equivalent evaluations permits the
compiler to produce code that is more optimal in some sense (for example, fewer oper-
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ations, array operations rather than scalar operations, or a reduction in the use of reg-
isters or work space), and thereby produce more efficient executable code.

For the numeric intrinsic operations, two expressions are equivalent if they are
mathematically equivalent, not computationally equivalent. Mathematical equivalence
assumes exact arithmetic (no rounding errors and infinite exponent range) and thus as-
sumes the rules of commutativity, associativity, and distributivity as well as other rules
that can be used to determine equivalence (except that the grouping of operations spec-
ified by parentheses must be honored). A + B+ C and C + A + B are thus mathematical-
ly equivalent, but are not necessarily numerically equivalent because of possibly
different rounding errors. On the other hand, K /2 and 0.5 * K (where K is an integer)
is a mathematical difference because of the special Fortran definition of integer divi-
sion.

Parentheses within the expression must be honored. This is particularly important
for computations involving numeric values where rounding errors or range errors may
occur or for computations involving functions with side effects. Of course, if there is no
computational difference between two evaluation schemes where parentheses are pro-
vided, the compiler can violate the parentheses integrity because no one can tell the
difference. For example, the expression (1.0/3.0)*3.0 must be evaluated by performing
the division first because of the explicit parentheses. Evaluating the expression as 1.0
would be valid if the value obtained by performing the division first and then the mul-
tiplication produced a result that is equal to 1.0 despite rounding errors. Although this
sort of rearrangement might be possible in theory, it is not a practical option in general,
unless all of the operands are constants as in the above example.

Table 7-6 gives examples of equivalent expressions where A, B, and C are operands
of type real or complex, and X, Y, and Z are of any numeric type, I and ] are of type in-
teger, L1, L2, and L3 are of type logical, and C1, C2, and C3 are of type character with
the length of C1 greater than or equal to the length of C3. If the expression in the left-
hand column is written in a Fortran program, the compiler may evaluate the expres-
sion as if it were written as the equivalent expression in the right-hand column. All of
the variables are assumed to be defined and have values that make all of the operations
in this table well-defined.

Table 7-7 provides examples of invalid alternative expression evaluations. In the
first three examples, the expressions are not mathematically equivalent; recall that
when both operands of the division operator are of type integer, a Fortran integer divi-
sion truncates the result toward zero to obtain the nearest integer quotient. The last
three are not allowed because of parentheses in the expression written.

There are three concerns raised by alternative evaluation of an expression. They
are:

* The rearrangement of an expression may cause the resulting computation to yield
a different computational result. For example, evaluating the equivalent expres-
sions A —B — C and A - (B + C) might produce significantly different results due to
roundoff error for real or complex results.

* An unevaluated portion of an expression may reference a function with a side ef-
fect and so the side effect may or may not take place if the function is not invoked.
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Table 7-6 Valid alternative expression evaluation

Expression Equivalent evaluation
X+Y Y +X

-X+Y Y-X

X-Y+Z X-(Y-2)

X*A/Z X*(A/Z)
X*Y-X*Z X* (Y -2)

A/B/C A/ (B*C)

A /5.0 02*A

1>] 1-))>0

L1 .AND. L2 .OR. L1 .AND. L3 L1 .AND. (L2 .OR. L3)
L1 .AND. L1 L1

L1 .OR. E(X) L1 !'if L1 is true

F(X) .AND. L1 L1 !if L1 is false
C3=C1//C2 C3 =C1 ! LEN(C1) >= LEN(C3)

Table 7-7 Invalid alternative expression evaluation

Expression Prohibited evaluations
1/2 05*1

X*1/] X*(@1/])

L/JIA L/dJ*A)

X+Y)+2Z X+(Y+2Z)
X*Y)-(X*2) X*(Y-2)

X*(Y-2) X*Y-X*Z

* The rearrangement of an expression may result in an error that the programmer
thought would be avoided by a particular order of evaluation. For example, in the
logical expression that represents the condition for the IF test

if (present(x) .and. x > 0) then

the condition x > 0 may be evaluated first, resulting in an error if x is not present.

7.3.2 Side Effects and Partial Evaluation

With some exceptions described below, functions are allowed to have side effects; that
is, they are allowed to modify the state of the program so that the state is different after
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the function is invoked than before it is invoked. This possibility potentially affects the
results of a program when an equivalent expression is evaluated.

The first exception is pure procedures (12.7.1), which, in effect, are not allowed to
have any side effects.

Some side effects are prohibited in all procedures: a function (or defined operation)
within a statement must not affect nor be affected by a change in any entity in the same
statement. Exceptions are those statements that have statements within them —for ex-
ample, an IF statement or a WHERE statement. In these cases, the evaluation of func-
tions in the logical expressions in parentheses after the IF or WHERE keyword or
within the subscripts and stride in a FORALL statement are allowed to affect objects in
the statement following the closing right parenthesis. For example, if F and G below
are functions that change their actual argument I, the statements

IF (F (I)) A=1I
WHERE (G (1)) B =1I

are valid, even though I is changed when the functions are evaluated. Examples of in-
valid statements are:

A () =F (D I Invalid code
Y=G(I)+1I I Invalid code

because F and G change I, which is used elsewhere in the same statement.

The rules for equivalent evaluation schemes allow the compiler to elide evaluating
any part of an expression that has no effect on the resulting value of the expression.
Consider the expression X * F(Y), where F is a function and X has the value 0. The re-
sult will be the same regardless of the value of F(Y); therefore, it need not be evaluated.
This shortened evaluation is allowed in all cases, even if F(Y) has side effects. In this
case every data object that F could affect is undefined after the expression is evaluat-
ed —that is, it does not have a predictable value.

This normally applies to functions in logical expressions where expression evalua-
tion is often “short-circuited”. Some processors evaluate every term in a logical expres-
sion, others use run-time tests and skip further evaluation once the result is clear.
Consider

PRESENTC A ) .AND. A >0 .AND. LOG( A ) < 3.5

where A is an optional argument. If A is not present, the processor is allowed to eval-
uate the A >0 term, and the program is invalid. Similarly, if A is present and has a neg-
ative value, the processor is allowed to evaluate LOG(A) and the program is again
invalid.

The conclusion to be drawn from all of this is that the result of a program using a
function with side effects is not predictable and hence not portable. To be completely
safe and portable, a subroutine should be used in place of a function when a procedure
is needed with a side effect. However, in practice, the side effect will occur as expected
in most cases.

The execution of an array element, an array section, or a character substring refer-
ence requires, in most cases, the evaluation of the expressions that are the subscripts,
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strides, or substring ranges. It is not necessary for these expressions to be evaluated if,
for example, the array section can be shown to be zero-sized or the substring can be
shown to be of a zero-length by other means. For example, in the expression

A (1:0) + B (exprq:expry)

expry and expr, need not be evaluated as the conformance rules for intrinsic operations
require that the section of B be zero sized.

7.4 Special Expressions

Expressions may appear in many places. In many contexts, expressions are restricted in
some way. There are two particularly important special categories of expressions. Ex-
pressions that need to be evaluated at compile time are called initialization expres-
sions—they can be used for variable initialization or kind values. Expressions that need
to be evaluated on entry to a subprogram at the time of execution are called specifica-
tion expressions; they can be used as array bounds and character lengths in specifica-
tion statements, for example. Figure 7-1 shows the relationship between these
categories of expressions.

General

Specification Initialization

Figure 7-1 Diagram describing relationships between the kinds of expressions

7.4.1 Initialization Expressions

An initialization expression is built up from constants or attributes which are constant. In
an initialization expression

1. Each primary is one of the following:
a. a literal or named constant, or a subobject of a constant

b. an array constructor
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c. an implied-DO variable within an array constructor

d. a structure constructor

e. a reference to a standard elemental intrinsic function

f. areference to a standard transformational intrinsic function other than NULL

g. a reference to NULL where any type parameter for its argument that is
assumed or defined is an initialization expression

h. a reference to IEEE_SELECTED_REAL_KIND from the intrinsic module
IEEE_ARITHMETIC (14.3)

i. a specification inquiry (7.4.2.1)

j. akind type parameter of the derived type being defined

k. an initialization expression enclosed in parentheses

2. Each operation is intrinsic.

3. Each subscript, section subscript, starting and ending point of a substring range,
type parameter value, and argument of an intrinsic function (except for a specifica-
tion inquiry) must be an initialization expression.

4. Each component of a structure constructor must be an initialization expression, ex-
cept that one corresponding to an allocatable component must be a reference to the
intrinsic function NULL.

5. Each element of an array constructor must be an initialization expression.

6. Each expression specifying the initial, final, or stride value in an implied-DO in an
array constructor must be an initialization expression.

