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Thinking differently about problems

Functional programming is a paradigm that originated from ideas older than the first
computers. The first functional programming language celebrated its 50th birthday in 2008.
Functional languages are very succinct and expressible, yet everything is achieved using a
minimal number of concepts. Despite their elegance, functional languages have largely been
ignored by mainstream developers—-until now.

Today we are facing new challenges and trends that open the door to functional
languages. There has never been a better time to learn them. We need to write programs
that process large sets of data and scale to a large number of processors or computers. We
want to write programs that can be easily tested. We want to be able to express our logic in
a declarative way which expresses results without explicitly specifying execution details-
making the code easier to understand and reason about. All of these trends are embodied in
functional programming, and we'll look at each of them later in this chapter.

As a result, many mainstream languages now include some functional features. In the
.NET world, generics in C# 2.0 were heavily influenced by functional languages, anonymous
methods in C# 2.0 and lambda expressions in C# 3.0 are examples of the most fundamental
concept in functional programming and the whole of LINQ is rooted in a declarative,
functional approach.

While the conventional languages are playing catch-up, truly functional languages have
been receiving more attention too. The most significant example of this is probably F#,
which is will be an official, fully supported Visual Studio language as of Visual Studio 2010.
This evolution of functional languages on .NET is largely possible thanks to the common
language runtime (CLR), which makes it possible to mix multiple languages when developing
a single .NET application and also to access rich .NET libraries from new languages like F#.
This makes it much easier to learn these new languages, as all of the platform knowledge
that you've accumulated during your career can still be used in the new context of a
functional language.
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In this book, we'll look at the most important functional programming concepts and we'll
demonstrate them using real-world examples from .NET. We'll start with the description of
the ideas and then turn to the aspects that make it possible to develop large scale real-world
.NET applications in a functional way. We'll use both F# and C# 3.0 in this book, because
many of these ideas are directly applicable to C# programming. You certainly don't need to
write in a functional language to use functional concepts and patterns. However, seeing the
example in F# gives you a deeper understanding of how it works and F# often makes it
easier to express and implement the solution.

We'll start this chapter by looking at the functional concepts that make you more
productive, and then explore several examples that demonstrate what those ideas look like
in real source code. We won't go into any details in this chapter, however-the goal is just to
show you an interesting and elegant example that we'll discuss more fully later in the book.

1.1 Being productive with functional programming

Many people find functional programming more elegant or even beautiful, but that's hardly a
good reason to use it in a commercial environment. Elegance doesn't pay the bills, sadly. The
key reason why for coding in a functional style is that it makes you and your team more
productive.

In this section, we'll look at the key benefits that functional programming gives you and
how it solves some of the most important problems of modern software development. We'll
start by looking at the declarative programming style, which gives us a richer vocabulary for
describing our intentions.

1.1.1 Declarative programming style

When writing a program, we have to explain our goals to the computer using the vocabulary
that it understands. In imperative languages, this consists of commands. We can add new
commands, such as "show customer details", but the whole program is a step by step
description saying how the computer should accomplish the overall task. An example of a
program is "Take the next customer from a list. If the customer lives in UK, show their
details. If there are more customers in the list, go to the beginning."

Once the program grows, the number of commands in our vocabulary becomes too high,
making it very difficult to use. This is where object-oriented programming makes our life
easier, because it allows us to organize our commands in a better way. We can associate all
commands that involve customer with some customer entity (a class), which makes the
description a lot clearer. However, the program is still a sequence of commands specifying
how it should proceed.

Functional programming provides a completely different way of extending the
vocabulary. We're not limited to adding new primitive commands; we can also add new
control structures—primitives that specify how we can put commands together to create a
program. In imperative languages, we were able to compose commands in a sequence or
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using a limited number of built in constructs such as loops, but if you look at typical
programs, you'll still see many recurring structures; common ways of combining commands.

In our example we can see a pattern (or a control structure), which could be expressed
as "Run the first command for every customer for which the second command returns true."
Using this primitive, we can express our program simply by saying "Show customer details of
every customer living in UK." In this sentence the part "living in UK" specifies the second
command and the part "show customer details" represents the first command.

SAYING "WHAT" RATHER THAN "HOW"

If you compare these two sentences, you can see that the first describes exactly how to
achieve our goal while the second describes what we want to achieve. This is the
essential difference between imperative and declarative styles of programming. Hopefully
you'll agree that the second sentence is far more readable and better reflected the aim of
our "program”.

So far I've just been using an analogy, but we'll see how this idea maps to actual source
code later in this chapter. However, this isn't the only aspect of functional programming that
makes life easier. In the next section, we'll look at another concept that makes it much
easier to understand what a program does.

1.1.2 Understanding what a program does

In the usual imperative style, the program consists of objects that have some internal state
that can be changed either directly or by calling some method of the object. This means that
when we call a method, it can be hard to tell what state is affected by the operation. For
example, in the C# snippet in listing 1.1 we create an ellipse, get its bounding box and then
call a method on the returned rectangle. Finally, we return the ellipse to whatever has called
us.

Listing 1.1 Working with ellipse and rectangle (C#

Ellipse el = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle rc = el_BoundingBox;

rc.Inflate(10, 10); #1
return el;

#1 Is the original ellipse changed here?

How do we know what the state of the ellipse €l will be after the code runs, just by
looking at it? This is really hard, because rC could be a reference to the bounding box of the
ellipse and Inflate (#1) could modify the rectangle, changing the ellipse at the same
time. Or maybe the Rectangle type is a value type (declared using the Struct keyword
in C#) and it's copied when we assign it to a variable. Perhaps the Inflate method
doesn't actually modify the rectangle at all, and returns a new rectangle as a result, so the
third line has no effect at all.
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In functional programming, most of the data structures are immutable, which means
that we cannot modify them. Once the Ellipse or Rectangle is created, we can't
change it. The only thing we can do is to create a new Ellipse with a new bounding box.
This makes it easy to understand what a program does. In listing 1.2 you can see how we
could rewrite the previous snippet if EFl ipse and Rectangle were immutable. As you'll
see, understanding the program's behavior becomes much easier.

1.2. Working with immutable ellipse and rectang

Ellipse el = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle rc = el_BoundingBox;

Rectangle rcNew = rc.Inflate(10, 10); #1
return new Ellipse(rcNew); #2
#1 Returns a new rectangle

#2 Return a new ellipse with the new bounding box

When writing program using immutable types, the only thing a method can do is to
return a result. It cannot modify state of any objects. You can see that for example
Inflate returns a new rectangle as a result (#1) and that we construct a new ellipse to
return an ellipse with a modified bounding box (#2). This may feel a bit unfamiliar for the
first time, but keep in mind that this isn't a new idea to .NET developers. String is
probably the best known immutable type in the .NET world, but there are many examples
such as DateTime and other value types.

Functional programming takes this idea further, which makes it a lot easier to see what
a program does, because the result of method gives us full specification of what the method
does. We'll talk about immutability in a more detail later, but let's first look at one area
where it is extremely useful: implementing multi-threaded applications.

1.1.3 Concurrency-friendly application design

When writing a multi-threaded application using the traditional imperative style we have to
face two problems. First of all, it is difficult to turn existing sequential code into parallel code,
because we have to modify large portions of the code-base to use threads explicitly. The
second problem is that using shared state and locks is difficult. You have to carefully
consider how to use locks to avoid race conditions and deadlocks, but leave enough space for
parallel execution. Functional programming gives us answers to these two problems:

1) A declarative programming style makes it easier to introduce parallelism into
existing code. We can just replace a few primitives that specify how to combine
commands with a version that executes commands in parallel.

2) Thanks to the immutability, we cannot introduce race conditions and we can write
lock-free code. This style makes it easy to see which parts of the program are
independent and we can easily modify the program to run those tasks in parallel.

These two aspects influence how we design our applications and as a result make it a lot
easier to write code that executes in parallel, taking full advantage of the power of multi-core
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machines. This isn't the only change you should expect to see in your design when you start
thinking functionally, either...

1.1.4 Elegant thought leads to elegant code

The functional programming paradigm no doubt influences how you design and implement
applications. This doesn't mean that you have to throw away anything from your existing
knowledge, because many of the programming principles that you're using today are
applicable to functional applications as well. This is true especially at the design level in the
way how you structure the application.

On the other hand, functional programming can cause a radical transformation of how
you approach problems at the implementation level. However, when learning how to use
functional programming ideas, you don't have to make any radical steps. In C# you just
learn how to efficiently use the new features. In F#, you can often use direct equivalents of
C# constructs while you're still getting your feet wet. As you become a more experienced
functional developer, you'll learn more efficient and concise ways to express yourself.

The following list summarizes how functional programming influences your programming
style, working down from a design level to actual implementation.

3) Functional programs on .NET still use object-oriented design as a great way for
structuring applications and components. Larger number of types and classes are
designed as immutable, but it is still possible to create standard classes especially
when collaborating with other .NET libraries.

4) Thanks to functional programming, you can simplify many of the standard OO
design patterns, because some of them correspond to language features in F# or
C# 3.0. Also, some of the design patterns simply aren't needed any more when the
code is implemented in the functional way. We'll see many examples of this
throughout the book, especially in chapters 7 and 8.

5) Perhaps the larger influence of functional programming is at the lowest level.
Thanks to the combination of a declarative style, succinct syntax and type
inference, functional languages make it easier to concisely express algorithms in a
more readable way.

We'll talk about all of these aspects later in the book - but building up from the lowest
level. We'll start with the functional values used to implement methods and functions, before
raising our sights to design and architecture. We'll see new patterns that are specific to
functional programming, as well as looking at how the object-oriented patterns you're
already familiar with either fit in with the functional world or are no longer required. The
functional world from the previous sentence isn't a strictly delimited technology, because the
functional ideas can appear in different forms.

1.1.5 The functional paradigm

Functional programming is a programming paradigm. This means that it defines the concepts

that we can use when thinking about problems. However, it doesn't precisely specify how

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com

exactly these concepts should be represented in the programming language. As a result,
there are many functional languages and they put more emphasis on different features and
aspects of the functional style.

We can use an analogy with a paradigm you're already familiar with: object-oriented
programming. In the object-oriented style, we think about problems in terms of objects.
Each object-oriented language has some notion of what an object is, but the details vary
between languages. For instance C++ has multiple inheritances and JavaScript has
prototypes. Moreover, you can still use an object-oriented style in language which isn't
object-oriented such as C. It is less comfortable, but you'll still get some of the benefits.

However, programming paradigms are not exclusive. The C# language is primarily
object-oriented, but in the 3.0 version it supports several functional features, so we can use
some techniques from the functional style directly. On the other side, F# is primarily a
functional language, but it fully supports the .NET object model. The great thing about
combining paradigms is that we can choose the approach that best suits the problem.

Finally, learning the functional paradigm is worthwhile even if you're not planning to use
a functional language. By learning a functional style, you'll gain concepts that make it easier
to think about and solve your daily programming problems. Interestingly, many of the
standard object-oriented patterns describe how to encode some clear functional concept in
the object-oriented programming style.

So far, we have only talked about functional programming in a very general sense. It's
important to have some broad idea about what makes functional programming different and
why it's worth learning, but there's nothing like seeing actual code to bring things into focus.
In the next section, we'll take a quick look at a couple of more specific examples.

1.2 Functional programming by example

The goal of the upcoming few examples is to show you that functional programming isn't by
any means a theoretical discipline. Instead, you'll see that you've already seen and maybe
even used some functional ideas. Reading about functional programming will help you to
understand these technologies at a deeper level and use them more efficiently. We'll also
look at a couple of examples from later parts of the book that show important practical
benefits of the functional style. In the first set of examples, we'll look at declarative
programming.

1.2.1 Expressing intentions using declarative style

In the previous section, I described how a declarative coding style makes you more
productive. Programming languages that support a declarative style allow us to add new
ways of composing basic constructs. When using this style, we're not limited to basic
sequences of statements or built-in loops, so the resulting code describes more "what" the
computer should do rather than "how" to do it.
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I'm talking about this style in a general way because the idea is universal and not tied to
any specific technology. However, it's best to demonstrate it using a few examples that you
may know already to show how it's applied in specific technologies. In the first two
examples, we'll look at the declarative style of LINQ and XAML. If you don't know these
technologies, don't worry. The examples are simple enough to understand without
background knowledge. In fact, the ease of understanding code-even in an unfamiliar
context-is one of the principal benefits of a declarative style!

WORKING WITH DATA IN LINQ

If you're already using LINQ then this example will be just a reminder. However, I'll use it to
show something more important. Let's first look at an example of code that works with data
using the standard imperative programming style.

Listing 1.3 Imperative data processing (C#)

List<string> res = new List<string>(); #1
foreach(Product p in Products) { #2
it (p-UnitPrice > 75.0M) {
res.Add(String.Format("'{0} - ${1}",
p-ProductName, p.UnitPrice)); #3
}
}
return res;
#1 Create resulting list
#2 Iterate over products
#3 Add information to list of results

You'll probably need to read the code carefully to understand what it does, but that's not
the only aspect we want to improve. The code is written as a sequence of some basic
imperative commands. For example, the first statement creates new list (#1), the second
iterates over all products (#2) and a later one adds element to the list (#3). However, we'd
like to be able to describe the problem at a higher level. In more abstract terms, the code
just filters a collection and returns some information about every returned product.

In C# 3.0, we can write the same code using query expression syntax. This version is
closer to our real goal-it uses the same idea of filtering and transforming the data. You can
see the code in listing 1.4.

Listing 1.4 Declarative data processing (C#)

var res = from p in Products

where p.UnitPrice > 75.0M #1
select string.Format("{0} - ${1}",
p-ProductName, p.UnitPrice); #2

return res;
#1 Filter products using predicate
#2 Return information about product

The expression that calculates the result (res) is composed from basic operators such
as where or select. These operators take other expressions as an argument, because
they need to know exactly what we want to filter or select as a result. Using the previous
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analogy, these operators give us a new way for combining pieces of code to express our
intention with less writing. It is worth noting that the whole calculation in the listing 1.3 is
written just as a single expression that describes the result rather than a sequence of
statements that constructs it. You'll see this become a trend repeated throughout the book.
In more declarative languages such as F#, everything you write is an expression.

Another interesting aspect is that many technical details of the solution are nhow moved
to the implementation of the basic operators. This makes the code simpler, but also more
flexible, because we can easily change implementation of these operators without making
larger changes to the code that uses them. As we'll see later, this makes it much easier to
parallelize code that works with data. However, LINQ is not the only mainstream .NET
technology that relies on declarative programming. Let's turn our attention to Windows
Presentation Foundation and the XAML language.

DESCRIBING USER INTERFACES IN XAML
Windows Presentation Foundation is a .NET library for creating user interfaces that supports
the declarative programming style. It separates the part that describes the user interface
from the part that implements the imperative program logic. However, the best practice in
WPF is to minimize the program logic and create as much as possible in the declarative way.
The declarative description is represented as a tree-like structure created from objects
that represent individual GUI elements. It can be created in C#, but WPF also provides a
more comfortable way using an XML based language called XAML. Nevertheless, we'll see
that there are many similarities between XAML and LINQ. The listing 1.5 shows how the code
in XAML compares with code that implements the same functionality using the imperative
Windows Forms library.

Listing 1.5 Creating user interface using imperative and declarative style (C#)

<Canvas Background="Black"> protected override void OnPaint
<Ellipse x:Name="el" (PaintEventArgs e) {

Width="75" Graphics gr = e.Graphics;

Height="75" Brush Ig = Brushes.LightGreen;
Canvas.Left=""0" Brush bl = Brushes.Black;
Canvas.Top="0" gr.FillRectangle(bl,
Fill="LightGreen" /> ClientRectangle);

</Canvas> gr.FillEllipse(lg, O, 0, 75, 75);

3

It isn't difficult to identify what makes the code on the left side more declarative. The
XAML code describes the user interface by composing various primitives and specifying their
properties. The whole code is a single expression that creates a black canvas containing a
green ellipse. On the other hand, the imperative version specifies how to create the user
interface. It is a sequence of statements that specify what drawing operations should be
executed to get the required GUI. This example clearly demonstrates the difference between
saying "what" using the declarative style and saying "how" in the imperative style.
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Also, in the declarative version we don't need as much knowledge about the underlying
technical details. If you just look at the code, you don't really need to know how WPF will
represent and draw the GUI. On the other hand, when looking at the WinForms example, all
the technical details such as representation of brushes and order of the drawing are visible in
the code. In the example above, the correspondence between XAML and the drawing code
was quite clear, but we can use XAML with WPF to describe more complicated runtime

aspects of the program. Let's look at the following example:
<DoubleAnimation
Storyboard.TargetName="el"
Storyboard.TargetProperty="(Canvas.Left)"
From="0.0" To="100.0" Duration="0:0:5" />

This single expression creates an animation that changes the Left property of the
ellipse (specified by the name el) from value 0 to value 100 in 5 seconds. The code is
implemented using XAML, but we could as well write it by constructing the object tree
explicitly in C#. Under the hood, DoubleAnimation is a class, so we would just specify
its properties. The XAML language adds a more declarative syntax for writing the
specification. In either case, the code would be declarative thanks to the nature of WPF. On
the other hand, the traditional imperative version of code that implements an animation
would be rather complex. It would have to create some timer, register an event handler that
would be called every couple of milliseconds and it would have to calculate new location of
the ellipse.

DECLARATIVE CODING IN .NET

WPF and LINQ are two main-stream technologies that use a declarative style, but there
are many others. The goal of LINQ is to simplify working with data in a general-purpose
language. It draws on ideas from many data manipulating languages that use the
declarative style, so you can find the declarative approach for example in SQL or XSLT.

Another area where the declarative style is used in C# or VB.NET is when using .NET
attributes. Attributes give us a way to annotate a class or its members and specify how
they can be used in specific scenarios, such as editing a GUI control in a designer. This is
declarative, because we just specify what we expect from the designer when working with
the control and we don't have to write the code that would imperatively configure the
designer.

So far we've seen several technologies that are based on the declarative style and how
they make problems easier to solve. However, you may be asking yourself how we use it for
solving our own kinds of problems. In the next section we'll take a brief look at an example
from chapter 15 that demonstrates this.

DECLARATIVE FUNCTIONAL ANIMATIONS
Functional programming gives you the ability to write your own library that allows you to
solve problems in the declarative style. We've seen how LINQ does that for data
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manipulation and how WPF does that for user interfaces, but in functional programming, we'll
often create libraries for our own problem domain

When 1 earlier mentioned that declarative style makes it possible to ignore
implementation details, I wasn't really saying the full truth. When we're designing our own
declarative library, we of course need to implement all the technical details. However, the
great thing about the functional style is that it allows us to hide the implementation from
developers (just like LINQ does) and makes it possible to solve the general problem once
and for all.

The listing 1.6 shows a code that uses a declarative library for creating animations that
we'll develop in chapter 15. You don't have to fully understand the code to see the benefits
that we get thanks to the declarative style. It is similar to WPF in a sense that it describes
how the animation should look rather than how to draw it using a timer.

Listing 1.6 Creating functional animation (C#)

var green = Anims.Circle(Brushes.OliveDrab, 100.0f.AnimQ)); #A
var blue = Anims.Circle(Brushes.SteelBlue, 100.0f.Anim()); #A
var animatedPos = Time.Wiggle * 100.0f.AnimQ); #1
var greenMove = green.MoveXY(animatedPos, 0.0f.Const()); #B
var blueMove = blue.MoveXY(0.0f.Const(), animatedPos); #B
var animation = Anims.Compose(greenMove, blueMove); #C

#A Create green and blue ellipse

#1 Value animated from -100 to +100

#B Animate X or Y coordinates of ellipses
#C Compose animation from both ellipses

We'll explain everything in detail later in chapter 15. However, you can probably guess
that the animation creates two ellipses. Later, it creates animated ellipses and composes
them into an animation (represented as animation value). If we render this animation to
a form, we get a result that is displayed in figure 1.1.

Ao T
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Figure 1.1 The green ellipse is moving from the left to the right and the blue ellipse is moving from the top
to the bottom.

The entire declarative description is based on animated values. There is a primitive
animated value called Time._Wiggle, which has a value that swings between -1 and +1.
Another primitive construct is X.Anim() creates an animated value that has always the
same value. If we multiply Wiggle by 100, we'll get an animated value that ranges
between -100 and +100 (#1). These animated values can be used for specifying animations
of graphical objects such as our two ellipses. The screenshot shows them in a state where X
coordinate of the green one and Y coordinate of the blue one are close to the -100 state.

In the code we wrote, we don't need to know anything about the representation of
animated values, because we're describing the whole animation just by calculating with the
primitive animated value. Another aspect of the declarative style that you can see in the
code is that the animation is in principle described using a single expression. We made it
more readable by declaring several local variables, but if you replaced occurrence of the
variable with its initialization code, the animation would remain exactly the same.

COMPOSITIONALITY

An important feature of declarative libraries is that we can use them in a compositional
manner. In LINQ, you can move a part of a complex query into a separate query and
reuse it. Similarly, our previous sample is very compositional. We can declare animated
values such as animatedPoOSs and compose primitive animated objects using
Anim.Compose.

On the last couple of pages, we looked at the declarative programming, which is an
essential aspect of the functional style. The last example shows how this style can be used in
an advanced library for describing animations. In the next section, we'll turn our attention to
more technical, but also very interesting functional aspect which is immutability.

1.2.2 Understanding code using immutability

We discussed immutability before when talking about benefits of the functional style. We
used an example with bounding box of an ellipse, where it wasn't clear how the code
behaved. Once we rewrote the code using immutable objects, it became easier to
understand. We'll talk about this topic in detail in later chapters. The purpose of this example
is just to satisfy your curiosity and show how an immutable object would look in practice.

Again, don't worry if you won't understand everything in detail, because we'll talk about
everything more fully later. Now, let's imagine we're writing a game with some characters
that we can shoot at. Listing 1.7 shows a part of the class that represents the character.

Listing 1.7 Immutable representation of a game character (C#

class GameCharacter {
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readonly int health; #1
readonly Point location; #1

public Character(int health, Point location) {
this.health = health; #2
this._location = location; #2

}
public Character HitByShooting(Point target) {
int newHealth = CalculateHealth(target);
return new GameCharacter(newHealth, this.location); #3

}
public bool IsAlive {
get { return health > 0; }

// Other methods and properties omitted

#1 All fields are declared as readonly
#2 Initialize immutable fields only once
#3 Return a game character with updated health

In C#, we can explicitly mark a field as immutable using the readonly keyword. This
means that we cannot change the value of the field, but we could still modify the target
object if the field is a reference to a mutable class. When creating a truly immutable class,
we need to make sure that all fields are marked as readonly and also that the types of
these fields are also primitive types, immutable value types or other immutable classes.

According to these conditions, our GameCharacter class is immutable. All its fields
are marked using the readonly modifier (#1), Int is a primitive type and Point is an
immutable value type. When a field is read-only it can be set only when creating the object,
so we can only set the health and location of the character only in the constructor (#2). This
means that we can't modify the state of the object once it is initialized. So, what can we do
when an operation needs to modify the state of the game character?

You can see the answer when you look at the HItByShooting method (#3). It
implements a reaction to a shot being fired in the game. It uses the CalculateHealth
method (not shown in the sample) to calculate the new health of the character. In an
imperative style, it would then update the state of the character, but that's not possible since
the type is immutable. Instead, the method creates a new GameCharacter instance to
represent the modified character and returns it as a result.

The class from the previous example represents a typical design of immutable C#
classes and we'll use it (with minor modifications) throughout the book. Now that we know
what immutable types look like, let's see some of the consequences.

READING FUNCTIONAL PROGRAMS

We've already seen an example that used immutable types when looking at the code with
bounding box of an ellipse. However, that was very briefly and we just concluded that it
makes the code more readable. In this section, we're going to look at two snippets that we
could find somewhere in our functional game.
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Listing 1.8 shows two separate examples, each with two game characters: player and
monster. The first one shows how we could execute the monster Al to perform a single
step and then test whether the player is in danger and the second shows how we could
handle a gunshot.

Listing 1.8 Code snippets form a functional game (C#)

// Move the monster & test if the player is in danger
var movedMonster = monster._PerformStep(); #1
var inDanger = player.lIsCloseTo(movedMonster); #2

// Did gunshot hit a monster or the player?

var hitMonster = monster_HitByShooting(gunShot); #3
var hitPlayer = player._HitByShooting(gunShot); #3
#1 Move the monster

#2 Test distance from the moved monster

#3 Create new monster and player

All objects in our functional game are immutable, so when we call method on an object,
it cannot modify itself or any other object. If we know that, we can make several interesting
observations about the previous examples. In the first snippet, we start by calling the
PerformStep method of the monster (#1). The method returns a new monster and we
assign it to a variable called movedMonster. On the next line, we use this monster to
check whether the player is close to it and so is in danger.

One interesting point to note here is that we can see that the second line of the code
relies on the first one. If we changed the order of these two lines, the program wouldn't
compile because movedMonster wouldn't be declared on the first line. On the other hand,
if you implemented this in the imperative style, the method would modify the state of the
monster object. In that case, we could rearrange the lines and the code would compile, but
it would change the meaning of the program and it could start behaving incorrectly.

Now, what can we learn by looking at the second snippet? It consists of two lines that
create a new monster and a new player objects with updated health property when a
shooting occurs in the game. The two lines are independent, meaning that we could change
their order. Can this operation change the meaning of the program? It appears that it
shouldn't and when all objects are immutable it doesn't. Surprisingly, it might change the
meaning in the imperative version if gunShot were mutable. The first of those objects
could change some property of the gunshot and the behavior would depend on the order of
these two statements.

The previous example was quite simple, but it already shows how immutability
eliminates many possible difficulties. In the next section, we'll see another great example,
but let me just briefly review what you'll find later in the book.

REFACTORING AND UNIT TESTING
We've already seen that immutability helps us to understand what a program does. This

is very helpful when refactoring the code. Another interesting functional refactoring is
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changing when some code actually executes. It may run when the program hits it for the
first time, but it may as well execute when its result is actually needed. As we'll see in a
few pages, this way of evolving programs is very important in F# and immutability makes
refactoring easier in C# too. We'll talk about refactoring later in chapter 11.

Another area where immutability helps a lot is when creating unit tests for functional
programs. The only thing that a method can do in an immutable world is to return a
result, so we only have to test whether a method returns the right result for specified
arguments. You'll find more information about this topic in chapter 18.

When discussing how functional programming makes you more productive, I mentioned
immutability as an important aspect that makes it easier to write parallel programs. In the
next section we'll briefly look at that and also at other related topics.

1.2.3 Writing efficient parallel and asynchronous programs

I said earlier that functional programming makes it easier to write parallel programs. This is
one of the most important aspects of this paradigm nowadays and maybe it is also the
reason why you picked this book. In this section, we'll look at a couple of samples
demonstrating how functional programs can be easily parallelized. In the first two examples,
we'll use Parallel Extensions to .NET. This is a new technology from Microsoft for writing
parallel applications, shipping as part of .NET 4.0. As you might expect, it lends itself
extremely well to functional code. As always in this chapter, we won't go into the details. I
just want to demonstrate that parallelizing functional programs is significantly easier and
more importantly, less error prone than it is for the imperative code.

PARALLELIZING IMMUTABLE PROGRAMS

First we'll take another look at the previous example. We've seen two snippets from a game
written in a functional way. In the first snippet, the second line uses the outcome of the first
line (state of the monster after movement). Thanks to the use of immutable classes, we can
see that this doesn't give us any space for introducing parallelism.

On the other hand, the second snippet consists of two independent lines of code. I said
earlier that in functional programming, we can run independent parts of the program in
parallel. Now you can see that immutability gives us a great way to spot which parts of the
program are independent. Even without knowing any details, we can look at the change that

makes these two operations run in parallel. The change to the source code is minimal:
var hitMonster = Future.Create(() =>
monster.HitByShooting(gunShot));
var hitPlayer = Future.Create(() =>
player_HitByShooting(gunShot));

The only thing that we did is that we wrapped the computation in a Future type from
the Parallel Extensions library. We'll talk about FUture in detail in chapter 14. Interestingly,
the benefit isn't only that we have to write less code, but also that we have a guarantee that
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the code is correct. If you did a similar change in an imperative program, you'd have to
carefully review the HitByShooting method (and any other method it calls) to find all
places where it accesses some mutable state and add locks to protect the code that modifies
shared state. In functional programming everything is immutable, so we don't need to add
any locks.

The example in this section is a form of lower a level task based parallelism, which is
one of three approaches that we'll see in chapter 14. In the next section we'll take a brief
look at the second approach, which benefits from the declarative programming style.

DECLARATIVE PARALLELISM USING PLINQ
Declarative programming style gives us another great technique for writing parallel
programs. I have already stated that the code written using the declarative style is
composed using primitives. In LINQ, these primitives are query operators such as where
and select. In the declarative style, we can easily replace the implementation of these
primitives and that's exactly what PLINQ does. It allows us to replace standard query
operators with query operators that run in parallel.

In the listing 1.9, you can see a query that updates all monsters in our fictive game and
remove those that died in the last step of the game. The change is extremely simple, so I
can show you both of the versions in a single listing.

Listing 1.9 Parallelizing data processing code using PLINQ (C#)

var updated = var updated =
from m in monsters from m in monsters.AsParallel() #1
let nm = m.PerformStep() let nm = m.PerformStep()
where nm.IsAlive select nm; where nm.IsAlive select nm;

The only change that we made in the parallel version on the right side is that we added
a call to AsParallel method (#1). This call changes the primitives that are used when
running the query and makes the whole fragment run in parallel. We'll see how this works in
chapter 11, where we'll talk about declarative computations like this in general and in
chapter 14 which focuses on parallel programming specifically.

You may have already seen this demo and you were perhaps thinking that you don't use
LINQ queries that often in your programs. This is definitely a valid point, because in
imperative programs, LINQ queries are used less frequently. However, functional programs
do most of their data processing in the declarative style. In C#, this can be written using
query expressions whereas F# provides higher order list processing functions that we'll see
in chapters 5 and 6. This means that after you'll read this book, you'll be able to use
declarative programming more often when working with data. As a result, your programs will
be more easily parallelizable. The technique I just described also inspired an algorithm used
internally by Google for massive parallel data processing.

Microsoft PLINQ and Google MapReduce
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Google has developed a framework called MapReduce [Dean, Ghemawat, 2004] for
processing of massive amounts of data in parallel. This framework distributes the work
between computers in large clusters and uses exactly the same ideas as PLINQ. The basic
idea of MapReduce is that the user program describes the algorithm using two operations
(somewhat similar to where and select in PLINQ). The framework takes these two
operations and the input data, and runs the computation. You can see a diagram
visualizing the computation in figure 1.2.

User prog <

Map Task 1
Map Task 1

Map Task 1

Data processing

Computer cluster

Reduce Task 1

>+ Output

Reduce Task 2

Figure 1.2 In the MapReduce framework an algorithm is described by specifying map task and a reduce
task. The framework automatically distributes the input across servers and processes the tasks in parallel

The framework splits the input data into partitions and executes the map task (using the
first operation from the user) on each of the partitions. For example, a map task may find
the most important keywords in a web page. The results returned by map tasks are then
collected and grouped by a specified key (for example the name of the domain) and the
reduce task is executed for each of the groups. In our example, the reduce task may
summarize the most important keywords for every domain.

We've briefly seen two ways in which functional programming makes parallelization
simpler. However, there is one more related area where functional programming helps us to
write more efficient and scalable code with respect to multi-threading. It is important
especially when the code uses long running I/O operations.

WRITING NON-BLOCKING CODE USING F#
Long running operations are quite frequent in modern software. Many applications use HTTP
requests to load some data from the internet or communicate using web services. When an
application performs an operation like this, it is very hard to predict when the operation will
complete, and if this is not handled properly the application will become unresponsive.
However, writing the code that performs I/O operations without blocking is very difficult
using the current techniques. In F#, this is largely simplified thanks to a feature called
asynchronous workflows. Interestingly, this is one of the F# features that are really hard to
implement in C#, so it's a good reason for looking at F#. We'll talk about asynchronous
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workflows in detail later in chapter 13, but I can show you at least a brief example to
demonstrate how interesting this feature is. Let's start by looking at listing 1.10, which
shows a C# example that downloads source of a web page.

Listing 1.10 Downloading web pages (C#)

var req = HttpWebRequest.Create(''http://manning.com');

var resp = req-GetResponse(); #1
var stream = resp.GetResponseStream();

var reader = new StreamReader(stream);

var html = reader.ReadToEnd(); #2
Console.WriteLine(html);

#1 Initialize HTTP connection

#2 Download the web page content

The listing shows a fairly simple code that downloads HTML source code of a specified
web page. You'd also have to add some USINg directives to reference the necessary .NET
namespaces if you wanted to compile the code, but we'll show this properly in later chapters.
The program needs to perform HTTP communication in two places. In the first (#1) it needs
to initialize HTTP connection with the server and in the second (#2) it downloads the web
page.

Both of these operations could potentially take quite a long time and each of them could
block the active thread, causing our application to become unresponsive. We could run the
download on a separate thread, but using threads is expensive, so this would limit the
number of downloads we can run in parallel. Also, most of the time, the thread would be just
waiting for the response, so we'd be consuming thread resources for no good reason. To
implement this properly, we need to use asynchronous .NET methods that allow us to trigger
the request and call some code that we provide when the operation completes. This version
of code is quite difficult to write. Even if we use anonymous delegates from C# 2.0, the code

still looks quite complicated:
var req = HttpWebRequest.Create(''http://manning.com');
req.BeginGetResponse(delegate(lAsyncResult ar) {
var rsp = req.EndGetResponse(ar);
// TODO: Use the response to read the HTML

D

Anonymous delegates or lambda expressions make this a bit nicer, because we don't
have to write a method to handle the response, but we still have to change the structure of
the code. In fact, if we decide to change a synchronous version of the code into
asynchronous, we'll have to rewrite it almost completely.

The previous snippet isn't complete, but if we tried to finish it, we'd find another issue.
There is no BeginReadToEnd method, so we'd have to implement this functionality
ourselves. This is quite difficult, because we need to download the page in a buffered way. If
we want to write this in an asynchronous style, we can't use any of the built-in constructs
such as whi e loop.

In F#, it's common to start with the simplest possible solution to a problem and then
turn it into a more sophisticated version. We'll talk about this principle later in this chapter,
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but we can see it in action right now. One of the things you may want to do is to take
synchronous code that downloads a web page and make it asynchronous. When working with
.NET libraries, the F# code is quite similar to C#, so you can just imagine that the listing
1.10 was in F# (you'd just delete semicolons and change the var keyword to let). The
listing 1.11 shows an asynchronous version using F# asynchronous workflows.

1.11 Downloading web pa

let op =
async { #1
let req = HttpWebRequest.Create(*'http://manning.com™)
let! resp = req.AsyncGetResponse() #2
let stream resp.GetResponseStream()

let reader = new StreamReader(stream)
let! html = reader.AsyncReadToEnd() #A

Console.WriteLine(html)

3
Async .Run(op) #B
#1 Wrap in an asynchronous workflow
#2 Run operation asynchronously
#A Asynchronous download
#B Run the workflow

The process of turning a synchronous code into asynchronous in F# is quite easy. First
of all, we wrap the whole computation into an async block (#1). The next thing to do is to
identify all asynchronous operations in the block and to change the method to a
corresponding asynchronous version. The workflow needs to know which of the methods
should be executed in a non-blocking way, so we also change the usual value declaration
using let into a workflow-specific declaration that uses let! syntax (#2). What is even
more interesting is that methods like AsyncReadToEnd are quite easy to implement,
because asynchronous workflows can use Whi le loops and other basic constructs™.

This feature is very easy to use but it isn't easy to see how the code actually executes at
first glance. We'll explain everything in detail in chapter 13, but it's worth noting that
asynchronous workflows aren't a built-in feature of the F# language. It is just a very useful
instance of a more general feature that allows you to write non-standard computations. This
feature is also covered in this book and we'll talk about it in chapter 12.

* There are projects that attempt to simplify this problem in C# such as the Concurrency and
Coordination Runtime (CCR), but all of them rely on using some C# language features in an
unexpected and slightly unnatural ways. We'll mention a couple of these projects briefly
when discussing asynchronous workflows in chapter 13.
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Asynchronous workflows are very important. They allow us to write programs that wait
for an operation to complete without using a dedicated thread (which consumes valuable
resources). This also enables us to use different models for concurrency, such as the
message passing style which is used in a successful functional language called Erlang.

Message passing in the Erlang language

Erlang is a language developed and heavily used by Ericsson for developing large scale
real-time systems. It can be found in many of the Ericsson's telecommunication
equipment. Erlang has been used commercially by Ericsson for programming their
network hardware used concurrently by hundreds of users as well as by other companies.

Concurrent applications in Erlang are described using independent processes (written in a
functional way) that can communicate with each other using messages. The process waits
for a message and when a message arrives, it processes it. We'll see how to use this style
in F# using asynchronous workflows in chapter 13.

Before we take a look at the F# language and talk about the F# programming style, let's
briefly talk about the history of functional programming, which is surprisingly rich.

1.3 The path towards real-world functional programming

The history of functional programming goes as far back as the 1930s when Alonzo Church
and Stephen C. Kleene introduced a theory called Lambda calculus as part of their
investigation of the foundations of mathematics. Even though it didn't fulfill their original
expectations, it is still used in some branches of logic and has evolved into a very useful
theory of computation. For curiosity and to show the basic principles of functional
programming, you'll find a brief introduction to lambda calculus in the next chapter.
However, lambda calculus escaped its original domain when computers were invented and
served as an inspiration for the first of functional programming languages.

1.3.1 Functional languages

The LISP language, created by John McCarthy in 1958, was based on lambda calculus. LISP
is an extremely flexible language, and it pioneered many programming ideas that are still
used today, including data structures, garbage collection and dynamic typing.

In the 1970s, Robin Milner developed a language called ML. This was the first of a family
of languages which now includes F#. Inspired by typed lambda calculus, it added the notion
of types and even allowed writing "generic" functions in a same way as we can do now with
.NET generics. ML was also equipped with a powerful type inference mechanism, which is
now essential for writing terse programs in F#. OCaml, a pragmatic extension to the ML
language appeared in 1996. It was one of the first languages that allowed the combination of
object-oriented and functional approaches. OCaml was a great inspiration for F#, which has
to mix these paradigms in order to be a first-class .NET language and a truly functional one.
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Other important functional languages include Haskell (a language with surprising
mathematical purity and elegance) and Erlang, which I have already mentioned in a sidebar.
We'll learn more about some of these languages in the rest of the book, when talking about
topics where they have some interesting benefits over F#-but first, let's finish our story by
looking at the history of F#.

1.3.2 Functional programming on the .NET platform

The first version of .NET was released in 2002 and the history of the F# language dates back
to the same year. F# started off as a Microsoft Research project by Don Syme and his
colleagues, with the goal of bringing functional programming to .NET. F# and typed
functional programming in general gave added weight to the need for generics in .NET and
the designers of F# were deeply involved in the design and implementation of generics in
.NET 2.0 and C# 2.0.

With generics implemented in the core framework, F# began evolving more quickly and
the programming style used in F# also started changing. It began as a functional language
with some support for objects, but as the language matured, it seemed more and more
natural to take the best from both of these styles. As a result F# can be now more precisely
described as a multi-paradigm language, which combines functional and object-oriented
approach, together with a great set of tools that allow using F# interactively for scripting.

F# has been a first-class .NET citizen since its early days. This means that not only can
it access any of the standard .NET components, but equally importantly any other .NET
language can access code developed in F#. This makes it possible to use F# to develop
standalone .NET applications as well as parts of larger projects. F# has always come with
support in Visual Studio, and in 2007 a process was started to turn F# from a research
project to a full production-quality language. In 2008 it was announced that F# will become
one of the languages shipped with Visual Studio 2010. Now we know its origins, let's take a
look at the language itself.

1.4 Introducing F#

We'll introduce F# in stages throughout the book, as and when we need to. In this section
we'll just look at the very basics, writing a couple of short examples so you can start to
experiment for yourself. We'll examine F# more carefully after summarizing important
functional concepts in chapter 2. Our first real-world F# application will come in chapter 4.

After discussing the "Hello world" sample, I'll talk a little bit about F# to explain what
you can expect from the language. We'll also discuss the typical development process used
by F# developers, because it is quite different to what you're probably used to with C#.

1.4.1 Hello world in F#

The easiest way to start using F# is to create a new script file. Scripts are lightweight F#
sources that don't have to belong to a project and usually have an extension "fsx". In Visual
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Studio, you can go to "File" - "New" - "File..." (Ctrl + N) and then select "F# Script File" from
the "Scripts" category. Once we have the file, we can jump directly to the "Hello world" code.

Listing 1.11 Printing hello world (F#)

let message = "Hello world!" #1
printfn "%s" message #2
#1 Value binding for 'message’
#2 Call to the 'printfn’ function

I admit that this isn't the simplest possible "Hello world" in F#, but it would be fairly
difficult to write anything interesting about the single line version. The listing 1.11 starts with
a value binding (#1). This is similar to variable declaration, but there is one important
difference - the value is immutable and we cannot change its value later. This matches with
the overall functional style to make things immutable and we'll talk about this in detail in the
next two chapters.

After assigning a value "Hello world" to a symbol message, the program continues with
a call to a printfn function. It is important to note that arguments to F# functions are
usually just separated spaces with no commas between them or surrounding parentheses.
We'll sometimes write parentheses when it makes the code more readable, such as when
writing cos(1.57), but even in this case the parentheses are optional. I'll explain the
convention that I'll use as we learn the core concepts of F# in the next couple of chapters.

The first argument to the printfn function is a format string. In our example, it
specifies that the function should take only one additional parameter, which will be a string.
The type is specified by the %S in the format string (the letter "s" stands for "string") and the
types of arguments are even checked by the compiler. Now that we understand the code,
let's look how we can run it.

INTERACTIVE PROGRAMMING IN F#

The easiest way to run the code is to use the interactive tools provided by F# tool chain.
These tools allow you to use the interactive style of development. This means that you
can easily try what code would do and verify whether it behaves correctly by running it
with a sample input. Some languages have an interactive console, where you can paste
code and execute it. This is called read-eval-print loop (REPL), because the code is
evaluated immediately.

In F#, we can use a command prompt called F# interactive, but the interactive
environment is also integrated inside the Visual Studio environment. This means that one
can write the code with the full IDE and IntelliSense support, but also select a block of
code and execute it immediately to test it.

Let's have a look at the results that we get when we run the code. If you're using F#
interactive from command line, you'd just paste the previous code and type ";;" to execute
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it. If you're using Visual Studio, you can select the code and hit Alt + Enter to send it to the
interactive window. Listing 1.12 shows the result that you'll get.

Listing 1.12 Running the Hello world program (F# interactive)

MSR F# Interactive, (c) Microsoft Corporation, All Rights Reserved
F# Version 1.9.4.10, compiling for _NET Framework Version v2.0.50727

> (--2)53 #A
val message : string #1
Hello world! #2

#A Source code goes here
#1 Information about value binding
#2 Printed output of 'printfn’ call

The first line (#1) is generated by the value binding. It reports that a value called
message was declared and that the type of the value is string. We didn't explicitly specify
the type, but F# uses a technique called type inference to deduce the types of values, so the
program is statically typed, just as in C#. The second line (#2) is an output from the
printfn function, which prints the string and doesn't return any value.

Writing something like "Hello world" example doesn't demonstrate how working with F#
looks at the larger scale. Let's now briefly look at the usual development process, because is
quite interesting.

1.4.2 From simplicity to robustness

When starting a new project, you don't usually know at the beginning how the code will look
at the end. At this stage, the code evolves quite rapidly. However, as it becomes more
mature, the architecture becomes more solid and we're more concerned with the robustness
of the solution rather than with the flexibility. Interestingly, these requirements aren't
reflected in the programming languages and tools that you use. F# is very appealing from
this point of view, because it reflects this in both tools and the language.

F# development process in a nutshell

I have already mentioned the F# interactive tool. It allows you to verify and test your
code immediately while writing it. This tool is extremely useful at the beginning of the
development process, because it encourages you to quickly try various different
approaches and choose the best one. Also, when solving some problem where you're not
100% sure, you can immediately try the code. When writing F# code, you'll never spend
a large time debugging the program. Once you first compile and run your program,
you've already tested substantial part of it interactively.

When talking about "testing" in the early phase, I mean that you tried to execute the

code with various inputs a couple of times to interactively verify that it works. In the later
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phase, we can turn these snippets into unit tests, so the term "testing" means a different
thing in the later phase. When working with the mature version of the F# code, we can
use tools such as Visual Studio debugger or various unit testing frameworks.

Moreover, F# as a language reflects this direction as well. When you start writing a
solution to some problem, you start with only the most basic functional constructs,
because they make writing the code as easy as possible. Later, when you find the right
way to approach the problem and you face the need to make the code more polished, you
end up using more advanced features that make the code more robust, easier to
document and also accessible from other .NET languages like C#.

Let's see what the development process might look like in action. I'll use a few more F#
constructs, but we won't focus primarily on the code. The more important aspect is how the
development style changes as the program evolves.

STARTING WITH SIMPLICITY

When starting a new project, you'll usually create a new script file and try implementing the
first prototype or experiment with the key ideas. At this point, the script file contains sources
of various experiments, often in an unorganized order. The figure 1.3 shows how your Visual
Studio IDE might look like at this stage.

" Chapter01 - Microsoft Visual Studio (A

File Edit View Project Build Debug Data Tools Test Apalyze Window

" Program.fs*

#light

// Experiment with string concatenation
let name = "Tomas”
let str = "Hello " + name + "!"
// Wrap the code in a function
let sayHello(name) =

let str = "Hello " + name +

ngy _m

printfn "%s" str

< |

F# Interactive
"™ + name + "!";;
- string = "Hello Tomas!"

val sayHello : string —-* unit

> sayHelle("world");;

Hello world!
4

Ready Col 20

Figure 1.3 Using F# interactive we can first test the code and then wrap it into a function.
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The screenshot shows only the editor and the F# interactive window, but that's really all
we need now, because we don't yet have any project. As you can see, I first wrote a few
value bindings to try how string concatenation works in F# and entered the code to the F#
interactive window to verify that it works as expected. Once I knew how to use string
concatenation, I wrapped the code in a function. We'll talk about functions in chapter 3.

Next, I selected the function and hit Alt + Enter to send it to the F# interactive. After
that, I entered an expressions sayHello("*'world™) to test the function I just wrote.
Note that the commands in F# interactive are terminated with "; ;". This allows you to easily
enter multi-line commands.

Once we start writing more interesting examples, you’'ll see that the simplicity is greatly
supported by using of the functional concepts. Many of them allow you to write the code in a
surprisingly terse way and thanks to the ability to immediately test the code F# is very
powerful in the first phase of the development. We'll talk about the easy-to-use functional
constructs mostly in the part 2 of this book. However, as the program grows larger, we need
to write it in a more polished way and make it coherent with the usual .NET techniques.
Fortunately, F# helps us to do this too.

ENDING WITH ROBUSTNESS

Unlike many other languages that are popular for their simplicity, F# lives on the other side
as well. In fact, it can be used for writing very mature, robust and safe code. The usual
process is that you start with very simple code, but as the codebase becomes larger you
refactor it in a way that makes it more accessible to other F# developers, enables writing
better documentation and supports better interoperability with .NET and C#.

Perhaps the most important step in order to make the code well accessible from other
.NET languages is to encapsulate the functionality into .NET classes. The F# language
supports the full .NET object model, and classes authored in F# appear just like ordinary
.NET classes with all the usual accompaniments such as static type information and XML
documentation.

We'll talk about F# object types in chapter 9 and you'll see many of the robust
techniques in part 4, but let me just shortly demonstrate this, to prove that you can use F#
in a traditional .NET style as well. The listing 1.13 shows how to wrap the sayHello
function in a C# style class and add Windows Forms user interface.

Listing 1.13 Object-oriented Hello world using Windows Forms (F#)

open System.Drawing #1
open System.Windows.Forms #1
type HelloWindow() = #2
let frm = new Form(Width = 400, Height = 140) #A
let fnt = new Font("'Times New Roman', 28.0F) #A
let Ibl = new Label(Dock = DockStyle.Fill, Font = fnt, #A
TextAlign = ContentAlignment_MiddleCenter) #A

do frm.Controls._Add(lbl) #A
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member x.SayHello(name) = #3
let msg = "Hello " + name + "I"

Ibl . Text <- msg #A

member x.Run() = #4

Application.Run(frm)
#1 Import necessary .NET namespaces
#2 F# class declaration
#A Constructor initializes the user interface
#3 Builds and displays the hello message
#4 Method that runs the application
#A Modify property of a .NET type

The example starts with several open directives (#1) that import types from .NET
namespaces. Next, we declare the HelloWindow class (#2), which wraps the code to
constructs the user interface and exposes two methods. The first method (#3) wraps the
functionality for concatenating hello world messages that we interactively developed earlier.
The second one runs the form as a standard windows forms application (#4). The class
declaration appears just like ordinary C# class, with the difference that F# has a more
lightweight syntax for writing classes. The code that uses the class in F# will look just like

your usual C# code:
let hello = new HelloWindow()
hello.SayHello(""dear reader')
hello.Run()

At this stage, we're developing the application in a traditional .NET style, so we'll run it
as a standalone application. However, the interactive style helped us, because we had
already interactively tested a part of the application. You can see how the resulting
application looks in figure 1.4.

Hello dear reader!

Figure 1.4 Running WinForms application created using object-oriented programming style in F#

In this section, we've had a quick taste of what the typical F# development process feels
like. I haven't explained every F# construct we've used, because we'll see how everything
works in detail in later chapters. We used a very simple example, so the second version of
the code was still quite simple. However, it demonstrated that you can use F# language for
writing a pretty standard .NET programs.

What can F# offer to a C# developer?
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As I said earlier, F# is well suited for writing code using simple concepts at the beginning
and turning it into a traditional .NET version later, while C# is largely oriented towards
the traditional .NET style. If you're C# developer, creating real-world applications you can
easily take advantage of F# in two ways.

The first option is to use F# for rapid prototyping and experimenting with the code as well
for exploring how .NET libraries work. As you've seen, using F# interactively is very easy,
so writing a first sketch of the code can be done in F# and you save a lot of time when
trying several approaches to a problem or exploring how a new library works. If you
require code written in C#, then you can rewrite your prototype to C# later and still save
a lot of development time.

However, F# is a fully compiled .NET language, so there are no technical reasons for
preferring C# source code. This means that you can simply make sure that your library
can be easily accessed from C# by turning the code from a simple to a traditional .NET
version and use F# for example for writing parts of a larger .NET solution.

That should be enough about F# for now. It's possible that you're still finding some of
the F# language constructs puzzling, but the purpose of this introduction wasn't to teach you
F# in 4 pages, but I wanted to show you how F# looks and feels, so you can experiment with
it as we'll look at more interesting examples in the subsequent chapters.

1.5 Summary

This chapter gave you a very brief overview of what makes functional programming
interesting. We've talked about the declarative programming style, which is used when
writing applications and libraries in a functional style. We've seen that this is already used in
many successful technologies such as WPF and LINQ, but I also demonstrated that we can
use it for writing functional solutions to other kinds of problems in C# 3.0.

We've also looked at parallel and asynchronous programming, which is a big challenge
for modern software development. Using a functional approach makes it significantly easier
thanks to the use of immutability and declarative programming. The first one gives us
guarantees about the code and helps us writing correct and safe code and the second one is
more expressive when solving problems.

In the next chapter, you'll see a much broader picture of functional programming. We'll
look at all of the important ideas from a high-level perspective and you'll also see how they
relate to each other. Even though we won't look at much real code yet, the next chapter will
give you a solid foundation we can build on in the rest of the book.
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Core concepts in functional
programming

If you ask two functional programmers what they consider the most essential aspect of the
functional paradigm, you'll probably get three different answers. The reason for this is that
functional programming has existed for a long time and there is a wide range of diverse
programming languages. Every language emphasizes a different set of aspects while giving
less importance to others. However, most of the concepts are to some extent present in all
functional languages.