7. If a specification inquiry designator or function argument is not an initialization
expression, it must be a variable whose properties being inquired about are not as-
sumed, not deferred, and not defined by an expression that is not an initialization
expression.

8. If a specification inquiry depends on a type parameter or array bound, it must be
specified prior to the specification inquiry, but not in the same entity declaration
(5.1). See the examples below.

Examples of initialization expressions follow.
3.0E+01 A real literal constant

[7, (I, I=1,10)] An array constructor

RATIONAL (1, 2+])

A structure constructor where RATIONAL is a
derived type and J is a named integer constant
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A reference to an inquiry intrinsic function where A

LBOUND (A,1)+3 . -
is an explicit-shape array

LOG (2.0) An intrinsic function
INT (N, 2) An intrinsic function where N is a named constant

An intrinsic function where X is a real variable with

KIND (X) a known type parameter

A numeric expression where I and ] are named

1/3.3+J733 integer constants

A reference to a transformational intrinsic function

SUM (A) where A is a named integer array constant

KIND (0.0D0) An inquiry function with a constant argument
SELECTED_REAL_KIND (6, 30) An inquiry function with constant arguments

A reference to an intrinsic function to compute an

407 ATAN(LO) approximation to p

References to intrinsic functions to compute the
ceiling(DIGS/log10(radix(0.0))) number of model digits equivalent to a given
number of decimal digits DIGS

7.4.2 Specification Expressions

A specification expression is restricted to using constants and variables whose values can
be determined on entry to a scoping unit before any executable statement is executed.
For example, variables that are dummy arguments, are in a common block, are in a host
program unit, or are in an accessible module can appear in a specification expression.
Specification expressions are used as bounds for arrays and length parameter values in
type declarations, attribute specifications, dimension declarations, and other
specification statements. Usually specification expressions are evaluated at run-time as a
subprogram begins execution; however, simple forms are often evaluated at compile-
time.

In order to describe specification expressions, a slightly more general sort of ex-
pression, a general specification expression, is defined first. A specification expression
is then defined to be a general specification expression with a scalar integer value; the
general category is used to describe what can occur within a specification expression,
for example, as a function argument. In the statement

Real :: X(C INTC TANC 3.14 ) ) )

TAN( 3.14 ) is a general specification expression and INT ( TAN( 3.14 ) ) is a specification
expression. A general specification expression is called a restricted expression in the
Fortran standard.
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A general specification expression is an expression that has the following limita-
tions.

1. Each primary is one of the following:
a literal or named constant, or a subobject of a constant

b. an object designator with a base object (6.2) that is a dummy argument with
neither the OPTIONAL nor the INTENT (OUT) attribute.

an object designator with a base object that is in a common block

d. an object designator with a base object that is made accessible from a module

or the host
e. an array constructor
f. an implied-DO variable within an array constructor
g. a structure constructor
h. a specification inquiry (7.4.2.1)

a reference to a standard intrinsic function that is not a specification inquiry

-

j. areference to a specification function (7.4.2.2)
k. a type parameter of the derived type being defined

. a general specification expression enclosed in parentheses
2. Each operation is intrinsic.

3. Each subscript, section subscript, starting and ending point of a substring range,
type parameter value, and argument of a function (except for a specification inqui-
ry) must be a general specification expression.

4. Each element of an array constructor must be a general specification expression or
an implied-DO variable.

5. Each expression specifying the initial, final, or stride value in an implied-DO must
be a general specification expression.

6. Each component of a structure constructor must be a general specification expres-
sion.

7. Each designator and function argument in a specification inquiry must be a general
specification expression or it must be a variable whose properties being inquired
about are not assumed, not deferred, and not defined by an expression that is not
a general specification expression.

8. Each final subroutine invoked must be pure.
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Rules and restrictions:

1.

When a specification expression is evaluated, it must not directly or indirectly
invoke any procedure defined by the subprogram in which it appears. Neither a
recursive reference to the subprogram in which the specification expression appears
nor a reference to any contained internal procedures or statement functions is
allowed.

A specification expression that is not also an initialization expression may appear
only within the specification part of a subprogram or the type specification of a
FUNCTION statement, but not in the main program. For example, the variable N
in the program segment:

INTEGER N
COMMON N
REAL A(N)

is providing a value that determines the size of the array A. This program segment
must not appear in a main program but may appear in the specification part of a
subprogram.

Specification expressions are often used to declare the dimensions of dummy argu-

ments or temporary arrays as in the following example:

Subroutine Example (A, B, C, N)

Use values, only: J, K

Real :: A (N, J+2, 2%K-1)
Real :: B ( size(A) )
Integer :: C ( bot_Product ( [ J, K, N ], [ 3, K, N] )

Real :: Temp ( N, N )

A specification function (7.4.2.2) may be used in the declaration of bounds. The fol-

lowing example illustrates the declaration and use of specification functions.

MODULE SPEC_FNS
IMPLICIT NONE
PUBLIC :: N_ROWS, N_COLS
CONTAINS
PURE FUNCTION N_ROWS(X)
INTEGER :: N_ROWS
REAL, INTENT(CIN) :: X(:,:)
N_ROWS = SIZE(X,DIM=1)
END FUNCTION N_ROWS
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PURE FUNCTION N_COLS(X)
INTEGER :: N_COLS
REAL, INTENT(IN) :: X(:,:)
N_COLS = SIZE(X,DIM=2)
END FUNCTION N_COLS
END MODULE SPEC_FNS

SUBROUTINE S(A)
USE SPEC_FNS
IMPLICIT NONE
REAL :: A(:,:)
REAL :: TEMP(N_ROWS(A), N_COLS(A))
REAL :: TEMP_TRANSPOSE(N_COLS(A), N_ROWS(A))

END SUBROUTINE S

7.4.21 Specification Inquiry

A specification inquiry is one of the following:

1.

2
3
4.
5
6
7

an array inquiry function (13.3.1.4)

the bit inquiry function BIT_SIZE

the character inquiry functions LEN or NEW_LINE
the kind inquiry function KIND

a numeric inquiry function (13.3.1.3)

a type parameter inquiry (6.3)

an IEEE inquiry function (Table 14-4, Table 14-9, B)

7.4.2.2 Specification Functions

A function is a specification function if it

1.

2
3
4.
5
6

is pure,

is not a standard intrinsic function,

is not an internal function,

does not have a dummy argument that is a procedure,

is not a statement function, and

. has an explicit interface.

7.4.3 Differences Between Specification and Initialization Expressions

Chapter 7

Initialization expressions are not a subset of specification expressions because the re-
sult of an initialization expression can be of any type, whereas the result of a specifica-
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tion expression must be of type integer and scalar. Also, specification expressions are
not a subset of initialization expressions because specification expressions allow certain
variables (such as dummy arguments and variables in common blocks) to be primaries,
whereas initialization expressions do not allow such variables. Table 7-8 summarizes
the allowed properties of the two forms of expressions.

Table 7-8 Differences and similarities between initialization and specification expressions

Kind of expression

Property Initialization  Specification
Integer result Yes Yes
Any noninteger result Yes No
Scalar result Yes Yes
Array or structure result Yes No
Variables as primaries (limited to dummy arguments, common  No Yes
objects, host objects, module objects)

Intrinsic functions of any type Yes! Yes
Specification functions No Yes
Specification inquiry Yes Yes
Only constants as primaries Yes No
Only constant subscripts, strides, character lengths Yes No

IWith restrictions on NULL

There is a good deal of commonality between the forms of general, specification,
and initialization expressions; context determines which is required. For example:

Subroutine EXAMPLE ( A )

Integer, Parameter 1t Two = 2
Real, Dimension(2) A
Print *, 2

In the second line, the 2 is an initialization expression. In the next line, it is a specifica-
tion expression and in the last line it is a general expression.

7.4.4 Uses of Specification and Initialization Expressions

An expression used in the following contexts must be a specification expression (7.4.2):
1. as an array bound in a type declaration specification

2. as a length type parameter value in a type declaration specification or character
specification
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Note that in some cases, such as a declarations for an item in a common block, the

specification expression must also meet the requirements for an initialization expres-

SlonAn expression used in the following contexts must be an initialization expression

(7.4.1).

1. as the value following the equal sign in a PARAMETER statement and in a type
declaration statement with the PARAMETER attribute

2. as a subscript or substring range expression of a data object in a DATA statement

3. as a value in a DATA statement value list

4. as a kind type parameter value in a type specifier, type declaration statement, or
constant

5. as the default value for a type parameter in a derived-type definition

6. as the default value for a component in a derived-type definition

7. as a value in an enumerator

8. as an initial value in a type declaration statement

9. as the name in a BIND attribute

10. as an ASYNCHRONOUS specifier in an input/output control list

11. as a length specifier for a character statement function or one of its dummy argu-
ments

12. as a bound in an explicit-shape array dimension in some contexts

13. as a length type parameter value in a type declaration specification or character
specification in some contexts

14. as a length specifier for an entity with the VALUE attribute

15. as an actual argument for a KIND dummy argument of an intrinsic function

16. as a case value in the CASE statement

17. as a subscript or substring range expression of an equivalence object in an EQUIV-
ALENCE statement

18. as a part of any of the above items

The following rules and restrictions apply to the use of initialization and specifica-

tion expressions.



Expressions and Assignment 231

Rules and restrictions:

1. If an entity is implicitly typed and then is explicitly declared in a subsequent type
declaration statement, it must confirm the implicit type and type parameters.

PARAMETER ( K =2, X =3.0)
REAL X I valid
REAL K I Invalid

2. If an element of an array is referenced in one of these expressions, the array bounds must
be specified in a prior specification.

3. If a specification or initialization expression depends on an attribute or value of an
entity defined in the same specification part, the attribute or value must have been
completely specified in a prior specification.

A prior specification in the above cases may be in the same specification statement,
but to the left of the reference and not in the part of the statement specifying the entity.
For example, the following declarations are valid:

INTEGER, DIMENSION(4), PARAMETER :: A = [4,3,2,1]
REAL, DIMENSION(CA(2)) :: B, C(SIZE(B) + 1)

B and C are of size 3 and 4 respectively. But the following declaration is invalid be-
cause SIZE (E) precedes E:

REAL, DIMENSION(2) :: D(SIZE(E)), E I Invalid

The following also is invalid because the size of X is specified in the same entity
declaration (5.1) as the occurrence of SIZE(X):

REAL :: X(9) = SIZE(X) ! Invalid

The following is an example using specification expressions to declare a working
array with the same shape as the dummy argument array.

SUBROUTINE S(A)
REAL :: A(C:,:)
REAL :: WORK(SIZE(A,DIM=1), SIZE(A,DIM=2))

END SUBROUTINE S

7.5 Assignment

A common use of the result of an expression is to give a value to a variable. This is
done with an assignment statement. For example,

RUG = BROWN + 2.34 / TINT
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Assignment involves the evaluation of an expression and the use of the result to es-
tablish the value of a variable. In the assignment statement example above, the expres-
sion on the right of the assignment symbol (=) is evaluated and assigned to the variable
RUG.

There are five forms of assignment: intrinsic, defined, pointer, masked array, and
indexed parallel array.

Examples of the five forms of assignment are:

X=X+1 Intrinsic assignment for reals
POLAR_0 = (0.0, 0.0) Defined assignment for a derived type
PTR => X Pointer assignment

WHERE (Z /=0.0) A=B/Z Masked array assignment
FORALL (I=1:N) A(I) =1.0/ Indexed parallel assignment

7.51 The Assignment Statement

The assignment statement is used for intrinsic assignment and defined assignment; its
form is

variable = expression

The assignment statement is used to assign a value to a nonpointer variable of any
type or to the target associated with a pointer variable. It defines or redefines the value
of the variable or the target, as appropriate. In general, the value is determined from
the result of evaluation of the expression on the right-hand side of the equal sign.

Rules and restrictions:

1. The variable must not be a whole assumed-size array (5.4.1.4); however, it may be
an element or section of an assumed-size array.

7.5.2 Intrinsic Assignment

An assignment statement is an intrinsic assignment if it does not meet the require-
ments (12.5.4.3) of a defined assignment statement.

Rules and restrictions:
1. Assignment of an array to a scalar is not allowed, even if the size of the array is 1.
2. The variable must not be polymorphic.

3. The types and kind parameters of the variable and expression in an intrinsic as-
signment statement must be as given in Table 7-9.

4. If the variable and expression are of type character with different kinds, each must
be either default, ASCII, or ISO 10646 kind.
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Table 7-9 Type and type parameter requirements for the variable and expression in an intrinsic

assignment
Variable Expression
Integer, real, or complex Integer, real, or complex
1SO 10646, ASCII, or default I1SO 10646, ASCII, or default character kind
character kind
Other character kind Character with the same kind as the variable
Logical Logical
Derived type Same derived type and same kind parameters as the

variable; each length parameter must be the same as
that of the variable unless the variable is allocatable
and its corresponding length parameter is deferred

5. If the expression is an array, it must have the same rank as the variable. If the vari-
able is not allocatable, the shapes of the variable and the expression must conform.

6. If the variable is a pointer, it must be associated with a target and the target must
satisfy all of the conditions required of the variable.

Before the assignment begins, any necessary type conversions are completed if the
variable has a different numeric type or type parameter from the expression. For nu-
merical and logical types, the conversion is the same as that performed by the conver-
sion intrinsic functions INT, REAL, CMPLX, and LOGICAL, as specified in Table 7-10;
for the character type, see below.

Table 7-10 Conversion performed on an expression before assignment

Type of

the variable Value assigned

Integer INT (expression, KIND (variable) )

Real REAL (expression, KIND (variable) )
Complex CMPLX (expression, KIND (variable) )
Logical LOGICAL (expression, KIND (variable) )

For character assignment, if the variable and expression have different character
kinds, the value of each character c in the expression is converted to the character kind
of the variable by applying ACHAR (IACHAR(c), KIND(variable)). If a character in the
expression is not representable in the character kind of variable, the result is processor
dependent. If the variable and expression have different lengths and the expression
length is greater than the length of the variable, characters are truncated from the right of
the expression. If the variable length is greater than the expression length, blank
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characters are appended on the right of the expression. Except for default, ASCII, and
ISO 10646 character kinds, the blank padding character is processor dependent.

The evaluation of subscript and section subscript expressions that are part of the
expression or part of the variable and the complete expression on the right-hand side of
the equal sign is performed before any portion of the assignment is performed. This may
require temporary storage to hold values before they can be stored into the variable,
however, the as-if rule often allows the compiler to optimize temporary storage. For ex-
ample, in evaluating a character string expression on the right-hand side of an assign-
ment, the values in the variable on the left-hand side may be used, as in

DATE (2:5) = DATE (1:4)
This is not the same as the similar appearing DO loop

DO I =1, 4
DATE( I+1 : I+1 )
END DO

DATE (I : I ) ! not the same thing

It is, however, the same as

DO I=4,1, -1
DATE( I+1 : I+1 )
END DO

DATE ( I : I )

Compilers are free to evaluate the expressions and perform the assignments in an
order that avoids use of temporary storage.

Similarly, all subscripts and substrings are established before any values are as-
signed.

A=1[1, 2]
A(A) = ACA) + 1 ! Increments A(1) and A(2) by 1

Array assignment is element-by-element but the order is not specified. If A and B
are real arrays of size 10, in the whole array assignment:

A =B

the first element of B would be assigned to the first element of A, the second element
of B would be assigned to the second element of A, and this would continue element-
by-element for 10 elements. The assignment of elements, however, may be performed
in any order, as long as the effect is as if all elements were assigned simultaneously.

When a scalar is assigned to an array, the assignment behaves as if the scalar is
broadcast to an array of the shape of the variable; it is then in shape conformance with
the variable. In the example:

REAL A(10)
A=1.0

all ten elements of the array A are assigned the value 1.0.
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The evaluation of expressions in the variable on the left-hand side, such as sub-
script expressions, must have no affect on, nor be affected by, the evaluation of the ex-
pression on the right-hand side. The right-hand side expression is evaluated
completely before any assignment is made to a variable on the left-hand side. (As usu-
al, this requirement that the expression on the right be evaluated first is specifying the
semantics of the statement and does not imply that an implementation must perform
the computation in this way if there is an equivalent order that computes the same re-
sult.)

Consider the case where the variable is allocatable. If it is allocated, but if the ex-
pression has a different shape or any of the corresponding length parameters differ, the
variable is deallocated. Whether originally unallocated or deallocated as described in
the previous sentence, it is allocated with each deferred type parameter equal to the
corresponding type parameter of the expression, with the same shape as the expres-
sion, and with each lower bound equal to the corresponding lower bound of the ex-
pression. Regardless of the original state of the variable, it will be allocated with shape
and length parameters to match the expression. The assignment then proceeds as an
ordinary array assignment as described above.

Note that even if A is an allocatable array, A(:) is not an allocatable array; it is an
array subsection.

integer, dimension(:), allocatable :: a
a=10[1, 2, 3] ! Size of a becomes 3
a=10[1, 2, 3, 4] ! size of a becomes 4
a(:) =[1, 2, 3] ! 111egal because a(:) 1is size 4 and not allocatable

If the variable is not allocatable and the variable and expression are of character
type with different lengths, the assignment occurs as follows: if the length of the vari-
able is less than that of the expression, the value of the expression is truncated from the
right; if the length of the variable is greater than the expression, the value of the ex-
pression is filled with blanks on the right. The character used as the blank character for
default, ASCII, or ISO 10646 character kind is the Fortran blank character and otherwise
is a blank padding character specified by the processor (3.1.2).