The central part of this chapter focuses on these common ideas, discussing the basic
features and techniques that functional programmers have in their toolset. We'll look at the
concepts from a high level perspective, but you'll see how they fit together to form one
coherent way of thinking about and tackling problems.

We'll start by discussing how functional programs represent program state and how they
change it. In object-oriented programming, the state is carried by objects while in functional
programming the key role is played by functions and data types. Next, we'll look at language
features that support the declarative programming style we looked at in the first chapter.
Finally, we'll talk about types and how they help to verify program correctness. This aspect
isn't shared by all functional languages, but is essential for many of them including F# and
others such as Haskell. Their implementation of type checking is very advanced and is
different to what you may be used to from C# in many ways.

We won't go into much programming yet. Instead you'll get a general understanding of
the key concepts and a bit better feeling about how functional programs look. The first group
of concepts that we'll talk about are related to the representation of data in functional
programs. These concepts heavily influence how a program works with data.
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2.1 How functional programs calculate

In the first chapter we saw that functional programs use immutable data structures to
represent their state. The functional approach to make things immutable doesn't just
influence data structures (or classes in C#), but also extends to local variables.

I wouldn't be surprised if you were wondering how the program can do anything at all
when everything is immutable. The short answer is that functional programs aren't described
as a sequence of statements that change the state but rather as computations. In this
section, we'll shed some light on how these calculations are written. Let's start from the
simple code that works with variables.

2.1.1 Working with immutable values

The first of the common features is that functional programs rarely have typical variables as
we know them from other programming languages. The key difference is that functional
languages prefer immutable variables, meaning the variable can’t change its value once it is
initialized. Thus using a term variable is quite inappropriate and functional programmers
prefer the term value.

Let me demonstrate what I mean using an example. Let's say we want to write a
program that takes some initial value, reads two numbers from the console, adds the first
number to the initial value and multiplies the result by the second number. A typical
implementation of something like this in C# would look like this (we’ll use hypothetical
methods GetlnitialValue, ReadInt32 and Writelnt32, but you could easily

implement them if you want to play with this example):
int res = GetInitialvalue();
res = res + ReadInt32();
res = res * ReadInt32();
Writelnt32(res);

As you can see, we declared a variable res to hold the initial value. Then we modified it
two times, using an input value read from the console. Now, let’s look at the same code

implemented without modifying the value of any variables:
int resO = Getlnitialvalue();
int resl resO + Readlnt32();
int res2 = resl * ReadInt32();
Writelnt32(res2);

Because we couldn't modify the value of the first variable we declared a new variable
every time we wanted to calculate a new value (resQ, resl, res2). The key difference is
that in the second example, we didn't use the assignment operator (written as an equal sign
in C#). The only occurrence of this symbol in a second example is when initializing a variable
value, which has a different meaning then assignment operator. Instead of changing a value
of an existing variable it creates a new variable with the specified initial value.

I already mentioned that the term "variable" is inappropriate. Working with values is
different in many ways, so it isn't just a change in the terminology, but a different concept.
For this reason we'll use the functional terminology in the rest of the book, but you may
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sometimes find the analogy between variables and values useful. We'll also use a term value
binding, which refers to a declaration of a value, which assigns (binds) the value to a
symbol.

Of course, using immutable values instead of variables requires us to express many
problems in a different way. We'll get back to this topic in the section 2.1.3. First, let's look
at how immutable values relate to the concept of immutable types that we discussed in
chapter 1.

2.1.2 Using immutable data structures

When representing data in functional programs, we'll work with data structures. We'll discuss
data structures in chapters 5 and 7. For now, you can imagine that I'm talking about any
composite data type, for example a C# value type or even a class, even though data
structures are generally a simpler concept. As mentioned in chapter 1, in functional
programming these data structures are immutable.

The concept of immutable data structures is very closely related to the concept of
immutable value bindings. A typical data structure contains field declarations. If we extend
the idea of immutability from variable declarations to field declarations, we get a world
where everything is immutable. In C#, you can write immutable class fields using the
readonly modifier, whereas in F# all data structures are immutable by default. However,
F# isn't a strictly functional language, so it allows you to create mutable types too.

We've already seen how to work with immutable data structures and how to create an
immutable class in C#. Methods of a class or functions working with the data structure
cannot modify its state. The only thing that they can do is to return something, so all the
operations that work with the data structure return a new value as the result. In C# the
string type behaves exactly like this. If you write for example str.Substring(0,
5), you'll get a new string value as the result and the original string remains unchanged.

Another thing that I briefly mentioned in the first chapter is that functional code is often
written as a single expression rather than a sequence of statements. This makes the code
more declarative, so the use of immutable data structures supports this aspect of functional
style as well. Let's say we have a class that represents a functional collection. It'll come with
an operation that creates an empty list and an operation that "adds" a number to the list. As
the list is immutable, adding an element to a list cannot change the original list. Instead, the
operation returns a new list containing the items from the original list and the newly added
element. If we wanted to create a list and add some elements to it, we could write

something like this:
var res = ImmutableList.Empty()-Add(1) -Add(3)-Add(5)-Add(7);

If we wanted to do the same thing with a mutable list, we'd have to create it and then
modify it by calling the imperative Add method that would modify the list. As a result we'd
write one variable declaration and four statements (perhaps 5 lines of source code in total).
This example shows that the immutable data structures often help you to write more
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succinct code. Of course, there are ways for getting similar benefits in imperative languages,
but in the functional style, you'll get them without any additional effort.

So far, we've seen that functional languages use immutable data structures and
immutable values instead of mutable variables. You can probably imagine how to write some
extremely simple programs without using traditional variables and the assignment operator,
but once you start thinking about slightly more complicated problems, things become difficult
until you change the way you look at the world. In the next section, we'll look how to encode
some more sophisticated calculation in the functional style.

2.1.3 Changing program state using recursion

Now, let's look how to write more complicated functions just using values. For example, we'll
implement a function that sums numbers in a specified range. This could be of course
calculated directly, but we’ll use it as an example of a calculation which uses a loop and later

we'll also see how to change this code into a more generally useful function:
int SumNumbers(int from, int to) {
int res = 0;
for (int i = from; 1 <= to; i++)
res = res + 1;
return res;

}

In this case, we just can’t directly replace variable with value bindings, because we need
to modify the value during every evaluation of the loop. The program needs to keep certain
state, and that state changes on each iteration of the loop, so we can’t declare a new value
for every change of the state as we did in our earlier example. This means that we need to
do a fundamental change in the code and use a technique called recursion instead of using

loops:
int SumNumbers(int from, int to) {
if (from > to) return O;
int sumRest = SumNumbers(from + 1, to);
return from + sumRest;

}

As you probably already know, recursion means that a function (SumNumbers in our
case) calls itself. In our case this is when we calculate the value of the sumRest variable.
In this code we're using only value bindings, so it is purely functional. The state of the
computation, which was originally stored in a mutable variable, is now expressed using
recursion. When I originally mentioned that we can't declare a new variable for every change
of the state I was in some sense wrong, because this is what our new recursive
implementation does. Every time the function recursively calls itself, it skips a first number
and calculates a sum of the remaining numbers. This result is bound to a variable SUMReST,
which is declared as a new variable during every execution of the recursive function.

Of course, writing the recursive part of computation every time would be difficult, so
functional languages provide a way for "hiding" the difficult recursive part and expressing
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most of the problems without explicitly using recursion. We'll get back to this topic in section
2.2.1 after we finish our discussion of calculation of functional programs.

2.1.4 How is the calculation written?

In imperative languages, an expression is simply a piece of code that can be evaluated and
yields a result, so for example a method call or any use of a boolean or integer operator is an
expression. Conversely, a statement is usually a piece of code that affects the state of the
program and doesn’t have any result. For example a call to a method that doesn’t return any
value is a statement, because it just affects the state of the program, depending on
whatever the method does. An assignment also changes the state (by changing a value of a
variable), but in the simplest version, it doesn’t return any value.

NOTE
Actually, an assignment in C# returns a value, so you can write for example
a = (b = 42); but in the most simple form, which we're discussing here, it is a
statement that assigns a value to a variable, without returning anything (e.g. b =
427).

Another example of a typical statement may be returning from a function using return
or escaping a loop using break. Both of these constructs do not have any “return value”
and instead, their only meaning is that they change the state of the program - in case of
return and break they change the currently executing statement of the code (return
by jumping to back to the code which the method and break by jumping to just after the
end of the loop).

As we already said, in functional languages the state is represented by what a function
returns and the only way to modify a state is to return a modified value. Following this logic,
in functional languages everything is interpreted as expression with some return value. The
practical consequence of this can be nicely demonstrated with the previous example that
sums numbers in a specified range. Here is the original version of the code, which uses

recursion, but is still not fully functional, because it is written as a series of two statements:
int SumNumbers(int from, int to) {
if (from > to) return O;
return from + SumNumbers(from + 1, to);
3
We can turn this into a more functional version using the C# conditional operator ( ?: ).
This is of course possible only for relatively simple code samples, but we can use it to
demonstrate a couple of important points about the syntax of functional language. The listing
2.1 shows the function above rewritten in @ more functional way from the syntactical point of
view.

Listing 2.1 Summing numbers in the specified range in a “functional C#”

int SumNumbers(int from, int to) {
return #1
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(from > to)
?0 #2
: (from + SumNumbers(from + 1, t0)); #3

#1 The method body contains only return’
#2 Value for the 'then' case
#3 Expression calculating the 'else’ case

There are quite a lot of restrictions that we need to obey to write the code only using
expressions in C#, because most of the control flow constructs such as conditional or loops
are statements. Even though the example is quite minimalistic, it gives us many useful hints
about what we can write in a functional language:

6) The whole body of the method is a single expression which returns a value. In C#
this means that the body has to start with return (#1). Also, we can't use
return anywhere else in the code, because that would require jumping to the end
of the method from a middle of an expression, which isn't possible.

7) Since "if-then-else" is a statement, we have to use the conditional operator instead.
This also means that we have to provide code for both of the cases ((#2) and
(#3)). The expression returns a value, but if we omitted the "else" branch and the
condition was false, we wouldn't know what to return!

8) The biggest limitation is that a variable declaration in C# is a statement, so we
don't have any way for creating variables. The F# language treats value bindings
differently and the let keyword isn't alone a valid expression. It always has to be
attached to some other expression.

We'll get back to value bindings in the beginning of the chapter 3, so you'll see how F#
solves the problem we had with variables. Another notable difference in F# is that there is a
type that represents "nothing". The void keyword in C# isn't an actual type, so you can't
for example declare a variable of type VOid. On the other hand, the F# type unit is a real
type, which has only a single value that doesn't carry any information. All the imperative
constructs in F# use this type, so when calling for example the Console.WriteLine
method, F# treats it as an ordinary expression that returns a value of type unit. The fact
that everything is an expression makes it easier to reason about the code. We'll take a look
at one very interesting technique in the next section.

2.1.5 Computation by calculation

The approach discussed in the last two sections gives us a completely new way of thinking
about program execution. To understand how an imperative program executes, we have to
understand how its state changes. In a program written using an object-oriented imperative
language, the state is not only the internal state of all the objects, but also the currently
executing statement (in each thread!) and the state of all the local variables in every stack
frame. The fact that the currently executing statement is part of the state is important,
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because it makes it hard to trace the state when writing the program execution down on
paper.

In functional programming, we can use an approach called computation by calculation.
This is particularly important for Haskell and is described in more detail in The Haskell School
of Expression [Hudak, 2000]. Using this approach we start with the original expression (for
example a call to a function) and perform a single step, such as replacing the call with a
declaration of the function or calculating a result of a primitive mathematical operation. By
repeating this step several times, we can directly analyze how the program executes and it is
also very intuitive to write this process down.

Listing 2.2 demonstrates how we can use this mechanism to analyze how the
SumNumbers function computes its result.

The following listing is only pseudo-code displaying sequence of
steps, so I'd like to use [CA] (or some other arrow character) here
not as a line continuation, but as a continuation of the example.

Listing 2.2 Functional evaluation of an expression SumNumbers(5,5

[CA]Start with call *""SumNumbers(5,5)"
SumNumbers(5, 5)

[CA]Expand SumNumbers(5,5)
if (6 >5) 0 else { int sumRest = SumNumbers(6, 5) in 5 + sumRest }

[CA]JEvaluate the condition, expand the "else' branch
int sumRest = SumNumbers(6, 5) in 5 + sumRest

[CA]JExpand SumNumbers(6, 5)
int sumRest =
if (6 >5)0
else { int sumRest = SumNumbers(7, 5) in 1 + sumRest } in
5 + sumRest

[CA]JEvaluate the condition, expand the *then' branch
int sumRest = 0 in 5 + sumRest

[CAJReplace occurrences of ''sumRest™ with the actual value
5+ 0

[CA]Evaluate the expression
5

As you can see, this way of writing down the computation of some functional code is
very easy and even though functional programmers don’t spend their lives by writing down
how their program executes, it is very useful to get used to this kind of computations,
because it gives us a very powerful way of thinking about functional code.

Of course, this example is very simple and it didn’t discuss many important details. Rest
assured, we will get to all of these problems in the next chapter. Another interesting aspect
of the computation shown in listing 2.2 is deciding which part of the expression should be

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
36

evaluated next. In this example we used the innermost part of the expression, so we
evaluate all arguments of an expression first. This is how most functional languages work,
including F#, and is similar to executing the code statement by statement. Before we
continue, let me briefly talk a little more about Haskell, a popular functional language known
for its close relation to mathematics.

Mathematical purity in Haskell

Haskell appeared in 1990 and has been very popular in the academic community. In this
section we've seen that in functional languages, we work with immutable data structures
and use immutable values rather than mutable variables. This isn't strictly true in F#
because we can still declare mutable values. This is particularly useful for .NET
interoperability, because most of the .NET libraries rely on mutable state.

On the other hand, Haskell very strictly enforces mathematical purity. This means it can
be very flexible about the order in which programs execute. In the example above, I
mentioned that F# evaluates the innermost part of an expression first. In Haskell, there
are no side effects so the order of evaluation doesn't (and can't) matter. As long as we're
reordering parts of the code that don't depend on each other, it will not change the
meaning of the program. As a result, Haskell uses a technique called lazy evaluation,
which doesn't evaluate the result of an expression until it is actually needed (for example
to be printed on a console).

The ability to make a change in the program without changing its meaning is very
important in F# too and we'll see how we can use it to refactor F# programs in chapter
11. We'll also see that lazy evaluation can be used in F# as well and it can be very useful
optimization technique.

In the last few sections, we were talking about program state and writing calculations
using recursion. I promised that we'd see how to write the difficult part of the code in a
reusable way, so that's the primary topic for our next section.

2.2 Writing declarative code

In the first chapter, we saw what it means to use a declarative programming style from a
high level perspective. Now, we'll talk about more technical concepts of the functional style
that enable declarative programming. From this point of view, there are two important
aspects that lead to the declarative style. We talked about the first one in the preceding
section - we've seen that every language construct is an expression. This shows that
functional languages try to minimize the number of built-in concepts and are very succinct
and extensible. When talking about recursion, I said that writing every operation using
explicit recursion would be difficult. The second aspect gives the answer to this problem, so
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let's start by looking how to write a single function that can be used in many variations for
different purposes.

2.2.1 Functions as values

The question that motivates this section is: "How can we separate the functionality that will
vary with every use from the recursive nature of the code which always stays the same?"
The answer is simple — we will write the recursive part as a function with parameters and
these parameters will specify the “unique operation” that the function should perform.

Let me demonstrate the idea on the SumNumbers function. We wrote a function that
takes an initial value, looping through a specified numeric range. It calculates a new “state”
of the calculation for each iteration using the previous state and the current number from the
range. So far we have used zero as an initial value and we used addition as an operation that
is used to aggregate the numbers in the range, so a resulting computation for a range from 5
to 10 would look like 5+ (6 + (7 + (8 + (9 + (10 + 0))))).

What if we now decided to modify this function to be more general and allow us to
perform computations using different operations? For example, we could then multiply all the
numbers in the range together, generating the following computation: 5 * (6 * (7 * (8 * (9 *
(10 * 1))))). If you think about the differences between these two computations, you’'ll see
that there are only two changes. First, we changed the initial value from 0 to 1 (because we
don’t want to multiply any result of a call by zero!) and we changed the operator used during
the computation from + to *. Let's see how we could write a function like this in C#:

int AggregateNumbers(Func<int, int, int> op, int init, int from, int to) {

if (from > to) return init;
int sumRest = AggregateNumbers(op, init, from + 1, to);
return op(from, sumRest);

b

We added two parameters to the function - the initial value (init) and an operation
(0Op) that specifies how to transform the intermediate result and a number from the range
into the next result. To specify the second parameter, we're using a delegate Func<int,
int, Int>, which represents a function which has two parameters of type int and
returns an INt. This delegate type is available in .NET 3.5 and we'll talk about it in chapter
3.

In functional languages, we don't have to use delegates, because they have a much
simpler concept - a function. This is exactly what the term “functions as values” refers to -
the fact that we can use functions in the same way as any other data type available in the
language. We can write functions that take functions as parameters (as we did in this
example), but also return a function as the result or even create a list of functions and so on.
Functions are also very useful as a mental concept when approaching a problem.

Thinking about problems using functions

For many people who know functional programming, the most important thing isn't that
functional languages have some particular useful features, but that the whole
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environment encourages you to think differently and more simply about problems that
you encounter when designing and writing applications regardless of the language you
use.

The idea of using functions as ordinary values is one of these very useful concepts. Let
me demonstrate this using an example. Suppose we have a list of customers and we
want to sort it in a particular way. The classical object oriented way to think about this
problem is to use a SOrt method that takes a parameter of some interface type (in .NET
this would be IComparer<Customer>). The parameter specifies how to compare
two elements. Now, if we want to sort the list using customer name, we'd create a class
that implements this interface and we'd use it as an argument.

In functional programming, we can use the concept of a function. We've seen that C# can
represent similar idea using a delegate, which is definitely simpler than interfaces, but
functions are even simpler. They don't have to be declared in advance and the only thing
that matters about them is what arguments they take and what results do they return.
The generic FUNC delegate in .NET 3.5 is very close to the idea of a function, but once
you get used to think about functions, you'll see them more often than when thinking
about delegates.

The argument of the functional SOrt method would be a function that takes two
customers as arguments and returns an integer. This is quite brief way to specify the
argument. On the other hand, when using an interface or a delegate, we have to declare
some type in advance and then refer to it whenever we want to use the object-oriented
Sort method. Using a function is more straightforward, because when you look at the
functional SOrt method, you immediately see what argument it expects. However, the
concept of a function is useful even if you end up implementing the code using interfaces.
It gives you a terser way to think about the problem, so the number of elements that
you'll have to keep in mind will be lower.

In the first chapter, I said that the declarative style gives us a new way for extending
the vocabulary we can use to specify a solution to a class of problems. This is usually best
approached by using functions that take other functions as parameters. We'll talk about
these in the next section.

2.2.2 Higher order functions

We've seen that we can treat functions as values and also write functions that take other
function as parameters. There are several terms that are often used when talking about
these kinds of functions. The first concept is treating a function as an ordinary value. This
includes the fact that functions have a type (in C# this is a delegate type) and that you can
use function as an argument to another function. Frankly, you can just use a function in any
place where you can use for example an integer or a string including returning a function as
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a result or storing functions in a list. This language feature is usually called first-class
functions, meaning that a function is a value just like any other.

The second important term is higher order function. This refers to a function that takes a
function as a parameter or returns it as a result. In the C# examples in this book, this will
often be a method. For example the method AggregateNumbers from the previous
section is higher order function. This kind of parameterization of code is used very often in
functional languages, so as you'll see, many of the useful functions in the F# library are
higher order functions. Let's look at an example that shows how higher order functions make
our code more declarative.

EXTENDING THE VOCABULARY USING HIGHER ORDER FUNCTIONS
The best example of how higher order functions make your code more declarative is working
with collections. This can be done in C# using the extension methods such as Where and
Select that are provided as part of LINQ, because everything you can write using LINQ
query can be also written using a method that takes a FUNC delegate as an argument.
However, in this section we'll look how to write the same code using lists in F# to
demonstrate a few interesting aspects of F#. We haven't yet seen enough from F# to fully
explain what the code does, but we know enough to see the high-level picture. The first
example in listing 2.3 shows how to filter only odd numbers from a list. The second one first
filters numbers and then calculates square of every returned number.

Listing 2.3 Working with lists using higher order functions (F# interactive)
> let numbers = [ 1 .. 10 ]

let isOdd(n) = (%2 = 1) #A
let square(n) = n * n #B
val numbers : int list #C
val is0Odd : int -> bool #C
val square : int -> int #C
> List.filter is0dd numbers;; #1

val it - int list = [1; 3; 5; 7; 9]

> List.map square (List.filter isOdd numbers);; #2
val it - int list = [1; 9; 25; 49; 81]

#A Is the number 'n' odd?

#B Returns square of a number

#C Type signatures inferred by F# interactive

#1 Filter numbers using 'isOdd’ function

#2 Filter and apply 'square' to every number

We first implemented two functions, which we'll use later when working with lists. As I
mentioned in chapter 1, the F# compiler automatically deduces the types of expressions that
we enter, so it also deduced the type of those functions. However, this isn't important for
now. We'll talk about types in F# later in this chapter and we'll talk about the printed type
signatures and function declarations in detail in chapter 3.
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What I wanted to show with this example is how higher order functions extend our
vocabulary when expressing some problem. In the first example, we're using a higher order
function List.Ffilter, which takes a function as the first argument and a list as the
second argument (#1). We give it our function that tests whether a number is odd and a list
of numbers from 1 to 10. As you can see on the next line, the result is a list containing all
odd numbers in that range.

In the usual imperative style, this could be implemented using a For loop or similar
construct. As I wrote in the first chapter, imperative languages give us only a limited way to
compose basic commands and for loop is one of them. The example we've just seen is
interesting because it implements a new control structure for composing commands. The
List.filter function is an abstract way for describing certain pattern for working with
lists, but makes it reusable, because we can specify the behavior of the filter using a
function. Higher order functions are essential concept of functional programming and we'll
talk about them in chapter 6. We'll see that we can write very useful higher order functions
for working with most of the data structures.

In the second example (#2), we use the entire expression from the first example as an
argument to another function. This time we use List.map, which applies the function given as
the first argument to all values from the given list. In our example this means that it
calculates squares of all odd numbers. The code is still very declarative, but it isn't as
readable as it should be. One of the reasons for this is that the first construct of the
expression is LiSt.map, but that's actually the operation that's performed as the last one.
However, F# is a very flexible language and it gives us ways to deal with this problem. Let's
see how we can use another feature-pipelining—to make the code clearer.

LANGUAGE ORIENTED PROGRAMMING

The language oriented programming can be viewed as another programming paradigm, but
it is less clearly defined. The principle is that we're trying to write the code in a way that
makes it reads more naturally. This can be achieved in languages that provide more
flexibility in how you can write the code.

In this section, we'll see that a relatively simple syntactical change can give us a
different point of view when thinking about the code. Listing 2.4 shows the new way of
writing the same code-we're still returning squares of odd numbers. The example only
demonstrates the idea, so you don't have to fully understand it. We'll talk about language
oriented programming and list processing in later chapters. The point of this example is to
show a different way of thinking about the task.

Listing 2.4 Elegant way for working with functions (F# interactive)

> let squared =

numbers #A
|> List.filter isOdd #B
|> List.map square #C

val it - int list = [1; 9; 25; 49; 81]
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#A Take the list of numbers
#B Select odd numbers
#C Calculate square of each number

Instead of nesting function calls, we're now using the pipelining operator (|>). This
construct allows us to write expressions as a series of operations that are applied to the
data. The code is of course still written in the usual F# language, but if you didn’t know that
you could almost think that it is written in some data processing language. It is worth noting
that from the F# point of view there is nothing special about the code. F# allows you to write
custom operators and the pipelining operator is just an operator that we can define
ourselves. The rest of the code is written just using the appropriate parameterized higher
order functions.

However, we can look at the list processing constructs (such as |>, List.map and
others) as if it was a separate list processing language embedded in F#. This is what the
term "language oriented programming" refers to. Even though the code is completely
standard F# library, it looks like a language designed for this particular problem, which
makes the code more readable. In fact, many well designed functional libraries look like
declarative languages.

The fact that functional libraries look like declarative languages for solving problems in
some specific area is a very important aspect of the declarative style. Its great benefit is that
it supports division of work in larger teams. You don't have to be an F# guru to understand
how to use the list processing "language" or any other library that is already available. This
means that even novice F# programmers can quickly learn how to solve problems using an
existing library. Implementing the library is more difficult, so this is a task that would be
typically done by more experienced F# developers in the team.

Of course, this book aims to train functional masters, so we'll talk about
this problem in later chapters. In chapter 6, we'll look at writing higher
order functions for working with lists and other basic types. This is a basic
technique used when designing functional libraries, but as we've seen in
this section, it makes the code look very natural. In chapter 15, we'll make
the next step and we'll design a library for creating animation with the goal
to make the syntax as natural as possible. Language oriented programming
in LISP

LISP appeared in 1958 and is the oldest high-level language still in common use, other
than FORTRAN. There are also some popular LISP dialects including Common Lisp and
Scheme. The languages from this family are widely known for their extremely flexible
syntax which allows LISP to mimic many advanced programming techniques. This
includes object-oriented programming, but also some less widely known approaches that
you may or may not have heard about, like aspect oriented programming (available today
in languages like Aspect] or libraries such as PostSharp) or prototype-based object
systems (also seen in JavaScript).
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Anything you write in LISP is either a list or a symbol, so you can for example write (—

n 1). This is a list containing three symbols: —, N and 1. However, it can be viewed
as program code: a call to a function "=" (binary minus operator) with two arguments: N
and 1. This makes the code a little bit difficult to read if you're not used to the syntax,
but I wanted to show it here just to demonstrate how far the idea of making the language
uniform can be taken. When solving some difficult problem in LISP, you almost always
create your own language (based on LISP syntax), which is designed for solving the
problem. You can simply define your own symbols with a special meaning and specify
how the code written using these symbols executes.

We've seen something slightly similar when talking about declarative animations in
chapter 1, so you've seen that you can use a language oriented approach even when
writing the code in C#. We'll talk about this example in chapter 15, where we'll see how
language oriented programming looks in both C# and F#.

In the declarative programming style, we're extending the vocabulary, which we can use
to express our intentions. However, we also need to make sure that the primitives we're
adding will be used in a correct way. In the next section, we'll briefly look at types, which
serve as "grammar rules" for these primitives.

2.3 Functional types and values

The C# language is a statically typed programming language’. This means that every
expression has a type known during the compilation. The compiler uses static typing to verify
that when the program runs, it will use values in a consistent way. For example, it can
guarantee that the program won't attempt to add a DateTime with an integer, because the
"+" operator cannot be used with these two types.

In C#, we have to specify the types explicitly most of the time. For example, when
writing a method, we have to specify what the types of its parameters are and what the
return type is. On the other hand, in F# we don't typically write any types. However, the F#
language is also statically typed. In F#, every expression has type as well, but F# uses a
mechanism called type inference to deduce the types automatically. In fact, static typing in a
functional language such as F# guarantees even more than it does in C#.

Types in functional programming

" The C# 4.0 adds support for some of the dynamic language features, but even with these
features, C# is still a mostly statically typed language.
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I said that functional languages treat any piece of code as an expression. As a result,
saying that every expression has a type is a very strong statement. It means that any
syntactically correct piece of F# code has some type. The type says what kind of results
we can get by evaluating the expression, so the type gives us valuable information about
the expression.

I also mentioned that types can be viewed as grammar rules for composing primitives. In
functional languages, a function (such as the sgquare function from the last example)
has a type. This type specifies how the function can be used - we can call it with an
integer value as an argument to get an integer as the result.

More importantly, the type also specifies how we can compose the function with higher
order functions. For example, we couldn't use Square as an argument for
List.filter, because filtering expects that the function returns a Boolean value and
not an integer. This is exactly what I mean by a grammar rule-the types verify that we're
using the functions in a meaningful way.

We'll talk about values and their types primarily in chapter 5. In chapter 6, we'll see how
types of higher order functions help us to write correct code. We'll also see that type
information can often give us a good clue about what the function does. In the next section,
we'll briefly look at the mechanism which allows us to use types without writing them
explicitly.

2.3.1 Type inference in C# and F#
When most of the types have a simple name such as int or Random, there is only a small
need for type inference, because writing the type names by hand isn't difficult. However, C#
2.0 supports generics, so you can construct more complicated types. The types in functional
languages like F# are also quite complicated, particularly because you can use functions as a
value, so there must also be a type that represents a function.

A simple form of type inference for local variables is now available in C# 3.0. When
declaring a local variable in earlier versions of C# you had to specify the type explicitly. In
C# 3.0 you can very often replace the type name with a new keyword var. Let's look at a

couple of basic examples:
var num = 10
var str = "Hello world!"

The first line declares a variable called num and initializes its value to 10. The compiler
can easily infer that the expression on the right-hand side is of type Int, so it knows that
the type of the variable must also be int. Note that this code means exactly the same thing
as if you had written the type explicitly. During the compilation, the C# compiler just
replaces var with the actual type. As I already mentioned, this is particularly useful when

working with complex generic types. We can for example write the following:
var dict = new Dictionary<string, List<lIComparable<int>>>();

Without the var keyword, you'd have to specify the type twice on a single line - when
declaring the variable and when creating the instance of Dictionary class. The type
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inference in C# is limited to local variable declarations. On the other hand, in F# you often
don't write any types at all. If the F# type inference fails to deduce some type, then you can
specify it explicitly, but this is a relatively rare.

To give you a better idea of how this works, we'll look at a single example. Listing 2.5
shows a simple function that takes two parameters, adds them and formats the result using
the String.Format method. The listing first shows valid F# code, and then how you
could write it in C# if implicit typing were extended to allow you to use the var keyword in
other places.

Listing 2.5 Implementing methods with type inference

let add a b = #1
let res =a+b #2
String.Format(*"{0} + {1} = {2}, a, b, res) #3

var Add(var a, var b) { #4
var res = a + b; #4
return String.Format("'{0} + {1} = {2}", a, b, res); #4

¥

#1 F# version with no types

#2 Add two numbers

#3 Format the returned string

#4 Pseudo-C# version using 'var'

As you can see, the F# syntax is designed in a way that you don't have to write any
types at all in the source code (#1). In the pseudo-C# version (#2), we just used the var
keyword instead of any types and this is in principle what the F# compiler sees when you
enter the code. If you paste the code for this function into F# interactive, it will be processed
correctly and the F# interactive will report that the function takes two integers as arguments
and returns a string. Let's now look how can the F# compiler figure this out.

The first hint which it has is that we're adding the values a and b. In F#, we can use
"+" to add any numeric types or to concatenate strings, but if the compiler doesn't know
anything else about the types of values, it assumes that we're adding two integers. From this
single expression, the compiler can deduce that both a and b are integers. Using this
information, it can find the appropriate overload of the String.Format method. The
method returns String, so the compiler can deduce that the return type of the add
function is also a string.

Thanks to the type inference, we can avoid many errors and use all other benefits of
static typing (like hints to developers when writing the code), but for almost no price, as the
types are inferred automatically in most of the cases. When using F# in Visual Studio, the
type inference is running in the background, so when you hover over a value with a mouse
pointer, you'll instantly see its type. The background compilation also reports any typing
errors instantly, so you'll get the same experience as when writing C# code.

You may be used to using types from other programming languages and you probably
already know that there are primitive types (like integer, character or floating point number)
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and more complicated types composed from these primitive types. Functional languages
have usually slightly different set of composed types. We'll talk about all these types in detail
in chapter 5, but let me briefly talk about one type which is particularly interesting and used
quite frequently.

2.3.2 Introducing the discriminated union type

In this section, we'll talk about the discriminated union type, which is one of the basic
functional types. Let's start by looking at a sample where it would be useful. Imagine that
you're writing an application that works with graphical shapes. We'll use a simple
representation of shape, so it will be a rectangle, an ellipse (defined by the corners of
bounding rectangle) or a shape composed from two other shapes.

If you try to think about this problem using the object oriented concepts, you'll probably
say that we need an abstract class to represent a shape (let's call it Shape) and three
derived classes to represent the three different cases (Ellipse, Rectangle and
Composed). Using the OO terminology, we now have in our mind four classes that describe
the problem. Also, we don't yet know what we'll want to do with shapes. We'll probably want
to draw them, but we don't know yet what arguments will we need to do the drawing, so we
can't yet write any abstract method in the Shape class.

However the original idea was simpler than this full-blown type hierarchy: we just
needed to have a representation of a shape with three different cases. We want to define a
very simple data structure that we could use to represent the shape-and F# allows us to do
exactly that:

type Shape =
| Rectangle of Point * Point #A
| Ellipse of Point * Point #B
| Composed of Shape * Shape #C

#A Rectangle with left-upper and right-lower point
#B Ellipse with the bounding rectangle
#C A shape composed from two shapes

This code creates a discriminated union type called Shape, which is closer to the
original intention we had when describing the problem to start with. As you can see, the type
declaration contains three different cases that cover three possible representations of the
shape. When working with values of this type in F#, we'll write code such as
Rectangle(ptl, pt2) to create a rectangle. Unlike unions in the C language, the value
is tagged, which means that we always know which of the options it represents. As we'll see
in the next section, this is quite important for working with discriminated union values.

The usual development process in F# starts by designing data structures needed to keep
the program data. We'll talk about this problem in more detail in chapters 7 to 9. In the next
section, we'll talk about pattern matching, which is a concept that makes many typical
functional programming tasks easy. Even though pattern matching doesn't look like a
concept related to types, we'll see that there are some very important connections. Among
other things, we can use pattern matching for implementing functions that work with
discriminated unions.
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2.3.3 Pattern matching

When using functional data types, we know much more about the structure of the type that
we're working with. A nice demonstration of this property is a discriminated union - when
working with this type, we always know what kind of values we can expect to get (in our
previous example, it could be either a rectangle, an ellipse or a composed shape).

When writing functions that work with discriminated unions, we need to specify what the
program should do for each of the case. This is in many ways similar to the switch
statement from C#, but there are several important differences. First let's see how we could
use the switch statement to work with a data structure mimicking a discriminated union in
C#. Listing 2.6 shows how we could print some information about the given shape.

Listing 2.6 Testing cases using 'switch' statement (C#)

switch(shape.Tag) { #1
case ShapeType.Rectangle:
var rc = (Rectangle)shape; #2
Console.WriteLine("rectangle {0}-{1}", rc.From, rc.To);
break;

case ShapeType.Composed:
Console._WriteLine(*'composed™);
break;

¥
#1 Switch over the type of the shape value

#2 Cast to the appropriate type

The code assumes that the shape type has a property Tag (#1), which specifies what
kind of shape it represents. This corresponds to F# discriminated unions, where we can also
test which of the possible cases the value represents. When the value is a rectangle, we
want to print some information about the rectangle. To do this in C#, we first have to cast
the shape (which has a type of the abstract base class Shape) to the type of the derived
class (in our example, it's Rectangle) and then we can finally access the properties that
are specific for the rectangle. In functional programming we use this type of construct more
often than in regular C#, so we'll need an easier way for accessing properties of the specific
cases.

The last thing that is worth noting about the example above is that it contains code only
for two of the three cases. If the shape represents an ellipse, the Switch statement won't
do anything. This may be the right behavior in C#, but it is not appropriate for functional
programs. I said that everything is an expression in functional program, so we could return
some value from the functional version Switch. In that case, we definitely need to cover all
cases, because otherwise the program wouldn't know what value to return.

In the listing 2.7, we'll look at the F# alternative to the C# Switch statement. The
construct is called match and we'll use it to calculate the area occupied by the shape.

Listing 2.7 Calculating area using pattern matching (F#)
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match shape with
| Rectangle(pfrom, pto) ->

rectangleArea(pfrom, pto) #1
| Ellipse(pfrom, pto) ->

ellipseArea(pfrom, pto)

| Composed(Rectangle(froml, tol), Rectangle(from2, to2)) #2
when isNestedRectangle(from2, to2, froml, tol) -> #2
rectangleArea(froml, tol) #A

| Composed(shapel, shape?) -> #3
let areal = shapeArea(shapel) #B

let area2 = shapeArea(shape2) #B
areal + area2 - (intersectionArea(shapel, shape2)) #B

#1 Calculate area of a rectangle

#2 Case for a rectangle nested inside another
#A Optimized version

#3 Remaining case

#B Calculate area of composed shape

The first important difference from the C# switch construct is that in F#, we can
deconstruct the value that we're matching against the patterns. In the listing above, it is
used in all the cases. The different cases (denoted using the "|" symbol) are usually called
patterns (or guards).

When calculating area of a rectangle (#1), we need to get the two points that specify
the rectangle. When using match, we can just provide two names (from and to) and the
match construct assigns a value to these names when the shape is represented as a
rectangle and the branch is executed. The listing above is very simplified, so it just uses a
utility function to calculate the actual number.

The second case is for an ellipse and it is very similar to the first one. However, the next
case is more interesting (#2). The pattern that specifies conditions under which the branch
should be followed (which is specified between the bar symbol and the arrow "->") is quite
complicated for this case. The pattern only matches when the shape is of type Composed,
and both of the shapes that form the composed shape are rectangles. Instead of giving
names for values inside the Composed pattern, we specify another two patterns (two times
Rectangle). This is called a nested pattern and it proves very useful. Additionally, this
pattern also contains a when clause which allows us to specify any arbitrary condition. In
our example, we call iISNestedRectangle function, which tests whether the second
rectangle is nested inside the first one. If this pattern is matched, we get information about
two rectangles. We also know that the second one is nested inside the first one, so we can
optimize the calculation and just return the area of the first rectangle.

The F# compiler has full information about the structure of the type, so it can verify that
we're not missing any case. If we forgot the last one (#3) it would warn us that there are
still valid shapes that we're not handling (for example a shape composed from two ellipses).
The implementation of the last case is more difficult, so if our program often composes two
rectangles, the optimization in the third case would be quite useful. Similar to first-class
functions, discriminated unions and pattern matching are other functional concepts that allow
us to think about problems in simple terms.
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Thinking about problems using functional data structures

Even though there is no simple way to create a discriminated union type in C#, the
concept is still very useful even for C# developers. Once you become more familiar with
them, you'll find that many of the programming problems that you face can be
represented using discriminated unions.

If you know object oriented design pattern called Composite, than you may recognize it in
the example above. The shape can be composed from two other shapes, which represents
the composition. In functional programming, we'll use discriminated unions more often to
represent program data, so in many cases the Composite design pattern will disappear.

If you end up implementing the problem in C#, you can encode a discriminated union as
a class hierarchy (with a base class and a derived class for every case). However,
mentally, you can still work with the simple concept, which makes thinking about the
application architecture easier. In functional programming, this kind of data structure is
used more frequently, which is also a reason why functional languages support more
flexible pattern matching constructs. The example above demonstrated that the F#
match expression can simplify implementation of rather sophisticated constructs. We'll
see this type of simplification repeatedly throughout the book: an appropriate model and
a bit of help from the language can go a long way to keeping code readable.

I mentioned that the F# compiler can verify that we don't have any missing cases in the
pattern matching. This is one of the benefits that we get thanks to the static typing of the F#
language, but there are many other areas where it helps too. In the next section, we'll briefly
review the benefits and we'll look at one example that highlights the goals of compile-time
checking in F#.

2.3.4 Compile-time program checking
The well known benefits of using types are that it prevents many of the common mistakes
and that the compiled code is more efficient. However, in functional languages there are
several other benefits. Most importantly, types are used to specify how functions can be
composed with each other. This is not only useful for writing correct code, but it serves as
valuable information to the developer as part of the documentation or to the IDE, which can
use types to provide useful hints when writing the code. Types in functional languages tell us
even more than they do in imperative languages such as C#, because the functional code
uses generics more often. In fact, most of the higher order functions are generic. We've seen
that thanks to type inference, the types can be very non-intrusive and you often don't have
to think about them when coding.

In the next section, I'll show you one example of a feature which nicely demonstrates
the goal of types and compile-time program checking in F#. The goal is to make sure that
your code is correct as early as possible and to provide useful hints when writing it.
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UNITS OF MEASURE
In 1999 NASA's Climate Orbiter was lost because part of the development team used the
metric system and another part used imperial units of measure. This was one of the
motivations for a new F# feature called units of measure which allows us to avoid this kind of
issue. We'll talk about units of measure later in chapter 17, but in this section I want to use
it to demonstrate how type checking helps when writing F# code. I chose this example
because it is easy to explain, but the compile time checking is present when writing any F#
code.

The listing 2.8 shows a brief session from the F# interactive. The code shows a
calculation that tests whether an actual speed of a car is violating a specified maximum
speed.

Listing 2.8 Calculating with speed using units of measure (F# interactive)

> let maxSpeed = 50.0<km/h> #A

let actualSpeed = 40.0<mile/h> #B
vai’maxSpeed : Float<km/h> #1
val actualSpeed : float<mile/h> #1
> 1f (actualSpeed > maxSpeed) then #2

printfn *"Speeding!"';;
Error FSO001: Type mismatch.
Expecting a float<mile/h> but given a float<km/h>. #3
The unit of measure "mile/h" does not match the unit of measure “km/h* #3

> let mphToKmph(speed:float<mile/h>) = #4
speed * 1.6<km/mile>;; #4

val mphToKmph : float<mile/h> -> float<km/h> #4

> if (mphToKmph(actualSpeed) > maxSpeed) then #5
printfn "Speeding!";;

Speeding!

#A Maximal allowed speed in km/h

#B Actual speed in mph

#1 Units are part of the type

#2 Is the speed larger?

#3 The types are not compatible

#4 Implement conversion of units

#5 Correct comparison using conversion

The listing starts by declaring two values (maxSpeed and actualSpeed). The
declaration annotates these values with units, so you can see that the first is in kilometers
per hour and the second is in miles per hour. This information is captured in the type (#1),
so the type of these two values isn't just a Float, but it is a Float with additional
information about the units.

Once we have these values, we try to compare the actual speed with the speed limit
(#2). In a language without units of measure, this would be perfectly valid and the result
would be false (because 40 is less than 50), so the driver would escape without a penalty.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
50

However, the F# compiler reports (#3) that we cannot compare these numbers, because
km/h is a different unit than mi le/h.

To solve the problem, we have to implement a function that converts the speed from
one unit to another. The function takes an argument of type Float<mile/h>, which
means that the speed is measured in miles per hour and returns a float representing speed
in kilometers per hour. Once we use this conversion function in the condition (#5) the code
compiles correctly and it reports that the actual speed is in fact larger than the allowed
speed. If we implemented this as a standalone application (without using F# interactive)
we'd get an error complaining about units during the compilation. Additionally, you can see
the units in Visual Studio, so it helps you to verify that your code is doing the right thing. If
you see that a value that should represent the speed has a type Float<km”™2>, then you
very quickly realize that there is something wrong with the equation.

As I mentioned earlier, static type checking isn't present in all functional languages, but
it's extremely important for F#. In the last few sections, we quickly looked at the concepts
that are important for functional languages and we've seen how some functional constructs
differ from similar constructs in the common imperative and object-oriented languages.
Some of the features may still feel a bit unfamiliar, but we'll discuss every concept in detail
later in the book, so you may return to this overview to regain the "big picture" after you
learn more about functional programming details. To round off this overview, I'll briefly talk
about lambda calculus which is a foundation of functional programming and the source of
many of the concepts we've just seen.

2.4 The foundation of functional programming

As I mentioned in the first chapter, lambda calculus originated in 1930s as a mathematical
theory. Nowadays, it is a very important part of theoretical computer science. In logic it is
used in tools that assist with the proving and verification of systems (for example in CPU
design). It is also used as a simple formal programming language that can be used for
explaining precisely how other languages behave.

In the next section, I'll show you a few sample "programs" written in lambda calculus.
We'll see that many of the concepts that we just introduced are appear in this "language" in
this chapter appear there in their purest and cleanest form. In lambda calculus, the whole
"program" is an expression, and functions can take other functions as parameters. By now,
both of these should sound very familiar.

I've included this background material because it demonstrates some of the ideas in
their purest form. Hopefully you'll find it as interesting as I do-but it's not essential in order
to understand the rest of the book.

2.4.1 Introduction to A-calculus

When Alonzo Church introduced lambda calculus, he attempted to formalize every
mathematical construct just using the most essential mathematical concept, a function.
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When you write a mathematical function (let's call it for example f), which adds ten to any
given argument, you write something like this:

f(x) = x+10

However, Church wanted to use functions everywhere. In fact, everything in his
formalism was a function. Assigning a name to every function would be impractical, because
when everything is written as a function, many functions are used only once. He introduced a
notation that allowed a function to be written without giving it a name:

(Ax.x+10)

This expression represents a function that takes a single parameter, denoted by the
Greek letter lambda followed by the variable name (in our case "x"). The declaration of the
parameters is followed by a dot and by the body of the function (in our case "x+10").
Actually, in the pure lambda calculus, numerals (such as 10) and mathematical operators
(such as "+") are also defined using functions, so there is really nothing except functions,
which is quite surprising. To make the discussion clear, we'll just use standard numbers and
operators. Let's continue with our example function that adds 10 to a given number. Let's
say we want to set 32 as an argument and see what the result will be:

(Ax.x+10) 32 =32 + 10 = 42

As we can see, giving an argument to a function (which is called the application of a
function in lambda calculus) is done by writing the function followed by the argument. When
a function is called with some value as an argument, it simply replaces all occurrences of the
variable (in our case "x") with the value of the argument (in our example "32"). This is the
expression that follows the first equal sign. Finally, if we look at "+" as a built-in function,
then it will be called in the next step, yielding 42 as a result.

The most interesting aspect about lambda calculus-and the cornerstone of functional
programming languages—-is that any function can take a function as an argument. This
means that we can write a function that takes a function (binary operator) and a value as
parameter and calls the binary operator with the value as both arguments:

(Aop.Ax.(op x x))

As you can see, we wrote a function that takes "op" and "x" as arguments. When writing
a function with more arguments, we just use the lambda symbol multiple times to declare
more variables. In the body of the lambda function we use "op" in a position of a function
and "x" in a place of the first and second argument to the "op" function. Let's see what the
code does if we give it plus operator as a first argument and 21 as a second argument:

(Aop.Ax.(op x x)) (+) 21 = (Ax.((+) x x)) 21 = (+) 21 21 = 42
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A function with multiple arguments is actually a function that takes the first argument
(in our case "op") and returns a lambda expression, which may be again a function. This
means that in the first step, we apply the function (which takes "op" as an argument) to the
argument "(+)". This yields a result that you can see after the first equals sign - as you can
see, the "op" variable was replaced with a plus sign. The result is however still a function
with arguments, so we can continue with the evaluation. The next step is to apply the
function with "x" as a parameter to a value 21. The result is an expression "(+) 21 21",
which is just a little bit odd notation for adding two numbers and it means exactly the same
thing as "21 + 21", so our final result of this calculation is 42. As you can see, the calculation
in lambda calculus continues until there is no function application (a function followed by its
arguments) that could be evaluated. Lambda calculus is interesting from a theoretical point
of view or to see where the functional ideas came from, but we'll now turn our attention back
to the real world and I'll summarize how functional programming looks in F#.

Note: equations in this section look quite ugly using the default
font, so please find some nice way to format this. Thanks!

2.5 The F# point of view

Even though F# has its roots in traditional functional languages, it follows a very pragmatic
approach. It was influenced primarily by OCaml, but also by Haskell and C# and it was
designed as a functional language intended for the .NET platform. This means that it can
interoperate very easily with the outside world and also that it can fully access the object
oriented features of .NET if you need them. Another implication is that F# can use a large
number of libraries available for .NET including, but not limited to advanced 3D graphics and
game development technologies (DirectX, XNA), web development tools (ASP.NET, ASP.NET
"MVC" Framework) and windows user interface frameworks (Windows Forms, WPF), but is
also compatible with the Mono runtime and can be used to develop Mono based applications
(for example using Gtk#).

When thinking about F#, you should be aware of the fact that it is primarily a functional
language. This means that most of the typical aspects of functional languages discussed in
the earlier sections are essential for F# and well written F# programs usually use most of
these features together.

The only aspect where F# isn't as strict as other languages is that it doesn't strictly
enforce the use of immutable values and immutable data types, even though their use is still
the preferred way where possible. This means that you can define a mutable value and also
work with objects that have an internal changing state. The reason for this is to allow easy
access to all .NET functionality and libraries, which don't always follow the functional style of
thinking; using them fluently from a purely functional language would be a bit cumbersome.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
53

This means that F# allows side-effects and doesn't have any mechanism for controlling
them. In practice, this means that when you want to rely on the mathematical purity of a
part of F# program for some reason, you have to explicitly think about side-effects and make
sure that they will not cause any problems.

As already mentioned, F# also supports full .NET object-oriented features, but in a way
which is orthogonal to the functional approach, so you can take the best from both worlds. In
this book, we focus more on functional programming, so we'll discuss only those object-
oriented features that are often used together with functional programming and we'll omit
some of the advanced object-oriented features of F# that are not used frequently in a well
designed F# program.

2.6 Summary

In this chapter, we talked about functional programming in general terms, including its
mathematical foundation in lambda calculus. You've learned about the elements that are
essential for functional programming languages such as immutability, recursion and using
functions as values. We briefly introduced the ideas that influenced the design of these
languages and that are to some extent present in almost all of them. These ideas include
making the language extensible, writing programs using a declarative style and avoiding
mutable state to make it easier to read and also parallelize programs. Even though all of the
languages we've discussed are primarily "functional", there are still important differences
between them. This is because each of these languages puts emphasis to slightly different
combination of the essential concepts mentioned earlier. Some of the languages are
extremely simple and extensible, while others give us more guarantees about the program
execution.

In the next chapter, we'll see how some of the functional concepts look in practice in F#
and how the same ideas can be expressed in C#, so you can see familiar C# code with a
functional F# equivalent side-by-side. In particular, we'll talk about functional data
structures and look at tuple, which is a basic F# immutable data structure as well at its
equivalent in C#. We'll also look at collections of data (called lists in functional languages)
and how you can work with them using recursion. We've seen that a single recursive function
can be used for various purposes when it takes another function as an argument, so we’ll
use this technique for writing a universal list processing code.
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Meet tuples, lists and functions
In F# and C#

In the previous chapter we looked at the most important concepts of functional
programming, but we did this from a high-level perspective. You haven't seen any real
functional code yet, aside from quick examples to demonstrate the ideas. The purpose of the
introduction was for you to see how various concepts relate to each other and how the result
is a very different approach to programming.

In this chapter we'll finally look at some real functional F# code, but we'll focus on
examples that can be also nicely explained and demonstrated using C#. We will not yet go
into the deep details of everything; you'll see more information about most of the concepts
in the second part of the book.

First we'll look at value bindings in F# and how we can use them to declare a value or a
function, so we can write some real F# code later. After this intermezzo we'll turn our
attention to aspects that are language neutral starting with immutability-the fact that values
cannot be changed after they’ve been initialized. Next we'll look at the humble list, which
proves to be a very useful data structure. I'll demonstrate how you can work with lists
recursively—as you might remember from the introduction, recursion is another key aspect of
functional programming. Aside from that, we'll also use pattern matching in several
examples, so I'll introduce it along the way. Finally, we'll look at how we can treat functions
as values, which is the feature that gave the name to the whole functional programming
paradigm.

3.1 Value and function declarations

We've already seen several examples of value binding (written using the let keyword in

F#) in Chapter 1. As you'll see, value binding isn't just a value declaration. It is a very
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powerful and common construct, used for declaring both local and global values as well as
functions. Before writing examples that show functional programming in F#, we need to look
at other uses of value binding as well.

3.1.1 Value declarations and scope

As we already know, the let keyword can be used for declaring immutable values. We
haven't yet talked about a scope of the value, but it's easier to do that with a concrete
example. Listing 3.1 is extremely simple, but it's amazing how many nuances can hide in
just four lines of code.