If an allocatable variable of type character has deferred length, the variable as-
sumes the length of the expression. For example

character(len=:), allocatable :: c
c = "Brahms"

print *, len(c)

c(:) = "Beethoven"

print *, len(c)

prints the value 6 in both cases. In the first assignment, c is an allocatable variable and it
assumes the length of the expression, 6. In the second assignment, c(:) is not a variable, it
is a character substring, and, therefore, does not have the allocatable attribute. Ordinary
assignment takes place, the length remains 6, and the new value is Beetho. Deferred
length characters provides much of the functionality of what is commonly called
“variable length character strings”. Similar functionality can be provided by derived
types with a length parameter.
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Derived-type intrinsic assignment is performed as if the assignment were expand-
ed, component-by-component with corresponding elements from the variable and the
expression, into separate assignment statements. Each assignment is processed as fol-
lows:

1. If the component is a pointer, pointer assignment (7.5.5) is used.

2. If the component is not allocatable, is not a pointer, and there is a type-bound as-
signment available, that defined assignment is used.

3. If the component is not allocatable, is not a pointer, and there is no type-bound as-
signment available, intrinsic assignment, following the rules given above, is used.
This is true even if a non-type-bound defined assignment is available.

4. If the component is allocatable
a. if it is allocated, it is deallocated.

b. if the corresponding component of the expression is allocated, the variable
component is allocated with the same dynamic type and type parameters and,
if it is an array, with the same bounds. The value of the expression component
is then assigned to the variable component using defined assignment if there is
a consistent type-bound assignment available; otherwise, intrinsic assignment
is used.

If the variable is a subobject, the assignment does not affect any of the parts of the
object not designated.

7.5.3 Defined Assignment

Defined assignment is an assignment operation provided by a subroutine with the ge-
neric specifier ASSIGNMENT (=) (12.5.4.3). When the variable and expression in the
assignment statement are of intrinsic types and do not satisfy the type matching rules
in Table 7-9 or are of different derived types, a defined assignment operation will be
used. Defined assignment also may replace the intrinsic assignment operation for de-
rived types.

The effect of the defined assignment on variables in the program is determined by
the referenced subroutine.

Rules and restrictions:

1. There must be an accessible generic interface for the subroutine with the generic
specifier of the form ASSIGNMENT (=). This can be either in an interface block or a
type definition (12.5.4.3, 4.4.7)

2. The types and kind type parameters of the variable and expression in the assign-
ment statement must be compatible with the dynamic types of those of the dummy
arguments.
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3. For a nonelemental subroutine, the rank of the variable and the expression in the
assignment must match the ranks of the corresponding dummy arguments of the
subroutine. For an elemental subroutine, the variable must be an array and the ex-
pression must be conformable with the variable, or both the variable and expres-
sion must be scalar. If the variable and expression match both the interface to a
nonelemental and elemental subroutine, the nonelemental subroutine defines the
assignment operation.

Example:

INTERFACE ASSIGNMENT (=)

ELEMENTAL SUBROUTINE RATIONAL_TO_REAL (L, R)
IMPORT RATIONAL
TYPE (RATIONAL), INTENT (IN) :: R
REAL, INTENT(OUT) L

END SUBROUTINE RATIONAL_TO_REAL

ELEMENTAL SUBROUTINE REAL_TO_RATIONAL (L, R)
IMPORT RATIONAL
REAL, INTENT(IN) T R
TYPE (RATIONAL), INTENT (OUT) :: L

END SUBROUTINE REAL_TO_RATIONAL

END INTERFACE

The above interface block specifies two defined assignments for two assignment opera-
tions in terms of two external subroutines, one for assignment of objects of type RA-
TIONAL to objects of type default real and another for assignment of objects of type
default real to objects of type RATIONAL. With this interface block, the following as-
signment statements are defined:

REAL R_VALUE
TYPE (RATIONAL) RAT_ARRAY(10)

R_VALUE = RATIONAL (1, 2)
RAT_ARRAY = 3.7

The second example is equivalent to
CALL REAL_TO_RATIONAL ( RAT_ARRAY, (3.7) )

7.5.4 Polymorphic Assignment

There is the restriction that the variable on the left of an intrinsic assignment statement
must not be polymorphic. However, it is possible to assign to a polymorphic variable
using a defined assignment. In the following example, the two assignment statements
in the main program assign a value of two different types to the variable X.
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module types
integer, parameter, public :: &
red = 1, blue = 2, green = 3
type, public :: Tine_type
real :: x, vy
end type line_type
type, public, extends(line_type) :: painted_line_type
integer :: color
end type painted_Tline_type
type, public, extends(line_type) :: labeled_line_type
character(l1en=99) :: Tabel
end type labeled_line_type
end module types

module poly_assign_mod
use types
interface assignment(=)
module procedure poly_assign_sub
end interface

private :: poly_assign_sub
public :: assignment (=)
contains

subroutine poly_assign_sub(v, e)
class(line_type), intent(in) :: e
class(line_type), intent(out), allocatable :: v
allocate (v, source = e)

end subroutine poly_assign_sub

end module poly_assign_mod

program p
use types

use poly_assign_mod

class(line_type), allocatable :: Tine

Tine = painted_line_type(1.1, 2.2, blue)

Tine Tabeled_1line_type(4.4, 6.6, "long™)

end program p

Note that in subroutine poly_assign_sub, v is an INTENT (OUT) variable and
therefore deallocated on entry to poly_assign_sub. The subroutine then allocates v
with the dynamic type and value of e.

7.5.5 Pointer Assignment

A pointer is a variable that points to another object. The term pointer association is
used for the concept of “pointing to” and the term target is used for the object associ-
ated with a pointer.
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A pointer assignment associates a pointer with a target, and terminates any
previous association for that pointer. If the target is a disassociated or undefined point-
er, the pointer becomes disassociated or undefined, respectively.

There are two forms of pointer assignment, data pointer assignment and procedure
pointer assignment.

There is no pointer analog to defined assignment; all pointer assignments are in-
trinsic.

7.5.5.1 DataPointer Assignment

The forms of a data pointer assignment are (R735):

data-pointer-object [ ( bounds-specification-list ) ] => data-target
data-pointer-object ( bounds-remapping-list) => data-target

where a data pointer object (R736) has one of the forms:

variable-name
structure-component

a data target (R739) has one of the forms:

variable
expression

a bounds specification is of the form (R737):
lower-bound

and a bounds remapping is of the form (R738):
lower-bound : upper-bound

If the variable on the right of => has the TARGET attribute, the pointer object on
the left of => becomes associated with this target.

If the variable on the right of => has the POINTER attribute and is associated, the
pointer object on the left of => points to the same data that the target points to after the
pointer assignment statement is executed. If the variable on the right of => has the
POINTER attribute and is disassociated or if the expression on the right is a reference
to the intrinsic function NULL, the data pointer object on the left of => becomes disas-
sociated.

If the variable on the right of => has the POINTER attribute and has an undefined
association status, the association status of the data pointer object on the left of => be-
comes undefined.

Data pointer assignment associates the pointer with the new target. If the pointer
was previously associated with allocated memory, the assignment does not deallocate
the old memory. This can cause memory leaks.
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Rules and restrictions:

1.

10.

11.

12.
13.

14.

15.

If the pointer object is a variable name, the name must have the POINTER at-
tribute. If the pointer object is a structure component, the component must have
the POINTER attribute.

If the target is not unlimited polymorphic, the pointer object must be type compat-
ible with the target and the corresponding kind type parameters must have the
same value.

If the target is unlimited polymorphic, the pointer object must be unlimited poly-
morphic, of a sequence derived type, or of a type with the BIND attribute.

If the target is a variable, it must have the TARGET or POINTER attribute.

The target expression must be a pointer. The only form of expression which satisfies
this restriction is a function whose result is a pointer. This can a defined operation, a
user written function, or the intrinsic function NULL.

The target must not have a vector subscript.
If the target is allocatable, it must be allocated.

If there is a bounds list, the number of bounds must be the same as the rank of the
pointer object.

If there is a bounds remapping list, the number of bounds remappings must be the
same as the rank of the pointer object.

If there is a bounds remapping list, the target must have rank one; otherwise, the
ranks of the pointer object and the target must be the same.

If there is a bounds remapping list, the target must not be a disassociated or
undefined pointer. If s is the size of the target, s must be greater than or equal to the
size of the pointer object. The first s elements of the target, in array element order,
become the target of the pointer object.

If the pointer object is polymorphic, it assumes the dynamic type of the target.

If the pointer object is of a type that has the BIND attribute or is of a sequence type,
the dynamic type of the target must be the same type.

If the pointer object is not polymorphic and the target is polymorphic with a
dynamic type that differs from its declared type, the assignment will be to the
ancestor component of the target that has the same type as the pointer object;
otherwise, the assignment is to the target.

If the target is a disassociated pointer, all nondeferred type parameters of the de-
clared type of the pointer object must be the same as the corresponding type pa-
rameters of the target. Otherwise, all nondeferred type parameters of the declared
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type of the pointer object that correspond to nondeferred type parameters of the
target must have the same value as the corresponding type parameters of the tar-
get.

16. If the pointer object has nondeferred type parameters that correspond to deferred
type parameters of the target, the target must not be an undefined pointer.

17. The target must not be a whole assumed-size array. If it is an array section of an as-
sumed-size array, it must have a subscript or a triplet section with the upper bound
specified in the last dimension.

18. If the target of a pointer must not be referenced or defined, the pointer must not be
referenced or defined while it is an alias of that target.

Note that, when a pointer appears on the right side of => in a pointer assignment,
the pointer on the left side of => is defined or redefined to be associated with the target
of the pointer on the right side of the =>. To put it another way, the pointer on the right
does not become the target of the pointer on the left; this does not create “a pointer to
a pointer”.

Examples:

MONTH => DAYS(1:30)

PTR => X(:, 5)

NUMBER => JONES % SOCSEC
HEAD_OF_CHAIN => NULL( )

An example where a target is another pointer is:

REAL, POINTER :: PTR, P
REAL, TARGET :: A

REAL B

A=1.0

P=>A

PTR => P

B = PTR + 2.0

This program segment defines A with the value 1.0, associates P with A; then PTR is
associated with A, not with P. The value assigned to B in the regular assignment state-
ment is 3.0, because the reference to PTR in the expression yields the value of the target
A which is the value 1.0.

If the pointer object is an array, the pointer assignment statement establishes the
extents for each dimension of the array. If bounds remapping is specified, the extents
and lower and upper bounds are specified by the remapping. If no bounds remapping
is specified, the extents are those of the target. If a bounds specifier is present, it speci-
fies the lower bounds; otherwise the lower bounds for each dimension are the same as
the result of the LBOUND (7.2.4, A) function applied to that dimension. For example,
if the following statements have been processed:
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INTEGER, TARGET :: T(11:20)
INTEGER, POINTER :: P1(:), P2(:)
Pl =>T

P2 => T(:)

the extents of P1 are those of T, namely 11 and 20, but those of P2 are 1 and 10, because
T(:) has a section subscript list.

Bounds specifications and remapping may be used to define the subscript extents
in the pointer object.

REAL, TARGET :: DATA(1000)
REAL, POINTER :: DP(:), DQ(:), DR(:)

DP(FIRST:LAST) => DATA(FIRST:LAST)
DQ => DATA(FIRST:LAST)
DR(0:) => DATA(FIRST:LAST)

In the first case, DP is assigned with a simple form of bounds remapping and will
have lower and upper bounds of FIRST and LAST, respectively. In the second case, no
subscripts are specified for DQ and it will have 1 and LAST-FIRST+1 as its lower and
upper bounds, respectively. In the last case, a bounds specification is used and DR will
have bounds of 0 and LAST-FIRST, respectively.

Bounds remapping may also be used to give multi-dimensional views of a rank one
array.

REAL, DIMENSION(1000%1000), TARGET :: LOTSA_DATA

REAL, DIMENSION(:, :), POINTER :: SQUARE, SMALL_SQUARE
REAL, DIMENSION(:), POINTER :: DIAGONAL

SQUARE(1:1000, 1:1000) => LOTSA_DATA

SQUARE is a two-dimensional representation of the data
A target array may have triplets for subscripts. With the definitions above and

DIAGONAL => LOTSA_DATA(1l : : 1001)
SMALL_SQUARE => SQUARE (1 : 10, 1 : 10)

DIAGONAL is an alias of the diagonal of SQUARE and SMALL_SQUARE is an alias for
the upper left corner of SQUARE.

Pointers may become associated using the ALLOCATE (6.7.1) statement instead of
a pointer assignment statement. Pointers may become disassociated using the DEAL-
LOCATE (6.7.3) or NULLIFY (6.7.2) statements, as well as with the pointer assignment
statement.

A pointer may be used in an expression (see 7.2.2.1 for the details). Briefly, any ref-
erence to a pointer in an expression, other than in a pointer assignment statement or in
certain procedure references, yields the value of the target associated with the pointer.
When a pointer appears as an actual argument corresponding to a dummy argument
that has the POINTER attribute, the reference is to the pointer and not the value. Note
that a procedure must have an explicit interface (12.5.1) if it has a dummy argument
with a POINTER attribute.
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7.5.5.2 Procedure Pointer Assignment

Procedure pointer assignment is similar to data pointer assignment, except that the
pointer must be a procedure pointer and the target must be a procedure.

The form of a procedure pointer assignment is (R735):

procedure-pointer-object => procedure-target

where a procedure pointer object has one of the forms (R740):

procedure-pointer-name
structure-component

and a procedure target has one of the forms (R742):

procedure-name
procedure-component-reference
expression

If the procedure target is not a pointer, the procedure pointer object is pointer asso-

ciated with the target. If the procedure target is a pointer, the procedure pointer object
assumes the definition status of the pointer target and, if the pointer target is associat-
ed, the procedure pointer becomes associated with the same target.

Procedure pointers are declared with the PROCEDURE statement (5.11).

Rules and restrictions:

1.

If the pointer object is a structure component, the component must be a procedure
pointer.

The target expression must be a pointer. The only form of expression which satisfies
this restriction is a function whose result is a pointer. This can be a defined
operation, a user written function, or the intrinsic function NULL.

If the target is a procedure name, it must be the name of an external procedure,
module procedure, dummy procedure, a specific intrinsic function (not marked
with a asterisk in Table 13-1), or a procedure pointer. However, it must not be a
nonintrinsic elemental procedure.

If the pointer object has an explicit interface, it must have the same characteristics
(12.5.1.1) as the target, except that the pointer need not be pure or elemental, even
if the target is.

If the characteristics of either the pointer object or the target require an explicit in-
terface, both must have an explicit interface.

If the pointer object has an implicit interface and is typed or referenced as a func-
tion, the target must be a function; if it is referenced as a subroutine, the target must
be a subroutine.
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If both the pointer and target are functions, they must have the same type; corre-
sponding type parameters must either have the same value or must both be de-
ferred.

If the target is the name of both a specific and generic intrinsic procedure, only the
specific procedure is associated with the pointer.

Examples:

PROCEDURE, POINTER :: PP
PROCEDURE (REAL) :: BESSEL

PP => BESSEL

TYPE :: T
REAL :: X
PROCEDURE (REAL), POINTER :: TPP
END TYPE T

INTRINSIC :: SORT

TYPE(T) :: TP
TP % TPP => SQRT ! TPP becomes associated with the specific SQRT

ABSTRACT INTERFACE

FUNCTION EXT_FCN(X)
REAL :: X
REAL :: EXT_FCN
END FUNCTION
END INTERFACE
PROCEDURE (EXT_FCN), POINTER :: P
PROCEDURE (EXT_FCN) i GAMMA
P => GAMMA

In this example, the abstract interface EXT_FCN declares functions that have one

real argument and return one real result. After execution of the pointer assignment
statement, the pointer P points to the GAMMA function.

7.5.

6 Masked Array Assignment—WHERE

Sometimes, it is desirable to assign only certain elements of one array to another array.
The masked array assignment often is used for such selective assignment, as the fol-
lowing example illustrates:

REAL, DIMENSION(10,10) :: A, RECIP_A

WHERE(C A /= 0.0 )
RECIP_.A = 1.0 / A ! Assign only where the

! elements are nonzero.
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ELSEWHERE
RECIP_A = 1.0 ! Use the value 1.0 for
! the zero elements.

END WHERE

The first array assignment statement is executed for only those elements where the
mask A /= 0.0 is true. Next, the second assignment statement (after the ELSEWHERE
statement) is executed for only those elements where the same mask is false. If the val-
ues of RECIP_A where A is 0 are never used, this example can be simply written using
the WHERE statement rather than the WHERE construct as follows:

WHERE( A /= 0.0 ) RECIP_A =1.0 / A

A masked array assignment is an intrinsic assignment statement in a WHERE
block, an ELSEWHERE block, or a WHERE statement for which the variable being as-
signed is an array. The WHERE statement and WHERE construct appear to have the
characteristics of a control statement or construct such as the IF statement and IF con-
struct. But there is a major difference; every assignment statement in a WHERE con-
struct is executed, whereas at most one block in the IF construct is executed. Similarly,
the assignment statement following a WHERE statement is always executed. For this
reason, WHERE statements and constructs are discussed here under assignment rather
than under control constructs.