Listing 3.1 The scope of a value (F#)

let num = 42 #1
printfn "%d" num
let msg = "Answer: " + (num.ToString()) #2
printfn "%s" msg

The code is quite straightforward. It declares two values, where the second (#2) is
calculated using the first (#1); it then prints them to the console. What is important for us is
the scope of the values-that is, the area of code where the value can be accessed. As you
would probably expect, the value Nnum is accessible after we declared it on the first line (#1)
and the value MS(g is accessible only on the last line. You can look at the code and verify that
we're using the values only when they are in scope, so our code is correct.

I'll use this code to demonstrate one more thing. The example in listing 3.1 looked quite
like C# code, but it's important to understand that F# treats the code very differently. We
already touched this topic in previous chapter in section 2.1.4 (How is the calculation
written?) where we attempted to write some code in C# only using expressions. We've seen
that value bindings have to be treated specially, if we want every valid F# code to be an
expression. Indeed, if you wrote code to do the same thing as listing 3.1 in C#, the compiler
would see it as a sequence of four statements. Let's now look how F# understands the code.
To demonstrate this, I've made few syntactical changes in the code to produce listing 3.2.

Like vertical hedgehog; [Ch_03_Listing_2.2.png] shows what |
mean; | can do it in Visio, but I'd prefer leaving it to professionals.

Listing 3.2 Example with let binding with explicit scopes (F#)

let num = 42 in

(¢ #1
printfn "%d" num; #2 #1
let msg = "Answer: " + #1 #3

(num.ToString()) in #1 #3
#1 #3
printfn "%s"™ msg #1 #3
) #1 #3
) #1
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Annotations below the code with bullets on the left side (as in the
guide; [WritingDevices_BulletsSample.vsd] shows an example)

#1 The whole block in the parentheses is an expression inside the first let binding. The binding
declares a value 'num’, which is in scope in the expression enclosed by parentheses.

#2 Sequencing of expressions can be done explicitly using semicolon. By linking two expressions in
a sequence using semicolon, we get a single expression.

#3 The whole let binding is an expression. It declares a value 'msg' which is in scope in the nested
expression in parentheses.

There are several obvious changes to the layout, but it's also worth noting the
introduction of the 1N keyword after every let binding. This is required if you turn off the
default syntax where whitespace is significant®. The other change is that a block of the code
following the let binding is enclosed in parentheses. This example is closer to how F#
compiler actually understands the code that we wrote. Interestingly, the code in listing 3.2 is
still valid F# code with same meaning as earlier. This is because sometimes you may want to
be more explicit about the code and using In keywords and braces enable this.

What becomes more obvious in listing 3.2 is that the let binding actually assigns a value
to a symbol and specifies that the symbol can be used inside of an expression. The first let
binding states that the symbol num refers to a value 42 in the expression following the in
keyword, which is enclosed in braces (#1). The whole let binding is treated as an expression,
which returns the value of the inner expression, so for example the whole let binding that
defines the value mSQ (#3) is an expression that returns a result of printfn. This function
has unit as a return type, so the result of the whole expression will be a unit.

The expression (#3) is preceded by another expression (#2) and as you can see, we
added semicolon between these two. The semicolon works as a sequencing operator in F#
and when using the lightweight syntax, we don't have to write it. It specifies that the
expression preceding the semicolon should be evaluated before the one following it. In our
example that means #2 will be evaluated before #3. The expression preceding the
sequencing operator should also return a Unit, because otherwise the returned value would
be lost.

So far we have only seen ordinary bindings that declare an ordinary value, but the same
let binding is also used for declaring functions and for nested bindings as we'll see in the next
section.

* The default setting is sometimes called "lightweight syntax". However, F# also supports
OCaml-compatible syntax, which is more schematic and which we use in the example. We
will not use it in the rest of the book, but in case you want to experiment with it, you can
turn it on by adding #light "off" directive to the beginning of F# source file.
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3.1.1 Function declarations

As noted earlier, we can use let bindings to declare functions. Let's demonstrate this on a
fairly simple function that multiplies two numbers given as the arguments. This is how you
would enter it to the F# interactive tool:

> let multiply nl n2 =

nl * n2;;

val multiply : int -> int -> int

To write a function declaration, the name of the symbol has to be followed by one or
more argument names. In our example, we're writing a function with two arguments, so the
name of the function (multiply) is followed by two arguments (N1 and N2). Let's now
look at the body of the function. It can be simply viewed as an expression that is bound to
the symbol representing a name of the function (multiply in our case), with the
difference that the symbol doesn't represent a simple value, but instead represents a
function with several arguments.

In the previous chapter, we've seen that functions in F# are also just values. This means
that when using the let construct, we're always creating a value, but if we specify
arguments, we declare a special type of value-a function. From a strictly mathematical point
of view, an ordinary value is just a function with no arguments, which also sheds more light
on the F# syntax. If you omit all the arguments in function declaration, you'll get a
declaration of a simple value.

When writing a function, the body of the function has to be properly indented. The
indentation is required so that you don't have to use other, more explicit, ways to specify
where the function declaration ends, which are used in the OCaml-compatible syntax.

FUNCTION SIGNATURES

One part of the previous example that we haven't discussed yet is the output printed by the
F# interactive. It reports that we declared a new value and its inferred type. Because we're
declaring a function, the type is a function type written as Int -> Int -> Int. This
type represents a function that has two arguments of type int (two Ints before the last
arrow sign) and returns a result of type Int (the type after the last arrow sign). We've
already seen that F# uses type inference to deduce the type and in this example, it used the
default type for numeric calculations (which is an integer). We'll get back to function types in
chapter 5 and we'll also explain why parameters are separated using same symbol as the
return value.

NESTED FUNCTION DECLARATIONS
Let's now look at slightly more complicated function declaration in listing 3.3, which also
demonstrates another interesting aspect of let bindings - the fact that they can be nested.

Listing 3.3 Nested let bindings (F# interactive)

> let printSquares msg nl n2 =
let printSquUtility n = #1
let sq =n*n #3 #2 #1
printfn "%s %d: %d" msg n sq H#H4 #2 #1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
58

printSqutility nl #1
printSqutility n2;; #1
val printSquares : string -> int -> int -> unit

> printSquares ''Square of" 14 27;;
Square of 14: 196
Square of 27: 729

One more vertical hedgehog diagram (#3, #4 are ordinary bullets)

The code shows an implementation of a function printSquares. As you can see from
its signature (String -> iInt -> Int -> unit), it takes a String as its first
argument (MSQg) and two numbers (N1 and N2) as the second and third arguments. The
function prints squares of the last two arguments using the first argument to format the
output. It doesn't return any value, so the return type of the function is unit.

The body of the printSquares function (#1) contains a nested declaration of a
function printSqUtility. This utility function takes a number as an argument,
calculates its square and prints it together with the original number. Its body (#2) contains
one more nested let declaration which declares an ordinary value called SqQ (#3) which is
assigned the square of the argument, just to make the code more readable. It ends with a
printfn call that prints the message, the original number and the squared number. The
first argument specifies the format and types of the arguments (%S stands for a string and
%d stands for an integer).

There is one more important aspect about nested declarations that can be demonstrated
with this example. I have already mentioned that the parameters of a function are in scope
(meaning that they can be accessed) anywhere in the body of a function. For example, the
parameter MSQ can be used anywhere in the range (#1). This also means that it can be used
in the nested function declaration and this is exactly what we do inside printSqutility
on the fourth line (#4) when we output the numbers using the mSg value. The nested
declarations are of course accessible only inside the scope where they are declared-for
example, you cannot use printSquUti lity directly from other parts of the program. This
also guarantees that the msg argument will always have a value.

One last aspect of value declarations in F# is that they can be used for declaring
mutable values as well. Even though we usually work with immutable values in functional
programs, it is sometimes useful to be able to create a mutable value as well.

3.1.2 Declaring mutable values

In the earlier section, we declared a value of type integer by writing let num = 10. If
you were curious and tried to modify it, you may have tried writing something like num =
10. This doesn't work because a single equal's sign outside a let binding is used to compare

values in F#. It would be valid code, but it would probably return false (unless num
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happened to have the value 10). This makes it seem that modifying an existing value in F#
isn't even possible.

This isn't actually true, since F# is very pragmatic and sometimes you may need to use
mutable values in F#. This is most likely to happen when optimizing code or using mutable
.NET objects. Listing 3.4 shows how immutable and mutable values can be used in F# and
what the operator for mutating values looks like.

Listing 3.4 Declaring mutable values (F# interactive

> let nl = 22;; #1
val nl : int

> nl <- 23;; #2
error FS0027: This value is not mutable. #2

> let mutable n2

= 22;; #3
val mutable n2 : int

> n2 <- 23;; #4
> n2;; #4
val it - int = 23

Annotations below the code with bullets on the left side

#1 Declare standard value

#2 Immutable values cannot be modified
#3 Declare mutable variable

#4 Modify and show the new value

All values in F# are immutable by default, so when we declare a value using the usual
let binding syntax (#1) and then try to modify it using the assignment operator ("<-") we
get a compile-time error message (#2). To declare a mutable variable, we have to explicitly
state this using the mutable keyword (#3). We can later change this value using the
assignment operator and when we print it, we can see that the value has changed (#4).

You should try to get into the habit of using immutable values wherever possible in F# -
only use mutable values when you really have to. This is not because they're necessarily
wrong as such, but they're not idiomatic. If you can "think functionally" it will lead to more
concise code which will be easier to read and reason about. Don't expect this to happen
overnight, but the more you work with the language instead of fighting its normal idioms,
the more you're likely to get out of it.

As I said in chapter 1, the default use of immutability doesn't just influence local value
declarations, but also extends to data structures. In the next section we'll look at the most
basic immutable types that we use in functional programming.

3.2 Using immutable data structures
An immutable data structure (or object) is a structure whose value doesn't change after it is
created. When declaring a data structure that contains some values, these values are stored
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in slots such as field or value declaration. In functional programming, all these slots are
immutable, which leads to the use of immutable data structures. In this section, we'll
demonstrate the simplest built-in immutable data type. You'll see more common functional
data structures in the upcoming chapters.

I pointed out earlier how we can write a function for processing data using immutable
data types or objects. Instead of changing the internal state of the object (which isn't
possible, because it is immutable) the processing function simply creates and returns a new
object. The internal state of this new object will be initialized to a copy of the original object
with a few differences in places where we wanted to change the state. This sounds a little
abstract, but you'll see what I mean shortly in an example.

3.2.1 Introducing tuple type

The simplest immutable data structure in F# is a tuple® type. Tuple is a simple type that
groups together several values of (possibly) different types. The following example shows
how to create a value (called €p), which contains two values grouped together:

> let tp = ("Hello world!", 42)

val tp : string * iInt

Creating a tuple value is fairly easy: we just write a comma separated list of values
enclosed in parentheses. But let's look at the code in more detail - on the first line, we create
a tuple and assign it to a tp value. The type inference mechanism of the F# language is
used here, so you don't have to explicitly state what the type of the value is. The F#
compiler infers that the first element in the tuple is of type string and the second is an
integer, so the type of the constructed tuple should be something like "a tuple containing a
string as the first value and an integer as the second value". Of course, we don't want to lose
any information about the type and if we represented the result just using some type called
for example Tuple, we wouldn't know that it contains string and integer.

The inferred type of the expression is printed on the second line. You can see that a type
of a tuple is in F# written as sString * int. In general, a tuple type is written as types of
its members separated by an asterisk. In the next few sections, we'll see how tuples can be
used in F#, but I'll also show you how you can implement exactly the same functionality in
C#. If you don't immediately understand everything after reading the F# code, don't worry;
just continue with the C# examples, which should make everything clearer.

So, how can we implement the same type in C#? The answer is that we can use C# 2.0
generics and implement a generic Tuple type with two type arguments. The C# equivalent

§ The word “tuple” is usually pronounced with “u” such as in “cup”.
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of the F# type string * iInt will then be Tuple<string, Int>. We'll get to the C#
version shortly after discussing one more F# example.

WORKING WITH TUPLES IN F#

Let's now look at some more complicated F# code that uses tuples. In listing 3.5, we use
tuples to store information about a city. The first member is a string (the name of the city)
and the second is an integer, containing a number of people living there. We implement a
function printCity which outputs a message with the city name and its population, and
finally we create and print information about two cities.

Listing 3.5 Working with tuples (F# interactive)

> let printCity citylnfo = #1
printfn "Population of %s is %d." #1

(fst citylnfo) (snd citylnfo) #1

val printCity : string * int -> unit #2
> let prague = (“Prague', 1188126) #3
let seattle = ("Seattle', 594210) #3
val prague : string * int #4
val seattle : string * int #4
> printCity prague #5
printCity seattle;; #5

Population of Prague is 1188126.
Population of Seattle is 594210.

#1 Function that prints information about the city
#2 Inferred type of the function

#3 Create tuples representing Prague and Seattle
#4 Types of created tuples

#5 Print information about the cities

The listing shows a session from the F# interactive, so you can easily try it for yourself.
The first piece of code (#1) declares a function printCity, which takes information about
the city as an argument and prints its value using the standard F# printfn function. The
formatting string specifies that the first argument is a string and the second is an integer. To
read first and second element of the tuple, we use two standard F# functions, fst and snd
respectively (which are obviously acronyms for "first" and "second").

The next line (#2) shows the type of the function deduced by the F# type inference. As
we can see, the function takes a tuple as an argument (denoted using asterisk as String
* int) and doesn't return any value (denoted as UNIt type on the right side of functional
arrow symbol). This is exactly what we wanted.

Next, we create two tuple values (#3) that store population information about Prague
and Seattle. After these lines are entered, the F# interactive shell prints the types of the
newly declared values (#4) and we can see that the values are of the same tuple type that
the printCity function takes as argument. That means we can pass both of these two
values as an argument to our printing function and get the expected result (#5).
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The fact that types of the tuple match the parameter type of the function is important,
because otherwise the two types would be incompatible and we wouldn't be able to call the
function. To demonstrate this, you can try entering the following code in the F# interactive

console:
let newyork = (“"New York'™, 7180000.5)
printCity newyork

I'm not sure how New York could have 7180000 and half of inhabitants, but if this were
the case then the type of the tuple newyork wouldn't be sString * int anymore and
would instead be string * float, as the type inference would correctly deduce that the
second element of the tuple is a floating-point number. If you try it, you'll see that the
second line isn't valid F# code and the compiler will report an error saying that the types are
incompatible.

WORKING WITH TUPLES IN C#

I promised that we'd implement exactly the same code as the previous example in C# as
well, so now it's the time to fulfill this promise and write some C#. As I already mentioned,
we will represent tuples in C# using a generic type with two type arguments
Tuple<TFirst, TSecond>, where TFirst and TSecond are generic type
parameters.

The type will have a single constructor with two parameters of types TFirst and
TSecond respectively, so that we can construct tuple values. It will also have two
properties for accessing the values of its members, so unlike in F# where we accessed the
elements using functions Fst and snd, in C# we'll use properties First and Second. We
skip the implementation for a minute, and instead look at how we can use the type. Listing
3.6 has the same functionality as listing 3.5, but written in C#.

Listing 3.6 Working with tuples (C#

void PrintCity(Tuple<string, int> citylnfo) { #1
Console.WriteLine("Population of {0} is {1}.",
citylnfo.First, citylnfo.Second); #2
}

var prague
var seattle

= new Tuple<string, int>("Prague', 1188000); #3

= new Tuple<string, int>("Seattle'", 582000); #3
PrintCity(prague); #4
PrintCity(seattle); #4

#1, #2 The 'PrintCity' method takes a tuple of string and int as an argument; in C# we the types of
method arguments have to be specified explicitly, so you can see that the type of ‘citylnfo' is
‘Tuple<string, int>' (#1). The method prints the information using .NET 'Console.WriteLine' method
and uses properties of the tuple type (‘First' and 'Second’) to read its value (#2).

#3, #4 Declares two variables (‘prague’ and 'seattle’) and creates a tuple that stores information
about the cities using a constructor with two arguments (#3); The city information are later printed
using the 'PrintCity’ method (#4)
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Annotations with bullets on the left as in previous cases.

The translation from F# code to C# is very straightforward once we have an equivalent
for the F# tuple type in C#. The code is slightly more verbose, mainly because we have to
explicitly specify the type several times, whereas in the F# example, the type inference
mechanism was able to infer the type everywhere. However, we’ll shortly see that this can
be improved a little bit. We used a new C# 3.0 feature (var), which at least lets us use type
inference when declaring the prague and seattle variables (#3), because we're
initializing the variables and C# can automatically infer the type from the right-hand side of
the assignment.

Just like in the F# code, if we declared a tuple with an incompatible type (for example
Tuple<string, double>) we wouldn't be able to use it as an argument to the
PrintCity method. This is more obvious in C#, because we have to explicitly state what
the type arguments for the generic parameters of the Tuple type are.

3.2.2 Implementing a tuple type in C#

The implementation of the tuple type in C# is quite straightforward. As already mentioned,
we're using generics, so that one can create a tuple containing values of any two types. The
complete code is shown in listing 3.7.

Listing 3.7 Implementing the tuple type (C#)

public sealed class Tuple<TFirst, TSecond> {
private readonly TFirst first; #1
private readonly TSecond second; #1

public TFirst First { get { return first; } }
public TSecond Second { get { return second; } }

public Tuple(TFirst first, TSecond second) {
this_first = first; #2
this.second = second; #2

}
}

Probably the most notable thing is that the type is immutable. We've already seen how
to create an immutable class in C# in the first chapter. In short, we mark all fields of the
type using the readonly modifier (#1) and provide only getter for both of the properties.
Interestingly, this is somewhat opposite to F# where you have to explicitly mark values as
mutable. Read-only fields can be set only from the code of the constructor (#2), which
means that once the object is created, its internal state cannot be mutated as long both of
the values stored in the tuple are immutable as well.

BETTER TYPE INFERENCE FOR C# TUPLES

Before moving forward, I'd like to show you one C# trick that makes our further examples
that use tuples much more concise. In the earlier examples, we had to create instances of
our tuple type using a constructor call which required explicit specification of type

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
64

arguments. We used the new C# 3.0 var keyword, so that the C# compiler inferred the
type of variables for us, but we can do even better.

There is one more place where C# supports type inference and that is when calling a
generic method. If you're calling a generic method and its type parameters are used as types
of the method parameters then the compiler can use the compile-time types of the method
arguments when the method is called to infer the type arguments™. To clarify this, let's look
at the code showing this in listing 3.8.

Listing 3.8 Improved type inference for tuples (C#

public static class Tuple {
public static Tuple<TFirst, TSecond>
Create<TFirst, TSecond>(TFirst first, TSecond second) {
return new Tuple<TFirst, TSecond>(first, second);

}
}

var prague Tuple.Create(*'Prague’, 1188000); #1

var seattle Tuple.Create(''Seattle™, 582000); #1

The code shows an implementation of a static method Create, which has two generic
parameters and creates a tuple with values of these types. We need to place this method in
a non-generic class, because otherwise we would have to specify the generic parameters
explicitly. Luckily, C# allows us to use the name Tuple, because types can be overloaded
by the number of their type parameters (so Tuple and Tuple<TFirst, TSecond> are
two distinct types).

The body of the method is very simple and its only purpose is to make it possible to
create a tuple by calling a method instead of calling a constructor. This allows the C#
compiler to use type inference as shown at (#1). The full syntax for calling a generic method
includes the type arguments, so using the full syntax we would have to write
Tuple.Create<string, Int>(...). As the types can be inferred automatically we
can omit the type arguments. In the next section, we'll look at writing code that calculates
with tuples and since we've just implemented the tuple type in C# we'll start with the C#
version of the code and then move on to the F# alternative.

** Sincere apologies for the mess of "type arguments", "method arguments" and so forth in
this sentence. Sometimes the terminology defined in specifications just doesn't allow for
elegant but accurate prose.
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3.2.3 Calculating with tuples
In the examples so far we have just created several tuples and printed the values, so let's
perform some calculation now. For example we might want to increment the number of
inhabitants by adding a number of newborns for the last year.

As already discussed, the tuple type is immutable, so we cannot set the properties of the
C# tuple class. In F#, we can read the values using two functions (Fst and snd), but there
are no functions for setting the value, so the situation is similar. This means that our
calculation will have to return a new tuple formed by the original name of the city copied
from the initial tuple and the incremented size of population.

Let's first see how this can be done in C#. The listing 3.9 shows a hew method that we'll
add to the generic Tuple<TFirst, TSecond> class and several lines of C# code that
show how to use this new functionality.

Listing 3.9 Incrementing population of a city (C#)

class Tuple<TFirst, TSecond> {
// ...
public Tuple<TFirst, TSecond> WithSecond(TSecond nsnd) { #1
return Tuple.Create(this.first, nsnd);

3
¥
var pragueO = Tuple.Create("'Prague', 1188000); #A
var praguel = pragueO.WithSecond(pragueO.Second + 13195); #B
PrintCity(praguel); #C

#1 Returns tuple with the second value changed
#A Create city information about Prague

#B Create information with incremented population
#C Print the new information

The WithSecond method (#1) takes a new value of the second element as an
argument and uses the Tuple.Create method to create a new tuple with the first
element copied from the current tuple (Ethis.First) and the second element set to the
new value nsnd.

Now we'd like to do the same thing in F#. Here, we will write a function withSecond,
which will do the same thing as a WithSecond method from our earlier C# example. It will
take a tuple and a new value of the second element and return a new tuple with the first
element copied from the original tuple and the second element set to a given value. The
code for F# is shown in listing 3.10.

Listing 3.10 Incrementing population of a city (F#)

let withSecond tuple nsnd =

let (f, s) = tuple #1
(f, nsnd) #2
let pragueO = (“Prague’™, 1188000) #A
let praguel = withSecond pragueO ((snd prague0) + 13195) #A
printCity praguel #A
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#1 Decompose a tuple into two values: 'f' and 's’
#A Increment population and print the new information

The code first shows an implementation of the function withSecond. We could
implement it simply using the FSt function, which reads a value of the first element in the
tuple, but I wanted to demonstrate one more F# feature that can be used with tuples:
pattern matching. You can see that inside the function, we first decompose the tuple given
as the argument into two separate values (#1) and we call these two values ¥ and S (for
first and second). This is where the pattern matching occurs; on the left-hand side of the
equals sign you can see a language construct called a pattern and on the right-hand side we
have an expression that is matched against the pattern. Pattern matching takes the value of
an expression and decomposes it into a values used inside the pattern.

On the next line (#2) we can use the value F extracted from the tuple using pattern
matching. We reconstruct the tuple using the original value of the first element and the new
value of the second element given as an argument (Nsnd). We will look at more examples
of pattern matching on tuples in the next section. Aside from using pattern matching, the
code doesn't show anything new, but pattern matching is an important topic and F# provides
other ways of using it with tuples, too. Let's take a closer look.

3.2.4 Pattern matching with tuples

In the last example we decomposed a tuple using pattern matching in a let binding. We can
slightly improve the code in listing 3.10. Since we didn't actually use the second element of
the tuple, we only need to assign a name the first one. To do this, we can write an

underscore for the second value in the pattern like this:
let (f, ) = tuple

The underscore is a special pattern that matches any expression and ignores the value
assigned to it. Using pattern matching in let bindings is often very useful, but there are other
places you can use it too. In fact, patterns can occur almost anywhere an expression is
assigned to some value. For example, another place where pattern matching is extremely
useful is when we're specifying the parameters of a function. Instead of parameter names,

we can use patterns. This makes our setSecond function even simpler:
let withSecond (f, _) nsnd = (f, nsnd)

Now we've shortened our declaration from three lines to one. The result doesn't use any
unnecessary values and clearly shows how the data flows in the code. Just from looking at
the code, you can see that the first element of the original tuple is copied (by tracing the use
of symbol F) and that the second function argument is used as a second element of the
returned tuple (by following uses of nsnd). This is the preferred way of working with tuples
in most of the F# functions that we'll write.

One other common use for pattern matching is in an F# match expression, which we
saw earlier in section 2.3.3. We could rewrite our withSecond function to use a match

expression like this:
let withSecond tuple nsnd =
match tuple with
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| (F, ) -> (f, nsnd)

The match construct lets us match the specified expression (tuple) against one or
more patterns starting with the bar symbol. In our example, we have only one pattern and
because any tuple with two elements can be deconstructed into two values containing its
elements, the execution will always follow this single branch. The F# compiler analyzes the
pattern matching to deduce that the argument tuple is a tuple type containing two
elements.

NOTE

Keep in mind that you cannot use pattern matching for example to determine whether a
tuple has two or three elements. This would lead to a compile-time error, because the
pattern has to have the same type as the expression that we're matching against the
pattern and the type of a tuple with three elements (for example iNt * Int * Int)
isn't compatible with a tuple that has two elements (for example int * int). Pattern
matching can be used only for determining run-time properties of values; the number of
elements in a tuple is specified by the type of the tuple, which is checked at compile time.
If you're wondering how to represent some data type that can have several distinct
values then you'll have to wait until chapter 5, where we'll look at unions.

In the previous example we used a pattern that cannot fail, because all tuples of two
elements can be deconstructed into individual elements. This is called a complete pattern in
F#. The match construct is particularly useful when working with patterns that are not
complete and can fail, because we can specify several different patterns (every pattern on a
new line, starting with the bar symbol) and if the first pattern fails, the next one is tried until
a successful pattern is found.

What would be an incomplete pattern for tuples? Well, we could write a pattern that
matches only when the first element (a city name) is some specific value. Let's say for
example there are 100 people in New York that are never counted by any statistical study, so
when setting the second element of a tuple (the population of the city) we want to add 100
when the city is New York. You could of course write this using an I expression, but listing
3.11 shows a more elegant solution using pattern matching:

Listing 3.11 Pattern matching with multiple patterns (F# interactive)

> let setSecond tuple nsnd =
match tuple with
| ("New York'™, ) -> (“New York', nsnd + 100) #1
| (F, ) -> (F, nsnd) #2

val setSecond : string * "a -> int -> string * int
> let prague = (“'Prague™, 123)

setSecond prague 10;;
val it : string * int = ("Prague”, 10) #A
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> let ny = ("New York", 123)
setSecond ny 10;;
val it : string * int = ("New York'™, 110) #B

#1 Pattern that matches only New York

#2 Pattern that matches all other values

#A The expected result for Prague

#B Returned population is incremented by 100

You can see that in this example, the match expression contains two distinct patterns.
The first pattern contains a tuple with a string "New York" as the first element and
underscore as a second (#1). This means that it only matches tuples with a first element set
to "New York" and with any value for the second element. When this pattern is matched, we
return a tuple representing New York, but with a population which is 100 more than the
given argument. The second pattern (#2) is the same as in previous examples and it just
sets the second element of the tuple.

The examples following the function declaration shows the code behaving as expected. If
we try to set a new population of Prague, the new value of population is used, but when we
try to do this for New York, the new value of population is incremented by one hundred.

Tuples are used particularly frequently during the early phase of development, because
they are so simple. In the next section, we'll look at another elementary immutable data
type: a list. We've seen that a tuple represents a known number of elements with diverse
types. Lists work the other way round: a list represents an unknown number of elements of
the same type.

3.3 Lists and recursion

Tuple is a very good example of an immutable functional data type, but there is one more
property of many functional data types that is worth discussing in this chapter and that is
recursion. Let's start with a classic programming joke: What's the dictionary definition of
recursion? "Recursion. See recursion."

Recursion appears in functional programming in different forms. It can be present in the
structure of the type such as lists. The type that represents functional list is either an empty
or it is composed from an element and a list. You can see that the type "“list” that we're
describing is recursively used in its definition. The second form of recursion is probably more
widely know and is used when writing recursive functions. Let’s start by looking at one
example of the second form and then we’ll focus on lists to demonstrate the first form.

3.3.1 Recursive computations

The most common example of a recursive function is probably calculating the factorial of a
number. If you're not already familiar with it, here's a short definition: the factorial of a non-
negative number n is 1 if n is one or zero; for larger n, the result is factorial of n - 1
multiplied by n. This function can be implemented essentially in two ways. In C# you can do
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it using a For loop, which iterates over numbers in the range between 2 and n and

multiplies some temporary variable by the number in each iteration:
int Factorial(int n) {
int res = 1;
for(int 1 = 2; 1 <= n; i++)
res = res * 1i;
return res;

}

This is a correct implementation, but it isn't easy to see that it corresponds to the
mathematical definition of the function. The second way to implement this function is, of
course, to use a recursion and write a method in C# or a function in F# that recursively calls
itself. These two implementations are surprisingly similar, so you can see both of them side-
by-side in listing 3.12.

Listing 3.12 Recursive implementation of factorial in C# and F#

int Factorial(int n) { #1 let rec factorial(n) =
if (n <= 1) #1
return 1; #2 if (n <= 1) then
else 1
return n * Factorial(n-1); #3 #2
} else

n * factorial(n - 1)
#3
#1 Declaration of recursive function or method; In F# we have to explicitly declare that it is recursive
by using the ‘'let rec’ binding instead of ordinary ‘let’
#2 A case which terminates the recursion and returns 1 immediately
#3 A case which performs the recursive call to a ‘factorial’ function or 'Factorial' method

Annotations below the code with bullets on the left as earlier

The C# version of the code is very straightforward. The F# version is also quite clear,
but as noted in the code comments, we have to explicitly state that the function is recursive
using the rec keyword. This specifies that the let binding is recursive, making it possible to
refer to the name of the value (Factorial) within the declaration of the function.

In general, every recursive computation should have two branches - a branch where the
computation performs a recursive call and a branch where the computation terminates. You
can see both of them marked in the previous code listing. Usually, the recursive calculation
performs the recursive call several times until a termination condition occurs (in our case this
is when we're calculating the factorial of 1) and then returns some constant value or
calculates the result using non-recursive code. If the termination condition is incorrect, then
the code can keep looping forever or can eventually crash with a stack overflow exception.

Since recursion is absolutely essential for functional programming, functional languages
have developed several ways for avoiding stack overflows even for very deep recursive calls
and some other optimization mechanisms. This and other advanced topics will be discussed
later in the book in Chapter 10.
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3.3.2 Introducing functional lists

Now that we're a bit more comfortable with the general principle of recursion, we can look at
functional lists in more detail. Earlier I wrote that a list is either empty or composed from an
element and another list. This means that we need a special value to represents an empty
list, and a way of constructing a list by taking an existing list and prepending an element at
the beginning. The first option (an empty list) is sometimes called nil and the second option
produces a cons cell (short for constructed list cell). You can see a sample list constructed
using an empty list and cons cells in Figure 3.1.

6| e—> 2| o> 7| e1—> 3| e—>niD

Figure 3.1 Functional list containing 6, 2, 7 and 3. Rectangle represents cons cell, which contains a value
and a reference to the rest of the list. Last cons cell references a special value representing an empty list.

[Functional_Ch_03_Figure_3.1.vsd]

As you can see in the figure, every cons cell stores a single value from the list (called
head) and a reference to the rest of the list (called tail), which can be either another cons

cell or an empty list (nil). Let's now look at several ways that F# offers for creating lists:
> let Is1 = []
val Isl : "a list = []

> let Is2 = 6::2::7::3::[]

val Is2 : int list = [6; 2; 7; 3]

> let Is3 = [6; 2; 7; 3]

val 1s3 int list = [6; 2; 7; 3]

> let Is4 = [1 .. 5]

val Is4 : int list = [1; 2; 3; 4; 5]

> let Is5 = 0::1s4

val Is5 - int list = [0; 1; 2; 3; 4; 5]

At first, we created an empty list, which is written as [] in F#. If you look at the result,
you can see that F# created a value containing empty list. The type of the list is a bit
unclear, because we don't know yet what is the type of values contained in the list, so F#
infers that the type is a list of "something". This is called a generic value and we'll talk about
it in chapter 5. The second example is much more interesting for now - you can see how lists
are created under the covers: we take an empty list and use an operator for creating a cons
cell "2 I". Unlike many other operators such as "+", the "I " operator is right associative,
which means that it composes values from the right to the left. If you read the expression in
that direction, you can see that we construct a list cell from a value 3 and an empty list, than
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use the result together with a value 7 to construct another cell and so on. After entering the
expression, F# interactive reports that we created a list of type Int list. This means that
the type of the 1S2 value is a list which contains integers. This is again done using generic
types that you may know from C# and we will see how to use them in F# in detail later. In
the next two examples, we use a piece of syntactic sugar F# provides for creating lists. The
first one uses square braces with list elements separated by a semicolon and the second
uses dot-dot to create a list containing a sequence of numbers. Finally, the last example
shows how we can use cons cell to create a list by appending values at the beginning of
another list. You can see that IS5 contains 0 at the beginning and then all elements from
the 1s4 list.

An important fact about functional lists which I've already mentioned but is worth
repeating, is that they are immutable. This means that we can construct a list (as in the
previous example) but we cannot take an existing list and modify it, for example by adding
or removing an element. Functions that need to add new elements or remove existing ones
always return a new list without modifying the original one, because modifying a list is in fact
impossible. We'll see more examples of these functions in chapter 8, but for now, let's look
at processing the elements in an existing list.

When working with lists in functional languages, the typical code to process a list
contains two branches - one branch that performs something when the given list is an empty
list and a second branch which performs an operation when the argument is a cons cell. The
latter branch generally performs a calculation using the head value and recursively processes
the tail of the list. We will see all these common patterns later in this chapter, but first let's
see how we can write code that chooses between these two branches using pattern
matching.

DECOMPOSING LISTS USING PATTERN MATCHING

When talking about pattern matching on tuples in section 3.3.4, we saw two distinct ways for
using it. One method was to write the pattern directly in the let binding, either when
assigning the result of an expression to a value, or in the declaration of function parameters.
The other method was using the match keyword. The important difference between these
two is that using match we can specify multiple patterns with multiple branches. For lists,
we'll need to use the second option, because we need to specify two distinct branches every
time we write list processing code (one for an empty list and one for a list which was created
using cons cell).

The following code demonstrates pattern matching on lists and prints a message with

the value of the first element or "Empty list" when the list is empty:
match 1 with
1 1 -> printfn "Empty list"
| hd::tl -> printfn "List starting with %d" hd

You can see the pattern that matches an empty list on the second line and a pattern
that extracts a head (the value of the first element) and a tail (the list appended after the
head) on the third line. Both of these patterns are written with exactly the same syntax that
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we used earlier for creating the list. An empty list is matched using [] and a cons cell is
deconstructed using I I operator. The second pattern is much more interesting, because it
assigns a value to two new symbols, hd and tl. These will contain a number and the rest of
the list obtained by decomposing the first cons cell. An empty list doesn't carry any value, so
the first pattern doesn't bind a value to any symbol; it just informs us that the original list
was empty.

If you look back to figure 3.1, you can see that the first pattern corresponds to the "nil
ellipse", which doesn't contains any value. The second pattern matches the "cons cell
rectangle" and takes out the contents of its two parts.

As in the example with tuples, the list of patterns is complete, meaning that it can't fail
to choose a branch for any given list. Let's now see what happens if we try using an
incomplete pattern in listing 3.13.

Listing 3.13 An incomplete pattern matching on lists (F# interactive)

> let squareFirst 1 =
match 1 with

| hdz:_ -> hd * hd

Warning FS0025: Incomplete pattern matches on this #1
expression. The value "[]" will not be matched. #1
val squareFirst : int list -> int #A
> squareFirst [4; 5; 6];; #2
val it : int = 16
> squareFirst [] #3
Exception of type "Microsoft.FSharp.Core. #B

MatchFai lureException® was thrown. #B
-

#1 F# detects possible failure

#A Takes list and returns an integer
#2 Success for a non-empty list

#3 Failure for an empty list

#B Exception is thrown on failure

We start by declaring a function called squareFirst, which contains a pattern match
that matches a cons cell and returns square of the first element from the list. However, this
pattern doesn't handle the situation when a list is empty. We can see that the F# compiler is
quite smart and when we write a pattern match that can possibly fail it detects this situation
and even gives us an example when the match will fail (#1). You shouldn't ignore this
warning unless you're absolutely sure that the situation can never occur. Even if the function
doesn't have any reasonable meaning for empty lists, it is better to add a handler for the
remaining case (you can use underscore character as a pattern that matches any value) and
either throw an exception with additional information or just do nothing. (Of course, if the
function's return type is anything other than unit, you'll have to work out a suitable value
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to return if you do nothing. Throwing an exception is generally a better idea if the function
really shouldn't be called with an empty list.)

Even though there was a warning, F# interactive is willing to crunch the function, so we
can try calling it. First, we try a case that should work (#2) and we can see that it behaves
as expected. If we call the function with an empty list as an argument (#3) the match
construct doesn't contain any matching pattern, so it throws an exception. This is a normal
.NET exception and can be caught using €ry construct in F#.

You should have some idea what we can expect from functional lists, so in the next
section we'll turn our attention to C# and we'll use it to explain lists in detail as well as to
write our first list processing code.

3.3.3 Functional lists in C#

To show you how a functional list type works, let's now look how we can implement the
same functionality in C#. There are several ways for representing the fact that list can be
either empty list or a list with a head and a tail. The clear object oriented solution, would be
to write an abstract class FuncList with two derived classes for representing the two
cases - for example EmptyList and ConsList. However, to make the code as simple as
possible, we'll use just a single class, with a property ISEmpty that will tell us whether the
instance contains a value or not. Note that every instance of the FuncList type contains
just a single value, when it is a cons cell or no value at all, when it is an empty list. You can
see the implementation in listing 3.14.

Listing 3.14 Functional list (C#)

public class FuncList<T> {
public FuncList() { #1
ISEmpty = true;

3
public FuncList(T head, FuncList<T> tail) { #2
IsEmpty = false;
Head = head;
Tail = tail;
o i
public bool IsEmpty { get; private set; } #3
public T Head { get; private set; } #A
public FuncList<T> Tail { get; private set; } #A
3
public static class FuncList { #4
public static FuncList<T> Empty<T>() {
return new FuncList<T>();
public static FuncList<T> Cons<T>(T head, FuncList<T> tail) {
return new FuncList<T>(head, tail);
3
¥

#1 Constructor that creates an empty list
#2 Constructor that creates a cons cell
#3 Empty list or a cons cell?
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#A Properties of the cons cell
#4 Utility class for constructing lists

The FuncList<T> class is a generic C# class, so it can store values of any type. It
has a property called ISEmpty (#3), which is set to true when we're creating an empty
list using the parameter-less constructor (#1). The second constructor (#2) takes two
arguments, creates a cons cell and sets 1SEmpty to false. The first argument (head) is
a value that we're storing in the cons cell. The second argument (tail) is a list following
the cons cell that we're creating. The tail has the same type as the list we're creating, which
is written as FUNCLiST<T>. The first constructor corresponds to the F# empty list (written
as [1) and the second one creates cons cell in the same way as the double colon operator
(head: :tail).

As already mentioned, functional lists are immutable, so all properties of the class are
read-only. We're implementing all of them using C# 3.0 automatic property feature, which
generates getter and setter of the property for us, but we're specifying that the setter should
be private, so they cannot be modified from outside. To make the type truly read-only, we
set the values of the properties only in constructors, so once a list cell is created, none of its
properties can change. This demonstrates that immutability is really just a concept that we
can use in different ways and not a language feature. When using automatic properties, we
will lose the checking that the C# compiler can do when we use fields marked using
readonly as a tradeoff for a more convenient syntax.

Just like with our previous tuple example, I've included a non-generic utility class
FuncList (#4) with static methods that simplify creation of generic lists by providing
methods for creating an empty list (Empty) and one for creating a cons cell (COns). The
advantage of using this class is that C# can infer the type arguments for a method call, so
we don't have to specify what type is carried by the type if it is obvious from the context.
Now that we have a C# implementation of the list, we can write some code that uses lists to
perform some computation.

3.3.4 Functional list processing

So far we have discussed what the functional list type looks like and how it can be
implemented in C#. Now it's the time to write code that actually does something with
functional lists. Suppose that we wanted to implement a method SumList in C# (or a
sumL i st function in F#) that sums all the numbers in a list.

SUMMING NUMBERS IN A LIST WITH C#

If you were used to imperative programming in C# and were working with the standard .NET
array or the LISt<T> class from System._Collections.Generic, you'd probably
create a variable called total initialized to zero and write a for loop that iterates over all
the elements adding every element to the total (something like total += list[i]).
Alternatively, you could do this using Foreach loop, which is a syntactic sugar that makes
this a bit easier to write, but the idea is still the same.
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But how can we do this using our functional list, where we can't access elements by
index and which doesn't support fForeach™? To do this, we can use recursion and write a
method with code for the two cases - when the list is empty and when the list is a cons cell.
You can see the code for the C# version of SUMLiStT in listing 3.15.

Listing 3.15 Summing list elements (C#)

int SumList(FuncList<int> numbers) {

return numbers.IsEmpty ? O : #1
numbers.Head + SumList(numbers.Tail); #2

}
var list = FuncList.Cons(1, FuncList.Cons(2, FuncList.Cons(3, #A
FuncList.Cons(4, FuncList.Cons(5, FuncList.Empty<int>()))))): #A
int sum = SumList(list); #B
Console._WriteLine(sum); #B

#1 Sum of empty list is 0
#2 A branch for a cons cell #A Create a list storing 1,2,3,4,5
#B Calculate the sum and prints '15'

The SumL ist method first checks whether the list is empty. If the list is non-empty,
the branch that matches cons cell (#2) is executed. It recursively calls SumLiSt to
calculate the sum of elements in the tail (which is a list) and adds this result to the value
stored in the head. This recursive call is performed until we reach the end of the list and find
an empty list as a tail. For an empty list (#1), the function terminates and returns zero.

Later in the listing, we create a list using the utility methods Cons and Empty from the
non-generic FUNCL ISt class. The creation is a bit cumbersome, but you could make it
simpler by implementing a method to create a functional list from a normal .NET collection,
for example.

SUMMING NUMBERS IN A LIST WITH F#

Now that we know how the code looks in C#, we can try implementing exactly the same
functionality in F#. Let's look at the listing 3.16, which shows an F# function sumList and
a few F# interactive commands for testing it.

> let rec sumList(lIst) =
match Ist with #A
1 [ ->0 #1

" We could of course add support for the foreach statement to our code and it would be
desirable to do so for a real-world FuncList<T> type. However, let's first look at the key
concepts for list processing from functional programming.
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| hd::tl -> hd + sumList(tl) #2
val sumList : int list -> int #3

> let list

=[1..5] #B
val list : int list

> sumList(list) #C
val it : int = 15

#A Pattern matching on the list

#1 Sum of empty list is 0

#2 A branch for a cons cell

#3 Takes list of integers and returns an integer

#B Create list for testing

#C Calculate the sum and print it

If you compare the code with the previous C# implementation you'll find many
similarities. As in the previous case, there are two branches, one for an empty list (#1) and
one for a cons cell (#2), which is implemented using recursion. The notable difference is that
in F# we can use pattern matching for selecting an execution path. Pattern matching also
extracts values from the cons cell, so once the execution enters the second branch, head
and tail values are already available. This adds to the robustness of the code: you can't
use values which haven't been matched by a pattern. It sounds trivial, but it prevents the
code from accidentally trying to access the (non-existent) elements of an empty list. Pattern
matching is a very natural construct in functional languages and there is no corresponding
feature in C#, so we had to use an i T statement to implement the same behavior.

Also, F# type inference was helpful once again: we didn't have to specify the types
explicitly anywhere in the code. As you can see it correctly inferred that the function takes a
list of integers and returns an integer (#3). It used the fact that we're testing whether Ist
value is an empty list or a cons cell to deduce that it is a list. Because one branch returns
zero it knows that the whole function returns an integer and because we're adding elements
of the list together, it deduces that the argument is a list containing integers.

The recursion which we used in this section is very important, but writing everything
using recursion explicitly would be difficult. In the next section we're going to look at a
mechanism that allows us to hide the difficult recursive parts of the code.

3.4 Using functions as values

In the last section, we were talking about immutable lists and we've seen how to write a
function that processes a list recursively. In this chapter, we'll look at one more essential
concept of functional programming and that is treating functions as values. In this section,
we'll see why it is so useful to work with functions this way and what it actually means to
treat a function as a value. More information about functions will follow later in chapter 5.

3.4.1 Processing lists of numbers

Imagine that we wanted to write a method similar to the SumLiSt discussed in the

previous section, but which instead of adding all the numbers together, would multiply them.
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Making this change looks quite easy. We can just copy the SumList method and then

tinker with it a bit. There are in fact only two changes in the modified method:
int MultiplyList(FuncList<int> numbers) {

if (numbers.IsEmpty) return 1; #1

else return numbers.Head * MultiplyList(numbers.Tail); #2

}

The first change is that we're using multiplication instead of addition in the branch that
does the recursive call (#2) and the second change is that the value returned for an empty
list is now one instead of zero (#1). As I mentioned in chapter 2, this solution works, but
copying blocks of code is a bad practice. Instead, we'd like to write a parameterized method
or function that can do both adding and multiplying of the list elements depending on the
parameters. This allows us to hide the difficult recursive part of the list processing routine in
a re-usable function and writing SumList or MultiplyList will become a piece of cake.

This example is similar to one that we discussed in section 2.2.1. The solution is to write
a method or a function that takes two arguments: the initial value and the operation which
should be performed when aggregating the elements. Let's look how we can implement this
idea in C#.

PASSING A FUNCTION AS AN ARGUMENT IN C#

We've seen that in C#, this can be done using delegates and in particular using the Func
delegate. In listing 3.17, the delegate will have two arguments of type INt and will return
an INnt as a result. The code shows how we can implement the aggregation as a recursive
method that takes a delegate as a parameter.

Listing 3.17 Adding and multiplying list elements (C#)

int AggregatelList(FuncList<int> list, int init, Func<int,int,int> op) {
if (list.IsEmpty)

return init; #1
else {
int rest = AggregatelList(list.Tail, init, op); #2
return op(rest, list_Head); #2
3
¥
static int Add(int a, int b) { return a + b; } #A
static int Mul(int a, int b) { return a * b; } #A
var list = FuncList.Cons(l, FuncList.Cons(2, FuncList.Cons(3, #B
FuncList.Cons(4, FuncList.Cons(5, FuncList.Empty<int>()))))): #B
Console.WriteLine(AggregateList(list, 0, Add)); #C
Console.WriteLine(AggregateList(list, 1, Mul)); #C

#1 Return initial value for empty list

#2 Branch for a non-empty list

#A Methods for testing 'AggregateList’

#B Initialize a sample list

#C Summing prints 15 and multiplying 120
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Let's look at the AggregatelList method in a detail first. It takes the input list to
process as the first parameter and the next two parameters of specify what should be done
with the input. The second parameter is the initial value, which is an integer. It is used in the
case when a list is empty (#1) and we just want to return the initial value from the method.

The last parameter is a delegate and is used in the other branch (#2). Here we first
recursively calculate the aggregate result for the rest of the list and then call the Op delegate
to calculate the aggregate of that result and the head of the list. In the examples later, it
would either add or multiply the given parameters. The delegate type that we're using here
is generic Func<T1, T2, TResult> delegate from .NET 3.5, which is further discussed
in chapter 5. Briefly, it allows us to specify what the number and types of the arguments as
well as the return type using .NET generics. This means that when we call  (#2) the
compiler knows we should provide two integers as arguments and it will return an integer as
a result.

Later in the code, we declare two simple methods that are compatible with the delegate
type - one for adding two numbers and one for multiplying them. The rest of the code shows
how to call the AggregateList method to get the same results as those returned by
SumList and MultiplyList in the earlier examples.

Of course, writing the helper methods this way is a bit tedious, because they are not
used anywhere else in the code. In C# 2.0, you can use anonymous methods to make the
code nicer and in C# 3.0 we have even more elegant way for writing this code using lambda
expressions. Lambda expressions and the corresponding feature in F# (called lambda
functions) are used almost everywhere in a real functional code, so we'll discuss them much
more fully in chapter 5. In the next section, we're going to look at the last code example in
this chapter and we'll see how to implement the same behavior in F#.

PASSING A FUNCTION AS AN ARGUMENT IN F#

The function aggregateList in F# will be quite similar to the method that we've already
implemented. The important distinction is that F# supports passing functions as arguments
to other functions naturally, so we don't have to use delegates for this.

Function is a special kind of type in F#. Similarly to tuples, the type of a function is
constructed from other basic types. In case of tuple, the type was specified in code using an
asterisk between the types of the elements (e.g. Int * string). In the case of
functions, the type is specified in terms of the types of arguments and the return type. This
gives type safety in the same way as delegates do in C#. For example a function that takes a
number and adds 1 to it would be of type INt -> int, meaning that it takes integer and
returns an integer. The type of a function that takes two numbers and returns a number
would be of type int -> Int -> Int and this is exactly the type of the first parameter
in our aggregatel ist function. Listing 3.18 shows the F# version of the example.

Listing 3.18 Adding and multiplying list elements (F# interactive)

> let rec aggregateList (f:int -> int -> Int) init list = #1
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match list with

1 0 -> init #2
| hd::tl ->

let rem = aggregatelList T init tl #3

f rem hd #3

val aggregateList : (int -> int -> int) -> int -> int list -> int #4
>letadd ab=a+b #A
let mul ab=a>*hb #A
val add : int -> int -> int #B
val mul : int -> int -> int #B
> aggregatelList add O [ 1 .. 5 ];; #C
val it - int = 15 #C
> aggregateList mul 1 [ 1 .. 5 ];; #C
val it : int = 120 #C

#1 The 'f' argument is a function

#2 Empty list branch

#3 Non-empty list branch

#4 Inferred signature of the function

#A Functions for addition and multiplication

#B Signature is compatible with the 'f' argument
#C Test the function immediately

Just like the C# version of the code, the first two parameters of the function specify how
the elements in the list are aggregated. The second parameter is the initial value and the
first one is an F# function. In this example, we wanted to make the function only work with
integers to make the code more straightforward, so we added a type annotation for the first
parameter (#1). It specifies that the type of the F function is a function taking two integers
and returning an integer.

Next we see the familiar pattern for list processing: one branch for an empty list (#2)
and one for a cons cell (#3). After entering the code for the aggregatelList function in
the F# interactive, it prints a signature of the function (#4). This kind of signature may look
a bit daunting the first time you see it, but you'll soon become familiar with them. In figure
3.2 you can see what each part of the signature means in a graphical form.

Function taking two numbers

and returning a number List to be processed

(int -> int -> int) ->_int, -> int list -> .int
Initial value of type int Returns the aggregated value
Figure 3.2 Type signature of the aggregateList function in detail. The first argument specifies how two

numbers are aggregated, the second is an initial value and the third argument is a list to be processed.
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Finally, we write two simple functions (add and mull) that both have a signature
corresponding to the type of the first parameter of aggregateList and verify that the
function works as expected. I wrote these two functions just to make the sample look exactly
like the previous C# version, but F# allows us to take any binary operator and work with it
as if it were an ordinary function. This means that we don't need to write the add function

and we can instead just use the plus symbol directly:
> aggregatelList (+) O L 1 .. 5 1];;
val it © int = 15

This is often quite helpful and working with operators makes F# code very succinct.
There are also several operators for working with lists that don't have any corresponding
equivalent in C#; we'll see some of them in chapter 8. Note that when using an operator in
place of a function, it has to be enclosed in parentheses, so instead of just writing ""+"", we
had to write ""(+)"".

You may be thinking that aggregateList isn't a particularly useful function and that
there aren't many other uses for it other than adding and multiplying elements in a list, but
the next section shows one surprising example.

BENEFITS OF PARAMETERIZED FUNCTIONS

Let's look at one additional example that will use this function for something very different-
something that at first glance seems very different to adding or multiplying the elements of a
list. Let's see if we can work out the largest value...

> aggregateList max (-1) [ 4; 1; 5; 2; 8; 3 1;;

val it - int = 8

The function that we used as a first argument (maX) is a built-in F# function that
returns the larger from two numbers given as arguments. We used -1 as an initial value,
because we expect that the list contains only positive numbers. The program first compares -
1 with 3 and returns the larger of these two. In the next iteration it takes the current value
(the result of the previous comparison, which is 3), compares it with 8 and returns the
larger. In the next step, 8 is compared with 2, then with 5 and so on. Similarly, you could
easily find the smallest element in a list by using min as a first argument and some large
number (for example INt32 .MaxValue) as the second argument.