In a masked array assignment, the assignment is made to certain elements of an ar-
ray based on the value of a logical array expression serving as a mask for picking out
the array elements. The logical array expression acts as an array-valued condition on
the following:

* elemental intrinsic operations
* elemental intrinsic function references
e elemental user-defined operations
* elemental user-defined function references
® intrinsic assignment
* elemental user-defined assignment
for each array assignment statement in the WHERE statement or WHERE construct.

7.5.6.1 Form of the WHERE Construct
The form of the WHERE construct (R744) is:

[ where-construct-name : ] WHERE ( logical-expression )
[ where-body-construct | ...

[ ELSEWHERE ( logical-expression ) [ where-construct-name ]|
[ where-body-construct | ... ]
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[ ELSEWHERE [ where-construct-name |
[ where-body-construct | ... ]
END WHERE [ where-construct-name ]

and a where body construct (R746) is one of:

assignment-statement
where-construct
where-statement

Note that a FORALL is not allowed in a WHERE construct, although a WHERE
may appear in a FORALL.

The logical expression that appears on the initial WHERE statement forms a mask
that controls the evaluation of expressions and assignment of values in array assign-
ment statements that appear in the WHERE body constructs. If a logical expression ap-
pears on an ELSEWHERE statement, that statement is referred to as a masked
ELSEWHERE statement. That logical expression further restricts the mask, as de-
scribed below in 7.5.6.2, that would otherwise apply to the WHERE body constructs
following the ELSEWHERE statement.

Rules and restrictions:

1. In each assignment statement in a WHERE construct, the variable being defined
must have the same shape as the mask. If a WHERE construct contains a masked
ELSEWHERE statement or if one of the WHERE body constructs is a WHERE
statement or another WHERE construct, each mask expression must have the same
shape.

2. Each statement and construct in a WHERE construct is executed in sequence as it
appears in the construct. Subsequent masks may use the assigned values.

3. Each mask is evaluated only once. Subsequent changes to the values of entities in
the logical expression that defines the mask have no effect on the value of the con-
trol mask.

4. A defined assignment (12.5.4.3) in a WHERE construct must be defined by an ele-
mental subroutine (12.7.2).

5. In a WHERE construct, only the WHERE statement may be a branch target.
7.5.6.2 Execution of a WHERE Construct

Except as described below, an elemental operation or function within the expression or
variable of an assignment statement in the construct is evaluated only for the elements
corresponding to true values in the control mask. For example:

REAL, DIMENSION(10, 20) :: A, SQRT_A
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WHERE (A>0.0)
SQRT_A = SQRT(A)
END WHERE

Square roots are calculated only for positive elements of A.

If an array constructor appears in a logical expression or an assignment statement
in the construct, the array constructor is evaluated completely without any mask con-
trol.

Nonelemental function references in a logical expression or the variable or expres-
sion of an assignment statement in the construct are completely evaluated even though
all elements of the resulting array may not be used. For example:

REAL A(2,3), B(3,10), c(2,10), D(2,10)
INTRINSIC MATMUL

WHERE (D<0.0)
C = MATMUL(A,B)
END WHERE

The matrix product A x B is performed, yielding all elements of the product. The only
elements of C assigned a value are those corresponding to elements of D that are neg-
ative.

When a WHERE construct is executed, both a control mask and a pending control
mask are established. It is the control mask that governs the execution of the following
block of statements. If the WHERE construct is not a nested WHERE construct, the con-
trol mask, mask, has the value of the logical expression. The pending control mask has
the value .NOT. mask. The calculation of the mask and the pending mask for subse-
quent blocks in a WHERE construct can be illustrated with the following example.

WHERE (C1) | Statement 1
e I Block 1
ELSEWHERE (C2) | Statement 2
.o I Block 2
ELSEWHERE | Statement 3
A I Block 3
END WHERE

Following execution of statement 1, the control mask has the value C1 and the
pending control mask has the value .NOT. C1. Following execution of statement 2, the
control mask has the value (.NOT. C1) .AND. C2 and the pending control mask has
the value (.NOT. C1) .AND. (.NOT. C2). Following execution of statement 3, the con-
trol mask has the value of the pending control mask (.NOT. C1) .AND. (.NOT. C2).
This complicated looking formulation has a simple effect: it guarantees that each corre-
sponding location in the various conformable arrays will only be processed once. The
expression for the pending control mask is equivalent to .NOT. (C1 .OR. C2 .OR. ...).
Once an element in the control mask becomes true, the corresponding element in the
pending control mask will become false. No subsequent ELSEWHERE (logical expres-
sion) block will process that element because the pending control mask is ORd with
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the expression mask for each subsequent block. The process acts as if there were a
pending control mask with all true values for the WHERE logical expression. The final
ELSEWHERE block (if there is one) will process all of the elements that were not pro-
cessed by any previous blocks (the ones that still have a true in the pending control
mask), and only those elements.

If the WHERE construct in the example above is a nested WHERE construct, it ap-
pears in a block that is governed by a control mask outer-mask. The control mask for
Block 1 of the nested construct is then outer-mask .AND. C1 and the pending control
mask is .NOT. (outer-mask .AND. C1). The following control masks and pending con-
trol masks are calculated from these initial masks as above. Only elements selected by
outer-mask can be processed in the inner nested WHERE construct. On execution of the
inner END WHERE statement, the control mask reverts to outer-mask. This is also the
case for a nested WHERE statement.

Consider:

INTEGER :: N(9) = [1,2,3,4,5,6,7,8,9]
WHERE ( MOD (N,2) == 0 )

N =2 ! Nisnow [12 32527 209]
ELSEWHERE ( MOD (N,3) == 0 )

N =3 ! Nisnow [1 2325272 3]
ELSEWHERE ( MOD (N,5) == 0)

N=275 ! Nisnow [1 2325272 3]
ELSEWHERE

N=20 ! Nis now [02 32520 2 3]
ENDWHERE

The masks for the various blocks are shown in Table 7-11.

Table 7-11 Masks for various WHERE blocks

Mask expression Pending control
Statement value Control mask mask
before block (as if) [TTTTTTTTT)]
where block [FTFTFTFTF] [FETFETFTFTF] [TETFTFTFT]
first elsewhere block [FETFFTFFT] [FFTEFFFFET] [TFFFTFTEFF]

second elsewhere block [FFFFTFFFF] [FFFFTFFFF] [TEFFFFFTFEF]
final elsewhere block [TFFFFFTEFF]

7.5.6.3 WHERE Statement
The form of the WHERE statement (R743) is:
WHERE ( logical-expression ) array-assignment-statement

It is equivalent to the WHERE construct
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WHERE ( logical-expression )
array-assignment-statement
END WHERE

Examples:

WHERE( TEMPERATURES > 90.0 ) HOT_TEMPS = TEMPERATURES
WHERE( TEMPERATURES < 32.0 ) COLD_TEMPS = TEMPERATURES

7.5.7 Indexed Parallel Array Assignment—FORALL

The FORALL statement and construct provide a mechanism to specify an indexed par-
allel assignment of values to an array for the following sorts of formulas often found in
mathematical treatises:

aj=i+jfori=1ton,j=1tom

or
a;="b; fori=1ton
The first formula above can be translated into nested DO loops:

DO J =1, M
DOI =1, N
ACT,1) =TI+ 3
END DO
END DO

But this formulation does not allow for the optimization that can be achieved on some
computers when array notation is used.

FORALL statements and constructs provide a notational convenience, but also, be-
cause of the rules that govern their execution, they express data parallel computations
that can be optimized on certain machine architectures. However, they sometimes are
less efficient than a corresponding nest of DO loops on other machine architectures. One
of the rules that is imposed is that any procedures referenced in the FORALL body or
the mask expression must be pure (12.7.1). A pure procedure is one that is virtually
free of side effects.