In fact, the function can be made even more useful by allowing the caller to use
something other than an integer during the aggregation. You can see that the body of
aggregatelList function doesn't state anywhere that the aggregated value should be
integer and the only place where this is specified is in the type annotation for the F
parameter. It specifies that the function returns an integer, so F# knows that the aggregated
value will be an integer, but we could simply remove the type annotation and make the code
more general. This is a powerful feature of the F# language called generalization and we'll
see how to use it in chapter 6.
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3.5 Summary

In this chapter we've looked at some of the essential functional constructs and techniques in
practice. We started with value and function declarations using let bindings, showing how F#
minimizes the number of concepts that you have to work with-from a strictly mathematical
point of view, an immutable value is just a function with no arguments.

Next, we looked at the simplest immutable data structure used in functional languages:
the tuple. We used it to demonstrate how you can work with immutable data structures-
when you perform a calculation with an immutable data structure, you can't modify the
existing instance, but you can create a new instance by copying the original values and
replacing those that were newly calculated. The next interesting immutable data type that
we encountered was a list. This helped us to explore recursion, both in terms of how to
construct one list from another and in using pattern matching to process a list recursively.

Writing the same recursive processing whenever we want to perform an operation on
lists would be inconvenient, so we looked at a mechanism that allows us to make the code
general and useful for a broader range of similar use cases. The mechanism is called higher
order functions. It means that a function can be simply parameterized by another function
which is given to it as an argument.

Altogether, this chapter was just a sneak preview showing some of the most important
functional techniques in action in their most simplistic form. We've also seen that most of
them can be quite well written in C# too. Now that you have an idea of the "look and feel" of
functional programming, we'll examine the F# language and tools in more detail, so that you
can play with them and try writing some code on your own.

The examples from this chapter we're just a brief overview, so we'll get back to all of the
concepts mentioned here later in the book. Other common functional data types will be
discussed in chapter 5 and in chapter 6 we'll talk mostly about higher order functions that
can be used for working with them. In these two chapters, we'll also see how to make the
code more general by using not only generic types, but also generic functions.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
82

Exploring F# and .NET libraries
by example

Even though we've looked only at the most basic F# language features so far, we already
know enough to write a simple application. In this chapter we won't introduce any new
functional language constructs; instead we'll look at practical aspects of developing .NET
applications in F#. You probably already know how to write a similar application in C#, so all
code in this chapter will be in F#.

As we write our first real-world application in F#, we'll explore several functions from the
F# library and also learn how to access .NET classes. The .NET platform contains many
libraries and all of them can be used from F#. In this chapter we'll look at several examples,
mainly in order to work with files and create the user interface for our application. We'll
come across several other .NET libraries in the subsequent chapters, but after reading this
one you'll be able to use most of the functionality provided by .NET from your F# programs,
because the technique is usually the same.

4.1 Drawing pie charts in F#

The application we'll develop can be used for drawing pie charts. You can see the screenshot
of the finished program in figure 4.1. It loads data from a CSV file and performs some pre-
processing in order to calculate percentage of every item in the data source. Then it plots the
chart and allows the user to save it as a bitmap file. We could of course use some library to
display the chart (and we'll do exactly that in chapter 13), but by implementing the
functionality ourselves, we'll learn quite a lot about F# programming and using .NET libraries
from F# code.

The implementation of the application is divided into three parts. In section 4.2 we
implement loading information from a file and performing basic calculations on the data. In
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
83

this first section, we'll use the tuple and list types that we introduced in the previous chapter.
Next, in section 4.3 we add some simple console-based output, so we can see the results of
the calculations in a human-readable form. Finally, in section 4.4 we add a graphical user
interface, drawing charts of the data. We'll use the standard .NET Windows Forms library to
implement the user interface, and the System.Drawing namespace for drawing.

==

Open Save l

a- Pie Chart

North America

Europe

Austalia/Oc

America

Asia

Antarctica

Figure 4.1 Running F# application for drawing pie charts developed in this chapter. It shows distribution of
the world population between continents.

Even though you're only reading the fourth chapter out of sixteen, the code that we'll
write will be very close to what you'd do if you wanted to develop an application like this
after reading the entire book. You wouldn’t probably use recursion explicitly as often,
because this can be achieved in a simpler way which we’ll see in the next chapters but the
rest would be the same. This is because F# code is often developed in an iterative way: you
start with the simplest possible way to solving the problem and later refine it to fit your
advanced needs. Many people prefer developing F# code like this because it allows you to
get interesting results as soon as possible. Of course, unless you're writing the code just as a
script for a single use, you have to do some refactoring later to make the code well
organized and more readable, but the ability to quickly write a working prototype for a
problem is very useful.

One benefit of iterative development is that you can easily test your application when
writing the first version as we'll see in this chapter. Another benefit is that it is much easier
to correctly design the whole application if you already know how the core parts look in the
prototype. Also, F# and the Visual Studio IDE are perfect tools for this kind of development.
You can simply start writing the code in Visual Studio and execute it using F# interactive to
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see whether it works as you expected and later start wrapping this experimental code in
modules or types.

4.2 Loading and processing data

From the previous description you probably already have a good idea of what kind of data
we'll use in our application. It works with a series of elements containing a title to be
displayed in the chart and a number. It will load the data from a simplified CSV file which
contains a single element per line in the format which you can see in listing 4.1.

Listing 4.1 CSV file with population information

Asia, 44579000

Africa, 30065000

North America, 24256000
South America,17819000
Antarctica, 13209000
Europe, 9938000
Australia/Oceania, 7687000

CSV files like this one are supported by many spreadsheet editors including Excel, so if
you save the file with CSV extension, you can easily edit it. Our application will only support
basic files. We'll assume that values are separated using commas and that there are no
commas or quotation marks in the titles. This would make the file format more complicated,
leading to more complex parsing code.

Let's start off by writing F# functions to read the file in this format and perform basic
calculations on the loaded data. We'll develop the code interactively, which will allow us to
test every single function immediately after writing it.

4.2.1 Writing and testing code in FSI

As a first step, we'll implement a function convertDataRow, which takes a single row
from the CSV file as a string and returns two components from the row in a tuple.
Immediately after implementing the function, we test it by giving it a sample input that
should be correctly parsed (a string "Testing reading,1234"). You can see the code for this
function and the result of our test in listing 4.2.

Listing 4.2 Parsing a row from the CSV file (F# interactive)

> open System;;

> let convertDataRow(str:string) = #1
let cells = List.of_seq(str.Split(*,")) #2
match cells with
| Ibl::num::_ -> #A
let numl = Int32.Parse(num)
(Ibl, numl)
| _ -> failwith "Incorrect data format!" #B
val convertDataRow : string -> string * int #3
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> convertDataRow("'Testing reading,1234");; #4
val it : string * int = ("Testing reading", 1234)

#1 Type annotation specifies the type of the parameter

#2 Split the string into a list

#A It should have two or more cells

#B Otherwise report an error

#3 Inferred signature of the function

#5 Test the function immediately

After starting the F# interactive, we first import functionality from the .NET System
namespace. We need to open the namespace because the code uses the .NET functions
Int32.Parse and String.Split. These have to be imported explicitly, whereas the
functions from the core F# libraries, such as List.of_seq are available implicitly.

The function convertDataRow takes a string as an argument and splits it into a list
of values using comma as a separator. We're using standard the .NET Spl It method to do
this (#3). The F# compiler needs to know that Str is a string before we can use this
method and in this case, type inference doesn't have any way to infer this, so we're using
type annotation (#2) to explicitly state the type of Str.

The method is declared using the C# params keyword and takes a variable number of
characters as arguments. We specify only a single separator and that's the comma character.
The result of this method is an array of strings, but we want to work with lists, so we convert
the result to list using the OF_seq function from the F# LISt module. We'll talk about
arrays and other collection types later in chapters 10 and 12.

Once we have the list, we use the match construct to test whether it is in correct
format. If it contains two or more values it will match the first case (Ibl::num:: ). The
title will be assigned to a value Ibl, the numeric value to Num and the remaining columns
(if any) will be ignored. In this branch we use Int32.Parse to convert a string to an
integer and return a tuple containing the title and the value. The second branch throws a
standard .NET exception.

If you look at the signature (#4), you can see that the function takes a string and
returns a tuple containing a string as the first value and an integer as the second value. This
is exactly what we expected - the title is returned as a string and the numeric value from the
second column is converted to an integer. The next line demonstrates how easy it is to test
the function using F# interactive (#5). The result of our sample call is a tuple containing
"Testing reading" as a title and 1234 as a numeric value.

Working with .NET strings in F#

When working with strings in F#, you'll usually use the normal .NET methods. Let's see
how we can use them from F#, starting with a few selected static methods available in
the String class. We can use these as if they were ordinary F# functions (using the
Stri Ng prefix). The arguments to these functions should be specified in parentheses as
a comma separated tuple. In the type signatures, tuples are written using asterisks:

9) String.Concat (overloaded) Accepts variable number of arguments of type string or
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object and returns a string obtained by concatenating all of them:
> String.Concat(''l + 3", 3);;
val it : string = "1 + 33"

10) String.Join (Ssep:string * strs:string[] -> string) Concatenates
an array of strings supplied as the Strs parameter using a separator specified by
sep; we can use the [ --- |] syntax to construct an array literal:
> String.Join(", ', [ "1"; "2"; 3" |D::
val it : string = "1, 2, 3"

Strings in .NET are also objects and they also have instance members too. These can be

used from F# using the typical dot-notation. We've already seen this in the previous

example when splitting a string using str.SpI i t. The following examples assume that

we have a string value Str containing "*‘Hello World!":

11) str.Length Property that returns the length of the string; properties are accessed in
F# a same way as in C#, so the call reading the property is not followed by braces:
> str.Length;;
val it - int = 12

12) str.[int index] Indexing into a string, which can be written using
square braces; returns the character at the location specified by index idx. Note
that you still need the dot before the opening brace,
unlike in C#:
> str._[str.Length - 1];;
val it : char = *I1*

We can also use various functions that are available in the FSharp.PowerPack.dll library.

These are partly available for compatibility with OCaml, but some of them are still useful,

because they are designed with F# in mind. However, most of the string processing code

in F# can be implemented using .NET methods.

In the previous listing we implemented the convertDataRow function, which takes a
string containing a line from the CSV file and returns a tuple containing a label and a numeric
value. As a next step we'll implement a function that takes a list of strings and converts each
string to a tuple using convertDataRow. Listing 4.3 shows the function-and a test
immediately afterwards, of course, parsing a sample list of strings.

Listing 4.3 Parsing multiple lines from the input file

> let rec processLines(lines) = #1
match lines with
1 O->10 #2
| str::tail -> #3
let row = convertDataRow(str) #A
let rest = processLines(tail) #B
row :: rest
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val processLines : string list -> (string * int) list #4

> let tst = processLines ["Testl,123"; "Test2,456"];; #5
val tst : (string * int) list =
[("Testl™, 123); ("Test2", 456)]
#1 Recursive function
#2 A branch for an empty list
#3 A branch for a cons cell
#A Process the head of the list
#B Recursively process the tail
#4 Inferred type signature
#5 Test the processLines function

This function is in many ways similar to functions for processing lists that we
implemented in the previous chapter. As you can see, the function is declared using let
rec keyword (#1), so it is recursive. It takes a list of strings as an argument (I ines) and
uses pattern matching to test whether the list is an empty list or a cons cell. For an empty
list, it directly returns an empty list of tuples (#2). If the pattern matching executes the
branch for a cons cell (#3), it assigns a value of the first element from the list to value Str
and list containing the remaining elements to value tail. The code for this branch first
processes a single row using the convertDataRow function from previous listing and then
recursively processes the rest of the list. Finally the code constructs a new cons cell: it
contains the processed row as a head and the recursively processed remainder of the list as
a tail. This means that the function executes convertDataRow for each string in the list
and collects the results into a new list.

To understand better what the processLines function does, we can also look at the
type signature printed by F# interactive (#4). It says that the function takes a list of strings
(list string type) as an argument and returns a list containing tuples of type string
* Int. This is exactly the type returned by the function that parses a row, so it seems that
the function does the right thing! Of course, we verify this by calling it with a sample list as
an argument (#5). You can see the result of the call printed by F# interactive - it is a list
containing two tuples with a string and a number, so the function works well.

Now we have a function for converting a list of strings to a data structure that we'll use
in our chart drawing application. Before writing the code to read data from a file and print
labels together with the proportion of the chart occupied by each item (as a percentage), we
need to implement one more utility function. The function countSum in listing 4.4 sums the
numeric values of all the items in the list. Later, we'll need this sum when calculating
percentage of each item.

Listing 4.4 Calculating a sum of numeric values in the list (F# interactive)

> let rec countSum(rows) =
match rows with

1 0->0 #A
| (, n)::tail -> #1
let sumRest = countSum(tail) #B

n + sumRest
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val countSum : ("a * int) list -> int #2
> let sum = countSum tst;; #C
val sum : int = 579
> 100.0 / float(sum) * 123.0;; #3

val it : float = 21.24352332
#A For an empty list return zero

#1 Pattern to extract the current value
#B Recursively sum elements of the tail
#2 Inferred type signature

#C Test the function

#3 Calculating percentage

This function exhibits the recurring pattern for working with lists yet again. Of course,
writing code that follows the same pattern over and over may suggest that we're doing
something wrong (as well as being boring-repetition is rarely fun). Ideally, we should only
write the part that makes each version of the code unique without repeating ourselves. This
objection is valid for the previous example and we can write it in a more elegant way. We'll
learn how to do this in the upcoming chapters and you can find the improved version (as
you'd write it after reading the whole book) on the book's web site. Nevertheless, you'll still
need both recursion and pattern matching in many functional programs, so it's useful to look
at one more example and become familiar with these concepts.

For an empty list, the function countSum simply returns 0. For a cons cell, it
recursively sums values from the tail (the original list minus the first element) and adds the
result to a value from the head (the first item from the list). The pattern matching in this
code demonstrates one interesting pattern that is worth discussing. In the second branch
(#1), we need to decompose the cons cell, so we match the list against head: :tail
pattern. However, the code is more complicated than that, because at the same time, it also
matches the head against pattern for decomposing tuples, which is written as (First,
second). This is because the list contains tuples storing title as the first argument and
numeric value as the second argument. In our example, we want to read the numeric value
and ignore the title, so we can use the underscore pattern to ignore the first member of the
tuple. If we compose all these patterns into a single one, we get (_, n)::tail, whichis
what we used in the code.

If we look at the function signature printed by the F# interactive (#2), we can see that
the function takes a list of tuples as an input and returns an integer. The type of the input
tuple is "a * 1Int, which means that the function is generic and works on lists containing
any tuple whose second element is an integer. The first type is not relevant, because the
value is ignored in the pattern matching. The F# compiler makes the code generic
automatically in situations like this using a feature called automatic generalization. We'll
learn more about writing generic functions and automatic generalization in chapters 5 and 6.

The last command from listing 4.3 prepared the way for the test in listing 4.4-why enter
test data more than once? Having calculated the sum to test the function, we finally calculate
the percentage occupied by the record with a value 123. Because we want to get the precise
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result (21.24%), we convert the obtained integer to a floating point number using a function
called Float.

Converting and parsing numbers

F# is a .NET language, so it works with the standard set of humeric types available within

the
see

13)

14)

15)

16)

17)

platform. The following list shows the most useful types that we'll work with. You can
the name of the .NET class in bold and the name used in F# in braces:

INnt32, UInt32 (int, uint32) Standard 32-bit integer types; literals are written in F#
as 42 or 42u (unsigned); there are also 16 and 64bit variants written as 42Ss and
42us for 16bit and 1L or 1UL for 64bit

Double, Single (float/float32) Represent a double precision and a single precision
floating point number; the literals are written as 3.14 and 3.14F respectively.
Note the difference between F# and C# here - double in C# is Float in F#;
Ffloat in c# is Float32 in F#.

SByte, Byte (sbyte/byte) Signed and unsigned 8-bit integers; the literals are
written as 1y (signed) and 1uy (unsigned)

Decimal (Decimal) Floating decimal point type, appropriate for financial calculations
requiring large numbers of significant integral and fractional digits. Literals are
written as 1M.

Biglnteger, Math.BigNum (bigint/bignum) Types for manipulating with numbers
of an arbitrary size; literals are written as 11 (for an integer) and 1N (for a
rational). The BigInt type is new in .NET 4.0, the BigNum type is available in the F#
library.

Conversion from a string to a standard .NET numeric type can be done using the Parse
method. This method is available in a .NET class corresponding to the numeric type that
can be found in a System namespace. For example, to convert a string to an integer
you can write INt32.Parse("'42"). This method throws an exception on failure, so
there is also a second method called TryParse. Using this method, we can easily test
whether the conversion succeeded or not as you can see in the following example:
let (succ, num) = Int32.TryParse(str)
if succ then

Console.Write(''Succeeded: {0}, num)

else
Console.Write("'Failed™)

Unlike C#, the F# compiler doesn't insert automatic conversions between distinct numeric
types when precision cannot be lost. F# also doesn't use a type-cast syntax for explicit
conversions, so we have to write all conversions as function calls. The F# library contains
a set of conversion functions that typically have a same name as the F# name of the
target type. The following list shows a few of the most useful conversion functions:
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18) int - Converts any numeric value to an integer - the function is polymorphic, which
means that it works on different argument types; we can for example write (int
3.14) for converting float value to an integer or (Int 42uy) for converting a
byte value

19) float, float32 - Convert a numeric value to a double-precision or a single-precision
floating point number; it is sometimes confusing that Float corresponds to .NET
Double type and Float32 to .NET Single type

This is by no means a comprehensive reference for working with numbers in F# and .NET.
It should contain information about the most commonly used numeric types and
functions. For more information you can refer to the standard .NET reference or the F#
online reference [F# Website].

In listing 4.4 we ended with an equation that calculates the percentage of one item in
our test data set. This is another example of iterative development in F#, because we'll need
exactly this equation in the next section. We tried writing the difficult part of the computation
to make sure we could do it in isolation: now we can use it in the next section. We'll start by
writing code to read the data from a file and then use this equation as a basis for code to
print the data set to the console.

4.3 Creating a console application

Writing a simple console-based output for our application is a good start, because we can do
it relatively easily and we'll see the results quickly. In this section, we'll use several
techniques that will be important for the later graphical version as well. Even if you don't
need console-based output for your program, you can still start with it and later adapt it into
a more advanced, graphical version as we'll do in this chapter.

4.3.1 Working with input and output

We have already finished most of the program in previous section by writing common
functionality shared by both the console and graphical versions. We have a function
processLines that takes a list of strings loaded from the CSV file and returns a list of
parsed tuples and a function countSum, which sums the numerical values from the data
set. In the last listing, we also tried to write the equation for calculating the percentage, so
the only remaining tasks are reading data from a file and printing output to a console
window. You can see how to put everything together in the listing 4.5.

Listing 4.5 Putting the console-based version together (F# interactive)

> open System.10;;

> let lines = List.of seq(File.ReadAllLines(@"C:\ChO3\data.csv'));; #1
val lines : string list

> let data = processLines(lines);; #A
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val data : (string * int) list =
[("Asia’™, 44579000); (“'Africa"™, 30065000); ('North America', 24256000);
(*'South America'™, 17819000); (“‘Antarctica’™, 13209000);
(""Europe', 9938000); (“'Australia/Oceania', 7687000)]

> let sum = float(countSum(data));; #B
val sum : float = 147553000.0
> for (Ibl, num) in data do #3
let perc = int((float(num)) / sum * 100.0) #C
Console.WriteLine("{0,-18} - {1,8} ({2}%)", #C
I1bl, num, perc) #C
Asia — 44579000 (30%)

Africa 30065000 (20%)
North America - 24256000 (16%)
South America 17819000 (12%)

Antarctica - 13209000 (8%)
Europe - 9938000 (6%)
Australia/Oceania - 7687000 (5%)

#1 Read the content as a list of lines
#A Convert lines to a list of tuples

#B Sum the numeric values

#3 Iterate over all elements

#C Calculate the percentage and print it

The listing starts by opening the System. 10 namespace, which contains .NET classes
for working with file system. Next, we use the class File from this namespace and its
method ReadAl ILines (#1), which provides a very simple way for reading text content
from a file, returning an array of strings. Again we use the OF_se( function to convert the
array to a list of strings. The next two steps are fairly easy, because they just use the two
functions we implemented and tested in previous sections of this chapter-we process the
lines and sum the resulting values.

Let's now look at the last piece of code (#3). It uses a FoOr loop to iterate over all
elements in the parsed data set. This is similar to the foreach statement in C#. The
expression between keywords FOr and in isn't just a variable though, it's a pattern. As you
can see, pattern matching is more common in F# than you might expect! This particular
pattern decomposes a tuple into a title (the value called Ibl) and the numeric value (called
num). In the body of the loop, we first calculate the percentage using the equation that we
tested in listing 4.4 and then output the result wusing the familiar .NET
Console.WriteLine method

Formatting strings in F# and .NET

String formatting is an example of a problem that can be solved in two ways in F#. The
first option is to use functionality included in the F# libraries. This is compatible with F#
predecessors (the OCaml language), but it's also designed to work extremely well with
F#. The other way is to use functionality available in .NET Framework, which is
sometimes richer then the corresponding F# functions. The printfn function, which
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we've used in earlier examples, represents the first group and Console .WriteLine
from the last listing is a standard .NET method.

When formatting strings in .NET we need to specify a composite format string as the first
argument. This contains placeholders which are filled with the values specified by the
remaining arguments. The placeholders contain index of the argument and optionally
specify alignment and format. Two of the most frequently used formatting methods are
Console.WritelLine for printing to console and String.Format, which returns
the formatted string:

> let s = String.Format(""Hello {0}! Today is: {1:D}", name, date);
val s : string = "Hello Tomas! Today is: Sunday, 15 March 2009"

The format string is specified after the colon. For example {0:D} for date formatted
using the long date format, {0:e} for scientific floating point or {0:X} for
hexadecimal integer). The alignment is specified after the comma and it is one of the
cases where .NET formatting is used from F#:

> Console.WriteLine("'Number with spaces: {0,10}!", 42);;

Number with spaces: 421
> Console.WriteLine(*'Number with spaces: {0,-10}!", 42);;
Number with spaces: 42 1

Aside from the specification of alignment and padding, the .NET libraries are frequently
used from F# when formatting standard .NET data types such as the DateTime type or
the DateTimeOffset, which represents the time relatively to the UTC time zone. The
following example briefly recapitulates some of the useful formatting strings:

> let date = DateTimeOffset.Now;;

val date : DateTimeOffset = 03/15/2009 16:37:53 +00:00

> String.Format("'{0:D}", date);;

val it : string = "Sunday, 15 March 2009"

> String.Format(*'{0:T}", date);;

val it : string = "16:36:09"

> String.Format("'{0:yyyy-MM-dd}", date);;

val it : string = "2009-03-15"

The F#-specific functions for formatting strings are treated specially by the compiler,
which has the benefit that it can check that we're working correctly with types. Just like in
.NET formatting, we specify the format as a first argument, but the placeholders in the
format specify just the type of the argument. There is no index, so placeholders have to
be in the same order as the arguments. In F#, you'll often work with printf and
printfn that output the string to the console (Printfn adds a line break) and
sprintf¥, which returns a formatted string:

printfn "Hello %s! Today is: %A"™ name date
let s = sprintf "Hello %s! Today is: %A"™ name date

The following list shows the most common types of placeholders:
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20) %s - the argument is of type String

21) %d - any signed or unsigned integer type (e.g. byte, int, ulong, ...)
22) %f - floating point number of type Float or Float32

23) %A - outputs value of any type by calling the .NET TOString method

Choosing between the .NET and F# approach is sometimes difficult. In general it is
usually better to use the F# function, because it has been designed to work well with F#.
If you need some functionality that isn't available or is hard to achieve using F#
functions, you can switch to .NET formatting methods, because both can be easily used
from F#.

Instead of running everything from F# interactive, we could turn the code from the
previous listing into a standard console application. If you we're writing the code in Visual
Studio and executing it in F# interactive by hitting Alt+Enter, you already have the
complete source code for the application. The only change that we can do to make it more
useful is to read the file name from the command line. In F#, we can read command line
arguments using the standard .NET Environment.GetCommandLineArgs method.
The first element is the name of the running executable, so to read the first argument, we
can write args.-[1].

In this section, we added a simple console-based output for our data processing
application. Now, it is the time to implement the graphical user interface using the Windows
Forms library and finally to draw the pie chart using classes from the System-DraWing
namespace. Thanks to our earlier experiments and the use of F# interactive during the
development, we already know that a significant part of our code works correctly! If we were
to write the whole application from a scratch, we would quite possibly already have several
minor, but hard to find bugs in the code. Of course, in later phase of the development
process, we could turn these interactive experiments into unit tests. We’ll talk about this
topic briefly in chapter 11.

4.4 Creating a Windows Forms application

Windows Forms is a standard library for developing GUI applications for Windows and is
nicely integrated with functionality from the System.Drawing namespace. This allows us,
among other things, to draw graphics and display them on the screen. The .NET ecosystem
is quite rich, so we could use other technologies as well. Windows Presentation Foundation
(WPF) which is part of .NET 3.0 can be used for creating more visually attractive user
interfaces that use animations, rich graphics or even 3D visualizations.

4.4.1 Creating the user interface

For this chapter we're using Windows Forms, which is in many ways simpler, but using other

technologies from F# shouldn't be a problem for you. The user interface in Windows Forms is

constructed using components (like Form, Button or PictureBox) so we're going to

start by writing a code that builds the user interface controls. This task can be simplified by
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using a graphical designer, but our application is quite simple, so we'll write the code by
hand. In some user interface frameworks including WPF, the structure of controls can be
described in an XML-based file, but in Windows Forms, we're just going to construct the
appropriate classes and configure them by specifying their properties.

Before we can start, we need to configure the project in Visual Studio. By default, the
F# project doesn't contain references to the required .NET assemblies, so we need to add
references to System._Windows.Forms and System._Drawing. This can be done
using "Add Reference" option in the Solution Explorer. Also, we don't want to display the
console window when the application starts. You can go to project properties and select
"Windows application" option in the "Output type" drop-down list. After configuring the
project, we can write the first part of the application as shown in listing 4.6.

Listing 4.6 Building the user interface (F#)

open System
open System.Drawing
open System.Windows.Forms

let main = new Form(Width = 620, Height = 450, Text = "Pie Chart™) #1

let menu = new ToolStrip() #A
let btnOpen = new ToolStripButton(*'Open'™) #B
let btnSave = new ToolStripButton(*'Save", Enabled = false) #B
menu. I tems.Add(btnOpen) #B
menu. I tems . Add(btnSave) #B
let img =
new PictureBox #C
(BackColor = Color.White, Dock = DockStyle.Fill, #C
SizeMode = PictureBoxSizeMode.CenterlImage) #C
main.Controls.Add(menu) #D
main.Controls.Add(img) #D
// TODO: Drawing of the chart & user interface interactions #2
[<STAThread>] #3
do
Application.Run(main) #F

#1 Create the main application form

#A Construct the application menu

#B Add two buttons to the menu

#C Construct control for displaying pie chart
#D Add controls to the main form

#3 Needed for all WinForms applications

#F Start application with a main form

#B, #C, #D inline annotations with vertical lines (if possible), #2
cueball without inline text
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The listing starts by opening .NET namespaces that contain classes used in our program.
Next, we start creating the controls that represent the user interface. We start with
constructing the main window (also called form) (#1). We're using an F# syntax that allows
us to specify properties of the object directly during the initialization. This makes the code
shorter, but also hides side-effects in the code. Internally, the code first creates the object
using a constructor and then sets the properties of the object specified using this syntax, but
we can view it as single operation that creates the object. When creating the form, we're
using parameterless constructor, but it is of course possible to specify arguments to the
constructor too. You can see this later in the code when creating btnSave, whose
constructor takes a string as an argument. A similar syntax for creating objects is now
available in C# 3.0 as well and has an interesting history on the .NET platform.

The listing continues by constructing the menu and PictureBox control, which we'll
use for showing the pie chart. We're not using F# interactive this time, so there is a
placeholder in the listing (#2) marking the spot where we'll add code for drawing the charts
and for connecting the drawing functionality to the user interface.

The final part of listing 4.6 is a standard block of code for running Windows Forms
applications (#3). It starts with a specification of threading model for COM technology, which
is internally used by Windows Forms. This is specified using a standard .NET attribute
(STAThreadAttribute) so you can find more information about it in the .NET reference.
In C#, we would place this attribute before the Main method, but in F# the source can
contain code to be executed in any place. Since we need to apply this attribute, we're using
a do block, which groups together the code to be executed when the application starts.

Constructing classes in F#, C# 3.0, and Cw

We already mentioned that some GUI frameworks use XML to specify how the controls
should be constructed. This is a common approach, because constructing objects and
setting their properties is very similar to constructing an XML node and setting its
attributes. This similarity was a motivation for researchers working on a language Cw
[Meijer et. al, 2003] in Microsoft Research in 2003, which later motivated many features
that are now present in C# 3.0. In Cw, we could write a code to construct
ToolStripButton control like this:
ToolStripButton btn = <ToolStripButton>

<Text>Save</Text>

<Enabled>True</Enabled>

<Image>{savelco}</Image>
</ToolStripButton>

In Cw, the XML syntax was integrated directly in the language. The elements nested in
the ToolStripButton node specify properties of the object and the syntax using
curly braces allows us to embed usual non-XML expressions in the XML-like code. The
ease of constructing objects in this way motivated C# 3.0 feature called object
initializers:
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var btn = new ToolStripButton(''Save'){ Enabled = false, Image = savelco };

It no longer uses XML based syntax, but the general idea to construct the object and
specify its properties is essentially the same. Moreover, we can also specify arguments of
the constructor using this syntax, because the properties are specified separately in curly
braces. In listing 4.6 we've seen that the same feature is available in F# as well:

let btn = new ToolStripButton(''Save', Enabled = false, Image = savelco)

The only difference from C# 3.0 is that in F# we specify properties directly in the
constructor call. The arguments of the constructor are followed by a set of key-value pair
specifying the properties of the object.

Another way to parameterize construction of a class, but also any ordinary method call, is
to use named arguments. The key difference is that names of the parameters are part of
the constructor or method declaration. Named parameters can also be used to initialize
immutable classes, because they don’t rely on setting a property after the class is
created. This feature is available in F# and you can find more information in the F#
documentation. In C#, named arguments are being introduced in version 4.0 and the
syntax is similar to specification of properties in F#. However, it is important to keep in
mind that the meaning is quite different.

So far, we've implemented a skeleton of the application, but it doesn’t actually do
anything yet-at least, it doesn't do anything with our data. In the next section, we're going
to fill in the missing part of the code to draw the chart and display it in the existing
PictureBox called img.

4.4.2 Drawing Graphics

The application will draw the pie chart in a two steps. In the first step, it will draw the filled
pie and in the second step it will add the text labels. This way we can be sure that the labels
are never covered by the pie.

A large part of the code that performs the drawing can be shared by both of the steps.
For each step, we need to iterate over all items in the list to calculate the angle occupied by
the segment of the pie chart. The functional solution to this problem is to write a function
that performs the shared operations and takes a drawing function as an argument. The code
calls this function twice. The drawing function in the first step fills segments of the pie chart
and the one in the second step draws the text label.
CREATING RANDOM COLOR BRUSHES
Let's start by drawing the pie. We want to fill specified segments of the pie chart using
random colors, so first we'll write a simple utility function that creates a randomly colored
brush that we can use for filling the region, as shown in listing 4.7.

Listing 4.7 Creating brush with random color (F#)

let rnd = new Random() #1
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let randomBrush() = #2
let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256) #A
new SolidBrush(Color.FromArgb(r,g,b)) #B

#1 Initialize random number generator

#2 Returns a brush with random color

#A Generate R,G,B components of a color
#B Return a solid brush

The code declares two top-level values. The first one is an instance of a .NET class
Random, which is used for generating random numbers (#1). The second top-level value is
a function randomBrush (#2). It has a unit type as a parameter, which is an F# way of
saying that it doesn't take any meaningful arguments. The only possible unit value is (), so
when calling the function later in the code, we're actually giving it unit as an argument, even
though it looks like a function call with no arguments at all. The randomBrush function
uses the rnd value and generates System.Drawing object, which can be used for filling
of specified regions. It has side-effects and as you already know, we should be careful when
using side-effects in functional programs.

Hiding the side-effects

The function randomBrush is an example of a function with side-effects. This means
that the function may return a different result every time it is called, because it relies on
some changing value that other the function arguments. In this example, the changing
value is the value rnd, which represents a random number generator and changes its
internal state after each call to the NeXt method. The previous code listing declares
rnd as a global value despite the fact that it is used only in function randomBrush.
Of course this is a hint that we should declare it just locally to minimize the number of
global values. We could try rewriting the code as follows:

let randomBrush() =

let rnd = new Random()

let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256)
new SolidBrush(Color.FromArgb(r,g,b))

But this code doesn't work! The problem is that we're creating a new Random object
every time the function is called and the change of the internal state is not preserved.
When created, Random initializes the internal state using the current time, but since the
drawing is performed very quickly the "current time" doesn't change enough and we end
up with the whole chart being drawn in the same color.

Of course, there is a way to write the code without declaring rnd as a global value, but
which allows us to keep the mutable state represented by it between the function calls.
To write this, we need two concepts that will be discussed in Chapter 5 - a closure and a
lambda function. You can find this improvement in a more evolved version of the
application available online.

Now that we know how to create brushes for filling the chart, we can finally take a look
at the first of the drawing functions.
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DRAWING THE PIE CHART SEGMENTS

Listing 4.9 implements a function called drawP ieSegment. It fills the specified segment of
the chart using a random color. This function will be used from a function that performs the
drawing in two phases later in the application. The processing function will call it for every
segment and it will get all the information it needs as arguments.

Listing 4.8 Drawing a segment of the pie chart (F#)

let drawPieSegment(gr:Graphics, Ibl, startAngle, angle) = #A
let br = randomBrush()
gr._FillPie(br, 170, 70, 260, 260, startAngle, angle)
br.Dispose() #B

#A Fill the segment using random color

#B Free resources used by the brush

The function parameters are written as one big tuple containing 4 elements, because
this helps to make the code more readable. The first argument of the function is written with
a type annotation specifying that its type is Graphics. This is a System.Drawing class
which contains functionality for drawing. We use its Fi l IPie method within the function,
but that's all that the compiler can tell about the gr value. It can't infer the type from just
that information, which is why we need the type annotation. The next three tuple elements
specify the title text (which isn't used anywhere in the code, but will be important for
drawing labels), the starting angle of the segment and the total angle occupied by the
segment (in degrees). Note that we also dispose the brush once the drawing is finished. F#
has a nicer way to do this and we'll talk about it in chapter 9.

Choosing which syntax to use when writing functions

We've seen two ways for writing functions with multiple arguments so far. We can write
the function arguments either as a comma separated list in parentheses or as a list of
values separated just by spaces. Note that the first style isn't really special in any way:

let add(a, b) = a + b

This is actually just a function that takes a tuple as an argument. The expression (a,
b) is the usual pattern, which we used for deconstructing tuples in chapter 3. The
question is which of these two options is better. Unfortunately there isn't an authoritative
answer and this is a personal choice. The only important thing is to use the choice
consistently.

In this book, we'll usually write function arguments using tuples, especially when writing
some more complicated utility functions that work with .NET libraries. This will keep the
code consistent with the syntax you use when calling .NET methods. On the other hand,
we'll use spaces when writing simple utility functions that deal primarily with F# values.
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We'll also write parentheses when calling or declaring a function that takes a single
argument, so for example we'll write sin(x) even though parentheses are optional and
we could write SEN X. This decision follows the way functions are usually written in
mathematics and also when calling .NET methods in C#. We'll get back to this topic
briefly in chapters 5 and 6, when we discuss functions in more detail and also look at
implementing and using higher order functions.

The drawPieSegment function from the previous listing is one of the two drawing
functions that we'll use as an argument to the function drawStep, which iterates over all
the segments of the pie chart and draws them. Before looking at the code for drawStep,
let's briefly look at its type. Even though we don’t need to write the types in the code, it is
useful to see what the types of values used in the code are.

DRAWING USING FUNCTIONS
The first argument to this function is one of the two drawing functions, so we'll use a hame
Drawi ngFunc for the type of drawing functions for now and define what it exactly is later.

Before discussing the remaining arguments, let's look at the signature of the function:
drawStep : (DrawingFunc * Graphics *
float * (string * int) list * int) -> unit

We're again using the tuple syntax to specify the arguments, so the function takes a
single big tuple. The second argument is the Graphics object for drawing which will be
passed to the drawing function. The next two arguments specify the data set used for the
drawing - a Float value is the sum of all the numeric values, so we can calculate the angle
for each segment and a value of type (String * int) list is our familiar data set
from the console version of the application. It stores the labels and values for each item to
be plotted.

Let’s now look at the DrawingFunc type. It should be same as the signature of the
drawPieSegment function from the previous listing. The second drawing function
(drawLabel), which we’ll see shortly has exactly the same signature. We can look at the
signatures and declare the DrawingFunc type to be exactly the same type as the types of
these two functions:

drawPieSegment : (Graphics * string * int * int) -> unit

drawLabel : (Graphics * string * int * int) -> unit

type DrawingFunc = (Graphics * string * int * Int) -> unit

As I mentioned earlier, we don't need to write these types in the code, but it will help us
understand what exactly the code does. The most important thing that we already know is
that the drawStep function takes a drawing function as a first argument and we know what
arguments should be given to this function, because this is specified by its type
(DrawingFunc). The listing 4.9 shows the code of the drawStep function.

Listing 4.9 Drawing items using specified drawing function (F#)

let drawStep(drawingFunc, gr:Graphics, sum, data) =
let rec drawStepUtil(data, angleSoFar) = #1
match data with
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1 O0->0 #2

| [1bl, num] -> #3

let angle = 360 - angleSoFar #A

drawingFunc(gr, Ibl, angleSoFar, angle) #B

| (dbl, num)::tail -> #4
let angle = int((float(num)) / sum * 360.0)

drawingFunc(gr, Ibl, angleSoFar, angle) #C

drawStepUtil(tail, angleSoFar + angle) #D

drawStepUtil(data, 0) #5

#1 Nested recursive function that processes the data
#2 Matches an empty list

#3 Matches a list with a single element

#A Calculate the angle to add up to 360

#B Draw the segment

#4 Matches a list with non-empty tail

#C Draw the segment

#D Recursively draw the rest

#5 Run the local utility function

If #B+#C could be a single connected arrow it would be perfect
(annotation is the same for these two)

To make the code more readable, we implement the function that does the actual work
as a nested function (#1). It iterates over all items that should be drawn on the chart. The
items are stored in a standard F# list, so the code is quite like the familiar list processing
pattern. There is however one notable difference, because the list is matched against three
patterns instead of the usual two cases matching an empty list and a cons cell.

The first branch in the pattern matching (#2) matches an empty list and doesn't do
anything. As we've already seen, "doing nothing" is in F# expressed as a unit value, so the
code just returns a Unit value, written as (). This is because F# treats every construct as
an expression and expressions always have to return a value. If the branch for the empty list
were empty, it wouldn't be a valid expression.

The second branch (#3) is what makes the list processing code unusual. As you can see,
the pattern used in this branch is [Ibl, num]. This is a nested pattern composed from a
pattern that matches a list containing a single item [it] and a pattern that matches the
item with a tuple containing two elements: (Ibl, num). The syntax we're using is a
shorthand for [(Ibl, num)], but it means exactly the same thing. The first pattern is
written using the usual syntax for creating lists, so if you wanted to write a pattern to match
lists with three items, you could write [a; b; C]. We included this special case, because
we want to correct the rounding error: if we're processing the last item in the list, we want to
make sure that the total angle will be exactly 360 degrees. In this branch we simply
calculate the angle and call the drawingFunc function which was passed to us as an
argument.
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The last branch (#4) processes a list which didn't match any of the previous two
patterns. The order of the patterns is important in this case, because any list matching the
second pattern (#3) would also match the last one (#4) but with an empty list as the tail.
The order of the patterns in the code guarantees that the last branch won't be called for the
last item.

The code for the last branch calculates the angle and draws the segment using the
specified drawing function. This is the only branch that doesn't stop the recursive processing
of the list, because it is used until there is a last element in the list, so the last line of the
code is a recursive call. The only arguments that change during the recursion is the list of
remaining elements to draw and the angleSoFar, which is an angle occupied by all the
already processed segments. Thanks to the use of local function, we don't need to pass along
the other arguments that do not change. The only thing that is done in the drawStep
function itself is that it invokes the utility function with all the data and the argument
angleSoFar set to zero.

DRAWING THE WHOLE CHART

Before looking at the second drawing function, let's look at how to put things together.
Figure 4.2 shows each of the steps separately: the code that we've already written draws the
left part of the figure; we still need to implement the function to draw the labels as shown on
the right part.

Europe

Australia/Oceania

North America

South America

Africa

Asia

Figure 4.2 Two phases of drawing the chart - first pass using 'drawPieSegment’ (left) and second pass
using 'drawLabel’ function (right). The chart shows distribution of world population in 1900.

The code that draws the chart first loads data from a file and processes it is the same as in
the console application. Instead of printing data to the console, we now use the functions
described above to draw the chart. You can see the function drawChart that does the
drawing in listing 4.10.

Listing 4.10 Drawing the chart (F#)
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let drawChart(file) =
let lines = List.of _array(File.ReadAllLines(file)) #A

let data = processLines(lines) #A
let sum = float(countSum(data)) #A
let bmp = new Bitmap(600, 400) #B
let gr = Graphics.Fromlmage(bmp) #C
gr.FillRectangle(Brushes.White, 0, 0, 600, 400)
drawStep(drawPieSegment, gr, sum, data) #1
drawStep(drawLabel, gr, sum, data) #2
gr.Dispose() #D
bmp

#A Load and process the data

#B Create an in-memory bitmap

#C Create object for drawing on the bitmap
#1 Draw the pie chart

#2 Draw the text labels

#D Finalize the drawing

#A refers to all three lines, could we do it as a vertical line?

The function takes a name of the CSV file as an argument and returns an in-memory
bitmap with the pie chart. In the code, we first load the file and process it using our existing
processLines and countSum functions. We then draw the chart and on the last
line we return the created bitmap as a result of the function.

In order to draw anything at all, we first need to create a Bitmap object and then an
associated Graphics object. We've used Graphics for drawing in all the previous
functions, so once it is created we can fill the bitmap with a white background and draw the
chart using the drawStep function. The first call (#1) draws the pie using
drawPieSegment and the second call (#2) draws the text labels using drawLabel. You
can try commenting out one of these two lines to draw only one of the steps and get the
same results as we've seen in figure 4.2. We haven't implemented the drawLabel function
yet, because I wanted to show how the whole drawing works first, but now we're ready to
finish this part of the application.

ADDING TEXT LABELS

We've already implemented the first drawing function and the second one should have the
same signature, so that we can use each of them as an argument to the universal
drawStep function. The only thing that we have to fill in is the code for drawing the label
and calculating its position as you can see in listing 4.11.

Listing 4.11 Drawing text labels (F#

let fnt = new Font("Times New Roman', 11.0F) #A
let centerX, centerY = 300.0, 200.0 #B
let textDistance = 150.0 #C
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let drawLabel(gr:Graphics, Ibl, startAngle, angle) =

let IblAngle = float(startAngle + angle/2) #1
let ra = Math.P1 * 2.0 * IblAngle /7 360.0 #2
let x = centerX + labelDistance * cos(ra)
let y = centerY + labelDistance * sin(ra)
let size = gr.MeasureString(lbl, fnt) #D
let rc = new PointF(float32(x) - size.Width /7 2.0f, #D

float32(y) - size.Height / 2.0f) #D

gr.DrawString(lbl, fnt, Brushes.Black, new RectangleF(rc, size)) #D
#A Create font for drawing the text
#B Center of the pie chart
#C Distance of labels from the center
#1 Compute angle for the label
#2 Convert angle to radians
#D Get the bounding box and draw the label

We first declare a top-level font value used for drawing the text. We do this, because we
don't want to initialize a new instance of the font every time the function is called. Since the
font will be needed during the whole lifetime of the application, we don’t dispose it explicitly
and we rely on .NET to dispose it when the application quits. The function itself starts with
several lines of code that calculate location of the label.

Briefly, the first line (#1) calculates the angle in degrees that specifies center of the pie
chart sector occupied by the segment. We take the starting angle of the segment and add
half of the segment size to move the label to the center. The second line (#2) converts the
angle to radians. Once we have the angle in radians, we can compute the X and Y
coordinates of the label using trigonometric functions COS and Sin. Finally, we use
MeasureString method to estimate the size of the text label and calculate location of the
bounding box in which the text is drawn. The X and Y coordinates calculated earlier are used
as a center of the bounding box.

Now that we've finished the code for drawing text labels, we're done with the whole
code for drawing the pie chart. We implemented the key function (drawChart), which
performs the drawing of the chart earlier in listing 4.10. The function takes a file name of the
CSV file as an argument and returns a bitmap with the chart. All we have to do now is add
code which will call this function from our user interface.

4.4.3 Creating Windows Application

We started creating the GUI of the application earlier, so we already have code to create
user interface controls. However we still have to specify user interaction logic for our
controls. The user can control the application using two buttons. The first one (btnOpen)
loads a CSV file and the second one (btnSave) saves the chart into an image file. We also
have a PictureBox control called img which is where we'll show the chart. Listing 4.12
shows how to connect the drawing code with our user interface.

Listing 4.12 Adding user interaction (F#)

let openAndDrawChart(e) = #1
let dlg = new OpenFileDialog(Filter="CSV Files]*.csv'")
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if (dlg-ShowDialog() = DialogResult.OK) then
let bmp = drawChart(dlg.FileName) #2
img.Image <- bmp #A
btnSave.Enabled <- true #B
let saveDrawing(e) = #3
let dlg = new SaveFileDialog(Filter="PNG Files]*.png"™)
if (dlg.-ShowDialog() = DialogResult.0OK) then
img. Image.Save(dlg.FileName) #C
[<STAThread>]
do #4
btnOpen.Click.Add(openAndDrawChart) #D
btnSave.Click.Add(saveDrawing) #D

Application.Run(main)
#2 Draw the chart
#A Display the bitmap
#B Enable button for saving image
#C Save the current chart
#D Register event handlers

The code first declares two functions that will be invoked when the user clicks on the
"open" and "save" buttons respectively. For opening a file, we have a function
openAndDrawChart (#1). The function first creates an OpenFileDialog, which is a
Windows Forms class that shows standard dialog for selecting a file. If the user selects a file,
the function calls drawChart (#2), which we implemented earlier. A result of this call is an
in-memory bitmap, which can be assigned to the Image property of the PictureBox
control. The second function is simpler, because it doesn't need to draw the chart. It saves
the image currently displayed in the PictureBoxX to a file, which is specified by the user
using SaveFileDialog.

We've already talked about the code to execute a standard windows application, but
listing 4.12 shows it again (#4), because we've added two lines of code. Before running the
application, we specify that the openAndDrawChart function should be called when the
user clicks on the btnOpen button and likewise for the second button. This is done by
registering a function as a handler of the Click event using the Add method. Unlike in
C#, where events are special language constructs, F# treats events as normal objects that
have Add method. Events in F# also have AddHandler and RemoveHandler methods
that serve exactly the same purpose as += and —= operators for events in C#. We'll talk
about this topic in more detail in chapter 16, but in most of the cases you can just use the
Add method.

4.5 Summary

In this chapter we developed a simple but real-world application for drawing pie charts.
We've seen basic F# and .NET numeric data types and explored both F# and .NET
functionality for working with strings. We also demonstrated how to use usual .NET libraries
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from F# and we've seen examples using Windows Forms, System-DraWing as well as
basic 1/0.

What I really wanted to demonstrate in this chapter was a typical F# development
process. In the beginning we started writing functions for working with the data and we
immediately tested them in F# interactive. As we progressed, we implemented a function to
load the real data from file and a simple console application to verify that the core functions
work correctly. Finally, we added a graphical user interface and drew the chart using the
functionality that we had already implemented and tested.

We were able to implement the application in this way so early in the book mainly
because it doesn't work with data extensively. The only data structures that we've used are
tuples and lists that were both introduced in chapter 2. However, most real-world
applications need to work with more complex data sets. This is a topic for part 2, where we'll
see how to represent more complicated and structured data in a functional way and how to
process it elegantly.

Of course, the application is still quite simple and extending it (for example by adding
different types of charts) would currently be difficult. To make the application more
extensible, we need to perform one more iteration in our development approach. This
requires many of the advanced functional techniques discussed in the rest of the book. After
getting familiar with them, you can take a look at the book’s web site, which contains more
evolved version of the application.
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Using functional values locally

This chapter is about values. It's a term which is used a lot in different programming
languages, so we ought to first define what we mean. When discussing the concepts of
functional programming, you've seen that functional programs are described as a
computation that takes some inputs and returns a result. In simple terms, a value is what
you can use as an input or get as a result. This means that everything you'll work with inside
the computations you implement is a value.

When writing a function that performs some calculation, we can give it all the input
values as input parameters, but what if the function needs to return multiple values as a
result? In C#, we could either use "out" parameters or define a new class to group the
values into a single object. This feels a bit inconsistent, because handling of input and output
in this scenario is quite different. What we need is a simple way for combining multiple
different values (for example item name of type string and a count of type integer) into a
single value that could be used both as an input argument and as a result. In chapter 3,
we've briefly talked about tuples that can be used exactly for this purpose, so we'll look at
tuples in some more detail.

Another example is when a computation can take one of various options as an input. A
search function could for example take a name or an ID of the item. In C#, we would
probably write a function that takes two parameters and set one of the argument to some
invalid value (-1 as an ID or null instead of a name). However, there is a more elegant
solution to this problem as well. We'll see how to combine values into an alternative value
that can carry one of several options, but not both.

Finally, in functional languages, functions are treated as values meaning that function is
another (very important) kind of value. As you can tell, values are pretty fundamental to
understanding functional programming, which is why I'm starting part 2 of the book with
them.
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5.1 What are values?

Before we start by looking at various ways to create values and how to use them for
controlling the program flow, let's try to clarify what a value is. Unfortunately, there is no
simple definition, so the best way to understand that is to read this chapter. However, this
section should make it a bit easier by drawing a distinction between values and data and also
by explaining how values in functional languages relate to primitive types, value types and
objects in languages like C#.

15.1.1 Primitive types, value types and objects

In C#, we can work with primitive value types such as integers or characters, a custom value
types declared using the Struct keyword (such as DateTime) and classes. The difference
between value types and reference types is primarily in their behavior, but that's observable
only when the class is mutable. For example string is a reference type that appears like a
value type, because it is immutable. This means that by using only immutable types, we can
almost eliminate the difference between value types and reference types. There are only
differences in the performance, but the behavior will be the same.

However, there is another measure that we can use to look at the differences between
various types and that's their complexity. In C#, this distinction isn't that obvious, because
even primitive types are standard value types that have methods and can implement
interfaces. However, immutable value types are still considerably simple than objects that
have virtual methods and mutable state.

In functional languages, we start with a set of primitive types and we can then build
more complicated types simply by composing the primitive types in various ways. This is
different to object-oriented languages where we create types by defining their state in terms
of primitive types and specifying their behavior using methods.

The functional approach makes the whole type system a lot easier, because there is in
principle no distinction between value types and reference types. It also makes the transition
from simple values to complex composed types very smooth. In this range, values are all the
primitive types and also most of the simple composed types. To understand when a
composed type becomes too complex to be considered as a value, we need to look at what
we'll call data.

15.1.2 Recognizing values and data
Values are usually used locally and you need to create and use them all the time. I've
already mentioned tuple as one of the composed values that is used very frequently. Another
example is Option type that we'll discuss in section 5.3.3. It consists of two alternatives -
one is some actual value and the other specifies that the value is missing. When working
with option values, we have to explicitly check for both of the cases, so there is no danger
of getting Nul IReferenceException.

This should give you an idea that values are usually quite general purpose and are used
for solving general programming tasks such as expressing that some argument is missing.
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They can also be very simple (and locally used) utilities such as a value that would contain
either ID or a name given as an argument to searching function. On the other hand, data is
usually something large and represents information that is shared between several parts of
the program. The programming language doesn't differentiate between the two, but we will
occasionally our description.

In this chapter, we're going to look at ways of working with values locally, which will
include some basic F# type declarations. We'll come back to this discussion in chapter 7
when we introduce the remaining type declarations that are typically used to represent data
for the whole application.

VALUES AND THEIR TYPES

I've been using the terms value and type quite vaguely until now, so let me specify what
I mean. To take a numeric example, "integer" is a type, whereas 43 is a value of that
type. A type specifies an entire domain of values and value is always an element within
the domain specified by its type.

That's enough theory for now: let's look at our first way of composing values together. It
should be familiar by now-it's time to revisit tuples.

5.2 Multiple values

You already know that the only thing a function can do is return a single value as its result.
Once you start writing practical code, you're likely to face a common problem almost
immediately: the need to return multiple values. This is the primary motivation for tuples,
although as we've seen they can also be used to combine several values into a single
argument for a function as well.

5.2.1 Multiple values in F# and C#

When we were discussing tuples earlier, we implemented a Tuple class in C# with the
same behavior as F# tuples. This isn't the normal way to return multiple values from a C#
method, although you may still find it very useful when writing C# code in a functional way.
If you wanted to write this in C# without using tuples or declaring a new class for every
method that returns multiple values, you would probably use "out" parameters. You can see
both approaches side by side in listing 5.1, where we implement a simple function
performing division with a remainder.

Listing 5.1 Division with a remainder (F# and C#)

> let divRem(a, b) = int DivRem(int a, int b,
(a/ b, a%b);; out int rem) {
val divRem : int * int -> rem = a % b;
int * int return a / b;
3
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> let (res, rem) = divRem(10, 3);; int rem;
val res : int = 3 int res = DivRem(10, 3, out rem);
val rem - int = 1

The F# version of the code shows the F# interactive output, but if you ignore it you can
see that the code is shorter. This is because returning multiple values from a function is
much more important in F# than in C#. However, C# 3.0 adds one more way for
representing multiple values called anonymous types. It is somehow limited, because it can
be used only locally inside a single method, but it is still interesting.

Anonymous types in C# 3.0

The key feature added by LINQ is the ability to write queries. We'll talk about them later
in chapter 11. Queries work with collections, so for example we might filter a collection of
products and select only products from a particular category, then just return the name
and price of each product. This is where anonymous types are needed, because when
returning the name and price, we effectively need to return multiple values:
var query = from p in data.Products

where p.CategorylD ==

select new { Name = p.ProductName, Price = p.UnitPrice };

foreach(var result in query)
Console.WriteLine(result_Name);

The difference between anonymous types and tuples is that elements of an anonymous
type are named. The names are specified by the code creating the anonymous type in the
query (#1) and can be used later to read the values of elements (#2). We could of course
rewrite the example from previous listing using anonymous types:

int a = 10, b =
var r = new { Re malnder =a%hb, Result = a /b };
Console. erte Line("result={0}, remainder={1}", r.Result, r.Remainder);

However, this isn't particularly useful, because anonymous types can be used only locally.
When we return them from the method, we lose the compile-time type information and
we can't easily access the properties any more.

We've seen that in C# "out" parameters are often used for the same purpose as tuples
in F#. You may be wondering how to use existing .NET methods with "out" parameters from
. but fortunately the language has a nifty feature for exactly this purpose.
USING TUPLES INSTEAD OF OUT PARAMETERS
Even though you can use "out" parameters from F# if you really want to, tuples are
generally preferred and so F# automatically exposes .NET methods with "out" parameters as
methods that return a tuple. You don't have to do anything - it's just transparent. This
means that your F# code can still look like idiomatic functional code even if it's calling into
.NET code which has no concept of tuples. The most widely used method with an "out"
parameter in .NET is probably TryParse, which is available in all of the numeric types such
as INnt32. Let's look at examples of using it from C# and F#:
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// C# version using an "out" parameter
int num;
bool succ = Int32.TryParse(*'41", out num);

// F# version using tuples
let (succ, num) = Int32.TryParse(''41");;

The F# version is quite easy to write and if you want to use the default value when the
parsing fails, you can simply use the snd function to extract the second element from the
tuple, or use an underscore instead of the SUCC value in the pattern. When talking about
functions for working with values in the next chapter, we'll also see a very simple function
that allows us to specify the default value to use if the parsing within TryParse fails.

Now, before looking at the best practices for using tuples in F#, let me just quickly get
back to the discussion about values and types and revisit how tuple types and values of
these types are constructed.

5.2.2 Tuple type and value constructors

You already know what the type of a tuple value looks like and we've seen it again in the
previous code listing. The type is written using asterisk, so for example a type of a tuple
storing an integer and a string is written as iNt * string. In the introduction, we talked
about values and their types and I wrote that a type is a domain of all possible values. Let's
use this point of view to look at the tuple type: how does this notation reflect the fact that
tuple type is composed from several primitive types?

The asterisk symbol plays a key role in this notation, because it serves as a type
constructor. This means that you can use the asterisk symbol to construct tuple types from
any other types. This means that the domain specifying values of the type Int * string
contains all possible combinations of integers and strings. You don't have to explicitly write
types very often thanks to the wonders of type inference, but it's useful to see how types are
constructed.

On the other hand, you'll work with value constructors when writing any code that uses
a tuple. This is the syntax that allows you to create values of tuple types from other, simpler
values. For example (1, "hello'™) demonstrates the use of a value constructor. It
creates one particular value that belongs to the domain specifying all possible combinations
of integers and strings. To demonstrate the correspondence between value and type
constructors, let's look at one more example. The following code snippet shows how we could
use tuples to represent a message and X, Y coordinates saying where on the screen it should

be displayed:
> let msgAtl

= (60, 100, "Hello world!™)
val msgAtl : int *

int * string

> let msgAt2 = ((50, 100), "Hello world!™)

val msgAt2 : (int * int) * string

The code shows two different representations. In the first case we're using a single tuple
with three elements to store all the basic values together. As you can see, the printed type
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signature reflects this and shows three basic types separated by asterisks. In the second
case, we first construct a tuple to store the X and Y coordinates and then we compose
another tuple from this value and the message. As you can see, the type again reflects this
construction. You can also see that the types are different. The first one is a tuple of three
elements, while the second one is a tuple containing tuple and a string. This means that you
should always consider the available options when you construct tuples. In this case, I prefer
the second option, because it seems logical that the X and Y values form a single coordinate
value. Let's look at a few more guidelines of how to use tuples appropriately.

5.2.3 Using tuples compositionally
The key concern when thinking about what kind of a tuple should be returned from a
function is compositionality. How do you expect the tuple to be used? What other functions
might use a tuple of the same type? Is this consistent with similar situations in the rest of
the program?

Let me demonstrate this using an example. We'll use the two ways of representing
message and screen coordinates from the previous example and we'll assume that we
already have a function for printing the message. Our printMessage function has the

following signature:
val printMessage : int * int -> string -> unit

The signature tells us that the function takes two arguments. The first argument is a
tuple containing the coordinates and the second argument is the message. Now, we want to
print the string "Test!" to a location specified by tuple that we used earlier. Listing 5.2 shows
two different ways of doing this, depending on which representation we use for the message
and coordinates.

Listing 5.2 Different representations of a message with coordinates (F#)

> let msgAtl = (50, 100, "Hello!");;
val msgAtl : int * int * string #1

> let (X, ¥y, _) = msgAtl #2
printMessage (x, y) "Test!";; #2

> let msgAt2 = ((50, 100), "Hello!'™);; #3
val msgAt2 : (int * int) * string

> let (pt, _) = msgAt2 #4
printMessage pt "Test!";; #4
> printMessage (fst(msgAt2)) "Message Test!";; #5

#1 Tuple of three elements

#2 We have to extract all elements

#3 Using a nested tuple

#4 We need to extract only the first element

#5 The simplest way using the second representation

As you can see, the tuple that we created in the first case (#1) isn't compatible with the
printMessage function, so when we want to compose the code, we first have to
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deconstruct the tuple into elements (#3) and then build a new tuple value when calling the
function. Using the second representation, we can do much better. The first element of the
tuple is itself a tuple (#2) and is compatible with the first parameter of printMessage.

This is very helpful, because when we're deconstructing the tuple later (#4), we can just
take the first element and use it directly as the first argument. Actually, as the last line
demonstrates (#5), we can do even better and use the st function to get the first element
of the tuple directly when calling the function. I think this clearly shows why it is important
to structure tuples logically. However, you also need to consider the complexity of the tuples
you create...

AVOIDING COMPLICATED TUPLES

Clearly, returning the results as tuples with extremely large number of elements makes the
code hard to read. In F#, you can replace tuples with too many elements with record types,
which provide a simple way to create a type with labeled members. Records are usually used
for storing program data, so we'll talk about them in chapter 7.

The point at which a function becomes hard to use based on the number of elements in
its return type will vary from person to person, but I recommend avoiding returning tuples
with more than 3 or 4 elements. Of course there are exceptions, and in the early phases of
development it may be worth prototyping with large tuples, refactoring later when you have
a clearer idea of how the values should be structured. Also, if the tuple is only used
internally, using a larger tuple may be a better option than declaring a record type for a
single use.

Now that you know everything you need to about tuples, let's move to another topic. In
the next section, we're going to talk about a way of constructing values that can be used for
representing types with several alternative values.

5.3 Alternative values

In the previous section, we looked at how to create values that combine several values into
one. For example, we took a string value and a numeric value and created a composed value
that contains both string and a number. In this section, you'll see how to construct a value
that can contain either a string or a number.

First, let's look at an example of when this could be useful. Imagine that you're writing
an application to schedule tasks and meetings, and you want to have several ways for
specifying the schedule. For an event that happens only once, we'd like to store the date and
time. However, we also want to allow events that occur repeatedly. For this kind of event,
we'll need to store the date and time of the first occurrence and the time span between
repetitions of the event. Finally, we'll also support events that don't have specified time yet,
which we'll call unscheduled events.

This means we want to create a value with three different options to specify the
schedule - once, repeatedly, or never. A typical way to represent several options in object-
oriented programming is to use a hierarchy of classes. In our case, we'd have an abstract
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class Schedulle with an inherited class for every of the three options. You can see a
diagram showing the object-oriented solution in figure 5.1.

Once

when : DateTime
Schedule
& Never
tag : ScheduleType
Repeatedly

first : DateTime
periodicity : TimeSpan

Figure 5.1 Class hierarchy for representing three different types of schedule with different properties for
every case.

In this example, we don't expect to add new types of schedules later during the
development. On the other hand, we'll probably add new modules to the application that will
need to work with the schedule and will need to access the properties of the inherited types.
To make this easier, the base class has a property called tag, which specifies what type of
schedule the object represents. In this case, ScheduleType is a C# enumeration with
three possible values (Once, Never and Repeatedly). This makes the code less
extensible in one way (by adding new types of schedules), but it allows us to easily add
methods that work with schedules. I'll talk about extensibility shortly, but first, we'll look at
representing alternatives in F# using discriminated unions.

5.3.1 Discriminated unions in F#

Types like this crop up quite frequently in functional programming, so functional languages
tend to make it easy to create and use them. In F# the supporting feature is called
discriminated unions. Unlike tuples, discriminated unions have to be declared in advance, so
before we can create a value representing the schedule, we first have to declare the type
with its name and, most importantly, the options it can represent. The code in listing 5.3
shows a type for representing schedules in F#.

Listing 5.3 Schedule type using discriminated union (F#

type Schedule =
| Never #A
| Once of DateTime #B
| Repeatedly of DateTime * TimeSpan #C
#A Unscheduled event with no arguments
#B Event with single occurrence
#C Repeated event with first occurrence and periodicity
When creating the Schedule type, we combine several alternatives. We need to be

able to distinguish between the alternatives, so we also specify a name for each of them
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(Never, Once and Repeatedly). These names are usually called discriminators, because
they discriminate between the options. This means that every value of the Schedule type
will carry its discriminator and the values stored for the selected option (such as DateTime
and TImeSpan in the last case of our example). As you can see, we're using asterisk
symbol when storing multiple values for a single option. This is exactly analogous to the
syntax for creating tuples, so you can see how the two concepts (multiple and alternative
values) play nicely together.

We'll also need discriminators when creating values of the Schedule type, because the
discriminator specifies which option we are using. Listing 5.4 shows several examples.

Listing 5.4 Creating values of discriminated union (F# interactive)

> open System;; #A
> let tomorrow = DateTime.Now.AddDays(1.0);; #B
val tomorrow : DateTime #B
> let noon = new DateTime(2008, 8, 1, 12, 0, 0);; #B
val noon : DateTime #B
> let daySpan = new TimeSpan(24, 0, 0);; #B
val daySpan : TimeSpan #B
> let schedulel = Never;; #C
val schedulel : Schedule = Never

> let schedule2 = Once(tomorrow);; #D
val schedule2 : Schedule = Once(2.8.2008 17:29:07)

> let schedule3 = Repeatedly(noon, daySpan);; #E

val schedule3 : Schedule = Repeatedly(1.8.2008 12:00:00, 1.00:00:00)
#A Open namespace with DateTime and TimeSpan

#B Create values representing times and periodicity

#C Create schedule using discriminator ‘Never'

#D Event occurring once at specified time

#E Event occurring repeatedly every day

As you can see, creating values of the Schedule type is quite easy. We're using
discriminators as value constructors. This is similar to our previous use of value constructors
for creating tuples such as (7, ''seven'™). In this case, the syntax looks almost like
calling a function. For an option with no additional arguments, we just write the discriminator
name and for option with more arguments, we write the arguments as if they were a single
tuple.

Of course, creating a value is pointless unless we can actually use it. Let's try calculating
something useful with a schedule...

5.3.2 Working with alternatives

So far we've seen how to declare a discriminated union type and how to create values using
discriminators. Now we'll look how to write code that reads the value. When working with
discriminated unions, we always have to write code for all possible alternatives, because we
don't know which one is represented by the value.
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You can remember a similar situation from earlier on - we had to test whether a list was
an empty list or a cons cell. You may also remember that we've used pattern matching to do
this: the match construct allows us to test the value against several patterns. We can use
the same feature to work with discriminated unions, except this time we use discriminators
to write the patterns. Listing 5.5 shows an example that tests whether a scheduled event
occurs during a week following the current date.

Listing 5.5 Does the event occur next week? (F#

let occursNextWeek(schedule) =
let isNextWeekDate dt = #1
dt > DateTime.Now && dt < DateTime.Now.AddDays(7-0)

match schedule with
| Never -> false
| Once(dt) -> isNextWeekDate(dt)
| Repeatedly(dt, ts) ->
let q = (DateTime.Now - dt).TotalSeconds / ts.TotalSeconds #A

let g = max q 0.0 #B
let next = dt.AddSeconds(ts.TotalSeconds *

(Math.Floor(q) + 1.0)) #C
isNextWeekDate(next) #D

#1 Nested utility function

#A How many times will it occur before today?
#B Only consider future occurrences

#C Calculate first occurrence after today

#D Test whether it happens next week

This example is quite complicated but it shows the typical structure of an F# program.
We're using the standard .NET DateTime and TimeSpan structures to work with dates
and times. First, we declare a utility function which tests whether a DateTime occurs
during the next week from the present time. Next, we use pattern matching to test which of
the alternative schedule representations has been given to us. For the first two cases, the
calculation is quite simple, but for the last one (a repeated event), we calculate the first
occurrence of the event after the present date and then test whether this occurs during the
next week using the utility function written earlier. You can see that we declare the value q
twice in the code. This is called hiding a value and it is useful if we want to split a
complicated calculation into two or more steps and make sure that we won't accidentally use
the intermediate values.

As you can see, the pattern used for testing whether a value matches a specific
discriminator is exactly the same as we've used to construct the value in the first place. The
pattern also extracts the values stored as arguments and assigns them to new values (called
dt and dt with tS respectively), so we can immediately use them. Again, this is the same
syntax we used when matching patterns with lists.

Next, we'll look at exactly the same functionality implemented in C#. We've already
seen the classes involved in figure 5.1, so we'll assume they've already been implemented
and just look at the code that uses them. We'll look at another example of alternative values
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later, including the complete C# implementation, so you'll see how we can write a C# class
hierarchy with the same properties as an F# discriminated union later in the chapter.

TIP

If you want to see the complete source code for this example including class declarations,
you can download it from the book's web site: www.functional-programming.net.

There is one important thing to note before we look at the C# version of the example in
listing 5.6. It shows a situation when we already have the class hierarchy representing
schedules implemented (for example in a shared library) and we're adding new functionality
to a module in our application. This means that we can't easily add a virtual method to the
base class Schedule. Also, we want to keep the functionality localized in a single place in
the code, to keep everything related to the calculation in a same place and the same file.

Listing 5.6 Does the event occur next week? (C#)

bool IsNextWeekDate(DateTime dt) {
return dt > DateTime.Now && dt < DateTime.Now.AddDays(7-.0);

bool OccursNextWeek(Schedule schedule) {

switch(schedule.Tag) { #1

case ScheduleType.Never: #A
return false;

case ScheduleType.Once: #B
return IsNextWeekDate(((Once)schedule).When); #C

case ScheduleType.Repeatedly: #D
var rp = (Repeatedly)schedule; #HE

double ql = (DateTime.Now - rp.First).TotalSeconds
/ rp.Periodicity.TotalSeconds;
double g2 = Math_Max(ql, 0.0);
DateTime next = rp.First.AddSeconds
(rp-Periodicity.TotalSeconds * (Math_.Floor(g2) + 1.0));
return IsNextWeekDate(next);

throw new InvalidOperationException(); #F

3

#1 Switch using the schedule type

#A Schedule is 'Never'

#B Schedule is 'Once’

#C Accessing property of the 'Once’ class

#D Schedule is 'Repeatedly’

#E Extract properties of the 'Repeatedly’ class

#F All code-path should return, but this one is unreachable

The algorithm used in the C# version is exactly the same as in the F# version, so the
only difference is how we distinguish between the options and how we read values stored for
the option. In F#, this was done using pattern matching. In the C# version we're using the
switch, which is a C# analogy of the match construct from F#. This is possible because
we have a Tag property in the base class and an enumeration that tells us what kind of
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schedule the object represents. Otherwise we would have to use iFf statement with a
sequence of dynamic type tests. Also, reading of values, which was done automatically in F#
is now a bit difficult. We have to cast the schedule to the concrete class to read its
properties.

In fact, the C# version of the code is very close to the .NET representation used by the
F# compiler for discriminated unions. This means that the two examples above are
essentially the same after compilation. However, functional programming puts a stronger
emphasis on this kind of data type, which is why it was much easier to write this code in F#.

ADDING TYPES VS. FUNCTIONS
As I mentioned earlier, our Schedule data type isn't extensible: it's difficult to add a new
type of event. In F#, the difficulty occurs because you have to modify the type declaration; if
it's in a shared library you have to recompile the shared library. Similarly, in the C# version,
we have a Tag property which makes adding new types difficult. On the other hand, the
benefit of this design is that it allows us to very easily add new functionality for working with
schedules.

I'll explain this in more detail, but let's first look at the second way for representing a
problem. This is the usual object-oriented way in which all the functionality is enclosed in
virtual methods. You can see this version of class hierarchy in figure 5.2.

Schedule

<]_

OccursNextWeek() : bool

Repeatedly

Figure 5.2 Representation of schedule using the usual object-oriented design with functionality
implemented using virtual methods.

In this version, we'd implement the virtual method OccursNextWeek in each of the
inherited classes. The following list shows the key differences between the functional
programming style (FP) demonstrated earlier and the usual object-oriented style (OO)
outlined in figure 5.2.

24) The FP version makes it easier to add new functionality that works with the data
type. This is done by writing a function using pattern matching. On the other hand,
adding a new kind of representation to the type is difficult.

25) The OO version makes it easier to add new types of representation. This is done by
writing a new inherited class and implementing of its virtual methods. On the other
hand, adding a new virtual method is difficult.

26) In the FP version the code for a single functionality is localized, so all code related
to one kind of computation is in a single function.
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27) In the OO version the code for a single type is localized, meaning that all code
which works with the type is inside one class declaration.

As you can see, the key question is whether it you want to make it easier to add new
types or new functions. Experience shows that in functional programming, it is more
common to add new functionality to an existing type.

If you're familiar with common design patterns then you may remember the Visitor
pattern, which is an object-oriented way of implementing data structures like discriminated
unions. We'll talk about it when we look at recursive discriminated unions in chapter 7,
because it is usually used when working with complex program data rather than simple
values. I'll also delay the discussion of whether to choose a discriminated union or not until
chapter 7, because this question is more relevant when talking about program data.

In this chapter, we're talking about simple values: for any simple value that is
represented as limited set of alternatives, you should always choose discriminated union.
This is because for simple values, you almost certainly want to add new functionality instead
of adding new types. There's one discriminated union which is particularly useful in functional
programming and is present in all functional languages - in F# it is called the option type.

5.3.3 Using the option type in F#

We often need to represent the idea that some computation may return an undefined value.
In C#, this is usually done by returning nul I. Unfortunately using null l is a frequent cause
of bugs: you can easily write code that assumes that a method doesn't return null and
when this assumption is false, you'll see the infamous Nul IReferenceException. Of
course, properly written code always checks for nul l values where appropriate and when
writing unit tests for the application, a large number of tests verify the behavior in this
corner case.

In F# use of the nul I value is minimized and it is often used only when interoperating
with .NET types. For representing computations that may return an undefined result, we
instead use the option type. When we use this as the return type of a function, it is an
explicit statement that the result may be undefined; this also lets the compiler force the
caller to handle an undefined result.

The option type is a discriminated union with two alternatives. The discriminator Some
is used for creating an option that carries a value and None is used for representing
undefined value. Listing 5.7 shows a function which reads an input from the console and
returns undefined value when the user doesn't enter a nhumber.

Listing 5.7 Reading input as an option value (F# interactive)

> open System;;

> let readlnput() =
let s = Console.ReadLine()
let (succ, num) = Int32.TryParse(s) #A
if (succ) then
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Some (num) #1

else
None; ; #2
val readlnput : unit -> int option #3

#A Try to parse the input

#1 Return a value using 'Some’

#2 Return an undefined value using ‘None'
#3 Signature of the function

The code is quite simple - it first reads the input and uses the TryParse method to get
a tuple representing whether the input was correct and the parsed number. If the parsing
succeeded, we use Some discriminator (#1), which takes a single argument to return the
value. Otherwise we return an undefined result using the None discriminator (#2). You can
also see the signature printed by the F# interactive (#3) it says that the method returns
int option. This means that the option type is generic and in this case it carries an
integer as a value. We'll see how a generic type like this can be defined in section 5.3.2.

First, let's look at the code that uses this function. Here we'll see the real benefit of
using option type, which is that we're forced by the language to write code to hande the
undefined value. This is because the only way to access the value is using pattern matching.
You can see the example in listing 5.8.

Listing 5.8 Processing input using option value (F# interactive)

> let testlnput() =

let inp = readlnput() #1

match inp with #2

| Some(v) -> #A
printfn "You entered: %d" v

| None -> #B

printfn "Incorrect input!";;
val testlnput : unit -> unit

> testlnput();; #C
42 #C
You entered: 42 #C
> testlnput();; #D
fortytwo #D
Incorrect input! #D

#1 We cannot use the value directly!

#2 Check for alternatives using pattern matching
#A Branch for correct input

#B Branch for undefined input

#C Testing the first case interactively

#D Testing the second case interactively

As you can see, we cannot use the value directly after we call the read I nput function
(#1). This is the key difference that makes the program safer, because when a function
returns a NUul I value, you don't have to check this possibility. To read the value in F#, we
have to use pattern matching (#2) and we write a branch for each of the discriminators that
can be used to construct a value of the option type. We already seen that F# verifies
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whether pattern matching is complete; that is, whether it covers all possible options. This
guarantees that we cannot accidentally write code that only contains a branch for the Some
discriminator. Listing 5.8 also follows F# best practices by testing the code in F# interactive
straight away, checking that it behaves correctly in both cases.

NULLABLE AND OPTION TYPES

The F# option type is in some ways similar to the Nul lable<T> type in C#, but it
is more universal and safer. When we want to represent a missing value in C#, we
usually use the NnUl I value, but this is possible only for reference types. Nullable types
can be used to create value type that also has NUll as a valid value.

On the other hand, in F# Nul l isn't valid value of any type declared in F# (though it is
still valid for existing .NET reference types). This means that whenever we need to create
any value that may be empty we wrap the actual type into option type. Thanks to the
pattern matching, the compiler can also ensure that we always implement code that
handles the case when the value is missing.

Now that we've seen how to use option types and how they are important for F#
programming, we'll discuss how to implement them.
IMPLEMENTING SIMPLE OPTION IN F#
In the previous example, we were working with option type carrying integers, so let's first
look at somewhat simplified type IntOption which can carry only integer values. I'm sure
you could write the declaration for the type on your own already, but here it is:

> type IntOption = #A
| Somelnt of int
| Nonelnt;;

-9

> Somelnt(10);; #B

val it : IntOption = Somelnt 10
#A Declare discriminated union with two alternatives
#B Create sample value of 'IntOption' type

There is one important difference between our declaration and the option type from the
F# library. The library type is generic, which means that you can use it to store any type of
value, including .NET object references such as Some(new Button()). Writing generic
types is very important, because it makes the code more widely applicable. Let's take a
closer look now.

5.4 Generic values

In this section we'll talk about generic type declarations and you'll see that in many ways
generic types in F# are similar to generic types in C#. We've only seen one kind of type
declaration so far-the discriminated union, declared with the type construct. We'll see other
type declarations that can be written using the same construct later (in particular in chapters
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7 and 9), but the syntax for making them generic is exactly the same as the syntax we'll see
now.

Types that don't need prior declaration, such as tuples, are naturally generic because we
can use the value constructor with any values. When creating tuples we can write (12,
34) as well as (""PI'", 3.14). In this section we'll see how to make your own type
constructors generic as well. We'll start by looking at how we can implement a generic option
type in C#.

5.3.1 Implementing the option type in C#

As we've just seen, option types are very important in functional programming and since we
want to be able to code in a functional style in C# too, we need a proper C# implementation
for option type. We've already discussed how to encode discriminated unions in object
oriented languages, so the code has similar structure as the Schedule type we talked
about earlier. In case of Option<T>, we could create a single class (or value type) with
HasValue property, which would be a bit simpler. However, I want to demonstrate the
idea of encoding discriminated unions in general, so we'll create a base class Option<T>,
with Tag property and two inherited classes for the two possible alternatives.

TIP

We will use this type in some of the later chapters, so we'll also add several utility
methods that make it easier to use in routine C# programming. This makes the code
slightly longer, so you can download it from the book web site. Moreover, you can also
download a .NET library with this and several other classes that are discussed in this book
directly from: www.functional-programming.net/library.

To make the type generic, we'll implement it as a generic C# class Option<T>. An
inherited class Some<T> represents an alternative with a value of type T and None<T>
class represents an alternative with no value. You can see the source code in the following
listing.

Listing 5.9 Generic option type using classes (C#)

enum OptionType { Some, None }; #1

abstract class Option<T> {
private readonly OptionType tag;
protected Option(OptionType tag) { #A
this.tag = tag;

}
public OptionType Tag { get { return tag; } } #2

class None<T> : Option<T> { #3
public None() : base(OptionType.None) { }

3
class Some<T> : Option<T> { #4
public Some(T value) : base(OptionType.Some) {
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Value = value;
}
public T Value { get; private set; } #B
}
static class Option { #5
public static Option<T> None<T>() { #C
return new None<T>();
}
public static Option<T> Some<T>(T value) { #D
return new Some<T>(value);
}
}

#1 Enumeration with possible alternative

#A Derived class will specify the alterative

#2 Alternative represented by the instance

#3 Inherited class representing empty option

#4 Inherited class representing option with value
#B Value carried by the option

#5 Utility class for creating options

#C Creates empty option

#D Creates option with a value

The generic base class contains only Tag property (#1), which can have one of two
values specified by enumeration OptionType (#2). The tag is set in the constructors of
the two derived classes, None<T> (#3) and Some<T> (#4). The second derived class
carries a value, so it has a property called Value of type T. As usual in functional
programming, this property is immutable, so it is set only once in the constructor.

Finally, the code also includes a non-generic utility class Option. We've already
implemented similar classes in chapter 3 when implementing functional tuple and list types
in C#. The purpose of this class is to simplify the construction of option values. Instead of
using constructor directly (new Some<int>(10)), we can leverage C# type inference
when calling generic methods and write just Option.Some(10).

Now, how can we work with our option type in C#? The following snippet shows C#

version of code from listing 5.5 which tries to read a number from the console:
Option<int> Readlnput() {
string s = Console.ReadLine();
int num;
if (Int32.TryParse(s, out num))
return Option.Some(num);
else
return Option.None<int>();

}

Thanks to the use of our option type, the method can simply return a single result,
which may or may not contain a value. Before we see how we can work with the returned
value, we're going to add two useful methods to the Option<T> class. In F#, we used
pattern matching to tell the options apart; the methods in listing 5.10 allow us to write
similar code in C#.
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Listing 5.10 "Pattern matching" methods for Option class (C#)

public bool MatchNone() {
return Tag == OptionType.None; #A

}

public bool MatchSome(out T value) {
if (Tag == OptionType.Some) value = ((Some<T>)this).Value; #1
else value = default(T);
return Tag == OptionType.Some;

}
#A Return true when the value is 'None'
#1 For 'Some' value, return the value using 'out' parameter

Both of the methods return boolean that tells us whether the instance represents the
tested alternative. The second one has also one "out" parameter, which is set to the value
carried by the option type when the object is an instance of the Some class (#1), otherwise
the "out" parameter is set to a default value and false is returned. Listing 5.11 shows how
we can work with Read Input method using these two utility methods.

Listing 5.11 Working with option type (C#

void Testlnput() {
Option<int> inp = Readlnput();

int num;

it (inp.MatchSome(out num)) #A
Console.WriteLine("'You entered: {0}, num);

else if (inp.MatchNone) #B

Console.WriteLine(*"Incorrect input!');

}
#A Pattern matching for Some(num)
#B Pattern matching for None

Thanks to the MatchSome and MatchNone utilities, we don't have to explicitly cast
the value to the inherited class (e.g. SOme<T>) to access the value. However, it still lacks
many useful features of pattern matching. First of all, the compiler doesn't verify that we're
providing code for all of the branches. More importantly, it isn't possible to write nested
patterns, which is a common pattern in F#. For example, you might want to create an option
type carrying a tuple. This would be written simply as Some(1, ''One'") and the pattern
used with match construct could read values directly from the tuple: Some(num, Str).

Now we've seen how to implement an option type using generics in C#, we can turn our
attention back to F# and show how the built-in option type is declared in the F# library.

5.4.2 Generic option type in F#
Generic types in F# are essentially the same as generic classes in C#. They allow us to write
more general and reusable types. We've seen this need in the case of the option type,
because we'd like to be able to use exactly the same generic type for creating options that
carry different types as a value. But of course, we want to write type-safe code, so we need
to know what type is carried by the option type.

Just as in C#, we declare the type with a type parameter and then use that as the type
of the value stored in the Some alternative:
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type Option<"T> =
| Some of *T
| None

The syntax for declaring generic type is similar to that used in C#-we write type
parameters in angle brackets. Unlike in C#, we have to use special names for type
parameters so the name of the type parameter always starts with an apostrophe.

When creating an instance of generic class in C# or a value of generic type in F#, the
type parameter is "replaced" by the actual type used when creating the value. In C#, you
have to specify the type explicitly when calling the constructor, but in F# the type argument

is usually inferred by the compiler. Let's look at an example:
> Some("'Hi therel!l');;
val it : Option<string> = "Hi there!"

In this example, the compiler infers that we're creating an option containing a string
because we're giving it a string literal as the argument. It then deduces that the type
argument is String and the inferred type is Option<string>. We'll talk about type
inference in some more detail in the next section.

We've seen other syntax for writing generic types earlier. This is because F# is
compatible with OCaml which uses different notation. We'll use the .NET syntax when writing
generic types, but it's useful to understand both forms because you'll occasionally encounter
the OCaml syntax.

OCaml syntax for writing generic types

In OCaml syntax, type parameters are written before the name of the type, so our
pervious example of the generic option type could be written like this:

type T Option = (...)

When creating a value of this type, F# also prints its type using this notation. For
example, the type of Some(10) would be displayed as iNt option. When declaring
types with more than one type argument, the arguments are written in braces (which
resembles the syntax for creating tuple values):

type ("T1l, "T2) OptLabeledTuple = (...)

It is important to note that this is just a syntactical difference and F# treats both
declarations equally. If you declare a type using OCaml syntax and later use the .NET
syntax when working with it (or vice versa), your code is still absolutely correct. It is just
a matter of style-but it's a good idea to be consistent just for the sake of readability.

We can declare generic types with more than one type parameter in exactly the same
way as in C#. The following example shows how to create a generic discriminated union with

two discriminators that allows us to store two values and optionally specify labels for them:
> type OptLabeledTuple<"T1l, "T2> =
| LabeledTuple of string * "T1 * string * "T2
| UnlabeledTuple of "T1 * "T2
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-9

> LabeledTuple(*'Seven*, 7, "Pi", 3.14);;
val it : OptLabeledTuple<int, float> =
LabeledTuple (*'Seven™, 7, "Pi', 3.14)

You can see that when we create the value, the F# compiler correctly infers a type for
both of the type arguments. Type inference is one of the cornerstones of F#, so let's look at
some more examples and compare it with the inference available in C# 3.0.

5.4.3 Type inference for values

In general, type inference is a mechanism that deduces types from the code. Its purpose is
to simplify code by removing the need to specify all types explicitly. In this section, we'll look
at type inference for values, which lets us create values easily without writing their types.
This isn't the only place where type inference occurs—especially in F#-so this is just the first
part of description of the type inference. We'll talk about type inference for functions (and
methods) and about automatic generalization in the next chapter.

TYPE INFERENCE IN C# 3.0

In C#, type inference for values is primarily represented by the var keyword, which is a
new feature in C# 3.0. We've seen it already, but listing 5.12 shows a few examples so we
can discuss it in more detail.

Listing 5.12 Type inference using 'var' keyword (C#)

var num = 10 + (2 * 16); #A
var str = String.Concat(new string[] {"Hello ", "world!"}); #B
var unk = null; #1

#A Infers type 'int'
#B Infers type 'string’
#1 Error CS0815!

The type inference mechanism simply looks at the right side of the assignment operator
and works out the type of the expression. It has to do this even when you're not using var,
to make sure that the variable you're assigning to is compatible with the value you're trying
to assign. However, in the last case (#1), the C# compiler refuses to infer the type and
reports an error message. While the null literal can be implicitly converted to any .NET
reference type (or even a nullable value type) it doesn't actually have a real .NET type itself.
The compiler doesn't know which type we want for the unk variable, so we have to specify
the type explicitly. We've been using the var keyword with our option type earlier, so let's
analyze several examples in detail:

var sl = Option.Some<int>(10);

var s2 = Option.Some(10); #A
var nl = Option.None<int>();

var n2 = Option.None(); #B

#A Type inference for 'Some’ method call
#B Error CS0411!

The first and third lines are unsurprising: we're calling a generic method and specifying
its type arguments explicitly, so the compiler deduces the return type. On the second line,
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we're not specifying a type argument for the method, but the compiler knows that the type
of the first argument has to be compatible with the type argument, and it correctly deduces
that we want to create a value of type Option<int>**. However, on the last line, we get
an error saying "The type arguments for method '...' cannot be inferred from the usage." This
is because here, the compiler doesn't have enough clues to know what the type should be.

Type inference in C# is limited in many ways, but it's still pretty useful. In F#, the
algorithm is smarter and can infer the type in more cases, so let's look at some F#
examples.

TYPE INFERENCE IN F#

In F#, we can often write large swathes of code without explicitly specifying any types,
because the type inference mechanism is more sophisticated. When creating values, we use
the let keyword and, in fact, we haven't yet seen any example where we would need to
specify the type explicitly with a let binding. Listing 5.13 shows some examples that you'd
probably expect to work.

Listing 5.13 Type inference for basic values

let num = 123 #A
let tup = (123, "Hello world™) #B
let opt = Some(10) #C
let input = printfn "Calculating..." #D

if (num = 0) then None
else Some(num.ToString())
#A int #B int * string #C int option #D string option

Out of these bindings, only the last example is particularly interesting or surprising. As
we already know, everything in F# is an expression, so type inference has to work with any
F# expressions (meaning any F# code, because everything is an expression). In this case,
we have code that first prints something to screen and then returns an option type using a
conditional expression. Note that whitespace is significant in F#'s lightweight syntax, so the
1T expression should start at the same offset as the printfn call.

It sees that the value assigned to Input is returned from a conditional branch. From
the true branch, it can see that it will be some option type (because we're returning None),
but it doesn't yet know what is the type instantiation. That's inferred from the false branch,
where we're returning Some value containing a string.

¥ That's not the only type which could be valid here - we could want Option<long> for
example. The rules for type inference with generic methods in C# 3.0 are long and
complicated, but if situations where the compiler is willing to perform the inference, it usually
gets the desired result.
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I mentioned that the F# type inference is more sophisticated, so let's now look at
several slightly tricky examples:

let a = null #1
let (a:System.Random) = null #2
let a = (null:System.Random) #2

#1 Inferred type is obj (System.Object)
#2 Different ways for adding type annotations

In the first case (#1), F# behaves differently to C#. Instead of reporting an error, F#
automatically chooses the most general reference type, which is in this case .NET type
System.Object abbreviated as ObJ in F#. The next two examples (#2) show two
different ways for adding a type annotation. In general, you can place type annotation

around any block of F# code if you need to. Now, let's look at one more interesting case:
> let n = None
val n : "a option

Interestingly, this doesn't cause an error and instead F# creates a generic value. This
construct doesn't have a C# equivalent; it's a value with only partially specified type. Instead
of a concrete type (such as Int or Obj), F# uses a type parameter (and you can see that
F# automatically names type parameters using letters starting with "a"). The type is fully
specified later when using the value. We can for example compare the value with different

types of option values without getting an error:
> Some(''testing...") = n;;
val it : bool = false
> Some(123) = nj;;
val it : bool = false

Now that we know how to declare and create generic values, we should also discuss how
to write functions that use them! We'll talk about generic functions in detail them later, but
for now I'll show you just one example to whet your appetite.

5.4.4 Writing generic functions

Most of the functions or methods that work with generic types are higher order, which means
that they take another function as an argument. This is such an important topic that I've
given it a whole chapter to itself, but we can already write a generic function without
straying into higher order territory. We'll create a function that takes an option type and
returns the contained value when it contains a value. If the option doesn’t contain a value,

the function throws an exception. We can start by looking at the C# version:
T ReadValue<T>(Option<T> opt) { #A
T v;
if (opt.MatchSome(out v)) return v;
else throw new InvalidOperationException();

}

#A Generic method with type parameter T

As you can see, we have created a generic method with a single type parameter. The
type parameter is used in the method signature as a return value and also as a parameter to
the generic Option<T> type. Inside the body, we use it once again to declare a local
variable of this type.
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This is exactly the kind of situation where F#'s type inference really shines. Take a look

at the same thing implemented in F#. Interestingly, we still don't have to specify any types:
> let readvValue(opt) =
match opt with
| Some(v) -> v
| None -> failwith "No value!";;
val readvalue : "a option -> "a #A
#A Inferred signature with type parameter

As you can see from the inferred type signature, the function is generic in exactly the
same way as the C# version. The feature that allows this is called automatic generalization
and we'll discuss it in depth later, but for the moment, here's a 20 second description: The
F# type inference algorithm searches for the most general way to assign the types and
leaves everything else as a generic type parameter. In this case, it knows that the argument
(opt) is an option type, because we're matching it against Some and None discriminators.
It also knows that the function returns a value contained in the option type, but it doesn't
know what type it is, so it makes this type a generic type parameter.

Hopefully this has piqued your interest and you're looking forward to hearing more
about both automatic generalization and higher order functions-but first we should really
finish our tour of common functional values. In other languages you wouldn't normally think
of a function as a value, but that's one of the essential aspects that make functional
programming so powerful and elegant.

5.5 Function values

We've already seen an example of using functions as values in chapter 3, where we wrote a
function to aggregate list elements using another function given as an argument. In this
way, we were able to use the same aggregation for different purposes - once we used it to
calculate the sum of all the elements in a list and later we found the largest element in a
collection.

Working with collections of data is probably the best way of showing why using functions
as values is important. Having said that, it's far from the only scenario where this concept is
useful, as you'll see in the rest of the book. Let's start by looking at an example of
imperative code that selects even numbers from the given collection and returns them in

another collection:
var nums = new int[] {4,9,1,8,6};

var evens = new List<int>(); #A
foreach(var n in nums) #A
if (n%2 == 0) #B
evens.Add(n); #A

return evens;
#A Boilerplate code
#B The important part

The annotation refers to all three lines marked with #A.
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Imagine which lines of the above code you would need to modify if you wanted to filter
the collection differently, for example to return all positive numbers. Perhaps surprisingly, 3
of the 4 lines shown (not counting the first one which just initializes data) are just boilerplate
code that would stay exactly the same. By using a function as a value and by accepting it as
a parameter we can extract the common parts of the code as a reusable method. The calling
code then just has to specify an argument which describes the part which varies for different
filters: the predicate to apply to each element.

In fact, many standard functions such as filtering are already available in F# and in .NET
3.5 LINQ added almost the same functions for working with collections. Some of them are
named differently though. In F# a function which takes a predicate and performs filtering is
called Filter, whereas in LINQ it's called Where (similar to a SQL WHERE clause) Listing
5.14 shows an implementation of the previous example using these functions.

Listing 5.14 Filtering using predicate

// C# version

using System.Ling; #A
var nums = new int[] {4,9,1,8,6};

var evens = nums.Where(n => n%2 == 0); #1
PrintNumbers(evens); #B

// F# version with output from F# interactive

> let nums = [ 4; 9; 1; 8; 6 ]

val nums : int list

> let evens = List.filter (fun n -> n%2 = 0) nums #2
val evens : int list = [ 4; 8; 6 ]

#A Required to find the 'Where' extension method

#1 Filtering using predicate

#B Print the results to the console

#2 Filtering using predicate

If we had to write the predicate as a normal method in C# or function (written using
let) in F#, it wouldn't make the code any shorter. The key feature that makes the code
brief is the ability to write the function (in this case the predicate) inline directly when calling
Where method (#1) or Filter function (#2).

In C#, this notation is called a lambda expression and in F# it's a lambda function. As
most of this book is about F#, I'll use the F# name consistently throughout. In both cases,
the word "lambda" refers to the Greek letter from lambda calculus, which I mentioned briefly
in chapter 2.

What is a function value?

In functional programming languages, the existence of functions is motivated by
mathematical notion of a function. This is in many ways different to the way that
programmers with an imperative background intuitively think about functions. In
imperative programming, a function is a routine that takes some arguments, executes
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some code and returns the result. However a function in this sense can do anything. Most
importantly, it can use and modify global state, so the result of calling the same function
with exactly the same arguments can differ. The most obvious example of this is probably
a pseudo-random number generator - it wouldn't be very random if it always returned the
same result!

In math, a function is more a relation between the arguments and the result. This means
that a mathematical function always returns the same result given the same arguments.
Clearly, this is the way our predicate from the previous example works. It always returns
the same result for the same argument (Erue for even numbers and False for odd
ones). Most of the functions we'll write will behave like this, but we'll see some interesting
and useful exceptions from this rule at the end of the next chapter. You might like to
think about what a mathematical pseudo-random number generator function would have
to look like...

For those who come from an object-oriented background, there is one more way to look
at functions. You can think of a function value as an object implementing a really simple
interface with just a single method. Using this understanding, the predicate from the
previous example corresponds to the following interface:

interface Function_Int _Bool {
bool Execute(int arg);
3

In C#, delegates are somewhat similar to functions and C# 3.0 moves them very close to
this simple concept. However, the concept of a function as it's used in F# and functional
programming is based primarily on the notion from mathematics. In this sense, F#
functions are a lot more straightforward then interfaces or delegates - they are just
functions.

In the earlier examples, we've seen that lambda functions are a key element that makes
concise functional style of programming possible. We'll work with them all the time through
the entire book, so let's look at them in more detail.

5.5.1 Lambda functions

In F#, lambda functions create exactly the same function as the usual declaration using a
let binding. In C#, there is no built-in concept of a function, so we work either with
methods or with delegates. When you write a lambda function it is converted into a delegate
or an expression tree, but you cannot use lambda function in C# to declare an ordinary
method. Vitally, delegates can be also used like any other value in C#, so you can pass them
as arguments to other methods, which in turn means we can use them to write higher order
functions in C#. Let's start by looking at a short F# interactive session, then write similar
code in C#. Listing 5.15 shows how we can write a function in F# using a let binding and
lambda function syntax.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
131

Listing 5.15 Using lambda functions and let bindings (F# interactive)

> let squarel(a) = a * a;; #A
val squarel : int -> int #1
> let square2 = fun a -> a * a;; #2
val square2 : int -> int #3
> let add = fun a b -> a + b;; #4

val add : int -> int -> int

> add 2 3 #B
val it - int =5

#A Square written using let binding

#1 Its signature

#2 Square written using lambda notation

#3 Signature is the same

#4 Adding two integers
#B Calling the function

We started off by writing a simple function called squarel that calculates square of
the given number, in the same way we've seen several times before. After we've entered it,
F# prints its signature (#1) (the type of the value) which tells us that it takes an integer and
returns an integer. Next, we declare another value called square2 and initialize it to a
function using lambda notation (#2). As you can see by looking at the output (#3), the two
declarations are equivalent. Finally, we declare another value (#4) which shows the syntax
for a lambda function with two parameters. After seeing these examples, you could probably
rewrite any F# function written using a let binding to use the lambda notation and vice
versa.

Now, let's see how we can write the same thing using lambda functions in C#:

Func<int, int> square = #A
a=>a®* aj;
Func<int, int, int> add = #B

(a, b) => a + b;
#A Square as a delegate using lambda function
#B Lambda function with multiple parameters

We're using a delegate type called Func, which is available in .NET 3.5. This delegate
represents a function and its type arguments specify the types of the parameters and the
return type. Notable differences between the C# and F# syntax are that the F# version
starts with fun keyword and that in C# you specify multiple arguments in parentheses and
also that in C# you have to specify the type explicitly.

From delegates to functions in C#

As already mentioned, functions in C# are represented using delegates and in particular
the new FuNC family of delegates. In one sense, lambda functions and this delegate are
a revolutionary change adding functional programming to C#, but it can also be seen as
just a natural evolution of features that were already available in C#. This book usually
takes the former view, but we'll look at the evolutionary aspect just for a moment.
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In the first version of C#, we already had delegates, but without generics, you had to
declare a separate delegate for every combination of return and parameter types. When
creating delegates, we also had to write the code inside a nhamed method, so we could
write a code like this:

delegate int Funcintint(int a, int b);
Funcintint add = new Funclntint(Add);

The code assumes that there is an Add method with two integer parameters and an
integer return type. C# 2.0 was a big step forward. It added generics, so we could
declare a generic delegate like FUNC and use the new anonymous methods feature to
create them instead of writing named method:

delegate R Func<T1l, T2>(T1 argl, T2 arg2);
Func<int, int, int> add = delegate(int a, int b) { return a + b; }

Finally, .NET 3.5 and C# 3.0 came with several other changes. The FUNC delegate was
added to the system libraries, so you no longer have to declare it yourself, and C# added
lambda expressions that allow us to write the same code in a much more succinct way:

Func<int, int, int> add = (a, b) => a + b;

Lambda expressions have another interesting feature, which is that they can be
converted into expression trees when we declare them as the Expression type. this
allow us to treat the code of the lambda expression as data and obtain some
representation of the source code of the lambda expression. This is very important for
using LINQ with databases, but it isn't a key feature for us now. Also, due to this feature,
we can't use Var keyword when declaring lambda expressions, because the compiler
needs to decide whether to compile it as a delegate (FUNC) or whether to store the
expression tree (Expression). You can find more information on our web site
http://www.functional-programming.net.

The Func delegate and lambda expressions in C# are very similar to functions in F#,
but F# had functions right from its inception, so it has little need for delegates. It
supports using delegates mainly for interoperability reasons, but you probably won't use
them very often.

We've looked at a few examples of lambda functions in both F# and C#, but there are
still a few important things to look at.

TYPE ANNOTATIONS, ACTIONS AND STATEMENT BLOCKS

In the previous examples, we didn't have to specify the parameter types explicitly. This is
the normal behavior in F#, because its type inference capabilities are very powerful and in
the previous examples it had enough clues to deduce the type. The situation in C# is quite

interesting in a different way.
Func<int, string> toStrl
Func<int, string> toStr2

num => num.ToString();
(int num) => num.ToString();
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Both lines show exactly the same code, with the sole difference being that the second
line explicitly specifies the type of the nUm parameter. Both lines are correct, so how does
C# know the type of Nnum in the first line? The answer is that it uses the type from the
variable declaration. It knows that Func<int, string> is a delegate that takes an
integer as an argument, so it infers that the type of num should be integer.

Explicit parameter typing is rarely needed in C#. You can't use the var keyword to
declare lambda functions anyway, so C# will usually be able to deduce the type. One
exception is where we're using the lambda function as an argument to a specific generic
method. Even in F# we may occasionally need to give the compiler more information, which
we do with type annotations. Listing 5.16 shows lambda function with a typo annotation to
explicitly state the type of its parameter.

Listing 5.16 Advanced lambda functions (F# interactive, C#)

// F# version of the code (using F# interactive)
> let sayHello =
(fun (s:string) -> #1
let msg = String.Format('Hello {O}!", s)
Console.WriteLine(msg)

#2
val sayHello : string -> unit #3
// C# version of the code
Action<string> sayHello = #4

s => {
var msg = String.Format(‘'Hello {0}!", s);
Console.WriteLine(msQg);
¥ #5
#1 Using F# type annotation
#2 Complex lambda function is enclosed in braces
#3 Inferred function signature
#4 Function declared as an Action
#5 Lambda function written as a statement block

This example shows several interesting things. The first is the use of a type annotation
in the F# version (#1). The syntax for type annotations in lambda functions is exactly the
same as anywhere else in the F# code. The reason why we have to use it in this case is that
there are several overloads of the String.Format method (with arguments of type int,
string, and so forth); F# wouldn't be able to determine which overload to use without the
type annotation.

Another notable thing is that the body of the lambda function isn't just a single
expression. In F#, we added a single let binding and enclosed the whole lambda function in
braces (#2). In the C# version, we added a variable declaration and changed the syntax to
use statement block. A statement block means that the body of the lambda function is
enclosed in curly braces (#5) which allows us to write several statements inside the body. To
return a result from a lambda function using a statement block, you use the return
keyword as if you were returning a result from a method.
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However, in this example the lambda function doesn't return a result at all. In F# where
unit is an ordinary type, the inferred signature of the function is sString -> unit
(#2). This is an ordinary F# function that returns unit (that is, nothing) as a result. In C#,
we cannot write Func<string, Vvoid> because void isn't a real type. For this reason,
C# has another family of delegate types called ACtion, which represents lambda functions
with no return type. The ACction and Func delegates are very useful and they are in many
ways similar to the F# function type, so let's look at the type of a function value in more
detail.

5.5.2 The function type

We've seen that the type of function values in F# is written using the arrow symbol. This is
in many ways similar to the way tuples are constructed. Earlier, we've seen that a tuple type
can be constructed from other simpler types using a type constructor with an asterisk (e.g.
int * string). The function type is constructed in a similar way, but using the function
type constructor (e.g. Int -> string). Of course, there is no value constructor for
functions. In some sense, a function is a relation that specifies return value for every
possible input, so instead of specifying enormous number of all combinations of this relation,
we specify code that calculates the result using lambda functions.