The Fortran array assignment statement requires that the expression on the right-
hand side be conformable with the array on the left. The first formula above can be ex-
pressed in Fortran with an array assignment that makes use of the SPREAD intrinsic
function on the right side to create a conformable array:

A = SPREAD ( (/ (I, I=1,N) /), DIM=2, NCOPIES=M) + &
SPREAD ( (/ (I, I=1,m) /), DIM=1l, NCOPIES=N)

It is not obvious at a glance that this assignment statement has the same effect as
the first formula. A FORALL statement is provided that makes use of array element
and section references to express such calculations more naturally and at the same time
indicate computations that may be executed in parallel.
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FORALL (I=1:N, J=1:M) A(I,]) = I+J]

The second formula above cannot be expressed with array section notation, but a
FORALL statement can be used to assign the elements of the array B of rank one to the
diagonal of array A:

FORALL (I=1:N) A(I,I) = B(I)

The information in parentheses following the FORALL keyword is called the
FORALL header. The header exerts some control over the following statement or block
of statements. If there is a need to control more than one statement in this way, a
FORALL construct can be used, for example:

FORALL (I=2:N-1, J=2:N-1)
ACT,3) = (A(I+1,3) + A(I-1,3) + A(T,3+1) + A(I,3-1))/4.0
B(I,J) = 1.0/A(I+1,3+1)

END FORALL

The statements and constructs that appear between the FORALL statement and
END FORALL statement make up the FORALL body. The following are permitted in a
FORALL body:

1. assignment statements

2. pointer assignment statements

3. WHERE constructs and statements
4. FORALL constructs and statements

Each construct or statement in a FORALL body is completely evaluated in state-
ment order for all selected index values before any evaluation is performed on the next
one. For an assignment statement, such as one of those in the previous example, all ex-
pressions on the right hand side are evaluated for all selected index values and these
evaluations may occur in any order of the selected index values. After all of these eval-
uations have been performed for a particular statement, the assignments for this state-
ment may occur in any order. Thus in the first assignment statement in the construct
above, it is always the original values of the elements in array A that participate in the
calculation. In the second assignment statement, it is the new values of the elements of
array A that determine the values of the elements of array B.

The FORALL statement resembles a loop construct, but its evaluation rules really
treat the statements within the construct as indexed parallel operations, in which a par-
ticular statement is executed for all selected index values before the next statement in
the FORALL body is executed. As such, it is not a control construct, but a special kind
of parallel assignment statement. On the other hand, a DO construct executes each
statement in its range in order for a particular index value and then returns to the first
statement in the range to repeat the computations for the next index value.

Sometimes it is desirable to exclude some elements from taking part in a calcula-
tion. Thus an optional mask expression may appear in a FORALL header. For example,
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FORALL (I=1:N, J=1:M, A(I)<9.0 .AND. B(3)<9.0) c(1,3) = A(T) + B(2)
7.5.71 Form of the FORALL Construct
The form of the FORALL construct (R752) is:

[ forall-construct-name : ] FORALL ( forall-triplet-specification-list &
[ , scalar-logical-expression] )
[ forall-body-construct | ...
END FORALL [ forall-construct-name |

where a forall triplet specification (R755) is:

index-name = scalar-integer-expression : &
scalar-integer-expression [ : scalar-integer-expression |

and a forall body construct (R756) is one of:

assignment-statement
pointer-assignment-statement
where-construct
where-statement
forall-construct
forall-statement

Rules and restrictions:

1. The index name is the name of a scalar integer variable. The name has the scope of
the FORALL construct itself. It has the type (which must be integer) and type pa-
rameters it would have if it were the name of a variable in the scope that contains
the FORALL construct, but it has no other attributes. For example:

SUBROUTINE CALC (II, A)
INTEGER :: A(:)
INTEGER, INTENT(IN) :: II

FORALL (II = 1:S1ZE(CA)) !'OK even though II is intent IN
A(II) = II
END FORALL

END SUBROUTINE CALC

After execution of the FORALL construct, A has the value (1, 2, 3, ...) and Il retains
the value it had on entry to the subroutine. The definition of II in the FORALL con-
struct does not violate the intent specification of IN for II. However, this is such a
confusing style that it is never recommended.

2. An expression that appears in a triplet specification must not contain a reference to
any index name from the list in which the expression appears. Thus, the following
FORALL statement is invalid:

FORALL (I = 1:3, J = 1:N) A(I,]3) = 0.0
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but can be rewritten as:
FORALL (I = 1:N, J = 1:N, I<=]) A(1,3) = 0.0

3. Any procedure referenced in the scalar logical expression that defines the mask or
in any FORALL body construct (including one referenced by a defined operation
or assignment) must be a pure procedure.

4. An index name must not be assigned a value within the FORALL body constructs.

5. A nested FORALL construct or statement must not use as an index name one of the
index names of an outer construct. The value of an inner construct index name,
however, may depend on the values of outer index variables.

6. A many-one assignment (6.6.4.3) must not occur within a single statement in a
FORALL construct. For example:

FORALL (3=1:20)
AL(INDEX(J)) = A2(3)
END FORALL

is allowed only if INDEX(1:20) contains no duplicate values. It is possible to assign
or pointer assign to the same object in different statements in a FORALL construct.

7. A FORALL body construct must not be a branch target.

The triplet notation has an interpretation similar to that for section triplets (6.6.4.2);
that is,

scalar-integer-expression : scalar-integer-expression : scalar-integer-expression
corresponds to
first value : lastvalue : stride

The stride may be positive or negative, but not zero; if omitted, it is assumed to be 1.
It is normally the case that each index name in the triplet list appears in the sub-
script or section subscript list of the variable being assigned.
The scalar logical expression defines a mask. A reference to an index name may ap-
pear in the expression. For example:

FORALL (I=1:10, J=1:10, A(I)/=0.0 .AND. B(3)>0.0)
END FORALL
An assignment statement in a FORALL body may be an array assignment state-
ment:

REAL A(100,100)
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FORALL (I=1:N)
A(I,:) = 1.0 / REAL(TI) ! A scalar value is broadcast
. ! to each row of A

or a pointer assignment statement:

TYPE SCREW
CHARACTER (30), POINTER :: HEAD_TYPE
REAL LENGTH, THREAD

END TYPE SCREW

TYPE (SCREW) INVENTORY (500)
REAL THREADS (100)
CHARACTER (30), TARGET :: HEAD_TYPES(5)

FORALL (I=1:500, INVENTORY(I)%LENGTH > .05)
INVENTORY (I)%HEAD_TYPE => HEAD_TYPES(MOD(I-1,5)+1)
! Subscripts for HEAD_TYPES are 1,2,3,4,5,1,2,3,4,5,
INVENTORY (I)%THREAD = THREADS((I-1)/5+1)
I Subscripts for THREADS are 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,
END FORALL

or a defined assignment (12.5.4.3).

7.5.7.2 Execution of a FORALL Construct

There are three steps in the execution of a FORALL construct:
1. determination of the values for index name variables

2. evaluation of the mask expression, if there is one

3. execution of the body constructs

Determination of the values for index name variables. The scalar integer expressions
in a triplet are evaluated; they may be evaluated in any order. If necessary, they are
converted to the kind of the index name. They determine the set of values the index
may assume. If the expressions are designated by my, m,, and mj3 (where m3 has the
value 1 if not present), the number of values in the set is determined by the formula
(my — mq + m3) /ms. If this number, call it 1, is less than or equal to zero, the execution
of the construct is complete (like the DO construct, the body is not executed). Other-
wise, the set of values for the index name is mq + (k — 1) x m3, where k=1, 2, ..., n. The
set of combinations of index values is determined by the Cartesian product of the sets
of values defined by each triplet specification.

Evaluation of the mask expression. If there is no mask expression, it is as if it were
present with the value true. Otherwise, the expression is evaluated for each combina-
tion of index values. The active combination of index values is then the subset of all
possible combinations (determined in step 1) for which the mask expression has the
value true.
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Execution of the body constructs. FORALL body constructs are executed in the order
in which they appear. Each of these constructs is executed for all active combinations
of index values and may be an assignment statement, a pointer assignment statement,
a WHERE construct or statement, or a nested FORALL construct or statement.

1. Assignment statements. An assignment statement has the form
variable = expression

Execution of such a statement within a FORALL construct causes evaluation of the
expression on the right-hand side and all expressions within the variable for all ac-
tive combinations of the index values. These evaluations may be done in any order.
After all of these evaluations have been done, each expression value is assigned to
the appropriate variable. The assignments may occur in any order. If the assign-
ment is a defined assignment (12.5.4.3), the subroutine that defines the assignment
must not contain a reference to any variable that becomes defined by the statement
or any pointer that becomes associated by the statement.

2. Pointer assignment statements. A pointer assignment statement has the form
pointer-object => target

Execution of such a statement within a FORALL construct causes evaluation of all
expressions within the target and the pointer object, the determination of any
pointers within the pointer object, and the determination of the target for all active
combinations of the index values. These evaluations may be done in any order. Af-
terward, each pointer object is associated with the corresponding target. These as-
sociations may be done in any order. The pointer-object may be either a data pointer
or a procedure pointer.