In C#, you can see this similarity as well. If we use our generic Tuple type and Func
delegate, we can write the examples from previous examples as Tuple<int, string>
and Func<int, string>. Instead of using built-in types as we can in F#, we have
similar constructs implemented as ordinary C# types using generics. However, there is a
very important difference between the F# function type and C# Func (or Action)
delegate. The difference is that the type of an ordinary F# function is exactly the same as
the type of an equivalent function written as a lambda function. In C#, lambda functions are
converted into delegates and a delegate isn't the same thing as method. The distinction is
subtle but important: we'll see it more clearly when we consider functions with multiple
parameters in F#. Before that, let's look how we can use function value as an argument or a
return value.

FUNCTIONS AS AN ARGUMENT AND RETURN VALUE

We've already used a function as an argument in C# and F# in chapter 3, so the basic idea
this shouldn't be new to you. However, we haven't used lambda functions in that way yet.
Lambda functions are the easiest way to write a function this is just used as an argument to
another function. Listing 5.17 provides a simple example. The function at the start of the
listing takes a number and a function as arguments and calls the function twice, using the
result of the first call as an argument for the second.

Listing 5.17 Function as an argument in C# and F#

// Using C# // Using F# interactive
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int Twice #1 > let twice n (f:int -> int) =
(int n, Func<int,int> ) { #1 f(F(n)) #3
return F(F(n)); val twice :
} int -=> (int -> int)
-> int #4

var r = Twice(2, n =>n * n); #2

// Result: r == 16 > twice 2 (fun n -> n * n) #5
val it : int = 16

#1 C# method taking function as an argument

#2 Calling using lambda function

#3 F# function taking function as an argument

#4 Type of the function

#5 Calling using lambda function

In this example, we can see all the important features in a single place. It shows how to
declare a C# method and an F# function that takes a function as an argument (#1, #3) and
how to call them using lambda functions (#2, #5). In F# we use type annotations to tell the
F# compiler that we want to work only with integers. As we'll see in the next chapter,
without this annotation it would automatically make the function more general. This is
usually desirable, but I wanted to keep this example as simple as possible.

In the C# version, TwWiCe is a method with a delegate as a parameter, but in the F#
version it is a function, so when we look at the F# signature (#4), we can see that it is
constructed with just a function type constructor (arrow). The second parameter is a function
taking an integer and returning an integer; the overall type is a function with two
parameters.

Since a function is an ordinary value, we can also write a function (or method in C#)
that returns a function as a result. Listing 5.18 shows a function that takes a number as an
argument and returns a function that adds this number to any given argument.

Listing 5.18 Function as a return value in C# and F#

// Using C# // Using F# interactive
Func<int, int> Adder(int n) { > let adder(n) =
return (&) => a + n; #1 (fun a -=> a + n) #1
} val adder : int -> int -> int #2
Func<int, int> addl0 = #3 > let addTen = adder 10 #3
Adder(10); val addTen : int -> int #4
var r = add10(15); #5 > addTen 15 #5
// Result: r == 25 val it : int = 25

#1 Adder takes an intasan argument and returns a function as a result. In C# the return type is
specified explicitly and it is a FUNC delegate, while in F# the return type is deduced by type
inference: it’s a function with type INt —> iInt.

#2 As we'll see later, the printed type signature represents a function taking integer and returning a
function. We can see it more clearly if we add braces to the printed signature. Then it would be
writtenas INt -> (int -> int).

#3, #4 Calling the function (or C# method) that returns a function. In C# the result is a delegate and in
F# it is an ordinary function. As the printed type signature shows (#4) it takes integer as an argument
and returns also an integer.
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#5 Calling the returned function (or FUNC delegate in C#); in F# we're using it as an ordinary
function and in C#, we're calling it as a delegate.

Below the code with bullets [WritingDevices_BulletsSample.png]

The listing shows returning function as a result using a very simple example, but we'll
see in the next few chapters that returning one function from another can be very useful.
There is however one thing about the code that deserves further explanation. If we look at
the type signature of the F# adder function, we can see that its type is int -> Int ->
int. This looks like a function with two arguments, but it’s probably easier to think of it as
int -> (int -> iInt). They mean exactly the same thing, because F# and functional
languages in general have a different notion of functions with multiple parameters to the
normal object-oriented understanding.

5.5.3 Functions of multiple arguments

First of all, let's quickly review what options we have when writing a function. In F#, we can
use tuples when writing functions with multiple arguments. Let's look at an example of a
function that adds two integers written in this style. I'll use the lambda function syntax, but

you could get exactly the same results using simple let-binding in F# as well.

> let add = fun (a, b) -> a + b;;

val add : int * int -> int

As you can see by looking at the type signature, the function takes a single argument
which is a tuple of the form (INt * INnt) and the return type is INt. This corresponds to

the C# lambda function written in this form:
Func<int, int, int> add =
(a, b)) ==>a+b
The Func<int, int, iInt> delegate represents a method which has two
arguments of type Int and returns an INt, so this is very similar to the F# version written

using tuples. You can see this similarity when calling the functions as well:
let n = add(39, 44) #A
var n = add(39, 44) #B
#A F#: Calling a function with type int * int -> int
#B C#: Calling a Func<int, int, int> delegate

The syntax is exactly the same to call an F# function with a tuple as an argument as it is
to call a C# Func delegate. Now, let's write the same code in F# using the more idiomatic

F# style for writing functions with multiple arguments:
> let add = fun a b -> a + b;;
val add : int -> int -> int

This is the same signature we saw earlier when we were returning a function. We can
read it as int -> (int -> int). That would be a function that takes the first argument for the
addition and returns a function. The result is then a function taking the second argument.
We can rewrite the code in this way using two lambda functions, nesting one inside the

other:
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> let add = fun a -> fun b -> a + b;;
val add : int -> int -> int

If this is the first time you've come across this idea, it can seem very odd. How can a
function returning another function be the same as a function returning an integer? How can
a function with just one parameter be the same as a function with two parameters? Don't
worry too much if it doesn’t make sense right away-I promise it will make sense eventually.

Tuples with more than two elements

Earlier on we implemented a generic type Tuple<A, B> for representing tuples in C#,
but this class supports only tuples with two elements—-unlike the real F# tuple type. How
could we use it to represent F# type INt * string * bool for example?
Instead of implementing another Tuple class with three elements, we can nest the
tuples:

Tuple<int, Tuple<string, bool>> tup = (...);

When we declare a variable like this, it can carry three values. To get the integer value,
we can write tup.-FIrst, string is stored in tup.Second.First and finally,
boolean value in tup - Second . Second.

This is similar to nested functions, such as F# type INt -> (string -> bool).
However, there is a difference between tuples and functions. The function type above
means the same thing as int -> string -> bool, while an F# tuple with three
elements (INt * string * bool) is different to a nested tuple type such as int
* (string * bool).

You may be wondering if there's any way of rewriting our previous example in C# 3.0-
and indeed we can. Instead of creating a delegate of type Func<int, int, iInt> we
can create a delegate of type Func<int, Func<int, Int>>. This is closer to the F#

understanding of a function with a signature of int -> (int -> int):
Func<int, Func<int, int>> add =
a=>b=>a+b; #1
int n = add(39)(44); #2
#A Nested lambda functions
#B Adding numbers

The declaration is written using two lambda functions (#1) just like our previous F#
example. When adding numbers using this delegate (#2), we first have to invoke the first
delegate, which returns another delegate. We then invoke the second delegate. In F#, where
this is an entirely normal way of working with functions, the compiler optimizes it to make it
more efficient.

This is all very interesting, I hear you say-but what’s the point of taking functions apart
in this way? It turns out to be surprisingly powerful.
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PARTIAL FUNCTION APPLICATION
To show a situation where this new understanding of functions is useful, let's turn our
attention back to lists. Imagine that we have a list of numbers and we want to add 10 to
every number in the list.

In F# this can be written using the List-map function; in C# we would use the
Select method from LINQ:

list_Select(n => n + 10) #A
List.map (fun n -> n + 10) list #B
#A C# version

#B F# version

That's pretty brief already, but we can be even more concise if we already have the add
function from the previous examples. The function that List.map expects as a first argument
is of type INt -> INt; that is a function taking an integer as an argument and returning

another integer. The technique that we can use is called partial function application:
> let add a b = a + b;;

val add : int -> int -> int #1
> let addTen = add 10;;

val addTen : int -> int #2
> List.map (addTen) [ 1 .. 10 ];; #3

val it - int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20]

> List.map (add 10) [ 1 .. 10 ];; #4

val it - int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20]

The add function has a type int -> int -> int (#1). Since we now know that it actually
means that the function takes an integer and returns a function, we can simply create a
function addTen (#2) that adds 10 to a given argument just by calling add with only the
first argument. We can then use this function as an argument to the List_.map function
(#3). This is sometimes useful, but what is more interesting is that we can use partial
function application directly when specifying the first argument for LisSt_map (#4).

If we look at the types involved then the type of the add function is int -> (int -
> int) and by calling it with a single number as an argument, we get the result of type
int -> iInt which is exactly what the List.map function expects. Of course, we can
write exactly the same code in C# as well if we declare the add function using nested

lambda functions:
Func<int, Func<int, int>> add = #A
a=>b=>a+ b;

list.Select(add(10)); #B
#A Declaration using nested lambda functions
#B Calling 'Select' using partial function application

Just as we saw in the F# version, we call the add delegate and get a result of type
Func<int, int>, which is compatible with the Select method. However, in C# it is
more convenient to use the FUNC delegate with multiple arguments and specify the
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argument to the Select method using another lambda function, because the language
supports this better.

PARTIAL FUNCTION APPLICATION AND CURRYING

A term that you can sometimes hear when using the partial function application is
currying. This refers to converting a function that takes multiple arguments (as a tuple)
into a function that takes the first argument and returns a function taking the next
argument and so on. So, for example the function of type int -> int -> intisa
curried form of a function that has a type (int * int) -> int. Partial function
application is then the use of a curried function without specifying all the arguments.

As I've already mentioned, choosing the right style in F# can be difficult. Code that is
written using tuples is sometimes easier to read for a large number of arguments, but it can't
be used with partial function application. In the rest of the book, we'll use the style that feels
more appropriate in each case, so you can get the intuitive understanding of which one is
better. Most importantly, we'll use tuples in cases where it makes the code more readable
and the style allowing partial function application in situations where that gives us clear
benefits. We'll see plenty of examples of the latter when we look at higher order functions in
the next chapter.

5.6 Summary

In this chapter we've been talking about values-the fact that the discussion went into a
lot of detail about functions just highlights the fact that in F# functions are values! We've
seen several ways for creating different values and corresponding composed types. We
started by looking at tuples, which gave us a way to store multiple values as one. Next,
we've seen discriminated unions that allow us to represent values consisting of various
alternatives. When declaring discriminated union, we specify what are the options and a
value can then be one of the declared options. We also looked at generic types that are
similar to generic classes in C#. We've used them to declare types that can be used for
carrying different values, which makes the code more general and reusable.

As well as looking at the theory behind these types, we've looked at some of the
common uses of them in F#. We've seen that multiple values (tuples) are useful for
returning multiple results from a single function, and how this can be more appealing than
using C# "out" parameters. A particularly interesting alternative value (discriminated union)
is the option type, which can represent values that can be undefined. This is a very useful
alternative to using nul I values, as the language forces the calling code to write a case that
handles the "undefined" case when we use pattern matching.

Finally, we looked at the function type in F# and its equivalent in C# - the Func
delegate. We've seen how functions can be created using lambda function syntax and how
they can be used as arguments as well as return values from another function or a method.
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In one last twist to function values, we've also seen a very useful technique called partial
function application.

In this chapter we've seen only the basic ways for working with values. This is because
many of the operations aren't usually written directly and are instead use higher order
functions. Working with values in this way is the main topic for the next chapter. Using
higher order functions, we'll be able to hide the logic for working with the value in a function
and specify just the most important part of the operation using a function value given as an
argument.
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Processing values with higher
order functions

In the previous chapter, we introduced the most common functional values. We've seen how
they can be constructed and how we can work with them using pattern matching. However,
expressing all the logic explicitly like this can be tedious, especially if the type has a
complicated structure.

The types of values that are composed from one or more simpler values include tuples
and options from the previous chapter, but also lists from chapter 3. Tuples are in general
formed from values of different types, so they contain value of one type exactly once.
Options can contain zero or one value and lists contain any finite number of elements. When
working with these composed values, we often want to apply some operation to the
underlying values. This involves recurring and boilerplate task of deconstructing the
composed value into its components and reconstructing it after we apply the operation.

In this chapter, we'll see how to process values in an easier way. We'll do this by writing
functions that abstract us from the underlying structure of the value and can be simply
parameterized to perform a particular operation with some part of the value. We'll see that
this approach gives us more concise way than using pattern matching explicitly.

We'll first look at higher order and generic functions from a technical point of view, to
provide some background for our discussion about value processing. Then we'll talk about
processing functions for all the values that we've discussed so far, and some interesting
relationships between processing functions for different kinds of values.

6.1 Generic higher order functions

Higher order functions are a way for writing generic functional code, meaning that the same
code can be reused for many similar but distinct purposes. This is a key of modern
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programming, because it allows us to write fewer lines of code by factoring out the common
part of the computation.

Generic code in functional and object-oriented programming

When writing generic code, we usually want to perform some operation on the value that
we obtain, but since the code should be generic, we don't want to restrict the type of the
value too much: we want to allow further extension of the code.

The elementary (but not always the best) solution to this problem using object-oriented
programming is to declare an interface. The actual value given to a method will have all
operations required by the interface, so it will be possible to perform needed operations
on the value. A trivial example in C# might look like this:

interface ITestAndFormat {

bool Test();
string Format();

3
void CondPrint(ITestAndFormat tf) {

if (tf.Test()) Console.WriteLine(tf.Format());
3

In functional programming, the approach is usually to work with generic methods that
use type parameters and can work with any type. However, we don't know what
operations can be performed on the value, since the type parameter can be substituted
by any actual type. As a result, functional languages use a different method for specifying
operations - they pass functions for working with the value as additional arguments. The
functional version of the previous example in C# would look like this:

void CondPrint<T>(T value, Func<T, bool> test, Func<T, string> format) {
iT (test(value)) Console._WriteLine(format(value));

For a small number of functions this is a very efficient method, because we don't need to
declare the interface in advance. However, for more complicated processing functions, we
can still use interfaces as we'll see in chapter 9. Also calling the function is easier,
because we can implement the operations using lambda functions. As we'll see in section
6.5, writing a code like this in F# is also largely simplified by the use of type inference.

Higher order functions are very important for functional programming and we'll see how
they can be used for working with several functional values shortly. Methods like
CondPrint from the previous sidebar will be quite important for us, so let's look how we
can implement the same functionality in F#.

6.1.1 Writing generic functions in F#

We've already seen a simple generic function in the previous chapter, but it only used a

single argument which was a generic option type. Listing 6.1 shows an F# implementation of

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
143

the CondPrint method from the sidebar above. It takes three arguments - a value, a
function that tests whether the value should be printed and a function for formatting the
value.

Listing 6.1 Generic function ‘condPrint’' (F# interactive)

> let condPrint value test format = #1
if (test(value)) then printfn "%s" (format(value)) #A
val condPrint : "a -> ("a -> bool) -> ("a -> string) -> unit #2
> condPrint 10 (fun n -> n > 5) #B
(fun n -> "Number: " + n.ToString(Q));; #B

Number: 10

#1 Function with three arguments

#A Calling functions given as arguments
#2 Inferred type signature

#B Test the function

As you can see, we've declared a function with three parameters using a let binding
(#1), but we didn't need to specify the type of any of the parameters. This is because F#
type inference works for functions too. We'll see later just how sophisticated it can be. For
now, we can just be content that it automatically infers the type signature of the function
(#2), which corresponds to our previous generic method in C#.

SYNTAX FOR WRITING HIGHER ORDER FUNCTIONS

In chapter 4, we were discussing whether it is better to pass multiple pieces of data to a
function as separate arguments (for example add 2 3) or as a tuple (for example
add(2, 3)). When writing higher order functions, we'll use the first style, because this
makes it easier to use lambda functions as arguments. It also supports the pipelining
operator, which we'll see shortly.

Another way of representing generic functionality in F# is to write custom operators.
We'll want to use these later, so let's take a brief look now, and also introduce the pipelining
operator-a particularly useful operator from the F# library.

6.1.2 Custom operators

Custom operators are defined using let bindings in a similar way to functions. They can use
any characters from the usual F# mathematical (+/-*<>) or logical operators (!&]=) and
also several other characters ($%.?@"~). When declaring an operator, you enclose its name
in braces, which is the only difference from a normal let binding. Be careful when using an
asterisk, because (* is a beginning of multi-line F# comment-the solution in that case is to
add additional space between the parenthesis and asterisk. Listing 6.2 shows how to declare
and use a simple operator for working with strings.

Listing 6.2 Working
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> let (#>) a b =a + "\n>" + b;; #A

val ( +> ) : string -> string -> string

> printfn "%s" (“"Hello world!" +> #B
"How are you today?" +> #B
"1'm fine!™);; #B

>> Hello world!

>> How are you today?

>> 1"m fine!

#A Operator for concatenating strings in a special way
#B Concatenate several messages

The benefit of using a custom operator instead of a function is that you can use it with
infix notation. This means that instead of concat "A"™ (concat "B'" ''C'), we can
write ""A"™ +> "B +> "'C"". This is particularly useful when applying the operator several
times as in our previous example, because then you don't have to wrap each call in braces.

SIMULATING CUSTOM OPERATORS IN C#

In C# you can't declare new operators, although you can overload existing ones. However,
the same pattern can be achieved to some extent using extension methods. This is a new
feature in C# 3.0, so we briefly introduce them in a sidebar.

Extension methods

In C#, every method has to be wrapped in a class and operations that work with object
are part of the class declaration and can be called using dot-notation. Extension methods
give us a way to add new method for working with an object, without modifying the
original class declaration. Previously, this could be done by writing static method like this:

StringUtils._Reverse(str);

This is very impractical though, because finding a static method in some "Utils" class is
quite difficult. In C# 3.0 we can implement ReVerse as an extension method and then
call it this way:

str_Reverse();

Implementing an extension method is quite easy, because it is just an ordinary static
method, with a special modifier. The only difference is that it can be invoked as an
instance method using dot-notation. However, it is still static method, so it can neither
add new fields nor access private state of the object:

static class StringUtils {
public static string Reverse(this string str) { /* ... */ }
}

All extension methods have to be enclosed in a non-nested static class and they have to
be static methods. The keyword thiS is used before the first parameter to tell the
compiler to make it an extension method.
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If we implement the string concatenation in the previous example as an extension
method, we'll get syntax very similar to the original F# version. The listing 6.3 shows the
same code written using standard static method call and using extension methods.

Listing 6.3 Working with strings using extension methods (C#)

public static string AddLine(this string str, string next) { #A
return str + "\n>>" + next;

}
Console.WriteLine(StringUtils_AddLine( #B
StringUtils_AddLine(*"Hello world!", #B
""How are you today'), #B
“1"m finel!™)); #B
Console.WriteLine(*"Hello world!" #C
.AddLine(*'"How are you today') #C
_AddLine("'1"m fine!')); #C

#A 'this' keyword precedes the first parameter
#B Using standard static method calls
#C Concatenate strings using extension method

The benefits are purely in terms of readability: we can write the method calls in the
same order in which we want them to occur, we don't need to specify the class implementing
the method, and we don't need extra bracing. As it is often the case, syntax makes quite an
important difference.

THE F# PIPELINING OPERATOR

The pipelining operator (]>) allows us to write the first argument for a function on the left
side; that is, before the function name itself. This is useful if we want to invoke a several
processing functions on some value in sequence and we want to write the value that's being
processed first. Let's look at an example, showing how to reverse a list in F# and then take

its first element:
List.hd(List.rev [1 .. 5])

This isn't very elegant, because the operations are written in opposite order then in
which they are performed and the value that is being processed is on the right side,

surrounded by several braces. Using extension methods in C#, we'd write:
list.Reverse().Head();

In F#, we can get the same result by using the pipelining operator:
[1 .. 5] |> List.rev |> List.hd

Even though, this may look tricky, the operator is in fact very simple. It has two
arguments - the second one (on the right side) is a function and the first one (on the left
side) is a value. The operator gives the value as an argument to the function and returns the
result.

In some senses, pipelining is similar to calling methods using dot-notation on an object,
but it isn't limited to intrinsic methods of an object. This is similar to extension methods, so
when we write a C# alternative of an F# function that's usually used with the pipelining
operator, we'll implement it as an extension method.
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Now that we've finished our short introduction about generic higher order functions and
operators, we can finally look how they can be used for solving daily functional programming
problems. The first topic that we'll discuss is using higher order functions for working with
tuples.

6.2 Working with tuples

We've been working with tuples from our first functional code in chapter 3, so you're already
quite familiar with them. However, we haven't looked at how we can work with them using
higher order functions. Tuples are really simple, so you can often use them directly, but in
some cases the code isn't as concise as it could be. Tuples are a good starting point for
exploring higher order functions because they're so simple. The principles we'll see here are
applicable to other types, too. In chapter 3, we used tuples to represent a city and its
population. When we wanted to increment the population, we had to write something like

this:
let (name, population) = oldPrague
let newPrague = (name, population + 13195)

This is very clear, but a bit longwinded. The first line deconstructs the tuple and the
second one performs a calculation with the second element and then builds a new tuple.
Ideally, we'd like to say that we want to perform a calculation on the second element
deconstructing and re-constructing the tuple. First let's quickly look at the code we want to
be able to write, in both F# and C#, and then we'll implement the methods which make it all

work. This is what we're aiming for:
let newPrague = oldPrague |> mapSecond ((+) 13195) #A
var newPrague = oldPrague.MapSecond(n => n + 13195); #B
#A F# version
#B C# version

This version removes all the additional code to re-construct the tuple and specifies the
core idea - that is, we want to add some number to the second element from the tuple. The
idea that we want to perform calculation on the second element is expressed by using the
mapSecond function in F#. Listing 6.4 shows the implementation of both this and the
similar mapF i rst function.

Listing 6.4 Higher order functions for working with tuples (F# interactive)

> let mapFirst f (a, b) = (f(a), b) #1

let mapSecond f (a, b) = (a, (b)) #2
vai’mapFirst :(fa-> "b) -=> "a* "c -> "b * "c #3
val mapSecond : ("a -> "b) -> "c * "a -> "c * "b #3

#1 Applies function to the first element
#2 Applies function to the second element
#3 Inferred type signatures

Listing 6.4 implements two functions: one that performs an operation on the first
element of the tuple (#1) and one that acts on the second element (#2). The
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implementation of these functions is quite simple: we use pattern matching in the parameter
list to deconstruct the given tuple, and then call the function on one of the elements. Finally,
we return a new tuple with the result of the function call and the original value of the other
element. Even though the body doesn't look difficult, the inferred type signatures (#3) look
rather complicated when you see them for the first time. We'll come back to them shortly.

MAP OPERATION

I used the term map in the name of the functions above. A map (also called a projection)
is a very common operation and we'll see that we can use it with many data types. In
general, it takes a function as an argument and applies this function to one or sometimes
more values that are stored in the data type. The result is then wrapped in a data type
with the same structure and returned as a result of the map operation. The structure isn't
changed, because the operation we specify doesn't tell us what to do with the composed
value. It specifies only what to do with the component of the value and without knowing
anything else the projection has to keep the original structure. This description may not
be fully clear now, because it largely depends on the intuitive sense that you'll get after
more similar operations later in this chapter.

The signatures of these functions are useful for understanding what they do. Figure 6.1
disassembles the signature of mapFirst and shows what each part of it means.

Calculates new value

of the first element Input tuple to be processed

val mapFirst : ('a -> 'b) -> 'a * 'c -> 'b * 'c
Original type New type Returns tuple with
of the element  of the element the new value

Figure 6.1 The 'mapFirst' function takes a function as the first argument and applies it to the first element
of a tuple that is passed as the second argument.

Let's look at what the signature tells us about the function. First of all, it is a generic
function and it has three type parameters, automatically named by F# compiler. It takes a
function as the first parameter and a tuple containing values of types "a and "C as the
second argument and the signature tells us that the returned tuple is composed from values
of types "b and "c.

Since the function doesn't have any safe way of working with values of type "C, it is
likely that the second element is just copied. The next question is how we can get a value of
type "b in the result. We have a value of type "a (the first element of the tuple) and a
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function that can turn a value of type "a into a value of type "b, so the most obvious
explanation is that mapF i rst applies the function to the first element of the tuple.

Now that we've implemented the mapFirst and mapSecond functions, let's start
using them. Listing 6.5 shows an F# interactive session demonstrating how they can be used
to work with tuples.

Listing 6.5 Working

> let oldPrague = (*“'Prague’, 1188000);;
val prague : string * int

> mapSecond (fun n -> n + 13195) oldPrague;; #1
val it : string * int = ("Prague™, 1201195)

> oldPrague |> mapSecond ((+) 13195);; #2

val it : string * int = ("Prague™, 1201195)

#1 Using a lambda function as an argument

#2 Using partial application and pipelining

The example shows two ways for writing the same operation using the mapSecond
function. In the first case, we directly call the function (#1) and give it a lambda function as
the first argument and the original tuple as the second argument. If you look at the resulting
tuple printed by F# interactive, you can see that the function was applied to the second
element of the tuple as we wanted.

In the second version (#2) we're using two powerful techniques. We're using partial
function application, which was introduced in the previous chapter, to create a function which
adds 13195 to the second element. Instead of writing lambda function explicitly, we just
wrote (+) 13195. If an operator is used in braces, it behaves like an ordinary function,
which means that we can add two numbers by writing (+) 10 5. If we use partial
application and give it just one argument, we obtain a function of type int -> Int that
adds the number to any given argument and is compatible with the type expected by the
mapSecond function. The type is "a -> "b and in this case Int will be substituted for
both "a and "b.

Thanks to pipelining, we can write the original tuple and then the function to apply. This
makes the code more readable, describing first what's we're going to manipulate and then
what we're going to do with it-just like in C# where operations are typically of the form
target._MethodToCall (). The use of pipelining is also a reason why mapSecond
takes the lambda function as the first argument and tuple as the second one and not the
other way round.

I started this section by talking about F#, because showing the inferred type signature
of a higher order function and using pipelining can be demonstrated very naturally in F#. Of
course, we can use the same concepts in C# and we'll do so in the next section.
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6.2.1 Methods for working with tuples in C#

In this section, we'll be working with the generic Tuplle class from chapter 3 and we'll add
similar functionality to what we've just seen in F#. Listing 6.6 shows C# alternatives to
higher order functions mapFirst and mapSecond.

Listing 6.6 Extension methods for working with tuples (C#

public static class Tuple {
public static Tuple<B, C> MapFirst<A, B, C>
(this Tuple<A, C> t, Func<A, B> ) { #1
return Tuple.New(f(t.First), t.Second); #A

3
public static Tuple<C, B> MapSecond<A, B, C>
(this Tuple<C, A> t, Func<A, B> f) {
return Tuple.New(t.First, f(t.Second)); #B

3
3
#1 Create extension method using 'this' modifier
#A Apply function to the first element
#B Apply function to the second element

The implementation of these methods is very straightforward, but we have to specify the
types explicitly. I used the same names for the type parameters as in the previous F#
version, so you can compare them. In C#, the type signature is mixed with the
implementation, which makes the code harder to read, but we can look at the type signature

separately:
Tuple<B, C> MapFirst(Tuple<A, C>, Func<A, B>)

This corresponds to the previous F# signature. You can see that the last argument is a
function that turns a value of type A into a value of type B. We're using type A in the input
tuple and B in the result. We also changed the order of parameters, so the original tuple is
now the first argument. This is because we want to use the method as an extension method
for tuples, so the tuple has to come first. (We also added this modifier to the first
parameter (#1) to tell the compiler we wanted to make it an extension method.) Now we

can use the method both directly and as an extension method:
var oldPrague = Tuple.New(*'Prague', 1188000);
var newPraguel Tuple.MapSecond(oldPrague, n => n + 13195); #A
var newPrague2 oldPrague _MapSecond(n => n + 13195); #B
#A Direct call
#B Calling extension method

When calling the method directly, the code is very similar to the first use in F#, because
it calls a method with two arguments, and uses a lambda function for one of them. In F# we
were then able to use the pipelining operator to write the original tuple first, and as you can
see on the last line, extension methods play a similar role. Because MapSecond is written
as an extension method, we can call it using dot-notation on the oldPrague object.

In this section, we've seen two useful higher order functions for working with tuples and
I'm sure you'd be now able to write other functions such as applying the same operation on
both elements of a tuple and so on. After discussing multiple values in the previous chapter,
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we talked about alternative values, so we'll follow the same pattern and look at writing
higher order functions for alternative values now.

6.3 Calculating with schedules

In this section, we'll apply the techniques from previous section to alternative values. When
working with tuples, we found it very helpful to write a function that works with one element
from the tuple. Similarly, when working with alternative values, we'll need a higher order
function that performs some operation on one or more of the alternatives. We'll follow the
examples from the previous chapter, so we'll start with a schedule type and then we'll look at
the option type.

In the previous chapter, we implemented a type for representing schedule of an event.
In F#, it is a discriminated union called Schedule that can contain one of three options.
The three discriminators for the alternatives are Never, Once and Repeatedly. In C#,
we represented it as an abstract class Schedule with a property called Tag and one
derived class for representing each of the three options. In this section we'll add a higher
order function for working with schedules.

Now, imagine what the application might want to do with the schedule. The most
common operation (especially in the today's busy world) could be rescheduling the events.
For example, we may want to move all the events we know about by one week, or move
events scheduled for Monday to Tuesday. Writing this explicitly would be difficult, because
we'd have to provide code for each of the three different types of schedule.

However, if you think about the problem, we only want to calculate a new time based on
the original time, without changing any other property of the schedule. In listing 6.7, we
implement a function that allows us to do exactly this.

Listing 6.7 Map operation for schedule type (F# interactive)

> let mapSchedule T sch =
match sch with

| Never -> Never #A
] Once(dt) -> Once(f(dt)) #B
| Repeatedly(dt, ts) -> Repeatedly(f(dt), ts) #C

val mapSchedule : (DateTime -> DateTime) -> Schedule -> Schedule #1
#A Unscheduled events remain unscheduled

#B Reschedule event occurring once

#C Reschedule repeated event

I called the operation mapSchedule, because it performs some operation for all the
date and time information that the schedule contains. When the alternative is Never, it
simply returns Never with no re-calculation. When it is Once, the function given as an
argument is used to calculate the new time. When the schedule is represented using
Repeatedly, the function is used to calculate new time for the first occurrence, keeping
the original period between occurrences.
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If you look at the type signature (#1), you can see that the first parameter is a function
that takes DateTime as an argument and returns a new DateTime. This is used for
calculating the new time of scheduled events. The original Schedule is the last parameter.
This parameter ordering makes it possible to call this function using the pipelining operator,
just as we did with the tuple projections earlier. Listing 6.8 shows how we can manipulate a
collection of schedules using this function.

Listing 6.8 Rescheduling using '

> let schedules =
[ Never; Once(DateTime(2008, 1, 1));
Repeatedly(DateTime(2008, 1, 2), TimeSpan(24*7, 0, 0)) 1;; #1
val schedules : Schedule list

> for s in schedules do

let ns = s |> mapSchedule (fun d -> d.AddDays(7.0)) #2
printfn "%A" ns;; #A
Never #3
Once 8.1.2008 0:00:00 #3
Repeatedly (9.1.2008 0:00:00,7-.00:00:00) #3

#1 Create list of schedules for testing
#2 Add one week using 'mapSchedule’
#A Print the new schedule

#3 Schedules moved by one week

We start by creating a list of schedules for testing (#1). One interesting thing to note
here is that I omitted the new keyword when constructing DateTime and TimeSpan .NET
objects. This is just a syntactical simplification that F# allows when working with simple
types like these two.

After creating the list, we iterate over all the schedules. In the next line (#2), we use
the mapSchedule function to move each schedule by one week. The change in the date is
specified as a lambda function that returns a new DateTime object. Of course, you could
implement more complicated logic to perform different rescheduling inside this function. The
original schedule is passed as the last argument using the pipelining operator. As you can
see (#3) the operation changed the date of the Once schedule and the first occurrence of
the schedule represented using Repeatedly option.

6.3.1 Processing a list of schedules

In the previous example we used an imperative FOr loop, because we just wanted to print
the new schedule. If you wanted to create a list containing the new schedules, you could use

List.map function and write something like this:
let newSchedules =
List.map (fun s ->
s |> mapSchedule (fun d -> d.AddDays(7.0)) #A
) schedules
#A Calculate new schedule

The first argument of the LEiSt.map function is another function that is used to obtain
a new value using the original schedule. In this example, we calculate a new schedule called
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NS and return it as the result of the function. However, the previous code can be simplified

by using pipelining and partial function application like this:
let newSchedules =
schedules |> List.map (mapSchedule (fun d -> d.AddDays(7.0)))

When we specify just the first argument (a function for calculating the date) to the
mapSchedule function, we get a function of type Schedule -> Schedule. This is
exactly what the LISt._map operation expects as the first argument, so we don't have to
write lambda function explicitly. This example shows another reason why many higher order
functions take the original value as the last argument. That way we can use both pipelining
and partial application when processing a list of values.

Another option would be to use sequence expressions that are similarly succinct, but
probably more readable for a newcomer. We'll look at sequence expressions in chapter 12,
but now let's see how we could implement the same functionality in C#.

6.3.2 Processing schedules in C#

In C# we'll build a MapSchedule method which should be similar to the mapSchedule
function in F#. Again, this will have two parameters: a function for calculating the new date,
and the original schedule. As we're working with alternative values in C#, we'll use a
switch block and the Tag property as shown in the previous chapter. Listing 6.9 shows
the complete implementation.

Listing 6.9 Map operation for schedule type (C#

public static Schedule MapSchedule
(this Schedule schedule, Func<DateTime, DateTime> calcDate) { #1
switch(schedule.Tag) {
case ScheduleType.Never:
return new Never();
case ScheduleType.Once:
var os = (Once)schedule;
return new Once(calcDate(os.When)); #A
case ScheduleType.Repeatedly:
var rs = (Repeatedly)schedule;
return new Repeatedly(calcDate(rs.First), rs.Periodicity); #B
default:
throw new InvalidOperationException(); #C
}
}
#1 Extension method using 'this’ modifier
#A Calculate new date
#B Calculate new date for the first occurrence
#C Unreachable code - no other option!

The method simply provides a branch for each of the possible representations and
returns a new value in each branch. When the option carries a date that can be processed
(Once and Repeatedly), it first casts the argument to the appropriate type and then
uses calcDate argument to calculate the new date.
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The method is implemented as an extension method inside a ScheduleUtils class
(for simplicity, the listing doesn't include the class declaration). This means that we can call
it as a static method, but also more readably using dot-notation on any instance of the
Schedule class. The following snippet shows how we can move every schedule in a list by

one week:
schedules.Select(s =>
s.MapSchedule(dt => dt.AddDays(7.0)) )

This is similar to our earlier F# code. We're using the LINQ Select method (instead of
the List.map function) to calculate a new schedule for each schedule in the original list.
Inside a lambda function, we call MapSchedule on the original schedule, passing it an
operation that calculates the new date.

When we have several similar operations that we need to perform with the value, it
would be tedious to use the schedule type directly, because we'd have to provide the same
unwrapping and wrapping code multiple times for each of the operations. In this section,
we've seen that a well designed higher order function can simplify working with values quite
a lot. Now, let's look at writing higher order functions for another alternative value that we
introduced in the previous chapter: the option type.

6.4 Working with the option type

One of the most important alternative values in F# is the option type. To recap what we've
seen in the previous chapter, it gives us a safe way to represent the fact that value may be
missing. This safety means that we have to explicitly pattern match on option whenever we
want to perform some operation with the actual value. In this section, we'll learn about two
useful functions for working with the option type.

F# LIBRARY FUNCTIONS

The functions we saw earlier for working with tuples aren't part of the F# library, because
they are extremely simple and using tuples explicitly is usually easy enough. However,
the functions we'll see in this section for working with the option type are part of the
standard F# library.

First of all, let's quickly look at an example that demonstrates why we need higher order
operations for working with the option type. We'll use the readlnput function from the
previous chapter, which reads user input from the console and returns a value of
type option<int>. When the user enters a valid number, it returns Some(n);
otherwise it returns None. Listing 6.10 shows how we could implement a function that reads
two numbers and returns a sum of them or NOne when either of the inputs wasn't a valid
number.

Listing 6.10 Adding two options using pattern matching

let readAndAdd1() =
match (readlnput()) with
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| None -> None
| Some(n) -> #A
match (readlnput()) with
| None -> None
| Some(m) -> #B
Some(n + m) #C

#A Extract value from the first input
#B Extract value from the second input
#C Add numbers and return the result

The function calls read Input to read the first input, extracts the value using pattern
matching and repeats this for the second input. When both of the inputs are correct, it adds
them and returns Some, in all other branches it returns None. Unfortunately, the explicit
use of pattern matching makes the code rather long. Let's now look at two operations that
will help us to rewrite the code more succinctly.

6.4.1 Using the map function

I'll first introduce both of the operations and first show you how to use them from F#, where
they are already available in the F# library. Later we'll also look at their implementation and
how we can use them from C#. As we've already seen, the best way to understand what a
function does in F# is often to understand its type signature. Let's first look at
Option.map:

> Option.map;;

val it : (("fa -> "b) -> "a option -> "b option) = (...)

I said that map operations usually apply a given function to values carried by the data
type and wrap the result in the same structure. For the option type, this means that when
the value is Some, the function given as the first argument (*a -> "b) will be applied to a
value carried by the second argument ("a option) and the result of type "b will be
wrapped inside an option type, so the overall result has type "b option. When the
original option type doesn't carry a value, the map function will simply return None.

We can use this function instead of the nested match. When reading the second input,

we want to 'map' the carried value to a new value by adding the first number:
match (readlnput()) with
| None -> None
| Some(First) -> readlnput() |> Option.map (fun second -> first + second

On the second line we already have a value from the first number entered by the user.
We then use readlnput() to read the second option value from the console. Using
Option.map, we project the value into a new option value, which is then returned as the
result. The lambda function used as an argument adds the first value to a number carried by
the option value (if there is one).

6.4.2 Using the bind function

As a next step, we'd like to eliminate the outer pattern matching. Doing this using
Option.map isn't possible, because this function always turns input value None into
output value None and input value Some into output Some carrying another value.
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However, in the case above, we want to do something quite different. Even when the input
value is Some, we still want to be able to return None when we fail to read the second
input. This means that the type of the lambda function we specify as an argument shouldn't
be "T1 -> "T2, butrather "T1 -> option<"T2>,

The operation like this is called bind in the functional programming terminology and it is
provided by the standard F# library. Let's now take a look at the signature and at the

specification of what this function actually does:
> Option.bind;;
val it : (("T1 -> option<"T2>) -> option<"T1l> -> option<™"T2>) = (...)

The difference in the type signature of bind and map is only in the type of the function
parameter as we discussed it in the previous paragraph. Understanding is a behavior of a
function just using the type is a very important skill of functional programmers. In this case,
the type gives us a very good clue of what the function does if we assume that it behaves
reasonably. We can analyze all the cases to infer the specification of the function's behavior:

28) When the input value is None, bind cannot run the provided function, because it
cannot safely get value of type "T1, and so it immediately returns None.

29) When the input value is Some carrying some value X of type "T1, bind can call the
provided function with X as an argument. It could of course still return None, but a
more reasonable behavior is to call the function when possible. Now, there are two
different cases what the function given as the argument can return:

30) If the function returns None, the bind operation doesn't have any value of type
"T2, so it has to return None as the overall result.

31) If the function returns Some(y), then bind has a value Yy of type T2 and only in
this case it can return Some as the result, so the result in this case is Some(y).

Using bind we can now rewrite the outer pattern matching, because it gives us a way to
return undefined value (None) even when we successfully read the first input. Listing 6.11
shows the final version of readAndAdd.

Listing 6.11 Adding two options using bind and map (F#)

let readAndAdd2() =
readlnput() |> Option.bind (fun num -> #1
readlnput() |> Option.map ((+) num) ) #2
#1 Process first input using 'bind’
#2 Process second input using 'map’

After reading the first input, we pass it to the bind operation (#1), which executes the
given lambda function only when the input contains a value. Inside this lambda function, we
read the second input and project it into a result value (#2). The operation used for
projection just adds the first input to the value. In this listing, we've written it using the plus
operator and partial application instead of specifying the lambda function explicitly. If you
compare the code with listing 6.10, you can see that it is definitely more concise. Let's now
analyze how it works in some more detail.
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6.4.3 Evaluating the example step-by-step

It can take some time to become confident with higher order functions like these, especially
when they are nested. We're going to examine how the code from the previous listing works
by tracing how it runs for a few sample inputs. Moving from the abstract question of "what
does this code do in the general case?" to the concrete question of "what does this code in
this particular situation?" can often help to clarify matters.

First let's see what happens if we enter an invalid value as the first input. In that case,
the first value returned from readlnput() will be None. To see what happens, we can
use computation by calculation and show how the program evaluates step-by-step. You can
see how the calculation proceeds in listing 6.12.

Listing 6.12 Evaluation when the first input is invalid

[CA] Read the first input from the user: #A
None |> Option.bind (fun num ->
readlnput() |> Option.map ((+) num) )

[CA] Evaluate the "Option.bind"™ call: #B
None

#A Replace the ‘readinput()’ call with the returned value

#B Lambda function isn't called and None is returned

In the first step, we simply replace the call with the None value that the function
returns when we enter some invalid input (such as empty string). The second step is more
interesting. Here, the Option._bind function gets None as its second argument. However,
None doesn't carry any number, so bind cannot call the specified lambda function and the
only thing it can do is to immediately return None.

Now, how would the function behave if we entered "20" as the first input? Obviously,
there will be two different options - one when the second input is correct and one when it is
invalid. Listing 6.13 shows what happens if the second input is "22".

Listing 6.13 Evaluation when both inputs are valid

[CA] Read the first input from the user: #A
Some(20) |> Option.bind (fun num ->
readlnput() |> Option.map ((+) num) )

[CA] Evaluate the "Option.bind"™ call: #1
readlnput() |> Option.map ((+) 20)

[CA] Read the second input from the user: #B
Some(22) |> Option.map ((+) 20)

[CA] Evaluate the "Option.map™ call: #2
Some( (+) 20 22 )

[CA] Evaluate the "+" operator: #C
Some(42)
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#1 Replace 'readInput()’ with the first input

#2 'Option.bind’ calls the lambda function and replaces 'n' with 20

#3 Read the second input value

#4 'Option.map’ calls the provided function and wraps the result in 'Some'
#5 Calculate 20 + 22 and wrap the result

The first step is similar to the previous case, but this time, we call Option.bind with
Some(20) as an argument. This option value carries a number that can be passed as the
num argument to the lambda function we provided. Option.bind simply returns the
result that it gets from this function, so the result in the next step will be the body of this
function (#1). We also replace all occurrences of num with the actual value, which is 20.

We then read the next input value with readlnput() which returns Some(22).
Having replaced readlnput() with Some(22) we can evaluate the Option.map
function. This operation evaluates the function it gets as an argument and in addition wraps
the result in the Some discriminator, so our next step (#2) shows that we need to calculate
the addition next and wrap the result in Some. After calculating the addition, we finally get
the result, which is Some (42).

After following this step-by-step explanation you should have pretty good idea how
Option.bind and Option.map work. Equipped with this information, we can look at the
implementation of these two operations in both F# and C#.

6.4.4 Implementing operations for the option type

The implementations of both bind and map have a similar structure, because they are both
higher order functions that pattern match against an option value. We'll take a look at both
F# and C# implementations, which is a good example of how to encode functional ideas in
C#. Let's start with listing 6.14, which shows the implementation of map operation.

Listing 6.14 Implementing the map in F# and C#

> let map f opt = static Option<R> Map<T, R>(this
match opt with Option<T>
| Some(v) -> opt, Func<T, R> ) {
Some(F(v)) T v;
| None -> None it (opt.MatchSome(out Vv))
>3 return Option.Some(f(v));
val map : else
("fa -> "b) -> return Option.None<R>();
"a option -> "b option }

The implementation first examines the option value given as an argument. When the
value is None, it immediately returns NOne as the result. Note that we cannot just return
the None value that we got as an argument, because the types may be different. In the C#
version the type of the result is Option<R>, but the type of the argument is Option<T>.

When the value of the argument matches the discriminated union case Some, we get
the value of type T and use the provided function (or FUNC delegate) to project it into a
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value of type R. Since the value returned from the operation should have a type
Option<R>, we need to wrap this value using the Some constructor again.

The source code of map and bind operations is quite similar, but there are some
important differences. Let's now look at the second couple of operations in listing 6.15.

Listing 6.15 Implementing the bind operation in F# and C#

> let bind f opt = static Option<R> Bind<T, R>(this
match opt with Option<T>
| Some(v) -> F(v) opt, Func<T, Option<R>> f) {
| None -> None T v;
s if (opt.MatchSome(out Vv))
val bind : return f(v);
("a -> "b option) -> else
"a option -> "b option return Option.None<R>();
3

Can we fit these two listings on a single page (so that the reader
can compare them without turning pages)?

The bind operation starts similarly by pattern matching on the option value given as the
argument. When the option value is None, it immediately returns None just like in the
previous case. The difference is in the case when the option carries some actual value. We
again apply the function that we got as an argument, but this time we don't need to wrap
the result inside Some constructor. This is because the value returned from the function is
already option and as you can see from the type signature, it has exactly the type that we
want to return. This means that even in the Some case, the bind operation can still return
None, depending on the function provided by the user.

As usual, the F# version takes the original value as a last argument to enable pipelining
and partial application, while the C# version is an extension method. Let's now look how to
rewrite the previous example in C# using the newly created methods.

USING THE OPTION TYPE IN C#
Extension methods give us a way to write the code that uses Bind and Map in a fluent
manner. As the number of parentheses can be confusing, note that the call to Map is nested

inside a lambda function that we give as an argument to Bind:
Option<int> ReadAndAdd() {
return Readlnput().Bind(n =>
Readlnput() -Map(m => m + n));
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In C# the difference between using higher order functions and working with option types
explicitly is even more significant. This is because C# doesn't directly support types like
discriminated unions, but if we supply our types with appropriate processing functions, the
code becomes readable. This is the important point to keep in mind when writing functional-
style programs in C#: some of the low-level constructs may feel unnatural, but thanks to
lambda functions, we can write elegant functional code in C# too.

So far, we've seen how to use higher order functions to work with multiple values and
alternative values. The last kind of value we talked about in the previous chapter was
function. In the next section, we'll see that we can write surprisingly useful higher order
functions for working with function values as well.

6.5 Working with functions

All the higher order functions we've discussed so far in this chapter have had a similar
structure. They had two parameters: one was a value to be processed and the second was a
function that specified how to process the value. When working with functions, the "value"
parameter will be also a function, so our higher order functions will take two functions as
arguments.

6.5.1 Function composition

Probably the most important operation for working with functions is function composition.
Let's start by looking at an example where this will be very helpful. We'll use the example
where we stored a name and population using a tuple. In listing 6.16 we create a function to
determine the status of a settlement based on the size of the population. We also test it by
determining the status of several places stored in a list.

Listing 6.16 Working wi ity information (F# interactive

> let places = [ ("'Grantchester", 552);
(""Cambridge'™, 117900);
("Prague™, 1188126); ];; #A
val places : (string * int) list

> let statusByPopulation(population) = #B
match population with
| n when n > 1000000 -> "City"
| n when n > 5000 -> "'Town"
_ -> "Village";;
val statusByPopulation : int -> string

> places |> List.map (fun (_, population) -> #1
statusByPopulation(population));; #2

val it : string list = ["Village™; "Town"; "City"]

#A Create a list with test data

#B Returns status based on the population

#1 Iterate over settlements and read population information

#2 Calculate the status
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The first parts of listing 6.16 (creating a list of test data and the declaration of the
statusByPopulation function) are quite straightforward. The interesting bit comes in
the last few lines. We want to obtain the status of each settlement using List.map. To do
this we pass it a lambda function as an argument. The lambda function first extracts the
second element from the tuple (#1) and then calls our statusByPopulation function
(#2).

The code works well but it can be written more elegantly. The key idea is that we just
need to perform two operations in sequence. We first need to access the second element
from a tuple and then perform the calculation using the returned value. Since the first
operation can be done using Snd function, we just need to compose these two functions. In

F#, this can be written using function composition operator (>>) like this:
snd >> statusByPopulation

The result of this operation is a function that takes a tuple, reads its second element
(which has to be an integer) and calculates the status based on this number. We can
understand how the functions are composed from table 6.1, which shows their type
signatures.

Function value Type

Snd (fa* "b) > b

snd (after specification) (fa * int) -> int
statusByPopulation int -> string

snd >> ("fa * int) -> string
statusByPopulation

Table 6.1 Type signatures of 'snd’, 'statusByPopulation' and a function obtained by composing
these two functions using >> operator.

On the second line, the table shows a specific type of the snd function after the
compiler figures out that the second element of the tuple has to be an integer. We can get
this type if we substitute type parameter "b from the first row with a type int. Now we
have two functions that can be composed, because the return type on the second row is
same as the input type on the third row. Using composition, we join the functions together
and get a function that calls the first one and passes the result of this call as an input to the
second one. The resulting function has the same input type as the function on the second
row and the same return type as the function on the third row. Listing 6.17 shows how we
can rewrite the original code using function composition.

Listing 6.17 Using function composition operator (F# interactive)

> places |> List.map (fun x -> (snd >> statusByPopulation) x);; #1
val it : string list = ["Village™; "Town"; "City']
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> places |> List.map (snd >> statusByPopulation);; #2
val it : string list = ["Village"; "Town"; "City"]

#1 Calling composed function explicitly

#2 Using composed function as an argument

On the first line (#1), we call the composed function explicitly by giving it the tuple
containing city name and population as an argument. This is just to demonstrate that a
result of composition is a function that can be called. However, the reason for using function
composition is that we can use the composed function as an argument to other functions. In
this case, the composed function takes a tuple and returns a string, so we can immediately
use it as an argument to List.map to get a list of the statuses of the sample settlements.

The implementation of the function composition operator is remarkably simple. Here's

how we could define it if it didn't already exist in the F# library:
> let (>>) T g x = g(f(x))
val >>) : ("fa -=> "b) -=> ("b -> "c) -> "a -> "c

In this declaration, the operator has three parameters. However, when we were working
with it earlier, we only specified only the first two parameters (the functions to be
composed). We'll get better insight into how it works by looking at the two possible
interpretations of the type signature in figure 6.2.

Argument for the

First function Second function first function Result

val (>>) : ('a -> 'b) -> ('b -> '¢) -> 'a -> 'c

val (>>) : ('a -> 'b) -> ('b -> '¢) -> 'a -> 'c
First function Second function Composed function

Figure 6.2 Type signature of the function composition operator. If we specify three arguments (annotations
above), it returns the result of calling them in sequence. If we specify only two arguments, it returns a
composed function (annotations below).

The operator behaves as function composition thanks to the partial application. If we
specify just the first two arguments, the result is a composed function. When the operator
receives the third argument, it uses it to call the first function and then calls the second
function using the result. Clearly, specifying all three arguments to it isn't typically very
useful - we could just call the functions directly, without using the operator!

Now that we've seen how function composition works in F#, let's look at what it might
look like in C#.
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FUNCTION COMPOSITION IN C#

Function composition in C# is possible, but it has only a very limited use. This is partly
because partial application can't be used as easily in C#, but more importantly because most
of operations are written as members instead of functions. However, we can at least
demonstrate the same idea in C#. Listing 6.18 shows an implementation of the Compose
method as well as an example of using it.