3. WHERE constructs and statements. Each statement in a WHERE construct (7.5.6.1)
within a FORALL construct is executed in sequence. When a WHERE statement,
WHERE construct statement, or masked ELSEWHERE statement is executed, the
statement’s mask expression is evaluated for all active combinations of index val-
ues as determined by the outer FORALL construct (or constructs, if nested) and
masked by any masks from outer WHERE constructs. The assignment statement
within a WHERE statement and any assignment statements within a WHERE con-
struct are then executed for all active combinations of index values masked by the
new control mask in effect for that statement. For example,

INTEGER A(5,4)

INT_WHERE: FORALL (I=1:5)
WHERE (A(I,:) > I) A(I,:) =1
END FORALL INT_WHERE

If A has the initial value
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0012
1230
2406
1936
8888

after execution, it will have the value

0011
1220
2303
1434
5555

255

4. FORALL constructs and statements. Execution of an inner FORALL construct or
FORALL statement causes the evaluation of the expressions in the triplet list of the
inner header for all active combinations of the index values of the outer FORALL
construct. The set of combinations of index values for the inner FORALL is the
union of the sets defined by these expressions for each active combination of the
outer index values. The mask is then evaluated for all combinations of the index
values of the inner construct or statement to produce a set of active combinations
for the statement or statements it controls, which are executed for each active com-

bination of the index values. For example,

INTEGER A(3,3)

OUTER: FORALL (I=1:N-1)
INNER: FORALL (J=I+1:N)
A(1,1) = A (3,1)
END FORALL INNER
END FORALL OUTER

If N is 3 and A has the initial value

036
147
258

after execution, it will have the value

012
145
258
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The transpose of the lower triangle of array A (the section below the main diago-
nal) is assigned to the upper triangle of A.

7.5.7.3 FORALL Statement

The FORALL statement allows a single assignment or pointer assignment statement to
be controlled by a set of index values and an optional mask expression.
The form of the FORALL statement (R759) is:

FORALL ( forall-triplet-specification-list [ , scalar-logical-expression ] ) &
forall-assignment-statement

where a forall assignment statement (R757) is one of:

assignment-statement
pointer-assignment-statement

The FORALL statement is equivalent to the FORALL construct

FORALL ( forall-triplet-specification-list [ , scalar-logical-expression ] )
forall-assignment-statement
END FORALL

The effect of the previous example of nested FORALL constructs can be achieved
with a single FORALL statement:

FORALL (I=1:N-1, 3J=1:N, 3>I) A(I,]) = A(J,I)



8 Block Constructs and Execution Control

* A Block is a bounded sequence of executable constructs and statements that is
treated as a unit. It may be empty.

e A Block Construct has an initial statement and a terminal statement; it contains
zero or more blocks and the statements that bound the blocks. It is used to control
execution or simply to define a region of code.

* The ASSOCIATE Construct allows a named entity, the associate name, to be associ-
ated with a variable or expression during the execution of its single block.

e The IF Construct contains one or more blocks; at most one is chosen for execution.
The choice is based on the value of a logical expression.

e The CASE Construct contains zero or more blocks; at most one is selected for execu-
tion. The selection is based on the value of an integer, character, or logical expres-
sion.

e The SELECT TYPE Construct contains zero or more blocks; at most one is selected
for execution. Rather than a value, as in the CASE construct, the selection is based
on the dynamic type of a variable or expression.

* The DO Construct contains a single block that is executed repeatedly. There are
multiple forms for controlling the execution. A CYCLE statement is permitted at
any point to start the next execution of the block. An EXIT statement terminates the
repetition.

e The IF Statement permits the execution of a single statement if the contained logical
expression evaluates to true.

e The GO TO Statement transfers control to a labeled statement.
e The CONTINUE Statement has no effect on execution.
* The STOP Statement causes termination of the execution of the program.

* The Computed GO TO Statement, the Arithmetic IF Statement, and the nonblock
DO are obsolescent features that use labels.

This chapter describes five block constructs, four of which are execution control con-
structs. It also describes the executable statements that are used to alter the normal ex-
ecution sequence. The block constructs that are control constructs are the IF construct,
the CASE construct, the SELECT TYPE construct, and the DO construct. Individual
statements that alter the normal execution sequence include the EXIT and CYCLE
statements that are special statements for DO constructs, branch statements such as the

J.C. Adams et al., The Fortran 2003 Handbook,
DOI: 10.1007/978-1-84628-746-6_8, © Springer-Verlag London Limited 2009
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GO TO statement, and a statement that causes execution to cease, the STOP statement.
The fifth block construct described in this chapter is the ASSOCIATE construct. Its sin-
gle block defines a region of the program in which an associate name may be used in-
stead of a longer or more complicated variable or expression.

There are two other constructs that look like control constructs, but are really
forms of assignment. These are the WHERE construct (7.5.6), which somewhat resem-
bles an IF construct and the FORALL construct (7.5.7), which somewhat resembles a
DO construct.

With any of the block constructs, construct names may be used to identify the con-
structs and also to identify which DO constructs, particularly in a nest of DO con-
structs, are being terminated or cycled when using the EXIT or CYCLE statements.

8.1 Blocks and Construct Names

A block (R801) has the form:
[ execution-part-construct | ...

A block is treated as a whole. Not every statement or construct in a block need be
executed; for example, a branch statement early in the block may prevent subsequent
statements in the block from being executed. This is still a complete execution of the
block.

A control construct consists of zero or more blocks and the control logic that ex-
plicitly or implicitly encloses these blocks. A construct has an initial statement and a
terminal statement. In constructs that have more than one block, there are additional
statements between blocks that determine which block is chosen for execution. The
control for the DO construct determines how many times its block will be executed. An
example of a named executable construct controlling a block of statements is:

INNER: IF (I<=1) THEN ! Initial statement of the IF construct
X = 1.2*I ! First statement of the block
Y = cos(X) ! Final statement of the block

END IF INNER ! Terminal statement of the IF construct

All of the block constructs (ASSOCIATE, CASE, DO, IF, and SELECT TYPE), as
well as the FORALL and WHERE constructs, may have construct names. If a construct
name is used, it must appear on the initial statement of the construct and a matching
occurrence of the same name must appear on the terminal statement of the construct. If
there is no construct name on the initial statement, the terminal statement must not
have a construct name. If one of the internal control statements contains a construct
name, it must be the same name as the one on the initial and terminal statements. The
same construct name must not be used for different constructs in the same scoping
unit.
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Rules and restrictions:

1. The first statement or construct of a block is executed first. The statements of the
block are executed in order unless there is a control construct or statement within
the block that changes the sequential order.

2. A block, as an integral unit, must be completely contained within a construct.

3. If a block contains a construct, the construct must be completely contained within
the block.

4. A block may be empty; that is, it may contain no statements or constructs at all.

5. A branching statement or control construct within a block that transfers to a state-
ment or construct within the same block is permitted.

6. Exiting from a block may be done from anywhere within the block.

7. Branching to a statement or construct within a block from outside the block is pro-
hibited. (Even branching to the first executable statement within a block from out-
side the block is prohibited.) An ENTRY statement must not appear in a block.

8. References to procedures are permitted within a block.

8.2 The ASSOCIATE Construct

The ASSOCIATE construct has one block in which associate names may be used in-
stead of expressions or variables.

8.2.1 Form of the ASSOCIATE Construct

The form of the ASSOCIATE construct (R816) is:

[ associate-construct-name : ] ASSOCIATE ( association-list )
block
END ASSOCIATE [ associate-construct-name |

where an association has the form (R818):
associate-name => selector
and selector (R819) is one of:

expr
variable

Rules and restrictions:

1. An associate name must not be the same as another associate name in the same as-
sociation list. If an associate name is the same as a name in the scoping unit of the
construct, the name in the construct is interpreted as the associate name (16.1.3(6)).
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2. If a selector is not permitted to appear in a variable definition context or is a variable
with a vector subscript, the associated name must not appear in a variable defini-
tion context (16.3.1).

3. If a selector is a variable with the ALLOCATABLE attribute, it must be allocated.
The associate name is associated with the data object and does not have the ALLO-
CATABLE attribute.

4. If a selector is a variable with the POINTER attribute, it must be pointer associated
with a target. The associate name is associated with the target and does not have
the POINTER attribute.

5. If the selector is an optional dummy argument, it must be present.

8.2.2 Execution of the ASSOCIATE Construct

The association between an associate name and a selector is established before the exe-
cution of the block. If the selector is not a variable, the expression is evaluated and the
value of the expression is associated with the associate name. Because the association is
established before the execution of the block, it is not affected by any subsequent
changes to variables that were used in subscripts or substring ranges in the selector.
This process is somewhat similar to what happens in a procedure call with the associ-
ate name taking the role of a local dummy argument.

During execution o