Listing 6.18 Implementing and using Compose method (C#)

static Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C>g) { #1
return (x) => g(f(x)); #2

// Using function composition in C#
Func<double, double> square = (n) => n * n; #A
Func<double, string> fmtnum = (n) => n.ToString("'E"™); #A

var data
var sqrs

new double[] { 1.1, 2.2, 3.3 };
data.Select(square.Compose(fmtnum)); #3

// Prints: "1_.210000E+000"; ''4.840000E+000"; "'1.089000E+001"
foreach (var s in sqrs) Console.Write(s);

#1 Returns a function value

#2 Construct the composed function using lambda function

#A Two functions that can be composed

#3 Using the composed function

Function composition is implemented as an extension method for the Func<T, R>
delegate, so we can call it on function values that take a single argument using dot-notation.
In F# it was written as a function with three parameters, even though it's usually used just
with two arguments. In C# we have to implement it as a method with two arguments that
returns a FuNnc delegate explicitly (#1). We construct a lambda function that takes an
argument and calls functions that we're composing (#2), and then return this function as a
delegate.

To test the method, we create two functions that we want to compose. We use the
composed function when processing numbers in a collection using Sellect. Instead of using
it with an explicit lambda function we just call Compose to create a composed function
value that we can use as an argument.

Over the last few sections, we've seen that many of the useful processing functions are
generic, some of them having even three type parameters. Writing functions like this in F#
has been very easy because we haven't had to write the types explicitly: type inference has
figured out the types automatically. It's time to take a closer look at how this mechanism
works.
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6.6 Type inference

We have already talked a little bit about type inference for values. We've seen it in C# 3.0
with the var keyword and in F# with let bindings. We'll start this section with another
aspect that is shared by both C# and F#. When calling a generic method, such as
Option.Some or Option.Map from listing 6.13 in C#, we can specify the type

arguments explicitly like this:
var dt = Option.Some<DateTime>(DateTime.Now);
dt_Map<DateTime, int>(d => d.Year);

That's very verbose though, and we've almost never written code in this style in the
previous examples, because C# performs type inference for generic method calls. This
deduces type arguments automatically, so in the previous example we could have written
just dt.Map(d => d.Year).

The exact process of type inference in C# is quite complicated, but it works very well
and it usually isn't important to understand it at an intimate level. If you ever really need the
details, you can find complete documentation in the C# Language specification [C#
Specification]. In general, it deduces types of all values given as an argument, which is
always possible and then treats lambda functions specially. From lambda functions, it can
obtain return type and also types of the arguments. For example, when calling
Option.Bind, it needs to deduce the return type of the lambda function, because this is
the type of the second type parameter and there is no other hint that could be used. Types
of the arguments can be used when they are specified explicitly such as in lambda function
(DateTime d) => d.Year. Also note that in C# 3.0, the order of parameters doesn't
matter.

TYPE INFERENCE FOR FUNCTION CALLS IN F#

Even though it is possible to specify type arguments in F# using angle brackets in a same
way as in C#, this is used only very rarely. The reason is that when the compiler cannot infer
all the information and needs some aid from the programmer, we can use add type
annotation to the particular location where more information is needed. Let's demonstrate

this using an example:
> Option.map (fun v -> v._.Year) (Some(DateTime.Now));;
error FS0072: Lookup on object of indeterminate type.

> Option.map (fun (v:DateTime) -> v.Year) (Some(DateTime.Now));;
val it : int option = Some(2008)

Unlike in C#, the order of arguments matters in F#, so the first case fails. The reason is
that the F# compiler doesn't know that the value V is of type DateTime until it reaches the
second argument and so it doesn't know whether the Year property exists when processing
the first argument. To correct this, we added a type annotation in the second case, which
specifies the type of the V value explicitly. However, this is one more interesting aspect of
the pipelining operator: if we use pipelining to write the previous code snippet, we don't need
type annotations either:

> (Some(DateTime.Now)) |> Option.map (fun v -> v.Year);;

val it : int option = Some(2008)
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This works because the option value, which contains the DateTime value, appears
earlier and so it is processed prior to the lambda function. When processing the lambda
function, the compiler already knows that the type of V has to be DateTime, so it can find
the Year property with no trouble.

So far, we've just looked at the similarities between C# and F#, but type inference goes
further in F#. Let's see how the F# compiler can help us when we write higher order
functions.

6.6.1 Automatic generalization

We've already implemented several higher order functions in F# in this chapter and we've
seen a few side-by-side implementations in F# and C# as well. The interesting fact about the
F# implementations is that we didn't need to specify the types at all. This is thanks to
automatic generalization, which is used when inferring the type of a function declaration. I'll
explain how this process works using an implementation of the Option.bind function as

an example:
let bind func value = #1
match value with #2
| None -> None #3
| Some(a) -> func(a) #4

The type inference process for this function is described step by step below. It starts
with the most general possible type and adds constraints as it processes the code, so the
listing shows steps that are made while processing the function body.

32) Use the type signature (#1) to infer that bind is a function with two arguments
and assign a new type parameter to each of the arguments and to the return type:

func : "tl
value : "t2
bind : "tl1 -> "t2 -> "t3
33) Use the pattern matching (#2) to infer that value is an option type, because it is
matched against Some and None patterns. Use (#3) to infer that the result of
bind is also an option type, because it can have None as a value:

func : "tl
value : option<"t4>
bind : "tl -> option<"t4> -> option<"t5>
34) Use (#4) to infer that Func is a function, because we're calling it with a single
parameter:
func : ("t6 -> "t7)
value : option<"t4>
bind : ("t6 -> "t7) -> option<"t4> -> option<"t5>
35) From (#4) we know that the parameter to the function has type "t4 and that the
result has the same type as the result of bind function, so we add two following
constraints:
"t6 = "t4
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"t7 = option<"t5>
36) Now, we can replace types "t6 and "t7 using the constraints obtained in the
previous step:
func : ("t4 -> option<"t5>)
value : option<"t4>
bind : ("t4 -> option<"t5>) -> option<®"t4> -> option<”t5>
37) Finally, we rename the type parameters according to the usual F# standards:
bind : ("a -> option<®b>) -> option<®a> -> option<"b>

This shows a process; I'm not sure how to format it the best, so
use whatever formatting you'll find appropriate. Thanks!

Even though implementing the F# type inference algorithm just using this description
would be difficult, it should show you what kind of information F# can use when deducing a
type of a higher order function. Probably the most interesting step in the process was
deduction of the type of a function (Func) used as a parameter. This is a very important
step, because functions given as parameters represent operations that can be used on
values. As we've seen earlier, these are in some sense similar to methods, but thanks to the
type inference, writing code like this in F# doesn't require any additional type specification
and still makes the code completely type-safe.

After that short interlude about type inference and automatic generalization, we'll get
back to writing and using higher order functions. We've discussed them for most of the types
from chapter 5, but we're still missing one important functional value. In the next section
we're going to look at higher order functions for working with lists.

6.7 Working with lists

We have already talked about lists in chapter 3 where we learned how to process lists
explicitly using recursion and pattern matching. We also implemented a functional list type in
C#. In the sample application in chapter 4, we used lists in this way, but noted that writing
list processing explicitly isn't very practical.

This is a recurring pattern of this chapter, so you probably already know what I'm going
to say next. Instead of using pattern matching explicitly in every case, we can use higher
order functions for working with lists. We've already seen some functions for working with F#
lists such as List.map and similar methods for working with C# collections (Select). In
this section, we'll look at these in some more detail, examining their type signatures and
seeing how they can be implemented for a functional list.

6.7.1 Implementing list in F#

Even though we've been working with functional lists in F# and implemented the same
functionality in C#, we haven't looked at how we might implement the list type in F#. When
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we talked about lists earlier, we saw that a list is represented as either a nil value (for an
empty list) or a cons cell containing an element and a reference to the rest of the list.

Now, if we look at our gallery of values from the previous chapter, this is exactly like an
alternative value with two options. There is one slight wrinkle, however: the list type is
recursive, which means that a cons cell contains a value of type list itself. Listing 6.19 shows
a type definition that creates a very similar list type to the one in the F# standard library.

Listing 6.19 Definition of a functional list type

> type List<"a> = #1
| Nil #2
| Cons of "a * List<"a> #3

type List<"a> = (...)

> let list = Cons(l, Cons(2, Cons(3, Nil)));; #A
val list : List<"a>

#1 The type is generic

#2 Represents an empty list

#3 List with head and a tail

#A Create list containing 1, 2, 3

The type is written as a generic type with a single type parameter (#1). The type
parameter represents the type of the values that are stored in the list. Alternatives in F# are
represented using discriminated unions and this particular union has two discriminators. The
first one (#2) represents an empty list and the second one (#3) is a list with an element (of
type "a) and a reference to the rest of the list, whose type is written recursively as
List<"a>.

The last line in the code sample shows how we can create a list with three elements. The
first argument to the Cons constructor is always a number and the second argument is a list,
which in turn is either constructed using another Cons or the Ni I discriminator. The built-in
F# list type is declared in exactly this way. Earlier on we worked with lists using two
operators. The - : operator corresponds to CONS in our definition and [] represents the
same value as Ni I,

In general, creating a recursive discriminated union type is a very common way to
represent program data as we'll see in the next chapter. However, the list type lies
somewhere between simple values and complex program data. It can be interpreted in both
ways, depending how it is used in the program. We'll also see how recursive unions can also
express many of the standard design patterns, but for now let's get back to the higher order
functions which make it easier to work with lists.

6.7.2 Understanding type signatures of list functions

As I mentioned earlier, we were already using functions for filtering and projecting lists, but
we were using them quite intuitively. In this section, we'll look at their type signature and
we'll see how we can deduce what a higher order function does just using this information.
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Of course, you can't tell what a function does just by looking at its type in general, but
for generic and higher order functions, such as those for working with lists, this is very often
possible. As we've seen earlier in this chapter, functions for working with generic values
cannot do much with the value alone, because they don't know anything about it. As a
result, they usually take a function as an extra argument and use it to work with the value.
However, the type of the function gives some clues as to how the result will be used. Let's
demonstrate this using type signatures displayed in listing 6.20.

Listing 6.20 Types of functions and methods for working with lists (F# and C#

// F# function signatures
List.map (T -=> "R) -> "T list -> "R list #1
List.filter : (°T -> bool) -> "T list -> "R list #2

// C# method declarations

List<R> Select<T, R> (List<T>, Func<T, R>) #1
List<T> Where<T> (List<T>, Func<T, bool>) #2
#1 Projection

#2 Filtering

Let's look at projection (#1) first. As you can see, the input parameter is a list of values
of type T and the result is a list of values of type R. However, the operation doesn't know
what R is and so it cannot create values of this type alone. The only way to creating a value
of type R is to use a function given as an argument that turns a value of type T into a value
of type R. This suggests that the only reasonable way for the operation can work is to iterate
over the values in the input list, call the function for each of the values and return a list of
results. Indeed, this is exactly what the projection operation does.

It is also worth noting that the types of the input list and output list can differ. In the
previous chapter we were adding a number 10 to a list of integers, so in that case, the input
list had the same type as the output list. However, we could use a function that created a
string from a number as an argument. In this case the input list would be a list of integers
and the result will be a list of strings.

The second operation is filtering (#2). In this case, the input and the resulting lists have
the same type. The function given as an argument is a predicate that returns true or false for
a value of type T, which is the same type as the elements in the input list. This gives us a
good hint that the operation probably calls the function for each of the list elements and uses
the result to determine whether the element should be copied to the returned list or not.
WORKING WITH LISTS
Let's look at a larger example showing the use of filtering and projection. Both of them are
available in the F# library for various collection types, but we'll use lists as we're familiar
with them. In C#, these methods are available for any collection implementing
IEnumerable<T>, so we'll use generic .NET LEISt<T> class. Listing 6.21 shows
initialization of the data that we'll be working with.

Listing 6.21 Data about settlements (F# and C#)
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> let places = #1 class Citylnfo { #2
[ public CityInfo(string n, int p) {
('Seattle™, 594210); Name = n; Population = p;
("'Prague', 1188126); }
(""New York', 7180000); /* Properties omitted... */
(""Grantchester", 552); }
('Cambridge'™, 117900);
1:; var places = new List<Citylnfo> #3
{ new CitylInfo(''Seattle', 594210),
val places : (string * int) list new CityInfo(""Prague', 1188126),

/* more data... */ };

In F#, we'll use our usual example - a list with information about city with name and
population (#1). Even though we could convert the F# tuple into the Tuple class that we've
implemented, we're use a more typical C# representation this time. We declare a class
CitylInfo (#2) and use it to create a list containing city information (#3).

In C#, we can work with the data using the Where and Select methods that are
available in .NET 3.5. Both of these are extension methods so we can call them using the

usual dot-notation:
var names =
places._Where(city => city.Population > 1000000)
-Select(city => city.Name);

Again, this shows the benefits of using higher order operations. The lambda functions
given as arguments specify what the condition for filtering is (in the first case), or the value
to return for each city (in the second case). However, this is all we have to specify. We don't
need to know the underlying structure of the collection and we're not specifying how the
result should be obtained. This is all encapsulated in the higher order operations.

Let's perform the same operation in F#. We want to filter the data set first and then
select only the name of the city. We can do this by calling List.Filter and using the
result as the last argument to the LISt .map function. As you can see, this looks quite ugly

and hard to read:
let names =
List.map fst
(List.filter (fun (_, pop) -> 1000000 < pop) places)

Of course, F# can do better than this. The previous C# version was elegant because we
could write the operations in the same order in which they are performed (filtering first,
projection second) and we could write each of them on a single line. In F#, we can get the

same code layout using pipelining:
let names =
places |> List.filter (fun (_, pop) -> 1000000 < pop)
|> List.map fst

In this case, the pipelining operator first passes the value on the left side (places) to
the filtering function on the right side. In the next step, the result of the first operation is
passed to the next operation (here projection). Even though we've been using this operator
for quite some time already, this example finally shows why it is called "pipelining". The data
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elements are processed in sequence as they go through the "pipe" and the pipe is created by
linking several operations using the pipelining operator.

Note that sometimes the order of operations is important and sometimes not. In this
case we have to perform the filtering first. If we did the projection in the first step, we'd
obtain a list containing only city names and we wouldn't have the information about
population, which is needed to perform the filtering.

C# 3.0 queries and F# sequence expressions

You've probably already seen examples of data queries written in C# using query
expressions. Using this feature, our previous code would look like this:
var names = from c in places

where 1000000 < p.Population
select p.Name

This is often demonstrated as a key new feature, but it wouldn't exist without the
underlying machinery such as lambda functions and higher order operations. We've
focused on using these explicitly, because when you learn to use them explicitly, you can
use a similar functional approach for working with any data and not just collections.

However the simplified syntax is quite useful and a similar feature called sequence
expressions is available in F# too. We'll talk about this later in chapter 12, but just for the
curious, here is the same query written in F#:

let names =

seq { for (name, pop) in places do
ifT (1000000 < pop) then yield name }

It looks almost like ordinary code enclosed in a block and marked with the word Se(.
This is the intention, because in F#, it is a more general language construct and it can be
used for working with other values too. In chapter 12 we'll see how to use it when
working with option values, but we'll also see how C# query expressions can sometimes
be used for similar purposes.

Having looked at how we can use two higher order list processing functions and seen
how useful they are, let's take a deeper look at a third such function, and implement it
ourselves.

6.7.3 Implementing list functions
Instead of showing how to implement the functions for filtering and projection which we've
just seen, we'll look at a function that we started creating in chapter 3. Since all list
processing functions have a very similar structure, you'll probably be able to implement any
of the others after looking at the following example.

In chapter 3, we wrote a function that could either sum or multiply all elements in a list.
We later realized that it is more useful than it first appeared: we saw that it could also be
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used to find the minimum or maximum elements as well. However, we hadn't covered
generics at that point, so the function worked only with integers. In listing 6.22, we look at
the same function without the type annotations which originally restricted automatic
generalization.

Listing 6.22 Generic list aggregation (F# interactive)

> let rec foldLeft f init list =
match list with

| [1 -> init #A
| hd::tl ->
let rem = foldLeft T init tl #B
f rem hd #C
val fold_left : ("a -> "b -> "a) -> "a -> "b list -> "a #1

#A Return initial value

#B Recursively process the tail

#C Aggregate using the given function
#1 Type signature

The implementation is the same as in chapter 3, but as we removed type annotations,
the inferred signature is more general (#1). The function now takes a list with values of type
"b and the value produced by aggregation can have a different type (type parameter "a).
The processing function takes the current aggregation result (of type 'a) and an element
from the list ("b) and returns a new aggregated result.

As we'll see very soon, the use of generics makes the aggregation far more useful. It is
also available in the F# library under a name fold_left and the version that works with
the immutable F# list type is located in the LISt module. The following snippet shows our

original use from chapter 3, where we multiplied all the elements in a list together:
>[1..57] |> List.fold_left (*) 5
val it : int = 120

As we're working with generic function, the compiler had to infer the types for the type
parameters first. In this case, we're working with a list of integers, so parameter "b is int.
The result is also an integer, so "a is INt too. Listing 6.23 shows some other interesting
examples using Fold_left.

Listing 6.23 Examples of using fold_left (F# interactive)

> places |> List.fold_left (fun sum (_, pop) -> sum + pop) O;; #1
val it : int = 9080788

> places |> List.fold_left (funs (n, ) -=>s +n + ", ") "";; #2
val it : string =
""Seattle, Prague, New York, Grantchester, Cambridge, "

> places
|> List.fold_left (fun (b,str) (name, _) -> #3
let n = if b then name.PadRight(20) else name + "\n"
(not b, str+n)
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) (true, ™) #A
|> snd #4
|> printfn "%s";; #B
Seattle Prague
New York Grantchester
Cambridge

#1 Sum population into 'int’

#2 Format into a 'string’

#3 Aggregation using 'bool * string’ value
#A Initial tuple value

#4 Drop the helper element from a tuple
#B Print the formatted string

In all the examples, we're working with our collection of city information, so the type of
the list is always the same. This means that the actual type of parameter "D is always
(string * int) tuple. However, the result of aggregation differs. In the first case (#1),
we're just summing population, so the type of the result is int. In the second example
(#2), we want to build a string with names of the cities, so we start the aggregation with an
empty string. The lambda function used as the first argument appends the name of the
currently processed city and a separator.

In the last example (#3) we implement a version with improved formatting-it writes the
city names in two columns. This means that the lambda function performs two alternating
operations. In the first case, it pads the name with spaces (to fill the first column) and in the
second case it just adds a newline character (to end the row). This is done using a temporary
value of type bool, which is initially set to true and then inverted in every iteration. The
aggregation value contains this alternating temporary value and the resulting string, so at
the end, we need to drop the temporary value from the tuple (#4).

IMPLEMENTING FOLD IN C#

An operation with the same behavior as fold_left is available in the .NET library as well,
although it has the name Aggregate. As usual, it is available as an extension method
working on any collection type and we can use it in the same way as the F# function. Let's
rewrite the last example from listing 6.21 in C# 3.0, where we used a tuple to store the
information during the aggregation. When we were talking about tuples in the previous
chapters, I mentioned that C# 3.0 anonymous types can be sometimes used for the same
purpose. This is an example of where they're a really good fit:

var res =
places.Aggregate(new { StartOfLine = true, Result = """ },
(r, pb) = {

var n = r. StartOfLine ? pl_Name.PadRight(20) : (pl-Name + "\n");
return new { StartOfLine = !r.StartOfLine, Result = r.Result + n };
}) -Result;

In C#, the initial value is specified as the first argument. We create an anonymous type
with properties StartOfLine (used as a temporary value) and Result, which stores the
concatenated string. The lambda function used as the second argument does the same thing
as in our previous F# example, but returns the result again as an anonymous type, with the
same structure as the initial value. To make the code more efficient, we could also use the
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StringBui lder class instead of concatenating strings, but I wanted to show the simplest
possible example. Now that we know how to use the function in C#, we should also look how
it is implemented. In listing 6.24 you can see two implementations. One is a typical
functional implementation for the functional list from chapter 3 and the other is an
imperative implementation for the generic .NET LISt type, which is in principle the same as
the Aggregate extension method in .NET library.

Listing 6.24 Functional and imperative implementation of FoldLeft (C#

R FoldLeft<T, R> R FoldLeft<T, R>
(this FuncList<T> s, #1 (this List<T> Is, #2
Func<R, T, R> f, R init) #1 Func<R, T, R> f, R init) #2
{
if (Is.IsEmpty) return init; #3 R temp = init; #5
else return f( foreach(var el in Is)
Is.Tail _.FoldLeft(f, init), #4 temp = F(temp, el); #6
Is_Head); return temp;
¥ }

#1, #2 The signature of both methods is the same and it corresponds to the earlier declaration in F#,
although we have to write the type parameters explicitly. Also note that the list is used as the first
parameter and both methods are implemented as extension methods

#3, #4 In the functional version, we have two branches - one to process the empty list case and
another to recursively processes a cons cell and aggregate the result using the 'f' parameter

#5, #6 The imperative version declares a local mutable value to store the current result during the
aggregation. When processing an element, the new value is calculated using the 'f' parameter

Annotations below the code with cueballs on the left.

As I've already mentioned, implementing the other operations is quite a similar process.
In the functional version of map or Filter, you'd return an empty list in (#3) and in the
imperative version, you'd use mutable list as a temporary value (#5). The other change
would be on lines (#4) and (#6). When performing a projection, we'd just call the given
function, while for filtering we'd decide whether to append the current element or not.

To conclude our discussion of higher order functions, I'd like to highlight a few
interesting relationships between the functions that we've used for manipulating lists and the
functions available for working with option values.

6.8 Common processing language

We've seen a few recurring patterns over the course of this chapter, such as an operation
called "map" which was available for both option values and lists. Actually, we also used it
when we were working with tuples and implemented the mapFirst and mapSecond
functions.

It turns out that many different values share a similar set of processing functions, so it
makes sense to think about these operations as a common language. However, the name of
the operation can vary for different values: similarities in type signatures are often better
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clues than similarities in names. Listing 6.23 shows the types of the map and Filter
functions for several types, including a function Option.Filter that we haven't
discussed yet.

Listing 6.23 Signatures of filter and map functions (F#)

mapFirst :(fa->"b) -> "a * "c -> "b * "c
List.map > ("fa -> "b) -> "a list -> "pb list
Option.map : ("a -> "b) -> "a option -> "b option
List.filter : ("a -> bool) -> "a list -> "a list

Option.filter : ("a -> bool) -> "a option -> "a option

The map operation can perform the function given as the first argument on any
elements that are somehow enclosed in the composed value. For tuples, it is used exactly
once; for an option value it can be called never or once; for a list it is called for each element
in the list. In this light, an option value can be viewed as a list containing zero or one
element.

This also explains what the new Option.filter function does. For an option value
with no elements it returns None; for an option with a single value it tests whether it
matches the predicate and returns either Some or None depending on the result. Let's

demonstrate this using an example that filters option values containing even numbers:
> Some(5) |> Option.filter (fun n -> n%2 = 0);;
val it : int option = None

If we use the analogy between lists and options then this code filters a list containing
one value and the result is an empty list. The analogy can work the other way round as well
- we've already seen the bind operation for options, and we can apply the same concept to
lists.

6.8.1 The bind operation for lists

We've only discussed the bind operation for option values, but as we'll see in chapter 12, it is
an extremely important functional operation in general. Listing 6.24 shows the type
signature of the bind operation for option values and also what it would look like if we
defined it for lists.

Listing 6.24 Signatures of bind operations (F#)

Option.bind : ("a -> "b option) -> "a option -> "b option
List.bind : ("a -> "b list) -> "a list -> "b list

The function LISt.bind is available in the F# library under a different name, so let's
try to figure out what it does, just using the type signature. The input is a list and for each
element, it can obtain a list with values of some other type. A list of this type is also returned
as a result from the bind operation.

In practice, this means that the operation calls the given function for each element and
concatenates the lists returned from this function. The name that F# library uses reflects this
use, so the function is called List.map_concat. We can use this function for example to
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get a list of all files from a given list of directories. Note that a single directory usually
contains a list of files. Listing 6.25 shows how we can list all source files for this chapter.

Listing 6.25 Listing files using map_concat (F# interactive)

> open System.10;;
> let directories =
[ ""C:\Source\Chapter06\Chapter06_CSharp";
""C:\Source\Chapter06\Chapter06_FSharp";
"C:\Source\Chapter06\FunctionalCSharp" ];;
val directories : string list

> directories |> List.map_concat (fun d ->

Directory.GetFiles(d) #A
|> List.of_seq #A
|> List.map Path.GetFileName );; #A

val it : string list =
[ ""Chapter06_CSharp.csproj'; "Program.cs'; "Chapter06_FSharp.fsproj"
"Script.fsx'; "FunctionalCSharp.csproj'; "List.cs";
"Option.cs"™; "Tuple.cs" ]
#A Get list of file names for the given directory

The map_concat operation calls the given lambda function for each of the directory in
the input list. The lambda function then gets all files from that directory, converts them from
an array into a list and uses List._map to get the file name from the full path. The results
are then collected into a single list that is returned as the overall result. You probably won't
be surprised to hear that this operation is also available in .NET 3.5, where it's represented
by the SelectMany method. This is the method used when you specify multiple From
clauses in a C# 3.0 query expression.

6.9 Summary

This chapter together with chapter 5 discussed functional values. As we saw in the previous
chapter, values are important for controlling the flow of the program and they allow us to
write code in a functional way: that is, composing it from functions that take values as an
argument and return values as the result. In this chapter we've seen a more convenient way
for working with values. Instead of directly using the structure of the value, we used a set of
higher order functions that are defined in the F# library. We've seen how they are
implemented and also how we can implement similar functionality for our own types.

In particular, we talked about functions that allowed us to perform an operation on the
values carried by standard F# types such as tuples and option types, and also our type for
representing schedules. We've learned how to construct a function from two functions using
function composition and we've seen how all these features, together with partial application
and the pipelining operator, can be used to write elegant and readable code that works with
values.

Finally, we looked at several functions for working with lists and we also observed
interesting similarities between some of the higher order functions acting on different types.
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For example, we saw that the map operation is useful for many distinct kinds of values and
that the bind operation for an option type looks similar to the map_concat function for
working with lists. We'll talk more about this relationship in chapter 12.

When we started talking about using values in chapter 5, we made a distinction between
local values and program data. In the next chapter, we'll turn our attention to program data,
which represent the key information that the program works with. For example, this could be
the structure of shapes in a vector graphics editor or the document in a text editor. In this
chapter we introduced a convenient way for working with local values and we'll see that
same ideas can be used for working with program data as well. We've already taken a step
in this direction when we talked about lists, because many programs represent their data as
a list of records.
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Designing data-centric programs

The first thing to do when designing a functional program is to think about the data that the
program works with. Since any non-trivial program uses data, this phase is extremely
important in the application design. When implementing a program in a functional language,
we also begin with the data structures that we'll use in the code and then write operations to
manipulate the data as the second step.

This is different to the object-oriented design, where data is encapsulated in the state of
the objects; processing is expressed as methods that are part of the objects and interact
with other objects involved in the operation. Most of functional programs are data-centric,
which means that data is clearly separated from operations and adding a new operation to
work with the data is a matter of writing a single function.

DATA-CENTRIC AND BEHAVIOR-CENTRIC PROGRAMS

Even though most functional programs are data-centric, there are some applications and
components where we can't just think about the data, because the primary concern is
behavior. For example, in an application that allows batch processing of images using
filters, the primary data structure would be a list of filters and from a functional point of
view, a filter is just a function.

This shows that there are two primary ways of looking at functional code. These
approaches are often combined together in different parts of a single application, but we'll
talk about them separately. In this chapter, we'll look at data-centric programs and in
chapter 8 we'll talk about behavior-centric programs.

The primary aim of this chapter is to teach you how to think about application design in
a functional way. We'll demonstrate the ideas in the context of an application which works
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with simple documents containing text, images and headings. In this chapter, we'll use F# as
our primary language. Although we can C# in a functional style, designing the structure of
the application in a functional way would be somewhat inconvenient, because functional data
structures rely heavily on data types like discriminated unions. However, I'll mention several
related object-oriented design patterns and we'll also consider how we would work with
immutable types in C#.

USING DIFFERENT DATA REPRESENTATIONS

In functional programming, it is very common to use multiple data structures to represent
the same program data. This means that we design different data structures and then
write transformations between the various representations. These transformations usually
compute additional information about the data.

This has several benefits. First of all, different operations can be more easily implemented
using different data representations. You'll see an example in this chapter where we'll
work with two representations of documents. In section 7.2, we'll implement a flat data
structure, which is suitable for drawing of the document. Later, in section 7.3, we'll add
structured representation, which is more appropriate for storing and processing of the
document. Moreover, this approach also supports sharing work, because different
representations can be developed and maintained to some extent independently by
different developers.

We'll start this chapter by talking about one more F# type that is important for
representing program data and then we'll turn our attention to the example application.

7.1 Functional data structures

In functional programming, the data that the program manipulates is always stored in data
structures. The difference between data structure and objects is that data structure exposes
information about its structure (as the name suggests). The structure can be for example a
list of some records, a list of alternative values (represented using discriminated unions in
F#) or a recursive data structure such as tree. Knowing the structure of the data makes it
easier to write code that manipulates with it, but as we'll see in chapter 9, F# also gives us a
way to encapsulate the structure, just like in object-oriented programming, when we want to
export the F# data structures from a library or make it available to C#. As we mentioned
when we talked about functional concepts in chapter 2, these data structures are immutable.

We'll look at two of the most common representations of program data in this chapter.
We'll start with a list of records and later use a recursive data structure. We've already used
lists in various examples, and in chapter 4 we used a list of tuples to draw a pie chart, where
each tuple contained a title and a value. Using tuples is simple, but it's impractical for more
complicated data. In this section we'll look at the F# record type, which is the one remaining
core F# data type left to discuss.
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7.1.1 Using the F# record type

A simple description of records is that they are "labeled tuples". They store multiple different
elements in a single value, but in addition, each of the elements has a name that can be
used to access it. This is in many ways similar to records or Struct constructs from C or to
anonymous types in C#. Unlike anonymous types, records have to be declared in advance.
Similarly to anonymous types, records in their basic form contain only properties to hold
data; listing 7.1 shows one such declaration to represent a rectangle.

Listing 7.1 Representing rectangle using record type (F# interactive)

> type Rect = #1
{ Left : float32 #A

Top : float32 #A

Width : float32 #A
Height : float32 };; #A

type Rect = (...)

> let rc = { Left = 10.0f; Top = 10.0F; #2
Width = 100.0f; Height = 200.0Ff; };; #2
val rc : Rect #3

> rc.Left + rc.Width;; #B
val it : float32 = 110.0F

#1 Declaration of 'Rect’ record

#A Elements of the record with name and a type

#2 Creating a record value

#3 Inferred type is 'Rect’

#B Accessing elements using the name

When declaring a record type (#1) we have to specify the types of the elements and their
names. In this example, we're using Float32 type, which corresponds to Float in C#
and the .NET System.Single type, because we'll need rectangles of this type later. To
create a value of an F# record, we simply specify values for all its elements in curly braces
(#2). Note that we don't have to write the name of the record type: this is inferred
automatically using the names of the elements and as you can see, in our example the
compiler correctly inferred that we're creating a value of type Rect (#3).

When working with records we'll need to read their elements, but we'll also need to
"change" values of the elements - for example when moving the rectangle to the right.
However, as a record is a functional data structure and it is immutable, so we'll instead have
to create a new record with the modified value. For example, moving a rectangle record to

the right could be written like this:
let rc2 = { Left = rc.Left + 100.0F; Top = rc.Top;
Width = rc.Width; Height = rc.Height }

Writing all code like this would be awkward, because we'd have to explicitly copy values
of all elements stored in the record. In addition, we may eventually need to add a new
element to the record declaration, which would break all the existing code. Unsurprisingly,
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F# lets us express the idea of "copy an existing record with some modifications" in a succinct

manner:
let rc2 = { rc with Left = rc.Left + 100.0Ff }

Using the with keyword, we can specify just a value of the elements that we're going
to change and all the remaining elements will be copied automatically. This has exactly the
same meaning as the previous code, but it's much more practical.

So far we've seen how to write "primitive" operations on records - but of course we're
trying to write code in a functional style, so we really want to be able to manipulate records
with functions.

WORKING WITH RECORDS

We'll use the RecCt type later in this chapter and we'll need two simple functions to work
with rectangles. The first function deflates a rectangle by subtracting the specified width and
height from all its borders and the second one converts our representation to the
RectangleF class from System.Drawing namespace. You can see both of them in
listing 7.2.

Listing 7.2 Functions for working with rectangles (F# interactive)

> open System.Drawing;;
> let deflate(rc, wspace, hspace) =

{ Left = rc.Top + wspace #A

Top = rc.Left + hspace #A

Width = rc.Width - (2.0f * wspace) #A

Height = rc.Height - (2.0F * hspace) };; #A

val deflate : (Rect * float32 * float32) -> Rect #1
> let toRectangleF(rc) =

RectangleF(rc.Left, rc.Top, rc.Width, rc.Height);; #B

val toRectangleF : Rect -> RectangleF #2

> { Left = 0.0f; Top = 0.0Ff;
Width = 100.0f; Height = 100.0Ff; };;
val it : Rectangle = (...)

> deflate(it, 20.0f, 10.0F);; #3
val it : Rectangle = { Left = 20.0f; Top = 10.0F;
Width = 60.0f; Height = 80.0f;}

#A Create and return deflated rectangle

#1 Function signature

#B Return a new instance of '‘RectangleF’ class

#2 Function signature

#3 Test 'deflate’ using rectangle from the previous command

As you can see from the printed type signatures (#1, #2), the F# compiler correctly deduced
that the type of the rcC parameter is of type Rect. The compiler uses the names of the
elements that are accessed in the function body. However, if we had two record types and
used only elements shared by both of them, we'd have to specify the type explicitly. We
could use type annotations and write (rc:Rect) in the function declaration. As usual when
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working with F# interactive, we immediately test the function (#3). We didn't use a let
binding when creating the value, so later we access it using the automatically created value
called it.

If we were designing a functional data structure like this one in C# we would of course
use classes or occasionally structs. However, F# record types are immutable and as we've
seen, they can be easily cloned using the { X with ... } construct. In the next section,
we'll briefly look how to design similar type in C#.

7.1.2 Functional data structures in C#

We've already implemented several functional immutable data types in C# such as
FuncList or Tuple. In C#, we do this by writing a class in a particular way. Most
importantly all its properties have to be immutable. This can be done either by using
readonly field, or by declaring a property which has a private setter and is set only in the
constructor of the class. We use the second approach in listing 7.3.

Listing 7.3 Immutable 'Rect’ type (C#

public sealed class Rect {

public float Left { get; private set; } #A
public float Top { get; private set; } #A
public float Width { get; private set; } #A
public float Height { get; private set; } #A

public Rect(float left, float top, float width, float height) { #B
Left = left; Top = top; Width = width; Height = height;

}

public Rect WithLeft(float left) { #1
return new Rect(left, this.Top, this.Width, this.Height); #C

}

// Similarly: WithTop, WithWidth and WithHeight #2

#A Readonly properties of the type

#B Construct the value

#1 Returns 'Rect' with modified 'Left' property
#C Create a copy of the object

#2 'With' methods for other properties (Omitted)

The class contains the usual declarations of read-only properties using the C# 3.0
automatic properties feature and a constructor that initializes them. Since we're not
modifying the value of the property anywhere from inside the class, they are all immutable.

The more interesting part is the WithLeft method (#1), which can be used to create
a clone of the object with a modified value of the Left property. I've omitted similar
methods for other properties (#2), because they are all very similar. These methods
correspond to the with keyword that we've seen earlier for F# records. You can see the

similarity yourself:
let moved = { rc with Left = 10.0F } #A
var moved = rc.WithLeft(10.0F); #B
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#A F#: using 'with' keyword

#B C#: using 'WithLeft' method

The important thing is that we don't have to explicitly read all properties of the Rect
class and we just mention the property that we want to change. This syntax is actually quite

elegant even if we want to modify more than one of the properties:
var moved = rc.WithLeft(10.0f) . .WithTop(10.0f);

Just as we've seen in this example, you'll often need to set two related properties at the
same time. If this happens frequently, it is more convenient to add a new method that
creates a clone and modifies all the related properties. In our example, we would likely also
add methods WithPosition and WithSize, because they represent very common
operations. This can also be necessary if each individual change would otherwise create an
object in an invalid state, but the combined operation represents a valid state transition.

That's all we need to know about F# record types for now. We'll get back to functional
data types in .NET in chapter 9. In the next section, we'll start working on a larger sample
application, which is the heart of this chapter, and we'll talk about one usual way of
representing program data.

7.2 Flat document representation

As I wrote in the introduction, we'll develop an application for viewing documents in this
chapter. We'll start by designing a representation of the document that is suitable for
drawing it on the screen. In this representation, the document will be just a list of elements
with some content (either text or an image) and a specified bounding box in which the
content should be drawn. You can see an example of a document with three highlighted
elements in figure 7.1.

Functional programming in .NET

TextElement

fivd Wil

[~

ImageFElement

TextElement

In this book, we'll introduce you to the essential
concepts of functional programming, but thanks to
the NET framework, we won't be limited to theoretical
examples and we will use many of the rich .NET
libraries to show how functional programming can be
used in a real-world.

Figure 7.1 Sample document that consists of three elements; two of them display some text with different
fonts and one shows an image.
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Let's look at the data structures that represent the document in F#. Listing 7.4
introduces a new discriminated union to represent the two alternative kinds of elements and
a new record type for text elements. It uses the RecCt type we defined earlier.

Listing 7.4 Flat document representation (F#)
open System.Drawing #A
type TextContent = #1

{ Text : string
Font : Font }

type ScreenElement = #2
| TextElement of TextContent * Rect #B
| ImageElement of string * Rect #C

#A Contains the 'Font' class

#1 Represents text with font

#2 Represents element of the document
#B Text content with bounding box

#C Image file name with bounding box

In this sample, we're defining two types. First of all, we define a record type called
TextContent (#1) that represents some text and the font that should be used to draw it.
The second type called ScreenElement (#2) is a discriminated union with two
alternatives. The first alternative stores text content and the second one contains the file
name of an image. Both of them also have a RecCt to define the bounding box for drawing.
Listing 7.5 shows the code to represent the sample document from figure 7.1 using our new
data types.

Listing 7.5 Sample document represented as a list of elements (F#)

let fntText = new Font("Arial™, 12_.0f) #A
let fntHead = new Font(“Arial", 15.0F) #A
let elements = #B
[ TextElement
({ Text = "Functional programming in _NET"; Font = fntHead },
{ Left = 10.0Ff; Top = 0.0Ff; Width = 400.0f; Height = 30.0F });
ImageElement
(“'cover.jpg",
{ Left = 120.0f; Top = 30.0f; Width = 150.0F; Height = 200.0f });
TextElement
({ Text = @"In this book, we"ll introduce you to the essential
concepts of functional programming, but thanks to the _NET
framework, we won"t be limited to theoretical examples and we
will use many of the rich _NET libraries to show how functional
programming can be used in a real-world."; Font = fntText },
{ Left = 10.0f; Top = 230.0F; Width = 400.0F; Height = 400.0Ff }) ]
#A Create fonts for heading and for usual text
#B Create a list of 'ScreenElement’ values
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First we define fonts for the two different text elements, and then just construct a list
containing the elements. When creating elements, we create several F# record type values
using the syntax discussed earlier. You can see that this way of constructing documents is a
bit impractical and we'll design a different representation, more suitable for creating
documents later. Before that, we'll implement a function to draw a document stored using
this representation.

7.2.1 Drawing documents

Just like in chapter 4 when we drew a pie chart, we'll use the standard .NET
System.Drawing library. The point of this example is to demonstrate that using the
previous representation, drawing is extremely simple, so the core function in listing 7.6 has
just a few lines of code. It simply iterates over all elements in a list and contains drawing
code for the two different kinds of elements.

7.6 Drawing document using flat representation (F# interactive

> let drawElements elements (gr:Graphics) =
for p in elements do #A
match p with
| TextElement(te, rc) ->
let rcf = toRectangleF rc #B
gr.DrawString(te.Text, te.Font, Brushes.Black, rcf)
| ImageElement(img, rc) ->

let bmp = new Bitmap(img) #C
let wsp, hsp = rc.Width /7 10.0Ff, rc.Height /7 10.0F #D
let rc = toRectangleF(deflate(rc, wsp, hsp)) #D
gr.Drawlmage(bmp, rc);;

val drawElements : seg<ScreenElement> -> Graphics -> unit #1

#A Imperative iteration over all elements
#B Convert 'Rect’ to .NET RectangleF
#C Load image from the specified file
#D Add border 10% of the image size

#1 Function type signature

The function draws the specified list of elements to the given Graphics object. The
type of the first parameter is sSe(, which represents any collection. So far we've been
working with lists, but you'll see some other collections (such as arrays) in chapters 10 and
11. In the code, we only need to iterate over the elements in the collection using a for
loop, so the compiler inferred the most general type for us. The type Seq<"a> corresponds
to the generic IEnumerable<T>, so in C# the type of the parameter would be
IEnumerable<ScreenElement>.

The code also uses the functions from the previous section to work with the Rect
values. We use toRectangleF to convert our Rect value to the type which the
DrawString method needs, and deflate to add space around the image.

Our drawing function takes the Graphics object as an argument, so we need some
way of creating one. As a final step, we'll write some code to create a form and draw the
document onto it.
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DRAWING TO A FORM

The drawing will be similar to the example from chapter 4. Because the drawing can take
some time, we'll create an in-memory bitmap, draw the document there and then display the
document on a form rather than drawing the document every time form is invalidated.
However, let's first look at one very useful functional programming pattern that we'll use in
this section.

The "Hole in the middle" pattern

One very common situation when writing a code is that you perform some initialization,
then the core part of the function and then some clean-up at the end. When you repeat
similar operation in multiple places of the program, the initialization and clean-up don't
change and only the core part is different. A sample that draws on an in-memory bitmap
written in C# would look like this:

var bmp = new Bitmap(width, height)

using(var gr = Graphics.Fromlmage(bmp)) {
.- #A

#A Core part: drawing using 'gr' object

The problem with this code is that using only object-oriented programming concepts, you
can't simply wrap the code that performs the initialization and finalization into a
subroutine and share it between all the places that do different drawing.

In functional programming, the solution is trivial. You can simply write higher order
function and wrap the core part into a lambda function and use it as an argument:
var bmp = Drawlmage(width, height, gr => {
-9 #A
F

#A Core part inside a lambda function

From a functional point of view, this is an uninteresting example of using a higher order
function, but the case where we need to perform some initialization followed by the core
part and then clean-up is very common, so it deserves a special name. The name was
first used by Brian Hurt in a blog post "The 'Hole in the middle' pattern" [Hurt, 2007]. It
nicely describes the fact that only the middle part needs to be filled in with a different
functionality in every use of the code.

Listing 7.7 shows an F# implementation of a function similar to the Drawlmage from
the previous sidebar. In addition to the two parameters that specify the size of the created
bitmap, it also allows specifying additional margins from the border of the image.

Listing 7.7 Function for drawing images (F# interactive)

> let drawlmage (wid:int, hgt:int) space f =
let bmp = new Bitmap(wid, hgt)
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let gr = Graphics.Fromlmage(bmp)
let rc = Rectangle(Point(0,0), Size(wid,hgt)) #A
gr.FillRectangle(Brushes._White, rc) #A
gr.TranslateTransform(space, space) #B
f(gr) #1
gr.Dispose() #C

bmp; ;
val drawlmage : int * int -> float32 -> (Graphics -> unit) -> Bitmap #2
#A Fill the background with white color
#B All drawing on graphics will be shifted
#1 Call the core part of drawing
#C Clean-up
#2 Function type signature

When we use this function to draw an image, the core part of the drawing will be
specified in a function given as the last argument. The type signature (#2) shows that the
function takes a Graphics as an argument and doesn't return a result. It is invoked in the
middle of the code (#1) after the bitmap and Graphics object are created. We also call
TranslateTransform in the initialization phase, to provide some padding for the
drawing. Finally, the function ends with the clean-up code to release the resources used for
drawing before returning the bitmap. In the listing above, we call the DiSpose method
explicitly, which isn't entirely correct. We'll look how to fix this in chapter 9 when we'll talk
about using IDisposable type from F#.

Finally we have everything we need to see our code in action. For now, we'll just create
and test the form interactively. Listing 7.8 shows how to draw the screen elements from
listing 7.5 and show the document on a form.

Listing 7.8 Drawing the document using WinForms (F# interactive)

> let doclmg = drawlmage (400, 450) 20.0f (drawElements elements) #1
val doclmg : Bitmap

> open System._Windows.Forms #A
let main = new Form(Text = "Document', Backgroundlmage = doclmg) #A
main.Show();; #A

#1 Draw the document
#A Create a form with the document

The line where we draw the bitmap (#1) may require a little explanation. We're calling
drawlmage, which takes a function specifying the core part of the drawing as the last
argument. Since we've already implemented this in the drawElements function, you
might expect us to just be able to pass it directly as the last argument. However,
drawElements has two parameters - whereas drawlmage expects a function with only
one (the Graphics object to draw on). We use partial function application to specify the
list with ScreenElement values. The result of the partial application is a function that
takes a Graphics object and draws the document, which is exactly what we need. You can
see the result of our work in figure 7.2.

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com

186

Functional programming in .NET

In this book, we'll introduce you to the essential
concepts of functional programming, but thanks fo
the NET framework, we won't be limited to theoretical
examples and we will use many of the rich NET
libraries to show how functional programming can be
used in a real-world

Figure 7.2 Sample document stored as a list of screen elements, drawn using ‘drawElements' function to a
Windows Forms form.

As we've seen, our previous representation of the document allowed us to implement
drawing very easily. However, the code we had to use to create the document in the first
place was somewhat awkward. In functional programming, you'll often find that different
contexts suggest different data structures: the desired usage determines the ideal
representation to some extent. It's not uncommon for a functional program to have different
representations for the same information in a single program. Now that we've got a suitable
form for drawing, let's try to design one which is suitable for construction and processing-
and then write a transformation function to get from one representation to the other.

7.3 Structured document representation

The data structure that we'll design in this section is inspired by the HTML format, which is a
familiar and successful language for creating documents. Just like HTML, our representation
will have several different types of content and it will be possible to nest some parts within
each other in appropriate ways. Figure 7.3 shows an annotated sample document, which
should give you an idea of what the format will include.
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Lorem ipsum dolor

TitledPart
Cras quis neque non Lorem ipswm dolor sit |
diam aliquet congue. amet, consectetuer ™ SpiitPart (Horizontal)
Aenean lacinia adipiscing elit. Fusce
condimentum ligula. accumsan lobortis elit,
Cras in tortor. Nunc Pellentesque laoreat SplitPart (Vertical)
rutrum dolor sed tortor. dapibus nunc. Nulla
Integer lorem risus. facilisi, Class aptent
ultrices a, dictom id. taciti sociosqu ad litora |~ TextPart
imperdiet eu, eros. torguent per conubia I~
Phasellus at magna. nostra, per mceptos 1
Phasellus rutrum aliquar himenaeos. / ImagePart
mauris. Cras velit lacus, L
blandit non, porta vel, ,/
suscipit non. dolor. Ut i
nisl ac tortor tempus
elementum. Praesent
tincidunt mauris nec
nibh. Proin sit amet
metus. Ut eget lorem.
Donec mollis quam ut
dolor.

Figure 7.3 Four different kinds of parts available in our document format; 'TitledPart' adds title to another
part, and using 'SplitPart' we can create columns and rows. ‘TextPart' and 'ImagePart' specify the actual
content.

There are two different types of parts. Simple parts like TextPart and ImagePart
contain some content, but cannot contain nested parts. On the other side, TitledPart
contains one nested part and adds a title to it, while SplitPart contains one or more
nested parts and an orientation. As you may have guessed, we'll represent the different
parts using a discriminated union. Because two of the parts can contain nested parts, the
type will be recursive. Listing 7.9 shows the type declaration, giving us something more
concrete to discuss in detail.

Listing 7.9 Hierarchical document representation (F#)

type Orientation = #1
| Vertical
| Horizontal

type DocumentPart = #2
| SplitPart of Orientation * list<DocumentPart> #A
| TitledPart of TextContent * DocumentPart #B
| TextPart of TextContent #C
| ImagePart of string #C

#1 Represents orientation of the "SplitPart’

#2 Recursive type representing the document
#A Columns or rows containing parts

#B Other part with a title

#C Simple content parts
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The most important point to note is that the transcription of our informal specification to
F# code is very straightforward. This is definitely one of the most attractive aspects of the
standard F# type declarations. We first declare a simple discriminated union with just two
options to represent an orientation for split parts (#1) and then declare the
DocumentPart type with four alternative options.

Two of the options recursively contain other document parts. SplitPart contains
several other parts in a list and also an orientation to determine how the area should be
divided; TitledPart consists of a single other part and a title to decorate it with. As you
can see, the text is stored using the TextContent type from the previous section, which
is a record containing a string together with a font.

Note that the DocumentPart type represents the document as a whole. Because the
type is recursive, we can nest any number of content parts inside a single document part.
This is different to the previous approach, where we created a type for an element and then
represented the document as a list of elements. In that representation, the list served as a
"root" of the data structure and the elements were not further nested. Using the new data

types, we can write the document from section 7.2 like this:
let doc =

TitledPart({ Text = "Functional programming'; Font = fntHead },

SplitPart(Vertical,
[ ImagePart(*‘cover.jpg™);
TextPart({ Text = "..."; Font = fntText }) ]

)

)

I omitted the content of the TextPart located below the image, but you can still see
that the representation is terser, because we don't need to calculate bounding rectangles.
However, we don't have an implementation of drawing for this data type. We're not going to
write one, either-why would we, when we've already got a perfectly good drawing function
for the earlier representation? All we need to do is provide a translation from the "designed
for construction" form to the "designed for drawing" one.

7.3.1 Converting representations

There are two key differences between the data types that we've just implemented. The first
is that the data type from section 7.2 explicitly contains the bounding boxes specifying
location of the content. Compare that with the second data type, which only indicates how
the parts are nested. This means that when we translate the representation, we'll need to
calculate each location based on the nesting of the parts. The second difference is that in the
new representation, the document is just a single (recursive) value, while in the first case it
is a list of elements. These two differences affect the signature of the translation function

looks, so let's analyze that before we study the implementation:
val documentToScreen : DocumentPart -> Rect -> list<ScreenElement>

The function takes the part of the document to translate as the first argument and
returns a list of ScreenElement values from the section 7.2. This means that both the
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input argument and the result can represent the whole document. The function has also a
second argument, which specifies the bounding rectangle of the whole document. During the
translation, we'll need it to calculate positions of the individual parts. Listing 7.10 shows the
implementation, which is (unsurprisingly) a recursive function.

Listing 7.10 Translation between document representations (F#)

let rec documentToScreen(doc, rc) =
match doc with

| SplitPart(Horizontal, parts) -> #1
let width = rc.Width / (float32 parts.Length) #A
parts

|> List.mapi (fun i1 part -> #2
let left = rc.Left + (float32 i) * width #2

let rc = { rc with Left = left; Width = width } #2
documentToScreen(part, rc)) #2

|> List.concat #3

| SplitPart(Vertical, parts) -> #4

let height = rc.Height / (float32 parts.Length)
parts
|> List.mapi (fun i1 part ->
let top = rc.Top + (float32 i) * height #D
let rc = { rc with Top = top; Height = height } #D
documentToScreen(part, rc)) #E
|> List.concat
| TitledPart(tx, doc) -> #5

let titleRc

{ rc with Height = 35.0Ff }
let restRc =

{ rc with Height = rc.Height - 35.0f;
Top = rc.Top + 35.0F }
TextElement(tx, titleRc)::(documentToScreen(doc, restRc)) #F
| TextPart(tx) -> [ TextElement(tx, rc) ] #6
| ImagePart(im) -> [ ImageElement(im, rc) ] #6
#A Calculate the size of individual parts
#2 Recursively translate columns of part
#3 Concatenate lists of screen elements
#D Calculate bounding box of the row
#E Recursive call
#F Translate the body and append the title

Let's start from the end of the code. It's easy to process parts that represent content
(#6) because we just return a list containing a single screen element. We can use the
rectangle that we've been provided as an argument to indicate the position and size. No
further calculation is required.

The remaining parts are more interesting, because they are composed from other parts.
In this case, the function calls itself recursively to process all the sub-parts that form the
larger part. This is where we have to perform some layout calculations, because when we call
documentToScreen again, we give it a sub-part and the bounding box for the sub-part.
We can't just copy the rc parameter, or all the sub-parts would end up in the same place!
Instead we have to divide the rectangle we've been given into smaller rectangles, one for
each sub-part.
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TitledPart (#5) contains just a single sub-part, so we need to perform just one
recursive call. Before that, we calculate one bounding box for the title (35 pixels at the top)
and one for the body (everything except the top 35 pixels). Next, we process the body
recursively and append a TextElement representing the title to the returned list of screen
elements.

We process a SplitPart using a separate branch for each of the orientations (#1,
#4). First we calculate size of each of the column or row and then convert all its parts. We
use List._mapi function (#2), which is just like List_.map, but in addition it gives us an
index of the part that we're currently processing. We can use the index to calculate the offset
of the smaller bounding rectangle from the left or from the top of the main rectangle. The
lambda function then calls documentToScreen recursively and returns a list of screen
elements for every document part. This means that we get a list of lists as the result of the
projection using List.mapi. The type of the result is list<list<ScreenElement>>
rather than the flat list we need to return, so we use the standard F# library function
List.concat (#3), which turns the result into a value of type
list<ScreenElement>.

TRANSLATION IN DETAIL

The translation between different representations of the document is the most difficult
part of this chapter, so you may want to download the source code and experiment with it
to see how it works. The most interesting (and difficult) part is calculating the bounding
rectangle for each recursive call. Likewise it's worth making sure you understand the list
returned by the function, and how it's built up from each of the deep recursive calls. You
may find it useful to work through an example with a pencil and paper, keeping track of
the bounding rectangles and the returned screen elements as you go.

Translation between different representations is often the key to the simplicity of a
functional program, as it allows us to implement each of the other operations using the most
appropriate data structure for the situation. We've seen that the first representation is
perfect for drawing the document, but that the second make construction simpler. It turns
out that the second form also makes manipulation easier, as we'll see in section 7.4. Before
that though, we'll introduce one more representation: XML.

7.3.3 XML document representation

The XML format is very popular and is a perfect fit for storing hierarchical data such as our
document from the previous section. Working with XML is important for many real-world
applications, so in this section we'll extend our application to support loading documents
from XML files. We'll use the .NET 3.5 LINQ to XML API to do most of the hard work-there's
no point in writing yet another XML parser. LINQ to XML is a good example of how functional
concepts are being used in mainstream frameworks: although it isn't a purely functional API

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
191

(the types are generally mutable) it allows objects to be constructed in a recursive and
declarative form. This can make the structure immediately apparent from the code, so it's
much easier to read than typical code using the DOM API.

In some sense, this is just another translation from one representation of the data into
another. In this case the source representation is a structure of LINQ objects and the target
is our document data type from section 7.3.1. The translation is a lot easier this time
because both of the data structures are hierarchical. Listing 7.11 demonstrates the XML-
based format that we'll use for representing our documents.

Listing 7.11 XML representation of a sample document (XML)

<titled title="Functional Programming in _NET"

font="Times New Roman' size='"18" style="bold"> #1
<split orientation="vertical'> #2
<text>In this book, we"ll introduce you (...)</text> #A
<image url="C:\Tomas\Writing\Functional\Petricek.jpg"” /> #A
</split>
</titled>

#1 Properties of the font used for the title
#2 Vertical or horizontal split
#A Sub-parts are nested XML elements

Before looking at the core part of the translation, we need to implement some utility
functions that parse the attribute values shown in the XML. In particular, we need a function
for parsing a font name (#1) and the orientation of the SplitPart (#2). Listing 7.12
shows these functions and also introduces several objects from the LINQ to XML library.

Listing 7.12 Parsing font and orientation using LINQ to XML (F#

open System.Xml._Linqg

let attr(node:XElement, name, def) = #1
let attr = node.Attribute(XName.Get(name))
if (attr <> null) then attr.Value else def

let parseOrientation(node) = #2
match attr(node, "orientation™, ') with
| "horizontal™ -> Horizontal

| "vertical™ -> Vertical

I

_ => fTailwith "Unknown orientation!" #3
let parseFont(node) = #4
let str = attr(node, "style", ")
let style =
match str._Contains('bold™), str.Contains("italic™) with #A

| true, false -> FontStyle.Bold
| false, true -> FontStyle.ltalic
| true, true -> FontStyle.Bold ||| FontStyle.ltalic #B
| false, false -> FontStyle.Regular
let name = attr(node, *font", "Arial')
new Font(name, float32(attr(node, 'size", "12")), style)
#1 Reads attribute or returns the specified default value
#2 Parses value of the 'orientation’ attribute
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#3 Throw an exception

#4 Parse a font node with specified style

#A Tests whether the attribute contains specified strings
#B Combine two options of .NET enumeration

This code will only work with a reference to the System.Xml.Ling.dll assembly. In Visual
Studio, you can use the usual "Add Reference" command from Solution Explorer. In F#
interactive you can use the #r ""(...)" directive and specify the path to the assembly as
the argument, or just the assembly name if it's in the GAC.

The listing starts with the attr function (#1) that we use for reading attributes. It
takes an XElement (the LINQ to XML type representing an XML element) as the first
argument and then the name of the attribute. The final parameter is the default value to use
when the attribute is missing. The next function (#2) uses attr to read the value of the
"orientation" attribute of an XML node that is passed into it. If the attribute contains an
unexpected value, then the function throws an exception using the standard F# function
Ffailwith (#3).

Finally, parseFont (#4) is used to turn attributes of an XML tag like title in listing
7.11 into a .NET Font object. The most interesting part is the way that we parse the "style"
attribute. It tests whether the attribute value contains two strings ("bold" and "italic") as
substrings and then uses pattern matching to specify a style for each of the four possibilities.
The function also converts a string representation of the size into a number using the
Float32 conversion function and creates an instance of the Font.

Now that we have all the utility functions we need, loading the XML document is quite
easy. List 7.13 shows a recursive function loadPart which performs the complete
translation.

Listing 7.13 Loading document parts from XML (F#)

let rec loadPart(node:XElement) =

match node.Name.LocalName with #1

| "titled" ->
let tx = { Text = attr(node, "title", ""); Font = parseFont node}
let body = loadPart(Seq.hd(node.Elements())) #A
TitledPart(tx, body)

| "split" ->

let orient = parseOrientation node
let nodes = node.Elements() |> List.of_seq |> List.map loadPart #B
SplitPart(orient, nodes)

| "text" ->
TextPart({Text = node.Value; Font = parseFont node})
| "image™ ->
ImagePart(attr(node, “‘url*, %))
| _ -> failwith "Unknown node!" #2

#1 Select branch using element name

#A Recursively load the first child element
#B Recursively load all children

#2 Throw an exception
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The function takes an XML element as an argument and we'll give it the root element of
the XML document when we use it later. Its body is a single match construct (#1) that tests
the name of the element against the known options and throws an exception if it encounters
an unknown tag (#2).

Loading image and text parts is easy because we just need to read their attributes using
our functions utility function and create appropriate DocumentPart values. The remaining
two document part types involve recursion, so they are more interesting.

To create a TitledPart from a "titled" element we first parse the attributes for the
title text and then recursively process the first XML element inside the part. To read the first
child element, we call Elements() method, which returns all the child elements as a .NET
IEnumerable collection. IEnumerable<T> is abbreviated as seq<"a> in F# and we
can work with it using functions from the Seq module that are similar to functions for
working with lists. In our example, we use Seq.hd, which returns the first element (the
head) of the collection. If we were writing this code in C#, we could «call
Elements() .First() to achieve the same effect.

Finally, to create a SplitPart from a "split" element we need to parse all the
children, so again we call the Elements() method but this time we convert the result to a
functional list of XElement values. Next, we recursively translate each one into a
DocumentPart value using a projection with the loadPart function as an argument.

The function is very straightforward because it simply provides a few lines of code that
parse the XML node for each of the supported tags. A lot of the simplicity is due to the fact
that the XML document is hierarchical in the same way as the target representation. This lets
us simply use recursion when a part has nested sub-parts.

Now that we have a function to load the document from an XML element, we can finally
see how the application displays a larger document: designing the document in an XML
editor is easier than creating values in F#. Listing 7.14 shows the final piece of plumbing
used to combine all the code that we've developed so far into a normal Windows Forms
application.

Listing 7.14 Putting the parts of the application together (F#)

open System._Windows.Forms

[<System.STAThread>]
do
let doc = loadPart(XDocument.Load(@"C:\...\document.xml'") _Root)
let parts = documentToScreen(doc, { Left = 0.0F; Top = 0.0F;
Width = 500.0F; Height = 600.0F })
let img = drawlmage (550, 650) 25.0f (drawElements parts)
let main = new Form(Text = "Document", Backgroundlmage = img
ClientSize = Size(550, 650))
Application.Run(main)
The code starts by loading the document from a XML file using the XDocument class.
We pass the document's root element to our loadPart function which converts it into the
hierarchical document representation. Next, we convert this into the flat representation using
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documentToScreen and then draw and display the document using the code we saw in
listing 7.8. This time, we have also added the STAThread attribute which is needed for
Windows Forms applications. The final line starts the application with the
Application.Run method. You can see a screenshot showing the result in figure 7.3.
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Figure 7.3 Finished application displaying document with all four different kinds of document parts.

Earlier I mentioned that the hierarchical representation is useful for manipulating the
document as well as performing the initial construction. Let's take a look at that now,
starting with a generally useful function for processing documents and then using it in a
practical example.

7.4 Writing operations

There are many kinds of operations that we could perform with a document. We could
capitalize all the titles in the document or perhaps merge text in multiple columns into a
single column. All these operations have something in common and you may see a similarity
between this and the map operation from the previous chapter. Just like mappings, they
examine the document, perform some operation with certain parts of it and return a new
document.

Another kind of operation would return just a single value of different type. For example
we could implement a function to count the words in the document or return all the
document text as a single string. Again, this should sound familiar: the foldLeft function
from section 6.6.3 does exactly the same job, but working with lists instead of documents.
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As we learned in the previous chapter, writing a separate function for each operation
would be impractical and we can get better results if we write a single higher order function
that can be reused for different purposes. We'll start by implementing the function discussed
in the first paragraph: the one reminiscent of the map operation.

7.4.1 Updating using a map operation

Even though the operation is similar to map, we'll implement it a bit differently this time. The
function which is used to process each part should be able to give two kinds of result. It
could return a new part which we'll use to replace the original part, or it return an empty
value, in which case we'll use the original part and recursively process all its sub-parts. Keep
in mind that there are several variations of this design. For example, we could also return
special value to denote that the currently processed part should be removed from the parent.
However, we'll continue and implement the simpler version. When thinking about higher
order functions, one of the first aspects to consider is the signature. Here's the signature of

the function we're going to implement:
val mapDocument :
(DocumentPart -> option<DocumentPart>) -> DocumentPart -> DocumentPart

Let's start from the end. The function takes the original document and returns an
updated version. The first parameter is the processing function and as you can see, it returns
an option value. This allows it to return Some value when replacing a part or None to leave
the original part (and recursively map it). The function is implemented in listing 7.15.

Listing 7.15 Map operation for documents (F#

let rec mapDocument f doc =

match f(doc), doc with #1
| Some(newDoc), _ ->

mapDocument ¥ newDoc #2
| _, TitledPart(tx, cont) ->

TitledPart(tx, mapDocument f cont) #3
| _, SplitPart(orient, parts) ->

let updated = parts |> List.map (mapDocument T) #4

SplitPart(orient, updated)
| _ -> doc

#1 Tests the result and the original part
#2 Function returned new document part
#3 Recursively process the body

#4 Process all columns or rows

The code is implemented using handy pattern matching (#1). We combine the result of
the call to the function given as an argument with the original document part, so we can
write all the possible cases in a single match construct. When the function returns a new
document part, we recursively process the part and then return it as the result (#2). This
would be important for example if we wanted to change all titles in the document. In that
case, we'd need to recursively process the body of the returned part to process all nested
titles. When the function returns None, we look at the original document part. If the original
part contains sub-parts, we need to process them recursively. For a titled part (#3), we just
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process the body and return a new TitledPart with the original title. For a split part, we
use List.map to obtain a new version of each of the columns or rows and then use the
result to construct a new SplitPart.

Now that we have a higher order function, let's try to use it. I mentioned earlier that we
could merge several columns of text into a single part. This would be useful in an adaptive
document layout: on a wide screen we want to view several columns, whereas on a narrow
screen a single column is more readable. Listing 7.16 shows how to shrink a split part
containing only text into a single part.

Listing 7.16 Shrinking split part containing text (F#)

let isText(part) = #A
match part with | TextPart( ) -> true | _ -> false #A

let doc = loadPart(XDocument.Load(@"C:\...\document.xml'") .Root)
let shrinkedDoc = doc |> mapDocument (fun part ->

match part with

| SplitPart(_, parts) when List.for_all isText parts -> #1

let res =
List.fold_left (fun st (TextPart(tx)) -> #2
{ Text = st.Text + " " + tx.Text #B
Font = tx.Font } )
{ Text = "; Font = null } parts #C
Some(TextPart(res))
| _ -> None ) #D

#A Utility testing whether part is a 'TextPart'
#1 Split part containing only text parts

#2 Aggregate all parts using fold

#B Concatenate text and return font

#C Start with empty string and 'null’ font

#D Ignore other cases

In the processing function, we need to check whether the given part is a SplitPart
containing only text parts. The first condition can be checked directly using pattern matching
and the second one is specified in a when clause of the pattern. We write a utility function
isText that tests whether a part is TextPart and then use it from List.for_all to
test whether all parts fulfill the condition (#1).

Next, we use Fold_left to aggregate all the parts in the list into a single part. We
already know that each sub-parts is a TextPart, so we can use it directly as a pattern
when we write the lambda function to aggregate the result (#2). However, the compiler
cannot verify that this is correct, so it gives a warning. You should be always very careful
when you spot a warning, but in this case we can safely ignore it. However, in larger projects
where you want to eliminate all compiler warnings, you'd probably rewrite the code using
match construct and call the Failwith function in the unreachable branch. The
aggregation implicitly uses the TextContent type and specifies an initial value with no
text content and unset font. During every step, we concatenate the existing string with the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumiD=460



Download at Boykma.Com
197

value in the current part, and use the current font. We do not process fonts in a
sophisticated manner, so we'll just end up with the font used by the last part.
You can see the final result of this operation in figure 7.5.

Functional Programming in NET

: !

Figure 7.5 Original and updated document; in the new document, split parts that contain only text are
merged into a single text part

I mentioned earlier that this map-like operation is just one of several useful operations
that we can provide for our documents. In the next section, we'll look at another one, which
aggregates the document into a single value.

7.4.2 Calculating using an aggregate operation

The idea behind aggregation is that we maintain some state that will be passed around over
the course of the operation. We start with an initial state and calculate a new one using the
given processing function for each part in the document. This idea is reflected in the

signature of the function:
val aggregateDocument :
("a -> DocumentPart -> *"a) -> "a -> DocumentPart -> "a

The reason I've used the broad notion of "some state" is that the state can be anything. The
type of the state in the function signature is a type parameter "Q, so it depends on the user
of the function. The processing function which calculates the new state based on the old
state and a single document part is passed as the first argument; the initial state as the
second argument, and the document as the third. Listing 7.17 shows the complete (and
perhaps surprisingly brief) implementation.

Listing 7.17 Aggregation of document parts (F#)

let rec aggregateDocument T state doc =
let state = f state doc #1
match doc with
| TitledPart(_, part) ->
aggregateDocument f state part #2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
198

| SplitPart(_, parts) ->
List.fold_left (aggregateDocument f) state parts #3
| _ -> state
#1 Calculate new state for the current part
#2 Recursively process the body
#3 Aggregate state over all subparts

The code needs to walk over all the parts in the document. It first calls the function on
the current part and then recursively processes all subparts. The ordering is relevant here:
we could have designed the function to process all the sub-parts first and then the current
part. The difference is that in the implementation above, the function is called on the "root"
node of the tree, while in the other case it would first be called on the "leaf" nodes. For our
purposes, both options would work fine, but for some advanced processing we'd have to
consider what kind of traversal we wanted.

When we call the aggregation function with the current part (#1) we use the same name
for the value to hold the new state. The new value hides the old one, and in this case that's a
useful safety measure: it means we can't accidentally use the old state by mistake after
we've computed the new state. Next, we process the parts that can contain sub-parts. For a
titled part, we just recursively process the body (#2). When we get a split with a list of sub-
parts, we aggregate it using normal aggregation on lists with the List.fold_ left
function (#3).

Aggregation can be useful for a variety of things. The following snippet shows how to

use this operation for counting a number of words in the whole document:
let totalChars =
aggregateDocument (fun count part ->
match part with
| TextPart(tx) | TitledPart(tx, _) -> #A
count + tx.Text.Split(®™ ").Length

| _ -> count) O doc

#A Single case for both parts with text

The function that we use as an argument only cares about parts that contain text. We
have two parts like this and both of them contain the text as a value of type
TextContent. F# pattern matching allows us to handle both cases just using a single
pattern. This syntax is called an or-pattern and it can be used only when both patterns bind
value to the same identifiers with the same type. In our case, we only need a single identifier
(tX) of type TextContent. Finally, in the body for the pattern matching, we split the text
into words using a space as the separator and then add the length of the returned array to
the total count.

TRY IT!

You can try extending this example in many ways. Here are a few ideas that you'll find
solved on the book web www.functional-programming.net. You can use mapbocument

to split text parts with more than 500 characters into two columns. Using aggregation,
you can collect a list of images that are used in the document. Moreover, you can
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implement a filter-like operation that takes a function of type (DocumentPart ->
bOOl) and creates document containing only parts for which the function returns true.
Using this function, you can remove all the images from a document.

We've seen that the second representation is very convenient for various operations with
the document, especially if we implement useful higher order functions first. In the last
section we'll get back to C# for a while and we'll discuss which of the ideas that we've just
seen are applicable to C# and also about related design patterns.

7.5 Object-oriented representations

Standard design patterns are divided into three groups - creational, structural and
behavioral. In this section we'll look at few patterns from the last two groups and we'll see
that they are very similar to some of the constructs that we used in F# earlier in this
chapter. Of course, the functional version of the patterns will not be exactly the same as
object-oriented, because OOP puts more emphasis on adding new types and FP puts more
emphasis on adding new functionality, but the structure will be very similar.

TIP

This section assumes that you know a bit about some of the design patterns. You can find
links to good introductory articles on the book's web site. We also don't have space to
show all the data structures in C#, but you can find the full implementation online.

We'll start by discussing two structural patterns and later we'll look at one behavioral.

7.5.1 Representing data with structural patterns

If we talk about programs in terms of data structures instead of objects, we can say that
structural patterns describe common and proved ways to design data structures. Design
patterns as you know them are more concrete and specify how to implement these
structures in object oriented languages using objects. In this chapter, we've seen functional
ways to represent data. In the first representation we used a simple list of records, which is
easy to write in any language, but the second representation using a discriminated union is
more interesting. The first related pattern that we'll look at is the composite pattern.

THE COMPOSITE DESIGN PATTERN

This pattern allows us to compose several objects into a single composed object and work
with it in a same way as with primitive objects. Figure 7.6 shows the usual object oriented
way to implement this pattern.
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AbstractComponent 0.
Operation() child
ConcreteComponent CompositeComponent parent
components o—
Operation() Operation() 1

Figure 7.6 'CompositeComponent' is a class that contains collection of other components; it inherits from
'AbstractComponent’, so it can be used in place of primitive component in a same way as other
components, such as 'ConcreteComponent'

The composed object is represented by the Composite class. The program then works
with objects just using the AbstractComponent class, so it doesn't need to understand
the difference between primitive and composed object. You can also see an example of a
virtual method, which is called Operation. In the CompositeComponent class, its
implementation is wusually very simple. It just iterates over all objects from the
components collection and invokes Operation method on them.If you think about our
document representation, you can find a very similar case there. When a part is split into
multiple columns or rows using SplitPart, we treat it as an ordinary document part in
exactly the same way as other parts. However, the part is just composed from other parts
that are stored in a list. We can rewrite the general example from the figure 7.6 in the same

way using recursive discriminated union type in F#:
type AbstractComponent
| CompositeComponent of list<AbstractComponent> #A
| ConcreteComponent of (...)

1 ¢--2) #B
#A Composite component
#B Other primitive components

In this example, the composite value is represented as one of the alternatives besides
other primitive components. It recursively refers to the AbstractComponent type and
stores values of this type in a list representing the composed object. When working with
values of AbstractComponent type, we don't need to treat composed and primitive
values separately, which is the primary aim of this design pattern.

As I said in the introduction for this section, there are some important differences
between functional and object-oriented version of the pattern. Most importantly, in functional
programming, the composition is public aspect of the type. As a result, any user of the type
knows that there is a component created by composition and can use this fact when writing
primitive processing functions, just like we did when implementing the mapDocument
operation.
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When using functional data structures, the focus is on the ability to easily add new
functionality to existing types, so making the composition public is a valid design decision.
This means that the functional version of the code also doesn't need to define the
Operation method, which was part of the AbstractComponent type in the object-
oriented representation. Any operation that uses the type can be implemented independently
of the type as a processing function.

In fact, F# has an advanced feature called active patterns that allows us to encapsulate
the composition to some extent. This allows us to publicly expose the composition, but the
whole discriminated union type, which can be useful for evolving F# libraries. We don't
discuss details of this feature in the book, but you'll find more information on the book's web
site.

THE DECORATOR DESIGN PATTERN

Another pattern that is closely related to composite is called the decorator pattern. The goal
of this pattern is to allow adding of new behavior to an existing class at runtime. As you can
see in figure 7.7, the structure looks similar to the composite pattern.

AbstractComponent 1

Operation()
ConcreteComponent DecoratedComponent
component ®
GEETEReN decoration
P Operation() 1

Figure 7.7 'DecoratedComponent’ class wraps a component and adds new state to it; Implementation of
the 'Operation’ in decorated component calls the wrapped functionality and adds new behavior that uses
the state of the decorated component

Even though the patterns look similar, their purposes are completely different. While the
composite pattern allows us to treat composed values in a same way as primitive values, the
purpose of the decorator pattern is to add new a feature to the existing object. As you can
see, the DecoratedComponent class in the diagram wraps a single other component
that is decorated and can carry additional state (such as the decoration field). The
decorated component can also add some behavior that uses the additional state in the
Operation method.

Again we can see a correspondence between this pattern and one of the parts in our
document representation. The part that adds some decoration to another part in our
application is TitledPart. The decoration is of course the title and the added state is the

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=460



Download at Boykma.Com
202

text and font of the title. We can write F# code that corresponds to the diagram of Decorator

pattern similarly simply as for the Composite pattern:
type AbstractComponent =
| DecoratedComponent of AbstractComponent * (...) #A
| ConcreteComponent of (...)

1 ¢--9 #B

#A Decorated component with additional state
#B Other primitive components

In this case, the data carried by the Decorator alternative is just a single decorated
component (instead of list of components in the case of Composite) and also the additional
state, which can vary between different decorators. I symbolized this using (. - -) syntax in
the previous listing, but this is only pseudo-code. In real F# code you would specify the type
of the actual state here, such as TextContent in our titled part. Just as with the
composite pattern, the code that implements operations on the decorated component is
located in the processing functions that we implement for our data structure. The code for
the DecoratedComponent case in the processing function would call itself recursively to
process the wrapped component and then execute the behavior added by the decorator,
such as drawing a title of the document part.

The F# implementation of both of the patterns in this section in relied on using a
recursive discriminated union type. In the next section, we'll work with it again, but in a
different way. We'll look at the object-oriented way for adding new operations to existing
data types.

7.5.2 Adding functions using the visitor pattern

Adding new operations to an existing data structure is the primary way of implementing any
code that works with data in a functional language. In object-oriented languages, this is
more difficult to do, but it is also needed less frequently. In this section we'll talk about the
visitor pattern that is designed for this purpose and we'll sketch how we could use it to add
operations to our representation of document. Figure 7.7 shows the basic classes that we'll
use in this section.
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TitledPart

Body
Text

IAccept<T>()

DocumentPart

Accept<T>()

SplitPart

Parts
Orientation DocumentVisitor<T>

IAccept<T>()

VisitSplitPart()
TextPart VisitTitledPart()
VisitimagePart()

Text .
VisitTextPart()
IAccept<T>()
ImagePart
Url — -
Accept<T>() CountWords : DocumentVisitor<int>

Figure 7.7 Diagram shows a class hierarchy that represents a document and a generic visitor class with
state as a generic type parameter (T); all parts support the visitor via 'Accept' method

The hierarchy of classes that inherit from an abstract class DocumentPart is a usual
way to represent alternatives in object-oriented programming and it corresponds to the
discriminated union type that we've used in F#.

The main class of the visitor pattern is a generic DocumentVisitor<T> class. We're
using a variant of the pattern that allows working with state, so the type parameter T
represents the kind of state we need to maintain, such as arguments or the result of some
computation performed by the visitor. The pattern also requires adding a virtual Accept
method and implementing it in each of the derived classes. The method takes the visitor as
an argument and calls it's appropriate VISt method, depending on which part it is. You
can find the complete source code online, but let's briefly look at the code of the Accept

method in ImagePart:
public override T Accept<T>(DocumentPartVisitor<T> visitor, T state) {
return visitor._VisitlmagePart(this, state);
}

The method only delegates the processing to the visitor. However, because it is
implemented in every derived class, it can call VisitlmagePart whose argument is a
concrete class (in this case ImagePart). This means that when we'll implement a concrete
visitor, we'll have an easy way to access properties of the different types that represent the
document.

The listing 7.18 shows how we can add an operation that counts words in the document
to the object oriented representation using the Visitor pattern.

7.18 Counting words in the document using Visitor

class CountWords : DocumentPartVisitor<int> {
public override int VisitTitledPart(TitledPart p, int st) {
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return p.Text.Text.Split(" ").Length +
p-Body.Accept(this, st); #1
3
public override int VisitSplitPart(SplitPart p, int st) {
return p.Parts._Aggregate(st, (n, p) => #A
p-Accept(this, n)); #2
3
public override int VisitTextPart(TextPart p, int st) {
return p.Text.Text.Split(®" ").Length + st;
public override int VisitlmagePart(ImagePart p, int st) {
return st;
}
b

#1 Recursively count words of the body
#A Aggregate the count over all subparts
#2 Count words in each part

This code corresponds to writing a recursive F# function that uses pattern matching to
test which of the parts we are currently processing. In an object-oriented way, this choice is
done in the Accept methods from the Visitor pattern. The CountWords class inherits
from the visitor and uses a single INt value as the state. Methods that process different
types of document parts just add the number of words to the current state and there are
also two methods (#1, #2) that have to recursively invoke the visitor on certain subparts.
The invocation is done by calling the Accept method on the subpart. This is similar to the

code that we need to run the processing on the entire document:
int count = doc.Accept(new CountWords(), 0);

Here we just call the Accept method and give it a new instance of the visitor as an
argument. If we wanted to add another operation, we would implement a new class similarly
as CountWords and execute it by giving it as an argument to the Accept method.

7.6 Summary

Working with data and designing data structures in a way that matches how we want to use
the data is an important part of functional program design. In this chapter, we completed our
toolset of basic functional data types by looking at the F# record type. We used records, lists
and recursive discriminated unions together to design and implement an application for
working with documents.

Functional programs often use multiple representations of data during processing and
our application provided an example of this. One representation (a flat list of elements)
allowed us to draw the document simply, whereas another (a hierarchy of parts) proved
more useful for constructing and manipulating documents. We implemented a translation
between these two representations, so the application could read the document from an XML
file, process it in the hierarchical form, and then draw it using the flat form.

We've also looked at design patterns that you'd probably use if you wanted to
implement the same problem in C#. In particular, we've seen that the composite and
decorator patterns correspond closely with the alternative values we used in the document
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data structure. Finally, we've also seen a C# way to add a new "function" for processing an
existing data structure using the visitor pattern.

This chapter was primarily about data-centric programs, where we design the data
structures first. However, as I mentioned in the introduction, there are also programs that
are primarily concerned with behavior. Of course, in more complex applications these two
approaches are combined. In the next chapter, we'll turn our attention to the second
important aspect of functional program design and talk about behavior-centric applications.
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Designing behavior-centric
programs

In the previous chapter, we discussed data-centric applications and I wrote that the first step
when designing functional programs is to think about the relevant data structures. However,
there are also cases where the data structure contains some form of behavior. For example,
this might be a command that the user can invoke or some tasks that the program executes
at some point. Instead of hard-coding every behavioral feature, we want to work with them
uniformly, so we need to keep them in a data structure which can be easily modified, either
before the compilation or even at run-time.

In the previous chapter, I gave the example of an application that processes images
using graphical filters. The application needs to store the filters and add or remove them
depending on what filters you want to apply. When representing this in the program, we
could easily use a list for the actual collection of filters to apply-the harder question is what
data structure we should use to represent the filters themselves? Clearly, a filter isn't really
data, although it may be parameterized in some fashion. Instead, it denotes behavior and
the simplest way for representing behavior in a functional language is to use a function.

As we've seen in chapter 5, functions can be treated as values, so we can work with
them as with any other data types. This means that a list of functions is a perfectly
reasonable data structure for representing graphical filters. The difference between behavior-
centric and data-centric is more conceptual then technical. Understanding what kind of
application you are designing is a helpful hint for creating a correct design.

EXAMPLES OF BEHAVIOR-CENTRIC APPLICATIONS
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In applications of a significant size, both approaches are usually combined. A larger
graphical editor that supports vector graphics as well as image filtering might use a data-
centric approach for representing shapes and a behavior-centric approach for applying
graphical filters to the image. Implementing graphical processing is beyond the scope of
this chapter, but you can find a sample application for graphical processing on the book
web www.functional-programming.net.

The design of functional data-centric applications from the previous chapters relied
heavily on functional data types, most importantly discriminated unions. These aren't
particularly idiomatic in C#, so we mostly talked about F#. On the other side, using functions
for representing simple behavior is perfectly possible in C# 3.0. Thanks to the Func
delegate, which represents a function in C#, most of the examples you'll see in this chapter
will be written in both C# and F#.

In this chapter, we'll use a single example that we'll keep extending to demonstrate the
look and feel of behavior-oriented applications. We're going to develop an application for
testing the suitability of a client for a loan offer. Let's now look at probably the simplest way.

8.1 Using collections of behaviors

In this section, we'll write several conditions for testing whether a bank should offer a loan to
the client or not and we'll store these conditions in a collection. This way, it is very easy to
add new conditions later during the development, because we would just implement the
condition and add it to the collection. One of the key aspects of behavior-oriented programs
is the ability to add new behavior easily.

8.1.1 Representing behaviors as objects

This time, we'll start with the C# version, because working with collections of behaviors in a
functional way is supported in C# 3.0 to a similar extent as in F#. However, before we'll look
at the functional version, it is useful to consider how the same pattern might be written using
a purely object oriented style.

We would probably start by declaring an interface with a single method to execute the
test and return whether or not it failed. In our loan example, a return value of true would
indicate that the test suggests the loan offer should be rejected. Later we would implement
the interface in several classes to provide concrete tests. Listing 8.1 shows the interface and
a very simple implementation.

Listing 8.1 Loan suitability tests using object oriented style (C#)

interface IClientTest {

bool Test(Client client); #1
}
class TestYearsiInJob : IClientTest { #A
public bool Test(Client client) {
return client.YearsinJob < 2; #2
}
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b

#1 Method that tests the client

#A Each test is represented by a single class
#2 Body of the concrete test

When working with tests implemented like this, we would create a collection containing
elements of the interface type (#1) (for example List<IClientTest>) and then add an
instance of each class implementing the interface to this collection. It is worth noting that we
have to create a separate class for every test, even though the condition itself is just a
simple expression (#2).

8.1.2 Representing behaviors as functions in C#

I mentioned earlier that an object-oriented way to understand a function is to think of it as
an interface with a single method. If we look at the code from the previous listing, we can
see that IClientTest is declared exactly like this. That means the test can easily be

represented as just a simple function. In C#, we can write tests using lambda functions:
Func<Client, bool> testYearsInJob =
client => client.YearsInJob < 2;

Instead of using the interface type, we now use a type Func<Client, bool>,
which represents a function that takes the Client as an argument and returns a Boolean
value. By writing the code in this fashion, we have significantly reduced the amount of
boilerplate code around the expression that represents the test.

Just like we could store objects that implement some interface in a collection, we can
also create a collection that stores function values and we'll look how to do this using the
LisSt<T> type in the listing 8.2. Note that we're creating a completely standard collection of
objects - we can iterate over all the functions in the collection or change the collection later
by adding or removing some of the function values.

When initializing the collection, we can easily write the code to specify the default set of
tests in a single method. We can add the tests using lambda function syntax without the
need to declare the functions in advance and we can also use C# 3.0 feature called collection
initializer that makes the syntax even more concise.

Listing 8.2 Loan suitability tests using a list of functions (C#

class Client { #1
public string Name { get; set; }
public int Income { get; set; }
public int YearsInJob { get; set; }
public bool UsesCreditCard { get; set; }
public bool CriminalRecord { get; set; }

3
static List<Func<Client, bool>> GetTests() { #A
return new List<Func<Client, bool>> { #2
cl => cl._CriminalRecord, #B
cl => cl.Income < 30000, #B
cl => Icl._UsesCreditCard, #B
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cl => cl.YearsInJob < 2 #B
};
b

#1 Stores information about the client

#A Returns a list of tests

#2 Create new list using collection initializer
#B Several test checking loan suitability

The listing uses many of the new C# 3.0 features and thanks to them it is quite similar
to the F# implementation we're about to write. First we declare a class to store information
about the client using automatic properties (#1). Next, we implement a method that returns
a collection of tests. The body of the method is just a single return statement that creates a
new .NET List type and initializes its elements using collection initializer (#2). This allows you
to specify the values when creating a collection in the same way as for arrays. Under the
cover, this calls the Add method of the collection, just as we did in the previous example,
but it is clearer.

The values stored in the collection are functions written using the lambda function
syntax. Note that we don't have to specify the type of the Cl argument. This is because the
C# compiler knows that the argument to the Add method is the same as the generic type
argument, which in our case is Func<Client, bool>.

LOADING BEHAVIORS USING REFLECTION

One frequent requirement for behavior-centric programs is the ability to load new
behaviors dynamically from a library. For our application that would mean that someone
could write a .NET class library with a type containing a GetTestsS method. This would
return a list of tests just as in the earlier code; our program would call the method to get
the tests at execution time, and then execute the tests without needing to know anything
more about them.

This can be done using the standard .NET classes from the System.Reflection
namespace that support dynamic loading an assembly and executing a method based on
its name. The sample application for working with graphical filters supports this
functionality, so you can find more examples online.

Now that we have a class for representing clients and a collection of tests that advises
us whether to offer a loan to the client or not, we should also look how we can run the tests.

8.1.3 Using collections of functions in C#

When considering a loan for a client, we want to execute all the tests and count the number
of tests that returned true (meaning a high risk). If the count is zero or one then the
program will recommend the loan. The normal imperative solution would be to declare a
variable and enumerate the tests using a Foreach statement. In the body of the loop, we'd
execute the test and increment the variable if it returned true. However, as you can see in
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listing 8.3, this can be implemented more elegantly using the LINQ extension method
Count.

Listing 8.3 Executing tests (C#)

void TestClient(List<Func<Client, bool>> tests, Client client) {

int issuesCount = tests.Count(f => f(client)); #1
bool suitable = issuesCount <= 1; #A
Console.WriteLine("'Client: {O}\nOffer a loan: {1}", #A
client_Name, suitable ? "YES"™ : "NO™); #A
3
var john = new Client { #B
Name = *John Doe™, Income = 40000, YearsinJob = 1,
UsesCreditCard = true, CriminalRecord = false
}:
TestClient(GetTests(), john); #C

#1 How many tests does the client fail?
#A Print the results of testing
#B Create client using object initializer
#C Offer a loan to the client?

In functional terminology, Count is a higher order function. It takes a predicate as an
argument and counts the number of elements for which the predicate returns true. We're
using it to count how many tests consider the client to be unsuitable for a loan (#1). The
element of the collection in our case is a function, so our predicate has to take a function and
return a Boolean. The lambda function we wrote executes the function passed as its
parameter, specifying it the client as the argument, and simply returns the result of the test
as the predicate result. Once we count the tests that failed, calculating and printing the
result is easy. Describing how it works (even in this relatively simple case) is complicated,
but if you think about what you're trying to do with each element, it's not that hard to
understand.

I mentioned earlier that the F# version of the example will be essentially the same. This
is because all the necessary features such as higher order functions, lambda functions and
the ability to store functions in a collection are now available in C# 3.0 as well. Let's see
what the F# code looks like.

8.1.4 Using lists of functions in F#

First of all, we'll declare a type to represent information about the client. A client has quite a
lot of properties, so the most natural representation will be an F# record type that we've
seen in the previous chapter. You can see the type declaration and a code to create sample
client in the listing 8.4

Listing 8.4 Client record type and sample value (F# interactive)

> type Client = #A
{ Name : string; Income : int; YearslnJob : int
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UsesCreditCard : bool; CriminalRecord : bool };;
type Client = (...)

> let john = #B
{ Name = "John Doe'; Income = 40000; YearsinJob = 1
UsesCreditCard = true; CriminalRecord = false };;
val john : Client
#A Declare 'Client’ as an F# record type
#B Create a value of the 'Client’ type

There's nothing new here - we're just declaring a type and creating an instance of it. To
make the listing a bit shorter, I haven't used a separate line for each property, either when
declaring the type or when creating the value. This is entirely valid F#, but we have to add
semicolons between the properties. In the light-weight syntax, the compiler adds them
automatically at the end of the line (when they are needed), but they have to be written
explicitly when the line breaks aren't there to help the compiler.

Listing 8.5 completes the example. First it creates a list of tests and then decides
whether or not to recommend offering a loan to the sample client (John Doe) from the
previous listing.

Listing 8.5 Executing tests (F# interactive)

> let tests = #1
[ (fun cl -> cl.CriminalRecord = true);
(fun cl -> cl.Income < 30000);
(fun cl -> cl.UsesCreditCard = false);
(fun cl -> cl.YearsInJob < 2) ];;

val tests : (Client -> bool) list #2
> let testClient(client) =

let issues = tests |> List.filter (fun ¥ -> F client) #3

let suitable = issues.Length <= 1 #A

printfn "Client: %s\nOffer a loan: %s (issues = %d)" client.Name #A

(if (suitable) then "YES" else "NO') issues.Length;; #A

val testClient : Client -> unit

> testClient(john);;

Client: John Doe

Offer a loan: YES (issues = 1)
#1 Create a list of tests

#2 Inferred signature of the list

#3 Filter tests and get a list of issues
#A Count the issues and print the result

This uses the normal syntax for creating lists to initialize the tests (#1) and the tests are
written using lambda function syntax. Interestingly, we don't have to write any type
annotations and F# still infers the type of the list correctly (#2). F# type inference is smart
enough to use the names of the accessed members in order to work out which record type
we want to use.

In the C# version, we used the Count method to calculate the number of the tests that
failed. F# doesn't have an equivalent function; we could either implement it, or combine
other standard functions to get the same result. We've taken the second approach in this
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case. First we get a list of tests that considered the client to be unsafe; these are the tests
which return true using List.Filter (#3). Then we get the number of issues using the
Length property.

Point-free programming style

We've seen many examples where we don't have to write lambda function explicitly when
calling a higher order function, so you may be wondering whether this is possible in the
previous listing as well. This way of writing programs is called "point-free", because we're
working with data structure that contains values (for example a list), but we never assign
any name to the value ("point") from that structure. Let's demonstrate this using a couple
of examples that we've seen already:

[1 .. 10] |> List.map ((+) 100)
places |> List.map (snd >> statusByPopulation)

In the first case, we're working with collection of nhumbers, but there is no symbol that
would represent values from the list. The second case is similar, except we're working
with list of tuples. Again, there are no symbols that would represent either the tuple or
any element of the tuple.

The point-free style is possible thanks to several programming techniques. The first line
uses partial function application, which is a way to create a function with the required
number of parameters based on a function with larger number of parameters. In our
example, we also treat an infix operator (plus) as an ordinary function. The second line
uses function composition, which is another important technique for constructing
functions without explicitly referencing the values that the functions work with.

Now, let's look how we could rewrite the example from listing 8.5. First of all, we'll
rewrite the lambda function to use pipelining operator:

Instead of: (fun f -> f client)
We*ll write: (fun f -> client |> T)

These two functions mean exactly the same thing. We're almost finished now, because
the pipelining operator takes the client as the first argument and a function as the second
argument. If we use partial application to specify just the first argument (‘client'), we'll
obtain a function that takes a function ('f') as an argument and applies it to the 'client':

tests |> List.filter ((]>) client)

Point-free programming style should be always used wisely. Even though it makes the
code more succinct and elegant, it may be harder to read and the reasoning that I've
demonstrated here isn't trivial. However, the point-free style is important for some areas
of functional programming and in chapter 12 we'll see how it can be very useful when
developing a domain-specific language.
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In this section, we've seen how to design and work with a basic behavior-oriented data
structures - a list of functions - in both C# and F#. We've also seen a common functional
technique called point-free programming. In the next section, we'll continue talking about
common practices as we look at two object-oriented design patterns and related functional
constructs.

8.2 Idioms for working with functions

In the previous chapter, we talked about data structures and several related design patterns.
We've seen two examples of structural patterns that are related to the problem of designing
functional data structures. We've also seen one behavioral pattern that describes how
objects communicate, which corresponds to how functions call each other in functional
terminology.

In this chapter, we're talking about behavior-oriented applications, so it seems natural
that the relevant patterns will be behavioral ones. The first one is called the strategy pattern
and is surprisingly simple from a functional point of view.

8.2.1 The strategy design pattern

The strategy pattern is useful if the application needs to choose between several algorithms
or parts of an algorithm at run-time. One of the common situations is for example when
several tasks that our application needs to perform differ only in one smaller subtask. Using
the strategy pattern, we can write the common part of the task just once and parameterize it
by giving it the subtask (primitive operation) as an argument. Figure 8.1 shows an object-
oriented representation of the strategy pattern.

Context Strategy
strategy : Strategy K>——
Operation() 1 1 |AlgorithmOperation()

T
| |

ConcreteStrategy1 ConcreteStrategy2

AlgorithmOperation() | [AlgorithmOperation()

Figure 8.1 'Strategy' is an interface with a method representing the primitive operation. Two concrete
strategies implement that operation differently and the '‘Context' class can choose between the
implementations.

The idea of "parameterizing a task by giving it subtask as an argument" has probably
made it fairly clear what the strategy pattern looks like in functional programming: it's just a
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higher order function. The Strategy interface from the previous diagram has a single
method which suggests that it is just a simple function; the two classes that implement it are
effectively just concrete functions that can be created using lambda functions.

In a language that supports functions, we can replace the Strategy interface with the
appropriate function (a FUnc delegate in C# or a function type in F#). Usually, we also don't
need to store the strategy in a local field of the Context class: instead, we pass it directly
to the Operation method as an argument. Using the abstract names from the previous

diagram, we could write:
Context.Operation(arg => {
// concrete strategy #1

;s

We've already seen a practical example of this pattern when filtering a list. In this case,
the function that specifies the predicate is a concrete strategy (and we various different
strategies to write different filters) and the List.Filter function or the Where method
is the operation of the context. This means that in a language that supports higher order
functions, you can always replace the strategy pattern with a higher order function.

Our next pattern is somewhat similar, but more related to our earlier discussion of
behavior-centric applications that work with a list of behaviors.

8.2.2 The command design pattern

The command pattern describes a way to represent actions in an application. As opposed to
the previous pattern, which is used to parameterize a known behavior (e.g. filtering of a list)
with a missing piece (predicate), the command pattern is used to store some "unit of work"
that can be invoked at some later point in time. We often see collections of commands that
specify steps of some process or operations that the user can choose from. If you look at
figure 8.2, you'll quickly recognize an interface which looks like a good candidate for being
replaced with a single function.

Invoker Command
P
1 = |Execute()
Recelver ConcreteCommand
receiver : Receiver
OperationA()
OperationB() Execute()

void Execute() {
receiver.OperationA();

}

Figure 8.2 'Invoker' stores a collection of classes implementing the ‘Command' interface. When invoked,
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the concrete command uses a 'Receiver' object, which usually carries and modifies some state.

The type that can be easily replaced with a function is the Command interface. Again, it
has just a single method, which acts as a hint. The classes that implement the interface
(such as ConcreteCommand) can be turned into a functions, either constructed using
lambda function syntax or written as ordinary functions when they are more complex.

I mentioned that the difference between the command and strategy patterns is that the
Invoker works with a list of commands and executes them as and when it needs to. This is
very similar to the "client loan" example. We had a collection of tests for checking the
suitability of the client. However, instead of declaring the Command interface, our functional
version used the Func<Client, bool> delegate in C# and a function type Client ->
bool in F#. The invoker was the TestClient method, which used the tests to check a
client.

RECEIVER COMPONENT AND MUTABLE STATE

Figure 8.2 also shows a RecelVver class; I explained that it usually represents some
state that is changed when the command is invoked. In a typical object-oriented
program, this might be a part of the application state. For example in a graphical editor,
we could use commands to represents undo history. In that case, the state would be the
picture on which the undo steps can be applied.

This is not the way in which you would use the pattern in a functional programming.
Instead of modifying state, the command usually returns some result (such as the
Boolean value in our client checking example). In purely functional programming, the
Receiver can be a value captured by the lambda function.

Although mutable state should usually be avoided in functional programming, there is
one example where it is useful, even in F#. We'll see that a technique similar to the
command pattern can help us to hide the state from the outside world, which is important if
we still want to keep most of the program purely functional. First look at a similar idea in C#
and then study the usual implementation using lambda functions in F#.

CAPTURING STATE USING THE COMMAND PATTERN IN C#

As I've explained, the command pattern often works with mutable state, encapsulated in
something like the Recelver class of our example. Listing 8.6 shows an example of this,
creating a more flexible income test for our financial application. The goal is to allow the test
to be configured later without updating the collection of tests.

Listing 8.6 Income test using the command pattern (C#)

class IncomeTest { #1
public int Minimallncome { get; set; }; #2
public IncomeTest() {
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MinimalIncome = 30000;
3
public bool Testlncome(Client client) { #3
return client.Income < minimalIncome;
3
3
// Usage of "IncomeTest” later in the program
IncomeTest incomeTst = new IncomeTest(); #B
Func<Client, bool> command = cl => incomeTst.Testlncome(cl); #4
tests.Add(command) #C

#1 Corresponds to the 'Receiver’ class

#2 Publicly accessible mutable state

#3 Operation used by the ‘Command’

#B Create 'Receiver’ with the state

#4 Create the 'Command' as a lambda function
#C Add command to the list of tests (‘Invoker’)

We start by creating a class that carries the mutable state and corresponds to the
Receiver component from the Command design pattern (#1). The state is a
recommended minimal income and the class has a method for modifying it (#2). The next
method implements the test itself (#3) and compares whether the income of the given client
is larger than the current minimal value stored in the test.

The later part of the listing shows how we can create a new test. First we create an
instance of the IncomeTest class containing the state and then we create a lambda
function that calls its Testlncome method (#4). This function corresponds to the
Command component and we add it to the collection of tests. We can later configure the test
using the SetMinimal Income method. Listing 8.6 creates the function explicitly with
lambda syntax, just to demonstrate that it corresponds to the design pattern, but we can

write it more concisely:
IncomeTest incomeTst = new IncomeTest();
tests.Add(incomeTst.Testlncome);

The C# compiler automatically creates a delegate instance that wraps the
Testlncome method and can be added to the collection if the method has the right
signature. Now that we've added the test to the collection, we can see how it behaves:

TestClient(tests, john); #A
incomeTst.SetMinimal Income(45000);
TestClient(tests, john); #B

#A Result is YES
#B Result is NO

This is a common pattern which is widely used in imperative object-oriented
programming. From a functional point of view, it should be used carefully: the code and
comments should clearly document what calls can affect the mutable state. In the previous
example, the state is modified using the incomeTst object and this is the reason why the
same line of code can give different results when called at different times. In the next
section, we'll look how to implement similar functionality in a simpler way using F#.
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8.2.2 Capturing state using closures in F#

In this section we're going to talk about closures, which is an important concept in functional
programming. Closures are very common and most of the time they aren't used with
mutable state. However, working with mutable state is sometimes needed for the sake of
pragmatism and closures give us an excellent way to limit the scope of the mutable state.

First let's look at a very simple piece of F# which we saw in chapter 5:
> let createAdder num =

(fun m -> num + m)
val createAdder : int -> (int -> int)

When we were discussing this example earlier, we didn't see any difference between a
function written like this and a function called add taking two parameters and returning their
sum. This is because we can call the add function with a single argument: thanks to partial
application, the result is a function that adds the specified nhumber to any given argument.

If you analyze what is returned in the previous example, it isn't just the code of the
function! The code is just a bunch of instructions that add two numbers, but if we call
createAdder twice with two different arguments the returned functions are clearly
different, because they're adding different numbers. The key idea is that a function isn't just
code, but also a closure which contains the values that are used by the function, but aren't
declared inside its body. The values held by the closure are said to be captured. In the
previous example, the only example of capturing is the num parameter.

Of course, we've been using closures when creating functions since we started talking
about lambda functions. We didn't talk about them explicitly, because usually you don't need
to think about them-they just work. However, what if the closure captures some value that
can be mutated?

MUTABLE STATE USING REFERENCE CELLS
In order to answer this question, we'll need to be able to create some mutable state to be
capture. We can't do that with et mutable, because that kind of mutable value can be
used only locally-it can't be captured by a closure.

The second way to create mutable values is using a type called ref, which is a shortcut
for a reference cell. Put simply, this is a small object (actually declared as an F# record type)
that contains a mutable value. To understand how the ref type works, we can look how we

could define exactly same type in C#. As you can see, it's fairly simple:
class Ref<T> {
public Ref(T value) { Value = value; }
public T Value { get; set; }

3
The important point about the type is that the Value property is mutable, so when we

create an immutable variable of type Ref<int>, we can still mutate the value it
represents. The listing 8.7 shows an example of using reference cells in F# and also shows
the corresponding code using C# type Ref<T>. In F#, we don't access the type directly,
because there is a function-again called ref-that creates a reference cell, along with two
operators for setting and reading its value.
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Listing 8.7 Working with reference cell in F# and C#

let st = ref 10 var st = new Ref<int>(10);

st := 11 #A st.Value = 11;

printfn "%d" (Ist) #B #A
Console.WriteLine(st.Value);
#B

#A Modify the value of reference cell
#B Prints 11

On the first line, we create a reference cell containing an integer. Just like the Ref<T>
type we've just declared in C#, the F# reT type is generic, so we can use it to store values
of any type. The next two lines demonstrate the operators which work with reference cells -
assignment (- =) and dereference (!). The operators correspond to setting or reading value
of the property, but give us a more convenient syntax.

CAPTURING REFERENCE CELLS IN A CLOSURE

Now we can write code that captures mutable state created using a reference cell in a
closure. Listing 8.8 shows an F# version of the configurable income test. We create a
createlncomeTests function that returns a tuple of two functions: the first changes the
minimal required income and the second is the test function itself.

Listing 8.8 Configurable income test using closures (F# interactive)

> let createlncomeTest() =

let minimallncome = ref 30000 #1
(fun (newMinimal) ->
minimalIncome := newMinimal), #A
(fun (cD) ->
cl.Income < (Iminimallncome)) #B
val createlncomeTest : unit -> (int -> unit) * (Client -> bool) #2
> let setMinimalIncome, testlncome = createlncomeTest() #3

val testlncome : (Client -> bool)
val setMinimallncome : (int -> unit)

> let tests = [ testlncome; (* more tests... *) ] #C
val tests : (Client -> bool) list

#1 Declare local mutable value

#A Set new minimal income

#B Test client using the cur